
Copyright © 2004, Oracle. All rights reserved.

Manipulating Data

8-2 Copyright © 2004, Oracle. All rights reserved.

Objectives

After completing this lesson, you should be able to do

the following:

• Describe each data manipulation language (DML)

statement

• Insert rows into a table

• Update rows in a table

• Delete rows from a table

• Control transactions

8-3 Copyright © 2004, Oracle. All rights reserved.

Data Manipulation Language

• A DML statement is executed when you:

– Add new rows to a table

– Modify existing rows in a table

– Remove existing rows from a table

• A transaction consists of a collection of DML

statements that form a logical unit of work.

8-4 Copyright © 2004, Oracle. All rights reserved.

Adding a New Row to a Table

DEPARTMENTS

New
row

Insert new row
into the

DEPARTMENTS table

8-5 Copyright © 2004, Oracle. All rights reserved.

INSERT Statement Syntax

• Add new rows to a table by using the INSERT

statement:

• With this syntax, only one row is inserted at a

time.

INSERT INTO table [(column [, column...])]

VALUES (value [, value...]);

8-6 Copyright © 2004, Oracle. All rights reserved.

Inserting New Rows

• Insert a new row containing values for each

column.

• List values in the default order of the columns in

the table.

• Optionally, list the columns in the INSERT clause.

• Enclose character and date values in single

quotation marks.

INSERT INTO departments(department_id,

department_name, manager_id, location_id)

VALUES (70, 'Public Relations', 100, 1700);

1 row created.

8-7 Copyright © 2004, Oracle. All rights reserved.

INSERT INTO departments

VALUES (100, 'Finance', NULL, NULL);

1 row created.

INSERT INTO departments (department_id,

department_name)

VALUES (30, 'Purchasing');

1 row created.

Inserting Rows with Null Values

• Implicit method: Omit the column from the

column list.

• Explicit method: Specify the NULL keyword in the
VALUES clause.

8-8 Copyright © 2004, Oracle. All rights reserved.

INSERT INTO employees (employee_id,

first_name, last_name,

email, phone_number,

hire_date, job_id, salary,

commission_pct, manager_id,

department_id)

VALUES (113,

'Louis', 'Popp',

'LPOPP', '515.124.4567',

SYSDATE, 'AC_ACCOUNT', 6900,

NULL, 205, 100);

1 row created.

Inserting Special Values

The SYSDATE function records the current date and

time.

8-9 Copyright © 2004, Oracle. All rights reserved.

• Add a new employee.

• Verify your addition.

Inserting Specific Date Values

INSERT INTO employees

VALUES (114,

'Den', 'Raphealy',

'DRAPHEAL', '515.127.4561',

TO_DATE('FEB 3, 1999', 'MON DD, YYYY'),

'AC_ACCOUNT', 11000, NULL, 100, 30);

1 row created.

8-10 Copyright © 2004, Oracle. All rights reserved.

INSERT INTO departments

(department_id, department_name, location_id)

VALUES (&department_id, '&department_name',&location);

Creating a Script

• Use & substitution in a SQL statement to prompt

for values.

• & is a placeholder for the variable value.

1 row created.

8-11 Copyright © 2004, Oracle. All rights reserved.

Copying Rows

from Another Table

• Write your INSERT statement with a subquery:

• Do not use the VALUES clause.

• Match the number of columns in the INSERT

clause to those in the subquery.

INSERT INTO sales_reps(id, name, salary, commission_pct)

SELECT employee_id, last_name, salary, commission_pct

FROM employees

WHERE job_id LIKE '%REP%';

4 rows created.

8-12 Copyright © 2004, Oracle. All rights reserved.

Changing Data in a Table

EMPLOYEES

Update rows in the EMPLOYEES table:

8-13 Copyright © 2004, Oracle. All rights reserved.

• Modify existing rows with the UPDATE statement:

• Update more than one row at a time (if required).

UPDATE table

SET column = value [, column = value, ...]

[WHERE condition];

UPDATE Statement Syntax

8-14 Copyright © 2004, Oracle. All rights reserved.

• Specific row or rows are modified if you specify
the WHERE clause:

• All rows in the table are modified if you omit the
WHERE clause:

Updating Rows in a Table

UPDATE employees

SET department_id = 70

WHERE employee_id = 113;

1 row updated.

UPDATE copy_emp

SET department_id = 110;

22 rows updated.

8-15 Copyright © 2004, Oracle. All rights reserved.

UPDATE employees

SET job_id = (SELECT job_id

FROM employees

WHERE employee_id = 205),

salary = (SELECT salary

FROM employees

WHERE employee_id = 205)

WHERE employee_id = 114;

1 row updated.

Updating Two Columns with a Subquery

Update employee 114’s job and salary to match that of

employee 205.

8-16 Copyright © 2004, Oracle. All rights reserved.

UPDATE copy_emp

SET department_id = (SELECT department_id

FROM employees

WHERE employee_id = 100)

WHERE job_id = (SELECT job_id

FROM employees

WHERE employee_id = 200);

1 row updated.

Updating Rows Based

on Another Table

Use subqueries in UPDATE statements to update
rows in a table based on values from another table:

8-17 Copyright © 2004, Oracle. All rights reserved.

Delete a row from the DEPARTMENTS table:

Removing a Row from a Table

DEPARTMENTS

8-18 Copyright © 2004, Oracle. All rights reserved.

DELETE Statement

You can remove existing rows from a table by using
the DELETE statement:

DELETE [FROM] table

[WHERE condition];

8-19 Copyright © 2004, Oracle. All rights reserved.

Deleting Rows from a Table

• Specific rows are deleted if you specify the WHERE

clause:

• All rows in the table are deleted if you omit the
WHERE clause:

DELETE FROM departments

WHERE department_name = 'Finance';

1 row deleted.

DELETE FROM copy_emp;

22 rows deleted.

8-20 Copyright © 2004, Oracle. All rights reserved.

Deleting Rows Based

on Another Table

Use subqueries in DELETE statements to remove rows

from a table based on values from another table:

DELETE FROM employees

WHERE department_id =

(SELECT department_id

FROM departments

WHERE department_name

LIKE '%Public%');

1 row deleted.

8-21 Copyright © 2004, Oracle. All rights reserved.

INSERT INTO

(SELECT employee_id, last_name,

email, hire_date, job_id, salary,

department_id

FROM employees

WHERE department_id = 50)

VALUES (99999, 'Taylor', 'DTAYLOR',

TO_DATE('07-JUN-99', 'DD-MON-RR'),

'ST_CLERK', 5000, 50);

1 row created.

Using a Subquery in an INSERT Statement

8-22 Copyright © 2004, Oracle. All rights reserved.

Using a Subquery in an INSERT Statement

Verify the results:

SELECT employee_id, last_name, email, hire_date,

job_id, salary, department_id

FROM employees

WHERE department_id = 50;

8-23 Copyright © 2004, Oracle. All rights reserved.

Database Transactions

A database transaction consists of one of the

following:

• DML statements that constitute one consistent

change to the data

• One DDL statement

• One data control language (DCL) statement

8-24 Copyright © 2004, Oracle. All rights reserved.

Database Transactions

• Begin when the first DML SQL statement is

executed.

• End with one of the following events:

– A COMMIT or ROLLBACK statement is issued.

– A DDL or DCL statement executes (automatic

commit).

8-25 Copyright © 2004, Oracle. All rights reserved.

Advantages of COMMIT

and ROLLBACK Statements

With COMMIT and ROLLBACK statements, you can:

• Ensure data consistency

• Preview data changes before making changes

permanent

• Group logically related operations

8-26 Copyright © 2004, Oracle. All rights reserved.

Controlling Transactions

SAVEPOINT B

SAVEPOINT A

DELETE

INSERT

UPDATE

INSERT

COMMITTime

Transaction

ROLLBACK

to SAVEPOINT B

ROLLBACK

to SAVEPOINT A

ROLLBACK

8-27 Copyright © 2004, Oracle. All rights reserved.

Summary

In this lesson, you should have learned how to use the

following statements:

Function Description

INSERT Adds a new row to the table

UPDATE Modifies existing rows in the table

DELETE Removes existing rows from the table

COMMIT Makes all pending changes permanent

SAVEPOINT Is used to roll back to the savepoint marker

ROLLBACK Discards all pending data changes

