
Programming Versus Application

Péter Szlávi1, László Zsakó1
1 Lorand Eötvös University, Faculty of Informatics, Department of Teacher’s Training in

Computer Science
1117 Budapest, Hungary

{szlavi, zsako}@ludens.elte.hu
http://digo.inf.elte.hu

Abstract. All over Europe including Hungary there has been serious disputes
for years about teaching informatics, about its goals and its possible contents. In
this field the sharpest question is the problem of teaching programming and/or
application. Do you need one or the other? If both, what is their accurate pro-
portion? Why might you need either of them? Which age group should be
taught which of them? This article is aimed at finding the answer to these ques-
tions.

1 Introduction
There are several fundamental issues in teaching informatics that have not been satis-
factorily solved so far. Informatics as a school subject varies from country to country,
region to region. There are countries like France where there is not a compulsory
school subject called informatics; in this case students are taught IT skills within the
framework of other subjects. In many other countries, however, informatics is defined
as an independent subject. This article is not aimed at making a choice between the
two possibilities or adducing pros and cons. The authors as well as the Hungarian
education government of the past 12 years definitely support an informatics as an
independent school subject.

Where there is a school subject called informatics, the next question that arises is:
which age groups are to learn it. Although this question is not tackled in this essay,
either, we would like to state our position. We believe that in each year of primary and
secondary education (i. e. years 1 to 12 in Hungary) students need IT skills therefore
informatics should be taught as an independent subject minimum from the third year,1
which we are trying to prove in section Informatics at school. On the other hand, we
think that in the last two years of secondary education you cannot define a uniform
informatics subject. Surely those who want to go on to university and study computer
science must learn something different than those who will start work after leaving
school.

1 Moreover, we agree with Márta Turcsányi-Szabó, who launched the first informatics ex-

periment at Hungarian kindergartens, that even in the kindergarten informatics may be an im-
portant tool to develop children's skills and stabilize the community [1].

Starting teaching informatics at an early stage is not a unique phenomenon: e.g. in a
decree for primary and secondary schools published by the French National Ministry
of Education, it is stated that even pupils of elementary schools i.e. age group 6 to 11
are to be encouraged to use computers, certain software, multimedia, electronic mail-
ing and the internet. [2]. As for the English National Curriculum, Information and
Communication Technology (ICT) appears at the very beginning of education i.e. for
age group 5 to 7 (Key stage 1)! Although there is not an independent school subject
called informatics, ICT is expected to be used every day [3]

Regarding Hungary, the National Institute for Public Education worked out a ver-
sion of informatics as a school subject called Adventures in Informationland [4] for
years 1 to 4. Schools themselves can decide whether they are to include it in their
curriculum as a compulsory subject or not. The syllabus is structured as follows:

Year 1 Year 2 Year 3 Year 4
Information games (8) Getting to know our

environment (3+3+2)
Signs and codes (4+4) Information coding

(2+3)
Sending a message
(3+3+2)

Playing with algo-
rithms (4+3+3)

Everyday algorithms
(4+5)

Algorithms in our
everyday life (4+5)

Using algorithms (3+3)

Getting to know the
computer (15)

Making friends with the
computer (8+7)

The computer is our
help (14)

Creativity with the
computer (10)

Making friends with
books (2+2)

Visiting the school
library (2+3)

Visits to the library (6) In the library again
(5+3)

Therefore, the starting point of this article is: there is a subject called informatics
nearly in every year of primary and secondary education. We will not go into a de-
tailed description of what topics should be covered, either. We will only tackle the
problem of programming and application.2

We would also like to sum up why you need teaching programming and/or applica-
tion (the Delusions of Informatics Education). Then we will move on to survey the
goals of programming and application skills. The next part will be dedicated to the
contents of algorithmization and application skills (Fields of Informatics). Finally, we
will look into what kind of knowledge and skills should students possess at different
ages.

2 The Delusions of Informatics Education [5]
We are trying to enlighten the two fields to be taught, their importance and proportion
by describing the faulty extreme views and discussing them with a critical eye.

2 Besides there are several important fields like infocommunication, media informatics etc.

Informatics education =
teaching users only

Informatics education =
teaching programming only

According to this, informatics is about
being able to use computers (and other
devices) properly. This delusion holds
that the development of abilities, the
improvement of problem solving skills,
the practice of problem solving activities
and the ability to invent are not part of
informatics3.

This delusion was created as an oppo-
site to the following delusion (informat-
ics education = teaching programming),
and it took nearly 10 years to fight it. It
is interesting to note that people who
fought against this idea were the ones
that had earlier fought against the oppo-
site delusion as well.

The supporters of this delusion often
say that it is unnecessary to teach pro-
gramming because only a few students
will become programmers. This is non-
sense, and can only be accepted by the
blind. Some of the questions that illus-
trate this are as follows:
• Why do we teach mathematics: do we

want everybody to become a mathe-
matician?

• If only a small number of students
become a historian, why to teach his-
tory?

Mathematics is taught because it im-
proves thinking and other abilities. The
role of informatics is very similar to
this4, which means that the teaching of
programming can only be justified if in
the certain age groups there are such
skills and abilities, in the development of
which it may play an important role.

This is the opposite of the previous delu-
sion and it claims everything that is de-
nied by the former. Namely, there is no
need for a new form of computer liter-
acy, informatics does not change our
everyday life, or at least not in a way that
should be taught systematically.

They set the following examples: we
are not taught to use the telephone or the
television at school, and this aspect is
true for all the applications of informat-
ics. Even the starting point of this state-
ment is false: most people use their mo-
bile phones (even the remote control of
their TV set) in a primitive, very limited
way. Informatics invades our everyday
life: even our simple devices are becom-
ing more complex and multi-functional,
with a number of opportunities. It is a
well-known fact (both in pedagogy and
in programming) that beyond a certain
extent of complexity, frontal recognition,
problem solving techniques become
difficult, the process of acquisition slows
down and it requires such an extent of
abstraction skills and notion recognition
to understand the logic of the system that
can be developed much slower alone
than in a well-constructed learning proc-
ess.

This delusion appeared when com-
puters could only be used for program-
ming, which was typical in the 80`s after
the introduction of personal computers
that could be programmed in BASIC
language only. Later, when application
systems became widespread, this delu-
sion was pushed into the background and

3 Even the caveman used his invention skills to rise over animals.
4 For mathematics education it is worth considering the following statement: pro-

gramming can be an experimental device for mathematics! Nevertheless, pedagogy
considers experimentation extremely useful in the process of recognition.

Our world is full of algorithms: we
always do algorithms in our everyday
life, daily work or while studying. There-
fore it is in our own interest to improve
our knowledge to understand, execute,
even to design algorithms.

nowadays it is supported by mainly in-
formatics experts working in secondary
education, whose job is to distribute
programming tasks.

To be able to avoid the two extreme delusions (teaching only users vs. teaching
only programmers) the best course of action is to follow an advice of the famous Hun-
garian actor Gyula Kabos: to take a little bit of this and a little bit of that as well.

3 Why Do You Need Both?
Solving application tasks Algorithmization, data modelling

IT tools invade our world. Only those
can make good use of the opportunities
of the new information society that regu-
larly use these tools. Since they are fairly
sophisticated, the stress is not on their
routine use but on the knowledge of the
opportunities they offer and their crea-
tive use.

In this field it is important to approach
computer use from the problem side,
where the question is whether a certain –
the given – general program can be ap-
plied or not (and we are less interested in
the way how it can be used).

In school as well as in your everyday life
you keep performing algorithms when
filling in data structures – questionnaires,
forms – designing action sequences,
information-flow processes. This world
cannot be fully understood by those who
are not aware of the basics of these ac-
tions. In your everyday life including
school and the various subjects you
learn/teach you may have to face several
problems that can be – moreover are
sensible to be – solved by computers.
First students must be able to realise
whether a problem or any of its parts can
be solved by using IT tools. The next
step is solving the problem arisen with
the aid of those IT tools.

4 Fields of Informatics [6]
Below we are trying to sum up what we mean by the two important fields of IT
knowledge. We are primarily describing the goals and referring to connections with
other fields of knowledge. [7]

Solving application tasks Algorithmization, data modelling
This scope of knowledge emphasizes
computer application from the point of
view of the problem and the question is
whether – the given – general program

Algorithmization is an important element
because of the development of thinking
skills. It is the ability of problem solving;
actually not only of solving routine prob-

can be used for problem solving or not
(rather than the way how it can be used).

We do not concentrate on the tool: the
computer or the software. Within the
frames of Informatics tools it is the
hardware, while in the Application sys-
tems and Informatics tools part (that is
operating system as program system) it is
the software that is focused on. There is
a similar idea in the Computer-assisted
program solving scope of knowledge as
well, but while there the choice is made
on the basis of the ability of the ’whole’
computer, here the software applied is
fixed and only its ’philosophy’ is to be
studied.

We rely on the knowledge of certain
notions and skills that belong to other
areas of knowledge. Thus the existing or
developing ability of algorithmic think-
ing is a definite advantage (this is meant
to be developed within the scopes of
knowledge in Algorithmization and Data
modelling).

As it has become evident from the
facts mentioned above, the teaching
material of this area of knowledge does
not exclusively belong to informatics as a
subject. There are certain important areas
that seem clear today, but their number
can be increased with the rapid develop-
ment of informatics:
• word processing: compilation of text

documents, publications in traditional
and electronic form;

• constructing graphic images and
objects: constructing and processing
diagrams, graphic figures, photos;

• spread sheeting: arranging data in a
table, making calculations;

• database management: storing, ar-
ranging, grouping data, making re-
ports;

• presentation: making presentations,
electronic notice boards, billboards;

• multimedia design: designing video

lems but those that require a kind of
independence, sound judgement, origi-
nality and creativity. That means that a
basic objective of teaching informatics is
to emphasize the systematic planning of
problem solving.

We learn to understand the world
around us with the help of models. Pro-
gramming can be a useful way of devel-
oping modelling ability and making
students think logically. Because it has to
be formalized, it requires a precise, exact
way of thinking. The scene of formaliza-
tion in program composition is data
modelling and algorithmization, thus
elements connected to them should be
taught here. Formalization should be
extended with care: using examples,
notions that are appropriate to the age
group. We regard it very important to lay
emphasis on this in education from the
very beginning (e.g. it will be regarding
the improvement of abstraction skills, or
concerning the effectiveness of computer
use).

First, algorithmization is not about
computer-assisted execution. In most of
the cases, the person who created the
algorithm can perform it in his mind as
well. It is only then that an automatic
machine, the computer, can be made to
process the precisely constructed algo-
rithm.

The aim of the application of the
computer is to create (new) output data
from the input data with the help of pro-
grams. That is why teaching data struc-
tures and algorithms cannot be separated.

The point is that students should real-
ize that the basis of computer-assisted
problem solving is algorithm elaboration
(and not coding)! However, the knowl-
edge of programming languages is re-
quired to reach this, because program-
ming cannot effectively be taught from
books only, students need to try their

and audio files, animation.
Many different subject areas should

be considered in order to draw up the
problems. The many areas of application
at a higher level can be studied within
the subject informatics. Handling knowl-
edge should be included in a certain
subject if the tool is closely linked to a
special profession (e.g. CAD).

In this case the stress is on the use of
the tool: the program, as a tool is used to
solve the task.

programs on the computer, as well. We
would like to note that teaching a pro-
gramming language should not be the
primary aim in studying programming.

It is important for the students to get
acquainted with traditional programming
structures independently of programming
languages. Therefore this scope of
knowledge describes computer-assisted
problem solving as tool improvement,
where the problem solving tool (the
program) should be created.

5 Informatics at School
What you will find below is based on the Informatics Section of the Hungarian Na-
tional Curriculum formed in the past 10 years [8], as well as on the requirements of
the school-leaving examination. The authors' ideas were included in the last (2005)
version of the Hungarian National Curriculum, as well. [9]

Solving application tasks Algorithmization, data modelling
Years 1 to 4

The main goal of the first four years is
making friends with computers and lay-
ing the foundations of a future ”har-
monic” relationship. Thus what you need
here are playful programs and tasks; on
the other hand, it is important in other
fields of science, as well. Nevertheless,
playfulness cannot become dominant and
for its own sake; its direct goal i.e. why
you are using the computer/program
should remain absolutely clear. Playful
programs usually do not mean traditional
computer games though their introduc-
tion into the learning process should not
be ruled out in advance, either.

For this age group, application skills
could primarily mean image and music
editing. The very first application field –
leading from the kindergarten to school –
may be the use of the so-called stamping
programs (similar to children's real rub-
ber stamps).

Drawing at this level means fusing

Pupils must be able to formulate algo-
rithms and to execute simple everyday
algorithms (morning routine, crossing a
street etc.). In order to form these skills,
teachers are free to choose their own
devices (e.g. Logo-tortoise, robot games,
Lego etc.), but they should use a variety
of them. Pupils must become aware of
the fact that each step of the algorithms
must be unambiguously executable and it
is not the device that counts.

They must realise everyday objects
can be described with data, some of
which are numbers, others are texts or
others (e.g. colour, drawing, music etc.).
They must be able to tell the difference
between them.

Here they should learn the basic con-
cepts of orientation, directions and the
measurability of distances. This goal can
mainly be achieved by algorithmic
games.

Data can be sorted: numbers ascend-

simple line drawings and patches (col-
ours and textures). If pupils combine
drawing, music and some text, they can
prepare simple multimedia displays and
animations. When using music applica-
tions, they can play the music, do some
simple editing or write their own music.

They can prepare invitation cards to a
birthday party, carnival posters, class-
rooms decorations etc. Naturally, teach-
ers' guidance is essential here. It is just as
vital that pupils create their own compo-
sitions on a traditional medium so that
they can take them home and show them
to their parents and friends.

It is important to note that good IT
applications can highly develop pupils'
manual, coordination, calculation, read-
ing and writing skills.

ing/descending while texts and words
alphabetically. In maths classes there are
several manual data processing tasks that
you can later make use of when writing
algorithms e.g. When teaching colours
and geometric forms you can ask a ques-
tion such as what is more numerous?
(counting), Is there a red triangle? (deci-
sion making), Select the shapes bordered
with straight lines only (selection),
Group the shapes by their colours
(grouping), Sort them ascending by their
size (sorting) etc.

Years 5 to 6
For the 10 to 12 year olds the scope of
application possibilities widens.

The most widespread task types here
are the ones related to their school and
home life like creating, printing, storing
and correcting documents in accordance
with the interests of this age group.

These are mainly drawings: figures
accompanied with a little text such as
invitation cards to birthday parties and
carnivals, greeting cards, school and
class badges, various kinds of posters,
playing cards, token money etc. They can
prepare the layouts of flats, their class-
room, schoolyard etc. on their own. We
can state a basic principle: when com-
pared to the previous age group, the
difference is a bit more text in the docu-
ments created.

The word-processing tasks of the next
age group can be introduced by the man-
ual text editing methods: assembling a
text from ready-made parts, cutting and
pasting as well as swapping parts, mak-
ing drafts etc.

In these tasks it is sensible to make

Pupils must be able to formulate precise
algorithms and to design simple every-
day algorithms (morning routine, the
recipe of making tea, crossing a street
etc.).

Importantly, they are to create algo-
rithms that they can act out themselves
but at the same time they must be execu-
table by computers, as well. The best
area for this purpose is moving and
drawing (Logo).

They are to formulate what is meant
by an algorithm (they can be reduced to
steps but the steps themselves are also
algorithms; executable with a fixed order
of execution; something happens to
something at each step)! Relying on their
abstraction skills, they should be able to
divide data from algorithms that “oper-
ate” on them.

They should realise that you use three
types of elements when constructing an
algorithm:
• each of the atomic steps must be

executed (in the given order),
• one of the atomic steps should be

pupils play the key part. However, it is
true again that it is essential for the
teacher (language and art teachers) to
participate in the process of creation and
teach the children the aesthetic and for-
mal concepts i.e. the teacher's primary
task is to add ”theory” and to introduce
the ”methods” and the opportunities they
offer.

chosen and then executed,
• the atomic step should be executed

iteratively.
Since the steps of an algorithm could

be other algorithms, and they can be
named, the concept of procedure can be
evolved. [10] According to György
Pólya: “If one observes it more closely,
one may notice that the solutions of
many problems actually consist of pro-
cedures, processes of actions and se-
quences of appropriately related opera-
tions i.e. a modus vivendi.” [11]

It is worth introducing this age group
the tools and methods of manual data
management as they can meet tables and
diagrams within the framework of other
school subjects. For instance, their first
data managing tool is their school report
book. They also encounter tables of com-
petitions and might want to sort the rows
of the table by scores etc.

The descriptive concept of sorted an
unsorted data. Sorting the same data set
by various aspects. Systematic manual
sorting (e.g. creating alphabetical order
by pasting).

Years 7 to 8
As for teaching 13 to 14 year olds the
philosophy does not differ greatly from
those descripted above. Maybe just there
should be less teachers' guidance (the
length and detailedness of the first pres-
entation). The students are already capa-
ble of independently using the computer
and the programwarehouse of the school
to solve the above mentioned tasks.
Typically, teachers can set tasks to be
solved with the help of a computer as
homework.

Tasks related to their school and home
life like creating, printing, storing and
correcting documents and tables in ac-
cordance with the interests of this age
group.

Here the stress is laid upon text

Students must be able to write down
input and output data necessary for in-
formation management and assign them
to each other. (At this important stage of
abstract thinking, they are able to select
details of actions from the purpose of the
action and handle them independently;
i.e. they can operate with actions as a
“black box”.) They must be able to ana-
lyse the output data from a given point of
view and use them for a given purpose.

Making students understand the con-
cept of data: they must tell apart scalar
(number, character etc.) and compound
data (array, table, text etc.)

For this age they must be able to con-
sciously apply the principle of refine-
ment step by step. They must be able to

documents which students should often
attach figures, sometimes even tables. A
possible task may be preparing a school
newsletter, schedules of a summer camp,
timetables, business cards, invitations to
school competitions, their schedule and
results. Before they start creating the
documents, it is worth teaching them
about the aesthetics and typography a
text (relief effect, page setting, dividing
content units, the role of highlighting
etc.).

A table should first appear within a
text file; relying on this, students can
compute some typical values and illus-
trate the data in the table with a diagram.

You can also include searching in
public computer information systems
(task banks, cultural programmes etc.).
Students must be able to collect informa-
tion, paste it into an existing database
and then select it from the database and
process it.

Relying on text and graphic docu-
ments creating an electronic noticeboard
or a slide show.

independently formulate, name, parame-
ter sub-algorithms and use them in con-
structing algorithms. As the technique of
step-by-step refinement is an important
problem solving principle not only in the
field programming, understanding and
learning it may be of great use for every
one.

Understanding the tools of algorithmic
abstraction (procedures, functions and
recursion), realising their usefulness and
using them.

Now the algorithmic structures learnt
visually by experience at the previous
stage should be used consequently and
precisely. You may also introduce their
common names widespread in computer
science: sequence, branch, loop and
procedure.

Years 9 to 10
In the curriculum of the 15 to 16 year
olds playfullness is diminishing giving
way to “reality”: in the problems to be
solved there are more data and their
relations. These tasks require another
kind of “creativity”: collecting data and
exploring their relations i.e. modelling
also organically belongs to the problem
at a basic level.

Tasks related to their school and home
life like creating, printing, storing and
correcting documents tables and data-
bases in accordance with the interests of
this age group.

Majority of the written materials are
texts such as letters, essays etc.

A wider application of tables and dia-
grams created based on them, computa-
tion and plotting of simple statistic data

Atomic and compound data (set, array,
record, file, stack, row, graph), types of
file (sequential and non-sequential), for
task types (sum, decision, selection,
linear search, count, maximum selection,
at least one type of sorting) and realising
them on the computer.

Understanding and systematic use of
the tools of algorithmic abstraction (pro-
cedures and functions).

A basic requirement is that the pro-
grams written should be quite expressive
i.e. provide enough information as well
as a way to enable a dialogue between
the user and the computer.

Students must understand that a pro-
gram is a product and its writer is a
product-making craftsman. They must
also realise its consequences.

and evaluation of physical and chemical
measurements with spreadsheets. A pos-
sible task may be planning and calculat-
ing the finances of a school trip, the
evaluation of school competitions/
championships with spreadsheets.

Beyond spreadsheets, it is worth men-
tioning the opportunities of GIS applica-
tions such as inserting maps and com-
pleting them with data.

Defining and using databases closely
related to their everyday life like keeping
records of their cassettes or CDs, making
their own telephone directory as well as
technical and school-subject related
databases.

With the aid of text and graphic
documents, students might be able to
make an interactive electronic newsboard
or an information board.

They should become familiar with the
basic rules of data modelling and under-
stand that a database is not simply a file
but a planned structured system of data
and their relations.

An objective of data processing is that
the data entered in one way could be
queried from an other point of view.
Data query is a creative-analytical proc-
ess based on exploring data relations. An
essential feature of modelling that you
are aware of what kind of information
will the ready program be able to pro-
vide.

Students should understand the con-
cept of database and the related elements
(file, record and field). They should
know that the logical and physical ways
of data representation are different.

Years 11 to 12

As for teaching IT to 17 to 18 year olds,
you may mainly come forward with ap-
plication programs that best suit the
profile of the given education institution.
This primarily holds for vocational
schools and partly for the students of
general schools that do not want to con-
tinue their studies at higher education
institutions after leaving school but want
to acquire some more profound, more
special IT skills that facilitate their suc-
cess at the labour market.

Regarding those that go on to univer-
sity, less stress is laid on this field: e.g. it
contains the application of spreadsheets
for solving mathematical problems.

Here – and partly at the previous age
group – teachers should once again come
forward with drawing, image editing and
image processing tasks, now at a higher
level, relying on the more serious
mathematical knowledge students have
acquired in the meantime. With the aid
of the above, students might be intro-
duced to multimedia design.

Atomic and compound data (set, array,
record, file, stack, row and graph), file
management, relational data structures.
Basic algorithms for task types (sum,
decision, selection, search, count, maxi-
mum selection, at least one type of sort-
ing). Recursion in the world of tasks,
data and algorithms. Algorithm design-
ing techniques. [12]

Program writing as a process of pro-
duction (defining a task, designing, en-
coding, testing, debugging, efficiency
and quality testing and documentation).

With the help of text and graphic
documents, they may also try making
presentations as a new area of applica-
tions.

6 Conclusion
We do hope that surveying the fields of application based ICT and programming in-
struction in parallel, we managed to show their importance and the role they play in
education. Their proportion is greatly affected by students' skills, interest and the type
of school they attend. Based on the above, we believe that in an informatics for every-
one the proportion of knowledge about algorithmization should be at least a third and
at most half of the time devoted to teaching.

References
1. Turcsányi-Szabó, M: Approaching Arts through Logo. Sixth European Logo Conference,

Budapest, Hungary, pp20-23 August, 1997
2. Nouvelles Technologies. (1999) Mise á niveau informatique en classe de seconde – rentrée

2000. Bulletin Officiel du ministère de l’Education Nationale et du ministère de Recherche.
N25 du 24 juin 1999. 1177–1181.

3. The National Curriculum for England (1999): Information and Communication Technol-
ogy. Qualifications and Curriculum Authority. London.
(http://www.nc.uk.net/download/IKT.doc)

4. Körösné Mikis, M.: Kalandozások Információországban, (Adventures in Informationland)
http://www.oki.hu/oldal.php?tipus=cikk&kod=oktatas-korosne

5. Szlávi, P., Zsakó, L.: Delusions in informatics education. Teaching Mathematics and Com-
puter Science, Vol. 2., No. 1., pp151-162, 2004.

6. Szlávi, P., Zsakó, L.: Informatics as a particular field of education. Teaching Mathematics
and Computer Science, Vol. 3., No.2, pp283-294, 2005.

7. Zsakó, L.: Teaching Informatics in Hungary. The IOI'96 NewsLetter, No 2, pp5-6, No 3,
pp5-6, No 4, pp5-6, 1995.

8. Turcsányi-Szabó, M., Ambruszter, G.: The past, present, and future of computers in educa-
tion – the Hungarian image, International Journal of Continuing Engineering Education
and Life-Long learning., UNESCO, 2001 Volume 11, Nos 4/5/6.

9. The National Curriculum for Hungary (2005),
http://www.om.hu/main.php?folderID=391

10. Hvorecky, J., Kelemen, J.: Algoritmizácia, elementárny úvod. ALFA, Bratislava, 1983.
11. Polya, Gy.: Mathematical Discovery on understanding, learning and teaching problem

solving. John Viley & Sons Inc, New York, 1962.
12. Kátai, Z.: “Upperview” algorithm design in teaching computer science in high schools,

Teaching Mathematics and Computer Science, Vol. 3., No.2, pp221-240, 2005.

https://www.inderscience.com/search/index.php?action=record&rec_id=413&prevQuery=&ps=10&m=or
https://www.inderscience.com/search/index.php?action=record&rec_id=413&prevQuery=&ps=10&m=or
https://www.inderscience.com/search/index.php?action=record&rec_id=413&prevQuery=&ps=10&m=or
http://www.nc.uk.net/download/IKT.doc
http://www.fsz.bme.hu/hungary/
http://www.fsz.bme.hu/hungary/budapest/budapest.html

	Abstract. All over Europe including Hungary there has been serious disputes for years about teaching informatics, about its goals and its possible contents. In this field the sharpest question is the problem of teaching programming and/or application. Do you need one or the other? If both, what is their accurate proportion? Why might you need either of them? Which age group should be taught which of them? This article is aimed at finding the answer to these questions.
	1 Introduction

