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We sketch a method of program building which allows a solution to be found, 
even for complex problems, that is known to be correct. 
The method is based on (1) mathematical tools used in algebraic-predicate 
calculus; (2) abstract elements in order to demonstrate the program-building 
method. 
In the program model we describe what we regard as the task and the task 
specification and highlight those features of the sequences which we use in 
later sections. We employ the well-known approach of using the combination 
of commonly-occurring tasks and their specifications as programming 
theorems. By expressing each theorem as a function with a particular domain 
and range, we obtain an excellent tool for combining elements to yield new 
theorems. Building programming theorems mechanically on each other in this 
way often results in an extremely complex program structure, but this can be 
greatly simplified by automatic transformations which we give as program 
transformations. 
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Joining Programming Theorems 
a Practical Approach to Program Building 

Our program-building procedure is as follows: 
First we specify the basic task. For a programmer with some experience, it is quite easy to 
read from the specification which elementary theorems should be applied in what sequence. 
Since the application of theorem means the execution of a function, the joining of theorems 
is a substitution of the range of one function (the result of the theorem) into the domain of 
another. This gives rise to the second step, the decomposition of the original task into 
appropriate subtasks. The subtasks are then connected as determined by one of the 
theorems or structural features of data. This step occasionally involves application of 
program transformation. The third step is to deal with each of these elementary theorems 
individual. This paper demonstrates how to join two theorems together. 
1. Introduction  
1.1. Programming model 
In a top-down approach we design the solution using three forms of program structure, 
namely sequential composition of (two) instructions, conditional branch (selection) and 
repetitive execution of the instruction (loop). The choice depends on the specification of 
the task.  
The task always refers to some group of data. One element of this group is defined by 
known data (input) and the other by goal data (output). The direct product of the value set 
of this data group is called state space (SS)1. Each point of this space represents a snapshot 
of the progress of the program and is called a state, with coordinates known as variables. 
(some of these state coordinates may turn out to have no elementary value.) the variables 
are in effect projections of the SS. 
Example 
SS:   A = BxCx…xH 
state of SS:  a = (b,c,…,h) where b∈B, c∈C, …, h∈H 
variable of SS: β: A → B projection 
A task means a relation (F) which is part of the set of the state-pairs (F⊆AxA). So the first 
thing is to establish the SS and the possible relations between its coordinates. Then we 
determine which point of the SS the program starts from. This set can be termed as 
precondition, and the result set as the post-condition. We give both parts of the set using the 
customary logical formulae. 
We summarize the applied mathematical concepts and notations as follows 
 N0: 0,1,2, … (set of positive integer numbers and zero) 

                                                 
1 The SS generally grows beyond our initial conception as the task proceeds – usually in every refining step. 
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 H: any set (with set operations) 
 HN: set of sequences of H having N elements 

 H*: set of finite sequences of H ( ∪∞
=

∗ =
0k

kHH ) 

 L: set of logical values {↑,↓} 
 H is ordered set: there exist an order relation on H 
In what follows we do not use the concepts of sequences and sets in their general sense but 
except then to meet the following criteria: 

1. Both set H and sequence S are part of A*, so both of them consist of the elements of 
A. 

2. The elements of set H may not be repeated, although repetition may of course occur 
in a sequence. We make use of the set operations intersection (∩), union (∪), 
inclusion (⊆) and membership (∈) in their usual senses. (We do not define them 
here.) 

3. The elements of sequence S are unambiguously arranged with the aid of the indexing 
operation, si means the i-th element of sequence A. Since all the programming 
theorems (PTh’s) operate with one or more sequences, we present some further 
sequence operations and features. 

Concept: 
S∈H* is ordered sequence 

Its definition 
∃ ≤: HxH→L total order relation and 

∀ i (1≤i≤N): ≤(si,si+1)=↑ (with conventional notation: si≤si+1 
 

IsOrderedSequence(X) = 
 ≤⇒<∀

otherwiseFalse
xxjijiTrue ji:,  

Input and output 
It is not possible to predict the full SS of the task from its operation, but only some of ts 
projections – those dimensions that are important for us as problem solvers. The structure 
of the SS will come to light when we engage in solving the task. 
It is useful to observe some rules when we specify the input and output: to use suggestive 
names for the range set of all data types; and to decompose data types into some “standard” 
basis sets, namely the logical (L), then integer (Z), the non-negative integer (N0), the string 
(String) and the set of the “abstract” enumerated types that are created by us. We do this 
decomposing by means of direct product, union, intersection and iteration operations. 
By virtue observing the above rule we can easily join the algorithmic types with concrete 
types in the programming language. In the programming language the pairs of 
decomposition tools given in the previous paragraph are record, the variant record (record 
with variant part) and some sequence-like structure (e.g. array, file, etc.), respectively.2 

                                                 
2 In this paper the types of the sequences do not play a significant role and so we assume a suitable array of 
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Pre- and post-condition (its aim and connection with the algorithm) 
As we have seen the pre- and post-condition fix the task and therefore, more or less 
unambiguously, fix the program, too. We would expect the algorithm of the adequate 
program to be easy to create from the previous two assertions. Let us examine how far our 
expectations may be realized. We usually link the precondition is satisfied by the input 
data. (Since this is normally simple to do, we will not deal with it here.) However, neither 
extracting information from the post-condition nor transforming it into an appropriate 
algorithm is a sample problem. We want to show that there are also features of the post-
condition from which traces of some macroscopic algorithms (those of the programming 
theorems) are detectable. Having identified these PTh’s in the specification, we only have 
to join them into a single, suitable algorithm. 
1.2. Concepts of programming theorems 
We use the term PTh in the customary sense [1,5,6] of an assertion: the algorithm is 
correct with respect to the task we have specified. In other words, it is a solution of the 
specified task. So let us denote input of the task by x and output of the task by y, and its 
pre-and post-conditions by pre(x) and post(x,y) respectively. We say that program P, 
implementing the algorithm is a solution of the task if 

( ) ( )yxpostxprex
P

,: ⇒∀  
(Here we apply the notation of first-order predicate calculus.3) 
The aim of using PTh’s is to become able to assemble algorithms from macroscopic 
elements which are undoubtedly correct. Since PTh’s contain the algorithm of the solution 
as well as the specification, we need do no more than compose and join these “algorithm 
patterns” properly. 
If we consider PTh’s as abstract functions mapped from the subset of input data into the 
subset of output data (ProgrammingTheorem: {Input}→{Output}), then it will be possible 
for us to read certain obvious relationships immediately. 
1.3. Programming theorems 
In what follows we will list only those PTh’s that are central to our purpose. To each of 
them is assigned a unique identifier that simplifies subsequent references to them. (For 
example, the notation ptC means the programming theorem Copying.) [4] 
Firstly, we describe PTh, as a function with its domain and range. Then we specify it 
adding input, output, pre-and post-condition. Finally, we add an algorithm which satisfies 
the specifications. The algorithm is defined by Pascal-like procedure, in which input and 
output of the task appear as parameters, but we do not write the function-like input data in 
the header of the procedure. Note: we will not deal with the proof of PTh’s in this section. 
Remark. In the algorithm we use. 

                                                                                                                                                     
maximum size. 
3 We employed the usual notation [2]: ( )

( )
( )'xpxq

xu⇒ , in other words this means that x holds the predicate 
q(x) before executing the program u(x), then x’ holds the predicate p(x’) after executing the program. 
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1. three type definitions 
 H_Seq_Type = Array [1..MaxN] of H_E_Type; 
 G_Seq_Type = Array [1..MaxN] of G_E_Type; 
 Word_Seq_Type = Array [1..MaxN] of Word; 
 Bool_Func_Type = Function(H_E_Type): Boolean; 
 H_G_Func_Type = Function(H_E_Type): G_E_Type; 
 G_H_G_Func_Type = Function(G_E_Type,H_E_Type): G_E_Type; 
 E_G_E_Func_Type = Function(E_E_Type,G_E_Type): E_E_Type; 
 H_Ord_Op_Type = Infix Operator(H_E_Type,H_E_Type): Boolean; 
where MaxN is a predefined integer constant, and Word is a type of nonnegative integers, 
furthermore H_E_Type, G_E_Type and E_E_type are any types (according to set H, G and 
E respectively) 
2. and some predefines local variable, e.g. 
 Var I: Word; 
ptC: Copying(N0,H*,H→→→→G):G* 

Input:  N∈N0, X∈H*, f: H→G 
Output: Y∈G* 

PreCond:  
PostCond: ∀i∈[1,n]: yi=f(xi) 
Algorithm: 
 Procedure Copying(N: Word; X: H_Seq_Type; f: H_G_Func_Type; 
         Var Y: G_Seq_Type); 
 Begin 
  For I:=1 to N do Y[I]:=f(X[I]); 
  End; 
ptSC: SequentialComputing(N0,H*,G,GxH→→→→G):G4 
Input:  N∈N0, X∈H*, f: H→G5 
Output: S∈G 

PreCond: ∃F0∈G ∧ ∃f: GxH→G ∧ F(x1,...,xN)=f(F(x1,...,xN-1),xN) ∧ F()=F0 
PostCond: S=F(x1,...,xN) 
Algorithm: 

                                                 
4 A special case of this theorem is the well-known theorem Sum. 
5 From the point of view of the algorithm the function F, or rather the function f and the constant F0 
representing F int he precondition, is considered „a priori input”. 
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 Procedure SequentialComputing(N: Word; X: H_Seq_Type; 
          F0: G_E_Type, f: G_H_G_Func_Type; Var S: G_E_Type); 
 Begin 
  S:=F0; 
  For I:=1 to N do S:=f(S,X[I]); 
  End; 
ptLS: LinearSeeking(N0,H*,H→→→→L):(L,N0) 
Input:  N∈N0, X∈H*, T: H→L 
Output: Exist∈L, Number∈N0 
PreCond:  
PostCond: Exist≡(∃i∈[1,N]: T(xi) ∧ Exist⇒Number∈[1,N] ∧ T(xNumber) 
Algorithm: 
 Procedure LinearSeeking(N: Word; X: H_Seq_Type; 
    T: Bool_Func_Type; Var Exist: Boolean; Var Number: Word); 
 Begin 
  I:=1; 
  While (I<=N) and not T(X[I]) do I:=Succ(I); 
  Exist:=(I<=N); 
  If Exist then Number:=I; 
  End; 
ptCt: Counting(N0,H*,H→→→→L):N0 

Input:  N∈N0, X∈H*, T: H→L, χ:L→{0,1}, ( )



=
=

= falsexif
truexifx 0

1χ  

Output: HowMany∈N0 
PreCond:  

PostCond: ( )( )∑
=

=
N

1i
ixTHowMany χ  

Algorithm: 
 Procedure Counting(N: Word; X: H_Seq_Type; 
    T: Bool_Func_Type; Var HowMany: Word); 
 Begin 
  HowMany:=0; 
  For I:=1 to N do If T(X[I]) then HowMany:=HowMany+1; 
  End; 
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ptMxS: MaximumSearching(N0,H*,HxH→→→→L):N06 
Input:  N∈N0, X∈H*, <: HxH→L 
Output: Max∈N0 
PreCond: N>0 ∧ IsOrderedSet(H) 
PostCond: Max∈[1,N] ∧ ∀i∈[1,N]: xi≤xMax 
Algorithm: 
 Procedure MaximumSearching(N: Word; X: H_Seq_Type; 
    <: H_Ord_Op_Type; Var Max: Word); 
 Begin 
  Max:=1; 
  For I:=2 to N do If X[Max]<X[I] then Max:=I; 
  End; 
1.4. Program transformations 
Th epupose of program teansformations [3,4] is to simplify a program structure and 
eliminate redundancy and inefficiency which arises from mechanical derivation of the 
program. The original program and the result of the transformation are semantically 
equivalent, either without conditions or under conditions which shall indicate. Two 
programs given as algorithms are equivalent if both of them realize the same mapping. [2] 
The equivalence of the program pair is formally provable. (We shall not discuss this further 
here because is does not belong to our main theme.) We will make use of them, however, 
and refer to them by symbols PTx. 
We do not aspire to completeness and content ourselves to listing a few program 
transformations as facts, without proofs. All the five statements below have a simple 
structure. They begin as follows: 

”Statement: a program P1 equivalent to a program P2.” 
followed by both program. 

                                                 
6 This theorem is referred to as „searching for the maximum value”. 
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P1  P2 
PT1: without any conditions 

x:=k; y:=l(x); 
While π(x) do 
Begin 
 y:=g(x,y); x:=i(x); 
End; 
x:=k; z:=m(x); 
While π(x) do 
Begin 
 z:=h(x,z); x:=i(x); 
End; 

⇔ x:=k; y:=l(x); z:=m(x); 
While π(x) do 
Begin 
 y:=g(x,y); 
 z:=h(x,z); 
 x:=i(x); 
End; 

PT2: without any conditions 
Y:=f(x); z:=g(y); ⇔ Z:=g(f(x)); 

PT3: with following condition: ∀p predicate: ( )
( )

( ) ( )
( )

( )'
1:

spspxpxp
SPxas ⇒∧⇒= 7 

If a(x)<b then c:=a(x); ⇔ s:=a(x); if s<b then c:=s; 
PT4: without any conditions 

While T(f(x)) do 
begin 
 a(x); 
End; 

⇔ ft:=f(x); 
While T(ft) do 
begin 
 a(x); ft:=f(x); 
End; 

PT5: without any conditions 
x:=1; 
While (x<=v) and not T(x) do 
Begin 
 x:=Succ(x); 
End; 
l:=(x<=v); 

⇔ x:=0; l:=false; 
While (x<v) and not l do 
Begin 
 x:=Succ(x); l:=T(x); 
End; 

2. Joining programming theorems 
If often happens that we have to use PTh’s sequentially. However by joining PTh’s, the 
program generally becomes much simpler, more compact and more effective than the 
original, derived mechanically from the specification. In this work we investigate the 
joining of two PTh’s. They will be grouped by a dominant theorem. [4] 
To understand what this means, consider the general steps that have to be taken from the 
specification to the finished program. 

                                                 
7 We state here that „x is the only input parameter in a(x)”. 
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0. The task is given by its specification: input, output, pre- and post-condition. 
1. To decompose the post-condition into a set of post-conditions of suitable PTh’s. 
2. To prove the correctness of the decomposition. 
3. To apply theorems by their own subspecification, independently from each other. 
4. To simplify the resulting program using program transformations. 

2.1. Joining with theorem copying 
Any PTh’s can be built by ptC (Copying), since all that is required is to replace original 
inpit data xi by g(xi). 
For example, if we need to take the sum of squares of a number sequence, the program 
consist of two parts, the first coming from ptC(∀i: xi → xi2), and the second one from 
ptSC(sequential computing: (y1,…,yN) → Σ yi). Let us lock at a combination of two 
theorems in general. 
Input:  N∈N0, X∈H*, F: G*→E, g: H→G 
Output: S∈E 
PreCond: ∃F0∈E ∧ ∃f: ExG→E ∧ ∀Y∈G*: F(y1,...,yN)=f(F(y1,...,yN-1),yN) ∧ F()=F0 
PostCond: S=F(g(x1),...,g(xN)) 
Deduction: 
Statement: PostCond ⇔ S=F(y1,...,yN)   (1) 
   ∧ y1=g(x1) ∧ ... ∧ yN=g(xN)  (2) 
Proof. The proof is very simple: we only have to substitute yi=g(xi) for (1). 
The deduction of the algorithm. Relation (1) is the post-conditions of ptSC concerning 
the sequence Y, and relation (2) is the post-conditions of ptC concerning the sequence X. 
Because the latter operates on the input sequence of the task it is to be applied first. It 
produces the input sequence Y of ptSC. So joining these two programming theorems 

S:=SequentialComputing(N,Copying(N,X,g),F0,f) 
Produces the algorithm below: 
 Procedure CopyingWithComputing(N: Word; ; X: H_Seq_Type; 
           F0: E_E_Type, f: E_G_E_Func_Type; 
           g: H_G_Func_Type; Var S: E_E_Type); 
 Begin 
  For I:=1 to N do Y[I]:=g(X[I]); 
  S:=F0; 
  For I:=1 to N do S:=f(S,Y[I]); 
 End; 
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To simpify the algorithm we transform it with PT1: 
 Procedure CopyingWithComputing(N: Word; ; X: H_Seq_Type; 
           F0: E_E_Type, f: E_G_E_Func_Type; 
           g: H_G_Func_Type; Var S: E_E_Type); 
 Begin; 
  S:=F0 
  For I:=1 to N do 
  Begin 
   Y[I]:=g(X[I]); S:=f(S,Y[I]); 
  End; 
 End; 
Let us continue simplifying with PT2, which is applicable now: 
 Procedure CopyingWithComputing(N: Word; ; X: H_Seq_Type; 
           F0: E_E_Type, f: E_G_E_Func_Type; 
           g: H_G_Func_Type; Var S: E_E_Type); 
 Begin 
  S:=F0 
  For I:=1 to N do S:=f(S,g(X[I])); 
 End; 
As a second example, let us investigate the joining of copying and searching for the 
maximum value (i.e. maximum-searching). Now, we have to find the value of the biggest 
element and its index. 
Input:  N∈N0, X∈H*, g: H→G, <: GxG→L 
Output: Max∈N0, MaxValue∈G 
PreCond: N>0 ∧ IsOrderedSet(G) 
PostCond: Max∈[1,N] ∧ ∀i∈[1,N]: g(xi)≤g(xMax) ∧ MaxValue=g(xMax) 
Deduction: 
PostCond ⇔ Max∈[1,N] ∧ ∀i∈[1,N]: yi≤yMax   (1) 
   ∧ y1=g(x1) ∧ ... ∧ yN=g(xN)   (2) 
    ∧ MaxValue=yMax    (3) 
(1) is the post-condition of ptMxS concerning the sequence Y; (2) is the post-condition of 
ptC concerning the sequence X; and (3) is realizable with a simpple assignement statement. 
Because the second one operates on the input sequence of the task again it is to be applied 
first. It produces the input sequence Y of ptMxS. So joining of these two programming 
theorems 

Max:=MaimumChoosing(N,Copying(N,X,g),<) 
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Produces the algorithm below: 
 Procedure MaximumCopying(N: Word; X: H_Seq_Type; 
                 <: G_Ord_Op_Type; g: H_G_Func_Type; 
                 Var Max: Word; var MaxValue: G_Type); 
 Begin 
  For I:=1 to N do Y[I]:=g(X[I]); 
  Max:=1; 
  For I:=2 to N do If Y[Max]<Y[I] then Max:=I; 
  MaxValue:=Y[Max]; 
  End; 
Separating the case of I=1 from the first loop, the algorithm is simplifyable with PT1: 
 Procedure MaximumCopying(N: Word; X: H_Seq_Type; 
                 <: G_Ord_Op_Type; g: H_G_Func_Type; 
                 Var Max: Word; var MaxValue: G_Type); 
 Begin 
  Y[1]:=g(X[1]); Max:=1; 
  For I:=2 to N do  
  Begin 
   Y[I]:=g(X[I]); If Y[Max]<Y[I] then Max:=I; 
  End; 
  MaxValue:=Y[Max]; 
  End; 
Let us transformate the result solution so that the formula MaxValue:=yMax, is nteh post-
condition, is to be invariant. Then we get 
 Procedure MaximumCopying(N: Word; X: H_Seq_Type; 
                 <: G_Ord_Op_Type; g: H_G_Func_Type; 
                 Var Max: Word; var MaxValue: G_Type); 
 Begin 
  Y[1]:=g(X[1]); Max:=1; MaxValue:=Y[Max]; 
  For I:=2 to N do  
  Begin 
   Y[I]:=g(X[I]); 
   If Y[Max]<Y[I] then Begin Max:=I; MaxValue:=Y[Max]; End; 
  End; 
  End; 
Let us continue to simplify the last algorithm with PT2, and – of course – we have dropped 
the statement Y[1]:=g(X[1]). Moreover, we can drop the multiple reference to X[Max], if 
we apply PT3 and PT2 (”inversely”). So we reach the final version: 
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 Procedure MaximumCopying(N: Word; X: H_Seq_Type; 
                 <: G_Ord_Op_Type; g: H_G_Func_Type; 
                 Var Max: Word; var MaxValue: G_Type); 
 Begin 
  Max:=1; MaxValue:=Y[Max]; 
  For I:=2 to N do  
  Begin 
   If Maxvallue<g[X[I]] then  
      Begin Max:=I; MaxValue:=g[X[Max]]; End; 
  End; 
  End; 
2.2. Joining with the theorem counting 
The theorem ptCt (Counting) is usually combined with seeking8-like theorems, e.g. ptLS. 
We can ask the following questions in this case, ”Is there at least K pieces of elements of 
the feature T is the sequence?”, atc. 
The most general case is the joining of the theorem counting and the theorem linear 
seeking. In similar menner we can perform the deriving in the other two cases, since 
algorithms of both of them are parts of the algorithm of seeking. 

Input:  N∈N0, X∈H*, K∈N0, T: H→L, χ:L→{0,1}, ( )



=
=

= falsexif
truexifx 0

1χ  

Output: Exist∈L, Number∈N0 
PreCond: K∈[1,N] 
PostCond: Exist≡(∃i∈[1,N]: T(xi) ∧ Exist⇒Number∈[1,N] ∧ T(xNumber) 

PostCond: Exist= ( )( ) 


 ≥∑
=

K
N

1i
ixTχ  ∧ Exist⇒Number∈[1,N] ∧ T(xNumber)  

  ∧ ( )( ) 


 =∑
=

K
Number

1i
ixTχ  

Deduction: 

PostCond ⇔ Exist≡(∃j∈[1,N]: ( )( ) 





=∑
=

K
jr

1i
ixTχ  

 ∧ Exist⇒Number∈[1,N] ∧ T(xNumber)   (1) 

  ∧ ( )( ) 


 =∑
=

K
Number

1i
ixTχ      (2) 

                                                 
8 Here we refer to some theorems that are widely used, but we did not mention in the Introduction section; e.g. 
the so-called deciding and choosing theorems. 
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We have to prove the following statement: 

( )( ) [ ] ( )( )∑ ∑
= =

=∈∃⇔≥
N

i

j

i
ii KxTNjKxT

1 1
:,1 χχ . 

Both of the formulae are valid if and only if K≤N. Since ( )( )ixTχ =0 or 1, the above 
formulae are surely false if j<K, and the sum monotonically increases with increasing j. 
Furthermore, j can exceed K, if it takes K, too, since its value rises most 1. 
The assertion (1) is a variant of the post-condition of ptLS, and the assertion (2) reminds us 
of the post-condition of ptCt. (The last theorem has changed: we have replaced ‘K’ with 
‘HowMany’ and ‘Number’ with ‘N’.) Firstly, let us concentrate our attention on the 
application of ptLS. We start from the algorithm, as a frame, associated with the theorem. 
Its third parameter is a function of logical value, where we include a relation. On the one 
side of the relation is the result of ptCt, and on the other side of it is constant K 
(Counting(j,X,T)≥K). It is obvious that ptCt concerns sequence (x1,…,xj) which 
continually grows. Thus, the algorithm – written by functional notations – : 

(Exist,Number):=LinearSeeking(N,X,j∈[1,N]: Counting(j,X,T)≥K) 
Produces the algorithm below: 
 Procedure SeekingWithCounting(N: Word; X: H_Seq_Type; 
    T: Bool_Func_Type; Var Exist: Boolean; Var Number: Word); 
 Begin 
  I:=1; 
  While (I<=N) and (Count(I,X,T)<K) do I:=Succ(I); 
  Exist:=(I<=N); 
  If Exist then Number:=I; 
  End; 
Where we have to make the algorithm of the function Count to (2) which satisfies the 
postcondition: 

( )( ) 





== ∑
=

KTXjCount
jr

1i
ixT),,( χ   (3) 

 Function Count(J: Word; X: H_Seq_Type; 
                 T: Bool_Func_Type): Word); 
 Begin 
  HowMany:=0; 
  For L:=1 to J do If T(X[L]) then HowMany:=HowMany+1; 
  Count:=HowMany; 
  End; 
It appears to be difficult to simplify because ptCt is in the condition of the loop. This can 
be helped with PT4. 
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 Procedure SeekingWithCounting(N: Word; X: H_Seq_Type; 
    T: Bool_Func_Type; Var Exist: Boolean; Var Number: Word); 
 Begin 
  I:=1; HowMany:=Count(1,X,T); 
  While (I<=N) and (HowMany<K) do 
  Begin 
   I:=Succ(I); HowMany:=Count(I,X,T); 
  End; 
  Exist:=(I<=N); 
  If Exist then Number:=I; 
  End; 
Note that the function Count acquired an extra condition in the last procedure, i.e. it also 
has to respond to the case I=N+1. This anomaly comes from the fact that if a logical 
expression consist of more than one part and its value has been decided on the way 
(evaluation), then it is unnecessary to continue any calculations, in fact some errors can 
occur in sonsequence of it. Therefore the call of function Count(N+1,X,T) did not 
appear beside I≤N in the first version. Let us solve this problem by means of PT5. Now 
perform some substitutions: 
x:=1    ⇒  i:=1; HowMany:=Count(1,X,T) 
x:=Succ(x) ⇒  I:=Succ(I); HowMany:=Count(I,X,T) 
T(x)    ⇒  HowMany>=K 
X:=0    ⇒  I:=0; HowMany:=0 
 Procedure SeekingWithCounting(N: Word; X: H_Seq_Type; 
    T: Bool_Func_Type; Var Exist: Boolean; Var Number: Word); 
 Begin 
  I:=0; HowMany:=0; Exist:=false; 
  While (I<N) and not Exist do 
  Begin 
   I:=Succ(I); HowMany:=Count(I,X,T); Exist:=(HowMany>=K); 
  End; 
  If Exist then Number:=I; 
  End; 
There is no program transformation to continue simplifying. We have found additional 
inherent connections. So let us formulate the invariant statement of the top-level loop. In 
general the invariant assertion of seeking is 

∀j∈[1,i-1]: ¬T(xj) 
Updated this assertion we get 

∀j∈[1,i-1]: ¬Count(j,X,T)≥K 
Considering that the boda of the loop consist of a single instruction I:=Succ(I), it is 
easy to find a connection between Count(J,X,T) and Count(J+1,X,T). 
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Statement: 

( ) ( ) ( ) 1,,1,,1,,
)(:

+=+∨=+⇒=
=

LTXjCountLTXjCountLTXjCount
ISuccI

 
Proof. Let us investigate the corollary of the satement above: 

( ) ( ) 1,,1,,1 +=+∨=+ LTXjCountLTXjCount   (4) 
In consequence of the statement (3) and the definition of the function χ 

( ) ( )( ) ( ) ( )( )11 1,,1,,1)4( ++ ∧+=+∨¬∧=+⇔ jj xTLTXjCountxTLTXjCount . 
Considering the condition part of the statement above it is equivalent to (identical formula) 

( ) ( )( ) TruexTxT jj ⇔∨¬ ++ 11 . 
It is avantageous for us, because the function Count(j,X,T) is usable without 
recalculating it. 
Now we are allowed to declare that the body of the loop in previous version of algorithm 
and the following detail of the program are evidently equivalent: 
HowMany:=Count(I,X,T); 
If T(X[I]) then HowMany:=HowMany+1; 
Finally we can write the algorithm is its final form, in which the function Count does not 
appear: 
 Procedure SeekingWithCounting(N: Word; X: H_Seq_Type; 
    T: Bool_Func_Type; Var Exist: Boolean; Var Number: Word); 
 Begin 
  I:=0; HowMany:=0; Exist:=true; 
  While (I<N) and Exist do 
  Begin 
   I:=Succ(I); 
   If T(X[I]) then HowMany:=HowMany+1; 
   Exist:=(HowMany>=K); 
  End; 
  If Exist then Number:=I; 
  End; 
3. Conclusion 
Lack of space prevents us from lsitong any more examples but we hope that we have 
succeed in showing the essence of the method. As we have seen, it is possible to derive the 
program with basic programming tools and elementary mathematical formulae. The set o 
stools for the operation consists of about twenty program theorems and at most ten program 
transformations. In addition to the tools we have mentioned, the method requires 
knowledge of first-order predicate calculus notation and the ability to formulate invariante 
assertions (for the management of loops). 
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