
Joining Programming Theorems
a Practical Approach to Program Building

É. Harangozó, P. Szlávi and L. Zsakó
Department of General Computer Science

Eötvös Loránd University, Budapest, Hungary
papne@ludens.elte.hu, szlavi@ludens.elte.hu, zsako@ludens.elte.hu

Annales Universitatis Scientiarum Budapestinensis. Sectio Computatorica. Budapest,
1998., pp155-172

We sketch a method of program building which allows a solution to be found,
even for complex problems, that is known to be correct.
The method is based on (1) mathematical tools used in algebraic-predicate
calculus; (2) abstract elements in order to demonstrate the program-building
method.
In the program model we describe what we regard as the task and the task
specification and highlight those features of the sequences which we use in
later sections. We employ the well-known approach of using the combination
of commonly-occurring tasks and their specifications as programming
theorems. By expressing each theorem as a function with a particular domain
and range, we obtain an excellent tool for combining elements to yield new
theorems. Building programming theorems mechanically on each other in this
way often results in an extremely complex program structure, but this can be
greatly simplified by automatic transformations which we give as program
transformations.

mailto:zsako@ludens.elte.hu
mailto:szlavi@ludens.elte.hu
mailto:papne@ludens.elte.hu

Joining Programming Theorems – a Practical Approach to Program Building

2

Joining Programming Theorems
a Practical Approach to Program Building

Our program-building procedure is as follows:
First we specify the basic task. For a programmer with some experience, it is quite easy to
read from the specification which elementary theorems should be applied in what sequence.
Since the application of theorem means the execution of a function, the joining of theorems
is a substitution of the range of one function (the result of the theorem) into the domain of
another. This gives rise to the second step, the decomposition of the original task into
appropriate subtasks. The subtasks are then connected as determined by one of the
theorems or structural features of data. This step occasionally involves application of
program transformation. The third step is to deal with each of these elementary theorems
individual. This paper demonstrates how to join two theorems together.
1. Introduction
1.1. Programming model
In a top-down approach we design the solution using three forms of program structure,
namely sequential composition of (two) instructions, conditional branch (selection) and
repetitive execution of the instruction (loop). The choice depends on the specification of
the task.
The task always refers to some group of data. One element of this group is defined by
known data (input) and the other by goal data (output). The direct product of the value set
of this data group is called state space (SS)1. Each point of this space represents a snapshot
of the progress of the program and is called a state, with coordinates known as variables.
(some of these state coordinates may turn out to have no elementary value.) the variables
are in effect projections of the SS.
Example
SS: A = BxCx…xH
state of SS: a = (b,c,…,h) where b∈B, c∈C, …, h∈H
variable of SS: β: A → B projection
A task means a relation (F) which is part of the set of the state-pairs (F⊆AxA). So the first
thing is to establish the SS and the possible relations between its coordinates. Then we
determine which point of the SS the program starts from. This set can be termed as
precondition, and the result set as the post-condition. We give both parts of the set using the
customary logical formulae.
We summarize the applied mathematical concepts and notations as follows
 N0: 0,1,2, … (set of positive integer numbers and zero)

1 The SS generally grows beyond our initial conception as the task proceeds – usually in every refining step.

Joining Programming Theorems – a Practical Approach to Program Building

3

 H: any set (with set operations)
 HN: set of sequences of H having N elements

 H*: set of finite sequences of H (∪∞
=

∗ =
0k

kHH)

 L: set of logical values {↑,↓}
 H is ordered set: there exist an order relation on H
In what follows we do not use the concepts of sequences and sets in their general sense but
except then to meet the following criteria:

1. Both set H and sequence S are part of A*, so both of them consist of the elements of
A.

2. The elements of set H may not be repeated, although repetition may of course occur
in a sequence. We make use of the set operations intersection (∩), union (∪),
inclusion (⊆) and membership (∈) in their usual senses. (We do not define them
here.)

3. The elements of sequence S are unambiguously arranged with the aid of the indexing
operation, si means the i-th element of sequence A. Since all the programming
theorems (PTh’s) operate with one or more sequences, we present some further
sequence operations and features.

Concept:
S∈H* is ordered sequence

Its definition
∃ ≤: HxH→L total order relation and

∀ i (1≤i≤N): ≤(si,si+1)=↑ (with conventional notation: si≤si+1

IsOrderedSequence(X) = 
 ≤⇒<∀

otherwiseFalse
xxjijiTrue ji:,

Input and output
It is not possible to predict the full SS of the task from its operation, but only some of ts
projections – those dimensions that are important for us as problem solvers. The structure
of the SS will come to light when we engage in solving the task.
It is useful to observe some rules when we specify the input and output: to use suggestive
names for the range set of all data types; and to decompose data types into some “standard”
basis sets, namely the logical (L), then integer (Z), the non-negative integer (N0), the string
(String) and the set of the “abstract” enumerated types that are created by us. We do this
decomposing by means of direct product, union, intersection and iteration operations.
By virtue observing the above rule we can easily join the algorithmic types with concrete
types in the programming language. In the programming language the pairs of
decomposition tools given in the previous paragraph are record, the variant record (record
with variant part) and some sequence-like structure (e.g. array, file, etc.), respectively.2

2 In this paper the types of the sequences do not play a significant role and so we assume a suitable array of

Joining Programming Theorems – a Practical Approach to Program Building

4

Pre- and post-condition (its aim and connection with the algorithm)
As we have seen the pre- and post-condition fix the task and therefore, more or less
unambiguously, fix the program, too. We would expect the algorithm of the adequate
program to be easy to create from the previous two assertions. Let us examine how far our
expectations may be realized. We usually link the precondition is satisfied by the input
data. (Since this is normally simple to do, we will not deal with it here.) However, neither
extracting information from the post-condition nor transforming it into an appropriate
algorithm is a sample problem. We want to show that there are also features of the post-
condition from which traces of some macroscopic algorithms (those of the programming
theorems) are detectable. Having identified these PTh’s in the specification, we only have
to join them into a single, suitable algorithm.
1.2. Concepts of programming theorems
We use the term PTh in the customary sense [1,5,6] of an assertion: the algorithm is
correct with respect to the task we have specified. In other words, it is a solution of the
specified task. So let us denote input of the task by x and output of the task by y, and its
pre-and post-conditions by pre(x) and post(x,y) respectively. We say that program P,
implementing the algorithm is a solution of the task if

() ()yxpostxprex
P

,: ⇒∀
(Here we apply the notation of first-order predicate calculus.3)
The aim of using PTh’s is to become able to assemble algorithms from macroscopic
elements which are undoubtedly correct. Since PTh’s contain the algorithm of the solution
as well as the specification, we need do no more than compose and join these “algorithm
patterns” properly.
If we consider PTh’s as abstract functions mapped from the subset of input data into the
subset of output data (ProgrammingTheorem: {Input}→{Output}), then it will be possible
for us to read certain obvious relationships immediately.
1.3. Programming theorems
In what follows we will list only those PTh’s that are central to our purpose. To each of
them is assigned a unique identifier that simplifies subsequent references to them. (For
example, the notation ptC means the programming theorem Copying.) [4]
Firstly, we describe PTh, as a function with its domain and range. Then we specify it
adding input, output, pre-and post-condition. Finally, we add an algorithm which satisfies
the specifications. The algorithm is defined by Pascal-like procedure, in which input and
output of the task appear as parameters, but we do not write the function-like input data in
the header of the procedure. Note: we will not deal with the proof of PTh’s in this section.
Remark. In the algorithm we use.

maximum size.
3 We employed the usual notation [2]: ()

()
()'xpxq

xu⇒ , in other words this means that x holds the predicate
q(x) before executing the program u(x), then x’ holds the predicate p(x’) after executing the program.

Joining Programming Theorems – a Practical Approach to Program Building

5

1. three type definitions
 H_Seq_Type = Array [1..MaxN] of H_E_Type;
 G_Seq_Type = Array [1..MaxN] of G_E_Type;
 Word_Seq_Type = Array [1..MaxN] of Word;
 Bool_Func_Type = Function(H_E_Type): Boolean;
 H_G_Func_Type = Function(H_E_Type): G_E_Type;
 G_H_G_Func_Type = Function(G_E_Type,H_E_Type): G_E_Type;
 E_G_E_Func_Type = Function(E_E_Type,G_E_Type): E_E_Type;
 H_Ord_Op_Type = Infix Operator(H_E_Type,H_E_Type): Boolean;
where MaxN is a predefined integer constant, and Word is a type of nonnegative integers,
furthermore H_E_Type, G_E_Type and E_E_type are any types (according to set H, G and
E respectively)
2. and some predefines local variable, e.g.
 Var I: Word;
ptC: Copying(N0,H*,H→→→→G):G*

Input: N∈N0, X∈H*, f: H→G
Output: Y∈G*

PreCond: 
PostCond: ∀i∈[1,n]: yi=f(xi)
Algorithm:
 Procedure Copying(N: Word; X: H_Seq_Type; f: H_G_Func_Type;
 Var Y: G_Seq_Type);
 Begin
 For I:=1 to N do Y[I]:=f(X[I]);
 End;
ptSC: SequentialComputing(N0,H*,G,GxH→→→→G):G4
Input: N∈N0, X∈H*, f: H→G5
Output: S∈G

PreCond: ∃F0∈G ∧ ∃f: GxH→G ∧ F(x1,...,xN)=f(F(x1,...,xN-1),xN) ∧ F()=F0
PostCond: S=F(x1,...,xN)
Algorithm:

4 A special case of this theorem is the well-known theorem Sum.
5 From the point of view of the algorithm the function F, or rather the function f and the constant F0
representing F int he precondition, is considered „a priori input”.

Joining Programming Theorems – a Practical Approach to Program Building

6

 Procedure SequentialComputing(N: Word; X: H_Seq_Type;
 F0: G_E_Type, f: G_H_G_Func_Type; Var S: G_E_Type);
 Begin
 S:=F0;
 For I:=1 to N do S:=f(S,X[I]);
 End;
ptLS: LinearSeeking(N0,H*,H→→→→L):(L,N0)
Input: N∈N0, X∈H*, T: H→L
Output: Exist∈L, Number∈N0
PreCond: 
PostCond: Exist≡(∃i∈[1,N]: T(xi) ∧ Exist⇒Number∈[1,N] ∧ T(xNumber)
Algorithm:
 Procedure LinearSeeking(N: Word; X: H_Seq_Type;
 T: Bool_Func_Type; Var Exist: Boolean; Var Number: Word);
 Begin
 I:=1;
 While (I<=N) and not T(X[I]) do I:=Succ(I);
 Exist:=(I<=N);
 If Exist then Number:=I;
 End;
ptCt: Counting(N0,H*,H→→→→L):N0

Input: N∈N0, X∈H*, T: H→L, χ:L→{0,1}, ()



=
=

= falsexif
truexifx 0

1χ

Output: HowMany∈N0
PreCond: 

PostCond: ()()∑
=

=
N

1i
ixTHowMany χ

Algorithm:
 Procedure Counting(N: Word; X: H_Seq_Type;
 T: Bool_Func_Type; Var HowMany: Word);
 Begin
 HowMany:=0;
 For I:=1 to N do If T(X[I]) then HowMany:=HowMany+1;
 End;

Joining Programming Theorems – a Practical Approach to Program Building

7

ptMxS: MaximumSearching(N0,H*,HxH→→→→L):N06
Input: N∈N0, X∈H*, <: HxH→L
Output: Max∈N0
PreCond: N>0 ∧ IsOrderedSet(H)
PostCond: Max∈[1,N] ∧ ∀i∈[1,N]: xi≤xMax
Algorithm:
 Procedure MaximumSearching(N: Word; X: H_Seq_Type;
 <: H_Ord_Op_Type; Var Max: Word);
 Begin
 Max:=1;
 For I:=2 to N do If X[Max]<X[I] then Max:=I;
 End;
1.4. Program transformations
Th epupose of program teansformations [3,4] is to simplify a program structure and
eliminate redundancy and inefficiency which arises from mechanical derivation of the
program. The original program and the result of the transformation are semantically
equivalent, either without conditions or under conditions which shall indicate. Two
programs given as algorithms are equivalent if both of them realize the same mapping. [2]
The equivalence of the program pair is formally provable. (We shall not discuss this further
here because is does not belong to our main theme.) We will make use of them, however,
and refer to them by symbols PTx.
We do not aspire to completeness and content ourselves to listing a few program
transformations as facts, without proofs. All the five statements below have a simple
structure. They begin as follows:

”Statement: a program P1 equivalent to a program P2.”
followed by both program.

6 This theorem is referred to as „searching for the maximum value”.

Joining Programming Theorems – a Practical Approach to Program Building

8

P1 P2
PT1: without any conditions

x:=k; y:=l(x);
While π(x) do
Begin
 y:=g(x,y); x:=i(x);
End;
x:=k; z:=m(x);
While π(x) do
Begin
 z:=h(x,z); x:=i(x);
End;

⇔ x:=k; y:=l(x); z:=m(x);
While π(x) do
Begin
 y:=g(x,y);
 z:=h(x,z);
 x:=i(x);
End;

PT2: without any conditions
Y:=f(x); z:=g(y); ⇔ Z:=g(f(x));

PT3: with following condition: ∀p predicate: ()
()

() ()
()

()'
1:

spspxpxp
SPxas ⇒∧⇒= 7

If a(x)<b then c:=a(x); ⇔ s:=a(x); if s<b then c:=s;
PT4: without any conditions

While T(f(x)) do
begin
 a(x);
End;

⇔ ft:=f(x);
While T(ft) do
begin
 a(x); ft:=f(x);
End;

PT5: without any conditions
x:=1;
While (x<=v) and not T(x) do
Begin
 x:=Succ(x);
End;
l:=(x<=v);

⇔ x:=0; l:=false;
While (x<v) and not l do
Begin
 x:=Succ(x); l:=T(x);
End;

2. Joining programming theorems
If often happens that we have to use PTh’s sequentially. However by joining PTh’s, the
program generally becomes much simpler, more compact and more effective than the
original, derived mechanically from the specification. In this work we investigate the
joining of two PTh’s. They will be grouped by a dominant theorem. [4]
To understand what this means, consider the general steps that have to be taken from the
specification to the finished program.

7 We state here that „x is the only input parameter in a(x)”.

Joining Programming Theorems – a Practical Approach to Program Building

9

0. The task is given by its specification: input, output, pre- and post-condition.
1. To decompose the post-condition into a set of post-conditions of suitable PTh’s.
2. To prove the correctness of the decomposition.
3. To apply theorems by their own subspecification, independently from each other.
4. To simplify the resulting program using program transformations.

2.1. Joining with theorem copying
Any PTh’s can be built by ptC (Copying), since all that is required is to replace original
inpit data xi by g(xi).
For example, if we need to take the sum of squares of a number sequence, the program
consist of two parts, the first coming from ptC(∀i: xi → xi2), and the second one from
ptSC(sequential computing: (y1,…,yN) → Σ yi). Let us lock at a combination of two
theorems in general.
Input: N∈N0, X∈H*, F: G*→E, g: H→G
Output: S∈E
PreCond: ∃F0∈E ∧ ∃f: ExG→E ∧ ∀Y∈G*: F(y1,...,yN)=f(F(y1,...,yN-1),yN) ∧ F()=F0
PostCond: S=F(g(x1),...,g(xN))
Deduction:
Statement: PostCond ⇔ S=F(y1,...,yN) (1)
 ∧ y1=g(x1) ∧ ... ∧ yN=g(xN) (2)
Proof. The proof is very simple: we only have to substitute yi=g(xi) for (1).
The deduction of the algorithm. Relation (1) is the post-conditions of ptSC concerning
the sequence Y, and relation (2) is the post-conditions of ptC concerning the sequence X.
Because the latter operates on the input sequence of the task it is to be applied first. It
produces the input sequence Y of ptSC. So joining these two programming theorems

S:=SequentialComputing(N,Copying(N,X,g),F0,f)
Produces the algorithm below:
 Procedure CopyingWithComputing(N: Word; ; X: H_Seq_Type;
 F0: E_E_Type, f: E_G_E_Func_Type;
 g: H_G_Func_Type; Var S: E_E_Type);
 Begin
 For I:=1 to N do Y[I]:=g(X[I]);
 S:=F0;
 For I:=1 to N do S:=f(S,Y[I]);
 End;

Joining Programming Theorems – a Practical Approach to Program Building

10

To simpify the algorithm we transform it with PT1:
 Procedure CopyingWithComputing(N: Word; ; X: H_Seq_Type;
 F0: E_E_Type, f: E_G_E_Func_Type;
 g: H_G_Func_Type; Var S: E_E_Type);
 Begin;
 S:=F0
 For I:=1 to N do
 Begin
 Y[I]:=g(X[I]); S:=f(S,Y[I]);
 End;
 End;
Let us continue simplifying with PT2, which is applicable now:
 Procedure CopyingWithComputing(N: Word; ; X: H_Seq_Type;
 F0: E_E_Type, f: E_G_E_Func_Type;
 g: H_G_Func_Type; Var S: E_E_Type);
 Begin
 S:=F0
 For I:=1 to N do S:=f(S,g(X[I]));
 End;
As a second example, let us investigate the joining of copying and searching for the
maximum value (i.e. maximum-searching). Now, we have to find the value of the biggest
element and its index.
Input: N∈N0, X∈H*, g: H→G, <: GxG→L
Output: Max∈N0, MaxValue∈G
PreCond: N>0 ∧ IsOrderedSet(G)
PostCond: Max∈[1,N] ∧ ∀i∈[1,N]: g(xi)≤g(xMax) ∧ MaxValue=g(xMax)
Deduction:
PostCond ⇔ Max∈[1,N] ∧ ∀i∈[1,N]: yi≤yMax (1)
 ∧ y1=g(x1) ∧ ... ∧ yN=g(xN) (2)
 ∧ MaxValue=yMax (3)
(1) is the post-condition of ptMxS concerning the sequence Y; (2) is the post-condition of
ptC concerning the sequence X; and (3) is realizable with a simpple assignement statement.
Because the second one operates on the input sequence of the task again it is to be applied
first. It produces the input sequence Y of ptMxS. So joining of these two programming
theorems

Max:=MaimumChoosing(N,Copying(N,X,g),<)

Joining Programming Theorems – a Practical Approach to Program Building

11

Produces the algorithm below:
 Procedure MaximumCopying(N: Word; X: H_Seq_Type;
 <: G_Ord_Op_Type; g: H_G_Func_Type;
 Var Max: Word; var MaxValue: G_Type);
 Begin
 For I:=1 to N do Y[I]:=g(X[I]);
 Max:=1;
 For I:=2 to N do If Y[Max]<Y[I] then Max:=I;
 MaxValue:=Y[Max];
 End;
Separating the case of I=1 from the first loop, the algorithm is simplifyable with PT1:
 Procedure MaximumCopying(N: Word; X: H_Seq_Type;
 <: G_Ord_Op_Type; g: H_G_Func_Type;
 Var Max: Word; var MaxValue: G_Type);
 Begin
 Y[1]:=g(X[1]); Max:=1;
 For I:=2 to N do
 Begin
 Y[I]:=g(X[I]); If Y[Max]<Y[I] then Max:=I;
 End;
 MaxValue:=Y[Max];
 End;
Let us transformate the result solution so that the formula MaxValue:=yMax, is nteh post-
condition, is to be invariant. Then we get
 Procedure MaximumCopying(N: Word; X: H_Seq_Type;
 <: G_Ord_Op_Type; g: H_G_Func_Type;
 Var Max: Word; var MaxValue: G_Type);
 Begin
 Y[1]:=g(X[1]); Max:=1; MaxValue:=Y[Max];
 For I:=2 to N do
 Begin
 Y[I]:=g(X[I]);
 If Y[Max]<Y[I] then Begin Max:=I; MaxValue:=Y[Max]; End;
 End;
 End;
Let us continue to simplify the last algorithm with PT2, and – of course – we have dropped
the statement Y[1]:=g(X[1]). Moreover, we can drop the multiple reference to X[Max], if
we apply PT3 and PT2 (”inversely”). So we reach the final version:

Joining Programming Theorems – a Practical Approach to Program Building

12

 Procedure MaximumCopying(N: Word; X: H_Seq_Type;
 <: G_Ord_Op_Type; g: H_G_Func_Type;
 Var Max: Word; var MaxValue: G_Type);
 Begin
 Max:=1; MaxValue:=Y[Max];
 For I:=2 to N do
 Begin
 If Maxvallue<g[X[I]] then
 Begin Max:=I; MaxValue:=g[X[Max]]; End;
 End;
 End;
2.2. Joining with the theorem counting
The theorem ptCt (Counting) is usually combined with seeking8-like theorems, e.g. ptLS.
We can ask the following questions in this case, ”Is there at least K pieces of elements of
the feature T is the sequence?”, atc.
The most general case is the joining of the theorem counting and the theorem linear
seeking. In similar menner we can perform the deriving in the other two cases, since
algorithms of both of them are parts of the algorithm of seeking.

Input: N∈N0, X∈H*, K∈N0, T: H→L, χ:L→{0,1}, ()



=
=

= falsexif
truexifx 0

1χ

Output: Exist∈L, Number∈N0
PreCond: K∈[1,N]
PostCond: Exist≡(∃i∈[1,N]: T(xi) ∧ Exist⇒Number∈[1,N] ∧ T(xNumber)

PostCond: Exist= ()() 


 ≥∑
=

K
N

1i
ixTχ ∧ Exist⇒Number∈[1,N] ∧ T(xNumber)

 ∧ ()() 


 =∑
=

K
Number

1i
ixTχ

Deduction:

PostCond ⇔ Exist≡(∃j∈[1,N]: ()() 





=∑
=

K
jr

1i
ixTχ

 ∧ Exist⇒Number∈[1,N] ∧ T(xNumber) (1)

 ∧ ()() 


 =∑
=

K
Number

1i
ixTχ (2)

8 Here we refer to some theorems that are widely used, but we did not mention in the Introduction section; e.g.
the so-called deciding and choosing theorems.

Joining Programming Theorems – a Practical Approach to Program Building

13

We have to prove the following statement:

()() [] ()()∑ ∑
= =

=∈∃⇔≥
N

i

j

i
ii KxTNjKxT

1 1
:,1 χχ .

Both of the formulae are valid if and only if K≤N. Since ()()ixTχ =0 or 1, the above
formulae are surely false if j<K, and the sum monotonically increases with increasing j.
Furthermore, j can exceed K, if it takes K, too, since its value rises most 1.
The assertion (1) is a variant of the post-condition of ptLS, and the assertion (2) reminds us
of the post-condition of ptCt. (The last theorem has changed: we have replaced ‘K’ with
‘HowMany’ and ‘Number’ with ‘N’.) Firstly, let us concentrate our attention on the
application of ptLS. We start from the algorithm, as a frame, associated with the theorem.
Its third parameter is a function of logical value, where we include a relation. On the one
side of the relation is the result of ptCt, and on the other side of it is constant K
(Counting(j,X,T)≥K). It is obvious that ptCt concerns sequence (x1,…,xj) which
continually grows. Thus, the algorithm – written by functional notations – :

(Exist,Number):=LinearSeeking(N,X,j∈[1,N]: Counting(j,X,T)≥K)
Produces the algorithm below:
 Procedure SeekingWithCounting(N: Word; X: H_Seq_Type;
 T: Bool_Func_Type; Var Exist: Boolean; Var Number: Word);
 Begin
 I:=1;
 While (I<=N) and (Count(I,X,T)<K) do I:=Succ(I);
 Exist:=(I<=N);
 If Exist then Number:=I;
 End;
Where we have to make the algorithm of the function Count to (2) which satisfies the
postcondition:

()() 





== ∑
=

KTXjCount
jr

1i
ixT),,(χ (3)

 Function Count(J: Word; X: H_Seq_Type;
 T: Bool_Func_Type): Word);
 Begin
 HowMany:=0;
 For L:=1 to J do If T(X[L]) then HowMany:=HowMany+1;
 Count:=HowMany;
 End;
It appears to be difficult to simplify because ptCt is in the condition of the loop. This can
be helped with PT4.

Joining Programming Theorems – a Practical Approach to Program Building

14

 Procedure SeekingWithCounting(N: Word; X: H_Seq_Type;
 T: Bool_Func_Type; Var Exist: Boolean; Var Number: Word);
 Begin
 I:=1; HowMany:=Count(1,X,T);
 While (I<=N) and (HowMany<K) do
 Begin
 I:=Succ(I); HowMany:=Count(I,X,T);
 End;
 Exist:=(I<=N);
 If Exist then Number:=I;
 End;
Note that the function Count acquired an extra condition in the last procedure, i.e. it also
has to respond to the case I=N+1. This anomaly comes from the fact that if a logical
expression consist of more than one part and its value has been decided on the way
(evaluation), then it is unnecessary to continue any calculations, in fact some errors can
occur in sonsequence of it. Therefore the call of function Count(N+1,X,T) did not
appear beside I≤N in the first version. Let us solve this problem by means of PT5. Now
perform some substitutions:
x:=1 ⇒ i:=1; HowMany:=Count(1,X,T)
x:=Succ(x) ⇒ I:=Succ(I); HowMany:=Count(I,X,T)
T(x) ⇒ HowMany>=K
X:=0 ⇒ I:=0; HowMany:=0
 Procedure SeekingWithCounting(N: Word; X: H_Seq_Type;
 T: Bool_Func_Type; Var Exist: Boolean; Var Number: Word);
 Begin
 I:=0; HowMany:=0; Exist:=false;
 While (I<N) and not Exist do
 Begin
 I:=Succ(I); HowMany:=Count(I,X,T); Exist:=(HowMany>=K);
 End;
 If Exist then Number:=I;
 End;
There is no program transformation to continue simplifying. We have found additional
inherent connections. So let us formulate the invariant statement of the top-level loop. In
general the invariant assertion of seeking is

∀j∈[1,i-1]: ¬T(xj)
Updated this assertion we get

∀j∈[1,i-1]: ¬Count(j,X,T)≥K
Considering that the boda of the loop consist of a single instruction I:=Succ(I), it is
easy to find a connection between Count(J,X,T) and Count(J+1,X,T).

Joining Programming Theorems – a Practical Approach to Program Building

15

Statement:

() () () 1,,1,,1,,
)(:

+=+∨=+⇒=
=

LTXjCountLTXjCountLTXjCount
ISuccI

Proof. Let us investigate the corollary of the satement above:

() () 1,,1,,1 +=+∨=+ LTXjCountLTXjCount (4)
In consequence of the statement (3) and the definition of the function χ

() ()() () ()()11 1,,1,,1)4(++ ∧+=+∨¬∧=+⇔ jj xTLTXjCountxTLTXjCount .
Considering the condition part of the statement above it is equivalent to (identical formula)

() ()() TruexTxT jj ⇔∨¬ ++ 11 .
It is avantageous for us, because the function Count(j,X,T) is usable without
recalculating it.
Now we are allowed to declare that the body of the loop in previous version of algorithm
and the following detail of the program are evidently equivalent:
HowMany:=Count(I,X,T);
If T(X[I]) then HowMany:=HowMany+1;
Finally we can write the algorithm is its final form, in which the function Count does not
appear:
 Procedure SeekingWithCounting(N: Word; X: H_Seq_Type;
 T: Bool_Func_Type; Var Exist: Boolean; Var Number: Word);
 Begin
 I:=0; HowMany:=0; Exist:=true;
 While (I<N) and Exist do
 Begin
 I:=Succ(I);
 If T(X[I]) then HowMany:=HowMany+1;
 Exist:=(HowMany>=K);
 End;
 If Exist then Number:=I;
 End;
3. Conclusion
Lack of space prevents us from lsitong any more examples but we hope that we have
succeed in showing the essence of the method. As we have seen, it is possible to derive the
program with basic programming tools and elementary mathematical formulae. The set o
stools for the operation consists of about twenty program theorems and at most ten program
transformations. In addition to the tools we have mentioned, the method requires
knowledge of first-order predicate calculus notation and the ability to formulate invariante
assertions (for the management of loops).

Joining Programming Theorems – a Practical Approach to Program Building

16

References
[1] Fóthi Á.: Bevezetés a programozáshoz (Introduction into programming), Tankönyv-
kiadó, 1983.
[2] Varga L.: Programok analízise és szintézise (The analysis and synthesis of programs),
Akadémiai Kiadó, 1981.
[3] Szlávi P. and Zsakó L.: Módszeres programozás: Programozási bevezető (Systematic
programming: Introduction to programming), ELTE TTK Department of General Computer
Science, 1993.
[3] Szlávi P. and Zsakó L.: Módszeres programozás: Programozási tételek (Systematic
programming: Programming theorems), ELTE TTK Department of General Computer
Science, 1993.
[5] Dahl, O.J., Dijkstra, E.W. and Hoare, C.A.R.: Structured programming, Academic
Press, 1972.
[6] Dijksta, E.W.: A discilpline of programming, Prentice Hall, Englewood Cliffs, New
Jersey, 1976.

	First we specify the basic task. For a programmer with some experience, it is quite easy to read from the specification which elementary theorems should be applied in what sequence. Since the application of theorem means the execution of a function, the joining of theorems is a substitution of the range of one function (the result of the theorem) into the domain of another. This gives rise to the second step, the decomposition of the original task into appropriate subtasks. The subtasks are then connected as determined by one of the theorems or structural features of data. This step occasionally involves application of program transformation. The third step is to deal with each of these elementary theorems individual. This paper demonstrates how to join two theorems together.
	1. Introduction

