
Manipulating Data



Objectives

• After completing this lesson, you should be able 
to do the following:
– Describe each data manipulation language (DML) 

statement
– Insert rows into a table
– Update rows in a table
– Delete rows from a table
– Control transactions



Data Manipulation Language

– A DML statement is executed when you:
• Add new rows to a table
• Modify existing rows in a table
• Remove existing rows from a table

– A transaction consists of a collection of DML 
statements that form a logical unit of work.



Adding a New Row to a Table

DEPARTMENTS 

New 
row

Insert new row
into the

DEPARTMENTS table



INSERT Statement Syntax

– Add new rows to a table by using the INSERT
statement:

– With this syntax, only one row is inserted at a 
time.

INSERT INTO table [(column [, column...])]

VALUES (value [, value...]);



Inserting New Rows

– Insert a new row containing values for each 
column.

– List values in the default order of the columns 
in the table. 

– Optionally, list the columns in the INSERT
clause.

– Enclose character and date values in single 
quotation marks.

INSERT INTO departments(department_id, 

department_name, manager_id, location_id)

VALUES (70, 'Public Relations', 100, 1700);

1 row created.



INSERT INTO departments

VALUES (100, 'Finance', NULL, NULL);

1 row created.

INSERT INTO departments (department_id, 

department_name    )

VALUES (30, 'Purchasing');

1 row created.

Inserting Rows with Null Values

– Implicit method: Omit the column from the 
column list.

• Explicit method: Specify the NULL keyword in the 
VALUES clause.



INSERT INTO employees (employee_id, 

first_name, last_name, 

email, phone_number,

hire_date, job_id, salary, 

commission_pct, manager_id,

department_id)

VALUES (113, 

'Louis', 'Popp', 

'LPOPP', '515.124.4567', 

SYSDATE, 'AC_ACCOUNT', 6900, 

NULL, 205, 100);

1 row created.

Inserting Special Values

• The SYSDATE function records the current date and time.



– Add a new employee.

– Verify your addition.

Inserting Specific Date Values

INSERT INTO employees

VALUES      (114, 

'Den', 'Raphealy', 

'DRAPHEAL', '515.127.4561',

TO_DATE('FEB 3, 1999', 'MON DD, YYYY'),

'AC_ACCOUNT', 11000, NULL, 100, 30);

1 row created.



INSERT INTO departments 

(department_id, department_name, location_id)

VALUES     (&department_id, '&department_name',&location);

Creating a Script 

– Use & substitution in a SQL statement to prompt for 
values.

– & is a placeholder for the variable value.

1 row created.



Copying Rows 
from Another Table

– Write your INSERT statement with a subquery:

– Do not use the VALUES clause.
– Match the number of columns in the INSERT

clause to those in the subquery.

INSERT INTO sales_reps(id, name, salary, commission_pct)

SELECT employee_id, last_name, salary, commission_pct

FROM   employees

WHERE  job_id LIKE '%REP%';

4 rows created.



Changing Data in a Table

EMPLOYEES

Update rows in the EMPLOYEES table:



– Modify existing rows with the UPDATE statement:

– Update more than one row at a time (if required).

UPDATE table

SET column = value [, column = value, ...]

[WHERE condition];

UPDATE Statement Syntax



– Specific row or rows are modified if you specify the 
WHERE clause:

– All rows in the table are modified if you omit the 
WHERE clause:

Updating Rows in a Table

UPDATE employees

SET    department_id = 70

WHERE  employee_id = 113;

1 row updated.

UPDATE copy_emp

SET    department_id = 110;

22 rows updated.



UPDATE   employees

SET      job_id = (SELECT  job_id

FROM    employees 

WHERE   employee_id = 205), 

salary  = (SELECT  salary 

FROM    employees 

WHERE   employee_id = 205) 

WHERE    employee_id =  114;

1 row updated.

Updating Two Columns with a 
Subquery

• Update employee 114’s job and salary to match that of 
employee 205.



UPDATE  copy_emp

SET     department_id  =  (SELECT department_id

FROM employees

WHERE employee_id = 100)

WHERE   job_id         =  (SELECT job_id

FROM employees

WHERE employee_id = 200);

1 row updated.

Updating Rows Based 
on Another Table

• Use subqueries in UPDATE statements to update 
• rows in a table based on values from another table:



Delete a row from the DEPARTMENTS table:

Removing a Row from a Table 

DEPARTMENTS



DELETE Statement

• You can remove existing rows from a table by using the 
DELETE statement:

DELETE [FROM] table

[WHERE condition];



Deleting Rows from a Table

– Specific rows are deleted if you specify the 
WHERE clause:

– All rows in the table are deleted if you omit the 
WHERE clause:

DELETE FROM departments

WHERE  department_name = 'Finance';

1 row deleted.

DELETE FROM  copy_emp;

22 rows deleted.



Deleting Rows Based 
on Another Table

• Use subqueries in DELETE statements to remove rows 
from a table based on values from another table:

DELETE FROM employees

WHERE  department_id =

(SELECT department_id

FROM   departments

WHERE  department_name 

LIKE '%Public%');

1 row deleted.



TRUNCATE Statement

– Removes all rows from a table, leaving the 
table empty and the table structure intact

– Is a data definition language (DDL) 
statement rather than a DML statement; 
cannot easily be undone

– Syntax:

– Example:

TRUNCATE TABLE table_name;

TRUNCATE TABLE copy_emp;



• INSERT INTO

• (SELECT employee_id, last_name,

• email, hire_date, job_id, salary, 

• department_id

• FROM   employees

• WHERE  department_id = 50) 

• VALUES (99999, 'Taylor', 'DTAYLOR',

• TO_DATE('07-JUN-99', 'DD-MON-RR'),

• 'ST_CLERK', 5000, 50);

• 1 row created.

Using a Subquery in an INSERT
Statement



Using a Subquery in an INSERT
Statement

• Verify the results:

SELECT employee_id, last_name, email, hire_date, 

job_id, salary, department_id

FROM   employees

WHERE  department_id = 50;



Database Transactions

• A database transaction consists of one of the 
following:
– DML statements that constitute one consistent 

change to the data
– One DDL statement
– One data control language (DCL) statement



Database Transactions

– Begin when the first DML SQL statement is 
executed.

– End with one of the following events:
• A COMMIT or ROLLBACK statement is issued.
• A DDL or DCL statement executes (automatic 

commit).
• The user exits SqlDeveloper.
• The system crashes.



Advantages of COMMIT
and ROLLBACK Statements

• With COMMIT and ROLLBACK statements, you can: 
– Ensure data consistency
– Preview data changes before making changes 

permanent
– Group logically related operations



Controlling Transactions

SAVEPOINT B

SAVEPOINT A

DELETE

INSERT

UPDATE

INSERT

COMMITTime

Transaction

ROLLBACK 

to SAVEPOINT B

ROLLBACK 

to SAVEPOINT A

ROLLBACK



UPDATE...

SAVEPOINT update_done;

Savepoint created.

INSERT...

ROLLBACK TO update_done;

Rollback complete.

Rolling Back Changes to a Marker

– Create a marker in a current transaction by using 
the SAVEPOINT statement.

– Roll back to that marker by using the ROLLBACK 
TO SAVEPOINT statement.



Implicit Transaction Processing

– An automatic commit occurs under the following 
circumstances:
• DDL statement is issued

• DCL statement is issued

• Normal exit from SqlDeveloper, without explicitly issuing 
COMMIT or ROLLBACK statements

– An automatic rollback occurs under an abnormal 
termination of SqlDeveloper or a system failure.



State of the Data 
Before COMMIT or ROLLBACK

– The previous state of the data can be recovered.
– The current user can review the results of the DML 

operations by using the SELECT statement.
– Other users cannot view the results of the DML 

statements by the current user.
– The affected rows are locked; other users cannot 

change the data in the affected rows.



State of the Data After COMMIT

– Data changes are made permanent in the database.

– The previous state of the data is permanently lost.

– All users can view the results.

– Locks on the affected rows are released; those rows 
are available for other users to manipulate.

– All savepoints are erased.



COMMIT;

Commit complete.

Committing Data

– Make the changes:

– Commit the changes:

DELETE FROM employees

WHERE  employee_id = 99999;

1 row deleted.

INSERT INTO departments 

VALUES (290, 'Corporate Tax', NULL, 1700);

1 row created.



DELETE FROM copy_emp;

22 rows deleted.

ROLLBACK ;

Rollback complete.

State of the Data After 
ROLLBACK

• Discard all pending changes by using the 
ROLLBACK statement:
– Data changes are undone.
– Previous state of the data is restored.
– Locks on the affected rows are released.



State of the Data After 
ROLLBACK

DELETE FROM test; -- ups!, it’s a mistake

25,000 rows deleted.

ROLLBACK; -- correct the mistake

Rollback complete.

DELETE FROM test WHERE  id = 100; -- it’s ok

1 row deleted.

SELECT * FROM   test WHERE  id = 100;

No rows selected.

COMMIT; -- make it permanent

Commit complete.



Statement-Level Rollback

– If a single DML statement fails during execution, 
only that statement is rolled back.

– The Oracle server implements an implicit savepoint.

– All other changes are retained.

– The user should terminate transactions explicitly by 
executing a COMMIT or ROLLBACK statement.



Read Consistency

– Read consistency guarantees a consistent view of 
the data at all times.

– Changes made by one user do not conflict with 
changes made by another user. 

– Read consistency ensures that on the same data:
• Readers do not wait for writers

• Writers do not wait for readers



Implementation of Read Consistency

SELECT  *

FROM userA.employees;

UPDATE employees

SET    salary = 7000

WHERE  last_name = 'Grant';

Data
blocks

Undo
segments

Changed
and unchanged 
data

Before change
(“old” data)

User A

User B

Read-
consistent
image



Summary

• In this lesson, you should have learned how to use the 
following statements:

Function Description

INSERT Adds a new row to the table

UPDATE Modifies existing rows in the table

DELETE Removes existing rows from the table

COMMIT Makes all pending changes permanent

SAVEPOINT Is used to roll back to the savepoint marker

ROLLBACK Discards all pending data changes


