
1

Relational Algebra
and SQL

Basic Operations

Algebra of Bags

2

What is an “Algebra”

Mathematical system consisting of:

 Operands --- variables or values from
which new values can be constructed.

 Operators --- symbols denoting procedures
that construct new values from given
values.

3

What is Relational Algebra?

An algebra whose operands are
relations or variables that represent
relations.

Operators are designed to do the most
common things that we need to do with
relations in a database.

 The result is an algebra that can be used
as a query language for relations.

4

Core Relational Algebra

Union, intersection, and difference.
 Usual set operations, but both operands

must have the same relation schema.

Selection: picking certain rows.

Projection: picking certain columns.

Products and joins: compositions of
relations.

Renaming of relations and attributes.

5

Union, intersection, difference

R U S

SELECT … UNION SELECT …;
(Duplicate elimination -> UNION ALL: multiset, UNION: set)

R ∩ S

SELECT … INTERSECT SELECT …;

R - S

SELECT … MINUS SELECT …;
(Some DBMS uses EXCEPT)

6

Selection

R1 := σC (R2)

 C is a condition (as in “if” statements) that
refers to attributes of R2.

 R1 is all those tuples of R2 that satisfy C.

SELECT * FROM R2 WHERE C;

7

Example: Selection

Relation Sells:
bar beer price
Joe’s Bud 2.50
Joe’s Miller 2.75
Sue’s Bud 2.50
Sue’s Miller 3.00

JoeMenu := σbar=“Joe’s”(Sells):

bar beer price
Joe’s Bud 2.50
Joe’s Miller 2.75

8

Projection

R1 := πL (R2)

 L is a list of attributes from the schema of
R2.

 R1 is constructed by looking at each tuple
of R2, extracting the attributes on list L, in
the order specified, and creating from
those components a tuple for R1.

 Eliminate duplicate tuples, if any.

 SELECT DISTINCT L FROM R2;

9

Example: Projection

Relation Sells:
bar beer price
Joe’s Bud 2.50
Joe’s Miller 2.75
Sue’s Bud 2.50
Sue’s Miller 3.00

Prices := πbeer,price(Sells):

beer price
Bud 2.50
Miller 2.75
Miller 3.00

10

Extended Projection

 Using the same πL operator, we allow

the list L to contain arbitrary
expressions involving attributes:

1. Arithmetic on attributes, e.g., A+B->C.

2. Duplicate occurrences of the same
attribute.

SELECT A+B AS C FROM R;

(AS -> optional)

11

Example: Extended Projection

R = (A B)
1 2
3 4

πA+B->C,A,A (R) = C A1 A2

3 1 1
7 3 3

SELECT A+B C, A A1, A A2 FROM R;

12

Product
R3 := R1 Χ R2

 Pair each tuple t1 of R1 with each tuple t2 of R2.

 Concatenation t1t2 is a tuple of R3.

 Schema of R3 is the attributes of R1 and then R2,
in order.

 But beware attribute A of the same name in R1
and R2: use R1.A and R2.A.

SELECT * FROM R1, R2; or

SELECT * FROM R1 CROSS JOIN R2;

13

Example: R3 := R1 Χ R2

R1(A, B)
1 2
3 4

R2(B, C)
5 6
7 8
9 10

R3(A, R1.B, R2.B, C)
1 2 5 6
1 2 7 8
1 2 9 10
3 4 5 6
3 4 7 8
3 4 9 10

SELECT A, R1.B, R2.B, C FROM R1, R2;

14

Theta-Join

R3 := R1 ⋈C R2

 Take the product R1 Χ R2.

 Then apply σC to the result.

As for σ, C can be any boolean-valued

condition.
 Historic versions of this operator allowed

only A  B, where  is =, <, etc.; hence
the name “theta-join.”

SELECT * FROM R1 JOIN R2 ON (C);

15

Example: Theta Join

Sells(bar, beer, price) Bars(name, addr)
Joe’s Bud 2.50 Joe’s Maple St.
Joe’s Miller 2.75 Sue’s River Rd.
Sue’s Bud 2.50
Sue’s Coors 3.00

BarInfo := Sells ⋈Sells.bar = Bars.name Bars

BarInfo(bar, beer, price, name, addr)
Joe’s Bud 2.50 Joe’s Maple St.
Joe’s Miller 2.75 Joe’s Maple St.
Sue’s Bud 2.50 Sue’s River Rd.
Sue’s Coors 3.00 Sue’s River Rd.

16

Natural Join

A useful join variant (natural join)
connects two relations by:

 Equating attributes of the same name, and

 Projecting out one copy of each pair of
equated attributes.

Denoted R3 := R1 ⋈ R2.

SELECT * FROM R1 NATURAL JOIN R2;

17

Example: Natural Join

Sells(bar, beer, price) Bars(bar, addr)
Joe’s Bud 2.50 Joe’s Maple St.
Joe’s Miller 2.75 Sue’s River Rd.
Sue’s Bud 2.50
Sue’s Coors 3.00

BarInfo := Sells ⋈ Bars

Note: Bars.name has become Bars.bar to make the natural
join “work.”

BarInfo(bar, beer, price, addr)
Joe’s Bud 2.50 Maple St.
Joe’s Milller 2.75 Maple St.
Sue’s Bud 2.50 River Rd.
Sue’s Coors 3.00 River Rd.

18

Renaming
The ρ operator gives a new schema to a

relation.

R1 := ρR1(A1,…,An)(R2) makes R1 be a

relation with attributes A1,…,An and the
same tuples as R2.

Simplified notation: R1(A1,…,An) := R2.

SELECT X1 A1, X2 A2, … Xn An FROM R2;
CREATE TABLE R1 AS SELECT X1 A1, X2 A2, … Xn An FROM R2;

19

Example: Renaming

Bars(name, addr)
Joe’s Maple St.
Sue’s River Rd.

R(bar, addr)
Joe’s Maple St.
Sue’s River Rd.

R(bar, addr) := Bars

20

Building Complex Expressions

 Combine operators with parentheses
and precedence rules.

 Three notations, just as in arithmetic:

1. Sequences of assignment statements.

2. Expressions with several operators.

3. Expression trees.

21

Sequences of Assignments

Create temporary relation names.

Renaming can be implied by giving
relations a list of attributes.

Example: R3 := R1 ⋈C R2 can be

written:
R4 := R1 Χ R2 (CREATE TABLE R4 …)

R3 := σC (R4) (SELECT … FROM R4 …)

22

Expressions in a Single Assignment

 Example: the theta-join R3 := R1 ⋈C R2

can be written: R3 := σC (R1 Χ R2)

 Precedence of relational operators:

1. [σ, π, ρ] (highest).

2. [Χ, ⋈].

3. ∩.

4. [∪, —]

23

Expression Trees

Leaves are operands --- either variables
standing for relations or particular,
constant relations.

Interior nodes are operators, applied to
their child or children.

24

Example: Tree for a Query

Using the relations Bars(name, addr)
and Sells(bar, beer, price), find the
names of all the bars that are either on
Maple St. or sell Bud for less than $3.

25

As a Tree:

Bars Sells

σaddr = “Maple St.” σprice<3 AND beer=“Bud”

πname

ρR(name)

πbar

∪

26

Example: Self-Join

Using Sells(bar, beer, price), find the bars
that sell two different beers at the same
price.

Strategy: by renaming, define a copy of
Sells, called S(bar, beer1, price). The
natural join of Sells and S consists of
quadruples (bar, beer, beer1, price) such
that the bar sells both beers at this price.

27

The Tree

Sells Sells

ρS(bar, beer1, price)

⋈

πbar

σbeer != beer1

28

Schemas for Results

Union, intersection, and difference: the
schemas of the two operands must be
the same, so use that schema for the
result.

Selection: schema of the result is the
same as the schema of the operand.

Projection: list of attributes tells us the
schema.

29

Schemas for Results --- (2)

Product: schema is the attributes of both
relations.

 Use R.A, etc., to distinguish two attributes
named A.

Theta-join: same as product.

Natural join: union of the attributes of
the two relations.

Renaming: the operator tells the schema.

30

Relational Algebra on Bags

A bag (or multiset) is like a set, but an
element may appear more than once.

Example: {1,2,1,3} is a bag.

Example: {1,2,3} is also a bag that
happens to be a set.

31

Why Bags?

SQL, the most important query
language for relational databases, is
actually a bag language.

Some operations, like projection, are
more efficient on bags than sets.

32

Operations on Bags

Selection applies to each tuple, so its
effect on bags is like its effect on sets.

Projection also applies to each tuple,
but as a bag operator, we do not
eliminate duplicates.

Products and joins are done on each
pair of tuples, so duplicates in bags
have no effect on how we operate.

33

Example: Bag Selection

R(A, B)
1 2
5 6
1 2

σA+B < 5 (R) = A B

1 2
1 2

SELECT * FROM R WHERE A+B < 5;

34

Example: Bag Projection

R(A, B)
1 2
5 6
1 2

πA (R) = A

1
5
1

SELECT A FROM R;

35

Example: Bag Product

R(A, B) S(B, C)
1 2 3 4
5 6 7 8
1 2

R Χ S = A R.B S.B C

1 2 3 4
1 2 7 8
5 6 3 4
5 6 7 8
1 2 3 4
1 2 7 8

36

Example: Bag Theta-Join

R(A, B) S(B, C)
1 2 3 4
5 6 7 8
1 2

R ⋈ R.B<S.B S = A R.B S.B C

1 2 3 4
1 2 7 8
5 6 7 8
1 2 3 4
1 2 7 8

37

Bag Union

An element appears in the union of two
bags the sum of the number of times it
appears in each bag.

Example: {1,2,1} ∪ {1,1,2,3,1} =

{1,1,1,1,1,2,2,3}

SELECT … UNION ALL SELECT …;

38

Bag Intersection

An element appears in the intersection
of two bags the minimum of the
number of times it appears in either.

Example: {1,2,1,1} ∩ {1,2,1,3} =

{1,1,2}.

SELECT … INTERSECT ALL SELECT …;

(Oracle doesn’t support !)

39

Bag Difference

An element appears in the difference
A – B of bags as many times as it
appears in A, minus the number of
times it appears in B.

 But never less than 0 times.

Example: {1,2,1,1} – {1,2,3} = {1,1}.

SELECT … EXCEPT ALL SELECT …;

ORACLE doesn’t support !)

40

Beware: Bag Laws != Set Laws

Some, but not all algebraic laws that
hold for sets also hold for bags.

Example: the commutative law for
union (R ∪S = S ∪R) does hold for

bags.

 Since addition is commutative, adding the
number of times x appears in R and S
doesn’t depend on the order of R and S.

41

Example: A Law That Fails

Set union is idempotent, meaning that
S ∪S = S.

However, for bags, if x appears n times
in S, then it appears 2n times in
S ∪S.

Thus S ∪S != S in general.

 e.g., {1} ∪ {1} = {1,1} != {1}.

