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Abstract

Query optimizers often limit the search space for join

orderings, for example by excluding Cartesian products in
subplans or by restricting plan trees to left-deep vines. Such
exclusions are widely assumed to reduce optimization effort
while minimally affect ing plan quality. However, we show
that searching the complete space of plans is more affordable
than has been previously recognized, and that the common
exclusions may be of little benefit.

We start by presenting a Cartesian product optimizer that
requires at most a few seconds of workstation time to search
the space of bushy plans for products of up to 15 relations.
Building on this result, we present a join-order optimizer
that achieves a similar level of performance, and retains the
ability to include Cartesian products in subplans wherever
appropriate. The main contribution of the paper is in fully
separating join-order enumeration from predicate analysis,
and in showing that the former problem in particular can
be solved swiftly by novel implementation techniques. A
secondary contribution is to initiate a systematic approach
to the benchmarking of join-order optimization, which we
apply to the evaluation of our method.

1 Introduction

Because join-order optimization is NP-complete [IK84],

practical solutions to the problem typically involve

engineering trade-offs. This paper presents a new

perspective on the engineering trade-offs that arise when

join orders are optimized by exhaustive search.

One way that optimizers cope with the intractability

of join optimization is to exclude some classes of plans

from consideration. Plans with Cartesian products

are frequently excluded on the grounds that they are

unlikely to be optimal, and so it is not worth expending

effort in analyzing such plans. Many optimizers

also restrict their attention to the space of left-deep
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plans [IK91], on the grounds that (a) the space of bushy

plans is vastly larger, and hence much more expensive to

search; and (b) there are nonetheless plenty of left-deep

plans to choose from, and so the best among them will

likely suffice. We explore a different tack: how to make

optimization that considers all join orders (including

Cartesian products) run fast.

We approach the bushy-join optimization problem

obliquely, first showing that cost-based optimization of

multiway Cartesian products (i.e., expressions of the

form A x B x C x D) is not especially difficult-even

when bushy product trees are considered. Although

Cartesian product optimization via exhaustive enumer-

ation has exponential complexity, it lends itself to very

low-overhead implementation. Our timings for opti-

mization of multiway Cartesian products are several or-

ders of magnitude lower than we have seen reported for

join-optimization problems of comparable size.

That result is interesting not because Cartesian

product optimization is useful, but because it has much

in common with join-order optimization. We show that

our Cartesian product optimizer can be extended to

accommodate join predicates (and hence to optimize

multiway joins) without large loss of performance. This

approach to join optimization carries the side benefit

that, since our optimizer is at heart a Cartesian product

optimizer, plans with Cartesian products will be chosen

should they be optimal.

In benchmarking our join-optimization method, we

attempt to isolate the characteristics of the input

that influence performance. Our preliminary analysis

indicates that with the number of base relations held

fixed, the primary determinants of optimization time are

the cost model and join-graph topology, while the base-

relation cardinalities have a smaller but still important

influence.

The work described here assumes that predicates

are uncorrelated, and the cost models we consider are
relatively simple. (Such simplifications are not unusual

in the research literature [CM95, GLPK94].)

The paper proceeds as follows. Section 2 discusses re-

lated work. Section 3 presents an algorithm for Carte-
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sian product optimization and analyzes its complexity.

Section 4 shows how that algorithm can be efficiently

implemented. Section 5 revises the algorithm to incor-

porate join predicates. Section 6 reports on performance

measurements. We conclude in Section 7.

2 Related Work

Selinger et al. [SAC+ 79] applied dynamic programming

to join-order optimization in the System R optimizer.

Their optimizer focused on left-deep plans and excluded

(or deferred) Cartesian products, but searched exhaus-

tively subject to those restrictions,

Ono and Lehman [OL90] point out that the opti-

mal plan for a multiway join may contain Cartesian

products, and note that it is desirable for an opti-

mizer to permit flexibility in optimization trade-offs.

Their Starburst optimizer will search left-deep or bushy

plan spaces, as requested, and also leaves considera-

tion of Cartesian products as an option. They report

the time complexity of their optimizer under various

circumst antes. The complexity is 0(n3 ) (where n is

the number of relation variables) to find optimal bushy

plans for linear (or chain) join graphs without Cartesian

products. In this special case, their optimizer performs

spectacularly—the authors note that they can find op-

timal plans for joins of as many as 100 relations. Com-

plexity for star queries is 0(n2n), again without Carte-

sian products. When Cartesian products are considered,

the number of joins enumerated is O(n2n) for left-deep

search, and 0(3n) for bushy search, regardless of the

join graph. However, the underlying worst-case com-

plexity of the enumerator itself is 0(4n).

Cluet and Moerkotte [CM95] study the feasibility of

optimization with Cartesian products from a theoretical

standpoint. Their work, which considers only left-

deep plan spaces, addresses the question of extending

a join-optimization result from Ibaraki and Kameda

[IK84]. That result showed polynomial complexity for

optimization of queries with acyclic graphs under a

restricted class of cost models. But even with these

restrictions, optimization again becomes NP-complete

when Cartesian products are allowed in subplans. Thus,

some join-optimization problems are fundamentally

harder with Cartesian products than without.

Graefe and McKenna [GM93] describe the extensible,
rule-based Volcano optimizer. Their test runs all~w

bushy plans but not Cartesian products, and yield

timings that, to our knowledge, reflect the state of the

art in rule-based optimization. Like St arburst, Volcano

adapts to the join-graph topology. In the worst case,

Volcano optimizes joins in O(3n) time and 0(3n) space.

Galindo-Legaria, Pellenkoft, and Kersten [GLPK94]

propose an unconventional stochastic approach to join-

order optimization. Whereas previous stochastic tech-

niques (e.g., simulated annealing and iterated improve-

ment [Ste96]) used transformations on plan trees to

move from one state of the plan space to a neighbor-

ing state, the method of Galindo-Legaria et al. instead

probes points of the plan space at random, avoiding the

expense of navigating the space by applying transfor-

mations. The technique reportedly outperforms its pre-

decessors, but as presented is applicable only to queries

with acyclic graphs.

Steinbrunn [Ste96] surveys a variety of heuristic and

stochastic techniques, and includes extensive empirical

measurements. The stochastic searches appear to

converge on plans of high quality, but the time it

takes them to do so is often substantial. The evidence

suggests that exhaustive search is the method of choice

for n into the mid-teens; however, any such judgment is

subject to revision as more becomes known about the

problem.

3 Cartesian Product Optimization

We present below a straightforward dynamic program-

ming algorithm for optimizing Cartesian products. This

algorithm will serve as the foundation for the join-order

optimization method we present subsequently.

Our algorithm differs structurally from dynamic pro-

gramming algorithms used previously in join optimiza-

tion; complexity measures, discussed later, are one man-

ifestation of the difference. We begin by presenting the

conception behind the algorithm; we then give a pseudo-

code version and study its complexity.

3.1 Conception of the Algorithm

Suppose we wish to find the optimal expression for com-

puting the Cartesian product A x B x C x l). (Assume

that only a dyadic x operator is available.) Before pro-

ceeding, we need a cost model and some information

about A, B, C, and D (e.g., their cardinalities), Let

the cost of evaluating an expression be defined recur-

sively as

Cost(ft) = o (1)

cost(E x E’) = cost(E) + cost(E’) +

K([E x E’], [E], [E’]), (2)

where R names a base relation, E and Et are subex-

pressions, ~ is a cost function that depends on the cost
model, and [E] is the value (i.e., the relation) denoted

by the expression E. Note that while the assumption

cost(R) = O is unrealistic for some cost models, it is

convenient and causes no harm, since the costs assigned

to base relations do not affect the outcome of optimiza-

tion. Note also that to compute ~([13 x E’], [,?3], [E’])

it is not really necessary to evaluate E x E’, E, and

E’; the denotation [E] can just as well be an abstract

interpretation of E. For example, for some cost models

it suffices to obtain an estimate of the cardinality of the
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Relation Set

{A}

{B}

{c}

{D}

{A, B}

{A, C}

{A, D}

{B, C’}

{B, D}

{C, D}

{A, B,C}

{A, B,D}

{A, C, D}

{B, C, D}

{A, B, C, D}

Cardinality

10

20

30

40

200

300

400

600

800

1200

6000

8000

12000

24000

240000

Best LHS

none

none

none

none

{A}

{A}

{A}

{B}

{B}

{c}

{A, B}

{A, B}

{A, C}

{B, C}

{A, D}

cost

o

0

0

0

200

300

400

600

800

1200

6200

8200

12300

24600

241000

Table 1: Dynamic programming table

relation denoted by E. Other cost models require ad-

ditional information, but no sensible model will require

complete knowledge of the relations under considera-

tion.

Now let A, B, C, and D have cardinalities 10, 20, 30,

and 40, respectively, and consider the naive cost model

given by ~. (ROWt,Rlh,, Rrh$) = lROVtl. (That is, the

cost of computing a given Cartesian product is equal

to the cardinality of the result.) Table 1 illustrates

the application of dynamic programming to the given

optimization problem. The table is constructed in such

a way that we can extract an optimal expression for

the four-way product as follows. First we consult the

final row of the table, which says that the Best LHS

(best left-hand side) for {A, B, C, D} is {A, D}, i.e.,

that the product of {A, B, C, D} is best computed as

E x E’, where E computes the product of {A, D}

and E’ computes the product of {B, C}. We then

find optimal subexpressions for the product of {A, D}

and the product of {B, C} by recursively consulting

the table in the same manner, and finally obtain the

expression (A x D) x (B x C).

To construct such a table one proceeds row by row,

starting with sets of fewer relations and moving on to

larger sets. Consider for example filling in the final row.

The Cardinality for {A, B, C, D} can be obtained by ar-

bitrarily splitting {A, B, C, D} into two nonempty sub-

sets, say {A} and {B, C, D}, and multiplying together

the Cardinality fields associated with those subsets. To

find the Best LHS of {A, 1?, C, D}, it is necessary to
consider all possible splits of $ = {A, B, C, D } into two

nonempty subsets Slh$ and s~h$, and to choose an s~h~

that minimizes Cost (Sl~s) + Cost (Sr~,) + ii(S, Slh$, s~h$).

The minimum for this sum becomes the Cost field, in

accordance with Equation (2).

Here ii is a variant form of the cost function ~ ap-

propriate to the dynamic programming context. The

arguments to ~ were relations or abstractions of re-

lations, whereas each argument to R is a set of rela-

tions that designates a table entry. For example, given

our cost function KO(ROut, Rihs, ~~~s) = [R.titl, the vari-
ant form becomes E. (S, S6~s,S,~s) = Cardinality(S),

where Cardinality(S) refers to the Cardinality field cor-

responding to Relation Set S.

3.2 Algorithm blitzsplit

We now give our algorithm. The pseudo-code at the

top of Figure 1 consists of two declarations. The

first introduces a type rel.data that describes the

information we need to know about the relations whose

product is to be optimized. (With our simple cost

model, we just need to know their cardinalities.) This

declaration assumes that the type rel-name has been

defined previously. The second declaration allocates a

global variable table, which holds an array shaped like

Table 1, with the Relation Set column acting as the

array’s index.

The pseudo-code following the declarations consists

of procedures for filling in the array table. The top-

level procedure blit.zsplit takes as arguments a set l?

of relation names and an array rel.data containing

information about the relations named in 7?. The

objective of blit.zsplit is to find the least costly way of

computing the Cartesian product of those relations.

The body of procedure blitzsplit consists of two for-

loops. The first for-loop fills in the table entries for

the singleton subsets of 7?. The second for-loop (which

has yet another for-loop nested inside of it) successively

fills in the table entries for subsets of 7? consisting of 2

relation names, then for subsets consisting of 3 relation

names, and so on. At the completion of these two loops,

tabte has been entirely filled in.

The real work in filling in the table is done by the

subprocedures init-singleton, compute-properties, and

find-best-split. Procedure jind.best.split deserves a word

of explanation. Its role is to fill in the best-lhs and

cost fields of table entries for non-singleton sets. To

do so, it examines all splits of a given set S into

pairs of nonempty subsets, and selects as the best

split the pair that yields the lowest tot al cost. The

left-hand component of that pair is recorded in the

best-lhs field for S; the corresponding cost is placed

in the cost field for S when the loop completes.

To reduce the effort needed to compute costs, we

permit the cost function ~ to be broken apart into a

split-independent component H’ and a split-dependent

component ~“, so that ~(RoUt, Rl~s, RA.) = ~’(R~~t) +

//’ (Rout, Rlh~, Rrh~ ). Performance is best when the

decomposition is such that # is both cheap to compute

and small in magnitude (we assume it is nonnegative).



type rel-data = array indexed by rel-name of

record

card : real

end

var table : array indexed by set[rel-name] of

record

card : real

best-lhs : set [rel.name]

cost : real

end

proc blitzspld (7? : set [rel-name], rel-data : rel.data)

for each R G 1? do

imt-singleton (R, rel.data)

end for

for m := 2 to 17ZI do

for each S ~ ‘k! such that ISI = m do

compute-properttes (S)

find-best-split (S)

end for

end for

end proc

proc tnit-stngleton(R : rel-name, rel-data : rel-data)

table[{R}]. card := reLdata[R]. card

table [{ R}]. best-lhs := @

table [{ R}]. cost := 0.0

end proc

proc compute.properties (S : set [rel-name])

choose Zl such that @~ 2-/ ~ S

V:= S–Z4

table[S]. card := table[Z4]. card * table [V]. card

end proc

proc find-best-split(S : set[rel-name])

best-cost-so-far := w

for each SIk, such that 0 ~ S~h3 ~ S do

C$h,:= S – Slh,
oprnd-cost := table[slh~].cost + tUble[&.h~]. COSt

dpnd-cost := oprnd-cost + E“(S, Slhs, s~h~)

if dpnd-cost < best-cost-so-far then
best-cost-so-far := dpnd.cost

table [S]. best-lhs := Slk,

end if

end for

table [S]. cost := best_cost_so-far + R’ (S)

end proc

Figure 1: Algorithm blitzsplit for Cartesian product

optimization

For example, the cost function KCI(ROUL, Rlh,, R.h.) =

IROU,I can be decomposed into K~(ROut) = \ROutl and

K; (R Out, Rlhs , RrhS )=0.

3.3 Complexity

Here we consider first the space complexity, and then

the time complexity of our algorithm. Let n be the

number of relation names in ‘R. Then ‘R has 2n subsets,

and there is an entry in table for each of these (except

the empty set). Algorithm blit.zsplit uses no other

data structure of any significant size. Hence its space

complexity is O (2”).

For the time complexity we shall give more than

just a big-O analysis, since we are interested in the

detailed performance characteristics of the algorithm.

We assume that sets of relation names are of bounded

size, and hence that primitives on them are constant-

time operations; we also assume that per-iteration loop

overheads are constant. One way to satisfy these

assumptions is shown in Section 4 below.

Observe first that procedure blitzsplit makes n calls

to invLsingleton, and approximately 2n calls to each of

compute-properties and find-best-split (one call for each

subset of R). The net contribution of imt-singleton

is plainly insignificant, while the net contribution

of the straightline code in compute-properties and

jind.best-split is 2nT~Ub~,, for some constant T,Ub~,,.

There is, in addition, a loop in find-best-split. Con-

sider the execution of find_ best-split for some particu-

lar argument S, and let m = IS I. Then the loop in

find-best-split iterates approximately 2m times. Now

consider all executions of find-best-split. The set R

has (~) subsets S with ISI = m, for each m from 2
to n, hence the number of executions of jind-best_split

with [Sl = m is also (~). In aggregate, therefore,

the number of iterations of the loop across all exe-

cutions of find-best. split is ~~=z (~) 2m; approximate

this sum by loop-count = ~~=o (~) 2m. Next recall

the binomial expansion (a + b)” = ~~=o (~)a~bn–~.

Taking a = 2 and b = 1, we obtain (2 + 1)” =

ZR=O (~)zm ~ In-m = 2X=0 (~) Zm = ~oowoun~
That is, loop_ count = (2 + l)n = 3’. Thus, in aggre-

gate, the time contributed by the loop in find_ best_ split

is 3nT100P for some constant TIOOP.

To assess the contribution of the conditionally ex-

ecuted code within the loop body, we use a statis-

tical argument. Consider a particular execution of

find-best.split. On each iteration through the loop, the

if condition is satisfied only when the split under con-

sideration improves upon the best so far. Assume the

splits are examined in random order. Then the prob-

ability that the split considered on the ith iteration is

better than the first i – 1 is I/i, since any of the first i

splits is equally likely to be the best among the i. Hence

the expected number of executions of the conditionally
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executed code is given approximately by the harmonic

series Hz- = ~~~1 I/i, where again m = [$[. In aggre-

gate, the number of executions of this code across all

calls to Jind.best-split is conohount = ~~=2 (~) Hzm.

Using the fact H~ % ink + ~ where ~ = 0.57721 . . .

[Knu73], we obtain cond-count N ~~=o (~)m in 2 +

2;=0 (;)7 = (ln 2/2)n2n + 72n. L’t us di’r’gard the
72n term and view the net contribution of the condition-

ally executed code as (ln 2/2)n2nTcOm~ for some constant

TCOnd.

Then for some T~ooP,T..nd, and T,Ub8.t, the execution

time of the algorithm is closely approximated by

3nT100P + (h 2/2)n2nTco~d + 2nTsub.et. (3)

4 Lightweight Implementation

Algorithm blitzspiit’s O(3n) time complexity is some-

what lower than Starburst’s O(4n), and its O(2n) space

complexity is below Volcano’s O (3”). However, when

n is of modest size, constant factors can be just as im-

portant as complexity. It is therefore significant that,

because of its simple structure, our algorithm can be

implemented with very low overhead, resulting in small

values for the time constants TIO~P, Tco~d, and Tstibs.t.

Below we discuss first the representation of the

algorithm’s data, then the realization of critical details

of the algorithm’s procedures, and finally, performance

measurements on an implementation that uses the

techniques we describe.

4.1 Representation of Data Types

Let us refer to the relation names in 73 as RO, RI, . . . ,

Rn_l. Then an implementation of the algorithm may

as well identify these names by their integer indexes;

Ri will be just i. Similarly, sets of relation names may

be represented as bit-vectors in the obvious way, and

(provided n s 32) maybe held in 32-bit integers. This

representation is not only compact, but also provides

for extremely rapid execution of the set manipulations

we require in the algorithm.1

One consequence of the compactness of the integer

representation for sets is that each row of our dynamic

programming table need occupy only 16 bytes: 8 bytes

for the real card,2 4 bytes for the real cost, and 4 bytes

for the bit-vector best-lhs. The 0(2n) space complexity

estimate given previously may now be refined to 16. 2n

bytes. Most modern workstations can accommodate

this space requirement for n up to at least 20.

1Note that a given small integer can have two completely

different interpretations as a relation name on the one hand,
and as a set of relation names on the other hand. The integer

5 representing the relation name R5 should not be confused with

the integer 5 representing the set {R., R2}.

2We sometimes require a wide dynamic range, as in the double-

precision format of the IEEE floating-point standard.

4.2 Realization of Procedures

Several details of the pseudo-code of Figure 1 require

special attention to achieve high efficiency in imple-

ment ation. For example, the second loop in procedure

blit.zsplit need not be realized exactly as specified. The

pseudo-code dictates that 2-relation sets be dealt with

before 3-relation sets, and so forth; but maintaining this

order is unimportant, so long as we stipulate that before

constructing the table entry for a set S, we must have

previously constructed the table entries for all subsets

of S. The simplest way to satisfy this requirement is

to process the sets in the order of their integer rep-

resentations: first {R., RI} (represented by S = 3),

then {RO, R2} (S =’5), {RI_, fi2} (S = 6), {RO, R1, RZ}

(S = 7), and so on. Thus, the loop in question might

be rewritten as follows:

for k := 2 to [Rl do

for S:=2k-1+lto2k–ldo

compute-properties(S)

jind-best-split(S)

end for

end for

The variable S will successively take on all values up to
21RI except those that are powers of two—those values

represent singleton sets and must be skipped.

Next observe that efficient realization of the for-

each-such-that loop in procedure jind-best.split is

critical to overall performance of the algorithm, since

it is this loop that iterates 3n times in aggregate. The

pseudo-code for this loop calls for Slhs to be bound

successively to each nonempty, proper subset of S. Then

the realization of this loop, given an integer S, must step

through all the integers whose l-bits are a nonempty,

proper subset of the l-bits in S. Imagine a dilation

operator C5S(i) on [S1-bit binary representations that

inserts O-bits into its argument according the bit-pattern

prescribed by S. For example, if a, b, and c are bits,

then 611001( abc) = abOOc. Then inside the looP, S6~s

must take on the values 6s(1), 6s(2), . . . . 65(2151 – 2).

Use of 6 in an implementation would be cumbersome;

it is preferable to define an operator succs such that

succ(d(i)) = d(i + 1), which makes it possible to step

from one Sl~, value to the next without evaluating

6. To that end, consider the contraction operator 7

that is the left-inverse of 3; e.g., ~llool (abcde) = abe.

Assuming two’s-complement

(with subscript S implicit)

y(c$(i) – d(j))

f5(’y(w))

($(-1)

arithmetic, observe that

—— i—j (4)

= s&w (5)

= s, (6)

where & denotes the bit-wise and operator. (Equa-

tion (4) is easiest to see by first considering examples
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Figure 2: Cartesian product optimization

10 15

times

where j has just one l-bit; e.g., -yllool (dllool(lOO) –

611001(001)) = ‘yIlool (10000 – 00001) = 711001(01111) =
011.) Now, using (4)-(6) we have d(i+l) = c$(i-(-1)) =

d(-f(d(i) -6(–1))) = s&(d(i) –6(–1)) = s&(d(i) –s).

In other words, we can obtain successive values of slh,

through the simple computation succ(Slh. ) = S& (Slhs –

S), without ever evaluating d or -y.3

A final critical detail is that it is profitable to replace

the if statement in find-best_ split with a series of

nested if statements. For example, computation of

ii” can be predicated on the condition oprnd-cost <

best-cost-so-far, since failure of this condition also

implies dpnd-cost # best_ cost_ so.far. The number of

executions of k“ is then reduced from 3n to some value

intermediate between (ln 2/2)n2n and 3n. (Note that

ii’, being outside the loop, has a fixed execution count

of just 2n.)

4.3 Performance

Figure 2 shows typical performance of a Cartesian

product optimizer based on the ideas above. The cost

model is the naive model of Section 3.1; timings are

reported for both a Sun SPARCstation 2 and a Hewlett-

Packard Series 9000/755.4 Formula (3) is fitted to the

measured timings and tracks them closely until n x 15

(at which point cache effectiveness declines); we infer

TIOOP is about 180 nsec. on the Sun, and about 50 nsec.

on the HP. Comparison of Figure 2 against exhaustive

30ne can qual]y easily visit the Slh$ in alternative orders—

some of which may better conform to the randomness assumption

of Section 3.3—by taking SUCC(J(Z)) = J(z + k) for arbitrary odd

k. Iteration may begin with any valid Slh., and proceed until that

value is reached again (but O and S must be skipped over).

4Sun timings were taken on a lightly loaded Sun 4/75 running

under SunOS 4.1 .3-U1 Version B at circa 40 MHz with a 64KB

unified instruction + data cache; Hewlett-Packard timings were

taken on a lightly loaded HP 9000/755 running under HP-UX

09.03 at 97 MHz with 256KB each of instruction and data cache.

Each timing point trepresents an average over !-t executions of the

algorithm, where k is such that !-t> 30 seconds.

join-optimization timings show the Cartesian product

timings to be lower apparently by several orders of

magnitude. The immensity of this disparity motivates

the approach to join-order optimization explored in the

next section.

5 Join-order Optimization

We now build on the preceding results by observing that

join-order optimization is essentially the same as Carte-

sian product optimization, except that intermediate-

result cardinalities are computed differently. Here we

address the computation of intermediate-result cardi-

nalities in the presence of simple, uncorrelated join pred-

icates. We present a technique that factors in the effects

of predicate selectivities with minimal changes to our al-

gorithm. Similar techniques can accommodate implied

or redundant predicates and join hypergraphs, but we

shall not discuss those topics here.

5.1 Join Graphs and Induced Subgraphs

Consider the join graph in Figure 3. Its nodes are

labeled with the relation names_A, ~ C,~nd D;

WA will identify its edges as AB, AC, BC, and

AD, and these names will also serve to identify the

corresponding predicates. Following graph-theoretic

convention, we may characterize the graph as an ordered

pair G = (R, T), where 7? is the node set {A, B, C, D},

and the e~e ~ P is the set of predicate names. .
{AB, AC, BC, AD}.

Now suppose we are interested in the cardinality that

results from a join over the subset S = {A, B, C}. Let Q

be the set of edges wholly contained in S (i.e., those with
———

both endpoints in S) —namely {AB, AC, BC}. Then

the subgraph (S, Q) of G is called the subgraph of

G induced by S. (See Figure 3.) In the course of a

join of the relations named in S, the predicates applied

will be exactly those in the subgraph (S, Q): no more,

because predicates not in Q cannot be evaluated with

only the relations in S; and no fewer, because there is

no benefit in deferring the application of a predicate

once its referent relations have become available.5 It

follows that the join cardinality of S can be computed by

multiplying together the cardinalities and selectivities

of the relations and predicates in the induced subgraph

(’s, G?).

5.2 Cardinality Recurrence

The observations of the foregoing paragraph give us the

means to compute the join cardinality of S. However,

if we wish to take advantage of dynamic programming

5This assertion rests on the assumption that predicate evalua-

tion is cheap; most other optimizers make the same assumption.

However, Hellerstein and Stonebraker [HS93] describe a cost-

based predicate-placement technique that achieves huge gains

when expensive predicates are deferred.
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Figure3: Subsets ofrelations inajoin graph

to perform this computation more easily, we need a way

to compute the join cardinality of S in terms of the

join cardinalities of subsets of S. What we desire is a

recurrence relation for join cardinality.

Suppose we split S into two disjoint subsets U and

V, as illustrated in Figure 3. Then what was true for S

must also be true for U and V: The predicates applied

in the course of a join over U will be just those in the

subgraph induced by U, and similarly for V. Now let

U* denote the best expression for joining U, and V* the

best for V, and consider a join of U* and V*. Since

all relations in S participate in this join, all predicates

wholly contained in S should also participate. But some

of those predicates may also be wholly contained in U

and therefore already participate in U*, and similarly

for V. It is the predicates that are left over—those that

span U and V—that must qualify the join of U* and

V*. ~our ex~mple, the predicates spanning U and V

are AB and AC, so the correct expression for joining

U* and V* is U* tXB~TC V*,

Hence, to compute the join cardinality of S, we may

multiply together the join cardinalities of U and V, and

the selectivities of all predicates spanning U and V:

card(S) = card(U) . card(V) . IIsPan(U, V) (7)

II$Pan(U, V) ~f ~{selec(p) I p spans 24, V}, (8)

where UnV=Oand UUV =S. If Uand Vare

both nonempty, then the values cani(U) and card(V)

will be readily available in our dynamic programming

table when it comes time to compute card(S). Con-

sequently, recurrence (7) gives us the means to com-

pute join cardinalities easily, provided we can compute

ILpan(u, v).

5.3 Products of Selectivities

In the interest of efficiently computing II,Pan(U, V), we

introduce the notion of a fan. We will then be able

to state a second recurrence suited to the dynamic

programming context. Use of the two recurrences

together will permit quick computation of intermediate-

result cardinalities in the presence of predicates.

The fan concept requires that we have a total order

on relation names. This order has nothing to do with

cardinality or any other property of the relations—it is

just an arbitrary ordering on the names. In our example

above, let us say that the order is A < B < C < D, so

that (for example) min{B, C’, D} = B.

Definition Let S be a nonempty set of relation names;

let U = {rein S} and let V = S – U. Then the fan of S

is the set of predicates that span U and V.

For example, in Figure 3, U = {rein S} = {A} and

V = S - U = {B, C}, so the fan of S is {~,fi}.

The name fan derives from the fact that since U is

a singleton, the edges emanating from U toward the

relation names in V resemble the spokes of a fan.

Given a set S, we define IIfan(S) to be the product of

the selectivities of the predicates in the fan of S; i.e.,

~f.n(s) ~f H,P.n({min s}, s – {reins}). (9)

We now construct a recurrence for IIf.n(S). Suppose as

before that S = {A, B, C} has been split into U = {A}

and V = {B, C}. Figure 3 illustrates how V may be

further subdivided into subsets W and Z. Consider the

sets U U W and U U Z. Since A is least in S, A must also

be least in each of the sets U U ~ and U U 2. It follows

that the predicates spanning U and W constitute the

fan of U U W, and those spanning U and 2 constitute

the fan of UU2. Moreover, these fans are disjoint (since

W and Z are disjoint) and their union is the fan of S

(since W U Z = V and U U V = S). From these facts we

deduce the recurrence

Hf..(s) = rqan(u u w) . rqan(u u z), (lo)

where U = {rein S}, Wn2 = 0, and WU2 = S–U. In

the figure, both W and 2 are singletons, but in general

they need not be; (10) holds for any split of V into

disjoint W and Z. One may visualize the more general

case by interpreting the solid lines in Figure 3 not

as individual predicates, but as bundles of predicates

connecting U to W and U to 2.

Recurrence (10) gives an efficient way to compute

IIf.n (S). We can now efficiently compute card(S) as

well: Combining (7) and (9), we have

card(~) = card(U) . card(V) . IIfa~ (S), (11)

provided U = {rein S} and V = S -24.

5.4 Implementation

To put the ideas of this

must first add a column

section into practice, we

for IIf.n to our dynamic



programming table. Then procedure blitzsplit must be

revised to initialize the ~f~~ entries for all doubleton

sets: llfa~({l?, R’}) must be set to the selectivity

of the predicate connecting R and R’ (or to 1 if

there is no such predicate). Finally, init. singleton

and compute-properties must be revised; in the latter,

IIf.n(S) is computed using (10), and then card($) is

computed using (11). (Note that U = {rein S} can be

computed as JS (1) = $ & –S.) No changes are required

to jind.best-split. Our code for Algorithm blitzsplit,

including the revisions sketched here, amounts to about

150 lines of C.

Support for uncorrelated predicates has only a modest

effect on the time and space requirements of our

algorithm. The dynamic programming table needs to

grow by just one column, and the bulk of the additional

computation occurs in compute.properties, which is

executed just 2’ times. The original compute_properties

contained one floating multiplication operation; with

the revisions, it contains three (one to compute IIfan and

two to compute card), and these are all that is needed

to incorporate predicate selectivities into the cardinality

computations, regardless of the join graph. As will be

seen in the next section, these selectivity computations

do not significantly inflate the performance figures

reported in Section 4.

More sophisticated cardinality-estimation schemes

will increase both time and space requirements. How-

ever, the technique of using recurrences to achieve

economies in property computations remains applica-

ble in situations more general than the one illustrated

here; it should continue to be possible to achieve these

computations in time O(2n). Under no circumstances

should changes in find-best-split be necessary to carry

out cardinality estimation or other property computa-

tions.

6 Performance

Assessment of a join optimizer’s performance is a

nontrivial problem—especially comparative assessment

against other methods. There is no standard set

of benchmarks for join-order optimization, and the

performance results reported in different papers are

often difficult to compare with one another.

The root of the difficulty is that the space of possible
test cases has a huge number of dimensions. In addition

to the n base-relation cardinalities, each of which may

be varied independently, there are up to n(n – 1)/2

predicate selectivities, depending on the join-graph

topology (which may be considered a variable in its own

right); the cost model is yet another variable. If n is

fixed at, say, 15, then the space of test cases has well

over 100 dimensions. In choosing sample points from

such a space, one hardly knows where to begin. Some

assessments deal with the problem by reporting average

performance over a mix of randomly selected test cases,

in some instances reporting separate averages for each of

several distinct join-graph topologies and cost models.

But the use of random mixes introduces noise into

the results, and obscures the patterns of variation in

performance in different regions of the input space. In

particular, some random mixes will fail to probe the

more treacherous regions of the space.

Here we seek to determine the ways in which various

characteristics of the input—not just the join-graph

topology and cost model—influence optimization time

under our algorithm. To that end, we generate all our

test cases deterministically. Our performance analysis

is a coarse first attempt and is subject to future

refinement, but even this first attempt gives a fairly

clear picture of the fundamental performance traits

of our algorithm. We believe it also demonstrates

the feasibility of systematically sampling a many-

dimensionai performance surface, provided the surface

exhibits some regularity.

6.1 Empirical Measurements

Prior to running the measurements reported below,

we conducted exploratory probing of the input space

with the aim of reducing the number of independent

dimensions needed to characterize performance. These

initial probes led to the following observations, which

provided the basis for our choice of test parameters.

(For a full account of the test parameters, see the

Appendix.)

The geometric mean of the base-relation cardinali-

ties is important in determining optimization time;

the individual cardinalities are far less so. This ob-

servation, which is supported by the graphs below,

justifies collapsing the n degrees of freedom repre-

sented by the base-relation cardinalities to two de-

grees of freedom—the geometric mean and the vari-

ability of the base-relation cardinalities.

Large changes in predicate selectivities are tanta-

mount to alteration of the join-graph topology, but

moderate variation of the selectivities has only a

mild effect on optimization time. For a fixed topol-

ogy, the worst-case optimization time appears to

arise when selectivities are allocated so as to min-
imize variability in the intermediate-result cardinal-

ities. Our tests use four diverse topologies: chain,

cycle augmented with three cross-edges (” cycle+3° ),

star, and clique. Preferring to err on the side of

conservatism, we assign what we believe to be near-

worst-case selectivities for each topology.

Performance of the algorithm is very sensitive to the

cost model; especially important is the question of

whether ~ has a significant ~“ component. Our tests

use three cost models with different characteristics:
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the naive model introduced in Section 3.1 (Ko), a

sort-merge cost model (H~~), and a disk-nested-

loops model (f$dnl).

The observations above hold regardless of the choice

of n; the graphs shown here for n = 15 are represen-

tative of the appearance of the corresponding graphs

across a wide range of n-values.

In light of these observations, one can obtain an approx-

imate characterization of our algorit hm’s performance

by examining its behavior on a small subspace of the

space of all possible inputs.

The array of graphs in Figure 4 presents HP 9000/755

timings taken over a 4-dimensional space with n = 15.

The rows and columns of the array represent two axes of

the space, a cost-model axis and a join-graph-topology

axis; and within each cell inside the array, two more

axes are represented—a long axis for mean base-relation

cardinality, and a short axis for the variability among

the base-relation cardinalities. Moving left-to-right

along the long axis corresponds to increasing mean base-

relation cardinality, and moving back-to-front along the

short axis corresponds to increasing variability among

the base-relation cardinalities. (The Appendix gives

details.) Figure 5 shows two of the array cells in

enlarged form, with labeled axes to give a sense of scale.

Note that the vertical axis represents optimization time

(and not plan cost).

6.2 General Performance Traits

Figures 4 and 5 show that under the naive cost model,

15-way joins are optimized in times comparable to

those we obtained for 15-way Cartesian products in

Section 4.3. On the HP, the latter were typically

optimized in about 0.9 seconds; here it is harder to say

what is “typical,” but optimization time under the naive

model rarely falls out side the range 0.6–1. 1 seconds.

Incorporating predicates appears to make the execution

clique

of performance sensitivities (n = 15)

time in sees.
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Figure 5: Optimization times (close-ups of Figure 4)

time of Algorithm blitzsplit more variable, but not

necessarily greater.

The chaise-longue-like shapes in the figures reflect two

basic performance properties of our algorithm. First,

performance degrades (sometimes dramatically) as the

mean cardinality of the base relations approaches 1; but

mean cardinality does not have to be large to escape this

effect.6 Second, performance is substantially affected

by the cost model, but the performance differences

‘The mean-cardinality axis in all the figures is logarithmic, and

the sample points are taken at mean cardinalities 1, 4.64, 21.5,

100, 464, etc. Performance at mean cardinality 4.64 is seen to be

comparable to that for much larger cardinalities.
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diminish as mean cardinality increases (and also, in the

case of cliques, as variability increases).

The explanation for the observed behavior is as

follows. The nested if structure introduced in Sec-

tion 4.2 makes execution of i?” conditional, and re-

sults in ii” having an execution count intermediate be-

tween (ln 2/2)n2n and 3n. Whether the count is closer

to (ln 2/2)n2’ or 3n depends on whether the costs of

alternative subplans are spaced far apart or close to-

gether. When these costs are spaced far apart, as tends

to be the case when cardinalities are large, the loop in

find. best.split can often dismiss an uncompetitive split

with a cursory glance at the operand costs alone, and so

avoid computing ii” most of the time—giving a count

approaching (ln 2/2)n2n. There is less opportunity for

such savings when the costs of alternative splits are

closely spaced, as tends to occur with very low cardi-

nalities; in such situations, ii” may be computed fully

3“ times. Thus, the performance degradation caused by

computation-intensive cost models is disproportionately

large at low cardinalities. (We see some degradation at

low cardinalities even for tto, because even our KO imple-

mentation uses nested if’s: Computation of oprnd_cost

is conditional on both Cost(Sl~S) and Cost(S,~S) being

below betst.cost_so_far.)

Note that if the search were restricted to left-deep

plans, the execution count for ii” would lie between

about (ln n)2n and (n/2)2’ (for brevity we omit the

derivation); the execution count for ii’ would remain

fixed at about 2n. In the worst case, then, bushy search

does far more work; but ordinarily, the ii” execution

count is larger for bushy than for left-deep search by

only a factor of (ln 2/2)n/ in n (about 2 when n = 15).

6.3 Effect of Join-graph Topology

From our algorithm’s point of view, all join graphs are

actually cliques, and are distinguished only by the selec-

tivities associated with the predicates in these cliques.

The join-graph topology is reflected in the variability

in these selectivities, which affects the frequency with

which the cost function E“ must be either partially or

fully evaluated in the loop in find-best-split. More highly

connected graphs tend to have an equalizing effect on

the costs of alternative splits, especially when there is

not much variability among the base-relation cardinali-
ties. The clique is the extreme case; its total connectiv-

ity accounts for its elevated timings. Star queries also

suffer relative to chain queries because they tend to yield

a larger proportion of plans with competitive costs.

However, optimization time drops off regardless of

join-graph topology when the mean base-relation car-

dinality is sufficiently large. The good performance

at very large cardinalities can be partly explained in

terms of variability in the intermediate-result cardinali-

ties, but is also partly an artifact of implementation. We

represent costs as single-precision floating-point values,

ome m sees.
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Figure 6: Optimization times with plan-cost thresholds

and summarily reject plans whose cost overflows.7 Our

code for find_ best_split computes R’(S) before the loop,

and on overflow avoids the loop entirely. When the base

relations have large cardinalities, ii’(S) tends to overflow

for many S, and effort expended in find_ best_ split drops

off.*

6.4 Pruning by Plan-Cost Thresholds

The beneficial consequences of overflow suggest an im-

provement to our implementation, namely to simulate

the effect of overflow at a plan-cost threshold far below

actual overflow. Best-split searches can then be avoided

for a larger proportion of subsets S. In those cases where

no plan exists with cost below the threshold, optimiza-

tion fails, and it is then necessary to reoptimize with

a higher threshold. The net effect is that queries for

which a low-cost plan exists are optimized more quickly,

at the expense of queries for which the best plan has a

high cost. Queries of the latter variety may require two

or more passes through the optimizer before a plan is

found; but since these queries are expected to be long-

running at execution time, the extra investment they

require at optimization time is not onerous.

Compare the graphs of Figure 6, which show opti-

mization times with plan-cost thresholds, against the

71f cost is measured in, say, femtoseconds, then overflow occurs

only in plans that would run for more than 1038 femtoseconds,

or 3.2 x 1015 years. It is therefore unlikely than any useful plans

could be overlooked because of overflow.

81f ,JC’- 0, this effect will not occur. However, in a realistic cost

model there is some cost for each output tuple (giving # ~ O).

Even if small, such a cost suffices to induce the noted effect.
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corresponding graphs of Figure 5. Figure 6(a), with

cost model ~o, a chain join-graph topology, and a plan-

cost threshold of 109, exhibits optimization times that

settle down to a scant 0.1 second; Figure 6(b), with cost

model I-cdl, topology cycle +3, and plan-cost thresholds

of 105 and 1014, also shows optimization times dropping

off as cardinality rises, but then ripples appear where

the plan-cost thresholds are exceeded, forcing multiple

optimization passes at higher cardinalities.g

Plan-cost thresholds are effective for all join-graph

topologies, but the benefits are most pronounced for

chain-like graphs. With such graphs, and with plan-

cost thresholds in place, the loop in find-best-split

may be executed for only a tiny fraction of the 2n

sets of relations passed as arguments to jind.best-split.

As mean cardinality increases, the total number of

executions of i?’ tends to fall below n3 /3, reflecting

the intrinsic polynomial complexity of chain-query

optimization.l”

6.5 Discussion

The foregoing analysis does not provide sufficient in-

formation to predict accurately the performance of our

algorithm on arbitrarily chosen join-order optimization

problems, But it does reveal the importance of base-

relation cardinalities (and to a lesser degree, their vari-

ability) in determining the difficulty of optimization by

our method. The importance of join-graph topology

has been noted by others, and shows itself here as well.

Further study will be needed to give a more complete

description of the ways in which our method is sensitive

to the characteristics of the input.

Our favorable timings are due partly to the use

of relatively simple cost models. More complicated

models will degrade performance as the time devoted

to the computation of k“ increases. The question then

becomes whether the degradation is more severe for

our method than for methods that exhaustively search

a more restricted space; our observations regarding

the execution counts for i?’ suggest that it may not
be. Cost computation may be proportionately more

of a performance limit for our method than for others

simply because we spend so little time on join-order

enumeration.

Related to the issue of complicated cost models is the

issue of multiple join algorithms. Dealing with the latter

may be regarded as a special case of dealing with the

former. For example, if both a sort-merge join and disk-

nested-loops join are available, then the cost of a join

is K(. . .) = min(fc$m(. . . ),~~nl(. . .)). There is no need

9The units of our cost models are left unspecified, but it is

reasonable to suppose that the thresholds 109 for ~o and 105 for

~ dnt represent plan-execution times of many minutes.
lo However, our ~lgorithm,s complexity remains exponential

even under these conditions, since plan-cost pruning has no effect

on the 2nT~U&,~ term in the execution time.

to keep track of which algorithm yields the minimum.

On completion of optimization, a single traversal of

the optimal plan suffices to attach the appropriate

algorithm to each join node.

The issue of physical properties (e.g., “interesting”

sort orders [SAC+ 79]) is trickier. Although we have a

plausible strategy for accommodating physical proper-

ties in special cases, we have yet to develop a strategy

for the general case.

7 Conclusions and Future Work

Two factors largely account for our algorithm’s ability

to search quickly through a large, unconstrained space

of join orders: First, we generate the join orders

themselves extremely rapidly, so that little time is lost

on activities other than costing of plans. Second, we

capitalize on the fact that little costing effort is required

to reject exorbitantly expensive plans. Although our

algorithm performs no explicit join-graph analysis, in a

sense it “discovers” the join-graph topology and prunes

the search space accordingly. It quickly dismisses

Cartesian products that are obviously wasteful, while

retaining optimal ones; to exclude Cartesian products

a priori would be redundant at best, and potentially

harmful. Confining the search to left-deep plans could

also harm plan quality, and would likely offer only

modest optimization-time savings for n < 15.

We will continue to investigate the performance char-

acteristics and adaptability of our algorithm. But al-

ready it is apparent that optimization by our method

is—somewhat perversely—most expensive in situations

where finding a true optimum matters least. That is,

when all plans are close in cost, and any plan would

serve nearly as well as the others, the optimizer requires

more effort to choose among them than when the costs

are widely scattered, In addition, like any optimizer

that performs exhaustive search, ours is limited in the

number of relations it can handle in reasonable space

and time. Stochastic methods offer a way around both

these problems. We are currently experimenting with

a hybrid method inspired by the Chained Local Opti-

mization technique of Martin and Otto [MO]. Our hy-

brid combines dynamic programming with randomized

search, and will be the subject of a future paper.
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Appendix

This appendix gives details on each of the parameters that

were varied in the measurements reported in Section 6. In

all measurements, the number of base relations n was held

fixed at 15; below we refer to these relations as RO-R14, with

RO assuming the lowest caxdinality, and Rla the highest.

Cost model Our cost models are drawn from the study
by Steinbrunn et al. [SMK93]. The naive cost model (cf.

Section 3.1) is defined by KO (R~tit, Rlh,, R,~,) = lR~~t 1. The

sort-merge cost model is defined by ~.~(R~~~, Rih~, Rrh,) =

lR[~,l (1 + loglR/~.1) + lR.k,l (1+ log/R.~,l); note that

the expensive logarithm computation in this model can be

memoized in the dynamic programming table.

We give the disk-nested-loops model a different formu-

lation from Steinbrunn et al.: Here, KM(Rotit, Rfb, R.h,) =
21Routl/~+l Rth,ll Rrhsl/~2(M-l)+m in(lRlh~\,lR rhsl) /~,
where K is the blocking factor of relation records per disk

block (we make the simplifying assumption that K is a con-

stant), and &f is the number of disk blocks that can be held

in main memory. In our measurements, we arbitrarily set

K = 10 and &f = 100. (In separate tests, we have found

that actually computing the relation widths and blocking

factors, rather than taking II to be constant, has little effect

on the performance graphs. )

Join graph Our chain graphs have the following predi-
cate connections: RO–R8–R1–R9–R2–R IO–R3–R11–R4–R12–

R5–RIS–R6–R14– R7.(We have tried chains with alternative

cardinality orderings and have obtained essentially the same

results, ) The “cycle + 3“ topology augments a chain with

predicate connections at RO–RY, R8–R14, R1–R6, and Rg–

R13. Star graphs have predicate connections between the

hub RIA and each other relation. (R. as hub gives similar

results. ) Cliques have predicate connections between every

pair of relations.

In all graphs, the selectivity of the predicate (if any)

connecting R, and R] is computed as ,u~jk . lRt 1– ~rk=
IR3 l-’lk~, where p is the mean base-relation cardinality, k

is the total number of predicates, and k, is the number of

predicates incident on R,. Note that these selectivities yield

a query result cardinality of p.

Mean cardinality Mean base-relation cardinality is the
geometric mean (~~~o IR, 1)1/15.

Variability Variability ranges from O to 1, with O

indicating that all IR, I are equal. In general, IRo I =

(mean cardmalzty)’-”a””b”%”, and the remaining R, are such

that lR,l/lR,_I I is constant.
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