
Canonical Abstraction for Outerjoin Optimization

Jun Rao
IBM Almaden Research Center

junrao@almaden.ibm.com

Hamid Pirahesh
IBM Almaden Research Center

pirahesh@almaden.ibm.com

Calisto Zuzarte
IBM Toronto

calisto@ca.ibm.com

ABSTRACT
Outerjoins are an important class of joins and are widely
used in various kinds of applications. It is challenging to
optimize queries that contain outerjoins because outerjoins
do not always commute with inner joins. Previous work
has studied this problem and provided techniques that al-
low certain reordering of the join sequences. However, the
optimization of outerjoin queries is still not as powerful as
that of inner joins.

An inner join query can always be canonically represented
as a sequence of Cartesian products of all relations, followed
by a sequence of selection operations, each applying a con-
junct in the join predicates. This canonical abstraction is
very powerful because it enables the optimizer to use any
join sequence for plan generation. Unfortunately, such a
canonical abstraction for outerjoin queries has not been de-
veloped. As a result, existing techniques always exclude
certain join sequences from planning, which can lead to a
severe performance penalty.

Given a query consisting of a sequence of inner and outer
joins, we, for the first time, present a canonical abstraction
based on three operations: outer Cartesian products, nullifi-
cation, and best match. Like the inner join abstraction, our
outerjoin abstraction permits all join sequences, and pre-
serves the property of both commutativity and transitivity
among predicates. This allows us to generate plans that
are very desirable for performance reasons but that couldn’t
be done before. We present an algorithm that produces
such a canonical abstraction, and a method that extends
an inner-join optimizer to generate plans in an expanded
search space. We also describe an efficient implementation
of the best match operation using the OLAP funtionalities
in SQL:1999. Our experimental results show that our tech-
nique can significantly improve the performance of outerjoin
queries.

1. INTRODUCTION
An outerjoin [2] is a modification of an inner join (./) in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for pro®t or commercial advantage and that copies
bear this notice and the full citation on the ®rst page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci®c
permission and/or a fee.
SIGMOD2004, June 13-18, 2004, Paris, France.
Copyright 2004 ACM 1-58113-859-8/04/06 ...$5.00.

that it preserves all information from one or both of the
input relations. It can be further categorized into left (−→),
right (←−) or full (←→) outerjoin, depending on which side
needs to be preserved. For example, the following SQL query
returns all the departments and the employees in them. For
those departments without any employees, the department
names are still listed, but with the employee name set to
null.

SELECT department.dname, employee.ename
FROM department LEFT JOIN employee

ON department.no=employee.dno

Outerjoins are important because they are frequently used
in the following traditional applications [10]: (a) certain
OLAP queries where we need to preserve tuples from the
fact table with unknown (or missing) dimensional values; (b)
constructing hierarchical views that preserve objects with
no children; and (c) queries generated by external tools and
query rewriting units. The emergence of XML provides more
applications for outerjoins. For example, in information in-
tegration, schema mapping [12] involves the discovery of a
query or a set of queries that transform the source data into a
new structure. When mapping relational data to XML, the
transformation queries rely heavily on outerjoins to avoid
missing data. In another example, the construction of XML
results in XQUERY [1] often needs the outerjoin semantic
so that a parent element can survive without a matching
child element.

When there are only inner joins in a query, a query opti-
mizer is allowed to consider all join sequences and selects the
cheapest execution plan among them. Changing the order
of join evaluation is a powerful optimization technique and
can improve execution time by orders of magnitude. How-
ever, when outerjoins are present in addition to inner joins,
changing the join order does not always give the correct re-

sults. For example, R
Prs−→ (S

Pst
./ T) 6= (R

Prs−→ S)
Pst
./ T .

The problem of outerjoin reordering has been studied in [16,
9, 10, 15], with [10] being the most comprehensive. They all
try to expand the search space for outerjoin queries in one
way or another. However, none of them achieves the goal of
allowing all join sequences. For example, conjuncts in the
ON clause of an outerjoin are always treated as a whole and
cannot be applied separately. As another example, tran-
sitivity is never applied across two outerjoins to generate
redundant predicates.

To see the impact of this, consider two queries in Fig-
ures 1(a) and 1(b). In Q1, the outerjoin uses two conjuncts

(a) Q1
SELECT R.k, S.k, T.k
FROM R LEFT JOIN (S INNER JOIN T ON S.a=T.a)

ON R.b=S.b and R.c=T.c

(b) Q2
SELECT R.k, S.k, T.k
FROM R LEFT JOIN (S LEFT JOIN T ON S.a=T.a)

ON R.a=S.a
(c)
SELECT R.k, S.k, T.k
FROM (R LEFT JOIN S ON R.b=S.b) INNER JOIN T

ON S.a=T.a and R.c=T.c

(d)
SELECT R.k, S.k, T.k
FROM (R LEFT JOIN T ON R.a=T.a) LEFT JOIN S

ON R.a=S.a and T.a=S.a
(e)
WITH Nullified AS (
SELECT ...
FROM (R LEFT JOIN S ON R.b=S.b) LEFT JOIN T

ON S.a=T.a and S.c=T.c)
SELECT R.k, S.k, T.k, ...
FROM Nullified
WHERE ...

(f)
WITH Nullified AS (
SELECT ...
FROM (R LEFT JOIN T ON R.a=T.a) LEFT JOIN S

ON R.a=S.a)
SELECT R.k, S.k, T.k, ...
FROM Nullified
WHERE ...

Figure 1: (a), (b) original outerjoin queries Q1 and Q2; (c), (d) incorrect naively rewritten queries; (e), (f)
correct rewritten queries using nullification and best match

as the join predicate. Suppose that relations S and T are
both large, but relation R is small. One would like to be
able to apply one of the conjuncts, say R.b=S.b, to join
relation R with S first, as shown in Figure 1(c). In Q2,
the two join predicates (from different ON clauses) share
a common attribute. Suppose that S is really big. One
would like to be able to generate an additional predicate
R.a=T.a through transitivity, and to use it for joining rela-
tion R with T first, as shown in Figure 1(d). Unfortunately,
neither Figure 1(c) nor Figure 1(d) gives the correct results.
If we temporarily assume that R(k, a, b, c) = {(r1, 1, 1, 1)},
S(k, a, b) = {(s1, 1, 1)}, and T (k, a, c) = φ, the answers for
Q1 and Q2 are A1 = {(r1,−,−)} and A2 = {(r1, s1,−)}
respectively (“−” for null). On the other hand, the query
in Figure 1(c) generates φ (changing the inner join in Fig-
ure 1(c) to a left outerjoin still gives the wrong answer A2)
and that in Figure 1(d) generates A1. Had the outerjoins
been changed to inner joins, both transformations would
have been valid.

To solve this problem completely, we try to find a canon-
ical abstraction suitable for outerjoins. We exploit two log-
ical operations, nullification and best match (definitions will
be given in Section 3), introduced in [15]. For a given query
that has a mixture of inner and outer joins, we then ex-
press it in an outerjoin canonical abstraction—outer Carte-
sian products of all relations, followed by a sequence of nul-
lification operations, followed by a best match operation at
the end. Our abstraction has the property of both commuta-
tivity and transitivity, and hence provides many additional
opportunities for query optimization. We will describe in
Section 4 an algorithm of generating the outerjoin canonical
abstraction. To take advantage of the new opportunities,
the planning phase in an optimizer needs to be extended.
In Section 5, we explain our plan generation method based
on the canonical abstraction. Although a nullification opera-
tion is straightforward to implement, a best match operation
is fairly complex. Our abstraction will not be useful with-
out an efficient implementation of a best match. Instead of
trying to implement it directly, we decompose a best match
into one or more simpler building blocks, each of which can
then be implemented by exploiting the OLAP functionality
in the latest SQL standard [14]. Our implementation of a

best match operation is described in Section 6.
Using our approach, Q1 and Q2 can now be rewritten as

queries in Figures 1(e) and 1(f), respectively. In both cases,
the rewritten queries perform a selection over a predefined
view Nullified (by the WITH clause). We deliberately leave
out some of the details in the queries, which will be provided
in Section 6. The important observation here is that the in-
put relations are now joined in a more desirable sequence.
Therefore, although syntactically more complex, the rewrit-
ten queries can have a huge performance advantage over the
original ones. Our experimental results in Section 7 strongly
support this claim.

2. BACKGROUND AND PREVIOUS WORK
[7] observes that null-intolerant predicates (those that

cannot evaluate to true when referencing a null value) can
simplify queries using outerjoins. For example, if predicate
Prs (the subscript contains relations referenced by the pred-
icate) is null-intolerant, the following rule holds.

R
Prs
./ (S

Pst←− T) = R
Prs
./ (S

Pst
./ T)

Dayal’s study [5] gives some initial rules on valid evalua-
tion sequences for joins and one-sided outerjoins. Equations
below hold when predicates are null-intolerant.

R
Prs−→ (S

Pst−→ T) = (R
Prs−→ S)

Pst−→ T

(R
Prt−→ T)

Prs−→ S = (R
Prs−→ S)

Prt−→ T

[8] describes a normal form that represents an outerjoin
query as a sequence of minimum unions of join results.
The minimum union is responsible for removing tuples that
should not be present in the query result. However, this
normal form focuses only on relations and ignores the join
predicates. Thus, it is not as powerful as the abstraction
proposed in this paper. For example, it neither considers
breaking the conjuncts in a join predicate nor generates re-
dundant predicates through transitivity.

Galindo-Legaria and Rosenthal [7, 9, 10] have done pi-
oneering work in the area of outerjoin reorderability. The
authors identify a special class of query called a simple query,

which has the property that the query graph (without spec-
ifying the join sequence) unambiguously determines the se-
mantic of the query. Given a simple query, they compute a
conflicting set for each join predicate by analyzing the query
graph. The conflicting set of a predicate P contains some
other join predicates, which if applied after P , will give in-
correct results. Based on the conflicting set, they proposed
two kinds of approaches in plan generation, one without
compensation and one with compensation. The former only
generates plans that contain only valid join sequences, and
the later allows plans containing some invalid sequences and
then tries to compensate for the incorrect results through a
generalized outerjoin. However, their approach still does not
consider all join sequences, including the two desired ones
in Figure 1. Also, no efficient implementation is given for a
generalized outerjoin operation.

[15] uses an extended eligibility list (EEL) to represent
the conflicts between outerjoins and inner joins. Although
EEL is logically equivalent to the conflicting set representa-
tion used in [10], it’s easily exploited by an optimizer. [15]
also introduces the concepts of nullification and best match,
which our canonical abstraction is based on. The two to-
gether can perform the right compensation needed for an
invalid join sequence.

3. PRELIMINARY
In this section, we specify our assumptions and define or

revisit needed terminologies. We want to focus our atten-
tion on the most common cases. Therefore, we define an
outerjoin query to be one that contains any number of left
outerjoins (right outerjoins are converted to the left ones)
and inner joins. The less common full outerjoins and anti-
joins will be discussed later in Section 8. An outerjoin query
is given by an operator tree where all leaf nodes are base re-
lations (which can contain local predicates) and inner nodes
are join operators. For any outerjoin in the tree, the pre-
serving side is always the left and the null-producing side
is always the right. We also assume that all join predicates
are null-intolerant (this implies no Cartesian products in the
query) and that the operator tree has already been simpli-
fied (i.e., outerjoins are converted to inner joins if possible).
Lastly, we assume that there is always a key attribute KID
(the tuple ID can always be used to serve as the KID) for
each relation and all KIDs are carried along to the root
of the operator tree. We note that a large class of queries
are satisfied under our assumptions (in particular, all simple
queries are satisfied under our assumptions).

Definition 3.1. Given a relation R, a Boolean predicate
p and a set of attributes a ∈ R, a nullification operation
λP,a(R) is defined as: {r ∈ R | if p 6= true, set r.a to null}.
In such an operation, P is then referred to as a nullifica-
tion predicate and a is referred to as nullified attributes. We
have to be a little bit careful here. Since SQL [14] has a
three-value logic, p 6= true is not the same as !p = true. For
example, when p evaluates to unknown, the former expres-
sion is satisfied, but the latter is not. It can be proven that
λ has the following properties.

(0) λP1&P2,a(R) = λP1,a(λP2,a(R)) = λP2,a(λP1,a(R))
(& for conjunction)
(1) λP,a1∪a2(R) = λP,a1(λP,a2(R)) = λP,a2(λP,a1(R))
(The equation still holds when P references a1 and a2.)

Definition 3.2. Tuple r1 dominates tuple r2, if for ev-
ery non-null attribute in r2, r1 has the same value in the
corresponding attribute, and r2 has more attributes with
null values than r1. We also refer to those attributes where
r2 is null and r1 is not as dominated. For example, tuples
t1=(1,−, 3) and t2=(1, 2,−) are both dominated by (1, 2, 3).
The second attribute in t1 and the third attribute in t2 are
the dominated attributes, respectively. Domination was also
known as subsumption in [8, 18].

Definition 3.3. Given a relation R, a best match oper-
ation β(R) is defined as: {r ∈ R | r is not dominated or
duplicated by any other tuples in R and is not an all-null
tuple}. We call those tuples that are removed from R by a
β(R) operation spurious tuples. Note that β(R) = R, when
R is a base relation.

Definition 3.4. Given two relations R and S, we define

an outer Cartesian product (reusing ×) as R
1=1←→ S. The

only difference between an outer Cartesian product and the
conventional one is that when one of the relations (say R) is
empty, the former returns all tuples in S and pads null on
attributes in R, while the latter returns an empty set.

Definition 3.5. We can then decompose outerjoins and
inner joins using λ, β and × in (2) and (3) below. Note that
we require the outer Cartesian product to handle empty in-
puts, which was ignored in previous work [15]. For simple
presentation, in λP,a, we use the relation name as a if a in-
cludes all attributes in the relation (we say that the relation
is nullified by P).

(2) R
Prs−→ S = β(λPrs,S(R × S))

(3) R
Prs
./ S = β(λPrs,R∪S(R × S))

The above representation essentially says that an outer
join predicate nullifies the null-producing relation, and an
inner join predicate nullifies both input relations. Observe
that the result of an inner join or an outerjoin does not
contain spurious tuples since a β operation is applied in
both. Both β and λ take a relation as input and return a
relation (with the same schema) in the output. Therefore,
they are both composable, i.e., they can be used as the input
of other relational operators. The commutative rules ([15])
among β, λ and × are summarized below:

(4) β(β(R)) = β(R)
(5) β(R) × S = β(R × S)
(6) λP,a(R) × S = λP,a(R × S)

P only refers to R and a ∈ R
(7) β(λP,a(β(R))) = β(β(λP,a(R))) = β(λP,a(R))

(rely on our assumption that P is null-intolerant)

In the above rules, (4) says that two consecutive best
matches can be reduced to one; (5) and (6) say that an
outer Cartesian product is commutative with a best match
and with a nullification operation; and (7) says that a best
match is commutative with a nullification operation as long
as there is a best match at the very end. We should point
out here that × carries an implicit null-tolerant predicate
true. The reason why × still commutes with λ is because
changing a non-null value to a null does not change the re-
sult of the implied predicate since it always returns true.

Using the above rules, we can convert an outerjoin query
to a bestmatch-nullification representation, and then push
all outer Cartesian products as far inside as possible and
remove intermediate best matches (such a representation is
referred to as BNR). For example, we can have the follow-
ing BNR transformation.

(8) (R
Prs−→ S)

Pst−→ T = β(λPst,T (λPrs,S(R × S × T)))

(9) R
Prs−→ (S

Pst
./ T) = β(λPrs,S∪T (λPst,S∪T (R × S × T)))

However, it turns out that λ operations themselves are
not commutative in general. To see that, let’s consider the
right side of equation (8) above using a concrete example.
Suppose that R(a) = {(1)}, S(a) = {(2)} and T (a) = {(2)},
respectively. R×S×T produces exactly one tuple {(1, 2, 2)}.
Also suppose that Prs and Pst are given by R.a = S.a and
S.a = T.a, respectively. In Figure 2(a), we show the steps of
evaluating the two λ operations in the order given by equa-
tion (8), i.e., λPrs,S followed by λPst,T . Since Prs evaluates
to false, S.a is set to null after applying λPrs,S . The next
step is interesting. Pst now evaluates to unknown because
of the null value set in the previous row. It would have eval-
uated to true if the null value were not set. Therefore, T.a
is set to null in the end. In Figure 2(b), we show that the
result has changed when we switch the order of the two λ
operations. The reason is that Pst is evaluated earlier and
does not see the null value it’s supposed to see, and there-
fore evaluates to true instead of unknown. Consequently,
switching the λ operations in (8) gives an incorrect result.
Notice that in equation (0), the two λ operations are ex-
changeable. The difference lies in that the two λ operations
in equation (0) nullify the same attribute sets whereas the λ
operations in equation (8) do not. Finally, readers can verify
that changing the order of the two λ operations in equation
(9) does not affect the correctness of the final result, though.

(R, S, T)
R × S × T {(1, 2, 2)}
λPrs,S {(1,−, 2)}
λPst,T {(1,−,−)}

(a) λPst,T (λPrs,S ...)

(R, S, T)
R × S × T {(1, 2, 2)}
λPst,T {(1, 2, 2)}
λPrs,S {(1,−, 2)}

(b) λPrs,S(λPst,T ...)

Figure 2: Effect of Changing the Order of λ

4. CANONICAL ABSTRACTION FOR OUT-
ERJOINS

For a given outerjoin query, we seek a canonical abstrac-
tion resembling that of an inner join query. A BNR of an
outerjoin query almost gives us such a canonical abstraction
except that λ operations are not interchangeable. However,
by taking advantage of the fact that all predicates are null-
intolerant, we can make λ operations interchangeable.

Again, consider the sequence λPst,T (λ′
Prs,S ...) in equa-

tion (8). To differentiate the two λ, we refer to the inner
one as λ′. As we have seen earlier, the reason why λ can-
not be moved inside λ′ is that Pst then will not see the
new null values in S updated by λ′. We’d like to stress
here that it is the new null values that we are concerned
about. Null values present in relation S itself does not affect
the reordering of the two λ operations. Since all predicates

Input an operator tree T of an outerjoin query
Output a nullification set (NSR) for each relation R
Method:
For each node n traversed in postfix order in T

If (n is a base relation R)
NSR = φ

Else (n is a join with predicate P)
Let RL and RR be the set of all relations referenced

by P in the left and right side respectively
if (n is an outer join)

For each relation r in the right side
NSr = NSr ∪ {P} ∪ {p ∈ NSt | t ∈ RL}

Else if (n is an inner join)
For each relation l in the left side

NSl = NSl ∪ {P} ∪ {p ∈ NSt | t ∈ RR}
For each relation r in the right side

NSr = NSr ∪ {P} ∪ {p ∈ NSt | t ∈ RL}

Table 1: An Algorithm Generating Nullification Sets

are null-intolerant, we identify the following rippling effect:
Prs 6= true ⇒ S is null ⇒ Pst 6= true ⇒ T is null. This im-
plies Prs 6= true ⇒ T is null, which is equivalent to adding
a λPrs,T . By adding such an implied λ operation, we do
not change the semantic of the original expression. What’s
more, the relative evaluating order of the λ operations are
no longer important because we have short-circuited the rip-
pling effect of the generated nulls, the cause that prevents λ
from reordering. For example, if we further apply λPrs,T on
the last row in Figure 2(b), we will get exactly the same fi-
nal result as in Figure 2(a). It’s easy to verify that applying
λPst,T , λ′

Prs,S and λPrs,T in any other sequence also pro-
duces the correct result. The rippling effect is transitive and
can pass through multiple predicates. For example, given a
sequence λPtu,U (λPst,T (λPrs,S ...)), an implied λPrs,U can
be inferred since the null value in S (introduced by Prs)
first propagates to T through Pst, and then to U through
Ptu. Next, we are going to show that for a given BNR,
we can precompute all implied λ operations, the addition of
which gives us commutativity among λ.

Given an outerjoin query, we associate each relation R
with a nullification set NSR, which is used to collect all
predicates (including implied ones) that can nullify R if not
true. We present an algorithm of populating the nullifica-
tion sets in Table 1. Each node in the operator tree of the
query is visited bottom-up in postfix order. If a node corre-
sponds to a relation, we simply initialize its nullification set
to empty. If a node is an outerjoin, we note that the join
predicate P nullifies each relation r in the right side (remem-
ber this is always the null-producing side) and so should be
added to NSr. However, this is not enough. Consider each
relation t that is referenced by P and is from the left side.
Predicates in NSt nullify t and thus indirectly nullify each
r. Therefore, these predicates (implied) are also added to
each NSr. If a node is an inner join, we note that P nulli-
fies relations in both sides. So we can basically perform the
same computation once for relations in the left side and an-
other for those in the right. By induction, it can be shown
that the nullification sets we computed is complete in the
sense that all predicates that can introduce null in R are
included in NSR. We claim two important properties of the
nullification sets in Theorem 4.1.

Q1: R
R.b=S.b & R.c=T.c−→ (S

S.a=T.a
./ T)

NSR: φ
NSS : {R.b=S.b, R.c=T.c, S.a=T.a}
NST : {R.b=S.b, R.c=T.c, S.a=T.a}

Q2: R
R.a=S.a−→ (S

S.a=T.a−→ T)
NSR: φ
NSS : {R.a=S.a}
NST : {R.a=S.a, S.a=T.a, R.a=T.a}

Q3: (R
R.a=S.a−→ S)

S.b=T.b−→ T
NSR: φ
NSS : {R.a=S.a}
NST : {R.a=S.a, S.b=T.b}

Q4: ((R
R.a=S.a−→ S)

R.b=T.b−→ T)
S.c=U.c & T.d=U.d−→ U

NSR: φ
NSS : {R.a=S.a}
NST : {R.b=T.b}
NSU : {R.a=S.a, R.b=T.b, S.c=U.c, T.d=U.d}

Figure 3: Nullification Sets Examples

Theorem 4.1. (1) The nullification sets computed by the
algorithm in Table 1 satisfy the following property: apply-
ing all λNSR,R in any order is equivalent to applying the λ
sequence in the original BNR. (2) Two equivalent outerjoin
queries (always generating the same result) have the same
nullification set for each corresponding relation.
Proof : (1) We can show by induction that after processing
a node n in the original operator tree, the property holds
for the BNR corresponding to the subtree rooted at n. (2)
We can show that for each valid outerjoin transformation
rule, the nullification sets on the new operator tree remain
the same. It has already been proven in [10] that those
valid outerjoin transformation rules are complete, i.e., any
equivalent query can be derived from the original query by
applying a sequence of valid transformation rules.

We illustrate our algorithm on four queries in Figure 3. In
Q1, S.a = T.a is added to both NSS and NST by the inner
join. The outerjoin then includes R.b = S.b and R.c = T.c
in the nullification set of S and T since they are both in the
right side of the join. The process for Q2 is similar and the
nullification sets are shown below the query. Let’s ignore
the underlined predicate for the moment. The computation
for Q1 and Q2 are relatively straightforward since there is
no implied λ. In Q3, predicate R.a = S.a is first added to
NSS by the first join, and is subsequently added to NST

by the second join because of the implied λ. As an example
to show the correctness of the second claim in Theorem 4.1,

readers can verify that query R
R.a=S.a−→ (S

S.b=T.b−→ T), which
is equivalent to Q3, shares the same nullification sets as Q3.
Finally we show a four-way join query in Q4. Observe that
predicates R.a = S.a and R.b = T.b are carried over to NSU

by the last join.
Collectively, the nullification sets we computed actually

give the canonical abstraction we want. It’s clear from The-
orem 4.1 that an outerjoin query can always be represented
by a sequence of outer Cartesian products, followed by a se-

quence of λNSR,R on each relation R in the query, followed
by a final β operation. Such abstraction gives us many addi-
tional opportunities for optimizing an outerjoin query. First
of all, since the outer Cartesian products can be evaluated in
any binary sequence, this essentially allows us to consider all
the join orders for planning. Secondly, the commutativity
between λ operations and outer Cartesian products enables
us to push a λ as deep as where it first becomes eligible
(i.e., all referenced attributes are present in the input). We
can then introduce a β operation after a λ and convert the
β(λ(...× ...)) sequence back to either an inner join or an out-
erjoin, using the reverse of equation (2) and (3) in Section 3.
Thirdly, when a nullification set has multiple conjuncts, we
can, based on equation (0), split a “big” λ into two smaller
ones, each applying a subset of the conjuncts. This means
that conjuncts given by the same ON clause in an outer-
join query do not always have to be applied together, which
was impossible before. For example, in Q1, it now becomes
possible to apply predicate R.b = S.b by itself and there-
fore to join R and S together first. Lastly, we can compute
the transitive closure of predicates within each nullification
set. Consider Q2 in Figure 3 as an example, the under-
lined predicate R.a = T.a is generated through transitivity
within NST . This additional predicate serves as the only
link between R and T , which means that R and T can now
be joined using this predicate. This additional conjunct can
actually introduce a subtle semantic difference. Consider
the situation when R.a, S.a and T.a are 5, null and 7, re-
spectively. R.a = S.a & S.a = T.a evaluates to unknown,
while R.a = S.a & S.a = T.a & S.a = T.a evaluates to false.
Fortunately, this is fine for a λ operation since the testing
on the nullification predicate does not distinguish between
unknown and false (both are not true). In the next section,
we will describe how to extend a query optimizer to take
advantage of these new opportunities.

We can organize all the nullification sets for an outerjoin
query into a directed graph where each node n corresponds
to a unique nullification set (noted as NSn) and there is an
edge from node n1 to node n2 if NSn1 ⊂ NSn2. We then
assign each relation R to the node n where NSn = NSR. We
refer to such a graph as DAGns. It’s obvious that DAGns

is acyclic. Otherwise, from a cycle n1, n2, ...nk, n1 in the
graph, we can derive NSn1 ⊂ NSn2... ⊂ NSnk ⊂ NSn1,
which is impossible. A root node in a DAGns is defined as
the node n whose NSn has the smallest size. A DAGns

has only one root node and all nodes can be reached by
a path starting from the root. Again, this can be proven
by induction that in Table 1, after processing each node n
in the original operation tree, the DAGns for the subtree
rooted at n has exactly one root node and the rest of the
nodes are reachable from the root node. The DAGns for
queries Q1 to Q4 are shown in Figure 4, where each circle
represents a node. Relations assigned to a node are shown
inside the circle and the corresponding nullification set is
next to the circle. Notice that in Q1, two relations S and
T are assigned to the same node and the DAGns for Q4 is
not a tree. We make the following interesting observations
on the DAGns for an outerjoin query. Those observations
will be useful for the implementation of β operations to be
discussed in Section 6.

Observation 4.1. (a) For each tuple t in the fully nulli-
fied query result (i.e., after all λNSR,R have been applied),
if the KID of relation S (assigned to node n) is null, then

R { }

S,T
{ R.b=S.b,

R.c=T.c,
S.a=T.a }

R { }

S { R.a=S.a}

T
{ R.a=S.a,

S.a=T.a,
R.a=T.a }

R { }

S{ R.a=S.a}

U
{ R.a=S.a,

R.b=T.b,
S.c=U.c,
T.d=U.d }

T { R.b=T.b }

R { }

S { R.a=S.a}

T { R.a=S.a,
S.b=T.b }

Q1

Q4Q3

Q2

Figure 4: Examples of DAGns

the KID of each relation T assigned to node n and n’s de-
scendants are all null. The reasoning is that each T always
has an equivalent, or super, set of nullification predicates
relative to S. (b) For a node n in DAGns, predicates in
NSn can only refer to relations assigned to nodes on the
path from root to n. (c) Relations assigned to the same
node n in a DAGns must be inner joined together in the
original operator tree, using predicates in NSn. (d) An out-
erjoin query equivalent to the original one can be composed
by first inner joining relations assigned to the same node in
a DAGns and then for each pair of (parent, child) nodes,
outer joining the intermediate results on the nodes (results
from the child serves as the right side), using predicates in
NSchild − NSparent.

Before moving on, we’d like to point out that the nulli-
fication sets could also be useful for some other theoretical
analysis of outerjoin queries. For example, given n relations
and k predicates, how many different outerjoin queries can
be formed? A simple upper bound is kn since each predicate
can belong to one or more nullification sets. A closer esti-
mation can be derived by analyzing all the possible DAGns

that can be composed from the n relations and k predicates.

5. PLAN GENERATION BASED ON CANON-
ICAL ABSTRACTION

In this section, we discuss how to use the outerjoin canoni-
cal abstraction for plan generation in a conventional bottom-
up join optimizer. For an outerjoin query, we assume that
the nullification set of each relation NSR has been calculated
using the algorithm in Table 1 and that transitive closure
has been computed within each NSR. Predicates in NSR

are given as a set of conjuncts C. Because any join order is
allowed in our canonical abstraction, the plan search space
for outerjoin queries becomes much larger, which increases
(but does not guarantee) the possibility of finding a cheaper
plan. On the other hand, the larger the search space, the
longer the optimization time. In order to avoid wasting too
much time on generating unpromising plans, we first limit
our search space using the following heuristic rules: (1) A λ

operation is always converted back into inner or outer joins
whenever possible (by introducing a β after it). (2) Un-
convertible λ operations are deferred until all relations are
joined. (3) Each conjunct is considered only once as a join
predicate when it first becomes eligible. However, the same
conjunct can be used again for nullification in the end. (4)
No outer Cartesian product is allowed by its own. We feel
that those limits preserve most promising plans while reduc-
ing the search space considerably, and thus provide a good
balance between plan quality and optimization time.

A dynamic programming style join optimizer [17] starts
by enumerating each non-overlapping pair of relation sets.
It then finds all eligible predicates and uses them to join
the two relation sets together. Various physical operators
(e.g., hash join) are then considered for the actual join im-
plementation. To avoid generating redundant plans, the op-
timizer maintains a memory-resident structure (referred to
as MEMO, following the terminology used in [11]) for hold-
ing non-pruned plans. Each MEMO entry corresponds to a
unique logical expression, which is typically determined by a
relation set and an applied predicate set. Plans correspond-
ing to the same logical expression are inserted into the same
MEMO entry. A plan with a higher cost is pruned if there is
a cheaper plan with the same or more general properties for
the same MEMO entry. The MEMO structure is populated
from bottom up such that entries for smaller relation sets are
filled before those for larger relation sets. Plan properties
are used to distinguish among plans corresponding to the
same logical expression. For example, if a plan P produces
an interesting order [17] that can avoid a required sort sub-
sequently, it might be better than a cheaper unsorted plan
with the same logical expression. Keeping tuple ordering as
a plan property prevents plans such as P from being pruned
too early.

To extend the optimizer for outerjoin support, we reuse
the join enumeration process, but for each pair of relation
sets (S, L) to be joined together, call a new method pre-
sented in Table 2. The method is divided into two parts.
The first part is called on every (S, L) pair while the sec-
ond part is only called when S ∪ L contains all relations in
the query. We also maintain in each plan an extra property:
the nullification sets NS′ corresponding to the plan tree. We
will explain later why this new plan property is necessary.

The first part of the method iterates through each con-
junct c in C that is eligible on (S, L). If c fully nullifies
either S (i.e., for each s ∈ S, c ∈ NSs) or L, it is added to a
set Cj (which will be used later as join predicates). Other-
wise, c is ignored because it cannot be converted back to a
join predicate. In either case, c is removed from C and will
not be considered in subsequent joins. The method then
decides which type of join should Cj be used for. If Cj fully
nullifies both S and L, an inner join will be used. Other-
wise, a left outer join will be chosen and the fully nullified
relation set is used as the null-producing (right) side of the
join. The new plan property NS′ is propagated in a similar
fashion as the algorithm in Table 1. Theorem 5.1 guarantees
that the decision made on the join type is consistent for all
conjuncts in Cj .

Theorem 5.1. For any two conjuncts c1 and c2 in Cj

used to join S and L together in Table 2, the following can
never occur: (a) c1 fully nullifies both S and L, c2 fully
nullifies either S or L, but not both; (b) c1 only fully nullifies
S, c2 only fully nullifies L.

Input S and L, two relation sets to be joined; NSR,
the nullification sets as computed by the al-
gorithm in Table 1)

Output a list of plans that join S and L, each plan
carries an additional property, the nullifica-
tion sets NS′ for the plan tree

Method:
Part I
Cj = φ
For each conjunct c in C that is eligible on S and L
If (c ∈ NSs for each relation s in S) //c fully nullifies S

add c to Cj

Else
if (c ∈ NSl for each relation l in L) //c fully nullifies L
add c to Cj

Remove c from C
If (Cj is not empty)

If (Cj fully nullifies S and L) plan S
Cj
./ L

Else if (Cj fully nullifies S) plan L
Cj−→ S

Else if (Cj fully nullifies L) plan S
Cj−→ L

Compute the nullification sets NS′ for the join plan
Else reject this (S, L) pair

Part II
If (S ∪ L includes all relations to be joined)

For each generated plan P (with nullification sets NS′)
For each R where NSR − NS′

R 6= φ
P=adding λNSR−NS′

R
,R on top of P

If (any λ is added above)
Pf=adding a β operator on top of P

Table 2: Plan Generation using Nullification Sets

Proof : We first make the following observation on the origi-
nal operator tree T : If a conjunct c refers to a relation R and
is not in NSR, then R ≺ S for each S, c ∈ NSS , where ≺
compares the infix ordering of the two relations in T . Now,
we assume that both c1 and c2 exist in the original operator
tree (generated conjuncts can also be handled accordingly).
We consider the following three cases. Case (1): both c1
and c2 are outerjoin predicates in the original query. Then
c1 and c2 can only fully nullify either S or L, but not both
(remember that c1 and c are not eligible in S itself, nor in
L). Suppose that c1 nullifies L and c2 nullifies S. There
exists an Si ∈ S referenced by c1 and an Lj ∈ L referenced
by c2. Based on the earlier observation, we have the follow-
ing infix ordering in the original operator tree: Si ≺ l ∈ L
and Lj ≺ s ∈ S. However, this implies Si ≺ Si, which is
impossible. For the other two cases where at least one of the
conjuncts is used as an inner join predicate in the original
query, we can show that neither (a) nor (b) is possible in a
similar way.

We now move to the second part of the method in Table 2,
when all relations are joined together. We have to decide the
compensation (if any) needed for each plan P generated.
In order to do this, we compare NS′

R with NSR for each
relation R. Observe that NS′

R is always a subset of NSR

(this can be proved by induction on the building process
of P). If NSR − NS′

R is not empty, we know that R is not
completely nullified and will add a λNSR−NS′

R
,R operator on

top of P to complete the nullification. Such an R is referred
to as further nullified. If any λ operator is added, a final β
operator is added to create the final plan Pf . Note that the
nullification sets for Pf is exactly the same as NS for the
original operation tree. It’s easy to see that our method will
always generate a plan corresponding to the join sequence
in the original query, and that such a plan does not need
further nullification.

(a) Q1: R
R.b=S.b & R.c=T.c−→ (S

S.a=T.a
./ T)

Planning
input

C={c1:R.b=S.b, c2:R.c=T.c, c3:S.a=T.a}
NSR=φ NSS={c1, c2, c3} NST ={c1, c2, c3}

Planning
Part I

(R, S) c1[R, S] R
c1−→ S

(RS, T) c2[RS, T]

c3[RS, T] RS
c2 & c3−→ T

P : (R
c1−→ S)

c2 & c3−→ T

Planning
Part II

NS′
R=φ NS′

S={c1} NS′
T ={c1, c2, c3}

Pf : β(λc2 & c3,S((R
c1−→ S)

c2 & c3−→ T))

(b) Q2: R
R.a=S.a−→ (S

S.a=T.a−→ T)

Planning
input

C={c1:R.a=S.a, c2:S.a=T.a, c3:R.a=T.a}
NSR=φ NSS={c1} NST ={c1, c2, c3}

Planning
Part I

(R, T) c3[R, T] R
c3−→ T

(RT, S) c1[RT, S]

c2[RT, S] RT
c1−→ S

P : (R
c3−→ T)

c1−→ S

Planning
Part II

NS′
R=φ NS′

S={c1} NS′
T ={c3}

Pf : β(λc1 & c2,T ((R
c3−→ T)

c1−→ S))

Figure 5: Planning for Q1 and Q2

We illustrate our method by showing the plan generation
process for queries Q1 and Q2 (from Figure 1). Figure 5(a)
describes the planning for Q1. The input to planning con-
sists of the conjunct set C and the nullification set for each
relation (as computed in Section 4). In the first part of plan-
ning, we start with the relation set pair (R, S). Notice that
the only eligible conjunct is c1. In the bracket next to a con-
junct, we show its nullification pattern by underlining the
nullified relation in both inputs. Since c1 only nullifies S, we

construct the first join as R
c1−→ S. Next, the pair (RS, T)

is being considered, c2 and c3 are eligible. Both conjuncts
nullify T , but not RS (neither nullifies R). Therefore, we
construct the second join as an outerjoin (T on the right
side) using both conjuncts. Notice that c3 was an inner join
predicate in Q1 and is now automatically converted into an
outerjoin predicate. The plan generated at the end of the
the first part of planning is given by P . The nullification
sets for plan P is given by NS′. Comparing NS′ with NS,
we find out that c2 and c3 are missing in NS′

S . Therefore,
they are used to further nullify S. Further nullification can
introduce spurious tuples, which will be removed by the final
β operator in plan Pf .

Figure 5(b) shows the planning for Q2. Notice that the
conjunct (c3) generated through transitivity is also added
to C. Suppose that we first consider the relation set (R, T).
c3 becomes eligible and nullifies T . Thus, c3 is used to
construct an outerjoin. Had we not been able to exploit

transitivity, the join between R and T would not have been
possible. The construction of the second join for (RT, S) is
also interesting. Observe that both c1 and c2 are eligible.
c1 nullifies S and can be used as an outerjoin predicate.
However, c2 fully nullifies neither RT (does not nullify R),
nor S. Therefore, c2 cannot be used as a join predicate and
is ignored. In the second part, we discover that c1 and c2
need to be used together to further nullify T to create the
final plan Pf .

Finally, we want to stress the importance of keeping the
additional property NS′ in each plan. Observe the join plan

P : (R
c1−→ S)

c2 & c3−→ T generated for Q1 in Figure 5(a). P
contains the same set of relations and applied predicates as

the original plan R
c1 & c2−→ (S

c3
./ T) (referred to as P0).

Suppose that P is cheaper than P0. We cannot just prune
P0 at this moment because P needs further compensation
(through λ and β operations), after which the cost of P can
be actually higher than P0 (which does not need further
compensation). The new plan property NS′ serves to dis-
tinguish between the two plans P and P0 so that they do
not prune against each other (notice that NS′ is different
from NS). Such an extension is an example of the classic
space and time tradeoff, in which we trade plan storage for
(potentially) better plan quality.

6. IMPLEMENTATION OF BEST MATCH
A λ operation can be easily implemented using the case

expression in SQL. For example, λP,a can be implemented by
an expression “CASE WHEN P THEN a END”. Although
not specified explicitly, a null value will be returned for the
expression if the test in WHEN fails. In the rest of this
section, we focus on the implementation of β operations.

We first formally define the problem we try to solve. Given
a join result of n relations R1, ..., Rn (referred to as a set
R1−n) and a set of k relations Rb1, ..., Rbk (together referred
to as Rb) that are further nullified, we want to implement the
final β operation that removes all spurious tuples introduced
because of further nullification. The nullication set for each
relation R is given by NSR. The further nullified join result
is referred to as a relation Nullified. For simple presentation,
we assume that Nullified only contains the KID (Ki) of
each relation. A direct implementation of a β operation is
possible, but hard because of the intrinsic complexity of the
operation. Instead, we build a β operation using standard
SQL functionalities. We refer to a SQL query implementing
a β operation as a β query.

Let’s first consider a concrete example using query Q1 in
Figure 5(a). In Figure 6(a), we show the tuples in three re-
lations R, S and T . The result of evaluating Q1 is given in
Figure 6(b). We now consider the plan P generated in Fig-
ure 5(a) that chooses a different join sequence. Figure 6(c)
shows the join result of P and Figure 6(d) shows the result
after P is further nullified. Comparing Figure 6(d) with Fig-
ure 6(b), we can see that in Figure 6(d), the second tuple is
dominated by the first one and the fourth tuple is duplicated
by the third one. Both the second and the fourth tuple need
to be removed by the β operation. We deliberately sorted
Nullified on 〈rid,sid,tid〉 (nulls sort last), which gives the re-
sult a favorable ordering, i.e., dominating tuples are always
sorted before dominated ones and a spurious tuple always
finds a dominating or duplicated tuple right before it. We
can then perform the β operation through a single pass of

(a) Data in each relation

R(rid,b,c)
(r1,1,5)
(r2,2,6)

S(sid,a,b)
(s1,1,1)
(s2,2,1)
(s3,3,2)
(s4,4,2)

T(tid,a,c)
(t1,1,5)

(b) Q1:R
c1 & c2−→

(S
c3
./ T)

(rid, sid, tid)
(r1, s1, t1)
(r2, -, -)

(c) P : (R
c1−→

S)
c2 & c3−→ T

(rid, sid, tid)
(r1, s1, t1)
(r1, s2, -)
(r2, s3, -)
(r2, s4, -)

(d) λc2 & c3,S

on (c)

(rid, sid, tid)
(r1, s1, t1)
(r1, -, -)
(r2, -, -)
(r2, -, -)

Figure 6: Base Data and Results of
Q1(c1:R.b=S.b, c2:R.c=T.c, c3:S.a=T.a)

Nullified using the following SQL query to filter out the spu-
rious tuples. We assume that when accessing each tuple, we
magically have access to its immediate previous (whose at-
tributes are appended with p) as well, and will discuss how
to achieve that a little bit later.

SELECT *
FROM Nullified
WHERE rid <> rid p or

tid <> tid p or
sid <> sid p

Let’s ignore the very first tuple for the moment. Observe
that if a tuple t is not spurious, it will not dominate the
tuple (t p) before t (otherwise, t p will sort after t because
of the favorable ordering). Thus t will differ from t p on
at least one of three KIDs and the values in the differing
KID are not null. This is precisely what the three disjuncts
in the WHERE clause test (note that each disjunct evalu-
ates to unknown on nulls). For example, in Figure 6(d), the
third tuple (not spurious) differs from the second tuple on
rid (neither is null). On the other hand, if t is spurious, each
of its KID must either be null or match the corresponding
value in t p, which dominates or duplicates t. Therefore,
none of the disjuncts is satisfied. For example, it’s easy
to verify that in Figure 6(d), the second tuple (dominated)
and the fourth tuple (duplicated) will be filtered out by the
disjuncts in the WHERE clause. In order to use such an ap-
proach to implement β, we still need to answer the following
two questions: (1) how to access the previous tuple together
with the current one in SQL; and (2) how to find a sort key
that gives a favorable ordering of the tuples.

We start by addressing the first question. SQL has become
more and more powerful over the past ten years through var-
ious standard extensions. However, many new functionali-
ties have been overlooked and not fully exploited. For exam-
ple, the OLAP amendment was standardized in SQL:1999
and is now supported by most major database products such
as DB2 [3] and Oracle [4]. The OLAP amendment returns
ranking, row numbering and existing column function in-
formation as a scalar value on a window around the cur-
rent tuple, through an “OVER ... WINDOW construct”
expression. Each window construct can be accompanied by

an “ORDER BY” and a “PARTITION BY” clause, which
specifies the ordering and the partitioning for tuples in the
window. For example, we can use the following query to
compute the five-day average of the IBM stock price on each
day.

SELECT day,
AVG(price) OVER

(ORDER BY day DESC
ROWS BETWEEN 2 PRECEDING
AND 2 FOLLOWING)

AS 5day avg
FROM IBM stock

The OLAP amendment provides us with the answer to the
first question. A window construct “ROWS BETWEEN 1
PRECEDING AND 1 PRECEDING” (simply represented
as “ROWS ...” in the rest of the section) gives us a handle
to the previous tuple. If a favorable order is given by a sort
key FSK = 〈K1, ..., Kn〉, we can compose a basic β query
as shown in Figure 7. Again, we assume that null values
are sorted after the none-null ones. Each Ki p computes Ki

in the previous tuple. We make a special case in dealing
with the very first tuple, which does not have a preceding
one. Since the planning algorithm we considered in Section 5
won’t generate all-null tuples, the very first tuple, if existing,
is never spurious. This is handled by the first disjunct in
Figure 7 that accepts a tuple if its rownum equals to one.

SELECT K1, ..., Kn,
max(K1) OVER (ORDER BY FSK

ROWS ...) as K1 p,
...

max(Kn) OVER (ORDER BY FSK
ROWS ...) as Kn p,

rownumber() OVER (ORDER BY FSK
) as rownum

FROM Nullified
WHERE rownum=1 or

K1 <> K1 p or
...
Kn <> Kn p

Figure 7: A Basic β Query using OLAP functions

We now move to the second and more challenging ques-
tion: how to construct a sort key that gives a favorable
ordering of tuples. It’s not obvious what constitutes a fa-
vorable sort key. For instance, Figure 8(a1) shows a sort
key that gives a favorable ordering since the second tuple
finds its dominating tuple right above it. For the same set
of tuples, Figure 8(a2) shows that a different ordering is not
favorable. Notice that the second tuple in Figure 8(a2) now
moves to the third and is no longer dominated by the tuple
immediately before it. A favorable ordering may not even
exist. In Figure 8(b1) and Figure 8(b2), neither ordering
on the same set of tuples is favorable. In both cases, the
fourth tuple cannot find its dominating tuple above. Since
the values in K1 are all the same, a sort key corresponding
to any other permutations of Ki gives the same ordering as
in either Figure 8(b1) or Figure 8(b2). Nevertheless, as we
will show later, it’s possible to remove all spurious tuples by
sorting the tuples twice.

(K1, K2, K3)
(1, 1, 1)
(1, 1, −)
(1, 2, 3)

(K1, K2, K3)
(1, 1, 1)
(1, 2, 3)
(1, 1, −)

(a1) sorted by 〈K1,K2,K3〉 (a2) sorted by 〈K1,K3,K2〉

(K1, K2, K3)
(1, 1, 1)
(1, 1, −)
(1, 2, 3)
(1, −, 1)

(K1, K2, K3)
(1, 1, 1)
(1, −, 1)
(1, 2, 3)
(1, 1, −)

(b1) sorted by 〈K1,K2,K3〉 (b2) sorted by 〈K1,K3,K2〉

Figure 8: Favorable and Unfavorable Ordering

NS1 NS2 NS3 NS6 NSj-1 NSj

b1 b2 bk

NS’1 NS’6 NS’j

root

NS’3.1

NS’3.3NS’3.2

NS’3.4

NS’2 NS’j-1

Figure 9: The Construction of a Favorable Ordering

To construct a favorable ordering, we analyze the DAGns

of an outerjoin query. We first consider how to construct
a favorable ordering under a common case where Rb satis-
fies an inclusion property: NSRb1 ⊆ NSRb2 ... ⊆ NSRbk ,
i.e., the nullification sets of Rb include one another. In
DAGns, we can find a directed path NS1, NS2, ..., NSj (rep-
resented by the nullification set of the node) such that all
NSRbi are on the path, NS1 correspond to the root node
and NSj = NSRbk . This is depicted in Figure 9. Note
that the plans we generated in Section 5 never further nul-
lify relations in the root node, which implies NS1 6= NSb1.
The relation set associated with each node NSi (i = 1, ..., j)
is denoted as Si. We then organize the remaining relations
into j sets, where S′

i is defined as S′
i = {R | NSi ⊂ NSR and

NSi+1 * NSR} for i = 1, ..., j-1 and S′
j = {R | NSj ⊂ NSR

and R /∈ S′
1, ..., S

′
j−1}. Note that each S′

i essentially in-
cludes relations whose associated nodes are descendants of
NSi, but not descendants of NSi+1 in DAGNS (inside each
triangular in Figure 9). When a relation R is a descendant
of more than one NSi, our definition assigns R to the Si

with the largest i (although assigning R to any one of them
would also be fine). We then construct a sort key FSK as
〈KS1 , K′

S1 , KS2 , K′
S2 , ..., KSj , K′

Sj
〉, where KSi and K′

Si
in-

clude the KID of relations in Si and S′
i, respectively. The

relative order of KIDs within each KSi and K′
Si

is not
important. We claim that sorting on FSK produces a fa-
vorable ordering in Theorem 6.1.

Theorem 6.1. If Rb satisfies the inclusion property, the
sort key FSK constructed as above produces a favorable
ordering on the nullified join result.
Proof : First, duplicated tuples are clustered together since
the sort key includes all KIDs. Consider any dominated

(a) Q1
WITH Nullified AS (
SELECT R.k, T.k,

CASE WHEN R.c=T.c then S.k end as S.k
FROM (R LEFT JOIN S ON R.b=S.b) LEFT JOIN T

ON S.a=T.a and R.c=T.c)
SELECT R.k, S.k, T.k,

max(R.k) OVER (ORDER BY R.k,S.k
ROWS ...) as Rk p,

max(S.k) OVER (ORDER BY R.k,S.k
ROWS ...) as Sk p,

rownumber() OVER (ORDER BY R.k,S.k)
as rownum

FROM Nullified
WHERE rownum=1 or

R.k <> Rk p or
S.k <> Sk p

(b) Q2
WITH Nullified AS (
SELECT R.k, S.k,

CASE WHEN R.a=S.a then T.k end as T.k
FROM (R LEFT JOIN T ON R.a=T.a) LEFT JOIN S

ON R.a=S.a)
SELECT R.k, S.k, T.k,

max(R.k) OVER (ORDER BY R.k,S.k,T.k
ROWS ...) as Rk p,

max(S.k) OVER (ORDER BY R.k,S.k,T.k
ROWS ...) as Sk p,

max(T.k) OVER (ORDER BY R.k,S.k,T.k
ROWS ...) as Tk p,

rownumber() OVER (ORDER BY R.k,S.k,T.k)
as rownum

FROM Nullified
WHERE rownum=1 or

R.k <> Rk p or
S.k <> Sk p or
T.k <> Tk p

Figure 10: Q1 and Q2 rewritten using β Queries

tuple t. Let Kd be the leftmost KID in FSK that is dom-
inated by another tuple t′. We can show that Kd must
belong to a KSi . The reasoning is that the join result be-
fore nullification does not contain any dominated tuples, and
the KIDs in K′

Si
are not modified after nullification. Sup-

pose that Kd ∈ KSi . From Observation 4.1(a), we conclude
that KID in KSi , K

′
Si

, KSi+1 , K′
Si+1

..., KSj , K′
Sj

must all
be null. Because tuples are sorted by FSK, the tuple im-
mediately before t must at least match all KIDs in FSK
up to, but not including Kd (t′ is an example of such a
tuple). Since the rest of the attributes in t are all null, t
must be dominated by its previous tuple. Therefore, such
an ordering is favorable.

When relations in Rb do not satisfy the inclusion property,
in general a single favorable ordering of tuples cannot be
found. For example, the tuples in Figure 8(b1) and 8(b2)
can be the join result where R2 and R3 are further nullified
and they are not on the same path in DAGNS . However,
we can decompose Rb to some smaller relation sets, each
of which satisfies the inclusion property and can then be
implemented by a basic β query. The problem of finding a
minimum number of paths, which cover a subset of nodes
in a directed cyclic graph is known to be reducible to a bi-
partite matching problem [6]. It follows that our problem
can be solved in O(m

√
n) time, where n is the number of

nodes and m is the number of pairs that are connected in
DAGNS . We do not further elaborate on a detailed solution
here. To show an example, the β operation for tuples in
Figure 8(b1) can be implemented by two β queries using
〈K1, K2, K3〉 and 〈K1, K3, K2〉 as the sort key in each. In
practice, most queries only require a single basic β query.

We are now ready to complete the queries in Figures 1(e)
and 1(f). Q1 and Q2 can be rewritten as in Figures 10(a)
and 10(b), respectively. Since the DAGNS (in Figure 4) of
both queries contain a single path, we only need one basic
β query. The sort key giving a favorable order is 〈R.k, S.k〉
for Q1 and 〈R.k, S.k, T.k〉 for Q2. Note that we performed
a little optimization in Q1 by excluding T.k from the sort
key since T and S are assigned to the same node in DAGns.

Before closing this section, we’d like to discuss two per-
formance issues in β queries. First of all, a basic β query
requires one sort, and a β operation may need more than
one basic β query, which means multiple sorts. Although
sorting can be expensive, it pays off when a more benefi-
cial join sequence can be selected. It’s the responsibility
of the optimizer to pick the better plan by comparing the
estimated costs. Often, a good join sequence can improve
performance by orders of magnitude, whereas the sorting
overhead is much less. Also, our approach greatly simplifies
the implementation of the complex β operation. Second,
we note that it’s possible to create a partitioned version
of a basic β query by replacing the ORDER BY clause in
Figure 7 with a “PARTITION BY KS1 , K′

S1 ORDER BY
KS2 , K′

S2 , ..., KSj , K′
Sj

” clause. Since KIDs in KS1 , K′
S1

are not further nullified, we never assign a dominated tuple
to a different partition than that of its dominator. Ki p then
computes the Ki in a previous tuple within each partition.
Without showing the details, we note that the WHERE
clause also needs to be modified slightly in the partitioned
version. This alternative has the benefit of being easily par-
allelizable and can therefore take advantage of the SMP or
the MPP in modern commercial database systems.

7. EXPERIMENTAL RESULTS
In this section, we present our experimental results. The

performance benefit of reordering join sequences has been
well studied before. Therefore, the experiments in this sec-
tion are intended to be illustrative, rather than comprehen-
sive. We ran our tests on an IBM 44P server, which has
four processors and 3GB of RAM. The operating systems
on this machine is AIX 5.1 and the database server we used
is DB2 V8.1 Enterprise Server Edition FP6. We populated
a 1GB TPC-H database and created indexes on the key of
each relation. We set the bufferpool size to be a little bit
over 1GB so that all data can reside in memory. The sort
heap size, which controls the amount of memory allocated
to each sort and hash-join operator, was set to 40MB.

We design two queries on the TPC-H schema having the

Q1. Find parts of a certain brand and size and show their
corresponding line item and available quantity, if any.

select p_type, l_orderkey,l_linenumber, ps_availqty

from part left join

(lineitem inner join partsupp

on l_partkey = ps_partkey and

l_suppkey = ps_suppkey)

on p_partkey = l_partkey and

p_partkey = ps_partkey

where p_brand = ’Brand#35’ and p_size in (5)

order by p_type, l_orderkey, ps_availqty

fetch first 100 rows only

Q2. Find certain parts and show their corresponding line
item, if any, and available quantity, if any.

select p_partkey, p_type, l_orderkey, ps_availqty

from part_lt_1000 left join

(lineitem left join partsupp_gt_995

on l_partkey = ps_partkey)

on p_partkey = l_partkey

order by p_partkey, p_type, l_orderkey, ps_availqty

fetch first 100 rows only

Figure 11: Testing Queries

same flavor as the two in Figure 1. Therefore, we keep their
names as Q1 and Q2. The SQL of the two queries are given
in Figure 11. As we can see, relations part, lineitem and
partsupp correspond to the relations R, S and T in Fig-
ure 1 respectively. In Q1, we use two predicates on relation
part to reduce its size. Notice that both predicates can
be pushed through the joins and evaluated as local pred-
icates on relation part (which is indeed what DB2’s opti-
mizer does). In Q2, part lt 1000 and partsupp gt 995 are
derived from part and partsupp, by limiting the partkey

to less than 1,000 and greater than 995, respectively. For
the sake of simplicity, we refer to them by their base re-
lations. We deliberately construct this query to make the
join between part and partsupp more attractive. We use
a FETCH FIRST clause in both queries to retrieve only
the first 100 tuples. However, since the final result needs
to be ordered, all tuples in the join result still need to be
computed.

For Q1, we compare two execution plans, one (Q1) cor-
responding to the original query and the other (Q1 bm) cor-
responding to a new query that joins part with lineitem

first, but needs compensation in the end. For Q2, we com-
pare three execution plans, Q2 itself, Q2 free in which part

joins lineitem first, followed by partsupp (this plan can be
directly derived using the transformation rules and does not
need further compensation), and Q2 bm where part is joined
with partsupp first and a final β operator is needed. The
SQL statements for Q1 bm and Q2 bm are constructed in a
way similar to that in Figure 10. The favorable ordering is
given by 〈p partkey,l orderkey,l linenumber〉 for Q1 bm

and 〈p partkey,l orderkey,l linenumber,ps partkey,

ps suppkey〉 for Q2 bm. We should pointer out that neither
Q1 bm nor Q2 bm can be considered by existing techniques.
We measure the elapsed time for the five plans a couple
of times and report the average time of each in Figure 12.
Compared with their closest competitor, the plans using our
technique runs 15 times faster for Q1 and 3.5 times faster

198

13
10

362

35

1

10

100

1000

Q1 Q1_bm Q2 Q2_free Q2_bm

S
e

co
nd

s

Figure 12: Execution Time of Each Plan

for Q2 (note the logarithmic scale on the y-axis).
To understand why our technique wins, we’d like to ana-

lyze the execution plans in detail. We show the five plans
generated by the optimizer in Figure 13. Each node in the
plan tree represents an operator, whose type is given by the
text inside the node. The number above each node shows
the cardinality after the corresponding operator has been
applied. Note that the cardinality from the right side (in-
ner) of a nested loop join represents the per outer cardinal-
ity. Each operator is also given a unique number, displayed
under its type. We omit the final sort operator since it’s
common in all plans. However, the sort operator needed for
the β operator is shown in Q1 bm and Q2 bm.

In Q1, since lineitem has to be joined with partsupp

first, it produces a large intermediate result after the hash
join (node 2), which significantly increases the cost for the
next hash join (node 1). In Q1 bm, since we join lineitem

first with part, the intermediate result (after node 3) be-
comes much smaller, which makes the second join (node 2)
cheaper. Although not shown, the cardinality after node 2
in Q1 bm is actually slightly larger than that after node 1
in Q1. This is because Q1 bm generates a smaller number of
spurious tuples, which are subject to removal. The sort op-
erator (node 1) in Q1 bm is used for generating the favorable
ordering. However, since the number of tuples to be sorted
is relatively small, sorting does not add too much additional
cost to the plan (almost negligible in this example). The
operator used to remove the spurious tuples is a standard
filter and is not shown here.

We now move to the second query. Because the way we
constructed Q2, part and partsupp each match many tuples
in lineitem, but have only a few matches between them-
selves. Thus, both Q2 and Q2 free have a large intermediate
result after the first join, and suffer from a similar perfor-
mance penalty as in Q1. Joining part and partsupp first
(as shown in Q2 bm) is the best, since it reduces the interme-
diate result size the most, and also enables the second join
to use a much cheaper nested loop join.

8. DISCUSSION
One of the assumptions in this paper is that all predicates

are null-intolerant. When predicates can tolerate nulls (e.g.,
R.a is null), the rippling of null values through predicates
(as we have seen in Section 4) breaks, and the process of
generating nullification sets in Table 1 is no longer valid.
The relative positions of λ operations become important and

iscan
3

hsjn
1

scan
4

hsjn
2

6.0e+06
lineitem

2.0e+05
part

scan
5

8.0e+05
partsupp

6.0e+06

2.4e+07 8.7e+02

8.0e+05

2.4e+07

Q2

iscan
4

2.0e+05
part

8.7e+02

nljn
2

iscan
5

6.0e+06
lineitem

2.6e+04

3.0e+01

scan
3

hsjn
1

8.0e+05
partsupp

8.7e+05

1.0e+05

Q2_free

sort
1

1.0e+05

Q2_bm

iscan
5

2.0e+05
part

8.7e+02

nljn
3

iscan
6

8.0e+05
partsupp

3.5e+03

4.0

scan
4

nljn
2

6.0e+06
lineitem

3.0e+01

1.0e+05

scan
5

hsjn
1

scan
4

hsjn
2

6.0e+06
lineitem

8.0e+05
partsupp

scan
3

2.0e+05
part6.0e+06

6.0e+06

8.0e+05

1.4e+02

4.2e+03

Q1

scan
4

nljn
2

scan
5

nljn
3

2.0e+05
part

8.0e+05
partsuppscan

6

6.0e+06
lineitem

1.4e+02

4.2e+03 5.0e-06

3.0e+01

4.2e+03

sort
1

4.2e+03

Q1_bm

Figure 13: Plan for Q1, Q1 bm, Q2, Q2 free, and Q2 bm

cannot be changed freely.
One solution is to break the original operation tree into

multiple smaller trees (blocks), each of which only has null-
tolerant predicates at its root. For each smaller tree, we then
compute the nullification sets and optimize it separately.
During planning, we add one more rule that any λ operation
using a null-tolerant conjunct has to be applied last in the λ
sequence. This way, we only fix the ordering of null-tolerant
conjuncts and still give freedom to null-intolerant ones.

An antijoin [13] is useful for handling negated nested queries.
An antijoin returns a tuple t in the outer relation (preserving
side) if t cannot find any matching tuples in the inner rela-
tion (null-producing side). We use . to denote an antijoin
(the arrow pointing to the null-producing side). Antijoins
and full outerjoins can be transformed as follows:

R
Prs
. S = σS.k is null(R

Prs−→ S)

R
Prs←→ S = R

Prs−→ S ∪ R
Prs
/ S

Since after the transformation there are only left outer-
joins, our technique can then by applied. Notice that the
predicate “S.k is null” is null-tolerant, which limits the re-
ordering of some λ operations.

9. CONCLUSION
In this paper, we propose a novel canonical abstraction for

outerjoin queries. Under such an abstraction, an outerjoin
query can be decomposed into a sequence of outer Carte-
sian products, followed by nullification operations and a fi-
nal best match operation. Our abstraction resembles that
of the inner join by allowing all join sequences as well as
enabling commutativity and transitivity among predicates.
As a result, more powerful optimization can be applied on
outerjoin queries to achieve much better performance.

For a given outerjoin query, we provide a method of pro-
ducing its outerjoin canonical abstraction and extend a con-
ventional optimizer to generate plans in an expanded search
space by taking advantage of the abstraction. We also de-
scribe an efficient implementation of the best match opera-
tion, using the standard OLAP amendment in SQL. Our ex-
perimental results on a commercial database system demon-
strate the performance advantage of our technique.

10. REFERENCES
[1] XQUERY 1.0. http://www.w3.org/tr/xquery/. 2003.

[2] E. F. Codd. Extending the relational database model
to capture more meaning. Transactions on Database
Systems, 4(4):397–434, 1979.

[3] IBM DB2 universal database version 8.1. 2002.

[4] Oracle Corporation. Oracle 9i. 2002.

[5] Umeshwar Dayal. Processing queries with quantifiers.
In ACM PODS Conference, 1983.

[6] L.R. Ford, et al. Flows in Networks. Princeton Univ.
Press, 1963.

[7] Cesar A. Galindo-Legaria. Algebraic optimization of
outerjoin queries. PhD thesis, Department of Applied
Science, Harvard University, 1992.

[8] Cesar A. Galindo-Legaria. Outerjoins as disjunctions.
In ACM SIGMOD Conference, pages 348–358, 1994.

[9] Cesar A. Galindo-Legaria, et al. How to extend a
conventional optimizer to handle one- and two-sided
outerjoin. In ICDE Conference, 1992.

[10] Cesar A. Galindo-Legaria, et al. Outerjoin
simplification and reordering for query optimization.
Transactions on Database Systems, 22(1), 1997.

[11] G. Graefe, et al. The volcano optimizer generator:
Extensibility and efficient search. In ICDE, 1993.

[12] Mauricio A. Hernández, et al. Clio: A semi-automatic
tool for schema mapping. In SIGMOD, 2001.

[13] Won Kim. On optimizing an SQL-like nested query.
ACM TODS, 7(3):443–469, 1982.

[14] J. Melton. Advanced SQL:1999-Understanding
Object-Relational and Other Advanced Features.
Morgan Kaufman, 2002.

[15] Jun Rao, et al. Using eels, a practical approach to
outerjoin and antijoin reordering. In Proceedings of the
IEEE ICDE Conference, 2001.

[16] Arnon Rosenthal and Cesar A. Galindo-Legaria.
Query graphs, implementing trees, and
freely-reorderable outerjoins. In Proceedings of the
ACM SIGMOD Conference, pages 291–299, 1990.

[17] P. G. Selinger, et al. Access path election in a
relational database management system. In ACM
SIGMOD, 1979.

[18] Jeffrey D. Ullman. Principles of Database and
Knowledge-base Systems, volume II. Computer Science
Press, 1989.

