
Querying XML Documents by Dynamic Shredding

Hui Zhang
Department of Computer Science

University of Manitoba
Winnipeg, MB, Canada, R3T 2N2

+1-204-474-8625

hzhang@cs.umanitoba.ca

Frank Wm. Tompa
School of Computer Science

University of Waterloo
Waterloo, ON, Canada, N2L 3G1

+1-519-888-4567, x4675

fwtompa@db.uwaterloo.ca

ABSTRACT
With the wide adoption of XML as a standard data represen-
tation and exchange format, querying XML documents be-
comes increasingly important. However, relational database
systems constitute a much more mature technology than
what is available for native storage of XML. To bridge the
gap, one way to manage XML data is to use a commercial
relational database system. In this approach, users typically
first “shred” their documents by isolating what they predict
to be meaningful fragments, then store the individual frag-
ments according to some relational schema, and later trans-
late each XML query (e.g., expressed in W3C’s XQuery) to
SQL queries expressed against the shredded documents.
In this paper, we propose an alternative approach that

builds on relational database technology, but shreds XML
documents dynamically. This avoids many of the problems
in maintaining document order and reassembling compound
data from its fragments. We then present an algorithm to
translate a significant subset of XQuery into an extended
relational algebra that includes operators defined for the
structured text datatype. This algorithm can be used as
the basis of a sound translation from XQuery to SQL and
the starting point for query optimization, which is required
for XML to be supported by relational database technology.

Categories and Subject Descriptors
H.2.4 [Database Management]: System—textual databases,
query processing ; I.7.1 [Document and Text Process-
ing]: Document and Text Editing—document management

General Terms
Algorithms, Languages, Management

Keywords
XML, XQuery, dynamic shredding, relational algebra, text
ADT

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
DocEng’04, October 28–30, 2004, Milwaukee, Wisconsin, USA
Copyright 2004 ACM 1-58113-938-1/04/0010 ...$5.00.

1. INTRODUCTION
As XML becomes a standard data representation and ex-

change format, querying XML data draws increasing atten-
tion. For this purpose, several XML based query languages
have been proposed, including W3C’s XQuery [2] which is
becoming predominant.
There are many alternative ways to process XML queries.

Existing approaches can be classified as native, semistruc-
tured, object-oriented, relational and object-relational. In
common with other researchers [27, 18, 26, 12], we choose
to build on the mature foundations of relational technology
to provide XML support. The advantages are that most of
the world’s business data are stored in relational or object-
relational format, relational systems are capable of storing
and processing large volumes of data, they have been devel-
oped as the best possible general-purpose query processors,
and vendors are continuously improving their products.
Relational approaches proposed to date are predicated on

some pre-defined mappings between XML documents and
relational tables. These mapping schemas are sometimes
tailored to specific documents or document collections by
using available DTDs (Document Type Definitions) [27],
identifying structure patterns in XML documents [13], or
utilizing XML data statistics and query workloads in a cost-
based manner [7, 28]. Alternatively, mappings can be de-
fined generically to reflect the components of an arbitrary
XML document [18, 23].
However, the fact that XML documents do not require

the existence of DTDs causes the DTD-dependent mapping
methods to be inapplicable, and the generic mapping often
exhibits poor performance in query processing, especially
when “shredded” documents must be recomposed in answer
to a query. Other mapping methods may have some advan-
tages for specific workloads, but performance suffers if they
are applied to a wide, unknown range of XML environments.
Most unfortunately, in all of these approaches, once a map-
ping is defined, it cannot be changed without a major data
reorganization and corresponding application reimplemen-
tation. Since adopting a fixed mapping limits the flexibility
of an XML database system, and it will be ill-suited for some
XML applications, we propose to shred XML data dynam-
ically in response to user queries. Our approach does not
require specific mapping schemas between XML documents
and relational data. It constructs relational views of XML
data on the fly and keeps the original XML text untouched
while providing access to various components.
Since XML can be used to represent tabular data as well

as documents, it is desirable for a query processor to work

21

effectively with both kinds of data. While exploiting a re-
lational database system as much as possible, we adopt the
proposal to enhance SQL to include support for a structured
text ADT [8]. By taking full advantage of the powerful query
processing capabilities of the RDBMS with the ability to
convert dynamically between documents and relations, this
approach promises to support a sophisticated XML query
engine in the best possible way. Our approach is useful for
any XML-enabled DBMS, such as the DB2 XML Extender
which stores some significant structural units as BLOB or
VARCHAR data. Our research should be of potential ben-
efit to RDBMS vendors, as our approach provides an easy
way to integrate text and relational technology to process
XML queries.
In this paper, we also present an algorithm to translate

from an XQuery canonical form [29] that covers a signif-
icant subset of XQuery to an extended relational algebra
with support for text[8]. In this algebra, functions on a text
datatype, including a tree pattern matching sub-language,
provide support for XPath queries [1].
In short, we make the following contributions:

• Describe a dynamic shredding approach to query XML
documents;

• Present an extended relational algebra with support
for text data type to process XML queries;

• Develop a translation algorithm from an XQuery canon-
ical form to the proposed algebra and prove its correct-
ness.

The rest of this paper is organized as follows: Section 2
reviews related work, and Section 3 describes our dynamic
shredding approach. Section 4 describes our algebra, and
Section 5 presents a translation algorithm from an XQuery
canonical form to our algebra. Section 6 outlines the ongoing
implementation work and concludes the paper.

2. RELATED WORK

2.1 Shredding XML documents to relational
tables

Many researchers have investigated using relational tech-
nology to process XML queries, with a focus on either defin-
ing mappings between XML documents and relational tables
[13, 18, 27, 9, 16, 26, 21] or translating XML queries on the
XML documents into SQL queries on the relational data
[23]. There are also industrial efforts to build query engines
that support XML queries, such as Microsoft’s and Soft-
ware AG’s XQuery implementation prototypes, among oth-
ers [5]. The mapping problem has been addressed in both
directions: shredding XML documents to fit into suitable
relational schemes and wrapping relational data with XML
views. In this paper, we are concerned with the former only.
The STORED project [13] applies a data mining algo-

rithm to identify regular structures in a set of XML doc-
uments without DTDs. Each “stable” pattern found in
the data is mapped to one table, and data items that do
not belong to any stable pattern are stored in a semistruc-
tured storage. Florescu and Kossmann [18] model XML
documents as ordered, oriented graphs, and propose several
ways of storing edges and values in relational tables. Their
method is generic and can be applied to any document, in-
cluding documents without DTDs. Shanmugasundaram et

al. propose three mappings based on simplified graph struc-
tures of DTDs [27]. Compared to Florescu and Kossmann’s
method, this approach results in large database schemas but
provides better query performance. By modeling the tar-
get application with an XML schema, data statistics, and
a query workload, and by using a standard cost-based rela-
tional optimizer, Bohannon et al. find an efficient mapping
for a target XML application [7]. Similarly driven by cost,
Wang et al. propose an adaptive method based on generic
algorithms to find optimal mappings for given XML data
and query workloads [28].

2.2 Algebras for XML
Several XML algebras have been proposed. An early one

[15], which has become the basis of W3C’s XQuery Formal
Semantics [3], does not seem to be a good choice for efficient
implementation purposes. SAL [6] is another algebra pro-
posed for XML documents modeled as a graph, whose basic
unit for manipulation is a node. However, there is no formal
translation from an XML query to their algebra.
The YATL algebra [10] is an extension to relational al-

gebra which introduces a Bind operator to create tuples of
variable bindings and a Tree operator to construct the XML
result according to a given tree structured construction spec-
ification. The functionalities of these two operators are quite
similar to that of our extraction and construction operators
(which will be described in the next sections). The major
differences to our approach are that the Bind operator does
not preserve context when forming variable bindings and
the Tree operator is quite complex which makes it difficult
to optimize at the algebra rewriting level.
TAX [20] is a tree algebra whose operators manipulate col-

lections of ordered labeled trees instead of relations. Based
on this algebra, the authors propose a translation algorithm
which is different from ours. Whereas the authors are work-
ing on the efficient implementation of their algebra, our al-
gebra is more easily integrated into existing RDBMSs.
Fiebig and Moerkotte [17] have studied XML construction

and optimization in Natix [22] from the algebraic point of
view. However, the language under consideration is YATL
[10] rather than XQuery, and their work is focused on phys-
ical rather than logical algebra. In contrast, our work aims
at a general algebraic framework for XML query process-
ing and optimization, which includes both the query part
and the construction part. However their work is comple-
mentary to ours in the sense that their construction plans
can be an underlying physical implementation of our logical
construction operators.
Finally, the algebra used in the Rainbow system, called

XAT [14], is similar to the one we have used in our own
research. In the XAT algebra, each operator takes one or
more XAT tables as input and produces an XAT table as
output. An XAT table is an order-preserving table of tuples.
Each tuple is a sequence of cells, and each cell stores an XML
node or a sequence of nodes. Each column in an XAT table is
either a variable binding from a given XQuery or a variable
generated internally. The Rainbow project has used this
algebra as the basis of its investigation into XQuery support
for views and for streams, among other applications.

3. DYNAMICALLY SHREDDING XML
We begin by defining how we address the problem of

storing XML data in relations. Unlike other mapping ap-

22

Figure 1: (a) an XML bib text (b) an XQuery query
posted on bib text and (c) the generated XML result

proaches, we can store whole documents, or arbitrarily large
fragments if preferred by a data administrator, in a column
of type text. Most importantly, we do not require that doc-
uments be chopped into atomic pieces to be squeezed into
relational tables and columns. Thus we avoid having to de-
termine at database design time what are the smallest units
of a document that might be needed by an application, and
we avoid having to reassemble meaningful aggregates from
the atomic pieces at run time in response to users’ queries.
To enable dynamic shredding of XML data, we define an

extraction operator, χA,S(R), adapted from the function ex-
tract subtexts() designed for a text-relational abstract data
type (ADT) [8]. This operator takes a table R as input and
two parameters, A and S, where A is a column of table R
of type text and S is a tree pattern to match against each
text entry in the given column A. The pattern matching
language is a variant of XPath that describes tree patterns
instead of path patterns, using hash marks or some similar
flags to indicate which nodes are to be returned. Therefore,
it differs from an XPath expression by identifying several
nodes in a tree that correspond to a single match rather
than extracting only the last node in some path.
The result of χA,S(R) is computed by considering each

row of R in turn, as illustrated in Figure 2 for the pattern
corresponding to //book#/author# to extract book-author
pairs simultaneously. Each application of a tree pattern
(having k flagged node labels) against a text tree produces
a 2k-column table with one row for every distinct tuple of
bindings and one column for each of the extracted subtexts
that matches a flagged node label plus a second column in-
dicating where in the input text this subtext come from,
referred to as the mark column. Thus given a table R with
n rows and a column A of type text, an application of ex-
traction χ to A produces n 2k-ary tables, one per row in
R. The resulting tables are then “attached” to R as if by
a join that correlates each row in R with all rows produced
from the A-value in that row. Hence the result of applying
this operator is an expanded and unnested table. The new
column names by default are the same as the root names of
the extracted texts, with suitable renaming as necessary.
Figure 2 symbolically shows the extraction of ‘book’ and

‘author’ from a table with one row and one column con-
taining a bib text shown in Figure 1a. Because the orig-
inal text contains three possible bindings for book-author

Figure 2: Results of extraction with a tree pattern
that flags book and author nodes

pairs, the resulting relation has three rows, each of which
is joined to the original bib value. The first column con-
tains the original bib text (typically represented by refer-
ence rather than by value, for efficiency), the third and the
fifth columns illustrate the extracted book text and author
text, while the second and the fourth columns are the asso-
ciated mark columns (with marks represented here in bold)
for book and author, respectively. These marks can be used
to simulate “node identity” to manage document order and
subtext equivalence, and need not be visible to users, i.e.,
they are “hidden” columns.
A conventional implementation of the marks produced by

the extraction operator is to use document references (e.g.,
doc id + position in a document). An alternative is to use
FlexKeys as designed for supporting XAT [14]. With any
such implementation, the extracted text value need not be
stored explicitly in its text column either, but instead it can
be implemented by storing its length or a reference to its
endpoint in the stored text: the mark column value together
with this value describe the start and end of the text region
from which the subtext itself can be obtained. Thus, ex-
traction materializes relational views of application-selected
portions of XML data on the fly, and keeps the original XML
text untouched.

4. EXTENDED RELATIONAL ALGEBRA
Our algebra is an extended relational algebra based on

SQL tables rather than relations [24] and with support for
text functions. Thus, similarly to XAT tables, collections
of rows are ordered and permit duplicates, but data val-
ues may include structured text as well as integer, string,
date, etc. Structured text data is treated as an abstract
data type, in which an “element node” together with its at-
tributes and descendants in the XQuery 1.0 and XPath 2.0
Data Model [4] is represented conceptually as an ordered
tree [8]. The structured text ADT supports two functions
to convert from strings (usually VARCHARs or CLOBs) to
text and from text to strings, six functions are used for ma-
nipulating marks in texts, two functions query the existence
of or the number of marks in a text, two functions extract
subtexts from a text, and the last five functions manipu-
late the DTD corresponding to an XML text. Furthermore,
selection and join conditions may include text-related con-
ditions, and the projection list may include text functions

23

as well. When needed, these traditional relational opera-
tors deal with texts as if the data were converted to canon-
ical strings first. For example, if we wish to test whether
two texts t1 and t2 have equal value, we evaluate whether
text to string(t1) is equal to text to string(t2).
An important concept in the text ADT is to preserve the

context of selected text as well as extracting the subtext.
These contexts are useful in our evaluation of XQuery ex-
pressions since they indicate where these extracted subtexts
come from, which in turn provide a possible mechanism to
simulate ‘node identity’. Hence, translation issues related
to keeping document order and node identity can be solved
by utilizing these contexts. It is observed that these con-
texts can be ‘virtual’ so that users or applications do not
see them, but the system can manipulate them for the pur-
pose of bookkeeping or enforcing correctness. Therefore, we
choose to distinguish between visible and hidden columns.
Visible columns are those available to users or applications,
whereas hidden columns are used solely by the DBMS. Sim-
ilar consideration has appeared elsewhere [11, 25], where a
typical virtual attribute is a tuple identifier which is used to
represent each tuple uniquely.
Since traditional operators are well understood, we omit

them here and focus on the non-standard operators only, as
shown in Table 1.

Operator Definition

χA,S(R) Extract components matching pattern
S from column A in table R

γA(R) Partition table R on grouping columns A
τA(R) Sort table R based on sorting columns A
µA(R) Aggregate construction on column

A of table R
νAC1 ,AC2 ,tag(R) Element construction on columns

AC1 , AC2 of table R

Table 1: List of operators

4.1 Extraction
Let S(COLS, PRE COLS, OPS,Φ, F COLS) be a tree

matching pattern, where COLS=<col1, col2, · · · , coln> is
the vector of items in XPath [1] terminology (renamed if
needed for uniqueness); PRE COLS=<p1 , p2, · · · , pn> is
the vector of the closest ancestor of each item in COLS;
OPS=<op1, op2,· · · , opn> is the vector of child or descen-
dent operations on items, i.e., a ‘/’ or a ‘//’ operation;
Φ=<ϕ1, ϕ2, · · · , ϕn> is the vector of text matching con-
straints on each item (if there is no condition applied on
a particular item, an always-true condition is assumed);
F COLS is the vector of items with associated flag #. These
vectors are all ordered by the pre-order depth-first traversal
on the parse tree for pattern S parsed according to the pat-
tern language. For example, the pattern ‘//A#[.//B="s"]/C#’
corresponds to the tree pattern S where COLS=<A, B, C>,
PRE COLS=<φ, A, A>, OPS=<//, //, />, Φ=<true,
equals("s"), true>, and F COLS=<A, C>.
Let ex(vi, c2, op) compute a table with three columns.

Each row of the returned table contains the value vi in
the first column and a found item match of c2 extracted
from vi (with op ‘/’ or ‘//’) in the third column, along
with its corresponding hidden mark ĉ2 in the second col-

umn. In the case that there is no match found at all,
ex(vi, c2, op) returns a single row with value (vi, null, null).
Define ex(c1, c2, op) =

S
vi∈ all values of c1

ex(vi, c2, op).

Define pre(col, S) to be the item that is the closest ances-
tor item of the node in the pattern S that will be extracted
to column col.
Now our extraction operator(χ) with a pattern S on col-

umn A of table R can be formally defined as:
χA,S(COLS,PRE COLS,OPS,Φ,F COLS)(R)

= R ✶A (πF COLS∪F COLS
′∪{A}(ϕ1(ex(A,col1, op1))

✶pre(col2,S) (ϕ2(ex(pre(col2, S), col2, op2))
· · · · · ·
✶pre(coln,S) (ϕn(ex(pre(coln, S), coln, opn)))

)

where F COLS
′
is the vector of hidden columns correspond-

ing to F COLS.

4.2 Sorting
A sorting operator τ is used to sort a table according to

some sorting criteria. τA(R) takes a table R as input and a
list of sorting columns A as a parameter. The result of this
operation is the table R, but with the rows sorted in the
order indicated by A. The parameter may indicate the sort-
ing is to be done in ascending or descending order, or based
on document order rather than values of each column in A.
That is, the actual sorting may be performed on respective
mark columns associated with each column in A, which are
defined to reflect document order.

4.3 Groupby
In order to facilitate eventual optimization involving group-

ing operations and aggregate constructions, we separate the
grouping operation from the computation of aggregate func-
tions. We adopt the partition operator γ from Paulley [24] as
our groupby operator. For a grouping column col of simple
type, γ partitions a table such that each row in a parti-
tion has the same value for col; if the grouping column is of
type text, it partitions the table based on the value of the
(hidden) node identifier of col. Thus the groupby operator
can be used to partition a table based on simple values or
instead on node identity when a text column is specified.

4.4 Construction operators
To support the conversion of (parts of) relational tables

into documents, we include two construction operators:

• Aggregate constructor (µA) is used mainly for repre-
senting the contents of a set-valued column for sev-
eral tuples as a single tree. Assuming that a groupby
operation is performed first, instead of computing an
aggregated scalar value for each group, aggregate con-
struction forms a tree from the values over column A
in each group, appropriately handling null values.

We adopt the catenate operator originally defined in
[19] to manipulate vectors. A vector is an ordered col-
lection of trees organized in a larger tree structure,
with the root labeled vector and the roots of the trees
in the collection being the children. The catenate op-
erator takes two vectors and returns a single vector
including all subtrees of the arguments. Hence, the
root of the generated tree of µA is labeled with “vec-
tor”. This root is a “virtual” root in the sense that

24

when one vector V1 is concatenated with a second tree
to form a new tree T, the root of V1 is discarded and
all its children become the children of T directly. In
the presence of null, catenating a vector T with null
returns T itself, and catenating two null trees returns
null. Therefore, if the group being aggregated is the
empty set, then the aggregate result is null. Again by
default, the column name in the resulting table corre-
sponding to the aggregated value of applying µ is the
same as before, i.e., A.

To formally define this construction operator, let T(tag,
attributes, subelements)denote a structured text. When
we aggregate several text values e1, e2, · · · , en from
one column of a relational table, we form a new text
value having e1, e2, · · · , en as subelements, having no
attributes, and we represent the tag by the special
symbol vector. Thus a text value generated by an
aggregate construction has the form T (vector, null,
<e1, e2, · · · , en>). (We restrict structured texts such
that whenever the tag is vector, the corresponding at-
tributes are by definition null.)

Now we define our catenate (◦) operator as follows: If
T1 = T (t1, a1, < e1, e2, · · · , em >) and T2 = T (t2, a2,
<f1, f2, · · · , fn>) are two text values and

E =

8>>>>>>>>><
>>>>>>>>>:

<e1, e2, · · · , em, f1, f2, · · · , fn>
if t1 = vector and t2 = vector

<e1, e2, · · · , em, T2>
if t1 = vector and t2 �= vector

<T1, f1, f2, · · · , fn>
if t1 �= vector and t2 = vector

<T1, T2>
if t1 �= vector and t2 �= vector

then T1 ◦ T2 = T (vector, null, E).

Consequently, the aggregate constructor µA can be for-
mally defined as follows:

Let v1, v2, · · · , vn be the list of values in a group on
column A. Applying the aggregate constructor on this
group generates the text value v1 ◦ v2 · · · ◦ vn, and µA

is the result of applying an aggregate constructor to
each group in the table. Note that the order of the
subelements of the result is defined to match the order
of the rows in the table.

• Element constructor (ν) is another construction oper-
ator. It takes three parameters, AC1 , AC2 , and tag,
where (1) AC1 is a list of columns that are to become
the XML attributes of the resulting element being con-
structed, here denoted elet. The order that columns
occur in the list AC1 does not matter. (2) AC2 is a list
of columns that are to become the subelements of elet.
The order that columns occur in the AC2 list is also
the order that these subelements occur in the resulting
element. (3) tag is the tag name of elet. By default,
the column corresponding to elet in the resulting ta-
ble is named tag, but if tag conflicts with an existing
column name, some renaming is necessary.

Element constructor is applied to each tuple and the
result is computed as: concatenate the value Ti of each
column i appearing in AC2 to construct a tree T with
all Ti as children. Set the tag of the result to tag
and the (XML) attributes of the result to the named

Figure 3: An example of aggregate constructor and
element constructor

set of values in AC1 , where names correspond to the
(table) attribute names in AC1 . Since the order of each
column appearing in AC2 is important, we apply the
catenate operator in a way such that each child is in
the same order as it is in AC2 .

This can be formally defined as:

For a single row in a table, let c1j be the value of col-
umn C1j for each C1j in A

C1 ; and let c21, c22, · · · , c2m

be the values of columns in AC2 . Applying the ele-
ment constructor to this row produces the text value
T (tag, {C1j = c1j | C1j ∈ AC1}, c21 ◦ c22 ◦ · · · ◦ c2m).
Finally, ν(tag, AC1 , AC2) is the result of applying such
element constructor to each row of the table.

Hence, while aggregate constructor is a vertical concate-
nation, element constructor is a horizontal concatenation.
Figure 3 shows the application of aggregate constructors

on each of both columns B and C of the table resulting from
grouping on both columns G and A (shown in Figure 3a-
b), followed by the application of an element constructor on
columns A, B, and C together (shown in Figure 3c). We
require that tuples are in the desired order before applying
the aggregate constructor.

5. TRANSLATING XQUERY
Given an XQuery Q, our XML query processing frame-

work first canonicalizes it to a query Q’, then translates from
Q’ to an extended relational algebra with support for text,
using the translation algorithm described below. After ob-
taining an initial query plan from the translation, we apply
query rewritings (see [30]) to optimize it to get a better plan,
which is then sent to the underlying extended database man-
agement system to be executed. Figure 4 shows the steps of
our XML query processing framework.
XQuery canonical form (defined in [29]) restricts the al-

lowable syntactic forms. For example, path expressions can
only appear in the for/let clauses; items returned in the re-
turn clause must be variables defined before in the for/let
clauses, or aggregate functions applied on those variables,
or expressions in nested canonical form; only boolean condi-

25

Figure 4: Our XML query processing framework

tions can appear in the where clause; and the nested canon-
ical form can only appear in the let clause or return clause.
The canonical form also provides a conceptually uniform vi-
sion of path expressions, element constructors and FLWOR
expressions in XQuery. Therefore it provides a simple way
to understand these important features of XQuery. Most
FLWOR expressions can be translated to this canonical form
through a set of transformation rules [29].
Given an XQuery Q in the canonical form, we represent

it as a query tree (whose definition will be given shortly),
then we translate the query tree to a relational algebraic
expression tree. We show that the execution of the resulting
algebraic expression tree will produce the same correct query
result as the one that would be generated by processing Q
directly. Elsewhere we describe possible query rewritings
and optimizations that can be subsequently applied [30].
Executing an XQuery FLWOR expression requires the

construction of a document fragment that includes the com-
ponents specified by the return clause. The values for each
component are determined by the bindings imposed by the
for, let, and where clauses of the expression. Thus we choose
to represent a FLWOR expression by a query tree, in which
the root is annotated by the for, let, and where clauses and
has subtrees representing each variable or constant whose
value will be returned. Because the canonical form restricts
the placement of nested FLWOR expressions to appear in
let clauses and return clauses only, a query tree can include
query subtrees descending from the root or from any compo-
nent being returned. In essence, a query tree is a straightfor-
ward re-encoding of a canonical XQuery expression, with all
the information needed to reconstruct the original canonical
query.

Definition 5.1 (Query Tree). A query tree has four
kinds of nodes: every internal node is called a CF node

and represents a FLWOR expression or a compound return
value; every leaf node represents a simple return value and
is either a V node to denote a for-variable, U node for a let-
variable, or aggU node for an aggregate function applied to a
let-variable. The subtrees of each CF node represent either
nested FLWOR expressions that are bound to let-variables
or the components of the return clause, in the order of their
appearance in the XQuery expression. In the former case,
the incoming edge is labeled with ‘let’ and this CF node is
referred to as a let-CF node.
Each CF node is annotated with the rest of the query in-

Figure 5: (a) An example of XQuery canonical form
(b) its corresponding query tree

formation expressed in the corresponding FLWOR expres-
sion: the mapping of for-variables and basic let-variables
(i.e., those without nested FLWOR expressions) to path ex-
pressions, the contents of the where clause, the result-tag
(the one surrounding the FLWOR expression, possibly ab-
sent), and return-tag (the one immediately following the re-
turn keyword, possibly absent). Each leaf node is annotated
with its respective tag in the return clause.

Figure 5b shows the query tree for the canonical query in
Figure 5a, where leaf nodes are represented with rectangles
and inner nodes are represented with circles. To avoid clut-
tering the diagram, only the associated query information
for the let-CF node is shown.
We now show how to translate an XQuery in canoni-

cal form into a corresponding relational algebra expression.
For convenience, we assume there is a two-column table R0

(which could be a view), with one column for document
name and one for document text, serving as a directory to
support XQuery’s document() function. Furthermore, in
the explanations below, we describe the operations of the
translator as if it were an interpreter for a relational algebra
engine. Thus, throughout this explanation we say that the
translation performs some computation as a shorthand for
the translation “produces an operator subtree, which when
executed will result in” that computation. By viewing the
translation process as interpretive instead of compilatory,
we can discuss tables that will not actually be formed until
query execution time.
We start by considering a query in basic XQuery canonical

form, that is, with no nested FLWOR expressions.

Translation 5.1 (Trans0: Basic CF Translation).
Let Q be a query in basic XQuery canonical form, and QT
be the query tree for Q. Note that QT has only one CF
node (i.e., root) with some leaf children as returned values.
Trans0 proceeds as follows by considering query information
and the returned values associated with the CF node:

1. Translate for clause: extract binding values for each
for clause $vi := FEi using the extraction operator
χ. FEi is a path expression beginning with either
document() or a reference to another variable, which
determines the source for the extraction. The rest of

26

the path expression is translated to a pattern matching
string, and supplied as the second parameter to χ.

1.1. If FEi starts with the document() function Trans0
selects the corresponding row and column of the
initial table R0 to form a new one-row, one-column
table R1 containing the document text doc, then
extracts $vi from R1 using the tree pattern corre-
sponding to FEi. When executed, this produces
a new column together with a hidden mark col-
umn on R1.

1.2. If FEi starts with another variable, Trans0 must
have previously extracted a corresponding col-
umn in some table. In this case, extraction starts
from that column and forms a new column to-
gether with a hidden mark column for that exist-
ing table.

Whenever distinct is present, duplicate elimination is
performed based on value or node identity as desired,
depending on the specification of distinct.

After this step, each variable corresponds to a column
from which the variable takes its binding values, and
a hidden mark column indicating where these bind-
ing values originate. Since these mark columns are
used only by the underlying DBMS, we use the term
‘column’ to mean ‘visible column’ unless specified ex-
plicitly.

2. Translate let clause: similar to step 1 except that after
each extraction, perform a sorting operation on all the
remaining columns (except let-columns) based on doc-
ument order, then perform a partition on all columns
except the newly extracted one, followed by an ag-
gregate constructor on the newly extracted column.
Thus each let-variable’s value is a text tree represent-
ing a collection as a vector. To ensure compliance with
XQuery semantics, the order of elements in the group-
ing column list and the sorting column list is the same
as in the query.

3. Form a single table: compute the cross product of mul-
tiple tables, if any, obtained from the previous steps.
Let the resulting table be R(a1, a2, ..., an).

4. Translate where clause:

4.1. Rewrite the where condition such that variable
appearances are replaced by their corresponding
column names in R. Denote the rewritten condi-
tion as WC.

4.2. Include a selection operator σ with conditionWC.

5. Translate return clause:

5.1. Project on columns corresponding to for-variables,
let-variables appearing in the return clause, plus
those aggregate functions applied on let-columns.
If a returned variable has a tag around it, then
the projection list includes an element construc-
tor applied to that column.

5.2. Sort the table according to document order or
as the query requires. In the case of sorting on
document order, the sorting column list is the for-
variable list with each for-variable in the order of

its appearance in the for clause, and the sorting
is performed on the hidden mark column associ-
ated with each for-variable. (This corresponds to
W3C’s specification for ordering.)

5.3. Apply an element constructor using the columns
of the previous step. Its parameters are sup-
plied as indicated by the return clause, with the
columns in the second parameter (i.e., subele-
ments list) in the order of their corresponding
variable appearances in the return clause and the
third parameter as return-tag if present. Let the
resulting column be named at.

6. Generate the result: Project on column at and apply
an aggregate construction operator on at treating all
rows as a single group, followed by an element con-
structor adding the tag result-tag or vector on the ag-
gregated value of at. Hence, the result of this step is
a one-row, one-column table containing a constructed
text tree T.

Note that SQL cannot directly evaluate agg(x) when x is
a let-variable binding, since Trans0 generates a tree for x to
encapsulate a group of values. Thus agg(x) can be evaluated
by first decomposing this tree, then applying an appropriate
partition operation so that for each original tuple before de-
composition, there is a group corresponding to it; and then
applying agg on each group in the usual way. Optimization
applied to the resulting query plan can eliminate unneces-
sary tree creations and decompositions [30].

Given the query in Figure 1b posed on the bib text in
Figure 1a, Trans0 generates the algebraic expression tree
shown on the left side of Figure 6, with the corresponding
table generated shown on the right side of Figure 6. To
save space, Figure 6 omits the hidden mark columns in the
generated tables, and depicts the aggregated values (e.g., let
variable $a) as vectors rather than trees. Note that book′

and author′ in the algebraic tree refer to the corresponding
hidden mark columns, i.e., sorting is based on document
order and partition is performed on node id.

Lemma 5.1. Step 4 in Translation 5.1 keeps a row in table
R if and only if the bindings for this row match the selection
criteria according to XQuery semantics.

Theorem 5.1. For any basic XQuery canonical query Q,
Trans0 generates a correct equivalent relational query.

Proof: Steps 1 through 4 ensure that the correct data
will be stored in the table, and steps 5 and 6 ensure that
the appropriate result is assembled. The complete proof can
be found elsewhere [29].

Now we extend the translation of basic XQuery expres-
sions to expressions with or without nesting in return and
let clauses. Let the table R in the translation of a basic
query be denoted as the working table. In the extended
translation for general queries, the working table is global
to all nested FLWOR expressions.

Translation 5.2 (Trans: XQuery CF Translation).
LetQ be an XQuery in canonical form, QT be the query tree
for Q. For each CF node in the query tree QT , visited in
depth-first order, Trans applies an extension of the basic
translation Trans0 with the following modifications:

27

Figure 6: The algebraic expression tree for the
XQuery in Figure 1b

• Step 0. Save the current working table R as S.

• Step 2′. Translate let clause. If the let clause is a sim-
ple variable binding without nested CF, its translation
is the same as that in basic translation. Otherwise, call
Trans on the nested CF node to create a column con-
taining the sets of values to which the let variable is
bound.

• Step 5′. Denote the extracted for- and let-columns
for this current CF node as CC, all previously ex-
tracted for- and let-columns for nested subqueries as
RC, and all previously aggregated columns (including
both scalar aggregated columns and aggregated con-
struction columns) for nested subqueries as AC.

5.0a. If there are nested CF nodes in the return clause,
call Trans on the nested CF nodes.

5.0b. If processing a nested CF node, replace R by the
left outer join of S with R. This step is to en-
sure that empty substructures will be generated,
if needed, precisely where they are required by
XQuery semantics.

5.1′. Similar to Step 5.1, but with the projection list
enlarged to include all columns in RC ∪ AC along
with those required in the construction of this CF
node.

5.2′. Sort the table as specified by the query, or (if
no sorting is specified) sort the table with the
sorting column list including all columns in RC ∪
CC (except all let-columns) with each for-variable
in the order of its appearance in Q. As before,
sorting is performed on the hidden mark column
associated with each for-variable to ensure correct
document order.

Figure 7: Translating the nested CF node of query
in Figure 5

5.3′. Same as step 5.3.

• Step 6′. Partition on all columns in RC ∪ AC, con-
struct the result of this CF node in the same way as
Step 6, and put the result into a new column in table
R.

To demonstrate how the code produced by Trans oper-
ates, consider the nested CF node in the query in Figure
5. Because of the bindings for variables $a, $b, and $e from
the root, we start with a table such as shown in Figure 7a.
This is table S described in Step 0 for Trans. Executing
the translation of the nested for and let clauses results in a
table such as shown in Figure 7b, from which the translated
where clause will remove several rows as indicated. We as-
sume that the application of the where condition eliminates
all the tuples with ($a, $b, $e) = (a2, b2, e2). The nested re-
turn clause corresponds to code that aggregates subresult
as in Figure 7c. The left outer join of S and R generates
the table shown in Figure 7d (including a null sub-result
for the empty match), and finally the code that aggregates
subresults causes the element construction shown in Figure
7e.
Again we can prove that Trans preserves the semantics of

Q [29].

28

Lemma 5.2. As Trans is invoked on any CF node n in
the query tree QT , there is a bijection from the columns of
working table R to the union of (1) the variables bound in all
ancestors of n; and (2) previously constructed return nodes,
including each aggU node and sibling located to the left of
n and to the left of each of its ancestor nodes. After Trans
is invoked on n, there is one more column, corresponding to
the constructed result for n.

Theorem 5.2. For any CF node cf in the query tree QT ,
and each valid binding for variables that are defined before
cf, the invocation of Trans on cf generates one and only
one semantically correct result corresponding to cf for that
binding.

Theorem 5.3. Trans generates the semantically correct
result for an expression Q in XQuery canonical form.

6. CONCLUSIONS AND FUTURE WORK
In this paper, we propose to query XML documents by

dynamic shredding. This approach does not require any
specific mapping between XML documents and relational
tables. It converts subtexts to relational fields as needed dy-
namically in response to user queries, and keeps the original
XML text untouched. Hence, the problem of reconstructing
XML data from relational tables, which is tedious and ineffi-
cient for alternative approaches, does not exist. Meanwhile,
there is no undesired duplication of XML data needed to
keep the document as a whole while providing access to var-
ious components. The approach is applicable for managing
any stored XML documents.
In addition, we define an extended relational algebra to

operate with structured text. We also present an algorithm
to translate from an XQuery canonical form into that alge-
bra, and we prove its correctness. This algorithm can be
used as the basis of a sound translation from XQuery to
SQL, and the starting point for query optimization, which
is required for XML to be supported by relational database
technology. The algebra and its translation provide a sim-
ple, but powerful, mechanism to support XQuery processing
on a commercial relational database management system.
Currently we are building a prototype XML query pro-

cessor and optimizer based on this study, on top of the Text
and Relational Database Management System (T/RDBMS)
developed between 1994 and 1997 at the University of Wa-
terloo. On one hand, relational queries involving join, group-
ing, aggregation, set operations, and sorting are supported
directly in SQL; on the other hand, full-text search queries
or XPath-like queries are naturally supported by using text
ADT operators and the tree pattern matching sub-language.
Moreover, since T/RDBMS seamlessly integrates a text ADT
with SQL, queries involving both traditional relations and
structured text manipulation can be easily accommodated,
and preliminary experience has shown that the text manip-
ulation described in this paper can be performed efficiently
(see http://db.uwaterloo.ca/trdbms/tpcd/).
We claim that our approach is particularly suitable to

implement an XQuery processor for the following reasons:

• Storing whole documents in a column of text rather
than chopping them into pieces to be mapped to rela-
tional tables and columns preserves the original XML
data. (If a document is often updated, it may be desir-
able to partition the text into several “update units,”

such as chapters, that can be stored and modified
individually, rather than editing and re-indexing the
whole. However, the document need not be as highly
fragmented as is typical when using static shredding.)
Note that RDBMS can not only be used as a place
to store the unstructured data, but its power can also
be harnessed to manipulate components of that data.
However, this approach is only feasible if appropriate
structured text operators are supported.

• Path expressions in an XQuery expression are easily
translated into tree pattern matching operators, which
provide simultaneous access to related components.
We anticipate extensive opportunities for query opti-
mization through appropriate choices of tree patterns
that cover multiple XPath expressions spanning one or
more XQuery expressions.

• Text ADT operations such as extract subtexts() isolate
desired text fragments but also remember the context
within which they occur. This provides a means for
isolating substructures to be evaluated using the full
power of SQL, while retaining their origins so that the
results of the evaluations can be carried back into the
original contexts.

• Because it is designed to work with SQL-92, T/RDBMS
support is readily available to be included in an XQuery
processor built on any of today’s commercial or aca-
demic systems. If the underlying engine is upgraded
to SQL-99 or beyond, extra features are immediately
also available for XQuery support.

In the future, we plan to conduct experiments on large
amount of XML documents to study execution performance.

Acknowledgments
We gratefully acknowledge financial assistance from the Uni-
versity of Waterloo, Bell University Labs, and the Natural
Sciences and Engineering Research Council of Canada. The
foundations for dynamic shredding arose from our previous
work [8].

7. REFERENCES
[1] XML path language (XPath) 2.0. In
http://www.w3.org/TR/xpath20.

[2] XQuery 1.0: An XML query language. In
http://www.w3.org/TR/xquery.

[3] XQuery 1.0 and XPath 2.0 formal semantics. In
http://www.w3.org/TR/query-semantics.

[4] XQuery 1.0 and XPath2.0 data model. In
http://www.w3.org/TR/query-datamodel.

[5] XQuery implementation. In
http://www.w3.org/XML/Query#implementations.

[6] C. Beeri and Y. Tzaban. SAL: An algebra for
semi-structured data and XML. In Proc. of the 2nd
Workshop on the Web and Databases, pages 37–42,
Philadelphia, June 1999.

[7] P. Bohannon, J. Freire, P. Roy, and J. Simeon. From
XML schema to relations: A cost-based approach to
XML storage. In Proc. of the 19th Int. Conf. on Data
Engineering, pages 64–75, San Jose, Feb. 2002.

29

[8] L. J. Brown, M. P. Consens, I. J. Davis, C. R. Palmer,
and F. W. Tompa. A structured text ADT for
object-relational databases. Theory and Practice of
Object Systems (TAPOS), 4(4):227–244, 1998.

[9] M. Carey, D. Florescu, Z. Ives, Y. Lu,
J. Shanmungasundaram, D. Shekita, and
S. Subramanian. XPERANTO: Publishing
object-relational data as XML. In Proc. of the 3rd
Workshop on the Web and Databases, Dallas, Texas,
May 2000.

[10] V. Christophides, S. Cluet, and J. Simeon. On
wrapping query languages and efficient XML
integration. In Proc. of the ACM SIGMOD Int. Conf.
on Management of Data, pages 141–152, Dallas,
Texas, May 2000.

[11] U. Dayal. Of nests and trees: A unified approach to
processing queries that contain nested subqueries,
aggregates, and quantifiers. In Proc. of the 13th Int.
Conf. on Very Large Data Bases, pages 197–208,
Brighton, England, Sept. 1987.

[12] D. DeHaan, D. Toman, M. P. Consens, and T. Özsu.
A comprehensive XQuery to SQL translation using
dynamic interval encoding. In Proc. of the ACM
SIGMOD Int. Conf. on Management of Data, San
Diego, CA, June 2003.

[13] A. Deutsch, M. F. Fernandez, and D. Suciu. Storing
semistructured data with STORED. In Proc. of the
ACM SIGMOD Int. Conf. on Management of Data,
pages 431–442, Philadelphia, June 1999.

[14] M. EI-Sayed, K. Dimitrova, and E. A. Rundensteiner.
Efficiently supporting order in XML query processing.
In Proc. of the fifth ACM Workshop on Web
Information and Data Management (WIDM), pages
147–154, New orleans, Louisiana, Nov. 2003.

[15] M. Fernandez, J. Simeon, and P. Wadler. An algebra
for XML query. In Proc. of the 12th Conf. on the
Foundations of Software Technology and Theoretical
Computer Science, Delhi, Dec. 2000.

[16] M. Fernandez, W. C. Tan, and D. Suciu. SilkRoute:
Trading between relational and XML. In Proc. of the
9th Int. World Wide Web Conf., Amsterdam,
Netherlands, May 2000.

[17] T. Fiebig and G. Moerkotte. Algebraic XML
construction and its optimization in Natix. World
Wide Web Journal, 4(3):167–187, 2001.

[18] D. Florescu and D. Kossmann. Storing and querying
XML data using an RDMBS. IEEE Data Engineering
Bulletin, 22(3):27–34, Sept. 1999.

[19] G. H. Gonnet and F. W. Tompa. Mind your grammar:
A new approach to modeling text. In Proc. of the 13th
Int. Conf. on Very Large Data Bases, pages 339–346,
Brighton, England, Sept. 1987.

[20] H. V. Jagadish, L. V. S. Lakshmanan, D. Srivastava,
and K. Thompson. TAX: A tree algebra for XML. In
Proc. of the 8th Int. Workshop on Database
Programming Languages, Rome, Sept. 2001.

[21] Y. Kadiyska and D. Suciu. Mixed XML/relational
data processing. In Informal Proc. of the workshop on
programming language technologies for XML
(PLAN-X 2004), pages 73–82, Venice, Italy, Jan. 2004.

[22] C. C. Kanne and G. Moerkotte. Efficient storage of
XML data. In Proc. of the 17th Int. Conf. on Data
Engineering, page 198, San Diego, CA, March 2000.

[23] I. Manolescu, D. Florescu, and D. Kossmann.
Answering XML queries on heterogeneous data
sources. In Proc. of the 27th Int. Conf. on Very Large
Data Bases, pages 241–250, Rome, Sept. 2001.

[24] G. N. Paulley. Exploiting functional dependence in
query optimization. PhD thesis, Dept. of Computer
Science, University of Waterloo, Ontario, Canada,
April 2000.

[25] H. Pirahesh, J. M. Hellerstein, and W. Hasan.
Extensible/rule based query rewrite optimization in
Starburst. In Proc. of the ACM SIGMOD Int. Conf.
on Management of Data, pages 39–48, San Diego,
June 1992.

[26] J. Shanmugasundaram, J. Kiernan, E. Shekita,
C. Fan, and J. Funderburk. Querying XML views of
relational data. In Proc. of the 27th Int. Conf. on Very
Large Data Bases, pages 261–270, Rome, Sept. 2001.

[27] J. Shanmugasundaram, K. Tufte, G. He, C. Zhang,
D. DeWitt, and J. Naughton. Relational databases for
querying XML documents: Limitations and
opportunities. In Proc. of the 25th Int. Conf. on Very
Large Data Bases, pages 302–314, Edinburgh,
Scotland, 1999.

[28] X. Wang, J. Luan, and Y. Dong. An adaptive and
adjustable mapping from XML data to tables in RDB.
In Efficiency and Effectiveness of XML Tools and
Techniques and Data Integration over the Web, VLDB
2002 Workshop EEXTT and CAiSE 2002 Workshop
DIWeb, S. Bressan and A.B. Chaudhri and M.L. Lee
and J.X. Yu and Z. Lacroix (eds.), pages 117–130.
Springer-Verlag, Berlin Heidelberg, 2003.

[29] H. Zhang. XML query processing and optimization.
PhD thesis, School of Computer Science, University of
Waterloo, Ontario, Canada, March 2003.

[30] H. Zhang and F. W. Tompa. XQuery rewriting at the
relational algebra level. In Trends in XML technology
for the global information infrastructure, a special
issue of. Int. Journal of Computer Systems, Science,
and Engineering, 18(5):241–262, Sept. 2003.

30

