
Experiences Building the Open OODB Query Optimizer

JOS6A. Blakeley, Texas Instruments

WNiam J. McKenna, University of Colorado at Boulder

Goetz Graefe, Portland State University

Abstract

This paper reports our experiences building the query optimizer for
TI’s Open 00DB system. To the best of our knowledge, it is the
first working object query optimizer to be based on a complete

extensible optimization framework including logical algebra,

execution algorithms, property enforcers, logical transformation
rules, implementation rules, and selectivity and cost estimation.

Our algebra incorporates a new rr@erialize operator with its
corresponding logical transformation and implementation rules that

enable the optimization of path expressions. Initial experiments on

queries obtained from the object query optimization literature
demonstrate that our optimizer is able to derive plans that are as
efficient as, and often substantially more efficient than, the plans

generated by other query optimization strategies. These
experiments demonstrate that our initial choices for populating

each pert of our optimization framework are reasonable. Our
experience also shows that having a complete optimization

framework is crucial for two reasons. Firs~ it allows the optimizer

to discover plans that cannot be revealed by exploring only the

alternatives provided by the logical algebra and its transformations.

Sewnd, it helps and forces the database system designer to

consider all parts of the framework and to maintain a good btdance
of choices when incorporating a new logical operator, execution

algorithm, transformation rule, or implementation rule. The Open
OODB query optimizer was constructed using the Volcano

Optimizer Generator, demonstrating that this second-generation

optimizer generator enables rapid development of efficient and
effective query optimizers for non-standard data models and

systems.

1. Introduction

Query processing remains one of the most important challenges

to researchers and developers of Object-Oriented Database
Management Systems (OODBS) [1]. Most research efforts on

object query optimization have concentrated on the design of

system components only, e.g., object algebras [17, 19, 21], query
rewriting techniques [3], global query processing architectures [4,

11, 19], indexing techniques [8-10], and new execution algorithms

to efficiently traverse complex object structures such as pointer-
based joins [181 and complex object assembly [7]. However, little

has been reported on the development of complete working object

query optimizers [14].

This paper reports our experiences in the design and
development of the object query optimizer for the Open 00DB

system [22], an modular and extensible 00DB system being built
at Texas Instruments. The lack of a standard object data model and

application program interfaces has not only slowed acceptance of

00DB technology by potentird users but also slowed the
development of standardized 00DB wmponents such as the query

optimizer. The Open 00DB team attempts to overcome these

shortcomings by describing the design space of 00DBs and their

modules, building a data model-independent architectural

framework that allows system developers to configure

Permission to copy without fee all or part of this material is

granted provided that the copies are not reads or distributed for
direot commercial advantage, the ACM copyright notica and tha
title of the publication and its data appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republieh, requires a fee
and/or epecific permission.
SIGMOD 151931Waehington, DC,lJSA

independently useful modules to form an 00DB, verifying the
suitability of this open approach by implementing an 00DB to
these specifications, and determining areas (e.g., module
interfaces) where consensus among the OODB research
community exists or is possible. Our approach to the design of the

Open 00DB query optimizer has been influenced strongly by the

extensibility and modularity goals of the Open 00DB project.
The philosophy used in the design of the Open 00DB optimizer

can be summarized by the following goals.

● Extensibility. We believe that an object query optimizer must be
extensible to facilitate experimentation with (i) new algebraic
operators, (ii) new rdgebraic transformation rules, (iii) new
execution algorithms, (iv) improved statistics and cost models, (v)
physical formats and structures (e.g., data compression), (vi)
enforcer algorithms for physical properties (e.g., sort order,

presence in a particular address space), (vii) new state space search

strategies, and (viii) improved quality of plans (e.g., thoroughness

of search) [20]. An extensible object query optimizer will give us

a POWm~l rese~ch workbench on which to try new ideas
emergmg m the object query processing area.

● Cost-effective, rapid development. We wanted to develop a near-

productionquality optimizer with a reasonable amount of time and

resources. While our optimizer is not at production quality yet, the
crucial pieces are in place and are described here. The missing

functionality can be viewed as refinements of existing pieces, e.g.,

more accurate selectivity and cost estimation.

● Performance. The optimizer should be able to carry out
optimization tasks efficiently. Moderately wmplex queries should

be optimized on today’s workstations its less than 1 sec.

● Effectiveness. The optimizer should produce plans that

substantially improve the efficiency of queries. One of our goals is
to ensure that queries over large data collections are executed by

the Open 00DB at least as fast as by relational systems.

The Open 00DB team chose to build the query optimizer using

the Volcano Optimizer Generator [6] for four reasons. First,
Volcano provides a fairly wmplete optimization framework

extensible in most of the dimensions described above, except in the
search strategy. Second, since there is currently no widely

accepted formal basis for object query optimization, we wanted to
be able to “borrow” and experiment with algebraic operators from

several existing object algebras, execution algorithms and their

transformations to discover the most effective combination of

ideas. Third, the development effort using an extensible system is
reduced because some important components are provided, most

importantly a complete search engine, and the extensible system
provides a framework for dividing the large software development

effort for a database query optimizer into defined modules. Fourth,

we wanted to validate the suitability of the Volcano optimizer

generator as a tool for the development for non-standard database
systems, in particular for object-oriented database systems.

Our approach to designing the Open 00DB query processor is
eclectic in that it tries to leverage existing results and components
available in the object query processing wmmunity. Our long term
goal is to develop an extensible and robust query processing

frsmework for the open 00DB system that will allow us to
improve this important module of our system as the field evolves.

The main wntributions of the work reported in this paper are:

01993 ACM 0-89791 -592-5/93 /0005 /0287 ...$1 .50
287

● A description of the design and development of a working query
optimizer for an 00DB based on a complete optimization

framework including logical algebra, execution algorithms, logical

and physical properties, selectivity and cost estimation, logical

transformation rules, and implementation rules.

. An effective algebraic transformation and optimization

framework that separates a “user” algebra for specifying queries
(consisting of arbitrarily complex operations and arguments) from
an algebra in which the query optimizer performs transformations
(consisting of simpler operations with simpler arguments).

● A novel logical operator. materialize, that indicates where path

expressions exploit references embedded in the data. In a sense, it
brings an object component “into scope. ” Its corresponding
kansformation and implementation rules enable algebraic
optimization of path expressions. In our framework, path

expressions become algebraic expressions in the form of

compositions of materialize operators that allow the exploration of
alternative reference resolution strategies within an algebraic

framework.

● The importance of physical properties in the search process, not
for heuristic pruning as suggested by other researchers, e.g. [3], but

for goal-directed search. We show how our extensible

optimization framework allows the definition of a physical
property presence in memory, and that inclusion of this property
allows the search engine to discover plans that cannot be revealed

by exploring only the logical algebra and its alternatives.

● Experimental evidence that set matching operations such as join

and intersection and their corresponding algorithms developed in
the relational context remain relevant in object-oriented database

systems, not only for operations on sets and for value-based
matching, but also as alternative implementation methods for

object-oriented path expressions. Even if precomputed access
paths (stored references) exist, naive traversal of such references
(“goto’s on disk”) may result in suboptimal performance.

Algebraic equivalence transformations for these o~rations,
including commutativity and associativity, permit significant

optimizations. In the case where only uni-directional links exist
between objects, we show the need to consider processing

operators that resolve the object references in the opposite
direction.

● The validation of the Volcano optimizer generator for the

generation of an object query optimizer.

The remainder of this paper is organized as follows. Section 2

compares previous designs with our techniques. Section 3

describes our query optimization framework and discusses some

specific issues in object query optimization. Section 4 presents

some of our initial experimental results, including comparisons
with optimization strategies found in the literature. Section 5

reflects- on lessons learned about quety optimization in object-
oriented database systems and about the Volcano optimizer

generator. Section 6 offers our conclusions and directions for

future research.

2. Previous Work

There is currently no working commercial or experimental
00DB query optimizer that satisfies our design philosophy. This
section compares our work with previous query optimizer

proposals. While not all designs discussed in this section have
been implemented, they represent the body of work most closely

related to ours.

Mitchell et al. [11] have proposed an extensible object query

processing architecture similar to the one by Sciore and Sieg [15].
Both proposals argue for a new dimension of query optimization

extensibility, namely the support of multiple optimizer control
strategies and the capability to add new control strategies. Mitchell
et al.’s envisioned optimizer design consists of a collection of

optimization “regions,” each of which can transform queries

according to a particular control strategy, a set of algebraic

transformations, and a cost model. A global optimizer control
coordinates the movement of a query among these regions.

One of the motivations for the use of optimization regions is that
query transformations may involve operators at various levels of an

expression tree. We believe that providing specialized region
optimizers is an intriguing research problem. However, another
way to interpret the muki-level query transformation problem is to

separate the rich algebra with which users communicate with the
database system from the simpler algebra (although

computationally equivalent) that specifies a query to the optimizer.

Algebraic operators with semantically rich arguments allow a more
succinct representation of complex queries and also serve as a

better communication tool among database system designers.
However, our experience indicates that it is substantially more

difficult and cumbersome to design and build algebraic
transformations for operators with complex arguments than for
operators with simpler arguments. Since the design and

development of transformation rules represents a major portion of
the work involved in building a queiy optimizer, we believe that
this makes a strong argument for separating the “user interface”

algebra (which might permit very complex operator arguments)
and an algebra with simple arguments suitable as input to an

algebraic optimizer. The logical algebra from which query

optimization starts in the Open 00DB optimizer is an example of
the second algebra.

Orenstein et al. [14] describe the design of the query optimizer
used in the ObjectStore 00DB. An interesting feature of the

ObjectStore optimizer is its dynamic plan selection capability
whereby the optimizer generates multiple execution strategies at

compile time and makes a final plan selection at run-time based on

the availability of indices. Thk dynamic capabdity permits users
to modify some of the physical characteristics of the objects being
queried (e.g., adding and deleting indices) without having to

recompile their applications. Unfortunately, that paper does not
report results on the optimizer’s efficiency nor the effectiveness of

the plans it generates.

The ObjectStore optimizer has three major disadvantages. First,

it appears to handle only a small set of fixed optimization

strategies, namely the use of indices for path expressions. In
addition to using the conventional sequential scan on collections,
the optimizer seems to use only index-based scan and not to

consider other efficient execution algorithms for joins or assembly

of complex objects. Hence, it is unclear how the optimizer can be
easily extended to incorpmate new optimization strategies or

exezution algorithms. Second, it is not cost-based – as a result, the
optimizer may miss the optimal plan even on queries especially
crafted to demonstrate the optimization strategies it supports as

illustrated later in Section 4. Third, the optimizer appears not to be
based on a query algebr% which makes it difficult to enumerate

and explore equivalent execution expressions.

Cluet and Delobel [3] describe a type-based rewriting technique

to be used as a basis for a new query optimizer being implemented
in 02 [13]. Their approach “unifies” algebraic and type-based
rewriting techniques, pxmits factorization of common

subexpressions, and supports heuristics to limit rewriting.
However, Cluet and Delobel’s technique ignores cost estimation
and execution algorithm selection and mixes some physical (index
availability and object clustering) and logical (extent availability)

concerns during rewriting.

288

Cluet and Delobel exploit type information to decompose initial
complex arguments of a query into a set of simpler operators and

to rewrite path expressions (“pointer chasing”) into joins. While

rewriting complex arguments into joins is a transformation on the
logical level, Cluet and Delobel heuristically prune their search

space based on physical information about clustering and indices.

In our approach, on the other hand, path expressions are

represented by the materialize operator, and the decision to
transform a materialize operator into a logical join is based on

logical rather than physical information. Execution algorithms
such as assembly and hybrid hash join are treated uniformly as

physical implementations of the logical operators materialize and
join. Open OODB’s execution algorithm selection, which is based
solely on anticipated execution costs, yields optimal strategies for
resolving logical references without violating the clean separation
of logical and physical optimization concerns.

Cluet and Delobel point out that common subexpression

factorization is an important issue in object-oriented query

optimization, and propose a technique for performing exhaustive

factorization. Global common subexpression factorization is one

of the features that we obtain for free by using the Volcano

optimizer generator.

Straube and Ozsu [19] propose a query processing methodology

that includes a formal object calculus and algebra calculus to
algebra translation, me-checking of algebraic expressions,
algebraic optimization based on the application of algebraic

transformation axioms, and access plan generation. Their object

algebra includes the operators union, difference, select (which is

really a combination of select and Cartesian product), generate (a

combination of unnest and method application collector), and map
(a special case of generate). To the best of our knowledge, Straube

and Ozsu’s query optimizer design has not been validated in an

implementation.

3. Extensible Query Optimization Framework

In this section, we discuss how optimization works in the Open

00DB query optimizer. As mentioned in the introduction, it is
based on the Volcano optimizer generator, which translates

specifications of algebra operators, transformation rules, and
implementation rules into source code (C or C++), combines the
generated code with an algebraic search engine, and links it with

the support functions provided by the optimizer implementor such

as cost functions and with the other DBMS code [6]. The essential

components of Volcano-generated query optimizers are the logical

algebra, the set of execution algorithms, logical and physical
properties, the cost model, and the optimization rules. We describe

these components for the Open 00DB optimizer in turn as well as
the user query language and the simplification step from the user-

level complex algebra to our optimizer input algebra.

User Query Language

We use ZQL[C++] [2] as a representative user query language in

our examples. ZQL[C++] is an SQL-based object query language

designed to be well-integrated with C++. ZQL[C++] is a stiongly-
typed query language that assumes the C++ type system as object

data model. ZQL[C++] supports queries on type extents as well as
on any user-defined, collection-valued expressions (currently, sets

and lists). ZQL[C++] predicates can be composed by mixing

arbitrary Boolean-valued functions defined by the user.

The query in Figure 1 illustrates the syntax and some of the
features of ZQL[C++]. The example represents a query expressed

inside a C++ program to obtain the employee name and
department of all employees who are at least 32 years old, work in

a department on the third floor, and have received a salary increase

on or after January 1, 1992. The query illustrates (i) the use of a

Set~ewobjecti *resulq

Date lr(Ol,01,1992);

result = SELECT Newobject(e.nameo, d.nameo)

FROM Employee e IN Employees, Department d IN Departments

WHERE d.flooro == 3 && e.ageo >= 32 && e.last_raiseo >= lr

&& e.departmento == d ;

Figure 1. Example ZQL[C++] Query.

set-valued program variable (i.e., result) to contain the result of the
query, (ii) path expressions, (iii) join and projection (i.e.,
generation of objects of type Newobject with new identity), and

(iv) abstract data type operators (e.g., “>=” for Date), and (v) data
abstraction (i.e., all predicates are expressed in terms of the types’
public interface). The last clause in the query represents a

comparison of department objects based on their OID’S.

The formulation of this query also illustrates the use of various

C++ expressions in each of the SELECT, FROM, and WHERE
clauses. It uses a call to the Newobject class constructor operator

in the SELECT clause. It defines range variables e and d as

Employee and Department instances, respectively, using C++’s
syntax in the FROM clause. It uses C++’s path and conditional

expressions in the WHERE clause.

Since the input to the Open 00DB query optimizer is an

algebraic query graph, our choice for the user query language does
not limit the generality of the Open 00DB query optimizer. In

fac~ our optimizer could easily be adapted to work with other

proposed object-oriented user query languages such as the ones

offered by the ObjectStore [14] and 02 [3] systems.

Logical Algebra

In our model of query processing, a logical algebra expression is

the input into the query optimizer. The set of execution algorithms

defines the query evaluation environment and is discussed in a later
subsection. The goal of our optimizer is to map a logical algebra
expression to a combination of execution algorithms, optimized by
transformations of the logical algebra expression and by choosing
the most cost-effective implementation algorithms.

A large number of algebras have been proposed for object-

oriented databases; most of those are too complex to be
manipulated efficiently by an algebraic optimizer, because much of

the query semantics is expressed in operator arguments rather than

in the actual algebra operators. In fact the operator arguments

(e.g., selection predicates) frequently are more reminiscent of a

(non-procedural) calculus language than of an algebra, which is

inherently a procedural language. Instead, we have designed our
logical algebra so that as much as possible of the query semantics
is captured in the algebraic operators and in the algebra expression
while the operator arguments are as simple as possible. The
optimizer design presumes, therefore, that a preprocessor exists

that translates a query’s parse tree into an initial algebra
expression. This translation, called sirnplijication, is very

straightforward because there is no need for optimality and
therefore for choices in this translation.

Since the basic paradigm of Open 00DB’s query language

ZQL[C++] is selection from collections of objects, the foundation

of our algebra are the traditional set and relation operators. Select,
project, join, intersection, and union are defined as in relational
systems. An unnest operator is used to manipulate set-valued
components. In addition, we have detined a new logical operator,
called materialize or Mat, that represents each link of path

expressions such as city. country.presiderrt .narne. The purpose of

this operator is to explicitly indicate the use of inter-object

289

Select c.mayor.name == c.country.president.name

I
Mat c.wuntry.president

I
Mat c.~ountry

I
Mat c~mayor

I
Get C~ties: c

Figure 2. A Logical Algebra Expression Using the Mat Operator.

references. A single Mat operator can materialize multiple

components, or multiple Mar operators can be used. Another way
to think of this operator is as a “scope definition,” because it lets

elements of a path expression come into scope so that these
elements may be used in later operations. The swping rules in the
optimizer input algebra are very simple. An object component gets
into swpe either by being scanned (captured using the logical Get

operator in the leaves of expressions trees) or by being referenced
(captured in the Mac operator). Components remain in swpe until

a projection discards them.

As an example for the materialize operator, the query:

SELECT City c in Cities

WHERE c.mayoro.nameo” == c.countryo.presidento.nameo;
is translated into the logical algebra expression shown in Figure 2.
The purpose of the materialize operator is to indicate to the
optimizer where path expressions are used and where therefore
algebraic transformations can be applied. In the example query,
the materialize operators can trade their positions in the query

expression, with the condition that “wuntry” must be materialized
before “president.” We presume that the “name” instance variables

are similar to record fields that need not be explicitly materialized.

Query Simplification

The Open 00DB query processing model uses a query

simplification stage to transform ZQL[C++] parse trees into an

equivalent algebraic operator graph with simple arguments suitable

as input to the Open 00DB optimizer. Complex arguments are

any predicate terms containing path expressions that have not been
brought into scope or collection-valued operations (e.g., an

existentirdly quantified subquery in the argument of a select).

Currently, simplification has been defined for select-from-where

ZQL[C++] queries whose condition involves arbitrary conjunctive
Boolean expressions with existentially quantified nested

subqueries, but no aggregates. Because of space limitations, we

omit a formrd description of this simplification. Interesting

simplifications include simplifications for single- and set-valued

path expressions as well as existentially quantified subqueries. A

simplification involving a single-valued path expression was
illustrated in the previous subsection when we introduced the
materialize operator. Simplification involving nested subqueries
uses tactics similar to the ones used for nested subqueries in SQL

[12]. Consider a query involving a set-valued path task. team-

Mat m.employee: e

I
Unnest t.team-members: m

I
Get Tasks: t

Figure 3. Algebra Expression for Set-Valued Path Expression.

members denoting all employees working in a particular project
task, This path is translated into a logical algebra expression

shown in Figure 3. Since the team-members component of a task

is a set of references to employee objects, we need to first reveal
(unnest) all references to employee objects that are members of
this set. Calling a reference to an employee team member m, the
output of the unnest operator is a set of pairs [t, m]. The

materialize operator resolves all employee references to employee
objects present in memory, producing [t, e] pairs that can be used
as the input to subsequent select or other operators. We will

discuss later the optimization of a query subsuming the one shown

in Figure 3.

Execution Algorithms

Since our rdgebra includes all traditional set operators, our
execution engine also includes (or shortly will include) the

traditional set processing algorithms, namely tile (extent) and index

scan as well as value-based matching (e.g., intersection, union,
join) based on hybrid hash join. This algorithm also supports
equality of a reference attribute on one side and object identifiers
on the other side.

We are currently implementing (and optimizing for) two
algorithms that promise to have a significant performance impact

in object-oriented database systems. Pointer-based joins, recently

analyzed by Shekita et al. [18], are sometimes superior to other
join methods; therefore, an optimizer should wnsider them among

the rdtemative implementations for join.

The second algorithm our optimizer considers is assembly,
developed in the REVELATION project [7]. Assembly generalizes

pointer-joins as it permits multiple references, even recursive
object references, i.e., transitive closures of sub-component
relationships. It achieves higher performance than sequences of
traditionrd operators by maintaining a window of open, unresolved

references in order to exploit multiple objects located on a single

disk page and to sequence disk read operations into an elevator

pattern over physical disk locations.

Properties and Property Enforcement

In order to determine whether a transformation is auulicable or. .
whether an algorithm can implement a given logical expression, it
is often necessary to inspect the logical and physical properties of

intermediate results. Logical properties are properties of an
expression determined by the logical operators before execution

algorithms are chosen (e.g., type or size of intermediate results).
Physical properties depend on execution algorithms selected. The

standard example for a physical property in relational query
optimization is the sort order [16]. In object-oriented query
processing, an important property is presence in memory. Our

optimizer currently does not use merge-join for value-based

matching, therefore it supports only presence in memory.

Physical properties have no role in the logical algebra but are
important in the realm of query execution algorithms. In our
framework, execution algorithms implement a logical operator,
enforce some physical property, or both. For instance, the
assembly algorithm is used to enforce the present-in-memory
property and to implement the logical materialize operator.

Coat Model

Currently, our cost model is very traditional. We consider both
CPU and I/O wsts, and “charge” less for sequential than for

random I/O. Assembly’s I/O cost captures the fact that seek
distances are minimized by charging less than for a random I/O

operation. Actual assembly performance including the effects of

buffer hits can only be studied in the context of a real, working

system; therefore, we delay validating and refining assembly’s wst

290

function until the query plan executor becomes operational.

While our cost model is not precise yet, the important pints are

that cost is integrated into our optimizer framework and that query
evaluation plans are transformed and compared based on

anticipated execution costs, not purely on heuristics. Very little
research has been done to-date on cost models and formulas in

object-oriented database systems]; however, as such research
evolves, we will incorporate it swiftly. Cost is encapsulated in an
abstract data type (ADT) and tuning an algorithm’s cost formula is
a very localized change.

Transformation Rules

Since our logical algebra is based on the relational algebra, our

transformation rules include known relational transformations plus

some new ones pertaining to the materialize operator. These
transformations move materialize operators above and beneath

(“through’) selection, join, and set operators, provided none of the

other operators depends on a scope deEned by materialize.

One rule that we believe can be very important and effective in

query optimization in object-oriented database systems transforms
materialize operations into joins, not because joins are always a

good choice but because joins are an alternative execution strategy
that should be chosen or rejected based on anticipated execution
costs. If the scope introduced by a materialize operator is actually

a scannable object (a set object, file, etc.), the materialize operator
can be transformed into a join. For example, if there is a set or file
of countries in Figure 2, the materialize operation bringing
c.country into scope can be replaced by a join operation. Figure 4

shows the resulting query plan.

Once a materialize operator has been transformed into a join, all

transformation rules and implementation rules for join apply. Join
associativity is closely related to the commutativity of multiple

materialize operators. Join commutativity permits exploring query

plan alternatives that are usually ignored in object query
optimization, e.g., traversing single-directional inter-object links

(pointers) in their opposite (not pre-computed) direction. We

discuss physical algorithms and their specification for the

optimizer generator in the next subsection.

Implementation Rules

The implementation rules establish the correspondence between

logical algebra expressions and execution algorithms. Algorithm

selection is the second important aspct of query optimization,
beyond logical equivalence transformations. Query evaluation

Select c.mayor.name == c.country.president.name

Mat c.coun~.president

I
Mat c.’mayor

I
Join c.counlrv == n.self

/ “1
Get Cities: c Get Countries: n

Figure 4. Transforming a Mat Operator into a Join.

1 In our optimizer, the issues requiring immediate attention

are object clustering, adaptive reclustering, and statistical summary

data about clustering to enable more accurate cost estimation.

algorithms are important and still continually improved in the

“simpler” relational model, and will have an even larger effect in
object-oriented database systems. The optimizer chooses

algorithms based on implementation rules, an algorithm’s ability to
deliver a logical expression with the desired physicrd properties,
and cost estimations.

Summary

The Open 00DB optimizer leverages the Volcano optimizer

generator for algebraic que~ optimization comprising operator
transfomnations, algorithm selection, and enforcement of

properties. As the basic query paradigm in ZQL[C++] is selection

from collections, we built on previous work in relational que~
processing by using well-known transformation rules and

implementation algorithms for set operations. Algebraic operators
with complex arguments are translated into equivalent expressions

with “simpler” operations before optimization. Optimization of
path expressions is facilitated by a new materialize operator that

brings object components “into scope” and indicates where the

optimizer can apply transformation rules. Using the Volcano

optimizer generator permitted and forced us to consider the entire
spectrum of issues in query optimization, from the logical algebra

design via algorithm choices to the cost model. Thus, rather than
considering isolated optimization issues, our work resulted in a
complete query optimizer. In the next section, we evaluate the

optimizer using a few representative examples.

4. Experimental Results

This section presents the optimization of selected queries using

actual runs of the Open 00DB optimizer. The queries show

interesting optimization realized by the Open 00DB optimizer

and allow us to compare and contrast its effectiveness against other
object-oriented optimization approaches. Specifically, our

examples show

(1) the need to consider links traversals between objects in both

dkections (even if only one direction is supported with

physical pointers), recognizing the utility of set matching

algorithms developed for relational join,

(2) the effectiveness of using physical properties in guiding the

search process,

(3) and the effectiveness of cost-based search over heuristically-

guided search.

All queries were optimized on a DEC Station 5000/125, which

has a 25 MHz RISC CPU and 32 MB of memory. Model
description file and support functions were developed during a

summer internship in about 10 weeks, including transformation
rules, implementation rules, cost estimation and prOPSrtY functions.

In all example queries, we assume the catalog information

shown in Table 1. Objects in user-defined sets and type extents are

assumed to be densely packed on pages. If no index can be used to
assist in selectivity estimation, selectivity of selection predicates is
assumed to be 10!%o,which is naive and will later be replaced by a

more accurate selectivity estimation method.

Path Expressions and Inter-Object References

This section illustrates the use of the novel materialize operator
to facilitate algebraic optimization of path expressions and the
contribution of relational algorithms to the performance of object-

oriented database query processing. Consider a ZQL[C++] query
to retrieve the name, department name, and job name of afl

employees who work in a plant in Dallas, Texas:

291

Set Set Obj. Size Type Extent

Type Name Card. [bytes] Extent? Card.

Capital Capitals 160 400 No

City Cities 1O(XM 200 No

Country 300 Yes 160

Department 4C0 Yes 1003

Employee Employees 500W 250 Yes 200000

Information 400 Yes 1O(XI

Job 250 Yes 5000
Person 100 Yes 100000

Plant 1000 No

Task Tasks 12 Yes 100CQ

Table 1. Catrdog Information.

SELECT Newobject (e.nameo, e.depto.nameo,” e.jobo.nameo)”

FROM Employee e in Employees

WHERE e.depto.planto.locationo == “Dallas”;

After the simplification step, this query is presented to our
optimizer as shown in Figure 5. The materialize operators with
arguments jobo, depto, and planto, represent the logical
references in the path expressions in the select and project operator
arguments.

Optimized with all transformation and implementation rules

enabled, this query results in the query execution plan shown in

Figure 6. Since all rules are enabled and exhaustive search is
performed, the access plan irr Figure 6 is the optimal plan for

Query 1. There are several interesting observations in comparing
the query in Figure 5 and the optimal plan in Figure 6. First two

Proj@ e.name, e.job.name, e.dept.name

I
Select e.dept.plan.location == Dallas

I
Mat e.dept.plant

I
Mat e.dept

I
Mat e.job

I
Get Employees: e

Figure 5. Query 1.

Alg-Project e.name, e.job.name, e.dept.name

Hybrid Hash Jo~n j.self == e.job

File Scan extent (job): j

‘\
Hybrid Hash Jo~ d.self == e.dept

/ ~amp,oyee, ~
Filter d,plant.location == Dallas

I
Assembly d.plant

I
File Scan extent (Department): d

Figure 6. Optimal Execution Plan for Query 1

materialize operators in Figure 5 are transformed to join
operations, which permits the selection of hybrid hash join in

Figure 6. This transformation is possible because the materialize

operators in Figure 5 explicitly represent each of the path

expressions’ links that need to be traversed to establish the

relationships between object components. Second, object
components are linked together in different orders (compare where

the employee-job relationship is established in Figure 5 and Figure

6). Reversing the order in which the links are traversed is possible
because the materialize operator makes their use explicit. Third,
the plan traverses some links in a direction opposite to that of the

physical pointers between the objects. This interesting and initially
counterintuitive choice stems from the small extent size for the Job
type and the small cardinality of filtered and assembled
Department/Plant objects, which permit very efficient executions

of hybrid hash join using only in-memory hash tables and no

overtlow files. Fourth, the placement of the assembly algorithm in
Figure 6 attempts to minimize the number of plant components that

have to be assembled (in this case, I,COO, the number of

Department objects). A pmticularly unfortunate choice would
have been to assemble first departments and then plants for each of
the 50,000 employees, although it might be considered the most
“natural” execution of Figure 5.

To assess the value of including a value-based hybrid hash join
in our suite of algorithms, we dkabled the join commutativity rule
to force the optimizer to consider a more “naive” query execution
strategy (i e., one using pointer-chasing algorithms). The resulting

optimized plan is shown in Figure 7, which is more than four times

as expensive as the optimized plan in Figure 6. The slight decrease

in optimization effort is not worth the large increase in anticipated

query execution time.

Table 2 summarizes optimization and expected execution times

required to optimize this same query with different optimizers
(simulated by disabling various rules in our optimizer). This

increase is due to the assumption that the Plant type does not have
an extent, and the optimizer estimates that 50,(330 page faults may
result from assemblmg the plant components of each of the
employee objects (if the plant objects are clustered with

information about the products manufactured at each plant for

instance). Of course, there are fewer plants, but as indicated in

Table 1, and consistent with the current prototype implementation

of the Open OODB, we assumed that cardinality information is

kept only with extents and set instances and that the Plant type
does not have a separate extent. However, this example indicates

Alg-Project e.name, e.job.name, e.dept.name

I
Filter e.dept.plant~location == Dallas

I
Assembly e.dep~ e.dept.plant, e.job

I
File Scan Employees: e

Figure 7. Query 1 Plan w/o Join Commutativity.

Optim. % of Exh. Est. Exec. % of Optimal

Time [see] Search Time [see] Exec. Time

All Rules 0.21 103 161 100

W/o Comm. 0.12 57 681 422

W/o Window 0.11 52 1188 737

Table 2. Optimization Results for Query 1.

292

that additional cardinality information should be maintained
whether or not the objects belong to a set or extent, and we may

revisit this issue in a later version of the system. For the
department and job components, on the other h-and, there is an
explicit extent and the optimizer can place an upper bound on the

number of 1/0 operations needed to assemble the department and
job components of an employee object. Thus, the optimizer can

fairly accurately estimate the cost of assembling these components.

While the first and second lines in Table 2 show the value of join
algorithms in object-oriented database systems, the second and
third lines show the value of assembly using a window of open

references [7]. Restricting assembly’s window size to one (leaving

the join commutativity rule disabled) forces the operator to
assemble one object at-a-time and thus prevent it from optimizing

disk seeks. The assembly algorithm becomes similar to the lookup
component of an uncluttered index scan,

Summarizing, optimization time decreases as rules are disabled
in the optimizer. However, the large increase in estimated
execution time demonstrates that investing more time in the

optimization effort is a profitable choice, and that much better

plans are indeed found by considering a larger number of
alternatives.

Our optimizer captures exactly the tradeoffs explored by Shekita
and Carey [18]. Naive pointer chasing (“goto’s on disk’) is

insufficient for high-performance query execution engines. In

addition, optimizers for object-oriented database systems must
consider a variety of algorithms for each logical operation as well

as transformations that permit the use of these algorithms in the

search process.

The need for powerful, accurate, and flexible optimization tools
increases with the advent of object-oriented database system; it

does not decrease as has been claimed elsewhere [14]. In

particular, optimizing path expressions and inter-object references
does not become a simpler problem due to precomputed joins

(stored references) and path indices; instead, it becomes a more
complex problem because the number of competing execution
strategies grows with the number of alternative access paths. In

other words, naive pointer chasing of precomputed relationships is
one of many possible methods, but not the best in all situations.

Physical Properties and Goal-Directed Search

In this section, we consider two versions of an example query
and use optimization results for these two queries to demonstrate

the value of modeling physical properties in the optimization

process. Consider Query 2 shown in Figure 8, which selects cities
whose mayor is called “Joe.” Suppse the set Cities is indexed on

the path “mayoro.nameo”” using a path index. The optimizer will
then choose the query execution plan shown in Figure 8, because
the index scan can determine the answer set without actually

retrieving any “mayor” objects from disk.

Select c.mayor.name == Joe

I
Mat c.mayor

I
Get Cities: c

Index Scan Cities:c, c.mayor.name == Joe

Figure 8. Query 2 and its Optimal Execution Plan.

The crucial optimization rule for this query is an implementation
rule that allows collapsing the select-materialize-file scan sequence

into a single index scan with a predicate (this rule is subsequently

called the collapse-to- index-scan rule). In this case, the mayor
component objects are never read into memory, and the estimated

execution cost of this plan is 0.08 see, with an optimization time of
0.05 sec.

If the collapse-to-index-scan rule is disabled (or no index on this
path exists), the optimizer returns the plan shown in Figure 9. In
this plan, the execution engine must assemble the “mayor”
component for each city before the selection predicate can be

applied. The cost of this plan is 119.6 see, with an optimization

time of 0.05 sec - a substantial increase in execution time (about

four orders of magnitude) with no appreciable decrease in
optimization effort.

Let us now consider Query 3, shown in Figure 10, which is a
small variant of Query 2 by requiring mayor’s ages in the result. In
other words, the mayor component must be retrieved for this query.

In order to evaluate the projection, the assembled city and mayor

objects satisfying the selection predicate must be present in
memory. While it is necessary for the optimizer to consider rdl
possibilities in order to guarantee the best plan, including the
collapse-to-index-scan rule, the plan in Figure 8 does not retrieve

the mayor components; thus, it is not applicable for the query in

Figure 10 without change. The most promising plan for the query

is to only assemble those mayor components for cities satisfying
the selection predicate. Ye~ in order to maintain a strict separation

between issues pertaining to the logical algebra and to the
execution algorithms, we do not want to introduce a logical

transformation rule to allow a selection to be pushed below a
materialize operator if a path index is present. The solution to this

optimization problem relies on the use of physical properties to

guide the search process, a solution that is not possible in query
optimizers that consider only logical transformations, but not query
evaluation algorithms and physical properties.

The Volcano optimizer search engine uses physical properties to
drive the search top-down. In other words, the search process

Filter c.mayor.name == Joe

I
Assembly c.mayor

File Sca~ Cities: c

Figure 9. Query 2 Plan w/o Collapse-to-Index-Scan.

Project c.mayor.age, c.name

I
Select c.mayo;.name == Joe

I
Mat c.mayor

I
Get Cities: c

Alg-Project c.name, c.mayor.age

I
Assembly c.mayor

I
Index Scan Cities: c, ~.mayor.name == Joe

Figure 10. Query 3 and its Optimal Execution Plan.

293

Alg-Project c.name, c.mayor.age

Required phys. property: city and

mayor wimponents present in memory

Select c.mayor.name == Joe

I
Mat c.mayor

I
Get Cities: c

Figure 11. Search State while Optimizing Query 3.

considers only those subplans that can deliver the physical
properties that are required by the algorithm of the containing
(larger) plan. This is unlike other optimizers, which construct the

plans bottom up and keep all subplans that deliver “interesting”

properties (defined a priori by the optimizer implementor) without
knowing whether these subplans might ever participate in a larger

plan. For example, the algorithm that implements projection, Alg-

Project. requires that its inputs deliver assembled city/mayor
objects present in memory. The state of the search while

considering Alg-Project to implement the project operator is shown
in Figure 11. Notice that in Figure 11, there is one physical
operator (Alg-Project) and three logical operators (SelecC Mat,
Get). At this point in the search, the optimizer searches for the
best plan to produce the logical expression comprising the three

logical operators such that the resulting plan’s output satisfies the

physical property vector of Alg-Project’s inpu$ i.e., city and mayor

components are present in memory.

For the expression consisting of the three logical operators in

Figure 11, the collapse-to-index-scan rule cannot be used, because
the index scan only delivers city, not mayor, objects present in

memory. The search engine therefore has two alternatives when
optimizing the select subquery namely (1) to use filter to
implement selec~ and request that the filter input deliver
city/mayor objects present in memory (and, hence, the filter itself
will deliver these properties); or (2) to introduce the assembly

algorithm to enforce the delivery of the requested objects “in

memory.”

When the first alternative is evaluated by the search algorithm,

the execution plan found for the select subquery will be the same

as the execution plan for Query 2 with the collapse-to-index-scan
rule disabled, because filter will require that its input deliver

assembled city/mayor objects present in memory, and an assembly-

file scan algorithm sequence is the only choice in this case. The

result is a total cost of 119.6 sec for processing Query 3.

When the second alternative is evaluated, the input to the

assembly enforcer is the same execution plan as that for Query 2
with the collapse-to-index-scan rule enabled, since the index scan
delivers only city, not mayor, objects present in memog. Vi%h the
city objects in memory as the result of the index scan, the assembly

enforcer delivers the referenced mayor objects in memory. Having

the city and mayor objects in memory is precisely the physical
property required of the Alg-Project input. The plan in this case
has a cost of 0.12 sec (the optimizer estimates that only 2 cities
have mayors named “Joe”). Thus, the optimal plan found for
Query 3 is the plan shown in Figure 10. Comparing the plans in
Figure 9 and Figure 10, three orders of magnitude in performance
were gained.

Physical properties, in particular sort order, have been

recognized as important in relational query optimization [16]. In
this example, we show the utility of using the physical property
“presence in memory” to drive the search process in the Open

00DB optimizer. This example also indicates that an optimizer
should be extensible enough to incorporate n“ew physical properties
and their enforcers.

Heuristic- vs. Cost-Based Optimization

In this section, we show the advantages of a strictly cost-based

approach to 00DB query optimization and compare it to
approaches that rely on heuristically guided optimization [14]. In

particular, ObjectStore’s query optimizer uses a fixed, greedy

strategy designed to exploit any available indkes. We show that

such a greedy strategy will not always lead to the optimal plan.

Consider the query shown in Figure 12, taken with a slight

modification from [14], which selects tasks with a completion time

of 100 hours and a team member called “Fred.” Figure 12 rdso
shows the optimal query evaluation plan found by the Open OODB

optimizer assuming the catalog information given in TabIe 1.

Figure 13 shows the query evaluation plan that uses both indices,
i.e., the plan found by a greedy optimizer. Table 3 shows the
expected execution times for this query with full optimization and

with greedy index use. The columns represent different

assumptions about the existence of indices. As is immediately

obvious, the optimal plan uses only one index, the index on time,
not both indices as the greedy algorithm would choose. The
greedy plan is slower than the optimal plan by more than a factor

of 5. Thus, the greedy algorithm is too simplistic to permit
effective query optimization in object-oriented database systems.

Summary

In this section, we have used queries selected from the literature

to demonstrate that the Open 00DB optimizer framework based

Select e.name == Fred and t.time == 100

I
Mat m.employee: e

I
Unnest t.team-members: m

I
Get Tasks: t

Filter e.name == Fred

I
Assembly m.employee: e

I
Alg-Unnest t.team-members: m

I
Index Scan Tasks: L t.time == 100

Figure 12. Query 4 and its Optimal Execution Plan.

Hybrid Hash Join m.employee == e.self

~ =n ~mployees e
Alg-Unnest t.team-members: m .,

e.name == Fred

Index Scan Tasks: t t.time == 100

Figure 13. Greedy Evaluation Plan for Query 4.

Indices None Time only Name only Both

All rules 108 1.73 28.4 1.73

Greedy use 108 1.73 28.4 10.1

Table 3, Anticipated Execution Times for Query 4.

294

on the Volcano optimizer generator is significantly more powerful ● Lesson 7: A comparison of hash join using a hash table of the
than previous optimizers for object-oriented database systems. In referenced objects and an equivalent assembly algorithm with a

the next section, we summarize the lessons we have learned during large window suggests a new “warm-start” assembly algorithm,

the design, developmen~ and preliminary evaluation of the open i.e., the ability to scan a scannable object into main memory before

OODB optimizer. the normal complex obiect assembly operation commences. We

5. Retrospection on using the Volcano Optimizer Generator plan on studying this ~gorithm v~ian~ and its effectiveness in
future research.

In this section we summarize some of the lessons we learned
while building the Open 00DB query optimizer using the Volcano

optimizer generator tool.

w Lesson 1: Having a comprehensive yet extensible query

optimization framework that includes not only an object algebra
and its transformations, but also the algorithms to implement the
logical operators, selectivity and cost estimation, and enforcement
of properties is very important for the development of a working

query optimizer. In other words, it is very seductive for a designer
to incorporate new powerful logical algebra operators without

considering their implications on the complexity of the
corresponding logical transformations or implementation

algorithms. The optimization framework forced us to visit all

stages of the framework every time we considered adding a new
logical operator, execution algorithm, and transformation or

implementation rule.

● Lesson Z The fact that the Volcano optimizer generator provides

such a framework was very helpful in building the Open 00DB
query optimizer. The optimizer generator provides a complete

framework for query optimization that considers all critical aspects

of this task logical operators, execution rdgorithms, logical

transformations, physical and logical properties, cost estimations,

and property derivation functions that encapsulate schema

manipulation, statistical descriptions of intermediate results, and
selec~vity estimation. Query ;ptimizer generator technology has

become mature enough to substantially help DBMS designers
build efficient and effective optimizers that include non-standard

operators such as our materialize operator and algorithms such as

pointer-join and complex object assembly.

● Lesson 3: Using an optimizer generator allowed us to focus
immediately on issues directly related to 00DB query

optimization and ignore some aspects not specific to object query

optimization such as plan enumeration and search efficiency.

● Lesson 4: Designing and implementing transformation rules for
logical operators with simple arguments is substantially easier than

designing rules for operators with complex arguments. The

following intuitive design rule served us well if an argument can

encapsulate some form of collection-valued operation or might

otherwise result in costly 1/0 operations, consider representing that

part of the argument as a separate logical operator in the algebra

and in the optimizer. If this rule is followed, possibly expensive

iterative operations are exposed as operators for rewrite by the
algebraic optimizer.

● Lesson 5: Supporting property enforcement allows exploration of

strategies not covered by exclusively algebraic optimization

frameworks (see Section 4 above).

● Lesson 6: Using the Volcano optimizer generator allows us to
leverage earlier experienw accumulated in this tool, which is also

being used by other database researchers to develop new query

optimizers. This is important not only with regard to functionality,
but also with regard to the robustness of the generated code. The

more database system designers use a tool, the more trustworthy
the tool will become. Moreover, as soon as a bug is fixed or an
enhancement to the optimizer generator is made, all optimizers

generated with the tool will benefit.

In addition, the Open 00DB optimizer implementation resulted
in the following suggestions for improving the optimizer generator.

● Lesson 8: A fair amount of time was spent building support
functions such as catalog accesses, operator graph manipulation,
selectivity estimation, and cost calculations. Future versions of the
optimizer generator should provide facilities to automatically

generate the majority of these functions.

● Lesson 9: We found it sometimes necessary to transform logical

operator arguments in a way that is similar to the algebraic
operator transformations. These logical argument transfotrnations

may be subject to rules completely different than the algebraic
operator transformations. Although the Volcano Optimizer

Generator supports separate transformation rule groups and reuse

of the logical expression enumerator, we found its rule language
cumbersome for performing the types of transformations we

needed. We are considering enhancing the rule language to make
it powerful and flexible enough to support these transformations.
Notice that the distinction between argument and operator rule

matching sounds similar to the region-based optimization

proposals of Sieg and Sciore and of Mitchell et rd. applied to two

regions; we have begun to explore designs that permit using the

Volcano optimizer generator and its parameterized, rule-driven

search engine to generate both the global control among multiple

regions as well as the local optimizer within each region.

● Lesson 10 The Volcano optimizer generator’s rule language and
the requirements for support functions are far from user-friendly
and require redesign and better documentation. We view the

Volcano optimizer generator effort as part of a continuum: The

EXODUS optimizer generator contributed the paradigm and basic
system architecture; the Volcano effort contributed an efficient

search strategy plus better abstractions for properties and costs,
thus making extensible query optimization based on optimizer

generators practical; a new effort will focus on more convenient

packaging for the Volcano optimizer generator. llvo such efforts
are currently under-way, one at the Oregon Graduate Institute and
one at the University of Texas at Austin.

6. Conclusions and Future Work

The Open 00DB optimizer presented in this paper is the first

working query optimizer for an 00DB to utilize a comprehensive

yet extensible optimization framework including logical algebra,

execution algorithms, logical and physical properties, property

enforcers, selectivity estimation, cost model, logical transformation

rules, and implementation rules. Having a complete optimization
framework is crucial for two reasons. First, it allows the optimizer
to discover plans that cannot be revealed by exploring only the
alternatives provided by the logical algebra and its transformations.

Second, it forces the database system designer to visit all aspects of
the framework before incorporating any new logical operator,

transformation rule, or implementation algorithm.

The Volcano optimizer generator allowed us to develop the Open
00DB optimizer in a very short amount of time. The resulting

Open 00DB optimizer code is very modular. It consists of

transformation and implementation rules and a variety of support
functions. Each support function is associated with one of the
logical operators, implementation algorithms, enforcers, or the

abstract data types for logical properties, physical properties, or

29.5

costs. We believe that the modularization prescribed by the

optimizer generator will enable us and other developers to extend

and refine the Open 00DB query optimizer in the future.

Our initial experiments on queries obtained from the objtxt

query optimization literature show that our optimizer derives as
efficient and tiequently more efficient plans for these queries than

other optimizers. Thus, by separating the user-level algebra (with
arbitrarily complex operations and arguments) and the optimizable
algebra (using only simple operator arguments) and by introducing

the novel materialize operator, we have been able to extend
algebra-based query optimization to a wide variety of queries in

object-oriented database systems. Moreover, the optimization
times required in our optimizer are very modest, demonstrating
that exhaustive search and therefore truly optimal plans are feasible

for moderately complex queries over object-oriented databases.

Our future plans with the Volcano optimizer generator and the
Open OODB optimizer include several directions of research.
First, we will evaluate and refine the “rougher” modules, in

particular selectivity and cost estimation. Second, although the

Volcano optimizer generator provides mechanisms for heuristic
guidance and pruning, we have not evaluated them for object-

oriented query optimization yet. Third, we will investigate
automatic generation of support functions. Fourth, we will
generate code to transform operator arguments. Finally, we will
transfer query execution concepts and algorithms from the Volcano
query execution module [5] to the Open 00DB system in order to

complement our optimization work.

Acknowledgements

Suggestions by Craig Thompson, David Wells, Ben Zom, and

David Maier’s weekly reading group at the Oregon Graduate
Institute (Winter 1993) have significantly improved the

presentation of this paper. – This paper is based on research

partially supported by DARPA with contracts DAAB 07-90-C-
B920 and DAAB 07-91-C-Q518 and by NSF with grants

IRI-8996270, IRI-8912618, and IRI-9119446.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

F. Bancilhon and W. Kim, Object-Oriented Database Systems:

In Transition, ACM SIGMOD Record, Special Issa-e on

Directiorrs for Future Database Research and Development

19,4 (December 1990), 49.

J. A. Blakeley, C. W. Thompson and A. Alashqur, A

Strawman Reference Model for Object Query Languages,

Computer Stcmdards & Interfaces 13(1991), 185.

S. Cluet and C. Delobel, A General Framework for the

Optimization of Object-Oriented Queries, Proc. ACM

SIGMOD Con., San Diego, CA, June 1992,383.

G. Graefe and D. Maier, Query Optimization in ObJect-

Oriented Database Systems: A Prospectus, in Advances in

Object-Oriented Database Sys., vol. 334, K. R. Dittrich (cd.),

Springer-Verlag, September 1988,358.

G. Graefe, Volcano, An Extensible and Parallel Dataflow
Query Processing System, to appear in IEEE Trans. on

Knowledge and Data Eng., 1993.

G. Graefe and W. J. McKenna, The Volcano Optimizer

Generator: Extensibility and EfEcient Search, Proc. IEEE

Con$ on Data Eng., Vienna, Austria, 1993.

T. Keller, G. Graefe and D. Maier, Efficient Assembly of

Complex Objects, Proc. ACM SIGMOD Conf., Denver, CO,

May 1991, 148.

A. Kemper and G. Moerkotte, Advanced Query Processing in

Object Bases Using Access Support Relations, Proc. In?’1.

[9]

Con$ on Very Lurge Data Bases, Brisbane, Australi% 1990,

290.

W. Kim, K. C. Kim and A. Dale, Indexing Techniques for

Object-Oriented Databases, in Object-Oriented Concepts,

Databases and Applications, W. Kim and F. Lochovsky

(ed.1 ACM and Addison-Weslew 1989.

10] D. Maier and J. Stein, Indexing-in an Object-Oriented DBMS,

Proc. Int’ 1 Workshop on Object-Oriented Database Sys.,

Pacific Grove, CA, September 1986, 171.

11] G. Mitchell, S. B. Zdonik and U. Dayal, An Architecture for

Query Processing in Persistent Object Stores, Proc. Hawaii

Conf. on System Sciences, 1993.

12] M. Mnralikrishna, Improved Unnesting Algorithms for Join

Aggregate SQL Queries, Proc. Int ‘1. Conf. on Very Large

Data Bases, Vancouver, BC, Canad% 1992,91.

[13] O. Deux et al., The Story of O , IEEE Trans. on Knowledge

?and Data Eng. 2, 1 (March 1990, 91.

[14] J. Orenstein, S. Haradhvala, B. Margulies and D. Sakahara,

Query Processing in the ObjectStore Database System, Proc.

ACM SIGMOD Conf., San Diego, CA, June 1992,403.

[15] E. Sciore and J. Sieg, A Modular Query Optimizer Generator,

Proc. IEEE Conf. on Data Eng., Los Angeles, CA, Februruy

1990, 146.

[16] P. G. Selinger, M. M. Astrahan, D. D. Chamberlain, R. A.

Lorie and T. G. Price, Access Path Selection in a Relational

Database Management System, Proc. ACM SIGMOD Conf.,

Boston, IvIA, May-June 1979, 23. Reprinted in M.

Stonebraker, Readings in Database Sys., Morgan-Kaufman,

San Mateo, CA, 1988.

[17] G. M. Shaw and S. B. Zdonik, A Query Algebra for Object-

Oriented Databases, Proc. IEEE Conf. on Data Eng., Los

Angeles, CA, February 1990,154.

[18] E. J. Shekita and M. J. Carey, A Performance Evaluation of

Pointer-Based Joins, Proc. ACM SIGMOD Conf., Atlantic

City, NJ, May 1990,300.

[19] D. D. Straube and M. T. Ozsu, Queries and Query Processing

in Object-Oriented Database Systems, ACM Trans. on Inf.

Sys. 8,4 (1990), 387.

[20] C. Thompson, cd., Report on DARPA Open 00DB Workshop

II: Preliminary Module Inte#ace Specification Workshop,

Texas Instruments, Inc., CS Labs., Dallas, TX., October 1991.

[21] S. L. Vandenberg and D. J. DeWitL Algebraic Support for

Complex Objects with Arrays, Identity, and Inheritance, Proc.

ACM SIGMOD Conf., Denver, CO, May 1991, 158.

[22] D. Wells, J. A. Blakeley and C. W. Thompson, Architecture of

an Open Object-Oriented Database Management System,

IEEE Computer 25, 10 (October 1992), 74.

296

