Performance-optimised computing — Week 2.

Instruction set, Processors,
Memory access,

Dr. Bakay Arpdd — Ericcson
Fall Semester, 2024

Typical Computer Architecture

server or desktop, around 2010
« CPU Core and X86 Architecture
 CPU as a unit

 Memory

 Storage

* Networking

» Software, etc.

-

CPUO

CORE CORE

CPU1

CORE CORE

~

Graphics

AN

.northbridge” t
PCI-E Data Bus
Network &
WiFi
.southbridge”

\ Low-speed
Storage

USB
(storage, etc.)

Hi-speed
Storage

Instruction Set and Machine Code

» Each processor architecture has a well-defined set of ,commands” supported — this is the
instruction set

 Contians dozens (or hundreds of) instructions which execute simple operations, e.g
* Move data between memory and CPU-internal registers, or between registers
« Add/Mul/Subtract/Divide 2 integer or floating-point numbers stored in registers
* Branch to a location if previous operation resulted in @

« Jump to alocation saving current address in stack (call), jump back to a location on the stack (return)

* Instructions are encoded into a few (1 to 15) bytes, and placed contigiously into a memory
section used for ,,Code" == x86 Assembly/Machine Language Conversion — Wikibooks

* .Machine code” are sequences of instructions.
» Most operations refer to 1, 2 (or 3) registers, which hold ,hot” data in the CPU,

» The fastest access possible (about 100x faster than main memory)

* Full X86/64 CPU documentation is free and published (...but long):

» Intel® 64 and IA-32 Architectures Software Developer's Manual Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4

1. Basic architecture, 2. Instruction set, 3. Programming Gudie, 4. Model-specific info

\
T ——
=
——
=
=
—
\
T —
==
—
———
\

https://en.wikibooks.org/wiki/X86_Assembly/Machine_Language_Conversion
https://www.intel.com/content/www/us/en/content-details/782158/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html?wapkw=intel%2064%20and%20ia-32%20architectures%20software%20developer%27s%20manual&docid=782158

LD e D U

X64 Data: Registers, Memory and Immediate

» General purpose registers are for 64 bit integers (16 regs)
* Names in doc (and in assembly) AX, BX, CX, DX, DI, SI, BP, SP + R8 .. R15,
* Accessible in different widths (8bits: AL,/AH, 16: AX, 32: EAX, 64: RAX)
 IP (or RIP) is s special (automatically incremented) register pointing to the next instruction

» Vector registers are 64-512 bytes (8,16 or 32 regs) and applicable for integer AND for floating
point, also for ,vector” (SIMD) operations

* Floating point regs: st@-st7 + control + status (aliased on vector regs).
* Various status and control registers

« Memory is a contigious byte store of up to 264 bytes

« Immediate: Input data (constants) may be encoded into the instructions.

Basic Program Execution Registers

Sixteen 64-bit
Registers General-Purpose Registers

Six 16-bit
ﬁé{gigte,; Segment Registers

| 64-bits | RFLAGS Register
| B4-bits | RIP (Instruction Pointer Register)

FPU Registers

Eight 80-bit i i
, Floating-Point
gisters Data Registers

16 bits Control Register
16 bits Status Reqgister

Tag Register

| 64 bits
[64 bits

U

Address Space
2764 -1

Opcode Register (11-bits)
FPU Instruction Pointer Register
FPU Data (Operand) Pointer Register

Bounds Registers

MMX Registers

Eight 54-bit

Four 128-bit Registers

Registers MMX Registers

BNDCFGU | [BNDSTATUS

XMM Registers

Sixteen 128-bit

Registers XMM Registers

[37bis | MXCSR Register

YMM Registers

Sixteen 256-bit
Registers

YMM Registers

Figure 3-2. 64-Bit Mode Execution Environment

Data types in registers (or in memory)

 Byte (8bit), Word (16bit), Doubleword(32bit), Quadword (64bit)
e Instructions may handle these as ,signed” (2-complement) or ,,unsigned”

* Addresses

 Floats with Half (1+9+6), Single (1+23+8, Double (1+11+52) or Extended (1+63[+1]+15)
precision

 Plus NaN and +/- Infine
 Special cases

* BCD numbers packed/unpacked

* Bit fields, Strings

* Memory (and registers) do not remember the type of data they contain. It is encoded in the
instructions.

\
T ——
=
———
=
=
—
\
T —
==
—
———
\

Overview of Instructions

* Basic
* Data move instructions (MOV)
* Arithmetic, bit-logical and shift
 Conditional or unconditional branch
 Conditional uses the FLAGS register set by previous instructions
* Relative (offset) or absolute value to set IP
 Stack operations (PUSH and POP) and subroutine calls CALL [in caller] and RET [in callee])

» These use SP (a.k.a. RSP) register, which builds a FIFO (with mixed content of data and
return addresses)

* Complex instructions

* E.g: ,Fused Multiply and Add”, ,Inverse SQRT", ,REP/LOOP"+,MOVS"/"CMPS",
.FSIN/FCOS/FPTAN", AES encryption, hyperthreading

* Best online resource: x86 and amdé4 instruction reference (felixcloutier.com)

\
T ——
==
——
[—

——
_—
T —
==
—
——
———

https://www.felixcloutier.com/x86/

Timing of Instructions

* Instructions take >=1 clock cycles if executed in sequence, (+ 4-6 may be executed in parallel)
» Shortest is integer MOV/ADD/CMP register to register, or with immediate values

* When memory is involved, this can become longer.

Multiplication is aceptable (4 cycles), also with floats.

Integer division is 15-20,
Floating point math functions > 50

Best online resource: https://www.agner.org/optimize/instruction tables.pdf

* Instructions are processed in several phases, called a pipeline

» Fetch instr-> decode -> read regs -> execute -> access memory -> store in regs

* The pipeline may be delayed, e.g. if slow memory access occurs (e.g 20 ns -> CPU 60 cycles)
* Dependencies (e.g add AX, 4; add BX, AX. also delay the pipeline

» Branches cause problems, as a branch invalidates the pipeline (losing 15-20 clock cycles), unless it is correctly
predicted -> this is provided by branch predictors and branch target buffers

 In-CPU autonomous optimizations, e.g.
* Instruction reordering -> requires traching of dependencies.

» Multiple (up to 4) execution units (e.g. ALU)

L e L Ui

https://www.agner.org/optimize/instruction_tables.pdf

L e L Ui

Assembly language

* .Mnemonic”-s assigned to instruction types

* Directly and easily convertible into machine code, no optimizations, etc.

» Disassembly is also possible

A syntax is defined for addressing and options

e Jumps use labels

» No need to calculate offsets manually

 Absolute addresses are resolved by linker ,GNU Id)

* Machine code and assembly can be seen togethet with objdump —D
PRPEAREERRAARA30 < init::

4904360 :

490434 :
| 40043b:
1 488d3e:
490448
490442 :
490446

43
43
43
74
f
43
c3

83 ec 08

8b 85 bd @b 20 @0
85 c@

02

de

83 c4 @8

sub
mov
test
je
callq
add
retqg

$0x8,%rsp
@x200bbd(%rip),%rax
arax,srax

4900442 < init+@x12>
*Hrax

$0x8,%rsp

600ff8 < gmon_start >

Intel 8886 architecture — 1978!!

Execution Unit (EU) BUS Interface unit (BIU)

bata Registers — (Ll

— Segment Registers

Pointer Registers - i B

Index Reqgisters —

<: Internal Bus
r r

Memory

@

< =

External Bus

ALU : Arithmetic
& Logic Unit y

N/

- 10
Instruction Queue

Control Unit Devices

Figure: nternal Architective af 8080 Microprocessor

f OnlineClassNotes YW @onlineclassnote 3+ +Onlineclassnotes fp OCNPINED onlineclassnotes com

Sum cove Modern Intel X64 Core

Branch Predictor

ITLE L1 Instruction Cache
2'5% BTtB 128 entry 8-Way 32 KB 8-Way : 2 1 9
entry
L1 ETE 16 Bytes/Cycle
5K entry 16 Bytes/Cycle

Return Stack
22 entry
Instruction Queue
(2x 25 entry)
4 Instructions
Micro-Op Cache Fill daViay|Decods
Decoder Decoder Decoder | Decoder Microcode
» Hundreds of 64 &
_ undreds o
6 Micro-Ops =5 Micro-Ops

Micro-Op Cache 648 Windo Micro-Op Queue / LSD 5 12 bit reg isters

(2304 entry) (2% 70 entry}

* 3 layer caches
. . Rename / Dispatch - . .
Zeroing ldioms 5 Instructions / Cycle Max Move Elimination Register Alias Tables
Front End
: * Parallel
Branch Order Buffer 5 Micro-Ops Instruction Retire G rG e I n St
(96 entry}
Reorder Buffer deCOde Gnd uop
(352 entry) h
Superqueue
000 Resources L2 Cache 32 entry L3 Cache
Integer Register File FPMNector Reqgister File MXCSR Reqgister File Mask Register File
(280 entry) (224 entry) (8 entry) {152 entry) 512 KB 8-Way [4X pa ra I Iel A L U -S =+
or 32 Bytes/Cycle ’
1280 KB 20-Way 2 AG U
Unified Math Scheduler Store Data Scheduler AGU Scheduler AGU Scheduler I
(80 entry) (34 entry) (23 entry) (23 entry) L2 TLE
2048 entry .
» Reordering
oo [oo Il oo I oo [eordaerin
* Branch predictor

Exect..ltlon Loadfstore Load Queue Store Queue i Reorderl ng
En gine (128 entry) (72 entry)

128 Bytes/Cycle Load
64 Bytes/Cycle Store

L1DTLE 64 Bytes/Cycle

CrEd (“‘t’adS}} L1 Data Cache
en slores
v 48 KB 12-Way Fill Buffers
12 entry Memory Subsystem

.11ger Lake” CPU
with 4 x,Willow Cove” Cores (10nm, 2021)

|
{
|
|

Display, PHYs! it
PCIe4' PHYs

lators

egu

{

R

age

Display&PCles
gontrol Logic

SIVISERTe NIy

Integrated Volt

= Fullys

Image
Processing?
Unit
(IPUV6)

Integrated Voltage Re

i)

Full

https://cdn.wccftech.com/wp-content/uploads/2020/08/Intel-Tiger-Lake-11th-Gen-Mobile-CPU-10nm-Die-Shot_2-1030x822.jpg

LD e D U

How to make use of these

* In 99% of cases compilers (e.g. modern C/C++ compilers) do a great job, i.e. they produce fast
and efficinent code

« It is only worth optimizing a few little ,hotspots” in code

* Maybe there are no good candidate hotspots

 Candidates are: spec data conversion (e.g. encoding/decoding, encryption), navigating in special collections/look-up tables, sort
comparison methods, etc.

» Always give a chance to the C compiler: 1. use —0 flags, 2. check if output is suboptimal, and 3.
change only the smallest portion possible.

» Writing assembly files / complete methods from scratch is difficult; but asm blocks can be
embedded into GNU C code:

int src = 1;
int dst;

asm ("mov %1, %@\n\t"
"add $1, %e"
llzrll {dSt)

: "r" (src));

printf("%d\n", dst);

Inline assembly, and Assembly code - details

C code with asm block

int aaa = 59;
intccc=17;

asm volatile (

"xor % %edx, % %edx\n\t"
"mov $5,% %ebx\n\t"
"add %1,%0\n\t"

"imul %1\n\t"

:"=r"(aaa) // result will be a register, saved to a in the end
:"r"(ccc) //input data from variable c through a register

. edx", ,.ebx" //indicate regs used/overwritten in asm block

Compiler output

movl $59, -44(%rbp) // $59 is a constant 59
movl $17,-36(%rbp) // rbpisthe stack frame reg,
// -36 and -44 are the offsets

movl -36(%rbp), %ecx // select ecx reg for $1, and load

xor %edx, %edx // typical way to zero a reg
mov $5, %ebx // load constant to reg
add %ecx,%eax // eax is selected for eax
imul %ebx // eax is used as src,

result goes to edx:eax

movl %eax, -44(%rbp) // save to aaa var

\
T ——
==
——
[—

——
_—
T —
==
—
——
———

Program for today: measure instruction
latencies

* Generate code -> compile -> run several times -> summarize

» Parameters: <iteration_count> <IMUL-s per iteration> <second IMUL> <test_loops>

* E.q:
e ./InlineAssembly.sh 1000000 10 X 10 -> 13 mSec
* ./InlineAssembly.sh 1000000 110 X 10 -> 115 mSec

* 1000000 x 100 IMULs: 100 mSec -> 1IMUL: 1 nsec
* CPUIis2.6 GHz ->2.6 cycles/IMUL

LD e D U

Single instruction Assembly measured results

* Relative instruction times:

Instruction Measured for 1M | Relative time | Remark

mov 73 uSec 0.26 Executed 4x parallel

add / sub 275 uSec 1

add + add 280 uSec 1 Only for independent ops
mul / imul 1154 pSec 4.2

div / idiv 7070 uSec 26

div (after edx clear) 6270 uSec 23 Optimized in div pcode

* Check the CPU -> cat /proc/cpuinfo
model name :Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz - turbo: 3.50 Ghz.

* cpu MHz measured with /proc/cpuinfo: 2.65 — 3.50 Ghz

* Clock cycle @3,50 Ghz: 285 psec, add instruction time: 286 psec

* Other CPU-s

* Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz -> 4.00 GHz for ,turbo boost” -> down to 250 psec / clock cf. 273 psec
* Intel Corei5-4210 CPU @1.70 GHz from 2014, with 270 GHz ,, Turbo Boost’ -> down to 370 psec / clock cf. 378 ps / add

This is it for today - Mdra ennyi!

* Next week, we investigate the caches and virtual memory in modern X64 processors

	Slide 1: Performance-optimised computing – Week 2. Instruction set, Processors, Memory access,
	Slide 2: Typical Computer Architecture server or desktop, around 2010
	Slide 3: Instruction Set and Machine Code
	Slide 4: X64 Data: Registers, Memory and Immediate
	Slide 5
	Slide 6: Data types in registers (or in memory)
	Slide 7: Overview of Instructions
	Slide 8: Timing of Instructions
	Slide 9: Assembly language
	Slide 10: Intel 8086 architecture – 1978!!
	Slide 11: Modern Intel X64 Core (2019)
	Slide 12: „Tiger Lake” CPU with 4 x „Willow Cove” Cores (10nm, 2021)
	Slide 13: How to make use of these
	Slide 14: Inline assembly, and Assembly code - details
	Slide 15: Program for today: measure instruction latencies
	Slide 16: Single instruction Assembly measured results
	Slide 17: This is it for today - Mára ennyi!

