
Performance-optimised computing – Week 2.

Instruction set, Processors,
Memory access,

Dr. Bakay Árpád – Ericcson

Fall Semester, 2024

„southbridge”

„northbridge”

Typical Computer Architecture
server or desktop, around 2010

CORECORE CORECORE

CPU0 CPU1

PCI-E Data Bus

Network &
WiFi

Low-speed
Storage

USB
(storage, etc.)

Memory

DRAM

Hi-speed
Storage

Graphics

●CPU Core and X86 Architecture

●CPU as a unit

●Memory

●Storage

●Networking

●Software, etc.

Instruction Set and Machine Code

●Each processor architecture has a well-defined set of „commands” supported – this is the
instruction set

●Contians dozens (or hundreds of) instructions which execute simple operations, e.g

● Move data between memory and CPU-internal registers, or between registers

● Add/Mul/Subtract/Divide 2 integer or floating-point numbers stored in registers

● Branch to a location if previous operation resulted in 0

● Jump to a location saving current address in stack (call), jump back to a location on the stack (return)

●Instructions are encoded into a few (1 to 15) bytes, and placed contigiously into a memory
section used for „code” -> x86 Assembly/Machine Language Conversion – Wikibooks

●„Machine code” are sequences of instructions.

●Most operations refer to 1, 2 (or 3) registers, which hold „hot” data in the CPU,

● The fastest access possible (about 100x faster than main memory)

●Full X86/64 CPU documentation is free and published (...but long):
● Intel® 64 and IA-32 Architectures Software Developer’s Manual Combined Volumes: 1, 2A, 2B, 2C, 2D, 3A, 3B, 3C, 3D, and 4

● 1. Basic architecture, 2. Instruction set, 3. Programming Gudie, 4. Model-specific info

https://en.wikibooks.org/wiki/X86_Assembly/Machine_Language_Conversion
https://www.intel.com/content/www/us/en/content-details/782158/intel-64-and-ia-32-architectures-software-developer-s-manual-combined-volumes-1-2a-2b-2c-2d-3a-3b-3c-3d-and-4.html?wapkw=intel%2064%20and%20ia-32%20architectures%20software%20developer%27s%20manual&docid=782158

X64 Data: Registers, Memory and Immediate

●General purpose registers are for 64 bit integers (16 regs)

●Names in doc (and in assembly) AX, BX, CX, DX, DI, SI, BP, SP + R8 .. R15,

●Accessible in different widths (8bits: AL,/AH, 16: AX, 32: EAX, 64: RAX)

●IP (or RIP) is s special (automatically incremented) register pointing to the next instruction

●Vector registers are 64-512 bytes (8,16 or 32 regs) and applicable for integer AND for floating
point, also for „vector” (SIMD) operations

●Floating point regs: st0-st7 + control + status (aliased on vector regs).

●Various status and control registers

●Memory is a contigious byte store of up to 2^64 bytes

●Immediate: Input data (constants) may be encoded into the instructions.

Data types in registers (or in memory)

●Byte (8bit), Word (16bit), Doubleword(32bit), Quadword (64bit)

●Instructions may handle these as „signed” (2-complement) or „unsigned”

●Addresses

●Floats with Half (1+9+6), Single (1+23+8, Double (1+11+52) or Extended (1+63[+1]+15)
precision

●Plus NaN and +/- Infine

●Special cases

●BCD numbers packed/unpacked

●Bit fields, Strings

●Memory (and registers) do not remember the type of data they contain. It is encoded in the
instructions.

Overview of Instructions
●Basic

●Data move instructions (MOV)

●Arithmetic, bit-logical and shift

●Conditional or unconditional branch

●Conditional uses the FLAGS register set by previous instructions

●Relative (offset) or absolute value to set IP

●Stack operations (PUSH and POP) and subroutine calls CALL [in caller] and RET [in callee])

●These use SP (a.k.a. RSP) register, which builds a FIFO (with mixed content of data and
return addresses)

●Complex instructions

●E.g: „Fused Multiply and Add”, „Inverse SQRT”, „REP/LOOP”+„MOVS”/”CMPS”,
„FSIN/FCOS/FPTAN”, AES encryption, hyperthreading

●Best online resource: x86 and amd64 instruction reference (felixcloutier.com)

https://www.felixcloutier.com/x86/

Timing of Instructions
●Instructions take >=1 clock cycles if executed in sequence, (+ 4-6 may be executed in parallel)

● Shortest is integer MOV/ADD/CMP register to register, or with immediate values

● When memory is involved, this can become longer.

● Multiplication is aceptable (4 cycles), also with floats.

● Integer division is 15-20,

● Floating point math functions > 50

● Best online resource: https://www.agner.org/optimize/instruction_tables.pdf

●Instructions are processed in several phases, called a pipeline

● Fetch instr -> decode -> read regs -> execute -> access memory -> store in regs

● The pipeline may be delayed, e.g. if slow memory access occurs (e.g 20 ns -> CPU 60 cycles)

● Dependencies (e.g add AX, 4; add BX, AX. also delay the pipeline

● Branches cause problems, as a branch invalidates the pipeline (losing 15-20 clock cycles), unless it is correctly
predicted -> this is provided by branch predictors and branch target buffers

●In-CPU autonomous optimizations, e.g.

● Instruction reordering -> requires traching of dependencies.

● Multiple (up to 4) execution units (e.g. ALU)

https://www.agner.org/optimize/instruction_tables.pdf

Assembly language

●„Mnemonic”-s assigned to instruction types

●Directly and easily convertible into machine code, no optimizations, etc.

● Disassembly is also possible

●A syntax is defined for addressing and options

●Jumps use labels

● No need to calculate offsets manually

● Absolute addresses are resolved by linker „GNU ld)

●Machine code and assembly can be seen togethet with objdump –D

Intel 8086 architecture – 1978!!

Control Unit

Memory

IO

Devices

ALU : Arithmetic

& Logic Unit

●Hundreds of 64 &
512 bit registers

●3 layer caches

●Parallel inst
decode and µOp
cache

●4x parallel ALU-s +
2 ‚AGU’

●Reordering

●Branch predictor

●Reordering

Modern Intel X64 Core
(2019)

„Tiger Lake” CPU
with 4 x „Willow Cove” Cores (10nm, 2021)

https://cdn.wccftech.com/wp-content/uploads/2020/08/Intel-Tiger-Lake-11th-Gen-Mobile-CPU-10nm-Die-Shot_2-1030x822.jpg

How to make use of these
●In 99% of cases compilers (e.g. modern C/C++ compilers) do a great job, i.e. they produce fast

and efficinent code

●It is only worth optimizing a few little „hotspots” in code

● Maybe there are no good candidate hotspots

● Candidates are: spec data conversion (e.g. encoding/decoding, encryption), navigating in special collections/look-up tables, sort
comparison methods, etc.

●Always give a chance to the C compiler: 1. use –O flags, 2. check if output is suboptimal, and 3.
change only the smallest portion possible.

●Writing assembly files / complete methods from scratch is difficult; but asm blocks can be
embedded into GNU C code:

Inline assembly, and Assembly code - details

C code with asm block

int aaa = 59;
int ccc = 17;

asm volatile (

 "xor %%edx,%%edx\n\t"

 "mov $5,%%ebx\n\t"

" add %1,%0\n\t"

" imul %1\n\t”

 : "=r" (aaa) // result will be a register, saved to a in the end

 : "r" (ccc) // input data from variable c through a register

 : „edx", „ebx" // indicate regs used/overwritten in asm block

);

Compiler output

movl $59, -44(%rbp) // $59 is a constant 59
movl $17, -36(%rbp) // rbp is the stack frame reg,

// -36 and -44 are the offsets

movl -36(%rbp), %ecx // select ecx reg for $1, and load

xor %edx, %edx // typical way to zero a reg

mov $5, %ebx // load constant to reg

add %ecx,%eax // eax is selected for eax

imul %ebx // eax is used as src,
result goes to edx:eax

movl %eax, -44(%rbp) // save to aaa var

Program for today: measure instruction
latencies

●Generate code -> compile -> run several times -> summarize

●Parameters: <iteration_count> <IMUL-s per iteration> <second IMUL> <test_loops>

●E.g:

●./InlineAssembly.sh 1000000 10 X 10 -> 13 mSec

●./InlineAssembly.sh 1000000 110 X 10 -> 115 mSec

●1000000 x 100 IMULs: 100 mSec -> 1 IMUL: 1 nsec

●CPU is 2.6 GHz -> 2.6 cycles / IMUL

Single instruction Assembly measured results
●Relative instruction times:

●Check the CPU -> cat /proc/cpuinfo
model name : Intel(R) Xeon(R) CPU E5-2697 v4 @ 2.30GHz - turbo: 3.50 Ghz.

● cpu MHz measured with /proc/cpuinfo: 2.65 – 3.50 Ghz :

● Clock cycle @3,50 Ghz: 285 psec, add instruction time: 286 psec

●Other CPU-s

● Intel(R) Xeon(R) Gold 6240R CPU @ 2.40GHz -> 4.00 GHz for „turbo boost” -> down to 250 psec / clock cf. 273 psec

● Intel Core i5-4210 CPU @1.70 GHz from 2014, with 270 GHz „Turbo Boost’ -> down to 370 psec / clock cf. 378 ps / add

Instruction Measured for 1M Relative time Remark

mov 73 µSec 0.26 Executed 4x parallel

add / sub 275 µSec 1

add + add 280 µSec 1 Only for independent ops

mul / imul 1154 µSec 4.2

div / idiv 7070 µSec 26

div (after edx clear) 6270 µSec 23 Optimized in div µcode

This is it for today - Mára ennyi!

●Next week, we investigate the caches and virtual memory in modern X64 processors

	Slide 1: Performance-optimised computing – Week 2. Instruction set, Processors, Memory access,
	Slide 2: Typical Computer Architecture server or desktop, around 2010
	Slide 3: Instruction Set and Machine Code
	Slide 4: X64 Data: Registers, Memory and Immediate
	Slide 5
	Slide 6: Data types in registers (or in memory)
	Slide 7: Overview of Instructions
	Slide 8: Timing of Instructions
	Slide 9: Assembly language
	Slide 10: Intel 8086 architecture – 1978!!
	Slide 11: Modern Intel X64 Core (2019)
	Slide 12: „Tiger Lake” CPU with 4 x „Willow Cove” Cores (10nm, 2021)
	Slide 13: How to make use of these
	Slide 14: Inline assembly, and Assembly code - details
	Slide 15: Program for today: measure instruction latencies
	Slide 16: Single instruction Assembly measured results
	Slide 17: This is it for today - Mára ennyi!

