
Performance-optimised computing – Week 3.

Caches & Virtual Memory
Dr. Bakay Árpád – Ericcson

Fall Semester, 2024

| 2020-10-26 | Page 2

Announcements

●Write me if you cannot attend the class.

●We can arrange a Teams session if you are sick at home.

X64 Cache Hierarchy in SMP

Main DRAM Memory

Cache Principal Features
●Width x86/64: 512 bits (64-bytes)

● 32 kbyte L1 data cache is only 512 lines!

● There is no partially loaded cache line -> to read 1 byte from memory, 64 byte reads are required (8 transfers on 64 bit DRAM bus)

●Any data accessible by a CPU Core must pass through ALL levels of caches!

● And (in most cases) a copy must also be maintained in the lower-level cache

●L1 i / d and L2 are per-core private, L3 (a.k.a Last-Level Cache / LLC) is shared.

●There also exist a few special-purpose caches and other related modules

● TLB: Translation Lookaside Buffers -> see later

● IMC: Integrated Memory Controller – not a cache!

● QPI: Quick Path Interconnect for IO - not a cache!

The CPU Caches Compared
to other methods of Data Storage

●Modern x64 CPU-s have 3 levels of caches. Why?

●Fast cache memory exists, but expensive & extensive -> only small size is affordable

●https://meribold.org/assets/cache-paper.pdfType Typical size in 2024 Access time (CPU cycles) Scope

Generic Register 16 (300) x64bits 1 Hyperthread

AVX512 Vector reg 32 (200) x512 bits 1 Hyperthread

L1 cache 2 x 32 kbytes (instr,data) 3-4 Core

L2 cache 512 kbytes (instr, data) 10-12 Core

L3 Cache 10-30 Mbytes 50-60 CPU

DRAM Memory Up to 1 TB about 100-200 (like 50
ns)

Machine

NVMe Up to 8 TB 10-20 µs, 2.6 Gbps Machine

SSD Drive (SATA) Up to 8 TB- (200 kHUF) 100 µs, 600 MBps System

HDD Drive Up to 20 TB (120 kHUF) 5-9 ms, 150-200 MBps System

https://meribold.org/assets/cache-paper.pdf

Cache Size Evolution

●‚Sandy Bridge’ 2011:

●L1i/d: 32+32 kBytes

●L2: 256 kBytes (4-way)

●L3: 3-20 Mbytes

●‚Raptor Cove’ Oct 2022, and ‚Emerald Rapids’ Dec 2023

●L1i/d: 32+48 kBytes (with 8-12way associativity)

● „Redwood Cove” 2023 dec -> 64+48 kBytes

●L2: 2 Mbytes (16-way)

●L3: 36 Mbytes or 5MBytes/Core*64Core

Caches are actually bigger then their size
e.g. : 32k L1 Data Cache

Data, 512 x 512 bits
Address:

512 x

(64 – 6)
bits

„Content Addressed Memory”

Is address ‚X’ present at any line?

Cache Tricks & Issues

●Associativity -> how many slots a certain address can be placed into?

●1: „Direct mapped”, >= 2: „N-way associative”, any slot: „Fully associative”

●Prefetching: expect data needs in the future

●Can leverage DRAM „row select”

●Replacement policies

●E.g. LRU or random

●Upon updates of cached data: „write through” immediately (simple) or „write back” at a later
time (better for multiple writes)

●Inclusive/non-inclusive/exclusive -> shall lover caches also contain data cached above?

●Cache coherence: changing data shall make sure others do not cache the same address.

●Send update all other caches or broadcast invalidate request

●Try to colocate processes/threads with shared access

Caches are actually bigger then their size
e.g. : 32k L1 Data Cache

Data, 512 x 512 bits
Address:

512 x

(64 – 6)
bits

4-Way associative cache

Only N/4 lines are to be checked

Cache Performance Test program

●Originally from: A Survey of CPU Caches (meribold.org) (2017)

●https://gitlab.inf.elte.hu/-/snippets/31

●Idea: create a random linked, but circular list where the loop SIZE is changed. Then traverse
the elements a fixed (e.g 100M) number of steps.

● Small circle: mostly uses L1 cache

● Large circle: uses lower level caches or DRAM

●Enhancements

●„Wrapper script” to

●Run multiple tests with various SIZE-s: 1k, 2k, 5k, 10M, 20M

●Use gnuplot to create a „scatter chart„

https://meribold.org/2017/10/20/survey-of-cpu-caches/
https://gitlab.inf.elte.hu/-/snippets/31

Test results with Meribold test program

DRAM
L3

zoneL2

zone
L1

zone

2. Virtual memory
●Logical addresses seen by programs differ from physical addrs

used on memory bus

●Advantages:

●Extend limits of address space

● Extend physical mem: some memory regions „swapped” on disk

● Or: 32-bit programs on a server with more than 4G physical memory.

●Provide processess with dedicated/isolated/secure address spaces

●Or explicitly provide shared memory (visible by multiple processes at the

same address), for shared code (dynamic libraries) or data (inter-process
communication)

●Implementation requires:

●Memory Management Unit - MMU

●Page tables for virtual-to-physical mapping

● Separate mappings per process, but shared by threads

● Basic pages are 4kBytes (12 bits). Last 12 bits of address is the offset within the
page, the rest (20 or 52) bits are looked up from the page table.

Overview of virtual memory and paging

Source: https://inst.eecs.berkeley.edu/~cs162/su20/static/lectures/17.pdf

Linux Practice - Process Address Space

●Example for 32bit - 4 Gbytes

●Stack, Heap, BSS, Data & Text are
standard process-private areas

●Memory mapping is used for shared data,
including shared libs.

●Most of kernel space is inaccessible for
process

Page Table and Memory Management Unit

MMU Tasks

1. Cut address

2. Select right PT

3. Read real address
from PT

4. Create physical
address by adding
offset

5. Read requested
memory

Physical
memory

Page tables pages, each holding 512

8-byte adresses

(or 1024 4-byte addrs for 32 bit mode)

Normal memory pages

4096 byte pages
Virtual address in memory access request, is split to byt

Low 12 bits:
offset within page

Upper bits:
select page table
from „PT array”

Middle 9 bits:
(10 bits in 32-bit mode)
select offset in Page Table

Memory Management Unit

MMU

Repeated for each request! ... almost

PT start pointer

(One per process)

MMU - Memory Management Unit
●A principal unit of all modern CPU-s.

●Main task is exactly to translate virtual addresses to physical.

●Typically there is a portion of the phys mem (like lower 1G), which is directly addressed

● I.e. no virtual translation there.

● This is used by the kernel, unaccessible by processes

●Uses a large number of Page Tables, which are also stored in the main memory

● Page tables are stored in the kernel’s private, directly addressed space

● With 4096-byte pages, this amounts to 0.2-0.3% of total virtual address space in use by any process (8bytes/4096 bytes + some
overhead).

● With swap, shared, mem, etc. this may add up to 1-3% of physical memory.

●MMU cooperates with the kernel:

● When a process is activated, its page tables are activated in MMU by the kernel through PT base address.

● When a user program refers to memory not yet mapped (or mapped but swapped), a page fault interrupt is handled by the kernel
to set up new virt->phys mapping. This may require eviction on an existing mapping (to disk), possibly of another process.

●MMU also provides access control (e.g. read/write/execute bits in page table)

Page Table and Memory Management Unit
Caveats

Physical
memory

Page tables pages, each holding 512

8-byte adresses

4096 byte pages
Address in memory access request

Low 12 bits:
offset within page

Upper bits:
page table selector

Middle 9 bits:
offset in Page Table

Memory Management Unit

MMU

PT start pointer

(One per process)

Separate page table
for each process!!!
Need to change PT start
pointer at each context
switch

(This is tolerable)

‚Upper bits’ are 10

bits for 32bit mode...

(1024 pages / 4Mbytes

needed for PT per process

– hardly tolerable)

...and 43 bits for 64 bit!!!

(Not tolerable!!!)

Solution: Multi-level Page Tables
●Virtual address space is typically very sparse: a small process may only have <10 used items

●Full PT coverage would be very big: 252 items on 64 bit (per process)

●2-level Page Table works fine on 32 bit...

● Bits: 31-22: are looked up from the „page directory” (1024 4 byte entries), to select a page table

● (PT pointers is are non-zero in PD for only those few of the 1024 items, where needed)

● Bits 21-12: to look up physical page address from the PT selected above

● Bits 11-0: direct „offset” address within a page

● A minimal process needs only 1xPD + a few PT-s (for text, heap, stack etc.)

●...but 64-bit requires 4-level Page Tables

● 4k page can hold 512 8-bytes entries

● Page levels for bits 47-39, 38-30, 29-21,20-12 -> 48 bit only! See next slide...

●Muti-level page translation is a performance pain: 2-4 memory accesses for each ‚real’ access

●Solution: „Translation Lookaside Buffer” (TLB): another „cache” for page tables (again content
addressed)

Virtual address mapping on 64 bit for 4096 byte pages

●CR3 is a CPU register, used as „Master Paging Pointer”. It is changed at every process switch.

●All PML4, PDP, PD, and Page tables are stored in kernel memory, maintained by the kernel

●„Page” (on the rigth) is the part of phys memory where the process has its real data.

●Upper 16 bits of 64 bit virtual addresses are not used / ignored

● It is OK, because currently all processes are happy with 2^48bytes -> 260 terabytes

Source: Exploring Virtual Memory and Page Structures (xenoscr.net)

https://blog.xenoscr.net/2021/09/06/Exploring-Virtual-Memory-and-Page-Structures.html

Example: Calculate the Pages and Page
Tables Needed for a Process

Segment name virtual address range size Pages needed

●Text (code) segment 0x600000000000 – 0x60000318A512 ~ 52Mbytes -> 12682

●Data segment: 0x400000000000 – 0x40000152143B ~22Mbytes -> 5410

●Stack: 0x300000000000 – 0x30000001A000 - 104 kbytes -> 26

●Heap: 0x800000000000 – 0x8001B3424000 - 7.3 Gbytes - 1 782 820

Page Tables needed:
roundUp512(12682) / 512 + roundUp512(5410) / 512 + roundUp512(25) / 512 + roundUp512(1782820) / 512 =

25 + 11 + 1 + 3483 = 3520 PT-s

Page Directories needed: 1 + 1 + 1 + roundUp512(3483) / 512 = 9 PD-s

Page Directory Pointer Tables (PDPT) needed: 4

Page Map Level 4 Table needed: 1 (always)

Overhead: 3534 4k tables -> 14.8 Mbytes - 0.2 % of the 7.4 Gbytes used
Max possible counts: (for 48bit phys addr): 1.05M PT-s, 260k PD-s, 512 PDPT-s, 1 PML4T
TLB sizes: (for latest Golden Cove Core): 256 L1-Instr TLB + 96 L1-Data TLB + 2048 L2 TLB,

Virtual Memory Mapping – Further Details
Access Control, Page Fault, Process Swithches
●For efficiency, PT entries are 64 bits on X64 although only 52 bits are needed (as the lower bits

select the address within a page)

● The remaining PT bits are used for Access Control: RO/RW/Execute, „dirty”, „available”, etc.

● Access control is another important function of the MMU!

●Page fault: when a virtual address without live physical mapping exists

● This may be A. a page never addressed before, or a page swapped to the disk

● This is Handled by OS

● Select a physical page for this virt page

● If there is no free page, swap a page to storage, and use that one

● Enter new item into PT page (may require a new PT -> add entry to PD as well)

● Prepare page: clear (for security reasons), or load swapped data from disk

●Tasks required process switches (scheduling is discussed in next class)

● MPP/CR3 needs to be updated (kernel records this for each process).

● Plus: all TLB-s need to be flushed!!! <- performance loss.

New Trend: Choice of multiple Page Sizes
●4kbyte + 2Mbyte + 1Gbyte pages - LARGE / HUGE PAGES

●64 bit virtual address space is segmented into regions of different page sizes

●Direct addressing may also be available for some ranges

●This requires advanced MMU

That’s it for today...

	Slide 1: Performance-optimised computing – Week 3. Caches & Virtual Memory
	Slide 2: Announcements
	Slide 3: X64 Cache Hierarchy in SMP
	Slide 4: Cache Principal Features
	Slide 5: The CPU Caches Compared to other methods of Data Storage
	Slide 6: Cache Size Evolution
	Slide 7: Caches are actually bigger then their size e.g. : 32k L1 Data Cache
	Slide 8: Cache Tricks & Issues
	Slide 9: Caches are actually bigger then their size e.g. : 32k L1 Data Cache
	Slide 10: Cache Performance Test program
	Slide 11: Test results with Meribold test program
	Slide 12: 2. Virtual memory
	Slide 13: Overview of virtual memory and paging
	Slide 14: Linux Practice - Process Address Space
	Slide 15: Page Table and Memory Management Unit
	Slide 16: MMU - Memory Management Unit
	Slide 17: Page Table and Memory Management Unit Caveats
	Slide 18: Solution: Multi-level Page Tables
	Slide 19: Virtual address mapping on 64 bit for 4096 byte pages
	Slide 20: Example: Calculate the Pages and Page Tables Needed for a Process
	Slide 21: Virtual Memory Mapping – Further Details Access Control, Page Fault, Process Swithches
	Slide 22: New Trend: Choice of multiple Page Sizes
	Slide 23: That’s it for today...

