
Performance-optimised computing – Week 4.

Tasks, System calls, PMU &
Exercises

Dr. Bakay Árpád – Ericcson

| 2020-10-26 | Page 2

●Branch pred example?

●In java: https://www.kodewerk.com/java/2023/09/04/code_without_branching.html

●High context switch and interrupt rates - tools to analyz CS

●Vmstat

●CPU affinity of running on another CPU

●Explain the top command

●

https://www.kodewerk.com/java/2023/09/04/code_without_branching.html
https://www.site24x7.com/learn/linux/context-switching.html

| 2020-10-26 | Page 3

●Elhunyt Bélády László | MTA

●Linux kernel & likely/unlikely

https://mta.hu/magyar-tudomanyossag-kulfoldon/elhunyt-belady-laszlo-112155

Summary of topics discussed so far

●Central components of CPU Core: instructions, registers, ALU, FPU, and vector execution unit.

● Performance tricks: instruction pipelineing with branch prediction, execution reordering, parallel execution units,
complex ISA with domain targeted instructions + hyperthreading.

● Things we shall care about: avoid slow instructions, make branches predictable, or do it in branch-less way. Let the
compiler optimize, but you may also analyze and improve the hotspots (e.g. with avx512 vectors).

●Caches and access times to memory (and to storage)

● Performance tricks: 3 level caching, prefetch, coherence mechanism for multi-core and multi-socket

● What we should care about: temporal & spatial locality, avoid frequently used shared data, assign communicating
processes to same CPU (or core), use smaller datatypes, packed into 64 bits.

●Virtual addressing & Memory Paging

● Performance tricks: Translation Lookaside Buffer (+ only 48 bits used to save level count)

● What we should care about: avoid swapping, use shared libraries

A few things to add...

●Branch prediction vs. ‚branch likelyness prefix’

●Page faults

| 2020-10-26 | Page 6

Missing from last class 1.

●Minor an major page faults - the Kernel has to intervene in all cases, after an MMU exception [„trap”]

●Minor (soft) -> no disk operations: „administration” (and memset/copy) only

●A new empty (=zeroed) page is requested

●mmapped data (backed by file) is accessed for read

●Page is already in RAM

●Not yet loaded

●A new empty page is first written - „zero-on-write”

●A mmapped (=non-zero) data is first written - „copy-on-write”

●Major -> mapping exists, but not in physical RAM

●First read access a new page in a mmapped file.

●Reading a swapped memory page,

●Reading a swapped memory page with eviction of some clean page

●Reading a swapped memory page with eviction of a dirty page to cache -> thrashing

| 2020-10-26 | Page 7

Full configuration with Modern Xeon-s
(e.g. „Granite Rapids” Intel® Xeon® 6980P)

●128 Cores AMD equivalent: 5th Generation AMD EPYC Processors

●256 threads through hyperthreading

●6-path Ultra-Path Interconnect for multi-socket machines, 24 GT/sec

●504 Mbytes of L3 cache

●4 memory controllers, w. 3 channels each, 2 DRAM slots per channel

●Rated thermal power: 500W!!

●For now, up to 4 CPU sockets per computer

●... But 8-socket Xeon 6 variants are coming!

●Memory is socket-bound: NUMA or Distr.Shared.Mem

●Cf. „Simmetric MultiProcessing”

https://www.intel.com/content/www/us/en/products/sku/240775/intel-xeon-6960p-processor-432m-cache-2-70-ghz/specifications.html
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwjRn96k6vWLAxUKD1kFHTX0CrkQFnoECBUQAQ&url=https%3A%2F%2Fwww.amd.com%2Fen%2Fproducts%2Fprocessors%2Fserver%2Fepyc%2F9005-series.html&usg=AOvVaw1LMOn41cRzUognjoaKSozD&opi=89978449

Linux Task scheduling
●Make sure tasks (processes, threads) get a fair share of CPU time (a.k.a. multitasking)

● Process -> address space

● Thread -> execution and scheduling. But: threads of a process are grouped to run from a common „time budget”

●Context switch is the manouver to assign a new thread to a „virtual CPU” (a core’s hyper-thread)

● Initiated by:

● Thread voluntary releasing the CPU (IO or timer wait)

● Timer interrupts the thread.

● It requires storage and refresh of all process state (from kernel memory): registers (all kinds of), paging table master pointer, etc. + TLB
flush , typically also affects memory caches -> C.S. is expensive

● How frequently does that happen?

● /proc/sys/kernel/sched_latency_ns: the maximum time a thread should wait for cpu -> typical: 10-30 ms

● /proc/sys/kernel/sched_min_granularity_ns: the min time allocated for each thread started -> typical: 2-4 ms

● Interrupt handling also implies a C.S.

●Performance considerations: optimize allocation of processes to CPU-s (be consistent)

● ‚cpu_affinity’ - set with taskset command

● Especially important on multi-socket machines with „non-uniform memory architecture” [NUMA]

System calls & privilege levels
●System calls are essential to execute principal operations in kernel on behalf user processes syscalls(2) - Linux

manual page (man7.org)

● Create new processes (fork + exec), wait for children (wait)

● Terminate current process (exit), or other process (kill)

● File, device, network access (open / [connect] / read/write / close)

● File modes and directory operations, user, group identity (geteuid, getegid, seteuid)

● Get/set system time(s)

● Inter-process communication (shared memory, semaphores, mutexes, etc)ű

● Allocate additional virtual memory: mmap

● Etc.

● Exception: malloc – allocations are not handled by the kernel, only when heap needs an extension: sbrk

●Methods are implemented in kernel’s address space

●Execution requires CPU in „Privilege level 0” mode, i.e. „user mode” to „kernel mode” transition implied

● SYSCALL and SYSRET X64 instructions make a call and also elevate into (or leave) privileged mode SYSCALL — (felixcloutier.com)

● This is not a context switch, as we remain in the same process!!!

https://man7.org/linux/man-pages/man2/syscalls.2.html
https://man7.org/linux/man-pages/man2/syscalls.2.html
https://www.felixcloutier.com/x86/syscall

X64 CPU Performance Monitoring Unit (PMU)

●Hundreds of counters maintaned by the X64 CPU, for external perf. monitoring.

● instructions, cycles,

● caches’ use and miss,

● TLB use and misses,

● page faults, context swiches,

● sys calls count

● various clocks

● etc, etc...

●For processor-specific details, see dedicated Intel website: https://perfmon-events.intel.com/

●These can be accessed from special „internal registers”, through the RDPMC instruction: RDPMC

(felixcloutier.com)

● This again requires privilege level 0 mode in CPU, i.e. accessible through a syscall

https://perfmon-events.intel.com/
https://www.felixcloutier.com/x86/rdpmc
https://www.felixcloutier.com/x86/rdpmc

Perf: generic tool for performance avaluation in
Linux

perf

●perf list - list supported events – not all are supported by all kernels

●Software events -> e.g. faults, ctx.swithces

●Hardware events cpu cycles, instrs, branch hits/misses + cache hits/misses, power, etc.

●MMU/IMC read / write accesses (e.g. uncore_imc_1/cas_count_read/)

●Kernel tracepoints

●perf stat <command ...> - run <command> and report 1 or several counters on termination

●Selectable for thread, process, CPU or system (-a)

●Also can include children threads and processes

●perf record <command> - start command and save counters periodically

●All info is stored in a file (perf.data by default), read with perf report

●Possible to trace individual functions

●perf report - create a report of recorded perf data.

Exercise: create a small C program and use perf to
analyze
●main() shall call 3-4 functions in a loop 1-10 million times or 2-3 secs), with each function

processing the result of the previous one (i.e. a „data pipeline”). Example: https://gitlab.inf.elte.hu/-/snippets/32

●Most functions shall call some 1-2 simple library methods like rand, atoi, itoa, strcpy, memcpy,
strchr, memchr, malloc, printf, sscanf.

●Compile and test your code.

●Install perf on your linux (package depens on distribution, on Debian: linux-tools-generic).

●Use the following perf variants to analyze your program:

● perf stat -- ./myprog - execution times, instructions, cycles, branch prediction, mode info with –d -

d

● perf stat -d -- ./myprog - cache access / miss statistics - hopefully

● perf record -- ./myprog - create call stack snapshots

● perf report --stdio - show all invoked methods, with percentages of CPU time.

https://gitlab.inf.elte.hu/-/snippets/32

Perf – advanced recording with call tree info

● Default recording

● perf record – <mypog>

● Displays all functions called + share of the that function within total time,

● Recording with call tree:

● perf record –call-graph dwarf -- <myprog>

● Perf report displays call tree of methods:

87.83% 0.50% snippet32 snippet32 [.] main

 |--87.33%--main

 | |--51.51%--scan_fun

 | | --50.14%--__GI___isoc99_sscanf (inlined)

 | | |--42.96%--__vfscanf_internal

 | --35.82%--print_fun

 | --35.03%--__sprintf (inlined)

 | --33.55%--__vsprintf_internal

Advanced visualization of CPU usage:
Flamegraphs
https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html#FlameGraph

https://www.brendangregg.com/FlameGraphs/cpuflamegraphs.html#FlameGraph

PAPI - Performance Application
Programming Interface

●A „standardized” interface for consistent, uniform access to various performance counters in

●CPU and GPU

●Also: Memory, IO, Interconnects

Think about YOUR performance project
Deadline for ideas: 20 March2025
Option 1:

●Benchmark „anything to anything”

●One of them shall be your code (compared to another existing solution).

●Evaluate the relative performance in various scenarios.

●Create a nice document which describes your findings

●Propose your project by class #6 on 10.14 – we will analyze and discuss.

●Can be done in pairs, in case scope is larger and individual responsibilities are defined

●E.g.

●I will create a TCP proxy in my favourite language, which receives TCP messages from
„producers” and forwards it to a number of registered „subscribers”

●I will compare this to 2 open source solutions, e.g. Mosquito Eclipse Mosquitto, Kafka

https://mosquitto.org/

Think about YOUR performance project

Option 2:

●Deep performance analysis of a tricky computing task.

●Primarily for C programmers (may be higher level languages, but let we need to discuss)

●Optimize your code based on experience, submit various versions

●E.g.

●I will create a solution for the 1Billion Record Challenge.

●First I will create a solution with „decent performance”

●Then I will analyze and improve this

That’s it for today!

	Slide 1: Performance-optimised computing – Week 4. Tasks, System calls, PMU & Exercises
	Slide 2
	Slide 3
	Slide 4: Summary of topics discussed so far
	Slide 5: A few things to add...
	Slide 6: Missing from last class 1.
	Slide 7: Full configuration with Modern Xeon-s (e.g. „Granite Rapids” Intel® Xeon® 6980P)
	Slide 8: Linux Task scheduling
	Slide 9: System calls & privilege levels
	Slide 10: X64 CPU Performance Monitoring Unit (PMU)
	Slide 11: Perf: generic tool for performance avaluation in Linux
	Slide 12: perf
	Slide 13: Exercise: create a small C program and use perf to analyze
	Slide 14: Perf – advanced recording with call tree info
	Slide 15: Advanced visualization of CPU usage: Flamegraphs
	Slide 16: PAPI - Performance Application Programming Interface
	Slide 17: Think about YOUR performance project Deadline for ideas: 20 March 2025
	Slide 18: Think about YOUR performance project
	Slide 19: That’s it for today!

