
Performance-optimised computing – Week 5.

Processes, threads, scheduling - continued

Storage Drives and File IO
Dr. Bakay Árpád – Ericcson

Data Storage Technologies - Compare Performance
●There exist Local attached and Remote (network accessed) devices

●Major device types: HDD vs. SSD

●Plus: SSD uses less power, generates no noise, tolerant for shock and temperature

●IOPS – I/O operations / sec, specified for a given transfer size (typ: 4k), and queue length
(1..16...256).

●Strange/suspicious IOPS values are often published for SSD-s, better to measure yourself!!

●Bus transfer rates: (SCSI1: 5 Mbps), SATA3: 600MBps (dedicated), SAS: 2.4 GBps, Fibre
Channel: up to 18 GByte/sec, I-SCSI up to 10 GBps,

●NVMe SSD-s use PCI Express bus, which is up to 15GByte/sec/lane (typical SSD transfer speed is
4-8GBps)

● NVMe over Fabric: detach SSD drives from host (PCI-E bus), but keep speed (e.g. 8GBps).

●NVMe-oF runs over R-DMA, e.g over a high-speed Ethernet network

IOPS (@4K, Q16) Seek time
ms

Random trasfer
ms

Seq transfer
rate MB/s

HDD 1000 5-10 10-15 100-200

SSD 100-200k - 0.04 – 0.08 4000-8000

Hard drive – Physical Structure

Spindle, 5-15k rot/min

(80-250 rot / sec)

Magnetic platters (e.g. 9
dual-sided platters, Ø50-

80 mm)

A lot of tracks

with a lot of sectors

Sector size is 512 bytes – this has not changed for decades

Up to 1.3 TBytes per platter side ->
2.6 * 109 sectors ->

e.g.:

• 200 000 tracks!!! (about 100 nm wide)

• 13 000 sectors / track!!! (about 15 µm long)

• No similar drawing for SSD-s, everything is in silicon

Magnetic heads
between platters

From userspace files to magnetic traces on disk
or SSD cells

Linux kernel

Solid State Drive

SSD

Partitions
Drives are divided into
contiguous parts of any size

Also applies for SSD

Disk: hda

Disk: hdb

Disk: sdc

Hda1
hda2
hda3

Filesystems
are created on most partitions;
the partition contains all
metadata of FS, including
directories, permissions, etc.

Filesystems
are mounted
into a single
directory tree

Most frequently
used data (e.g
top-level
directories)
are cached in
buffer cache

User Program 1.

holds
file descriptors to
open files
Open file A

Process specific
fd to file maps
with current
position in file

mapping #2
User Program 2.

Open file C

Open file D

...

Storage Virtualization

Linux kernel

Solid State Drive

SSD

Partitions
Drives are divided into
contiguous parts of any size
Also applies for SSF

Disk: hda

Disk: hdb

Disk: sdc

Hda1
hda2
hda3

Virtualization functions

• Split, merge partitions into a new structure, dinamically

• Mirror/replicate partitions to protect against disk errors

• Stripe on multiple partitions for improved performance

• Encrypt data before being stored on drives

User Program 1.

holds
file descriptors to
open files

Process
specific
mapping #1

mapping #2
User Program 2.

Open file #1

Open file #2

...

„Device mapper”Filesystem

abstractions

Virtual
storage
devices

Standard File Operations in Unix, Linux, Posix
●Basic, low level, syscall operations using „file descriptor” (integer)

● int fd = open(<pathname>, <flags>, [<create_mode>]);

● read(fd, <buffer>, <count>) / write(fd, <buffer>, <count>) / lseek(fd)

● close(fd)

● fd is process-specific (unique within a process)

● Example: https://gitlab.inf.elte.hu/-/snippets/49

●„POSIX Standard” file ops (implemented by library which uses above file descriptors)

● fopen(), fread()/fwrite(), fclose() + fflush(), fprintf()/fscanf(), fgetc()/fputc(), fdopen()

● Differences:

● struct FILE* reresents an open file

● It is possible to convert either way FILE <-> fd

● buffered, formatted input/output,

● Implemented with userspace library (libc) functions (vs. system calls)

●Orthogonality: an fd may represent not only files, but also other „devices” and network connections

●FILE * stdin / fd 0, FILE* stdout / fd: 1, FILE* stderr / fd: 2 (no need to open/close)

●Also devices in the /dev directory: console, ptsX, block devices: sdX, sdXY, io ports: ttyX, random/null/zero etc.

https://gitlab.inf.elte.hu/-/snippets/49

Async IO model for improved
performance
●Synchronous: thread is blocked until IO is completed.

●Async IO: submit requests and reap the results to/from an „IO context”

int io_setup(int maxevents, io_context_t *ctxp);

...

int io_submit(io_context_t ctx, long nr, struct iocb *ios[]);

...

int io_getevents(io_context_t ctx_id, long min_nr, long nr, struct

io_event *events, struct timespec *timeout);

...

int io_destroy(io_context_t ctx);

Async IO Request Buffer

struct iocb {

void *data;

short aio_lio_opcode; // IO_CMD_PREAD IO_CMD_PWRITE

int aio_fildes; // = fd

union {

struct {

void *buf;

unsigned long nbytes;

long long offset;

} c;

} u;

};

result structure

struct io_event {

 void *data;

 struct iocb *obj;

 long long res;

};

Storage performance testing with fio

●Install fio (if not already installed)

●Create config file, also with parallel workloads (multiple jobs).

●Select ioengine: sync (traditional IO) / libaio (async IO) / etc-

●Select read/write method: read/write randread/randwrite

●Specify run time

●Specify target file (or device names + size of tested area)

●Specify parallelism

●Note Buffer caches (see next slide) may bias the results
-> use invalidate=1

●Results printed:

●throughput (MB/s)

●Total I/O (Gbytes)

●IOPS -> not directly printed, calculate IOS / jobs / time

fio_test.conf

Meet the Disk Buffer Cache!

●Linux uses almost all free memory as a cache for data on disks

●When processes request memory, the buffer cache is reduced

●Buffer cache speeds up storage reads and writes significantly

●It caches fixed size „disk blocks” (i.e. allocation units), which are typically 4 kbytes (8 sectors)

●stat -f / -> ... block size: 4096 ...

●Buffer Cache contains „clean” and „dirty blocks”, the latter ones still need to be written to storage

●This speeds up writes, but data may be lost before persisted

●sync command or fsync() system will save all dirty buffers

●This may be misleading for fio and other performance measurement tools!

●To clean all buffer caches, use: echo 1 > /proc/sys/vm/drop_caches

Compute/ Storage Performance Monitoring with
iostat
●iostat -c : show CPU stats

●%user, %system, %iowait, %idle

●iostat –d [<device>]

●transactions / sec

●read /s write /s,

●discards / s

●kBytes total

●Use <interval> for periodic display

Excercises:

1. Use fio and iostat for disk performance testing on Linux

●Install fio (if not already installed)

●Create a fio config file

●Run fio

●Use iostat –d to check storage device usage

2. Homegrown program for testing Disk/File IO

●https://gitlab.inf.elte.hu/-/snippets/49

●Build with gcc: gcc –O1 –o disk_io_test disk_io_test.c

●Run:

● Write test: ./disk_io_test –w –f my_testfile –s 100000000 expect 1-1.5 Gb/s (without sync)

● Read test: ./disk_io_test –f my_testfile –s 100000000 expect 2-3 Gb/s (from cache, 0.1-0.15 from disk

● Use –y option for sync after every 100th reads/writes

● Use –f MEMORY to compare with plain memory reads/writes expect 20-25 Gb/s for reads, 3-3.5 Gb/s for writes

https://gitlab.inf.elte.hu/-/snippets/49

That’s it for today!

	Slide 1: Performance-optimised computing – Week 5. Processes, threads, scheduling - continued Storage Drives and File IO
	Slide 2: Data Storage Technologies - Compare Performance
	Slide 3: Hard drive – Physical Structure
	Slide 4: From userspace files to magnetic traces on disk or SSD cells
	Slide 5: Storage Virtualization
	Slide 6: Standard File Operations in Unix, Linux, Posix
	Slide 7: Async IO model for improved performance
	Slide 8: Async IO Request Buffer
	Slide 9: Storage performance testing with fio
	Slide 10: Meet the Disk Buffer Cache!
	Slide 11: Compute/ Storage Performance Monitoring with iostat
	Slide 12: Excercises:
	Slide 13: That’s it for today!

