Performance-optimised computing — \Week 5.

Processes, threads, scheduling - continued

Storage Drives and File IO

Dr. Bakay Arpdd — Ericcson

Data Storage Technologies - Compare Performance

* There exist Local attached and Remote (network accessed) devices
» Major device types: HDD vs. SSD

IOPS (@4K, Q16) Seektlme Rcmdom trasfer Seq transfer
rate MB/s

1000 5-10 10-15 100-200
SSD 100-200k - 0.04 — 0.08 4000-8000

* Plus: SSD uses less power, generates no noise, tolerant for shock and temperature

« IOPS — I/0 operations / sec, specified for a given transfer size (typ: 4k), and queue length
(1..16..256).

* Strange/suspicious IOPS values are often published for SSD-s, better to measure yourself!!

» Bus transfer rates: (SCSI1: 5 Mbps), SATA3: 600MBps (dedicated), SAS: 2.4 GBps, Fibre
Channel: up to 18 GByte/sec, I-SCSI up to 10 GBps,

* NVMe SSD-s use PCI Express bus, which is up to 15GByte/sec/lane (typical SSD transfer speed is
4-8GBps)

 NVMe over Fabric: detach SSD drives from host (PCI-E bus), but keep speed (e.g. 8GBps).

Ll i

\
T ——
e)
==
——
—

Hard drive — Physical Structure

A lot of tracks

with a lot of sectors

Sector size is 512 bytes — this has not changed for decades

Up to 1.3 TBytes per platter side ->
2.6 *10° sectors ->

e.g..
« 200000 tracks!!! (about 100 nm wide)
« 13000 sectors / track!!! (about 15 um long)

™~

Magnetic platters (e.g. 9

dual-sided platters, @50-
Magnetic heads 80 mm)
between platters

Spindle, 5-15k rot/min
(80-250 rot / sec)
* No similar drawing for SSD-s, everything is in silicon @

\
——
e)
==
——
———
———

From userspace files to magnetic traces on disk
or SSD cells

4 User Program 1.

holds
file descriptors to
open files

\Open file A //

4 User Program 2.

OpenfileC — |
' ——
Open file D

\— /

/

Linux kernel

Process specific
fd to file maps
with current
position in file

mapping #2

o

\

Filesystems
are mounted
into a single

directory tree ?

Most frequently
used data (e.g
top-level
directories)
are cached in
buffer cache ~_

/

Filesystems

—>

___are created on most partitions;

the partition contains all
metadata of FS, including

_—directories, permissions, etc.

/

—

Disk: hda

Partitions
Drives are divided into
contiguous parts of any size

- -

Disk: hdb

Also applies for SSD
Disk: sdc

Solid State Drive

SSD

Storage Virtualization

Disk: hda

Linux kernel Virtual
storage

" User Program 1) devices

holds }/Filesystem A .Device mapper"\

/

Partitions

Drives are divided into
contiguous parts of any size
Also applies for SSF

e

file descriptors to Process
open files || specific
mapping #1

abstractions

~. 1

_ J

AN

- el
4) mapping #2 /
User Program 2. : P Disk: hdb
Openfile#1 — |
I >

=— Open file #2 N : \ . : J Disk: sdc

. Virtualization functions
— Solid State Dri

- / » Split, merge partitions into a new structure, dinamically PHESIGIEDIVE

SSD

« Mirror/replicate partitions to protect against disk errors

« Stripe on multiple partitions for improved performance

» Encrypt data before being stored on drives

Standard File Operations in Unix, Linux, Posix

* Basic, low level, syscall operations using ,file descriptor” (integer)

* int fd = open(<pathname>, <flags>, [<create_mode>]);

* read(fd, <buffer>, <count>) / write(fd, <buffer>, <count>) / Iseek(fd)
* close(fd)

 fdis process-specific (unique within a process)

« Example: https://qitlab.inf.elte.hu/-/snippets/49

» ,POSIX Standard” file ops (implemented by library which uses above file descriptors)
« fopen(), fread()/fwrite(), fclose() + fflush(), fprintf()/fscanf(), fgetc()/fputc(), fdopen()
* Differences:
« struct FILE* reresents an open file
« Itis possible to convert either way FILE <->fd
 buffered, formatted input/output,
» Implemented with userspace library (libc) functions (vs. system calls)
» Orthogonality: an fd may represent not only files, but also other , devices” and network connections
e FILE * stdin /fd ©, FILE* stdout / fd: 1, FILE* stderr / fd: 2 (no need to open/close)

 Also devices in the /dev directory: console, ptsX, block devices: sdX, sdXY, io ports: ttyX, random/null/zero etc.

A/ VW] T

https://gitlab.inf.elte.hu/-/snippets/49

Async IO model forimproved
performance

» Synchronous: thread is blocked until IO is completed.

* Async IO: submit requests and reap the results to/from an , IO context”

int io_setup(int maxevents, 10 context t *ctxp);

int io submit(io context t ctx, long nr, struct iocb *ios[]);

int io getevents(io context t ctx id, long min nr, long nr, struct
10 event *events, struct timespec *timeout);

int io destroy(io context t ctx);

R/ VT

Async IO Request Buffer

struct iocb {
volid *data;
short aio lio opcode; // IO CMD PREAD IO CMD PWRITE
int aio fildes; // = fd

union {
result structure

struct {

vold *buf;

struct 1o event ({

unsigned long nbytes; void *data:

long long offset; struct iocb *obj;
long long res;

bi

}i

W/
:

A/ VW] T

Storage performance testing with fio

* Install fio (if not already installed)
* Create config file, also with parallel workloads (multiple jobs).

 Select ioengine: sync (traditional IO) / libaio (async I0) / etc-
* Select read/write method: read/write randread/randwrite
* Specify run time fio_test.conf
* Specify target file (or device names + size of tested area) [global_]
 Specify parallelism ?2;2§th=256
* Note Buffer caches (see next slide) may bias the results iiﬁﬁ;‘;ﬁizsync

-> use invalidate=1 group_reporting

time_based
runtime=10

. numjobs=4
* Results prlnted: name=raw-randread
rw=write
* throughput (MB/s)
[jobl]
» Total I/O (Gbytes) filename=testfile.bin

« IOPS -> not directly printed, calculate IOS / jobs / time

Meet the Disk Buffer Cache!

* Linux uses almost all free memory as a cache for data on disks

* When processes request memory, the buffer cache is reduced

 Buffer cache speeds up storage reads and writes significantly

« It caches fixed size , disk blocks” (i.e. allocation units), which are typically 4 kbytes (8 sectors)
estat -f / -> ... block size: 4096

 Buffer Cache contains ,clean” and ,dirty blocks”, the latter ones still need to be written to storage

* This speeds up writes, but data may be lost before persisted

» sync command or £sync () system will save all dirty buffers

 This may be misleading for fio and other performance measurement tools!
* To clean all buffer caches, use: echo 1 > /proc/sys /vm/drop caches

A/ VW] T

Compute/ Storage Performance Monitoring with
lostat

e jostat -c: show CPU stats
» %user, %system, %iowait, %idle

e jostat —d [<device>]
* transactions / sec
* read /s write /s,
* discards / s
 kBytes total

 Use <interval> for periodic display

A/ VW] T

Excercises:

1. Use fio and iostat for disk performance testing on Linux
e Install fio (if not already installed)

* Create afio config file

* Run fio

» Use iostat —d to check storage device usage

2. Homegrown program for testing Disk/File IO
e https://qitlab.inf.elte.hu/-/snippets/49
* Build with gcc: gcc =01 —o disk_io_test disk_io_test.c

* Run:
» Write test: ./disk_io_test —w —f my_testfile —s 100000000 expect 1-1.5 Gb/s (without sync)
» Read test: ./disk_io_test —f my_testfile —s 100000000 expect 2-3 Gb/s (from cache, 0.1-0.15 from disk

» Use —y option for sync after every 100th reads/writes

» Use —f MEMORY to compare with plain memory reads/writes expect 20-25 Gb/s for reads, 3-3.5 Gb/s for writes

A/ VW] T

https://gitlab.inf.elte.hu/-/snippets/49

That's it for today!

	Slide 1: Performance-optimised computing – Week 5. Processes, threads, scheduling - continued Storage Drives and File IO
	Slide 2: Data Storage Technologies - Compare Performance
	Slide 3: Hard drive – Physical Structure
	Slide 4: From userspace files to magnetic traces on disk or SSD cells
	Slide 5: Storage Virtualization
	Slide 6: Standard File Operations in Unix, Linux, Posix
	Slide 7: Async IO model for improved performance
	Slide 8: Async IO Request Buffer
	Slide 9: Storage performance testing with fio
	Slide 10: Meet the Disk Buffer Cache!
	Slide 11: Compute/ Storage Performance Monitoring with iostat
	Slide 12: Excercises:
	Slide 13: That’s it for today!

