

Performance-optimised computing – Lecture 6. Inter-process and Network Communication

Dr. Bakay Árpád – Ericcson

Recap: File operations in Unix, Linux, Posix

- Basic, low level operations using "file descriptor" (which is an int)
 - int fd = **open**(<pathname>, <flags>, [<create_mode>]);
 - read(fd, <buffer>, <count>) / write(fd, <buffer>, <count>)
 - close(fd)
 - fd is process-specific (unique within a process)
- "POSIX"/C11 Standard file ops (also available on Windows)
 - fopen(), fread()/fwrite(), fclose() + fflush(), fprintf()/fscanf(), fgetc()/fputc(), fdopen()
 - Differences:
 - Posix compliant
 - struct FILE* reresents an open file
 - It is possible to convert either way
 - buffered, formatted input/output: fprintf/fscanf
 - Implemented with library (libc) functions (uses above system calls)

Inter-process Communicaton in Posix

• Shared memory

- Mutiple processes open a memory area, in RO or RW mode.
- Direct & fast
- Backed by a name, can also be "MAP_ANONYMOUS" only seen by descendant processes
- Synchronization and consistency is up to the developers.
- API: shm_open(<filename>)
- Pipes -> see next slide
- Unix sockets (and network sockets) -> see 2nd next slide
- Further IPC mechanisms
 - Signals no data, just notifications without content.
 - Semaphores used for synchronization
 - Message queues obsolete
 - STREAMS obsolete (system V)

Pipes

- 2 file-descriptors one for writing and one for reading linked together
 - What is written into the write fd, is received by the reader
 - Some amount (e.g. 64k) of buffering is also provided
- Unnamed:
 - Created by a process [with **pipe() syscall**], inheritable by descendant processes only
 - Process only receives a pair of file descriptors: one for reading and one for witing only
 - Read, written & closed like files
 - Multi-write access possible
- Named
 - Created as a "node" in the filesystem, with the **mkfifo(<pathname>)** libc function
 - Opened, written, read & closed just as ordinary files.
 - Multi-write access is also possible

Sockets – general

- Sockets are a generalization / enhancement of pipes.
 - They are bidirectional
 - They can span remote computers
 - They are slightly more complicated
- Sockets exist in one of several "domains"; these days only 3 are in use
 - AF_UNIX: generalized pipes, only for local machine, identified by a name /myunixsocket
 - **AF_INET** and **AF_INET6:** IPV4/IPV6, can span the network,
 - Identified by {protocol, src_addr, src_port, dst_addr, dst_port}
- Socket type selects method of communication within a domain
 - **SOCK_STREAM**: stream (of bytes), in AF_INETx, this is TCP
 - **SOCK_DGRAM:** sequence of packets, in AF_INETx, this is UDP
 - Others, rearely used: SOCK_RAW (for Inet), SOCK_SEQPACKET for Unix)

Unix Sockets - unnamed with socketpair()

Similar to unnamed pipes, the only major difference it is bidirectional:

int socket_fds[2]
socketpair(AF_UNIX, SOCK_STREAM, 0, socket_fds);

... typically fork() here

write(socket_fds[0], "hello", 6);

... in another process, e.g. Child: unsigned char buffer [10]; read(socket_fds[1], buffer, 10);

... close(socket_fds[0]); close(socket_fds[1]); // must close in each process

Unix Sockets - Normal/named with socket(), bind(), send/sendto(), recv/recvfrom()

Server (passive) or client (active) sides

int sock;

sock = socket(AF_UNIX, SOCK_DGRAM, 0); // error handling omitted

struct sockaddr_un sock_name; // a structure to hold adress family and address
name.sun_family = AF_UNIX;
strcpy(name.sun_path, "/my_path/my_socket"); // looks like a filename, but it can be anything . /my_path is not a directory

On endpoint 1 (typically: server):

bind(sock, &sock_name, sizeof(struct sockaddr_un)); // this expects a "sockaddr", "sockaddr_un" is a specialization **read(sock**, buffer, sizeof(buffer)) and **write(sock**, "hello", 6);

On endpoint 2 (typically: client)

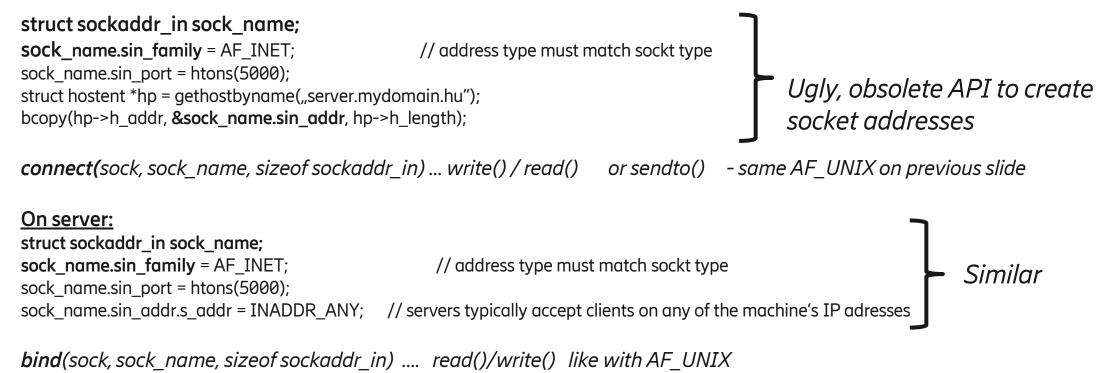
- alternative 1 – connection-oriented

connect(sock, &sock_name, sizeof(struct sockaddr_un))
write(sock, "hello", 6) and read(sock, buffer, sizeof(buffer))

- <u>alternative 2 – connectionless - we provide (or receive) the address with each call</u> sendto(sock, "hello", 6, 0, &name, sizeof(struct sockaddr_un)) and recvfrom(...)

AF_INET: SOCK_STREAM (a.k.a. TCP) and SOCK_DGRAM (a.k.a. UDP)

- "Transmission Control Protocol" 1974, "User Datagram Protocol" 1980
- Defined by IETF RFC-s (<u>ietf.org/rfc/rfc-index-latest.txt</u>): TCP: 761 -> 9232 UDP: 768
- Both are "transport layer" protocols over IP "network protocol"
- UDP is simple, connectionless, no guarrantees, light load on Kernel
 - UDP Header is minimalistic: ports, length, optional checksum 8 bytes in IPV4
- TCP requires connection setup, guaranteed delivery in correct order, heavy load on Kernel.
 - Connection setup and teardown with handshake
 - Acknowledges receipt of every data, retransmissions happen if ack is not received
 - Dynamically adjusted window size for unacked data
 - Header (20-60 bytes) has sequence counters in both directions, flags, 20

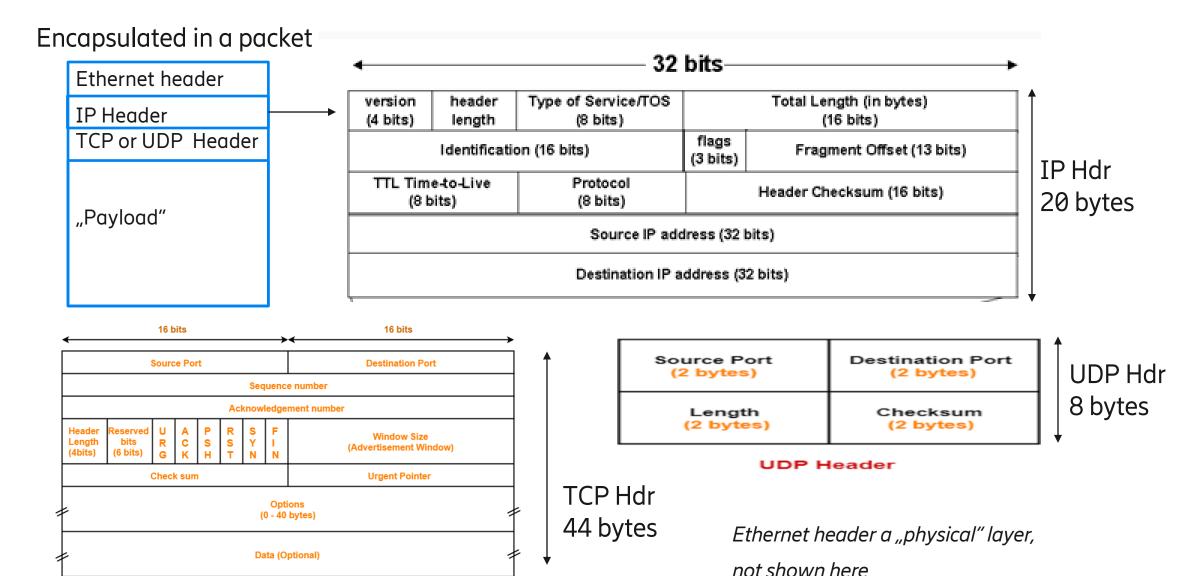

Programming AF_INET DGRAM Sockets

Only the address assembly is changed relative to AF_UNIX

sockaddr_in is another specialization of the sockaddr struct, with AF_INET family (used as type dicriminator) plus a 32 bit address and a 16 bit port

sock = socket(AF_INET, SOCK_DGRAM, 0); // this tells the kernel to clreate ans Internet socket, with UDP

On client:



Programming TCP

- Socket created with AF_INET, SOCK_STREAM
- bind() is again mandatory for the server (just as with UNIX and UDP sockets)
- listen() is a new, TCP-specific step for the server code. It waits for client connections, and returns a new socket when a connection arrives.
 - The new socket is already connected, server can send and receive data on it (same as UDP)
 - listen() may be called again while connected sock is being used
 - The connected socket is often served by a forked process or thread, to allow for multiple simultaneous connection to a service.

int server_sock = socket(AF_INET, SOCK_STREAM, 0); // socket is only used for listening, no reads/writes! bind(sock, sock_name, sizeof sockaddr_in); int connected_sock = listen(server_sock, 5); // 5 is the backlog, we accept 5 connection if(connected_sock >= 0) read(connected_sock,)

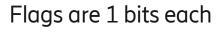
IP, TCP, UDP Headers

TCP Header

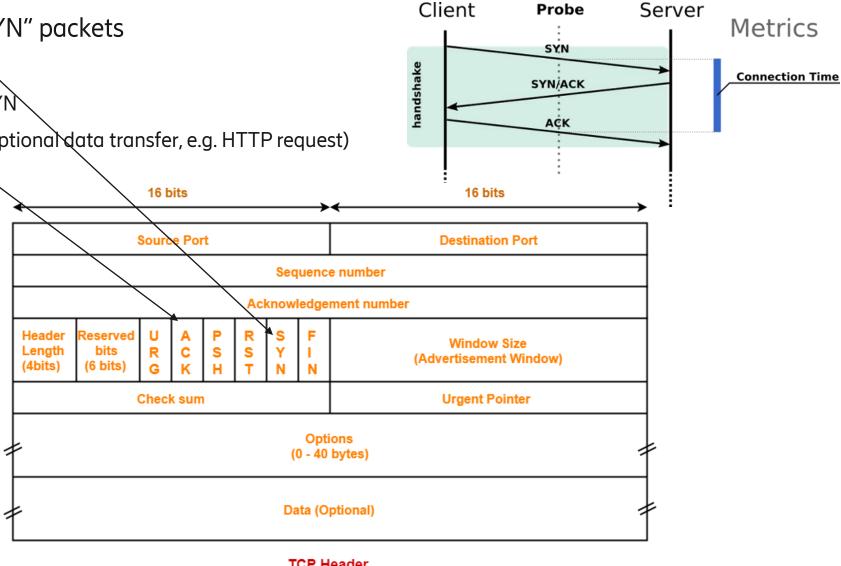
TCP/UDP Protocols in practice

- TCP is more popular, and has evolved significantly from the early Internet years
 - Much-much higher bandwidth (from 300 bps up to 100Gbps and beyond)
 - Various **application-level protocols**: HTTP, SMTP, FTP, Telnet/SSH, DB connections, etc.
 - Security layers: TLS (or SSL) between transport and application layers.
- UDP is used where transmission time is more important and data loss is tolerable
 - Video and audio streaming
 - DNS, NTP, DHCP, BOOTP
 - Gaming
- Multicast is possible, e.g. IPTV

UDP Usage - Quick overview

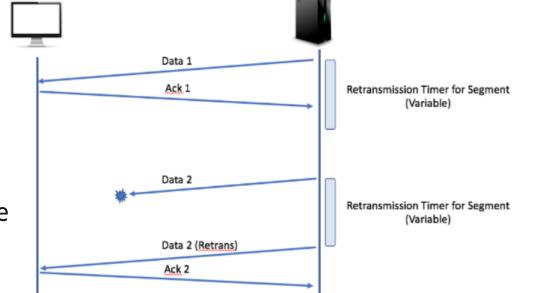

- UDP is used where
 - Data losses are not critical
 - Data rate is "naturally limited", e.g. media streams
 - Data with packetized nature.
 - Frequent, "single packet" sessions, e.g. DNS
 - UDP has much lower kernel footprint.
 - Simplicity, e.g. TFTP at network boot
 - Only UDP is suitable for multicast communication
- Error correction for UDP is possible with non-standard methods
 - Forward EC: send redundant info in stream
 - Backward EC: clients can request missing packets
- Auxiliary protocols for quality monitoring, e.g. RTCP for RTP

TCP Protocal – Quick Overview


- Multiple "lifecycle phases" for each connection
 - Connection setup
 - Data transfer (uni- or biderectional, often conversation-like).
 - Termination
- Messages in all phases are acknowledged!
 - ACK may come with data in a message (i.e. ACK flag in header + non-zero payload)
 - Each packet contains 2 "sequence counters", for sent and received bytes (based on the status viewed by the sender)
 - ACK is sent back when the received sequence counter is advanced.

TCP Protocal details - Connection setup

- 3 Messages with 2 "SYN" packets
 - Client -> Server: SYN
 - Server -> Client: ACK + SYN
 - Client -> Server: ACK (+ optional data transfer, e.g. HTTP request)



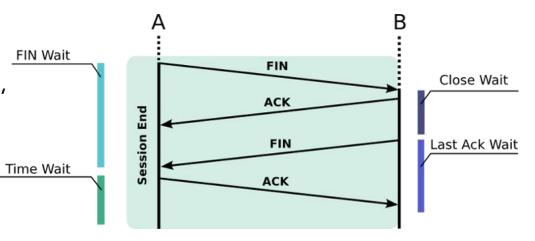
- SYN is only set during setup
- ACK is used in all phases
- FIN and RST used at termination (see later)

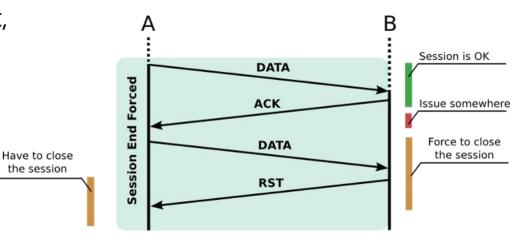
TCP Protocal details - Data transfer phase

- Each party can send packets with data payload
 - When payload is present, sender sequence is typically advanced
- Receiver sends packets with ACK + the received seq. count (may also contain payload in the reverse direction).

- If some packets are not acknowledged within a timeout, the un-ack-ed payload is **retransmitted**.
 - Timeout is dynamically tuned, based on delay of earlier responses
- Each sender has a "window" for the max count of non-acknowledged bytes sent
 - Window is also dynamically adjusted: gradually increased, but reduced if many losses are experienced,

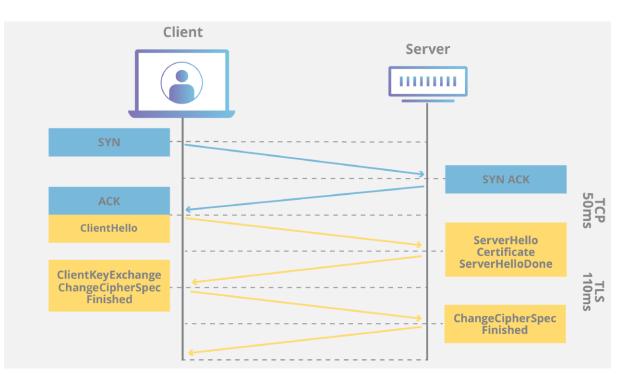
TCP Performance Issue Sources


- Packet losses may be due to:
 - Bad, "noisy" network links
 - Over-capacity use of vertices (network links) or nodes (routers and switches)
 - Network nodes do not hesitate to throw away packets no guarranteed delivery on IP level
- Receiver-side congestion
 - If consumer is slow, kernel will accumulate recieved data only up to a limit.
 - Window in ACK will be set to 0, producer must wait


TCP Protocal details - protocol optimization for high bandwidth

- Window scaling
 - Originally, window size was interpreted in bytes, up to 64k. Nowadays it is interpreted in up to 16kbyte units, allowing window of up to 1GBytes
 - Set at the SYN phase
- Selective Acknowlegements
 - Receiver can specify gaps in the received data, which allows the sender to replace the missing packets only.
 - Very useful with large windows.
- Further options defined for security, window scaling, etc

TCP Protocal details - 2 ways for Termination


- FIN + FIN: When a party has nothing more to send, message FIN flag is sent.
- Parties close their sending side independently
- **Reset (RST)** is used when a party will no longer wait, or other reason requires an "abort"
- TCP session is kept for a while in TIME_WAIT state to avoid stream collisions/interferences

TLS Protocol

- An additonal "sublayer" within TCP
- TLS handshake after TCP SYN
 - Authentication (through certificates)
 - Cypher selection
 - Symmetric key exchange (K)
- All TLS payload bytes are encrypted with K
 - But TCP headers are not encrypted!
- Performance improvement: TLS Session reuse
 - Allows for a shorter, 2-step handshake
 - Works only between identical parties

Src: What happens in a TLS handshake? | SSL handshake | Cloudflare

Useful tool: tcpdump & Wireshark

• tcpdump command line tool to capture and visualize packets

- tcpdump -i eth0 tcp port 5001
- ,-i eth0' is the interface
- "tcp port 5001" is a "BPF filter" expression processed in the kernel
- The –w option saves packets to a ".pcap" file:
 - tcpdump -i enol tcp port 5001 -w saved_capture.pcap
- Rudimentary display of packet headers and data
- Wireshark is an iproved & GUI based tool.
 - It can read pcaps
 - Also can capture pcaps from network
 - Extensive analysis capabilities for hundreds of protocols
 - Packets are listed in a table, and can be drilled down to finest detail.

le <u>E</u> dit <u>V</u> i€	iew <u>Go</u> <u>C</u> apture <u>A</u>	nalyze Statistics Tele	phony Wireless Too	ols <u>H</u> elp		
I 0 0	9 3 8 1	* * 🖻 Ŧ ± 📑		e		
	lay filter <ctrl-></ctrl->					
p. Time	e Source	Destin	nation P	rotocol Ler	ngth Info	
1 0.00	000000 100.120	.57.184 10.19	96.120.68 T	CP	74 54762 → 5001 [SYN] Seq=0 Win=65500 Len=0 MSS=1260 SACK_PERM TSval=3451778202 TSecr=0 WS=128	
2 0.00	00029 10.196.	120.68 100.1	120.57.184 T	CP	74 5001 → 54762 [SYN, ACK] Seq=0 Ack=1 Win=28960 Len=0 MSS=1460 SACK_PERM TSval=1925788275 TSecr=3451778202 WS=128	8
3 0.0	69110 100.120	.57.184 10.19	96.120.68 T	СР	66 54762 → 5001 [ACK] Seq=1 Ack=1 Win=65536 Len=0 TSval=3451778279 TSecr=1925788275	
4 0.0	69461 100.120	.57.184 10.19	96.120.68 T	CP	231 54762 → 5001 [PSH, ACK] Seq=1 Ack=1 Win=65536 Len=165 TSval=3451778279 TSecr=1925788275	
5 0.0	69472 10.196.	120.68 100.1	L20.57.184 T	CP	66 5001 → 54762 [ACK] Seq=1 Ack=166 Win=30080 Len=0 TSval=1925788345 TSecr=3451778279	
6 0.0	69585 10.196.	120.68 100.7	L20.57.184 T	CP 2	1562 5001 → 54762 [ACK] Seq=1 Ack=166 Win=30080 Len=2496 TSval=1925788345 TSecr=3451778279	
7 0.0	69593 10.196.	120.68 100.1	L20.57.184 T	CP 2	562 5001 → 54762 [ACK] Seq=2497 Ack=166 Win=30080 Len=2496 TSval=1925788345 TSecr=3451778279	
8 0.0	69702 10.196.	120.68 100.7	L20.57.184 T	CP 2	1562 5001 → 54762 [ACK] Seq=4993 Ack=166 Win=30080 Len=2496 TSval=1925788345 TSecr=3451778279	
9 0.0	69709 10.196.	120.68 100.1	L20.57.184 T	CP 2	562 5001 → 54762 [ACK] Seq=7489 Ack=166 Win=30080 Len=2496 TSval=1925788345 TSecr=3451778279	
10 0.0	69816 10.196.	120.68 100.7	L20.57.184 T	CP 2	1562 5001 → 54762 [ACK] Seq=9985 Ack=166 Win=30080 Len=2496 TSval=1925788345 TSecr=3451778279	
11 0.14	40790 100.120	.57.184 10.19	96.120.68 T	CP	66 54762 → 5001 [ACK] Seq=166 Ack=12481 Win=56832 Len=0 TSval=3451778349 TSecr=1925788345	
12 0.14	40803 10.196.	120.68 100.7	L20.57.184 T	CP 2	1562 5001 → 54762 [ACK] Seq=12481 Ack=166 Win=30080 Len=2496 TSval=1925788416 TSecr=3451778349	
13 0.14	40809 10.196.	120.68 100.1	L20.57.184 T	CP 2	1562 5001 → 54762 [ACK] Seq=14977 Ack=166 Win=30080 Len=2496 TSval=1925788416 TSecr=3451778349	
14 0.14	40942 10.196.	120.68 100.7	120.57.184 T	CP 2	562 5001 → 54762 [ACK] Seg=17473 Ack=166 Win=30080 Len=2496 TSval=1925788416 TSecr=3451778349	
15 0.14	40950 10.196.	120.68 100.1	L20.57.184 T	CP 2	562 5001 → 54762 [ACK] Seq=19969 Ack=166 Win=30080 Len=2496 TSval=1925788416 TSecr=3451778349	
16 0.14	41057 10.196.	120.68 100.7	120.57.184 T	CP 2	562 5001 → 54762 [ACK] Seg=22465 Ack=166 Win=30080 Len=2496 TSval=1925788416 TSecr=3451778349	
17 0.14	41062 10.196.	120.68 100.1	L20.57.184 T	CP 2	562 5001 → 54762 [ACK] Seq=24961 Ack=166 Win=30080 Len=2496 TSval=1925788416 TSecr=3451778349	
Frame 1: 7	74 bytes on wire (592 bits). 74 bytes	captured (592 bit	ts)		
					ka 40:b7:18 (14:02:e∈:40:b7:18)	
		Spc1 100 130 57 1	84, Dst: 10.196.1	20.68		
	Protocol Version 4					
Internet F	Protocol Version 4					
Internet F Transmissi		ol, Src Port: 54762	, Dst Port: 5001,	Jeq. 0, 1		
Internet F Transmissi Source	ion Control Protoc		, Dit Port: 5001,	Juq. 0, 1	ven, v	
Internet F Transmissi Source Destina	ion Control Protoc Port: 54762		, Dit Port: 5001,	504. 0, 1	και, σ	
Internet F Transmissi Source Destina [Stream	ion Control Protoc Port: 54762 ation Port: 5001 m index: 0]			Juq. 0, 1	αση σ	
Internet F Transmissi Source Destina [Stream > [Convert	ion Control Protoc Port: 54762 ation Port: 5001 m index: 0]	ol, Src Port: 54762		Juq. 0, 1	ναη, υ	
Internet F Transmissi Source Destina [Stream > [Conver [TCP Se	ion Control Protoc Port: 54762 ation Port: 5001 m index: 0] rsation completene egment Len: 0]	ol, Src Port: 54762	DATA (31)]	Juq. 0, 1		
Internet F Transmissi Source Destina [Stream > [Conver [TCP Se Sequence	ion Control Protoc Port: 54762 ation Port: 5001 m index: 0] rsation completene egment Len: 0]	ol, Src Port: 54762 ss: Complete, WITH_ elative sequence nu	DATA (31)]	Juq. 0, 1		
Internet F Transmissi Source Destina [Stream > [Conver [TCP Se Sequence Sequence	ion Control Protoc Port: 54762 ation Port: 5001 m index: 0] rsation completene egment Len: 0] ce Number: 0 (r	ol, Src Port: 54762 ss: Complete, WITH_ elative sequence nu 866699635	DATA (31)] mber)	304. 0, 1		
Internet F Transmissi Source Destina [Stream > [Conver [TCP Se Sequence Sequence [Next S	ion Control Protoc Port: 54762 ation Port: 5001 m index: 0] rsation completene egment Len: 0] ce Number: 0 (r ce Number: (raw): 1	ol, Src Port: 54762 ss: Complete, WITH_ elative sequence nu 866699635 (relative seque	DATA (31)] mber)	304. 0, 1		
Internet F Transmissi Source Destina [Stream > [Conver [TCP Se Sequence Sequence [Next S Acknowl	ion Control Protoc Port: 54762 ation Port: 5001 m index: 0] rsation completene egment Len: 0] ce Number: 0 (r ce Number: 0 (raw): 1 Sequence Number: 1	ol, Src Port: 54762 ss: Complete, WITH_ elative sequence nu 866699635 (relative seque	DATA (31)] mber)	Judi of a		
Internet F Transmissi Source Destina [Stream > [Conver [TCP Se Sequence Sequence Acknowl Acknowl	ion Control Protoc Port: 54762 ation Port: 5001 m index: 0] rsation completene egment Len: 0] ce Number: 0 (r ce Number: 0 (r ce Number: 1 Sequence Number: 1	ol, Src Port: 54762 ss: Complete, WITH_ elative sequence nu 866699635 (relative seque αω): Θ	DATA (31)] mber)			
Internet F Transmissi Source Destina Stream Conver TCP Se Sequence Sequence Next S Acknowl Acknowl 1010	ion Control Protoc Port: 54762 ation Port: 5001 m index: 0] station completene gement Len: 0] cc Number: 0 (r cc Number: 0 (r cc Number: 0): 1 sequence Number: 1 ledgment Number: 0 ledgment number: 0 ledgment number: 0	ol, Src Port: 54762 ss: Complete, WITH_ elative sequence nu 866699635 (relative seque αω): Θ	DATA (31)] mber)	Judi oʻ		
Internet F Transmissi Source Destina Stream Conver TCP Se Sequence Sequence Next S Acknowl Acknowl 1010	ion Control Protoc Port: 54762 ation Port: 5001 m index: 0] restion completene egment Len: 0] ce Number: 0 (rc e Number: 0 (rc ce Number: 1) ledgment Number: 0 ledgment number (r = Header Lengt 0x4002 (SYN)	ol, Src Port: 54762 ss: Complete, WITH_ elative sequence nu 866699635 (relative seque αω): Θ	DATA (31)] mber)	Judi oʻ		

Useful Network Performance Commands Speedtest.net, iperf3

• Standard Linux tool for measuring network bandwidth and quality

- Supports TCP and UDP (and SCTP -> "Stream Control Transmission Protocol")
- Unidirectional measurements, but may be run in parallel.
- Tool to be started in server mode first [iperf3 -s], then in client mode [iperf3-c server] at the other end
 - Public iperf3 servers are also available (although many are often down)
- For UDP mode, bitrate is selectable
- Speedtest.net (ookla): another popular tool for quick network bandwidth testing in various directions
 - Very user friendly, runs in web browser, even on smartphones
 - May be used to measure bandwidth to any part in the world (there are hundreds of ookla servers)

TCP or UDP? - Experiment

- Experiment:
 - UDP
 - Loses packets at larger packet rates (above 5-10 k/sec)
 - Very undeterministic
 - Top speed around 500-800 Mbps / stream
 - TCP
 - No loss
 - Top speed around 10 Gbps/stream
- Why?
 - Kernel is optimized for TCP
 - Userplane sender interface is easier: no need for timing, will automatically control the datarate.

Improving Network Performance – Key takeavays

- Use high-speed links e.g. (10 or 25Gps)
 - Or multiple of these bundled together "network bonding"
- Make sure this interface speed is available on all network devices (switches, routers) on the path
- Use TCP when high throughput is required.
- Watch out for server-side throttling

Exercise

- Find and example program to write and read files (chat GPT?)
- Convert it to AF_UNIX communication
- Convert it to AF_INET UDP communication
- Convert it to AF_INET TCP communication
- Test all tools

That's it for today!