
Performance-optimised computing – Lecture 6.

Inter-process and
Network Communication

Dr. Bakay Árpád – Ericcson

Recap: File operations in Unix, Linux, Posix

●Basic, low level operations using „file descriptor” (which is an int)

● int fd = open(<pathname>, <flags>, [<create_mode>]);

● read(fd, <buffer>, <count>) / write(fd, <buffer>, <count>)

● close(fd)

● fd is process-specific (unique within a process)

●„POSIX”/C11 Standard file ops (also available on Windows)

● fopen(), fread()/fwrite(), fclose() + fflush(), fprintf()/fscanf(), fgetc()/fputc(), fdopen()

● Differences:

● Posix compliant

● struct FILE* reresents an open file

● It is possible to convert either way

● buffered, formatted input/output: fprintf/fscanf

● Implemented with library (libc) functions (uses above system calls)

Inter-process Communicaton in Posix

●Shared memory

● Mutiple processes open a memory area, in RO or RW mode.

● Direct & fast

● Backed by a name, can also be „MAP_ANONYMOUS” - only seen by descendant processes

● Synchronization and consistency is up to the developers.

● API: shm_open(<filename>)

●Pipes -> see next slide

●Unix sockets (and network sockets) -> see 2nd next slide

●Further IPC mechanisms

● Signals - no data, just notifications without content.

● Semaphores – used for synchronization

● Message queues - obsolete

● STREAMS – obsolete (system V)

Pipes

●2 file-descriptors – one for writing and one for reading – linked together

● What is written into the write fd, is received by the reader

● Some amount (e.g. 64k) of buffering is also provided

●Unnamed:

● Created by a process [with pipe() syscall], inheritable by descendant processes only

● Process only receives a pair of file descriptors: one for reading and one for witing only

● Read, written & closed like files

● Multi-write access possible

●Named

● Created as a „node” in the filesystem, with the mkfifo(<pathname>) libc function

● Opened, written, read & closed just as ordinary files.

● Multi-write access is also possible

Sockets – general
●Sockets are a generalization / enhancement of pipes.

●They are bidirectional

●They can span remote computers

●They are slightly more complicated

●Sockets exist in one of several „domains”; these days only 3 are in use

●AF_UNIX: generalized pipes, only for local machine, identified by a name /myunixsocket

●AF_INET and AF_INET6: IPV4/IPV6, can span the network,

●Identified by {protocol, src_addr, src_port, dst_addr, dst_port}

●Socket type selects method of communication within a domain

●SOCK_STREAM: stream (of bytes), in AF_INETx, this is TCP

●SOCK_DGRAM: sequence of packets, in AF_INETx, this is UDP

● Others, rearely used: SOCK_RAW (for Inet), SOCK_SEQPACKET for Unix)

Unix Sockets - unnamed with socketpair()
Similar to unnamed pipes, the only major difference it is bidirectional:

int socket_fds[2]

socketpair(AF_UNIX, SOCK_STREAM, 0, socket_fds);

... typically fork() here

write(socket_fds[0], „hello”, 6);

... in another process, e.g. Child:

unsigned char buffer [10];

read(socket_fds[1], buffer, 10);

... close(socket_fds[0]); close(socket_fds[1]); // must close in each process

Unix Sockets - Normal/named with socket(),
bind(), send/sendto(), recv/recvfrom()

Server (passive) or client (active) sides

int sock;

sock = socket(AF_UNIX, SOCK_DGRAM, 0); // error handling omitted

struct sockaddr_un sock_name; // a structure to hold adress family and address
name.sun_family = AF_UNIX;
strcpy(name.sun_path, ”/my_path/my_socket”); // looks like a filename, but it can be anything . /my_path is not a directory

On endpoint 1 (typically: server):
bind(sock, &sock_name, sizeof(struct sockaddr_un)) ; // this expects a ”sockaddr”, ”sockaddr_un” is a specialization

read(sock, buffer, sizeof(buffer)) and write(sock, „hello”, 6);

On endpoint 2 (typically: client)

- alternative 1 – connection-oriented

connect(sock, &sock_name, sizeof(struct sockaddr_un))

write(sock, „hello”, 6) and read(sock, buffer, sizeof(buffer))

- alternative 2 – connectionless - we provide (or receive) the address with each call

sendto(sock, „hello”, 6, 0, &name, sizeof(struct sockaddr_un)) and recvfrom(...)

AF_INET: SOCK_STREAM (a.k.a. TCP)
and SOCK_DGRAM (a.k.a. UDP)

●„Transmission Control Protocol” 1974, „User Datagram Protocol” 1980

●Defined by IETF RFC-s (ietf.org/rfc/rfc-index-latest.txt) : TCP: 761 -> 9232 UDP: 768

●Both are „transport layer” protocols over IP „network protocol”

●UDP is simple, connectionless, no guarrantees, light load on Kernel

● UDP Header is minimalistic: ports, length, optional checksum 8 bytes in IPV4

●TCP requires connection setup, guaranteed delivery in correct order, heavy load on Kernel.

● Connection setup and teardown with handshake

● Acknowledges receipt of every data, retransmissions happen if ack is not received

● Dynamically adjusted window size for unacked data

● Header (20-60 bytes) has sequence counters in both directions, flags, 20

https://www.ietf.org/rfc/rfc-index-latest.txt

Programming AF_INET DGRAM Sockets

Only the address assembly is changed relative to AF_UNIX

sockaddr_in is another specialization of the sockaddr struct, with AF_INET family (used as type
dicriminator) plus a 32 bit address and a 16 bit port

sock = socket(AF_INET, SOCK_DGRAM, 0); // this tells the kernel to clreate ans Internet socket, with UDP

On client:

struct sockaddr_in sock_name;
sock_name.sin_family = AF_INET; // address type must match sockt type
sock_name.sin_port = htons(5000);
struct hostent *hp = gethostbyname(„server.mydomain.hu”);
bcopy(hp->h_addr, &sock_name.sin_addr, hp->h_length);

connect(sock, sock_name, sizeof sockaddr_in) ... write() / read() or sendto() - same AF_UNIX on previous slide

On server:
struct sockaddr_in sock_name;
sock_name.sin_family = AF_INET; // address type must match sockt type
sock_name.sin_port = htons(5000);
sock_name.sin_addr.s_addr = INADDR_ANY; // servers typically accept clients on any of the machine’s IP adresses

bind(sock, sock_name, sizeof sockaddr_in) read()/write() like with AF_UNIX

Ugly, obsolete API to create
socket addresses

Similar

Programming TCP

●Socket created with AF_INET, SOCK_STREAM

●bind() is again mandatory for the server (just as with UNIX and UDP sockets)

●listen() is a new, TCP-specific step for the server code. It waits for client connections, and
returns a new socket when a connection arrives.

●The new socket is already connected, server can send and receive data on it (same as UDP)

●listen() may be called again while connected sock is being used

●The connected socket is often served by a forked process or thread, to allow for multiple
simultaneous connection to a service.

int server_sock = socket(AF_INET, SOCK_STREAM, 0); // socket is only used for listening, no reads/writes!

bind(sock, sock_name, sizeof sockaddr_in) ;

int connected_sock = listen(server_sock, 5); // 5 is the backlog, we accept 5 connection

if(connected_sock >= 0) read(connected_sock,)

IP, TCP, UDP Headers

IP Hdr
20 bytes

TCP Hdr
44 bytes

UDP Hdr
8 bytes

Ethernet header

IP Header
TCP or UDP Header

„Payload”

Encapsulated in a packet

Ethernet header a „physical” layer,

not shown here

TCP/UDP Protocols in practice

●TCP is more popular, and has evolved significantly from the early Internet years

●Much-much higher bandwidth (from 300 bps up to 100Gbps - and beyond)

●Various application-level protocols: HTTP, SMTP, FTP, Telnet/SSH, DB connections, etc.

●Security layers: TLS (or SSL) between transport and application layers.

●UDP is used where transmission time is more important and data loss is tolerable

●Video and audio streaming

●DNS, NTP, DHCP, BOOTP

●Gaming

●Multicast is possible, e.g. IPTV

UDP Usage - Quick overview

●UDP is used where

●Data losses are not critical

●Data rate is „naturally limited”, e.g. media streams

●Data with packetized nature.

●Frequent, „single packet” sessions, e.g. DNS

● UDP has much lower kernel footprint.

●Simplicity, e.g. TFTP at network boot

●Only UDP is suitable for multicast communication

●Error correction for UDP is possible with non-standard methods

● Forward EC: send redundant info in stream

● Backward EC: clients can request missing packets

●Auxiliary protocols for quality monitoring, e.g. RTCP for RTP

TCP Protocal – Quick Overview

●Multiple „lifecycle phases” for each connection
●Connection setup

●Data transfer (uni- or biderectional, often conversation-like).

●Termination

●Messages in all phases are acknowledged!

●ACK may come with data in a message (i.e. ACK flag in header + non-zero payload)

●Each packet contains 2 „sequence counters”, for sent and received bytes (based on the status
viewed by the sender)

●ACK is sent back when the received sequence counter is advanced.

TCP Protocal details - Connection setup

●3 Messages with 2 „SYN” packets

● Client -> Server: SYN

● Server -> Client: ACK + SYN

● Client -> Server: ACK (+ optional data transfer, e.g. HTTP request)

Flags are 1 bits each

●SYN is only set
during setup

●ACK is used in all phases

●FIN and RST used at
termination (see later)

TCP Protocal details - Data transfer phase
●Each party can send packets with data payload

●When payload is present, sender sequence
is typically advanced

●Receiver sends packets with ACK + the received
seq. count (may also contain payload in the reverse
direction).

●If some packets are not acknowledged within a timeout, the un-ack-ed
payload is retransmitted.

● Timeout is dynamically tuned, based on delay of earlier responses

●Each sender has a „window” for the max count of non-acknowledged bytes
sent

● Window is also dynamically adjusted: gradually increased, but reduced if many losses are
experienced,

TCP Performance Issue Sources

●Packet losses may be due to:
●Bad, „noisy” network links

●Over-capacity use of vertices (network links) or nodes (routers and switches)

●Network nodes do not hesitate to throw away packets - no guarranteed delivery on IP
level

●Receiver-side congestion
●If consumer is slow, kernel will accumulate recieved data only up to a limit.

●Window in ACK will be set to 0, producer must wait

TCP Protocal details - protocol
optimization for high bandwidth

●Window scaling

●Originally, window size was interpreted in bytes, up to 64k. Nowadays it is interpreted in up
to 16kbyte units, allowing window of up to 1GBytes

●Set at the SYN phase

●Selective Acknowlegements

●Receiver can specify gaps in the received data, which allows the sender to replace the
missing packets only.

●Very useful with large windows.

●Further options defined for security, window scaling, etc

TCP Protocal details - 2 ways for Termination

●FIN + FIN: When a party has nothing more to send,
message FIN flag is sent.

●Parties close their sending side independently

●Reset (RST) is used when a party will no longer wait,
or other reason requires an „abort”

●TCP session is kept for a while in TIME_WAIT state
to avoid stream collisions/interferences

TLS Protocol

●An additonal „sublayer” within TCP

●TLS handshake after TCP SYN

●Authentication (through certificates)

●Cypher selection

●Symmetric key exchange (K)

●All TLS payload bytes are encrypted with K

● But TCP headers are not encrypted!

●Performance improvement: TLS Session reuse

● Allows for a shorter, 2-step handshake

● Works only between identical parties

Src: What happens in a TLS handshake? | SSL handshake | Cloudflare

https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/

Useful tool: tcpdump & Wireshark

●tcpdump command line tool to capture and visualize packets

● tcpdump -i eth0 tcp port 5001

● ‚-i eth0’ is the interface

● „tcp port 5001” is a „BPF filter” expression processed in the kernel

●The –w option saves packets to a „.pcap” file:

● tcpdump -i eno1 tcp port 5001 -w saved_capture.pcap

●Rudimentary display of packet headers and data

●Wireshark is an iproved & GUI based tool.

●It can read pcaps

●Also can capture pcaps from network

●Extensive analysis capabilities
for hundreds of protocols

●Packets are listed in a table, and can
be drilled down to finest detail.

Useful Network Performance Commands
Speedtest.net, iperf3

●Standard Linux tool for measuring network bandwidth and quality

●Supports TCP and UDP (and SCTP -> „Stream Control Transmission Protocol”)

●Unidirectional measurements, but may be run in parallel.

●Tool to be started in server mode first [iperf3 -s], then in client mode [iperf3-c server] at the other
end

●Public iperf3 servers are also available (although many are often down)

●For UDP mode, bitrate is selectable

●Speedtest.net (ookla): another popular tool for quick network bandwidth testing in various directions

●Very user friendly, runs in web browser, even on smartphones

●May be used to measure bandwidth to any part in the world (there are hundreds of ookla servers)

TCP or UDP? - Experiment

●Experiment:

●UDP

●Loses packets at larger packet rates (above 5-10 k/sec)

●Very undeterministic

●Top speed around 500-800 Mbps / stream

●TCP

●No loss

●Top speed around 10 Gbps/stream

●Why?

●Kernel is optimized for TCP

●Userplane sender interface is easier: no need for timing, will automatically
control the datarate.

Improving Network Performance – Key takeavays

●Use high-speed links e.g. (10 or 25Gps)

●Or multiple of these bundled together – „network bonding”

●Make sure this interface speed is available on all network devices (switches, routers) on the
path

●Use TCP when high throughput is required.

●Watch out for server-side throttling

Exercise

●Find and example program to write and read files (chat GPT?)

●Convert it to AF_UNIX communication

●Convert it to AF_INET UDP communication

●Convert it to AF_INET TCP communication

●Test all tools

That’s it for today!

	Slide 1: Performance-optimised computing – Lecture 6. Inter-process and Network Communication
	Slide 2: Recap: File operations in Unix, Linux, Posix
	Slide 4: Inter-process Communicaton in Posix
	Slide 5: Pipes
	Slide 6: Sockets – general
	Slide 7: Unix Sockets - unnamed with socketpair()
	Slide 8: Unix Sockets - Normal/named with socket(), bind(), send/sendto(), recv/recvfrom()
	Slide 9: AF_INET: SOCK_STREAM (a.k.a. TCP) and SOCK_DGRAM (a.k.a. UDP)
	Slide 10: Programming AF_INET DGRAM Sockets
	Slide 11: Programming TCP
	Slide 12: IP, TCP, UDP Headers
	Slide 13: TCP/UDP Protocols in practice
	Slide 14: UDP Usage - Quick overview
	Slide 15: TCP Protocal – Quick Overview
	Slide 16: TCP Protocal details - Connection setup
	Slide 17: TCP Protocal details - Data transfer phase
	Slide 18: TCP Performance Issue Sources
	Slide 19: TCP Protocal details - protocol optimization for high bandwidth
	Slide 20: TCP Protocal details - 2 ways for Termination
	Slide 21: TLS Protocol
	Slide 22: Useful tool: tcpdump & Wireshark
	Slide 23: Useful Network Performance Commands Speedtest.net, iperf3
	Slide 24: TCP or UDP? - Experiment
	Slide 25: Improving Network Performance – Key takeavays
	Slide 26: Exercise
	Slide 27: That’s it for today!

