Performance-optimised computing — Lecture 6.

Inter-process and
Network Communication

Dr. Bakay Arpdd — Ericcson

Recap: File operations in Unix, Linux, Posix

* Basic, low level operations using ,file descriptor” (which is anint)
* int fd = open(<pathname>, <flags>, [<create_mode>]);
* read(fd, <buffer>, <count>) / write(fd, <buffer>, <count>)
* close(fd)
 fdis process-specific (unique within a process)
 ,POSIX"/C11 Standard file ops (also available on Windows)
« fopen(), fread()/fwrite(), fclose() + fflush(), fprintf()/fscanf(), fgetc()/fputc(), fdopen()

» Differences:

Posix compliant

struct FILE* reresents an open file

* Ttis possible to convert either way

buffered, formatted input/output: fprintf/fscanf

Implemented with library (libc) functions (uses above system calls)

R/ VT

Inter-process Communicaton in Posix

* Shared memory
» Mutiple processes open a memory areq, in RO or RW mode.
Direct & fast

Backed by a name, can also be ,MAP_ANONYMOUS" - only seen by descendant processes

Synchronization and consistency is up to the developers.

API: shm_open(<filename>)

* Pipes -> see next slide

» Unix sockets (and network sockets) -> see 2nd next slide
 Further IPC mechanisms

 Signals - no dataq, just notifications without content.
» Semaphores — used for synchronization

» Message queues - obsolete

 STREAMS — obsolete (system V)

R/ VT

Pipes

« 2 file-descriptors — one for writing and one for reading — linked together
* What is written into the write fd, is received by the reader

« Some amount (e.g. 64k) of buffering is also provided

* Unnamed:
 Created by a process [with pipe() syscall], inheritable by descendant processes only
* Process only receives a pair of file descriptors: one for reading and one for witing only
» Read, written & closed like files

» Multi-write access possible

* Named
» Created as a,node” in the filesystem, with the mkfifo(<pathname>) libc function
» Opened, written, read & closed just as ordinary files.

» Multi-write access is also possible

Sockets — general

 Sockets are a generalization / enhancement of pipes.
* They are bidirectional
* They can span remote computers
 They are slightly more complicated
» Sockets exist in one of several ,domains”; these days only 3 are in use
« AF_UNIX: generalized pipes, only for local machine, identified by a name /myunixsocket
 AF_INET and AF_INET®6: IPV4/IPV6, can span the network,
« Identified by {protocol, src_addr, src_port, dst_addr, dst_port}
 Socket type selects method of communication within a domain
 SOCK_STREAM: stream (of bytes), in AF_INETYX, thisis TCP

« SOCK_DGRAM: sequence of packets, in AF_INETX, this is UDP
 Others, rearely used: SOCK_RAW (for Inet), SOCK_SEQPACKET for Unix)

A/ VW] T

Unix Sockets - unnamed with socketpair()

Similar to unnamed pipes, the only major difference it is bidirectional:

int socket_fds[2]
socketpair(AF_UNIX, SOCK_STREAM, 0, socket_fds);

... typically fork() here

write(socket_fds[@], ,.hello”, 6);

... iIn another process, e.g. Child:
unsigned char buffer [10];
read(socket_fds[1], buffer, 19);

... close(socket_fds[@]); close(socket_fds[1]); // must close in each process

R/ VT

A/ VW] T

Unix Sockets - Normal/named with socket(),
bind(), send/sendto(), recv/recvfrom()

Server (passive) or client (active) sides

int sock;
sock = socket(AF_UNIX, SOCK_DGRAM, 0); // error handling omitted

struct sockaddr_un sock_name; // a structure to hold adress family and address
name.sun_family = AF_UNIX;
strcpy(name.sun_path, “/my_path/my_socket”); // looks like a filename, but it can be anything . /my_path is not a directory

On endpoint 1 (typically: server):
bind(sock, &sock_name, sizeof(struct sockaddr_un)); // this expects a “sockaddr”, “sockaddr_un" is a specialization

read(sock, buffer, sizeof(buffer)) and write(sock, ,hello”, 6):

On endpoint 2 (typically: client)

- alternative 1 — connection-oriented

connect(sock, &sock name, sizeof(struct sockaddr_un))
write(sock, ,.hello”, 6) and read(sock, buffer, sizeof(buffer))

- alternative 2 — connectionless - we provide (or receive) the address with each call

sendto(sock, ,hello”, 6, 8, &name, sizeof(struct sockaddr_un)) and recvfrom(...)

AF _INET: SOCK STREAM (a.k.a. TCP)
and SOCK DGRAM (a.k.a. UDP)

« . Transmission Control Protocol” 1974, ,User Datagram Protocol” 1980
 Defined by IETF RFC-s (ietf.org/rfc/rfc-index-latest.txt) : TCP: 761 ->9232 UDP: 768
» Both are ,transport layer” protocols over IP ,network protocol”

» UDP is simple, connectionless, no guarrantees, light load on Kernel

» UDP Header is minimalistic: ports, length, optional checksum 8 bytes in IPV4

» TCP requires connection setup, guaranteed delivery in correct order, heavy load on Kernel.
» Connection setup and teardown with handshake
» Acknowledges receipt of every data, retransmissions happen if ack is not received
» Dynamically adjusted window size for unacked data

» Header (20-60 bytes) has sequence counters in both directions, flags, 20

A/ VW] T

https://www.ietf.org/rfc/rfc-index-latest.txt

A/ VW] T

Programming AF_INET DGRAM Sockets

Only the address assembly is changed relative to AF UNIX

sockaddr _in is another specialization of the sockaddr struct, with AF_INET family (used as type
dicriminator) plus a 32 bit address and a 16 bit port

sock = socket(AF_INET, SOCK_DGRAM, 9); // this tells the kernel to clreate ans Internet socket, with UDP

On client:

struct sockaddr_in sock_name;

sock name.sin_family = AF_INET; // address type must match sockt type

sock_name.sin_port = htons(5000);

struct hostent *hp = gethostbyname(,,server.mydomain.hu”); Ug/y/ obsolete API to create
bcopy(hp->h_addr, &sock_name.sin_addr, hp->h_length); socket addresses

connect(sock, sock_name, sizeof sockaddr _in) ... write() /read() orsendto() -same AF_UNIX on previous slide

On server:

struct sockaddr_in sock_name;

sock_name.sin_family = AF_INET; // address type must match sockt type

sock_name.sin_port = htons(5000);

sock_name.sin_addr.s_addr = INADDR_ANY; // servers typically accept clients on any of the machine’s IP adresses

Similar

bind(sock, sock_name, sizeof sockaddr _in) read()/write() like with AF_UNIX

A/ VW] T

Programming TCP

» Socket created with AF_INET, SOCK_STREAM
* bind() is again mandatory for the server (just as with UNIX and UDP sockets)

* listen() is a new, TCP-specific step for the server code. It waits for client connections, and
returns a new socket when a connection arrives.

* The new socket is already connected, server can send and receive data on it (same as UDP)
* listen() may be called again while connected sock is being used

* The connected socket is often served by a forked process or thread, to allow for multiple
simultaneous connection to a service.

int server_sock = socket(AF_INET, SOCK_STREAM, 0); //socket is only used for listening, no reads/writes!
bind(sock, sock _name, sizeof sockaddr in) ;
int connected_sock = listen(server_sock, 5); // 5 is the backlog, we accept 5 connection

if(connected _sock >= 0) read(connected sock,) ...

IP, TCP, UDP Headers

Encapsulated in a packet

N 32 bits -

Ethernet header
A
veErsion header Type of Service/TOS Total Length (in bytes)
IP Header > | {@bits) | length (8 bits) (16 bits)
TCP or UDP Header |dentification {16 bits) {::’i‘;: Fragment Offset (13 bits)
IP Hdr
TTL Time4o-Live Protocol
Header Checksum [16 bits
) (8 bits) (8 bits) (16 bits} 20 bytes
.Payload
Source IP address (32 bits)
Destination |P address (32 bits)
—= v
16 bits 16 bits
< > < > A
ource Po estination Po 4 s Port D ti ti Fort
ouree Pert Dectination Por (2 bytes) “=(2 bytes) UDP Hdr
Sequence number
Acknowledgement number Length C heck S0 8 bytes
Eead;: Ree:trved U|J]AJP|R|S|F Window Size (2 bytes) (2 bytes) v
(debq?s} “ tlni:s) z i a -_sr E ‘N (Advertisement Window) OB B
(== | e=r
Check sum Urgent Pointer
] one | TCP Hdr
ce (0 - 40 bytes) ce b
44 bytes Ethernet header a ,physical” layer,
% Data (Optional) F ¢
not shown here

TCP Header

TCP/UDP Protocols in practice

* TCP is more popular, and has evolved significantly from the early Internet years
* Much-much higher bandwidth (from 300 bps up to 100Gbps - and beyond)
* Various application-level protocols: HTTP, SMTP, FTP, Telnet/SSH, DB connections, etc.
 Security layers: TLS (or SSL) between transport and application layers.

* UDP is used where transmission time is more important and data loss is tolerable
* Video and audio streaming
* DNS, NTP, DHCP, BOOTP
e Gaming

» Multicast is possible, e.g. IPTV

A/ VW] T

R/ VT

UDP Usage - Quick overview

* UDP is used where
 Data losses are not critical
» Data rate is ,,naturally limited”, e.g. media streams
» Data with packetized nature.

* Frequent, ,single packet” sessions, e.g. DNS

» UDP has much lower kernel footprint.
 Simplicity, e.g. TFTP at network boot

* Only UDP is suitable for multicast communication

e Error correction for UDP is possible with non-standard methods
* Forward EC: send redundant info in stream

» Backward EC: clients can request missing packets

 Auxiliary protocols for quality monitoring, e.g. RTCP for RTP

TCP Protocal — Quick Overview

* Multiple ,lifecycle phases” for each connection
e Connection setup
» Data transfer (uni- or biderectional, often conversation-like).

* Termination

» Messages in all phases are acknowledged!
* ACK may come with data in a message (i.e. ACK flag in header + non-zero payload)

» Each packet contains 2 ,sequence counters”, for sent and received bytes (based on the status
viewed by the sender)

» ACK is sent back when the received sequence counter is advanced.

A/ VW] T

TCP Protocal details - Connection setup

- " Client Probe Server _
» 3 Messages with 2 ,SYN"” packets : Metrics
&*
* Client -> Server: SYN § - Connection Time
« Server -> Client: ACK + SY 3 4-//
: . 2 ACK
* Client -> Server: ACK (+ optionalNdata transfer, e.g. HTTP request) :
16 bits " 16 bits
N N >« >
\ SomiPort Destination Port
Flags are 1 bits each \ \ Seduence number
. chnowledgement number

* SYN is only set

. Header |Reserved| U | A |P |R TS | F . :

: Window $
durlng Setup I{_debi}gst? {ﬁbl:;titss] E E a ?T;ﬂ :‘\l fAdverti;nen:.:nt 1|.afufﬁijnt:lcn-"-f}
* ACK IS Used In O” phqses Check sum Urgent Pointer
* FIN and RST used at -
. . L ptions L
termination (see later) 7 (0 - 40 bytes) 7
P~ Data (Optional) &

TP Haadar

TCP Protocal details - Data transfer phase

 Each party can send packets with data payload |:| .
* When payload is present, sender sequence | em g
iS typica”y dea nced Ack 1 . |\ REtansmissi;Ir;;l;iar:ErjfurSegment
* Receiver sends packets with ACK + the received g
seq. count (may also contain payload in the reverse { Retransmission Time for Segment
direction). .,/% g
o Ack 2

« If some packets are not acknowledged within a timeout, the un-ack-ed
payload is retransmitted.

» Timeout is dynamically tuned, based on delay of earlier responses

» Each sender has a ,window” for the max count of non-acknowledged bytes
sent

* Window is also dynamically adjusted: gradually increased, but reduced if many losses are
experienced,

R/ VT

TCP Performance Issue Sources

* Packet losses may be due to:

* Bad, ,noisy” network links
» Over-capacity use of vertices (network links) or nodes (routers and switches)

» Network nodes do not hesitate to throw away packets - no guarranteed delivery on IP
level

» Receiver-side congestion

o If consumer is slow, kernel will accumulate recieved data only up to a limit.

* Window in ACK will be set to 9, producer must wait

A/ VW] T

TCP Protocal details - protocol
optimization for high bandwidth

* Window scaling

* Originally, window size was interpreted in bytes, up to 64k. Nowadays it is interpreted in up
to 16kbyte units, allowing window of up to 1GBytes

» Set at the SYN phase

 Selective Acknowlegements

» Receiver can specify gaps in the received data, which allows the sender to replace the
missing packets only.

 Very useful with large windows.

 Further options defined for security, window scaling, etc

A/ VW] T

R/ VT

TCP Protocal details - 2 ways for Termination

A B
FIN Wait g s g
* FIN + FIN: When a party has nothing more to send, ‘ [——] Clsewat
message FIN flag is sent. == I

Time Wait

FIN Last Ack Wait
. ACK
» Parties close their sending side independently I e |

Session End

» Reset (RST) is used when a party will no longer wait, A B

or other reason requires an ,,abort” : -

ACK Issue somewhere

DATA Force to close
\» the session
*/ﬂ—/

Session is OK

» TCP session is kept for a while in TIME_WAIT state

Have to close

to avoid stream collisions/interferences the session

R

Session End Forced

TLS Protocol

* An additonal ,sublayer” within TCP

* TLS handshake after TCP SYN
 Authentication (through certificates)
» Cypher selection
« Symmetric key exchange (K)

 All TLS payload bytes are encrypted with K
» But TCP headers are not encrypted!

» Performance improvement: TLS Session reuse
 Allows for a shorter, 2-step handshake

» Works only between identical parties

SYN

ACK

ClientHello

ClientKeyExchange

ChangeCipherSpec - -

Finished

Client

Server

SYN ACK

ServerHello
Certificate
ServerHelloDone

_ ChangeCipherSpec

Finished

Src: What happens in a TLS handshake? | SSL handshake | Cloudflare

SWwQS
dJL

swoLlL
s1L

https://www.cloudflare.com/learning/ssl/what-happens-in-a-tls-handshake/

Useful tool: tcpdump & Wireshark

» tcpdump command line tool to capture and visualize packets
* tcpdump -i ethO tcp port 5001

-1 eth@’is the interface

.tcp port 5001" is a ,,BPF filter” expression processed in the kernel

The —w option saves packets to a ,..pcap” file:
* tcpdump -i enol tcp port 5001 -w saved capture.pcap

: .
* Rudimentary display of packet headers and data
M vbpeap - o
@ RE R e 4 S aqer
. . ° - =
* Wireshark is an iproved & GUI based tool
p .
3 8.869110 180.128.57.184 18.196.120.68 TP 66 54762 - 5881 [ACK] Se 5536 Len=8 TSwal=3451778279 TSecr=1325788275
5 9.069472 10.196.120.68 100.120.57. TP 66 5001 + 54762 [ACK] Seq=1 Ack=166 Win-30080 Len-0 TSwal-1925788345 TSecr-3451778279
. It CG n reG d CG S 6 9.069585 10.196.120.68 100.120.57. TP 2562 5001 + 54762 [ACK] Seg=1 Ack=166 Win=30080 Len=2436 TSval=1925788345 TSecr=3451778279
p p 8 9.869782 10.196.128.68 1686.120.57. TCP 2562 5801 - 54762 [ACK] Seq=4993 Ack=166 Win=38880 Len=2496 TSval=1925788345 TSecr=3451778279
9 9.069709 10.196.120.68 100.120.57. Tcp 2562 5001 - 54762 [ACK] in=30080 Len=2496 TSval-1925788345 TSecr=3451778279
10 0.069816 10.196.120.68 100.120.57. TP 2562 5001 -+ 54762 [ACK]
11 8.148790 186.120.57.184 16.196.128. TP 66 54762 -+ 5801 [ACK]
° AI 12 8. 140803 10.196.120.68 108.120.57. Tep 2562 sea1 - 54762 [ACK] TSval=1925788416 TSecr=3451778349
SO can capture pcaps from networ A i I oe - S N
14 9.140942 10.196.120.68 100.120.57. TP 2562 5001 - 54762 [ACK] TSval-=1925788416 TSecr-3451778349
. . oo o 17 8.141862 10.196.128.68 180.120.57. TP 2562 5801 - 54762 [ACK] Seq=2 TSval=1925788416 TSecr=3451778349
» Extensive analysis capabilities : ’
y p Frame 1: 74 bytes on wire (592 bits), 74 bytes captured (592 bits) -~
Ethernet IT, Src: ee:88:8a:c5:00:78 (ee:00:8a:c5:00:78), Dst: HewlettPacka 48:b7:18 (14:82:ec:48:b7:18)
Internet Protocol Version 4, Sre: 108.128.57.184, Dst: 18.196.128.68
f ~ Transmission Control Protocel, Src Port: 54762, Dst Port: 5891, Seq: @, Len: @
or hundreds of protocols
Destination Port: 5801
[Stream index: 8]
[Conversation completeness: Complete, WITH_DATA (31)]
. . [TCP Segment Len: 8]
Sequence Number: & (relative sequence number)
» Packets are listed in a table, and can

[Next Sequence Mumber: 1 (relative sequence number)]
Acknewledgment Humber: @
Acknowledgment number (raw)

be drilled down to finest detail.

Packete: 1784 . Dicolauad: 1784 (10009 Profile: Defs

Useful Network Performance Commands
Speedtest.net, iperf3

 Standard Linux tool for measuring network bandwidth and quality
» Supports TCP and UDP (and SCTP -> ,Stream Control Transmission Protocol”)
 Unidirectional measurements, but may be run in parallel.

* Tool to be started in server mode first [iperf3 -s], then in client mode [iperf3-c server] at the other
end

* Public iperf3 servers are also available (although many are often down)

* For UDP mode, bitrate is selectable

» Speedtest.net (ookla): another popular tool for quick network bandwidth testing in various directions
 Very user friendly, runs in web browser, even on smartphones

* May be used to measure bandwidth to any part in the world (there are hundreds of ookla servers)

A/ VW] T

TCP or UDP? - Experiment

* Experiment:
« UDP

* Loses packets at larger packet rates (above 5-10 k/sec)
 Very undeterministic
» Top speed around 500-800 Mbps / stream

- TCP

* No loss
* Top speed around 10 Gbps/stream

* Why?
» Kernel is optimized for TCP

» Userplane sender interface is easier: no need for timing, will automatically
control the datarate.

A/ VW] T

Improving Network Performance — Key takeavays

» Use high-speed links e.g. (10 or 25Gps)
* Or multiple of these bundled together — ,network bonding”

» Make sure this interface speed is available on all network devices (switches, routers) on the
path

» Use TCP when high throughput is required.
» Watch out for server-side throttling

A/ VW] T

Exercise

 Find and example program to write and read files (chat GPT?)

e Convert it to AF_UNIX communication

* Convert itto AF_INET UDP communication
* Convert itto AF_INET TCP communication
* Test all tools

That's it for today!

	Slide 1: Performance-optimised computing – Lecture 6. Inter-process and Network Communication
	Slide 2: Recap: File operations in Unix, Linux, Posix
	Slide 4: Inter-process Communicaton in Posix
	Slide 5: Pipes
	Slide 6: Sockets – general
	Slide 7: Unix Sockets - unnamed with socketpair()
	Slide 8: Unix Sockets - Normal/named with socket(), bind(), send/sendto(), recv/recvfrom()
	Slide 9: AF_INET: SOCK_STREAM (a.k.a. TCP) and SOCK_DGRAM (a.k.a. UDP)
	Slide 10: Programming AF_INET DGRAM Sockets
	Slide 11: Programming TCP
	Slide 12: IP, TCP, UDP Headers
	Slide 13: TCP/UDP Protocols in practice
	Slide 14: UDP Usage - Quick overview
	Slide 15: TCP Protocal – Quick Overview
	Slide 16: TCP Protocal details - Connection setup
	Slide 17: TCP Protocal details - Data transfer phase
	Slide 18: TCP Performance Issue Sources
	Slide 19: TCP Protocal details - protocol optimization for high bandwidth
	Slide 20: TCP Protocal details - 2 ways for Termination
	Slide 21: TLS Protocol
	Slide 22: Useful tool: tcpdump & Wireshark
	Slide 23: Useful Network Performance Commands Speedtest.net, iperf3
	Slide 24: TCP or UDP? - Experiment
	Slide 25: Improving Network Performance – Key takeavays
	Slide 26: Exercise
	Slide 27: That’s it for today!

