Forrás: Molina, Ullman, Widom, Adatbázisrendszerek megvalósítása. Bp. Panem, 2001.
Kiterjesztett relációs algebrai műveletek

Jelölések és értelmezésük multihalmazok esetén
Unió: R ( S 
(előfordulások összege)
Metszet: R ( S 
(előfordulások minimuma)
Különbség: R - S 
(előfordulások különbsége)
Kiválasztás: (C(R) 
(ahol C egy feltétel, AND, OR, NOT megengedett)
Vetítés: (L(R) 
(L-ben E->z megengedett, ahol E egy kifejezés, és z ennek az új neve)
Szorzat: R ( S
Ismétlődések kiküszöbölése: ((R)

Csoportosítás és összesítés: (L(R) 
(L-ben attribútumok és összesítő fv-ek lehetnek valamint ezek átnevezése)
Rendezés: (L(R) 
(L-ben attribútumok listája szerepelhet)
(algebrai kifejezésben csak utolsó operátorként van értelme beszélni a ( operátorról)
Példa:

SELECT onev, AVG(fizetes) + 100 emelt
FROM dolgozo, osztaly

WHERE dolgozo.oazon=osztaly.oazon
GROUP BY onev

HAVING COUNT(dkod) > 3
ORDER BY onev;
(onev((onev,avg+100->emelt((cnt>3((onev,AVG(fizetes)->avg,COUNT(dkod)->cnt((D.oazon=O.oazon(D x O)))))
Az operátorok egymás utáni alkalmazását egy kifejezésfa formájában rajzolhatjuk fel.

A végrehajtás költségei
R sorainak száma: T(R)

R blokkjainak száma: B(R)
A memóriablokkok száma: M

Egymenetes algoritmusok: az adatokat csak egyszer kell lemezről beolvasni.
Kétmenetes algoritmusok: az adatokat az első alkalommal lemezről kell beolvasni, aztán következik valamilyen típusú feldolgozásuk, majd az összes - vagy majdnem az összes - adatot lemezre kell írni, és ekkor következik a második menetben a második olvasás a további feldolgozáshoz.

Többmenetes algoritmusok: tulajdonképpen a kétmenetes algoritmusok természetes, rekurzív általánosításai.

Soronkénti, unáris műveletek: (, ( 
A blokkokat egyenként olvashatjuk be, egyetlen memóriapuffert használva, majd megadhatjuk a kimenetet.

Unáris, teljes relációs műveletek: , 
Az ilyen egy argumentumos műveleteknél az összes sort (vagy legalábbis a sorok nagy részét) egyszerre kell a memóriában látnunk
Bináris, teljes relációs műveletek: az összes többi művelet
Egymenetes algoritmusok

(R) és (R) 

R blokkjait egyenként olvassuk be a bemeneti pufferbe, a műveleteket minden soron elvégezzük, majd a kiválasztott vagy a vetített sorokat kivisszük a kimeneti pufferbe.

Feltétel: M >= 1

Költség: B(R)
(R)
Egy memória pufferbe folyamatosan beolvassuk R blokkjait, míg a fennmaradó M-1 puffert használhatjuk arra, hogy tartalmazzák a már előfordult minden egyes sor egy másolatát.

Feltétel: (R) <= M

Költség: B(R)
(R)
Egy csoport bejegyzése a csoportosító attribútumok értékeiből és az egyes összesítések értékeiből képzett kumulált értékekből áll.

Feltétel: (!?)

A csoportok bejegyzése lehet R sorainál rövidebb vagy akár hosszabb is, a csoportok száma pedig bármi lehet, ami R sorainak számánál kisebb vagy azzal egyenlő. A legtöbb esetben azonban a csoport bejegyzések nem hosszabbak R sorainál, és a csoportok száma sokkal kisebb a sorokénál.

Költség: B(R)
Összekapcsolás
Olvassuk be a kisebbik relációt (S), majd a másikat blokkonként olvasva elvégezzük a megfelelő sorok összekapcsolását.

Feltétel: B(S) <= M-1 (vagy másképp: Min(B(R), B(S)) <= M
Költség: B(S) + B(R)
Beágyazott ciklusú összekapcsolás

Tegyük fel, hogy B(S) ( B(R), de B(S) ( M.

Beolvassuk S-et M-1 blokkonként, és az éppen beolvasott részt összekapcsoljuk R-rel, a fennmaradó 1 blokkot használva. 
A külső ciklus iterációinak száma B(S)/(M-1). Minden iteráció során S-nek M-1 blokkját és R-nek B(R) számú blokkját olvassuk be. 
Költség tehát: B(S)/(M-1) * (M-1 + B(R))  ~>  B(S)B(R)/M (feltéve, hogy B>>M)
Feltétel: Nincs, vagyis ez memóriamérettől függetlenül mindig elvégezhető

Rendezésen alapuló kétmenetes algoritmusok
1. Beolvasunk M blokkot, majd rendezzük a memóriában.
2. A rendezett részlistákat kiírjuk lemezre.

3. Egy második beolvasási menettel összefésüljük az M darab rendezett részlistát és elvégezzük a kívánt műveletet. 

(A műveletet akkor tudjuk elvégezni a második menetben, ha ehhez az azonos kulcsértékkel rendelkező soroknak kell egyszerre a memóriában lenniük. Így például egy equijoin elvégezhető, de egy „T1.o1<T2.o2” típusú összekapcsolás már nem.
Feltétel: B(R) <= M2 (bináris műveletekre B(R) + B(S) <= M2 )

Költség: 3*B(R) (bináris műveletekre 3*(B(R)+B(S))

Ha az első menet után több mint M darab rendezett részlista lesz (vagyis B(R) > M2), akkor ezeket nem tudjuk egy második menetben rendezni. Ilyenkor további menetekre van szükség. Minden újabb menet M-ed részére tudja csökkenteni a már rendezett részlisták számát, vagyis ilyen módon rekurzívan kapjuk a többmenetes algoritmusokat.

Tördelésen (hasításon) alapuló kétmenetes algoritmusok

1. A sorokat M (pontosabban M-1) kosárba tördeljük.

2. A kosarakat (Ri illetve Si) kiírjuk lemezre.

3. A megfelelő kosarakra (illetve kosár-párokra) alkalmazzuk a megfelelő egymenetes algoritmust.

(Ebben az esetben is csak akkor tudjuk a második menetben elvégezni a műveletet, ha ehhez elég az azonos kosárbeli sorokat beolvasni.)

Feltétel: B(R) <= M2 (bináris műveletekre Min(B(R), B(S)) <= M2 )

Költség: 3*B(R) (bináris műveletekre 3*(B(R)+B(S))

A rekurzivitás most is hasonló a rendezés esetéhez, mivel minden további menet M-ed részére tudja csökkenteni a kosarak méretét.

Rendezés/tördelés összehasonlítása

A tördeléses algoritmusok alkalmazhatósága csak a kisebbik reláció méretétől függ nem pedig a kettő összegétől, mivel a második menetben elég a kisebbik relációt (illetve a kisebbik kosarat) beolvasni, a rendezés esetén viszont mindkét reláció összes azonos értékkel rendelkező sorát egyszerre kell a memóriában tartanunk!!!

A rendezéses algoritmusok esetén viszont az eredményt rendezett sorrendben kapjuk meg.
