
Dragonfly: A C++17 OpenGL Framework
Csaba Bálint
csabix@inf.elte.hu

Róbert Bán
bundas@inf.elte.hu

Eötvös Loránd University, Budapest, Hungary

1. Introduction
Computer graphics developers and researchers
usually have to choose between graphics APIs
that are high performing or frameworks that are
high level. In the former case, built-in debugging
and developing tools are usually lacking. Cur-
rent high level frameworks, however, are compli-
cated to use or suffer performance overhead and
sometimes are even harder to debug.
Dragonfly combines high performance and short
client code while providing built-in debug tools.
The framework achieves this via C++17 tem-
plates trading compilation time for the near-zero
runtime overhead. Additionally, our framework
can generate GUIs for most classes allowing run-
time monitoring and debugging.

4. Textures
In Dragonfly, all Texture classes are parameterized by the template parameter InternalFormat. This
allows for both compile and runtime optimizations and additional debugging.

Apart from the usual texture operations, OpenGL texture views are exploited to allow memory
efficient and easy reuse of textures. Texture classes safely allocate immutable GPU storage reducing
stress due to driver overhead.

2. Overview
The abstraction encapsulates most OpenGL operations in five classes: Shader Program, Framebuffer,
Texture, VertexArrayObject, and Buffer. A single line of Dragonfly code can represent a pipeline of
rendering commands. A simplified post-process rendering code example is presented below.

5. Shader Programs
Shader programs are compiled from multiple shader files binned into shader stages enabling large
shader code libraries. Even though the shader stages are compile time information that are used for
optimization and static assertion in Dragonfly, the shader code can be changed and recompiled at
runtime.

The ProgramEditor allows runtime shader code editing and compilation. Uniform variables sent to
the GPU may be observed or even overwritten to help with shader code debugging.

6. Framebuffers
A FramebufferObject class may be constructed from multiple Texture2D and Renderbuffer objects. Only
complete framebuffers can be targets of a rendering pipeline, thus the class contains all the compile
time information about its output attachments. Henceforth, Dragonfly can decide which OpenGL
commands are needed during compilation rather than runtime.

The two examples above demonstrate the usage of frambuffers for postprocess and deferred shading.
A compile time warning and a runtime assertion in debug configuration are issued because the GPU
implementation may not support 16 bit floating format as a framebuffer output.

3. Previous work
Amongst OpenGL libraries and frameworks,
there are scene graphs: GizmoSDK, Open Scene
Graph (Vulkan Scene Graph), OpenSG, Open
Inventor; and there are graphics engines such
as Irrlicht, Ogre3D, Visualization Library, and
even game engines: ClanLib, Delta3D, and
Panda3D. However, none of these are suited for
research purposes because development is slow
or the library is not flexible enough for develop-
ing algorithms for computer graphics.
NVIDIA Falcor [1] is a mature graphics C++
framework for research that supports Vulcan
and DirectX 12 with the DXR Raytracing API.

7. Conclusions
Dragonfly Falcor [1]

Overhead Very low Low
Functionality Enough A lot
Reliability TBD Battle tested
Debugablitiy High Low
Code brevity Very short Short

Dragonfly is best suited for research because
one can quickly develop computer graphics al-
gorithms and also benchmark them. However,
Dragonfly does not support hardware acceler-
ated raytracing and applications that benefit
from heavily multi-threaded graphics API usage
due to the design of OpenGL.
Therefore, we claim that code brevity, high per-
formance, and the ease of debugging graphics
algorithms outweight the drawbacks of lack of
functionality. Future work include full OpenGL
support, GLSL code optimizations and practical
debug tools using the compile time information.

8. References
[1] Nir Benty, Kai-Hwa Yao, Lucy Chen, Tim Fo-

ley, Matthew Oakes, Conor Lavelle, and Chris
Wyman. The Falcor rendering framework, 10
2019. https://github.com/NVIDIAGameWorks/
Falcor.

Acknowledgement Supported by the ÚNKP-
19-3 New National Excellence Program of
the Ministry for Innovation and Technology.

The project has been supported by the European
Union, co-financed by the European Social Fund
(EFOP-3.6.3-VEKOP-16-2017-00001).


