Dragonfly: A C++4+17 OpenGL Framework

Csaba Balint Rébert Ban

csabix@inf.elte.hu bundas@inf.elte.hu

Eotvos Lorand University, Budapest, Hungary

2. Overview

1. Introduction

Computer graphics developers and researchers The abstraction encapsulates most OpenGL operations in five classes: Shader Program, Framebuffer,
usually have to choose between graphics APIs Texture, VertexArrayObject, and Buffer. A single line of Dragonfly code can represent a pipeline of
that are high performing or frameworks that are rendering commands. A simplified post-process rendering code example is presented below.

high level. In the former case, built-in debugging
and developing tools are usually lacking Clur- myFramebuffer << df::Clear() << myMeshProgram << "myTexUniform" << myTextureFromFile << myMeshVAO;

rent high level frameworks, hOW@VGI, are COmpli— df::Backbuffer << df::Clear() << myPostProcess << "myLastRender" << myFramebuffer.getColor<o>() << df::NoVao(GL_TRIANGLES,3);

cated to use or suffer performance overhead and <

sometimes are even harder to debug. FBO | < Program R | VAO
Dragonfly combines high performance and short . Vertex Array Object
client code while providing built-in debug tools.
The framework achieves this via C++417 tem-

plates trading compilation time for the near-zero ;
runtime overhead. Additionally, our framework Texture : Buffers

can generate GUIs for most classes allowing run- 2D, 3D, Cube, ect. Binary GPU storage
time monitoring and debugging.

Shader stages «

4. Textures 3. Previous work

In Dragonfly, all Texture classes are parameterized by the template parameter InternalkFormat. This Amongst OpenGL libraries and frameworks,
allows for both compile and runtime optimizations and additional debugging. there are scene graphs: GizmoSDK, Open Scene
df: :Texture2D<df: :ulévec3>("Lena.jpg"); // 16 bit per channel RGB image. Default is 8 bit. Graph (Vulkan Scene Graph), OpenSG, Open
df::TextureCube<>("xpos.png”, "xneg.png", "ypos.png”, "yneg.png", "zpos.png", "zneg.png"); Inventor; and there are graphics engines such
myCubeMap[df::X_POS]; // 2D texture view of a single face with zero GPU memory cost. s Irrlicht, OgreSD, Visualization Library, and
Apart from the usual texture operations, OpenGL texture views are exploited to allow memory even game engines: ClanLib, DeltadD, and
efficient and easy reuse of textures. Texture classes safely allocate immutable GPU storage reducing Panda3D. However, none of these are suited for
stress due to driver overhead. research purposes because development is slow

or the library is not flexible enough for develop-

5. Shader Pr()gra ms ing algorithms for computer graphics.
NVIDIA Falcor [1] is a mature graphics C++

Shader programs are compiled from multiple shader files binned into shader stages enabling large framework for research that supports Vulcan
shader code libraries. Even though the shader stages are compile time information that are used for and DirectX 12 with the DXR Raytracing API.
optimization and static assertion in Dragonfly, the shader code can be changed and recompiled at
runtime.

auto myTextureFromFile
auto myCubeMap
auto myTextureView

{. Conclusions

auto myMeshProgram
auto myPostProcess

df::Program("meshprog.vert" vert + "shadingHeader.glsl" frag + "meshprog.frag" frag);
df::Programkditor("postprocess.vert” vert + "postprocess.frag" frag); //Generates GUI

Dragonfly | Falcor [1]
The ProgramEditor allows runtime shader code editing and compilation. Uniform variables sent to Overhead Very low Low

the GPU may be observed or even overwritten to help with shader code debugging. Functionality Enough A lot
prr— v sdf-trace-prog Reliability TBD Battle tested
— s —— s Debugablitiy High Low

Fragment editor W

Shader Build Setup Generated Source Code (7 -‘ v _t”- -,:,r..ri.l tlame jm- Sarr i | COde breVity Very Sh()rt Short

Dragonfly is best suited for research because
one can quickly develop computer graphics al-
gorithms and also benchmark them. However,
Dragonfly does not support hardware acceler-
ated raytracing and applications that benefit
from heavily multi-threaded graphics API usage
due to the design of OpenGL.
Therefore, we claim that code brevity, high per-
formance, and the ease of debugging graphics
algorithms outweight the drawbacks of lack of
e o L functionality. Future work include full OpenGL
(Shadars/SoF /s Textursacathorder 111 support, GLSL code optimizations and practical

[Shaders/S0F fweightBlend. gls1]

[Shaders/=df.gls1] '-'f' SsCa E=1 . -,.|-||-||-||-||-||-| . debug tOO].S USing the Compile time information.

6. Framebuffers 8. References

A FramebufferObject class may be constructed from multiple Texture2D and Renderbuffer objects. Only 1] Nir Benty, Kai-Hwa Yao, Lucy Chen, Tim Fo-
complete framebuffers can be targets of a rendering pipeline, thus the class contains all the compile ley, Matthew Oakes, Conor Lavelle, and Chris
time information about its output attachments. Henceforth, Dragonfly can decide which OpenGL Wyman. The Falcor rendering framework, 10

commands are needed during compilation rather than runtime. 2019. https://github.com/NVIDIAGameWorks/
Falcor.
int w = df::Backbuffer.getWidth(), h = df::Backbuffer.getHeight(); // Default framebuffer is the ‘window’ .
auto myFramebuffer = df::Texture2D<>(w, h, 1) + df::Renderbuffer<df::depth24>(w, h); // For postprocessing Acknowledgement Supported by the UNKP-
auto myDeferredBuf = df::Texture2D<df::depth32F>(w, h, 1) + // Depth test is performed using this texture 19-3 New National FExcellence Program of
df::Texture2D«df::il6vec3>(w, h, 1) + // Normal vectors for deferred light calculation the Minist f T y 1 Technol
df::Texture2D<df::half3>(w, h, 1); // Albedo color for Physically Based Rendering € ,@an871/ or innovation - an eCnnotogy.

The two examples above demonstrate the usage of frambuffers for postprocess and deferred shading.
A compile time warning and a runtime assertion in debug configuration are issued because the GPU
implementation may not support 16 bit floating format as a tframebuffer output.

The project has been supported by the FEuropean

Union, co-financed by the FEuropean Social Fund
(EFOP-3.6.3-VEKOP-16-2017-00001).

