Springer Series in Statistics

Advisors:
D. Brillinger, S. Fienberg, J. Gani,
J. Hartigan, K. Krickeberg
Springer Series in Statistics

J. A. Hartigan, Bayes Theory. xii, 145 pages, 1983.
J. A. Hartigan

Bayes Theory
To Jenny
Preface

This book is based on lectures given at Yale in 1971–1981 to students prepared with a course in measure-theoretic probability.

It contains one technical innovation—probability distributions in which the total probability is infinite. Such improper distributions arise embarrassingly frequently in Bayes theory, especially in establishing correspondences between Bayesian and Fisherian techniques. Infinite probabilities create interesting complications in defining conditional probability and limit concepts.

The main results are theoretical, probabilistic conclusions derived from probabilistic assumptions. A useful theory requires rules for constructing and interpreting probabilities. Probabilities are computed from similarities, using a formalization of the idea that the future will probably be like the past. Probabilities are objectively derived from similarities, but similarities are subjective judgments of individuals.

Of course the theorems remain true in any interpretation of probability that satisfies the formal axioms.

My colleague David Potlard helped a lot, especially with Chapter 13. Dan Barry read proof.
CHAPTER 1
Theories of Probability 1
1.0. Introduction 1
1.1. Logical Theories: Laplace 1
1.2. Logical Theories: Keynes and Jeffreys 2
1.3. Empirical Theories: Von Mises 3
1.4. Empirical Theories: Kolmogorov 5
1.5. Empirical Theories: Falsifiable Models 5
1.6. Subjective Theories: De Finetti 6
1.7. Subjective Theories: Good 7
1.8. All the Probabilities 8
1.9. Infinite Axioms 10
1.10. Probability and Similarity 11
1.11. References 13

CHAPTER 2
Axioms 14
2.0. Notation 14
2.1. Probability Axioms 14
2.2. Prespaces and Rings 16
2.3. Random Variables 18
2.4. Probable Bets 18
2.5. Comparative Probability 20
2.6. Problems 20
2.7. References 22

CHAPTER 3
Conditional Probability 23
3.0. Introduction 23
ix
3.1.	Axioms of Conditional Probability	24
3.2.	Product Probabilities	26
3.3.	Quotient Probabilities	27
3.4.	Marginalization Paradoxes	28
3.5.	Bayes Theorem	29
3.6.	Binomial Conditional Probability	31
3.7.	Problems	32
3.8.	References	33

CHAPTER 4

Convergence

4.0. Introduction
4.1. Convergence Definitions
4.2. Mean Convergence of Conditional Probabilities
4.3. Almost Sure Convergence of Conditional Probabilities
4.4. Consistency of Posterior Distributions
4.5. Binomial Case
4.6. Exchangeable Sequences
4.7. Problems
4.8. References

CHAPTER 5

Making Probabilities

5.0. Introduction
5.1. Information
5.2. Maximal Learning Probabilities
5.3. Invariance
5.4. The Jeffreys Density
5.5. Similarity Probability
5.6. Problems
5.7. References

CHAPTER 6

Decision Theory

6.0. Introduction
6.1. Admissible Decisions
6.2. Conditional Bayes Decisions
6.3. Admissibility of Bayes Decisions
6.4. Variations on the Definition of Admissibility
6.5. Problems
6.6. References

CHAPTER 7

Uniformity Criteria for Selecting Decisions

7.0. Introduction
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1</td>
<td>Bayes Estimates Are Biased or Exact</td>
<td>63</td>
</tr>
<tr>
<td>7.2</td>
<td>Unbiased Location Estimates</td>
<td>64</td>
</tr>
<tr>
<td>7.3</td>
<td>Unbiased Bayes Tests</td>
<td>65</td>
</tr>
<tr>
<td>7.4</td>
<td>Confidence Regions</td>
<td>67</td>
</tr>
<tr>
<td>7.5</td>
<td>One-Sided Confidence Intervals Are Not Unitary Bayes</td>
<td>68</td>
</tr>
<tr>
<td>7.6</td>
<td>Conditional Bets</td>
<td>68</td>
</tr>
<tr>
<td>7.7</td>
<td>Problems</td>
<td>69</td>
</tr>
<tr>
<td>7.8</td>
<td>References</td>
<td>71</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 8</td>
<td></td>
</tr>
<tr>
<td>8.0</td>
<td>Introduction</td>
<td>72</td>
</tr>
<tr>
<td>8.1</td>
<td>Examples of Exponential Families</td>
<td>73</td>
</tr>
<tr>
<td>8.2</td>
<td>Prior Distributions for the Exponential Family</td>
<td>73</td>
</tr>
<tr>
<td>8.3</td>
<td>Normal Location</td>
<td>74</td>
</tr>
<tr>
<td>8.4</td>
<td>Binomial</td>
<td>76</td>
</tr>
<tr>
<td>8.5</td>
<td>Poisson</td>
<td>79</td>
</tr>
<tr>
<td>8.6</td>
<td>Normal Location and Scale</td>
<td>79</td>
</tr>
<tr>
<td>8.7</td>
<td>Problems</td>
<td>82</td>
</tr>
<tr>
<td>8.8</td>
<td>References</td>
<td>83</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 9</td>
<td></td>
</tr>
<tr>
<td>9.0</td>
<td>Introduction</td>
<td>84</td>
</tr>
<tr>
<td>9.1</td>
<td>Baranchik's Theorem</td>
<td>84</td>
</tr>
<tr>
<td>9.2</td>
<td>Bayes Estimates Beating the Straight Estimate</td>
<td>86</td>
</tr>
<tr>
<td>9.3</td>
<td>Shrinking towards the Mean</td>
<td>88</td>
</tr>
<tr>
<td>9.4</td>
<td>A Random Sample of Means</td>
<td>89</td>
</tr>
<tr>
<td>9.5</td>
<td>When Most of the Means Are Small</td>
<td>89</td>
</tr>
<tr>
<td>9.6</td>
<td>Multivariate Means</td>
<td>91</td>
</tr>
<tr>
<td>9.7</td>
<td>Regression</td>
<td>92</td>
</tr>
<tr>
<td>9.8</td>
<td>Many Means, Unknown Variance</td>
<td>92</td>
</tr>
<tr>
<td>9.9</td>
<td>Variance Components, One Way Analysis of Variance</td>
<td>93</td>
</tr>
<tr>
<td>9.10</td>
<td>Problems</td>
<td>94</td>
</tr>
<tr>
<td>9.11</td>
<td>References</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>CHAPTER 10</td>
<td></td>
</tr>
<tr>
<td>10.0</td>
<td>Introduction</td>
<td>96</td>
</tr>
<tr>
<td>10.1</td>
<td>Dirichlet Priors</td>
<td>96</td>
</tr>
<tr>
<td>10.2</td>
<td>Admissibility of Maximum Likelihood, Multinomial Case</td>
<td>97</td>
</tr>
<tr>
<td>10.3</td>
<td>Inadmissibility of Maximum Likelihood, Poisson Case</td>
<td>99</td>
</tr>
<tr>
<td>10.4</td>
<td>Selection of Dirichlet Priors</td>
<td>100</td>
</tr>
<tr>
<td>10.5</td>
<td>Two Stage Poisson Models</td>
<td>101</td>
</tr>
<tr>
<td>10.6</td>
<td>Multinomials with Clusters</td>
<td>101</td>
</tr>
</tbody>
</table>
10.7. Multinomials with Similarities 102
10.8. Contingency Tables 103
10.9. Problems 104
10.10. References 105

CHAPTER 11
Asymptotic Normality of Posterior Distributions 107
11.0. Introduction 107
11.1. A Crude Demonstration of Asymptotic Normality 108
11.2. Regularity Conditions for Asymptotic Normality 108
11.3. Pointwise Asymptotic Normality 111
11.4. Asymptotic Normality of Martingale Sequences 113
11.5. Higher Order Approximations to Posterior Densities 115
11.6. Problems 116
11.7. References 118

CHAPTER 12
Robustness of Bayes Methods 119
12.0. Introduction 119
12.1. Intervals of Probabilities 120
12.2. Intervals of Means 120
12.3. Intervals of Risk 121
12.4. Posterior Variances 122
12.5. Intervals of Posterior Probabilities 122
12.6. Asymptotic Behavior of Posterior Intervals 123
12.7. Asymptotic Intervals under Asymptotic Normality 124
12.9. Problems 126
12.10. References 126

CHAPTER 13
Nonparametric Bayes Procedures 127
13.0. Introduction 127
13.1. The Dirichlet Process 127
13.2. The Dirichlet Process on (0, 1) 130
13.3. Bayes Theorem for a Dirichlet Process 131
13.4. The Empirical Process 132
13.5. Subsample Methods 133
13.6. The Tolerance Process 134
13.7. Problems 134
13.8. References 135

Author Index 137

Subject Index 141
1.0. Introduction

A theory of probability will be taken to be an axiom system that probabilities must satisfy, together with rules for constructing and interpreting probabilities. A person using the theory will construct some probabilities according to the rules, compute other probabilities according to the axioms, and then interpret these probabilities according to the rules; if the interpretation is unreasonable perhaps the original construction will be adjusted.

To begin with, consider the simple finite axioms in which there are a number of elementary events just one of which must occur, events are unions of elementary events, and the probability of an event is the sum of the non-negative probabilities of the elementary events contained in it.

There are three types of theory—logical, empirical and subjective. In logical theories, the probability of an event is the rational degree of belief in the event relative to some given evidence. In empirical theories, a probability is a factual statement about the world. In subjective theories, a probability is an individual degree of belief; these theories differ from logical theories in that different individuals are expected to have different probabilities for an event, even when their knowledge is the same.

1.1. Logical Theories: Laplace

The first logical theory is that of Laplace (1814), who defined the probability of an event to be the number of favorable cases divided by the total number of cases possible. Here cases are elementary events; it is necessary to identify equiprobable elementary events in order to apply Laplace's theory. In many
gambling problems, such as tossing a die or drawing from a shuffled deck of cards, we are willing to accept such equiprobability judgments because of the apparent physical indistinguishability of the elementary events—the particular face of the die to fall, or the particular card to be drawn. In other problems, such as the probability of it raining tomorrow, the equiprobable alternatives are not easily seen. Laplace, following Bernoulli (1713) used the principle of insufficient reason which specifies that probabilities of two events will be equal if we have no reason to believe them different. An early user of this principle was Thomas Bayes (1763), who apologetically postulated that a binomial parameter p was uniformly distributed if nothing were known about it.

The principle of insufficient reason is now rejected because it sets rather too many probabilities equal. Having an unknown p uniformly distributed is different from having an unknown \sqrt{p} uniformly distributed, yet we are equally ignorant of both. Even in the gambling case, we might set all combination of throws of n dice to have equal probability so that the next throw has probability 1/6 of giving an ace no matter what the results of previous throws. Yet the dice will always be a little biased and we want the next throw to have higher probability of giving an ace if aces appeared with frequency greater than 1/6 in previous throws.

Here, it is a consequence of the principle of insufficient reason that the long run frequency of aces will be 1/6, and this prediction may well be violated by the observed frequency. Of course any finite sequence will not offer a strict contradiction, but as a practical matter, if a thousand tosses yielded 1/3 aces, no gambler would be willing to continue paying off aces at 5 to 1. The principle of insufficient reason thus violates the skeptical principle that you can’t be sure about the future.

1.2. Logical Theories: Keynes and Jeffreys

Keynes (1921) believed that probability was the rational belief in a proposition justified by knowledge of another proposition. It is not possible to give a numerical value to every such belief, but it is possible to compare some pairs of beliefs. He modified the principle of insufficient reason to a principle of indifference—two alternatives are equally probable if there is no relevant evidence relating to one alternative, unless there is corresponding evidence relating to the other. This still leaves a lot of room for judgment; for example, Keynes asserts that an urn containing n black and white balls in unknown proportion will produce each sequence of white and black balls with equal probability, so that for large n the proportion of white balls is very probably near 1/2. He discusses probabilities arising from analogy, but does not present methods for practical calculation of such probabilities. Keynes's
1.3. Empirical Theories: Von Mises

theory does not succeed because it does not provide reasonable rules for computing probabilities, or even for making comparisons between probabilities.

Jeffreys (1939) has the same view of probability as Keynes, but is more constructive in presenting many types of prior distributions appropriate for different statistical problems. He presents an "invariant" prior distribution for a continuous parameter indexing a family of probability distributions, thus escaping one of the objections to the principle of insufficient reason. The invariant distribution is however inconsistent in another sense, in that it may generate conditional distributions that are not consistent with the global distribution. Jeffreys rejects it in certain standard cases.

Many of the standard prior probabilities used today are due to Jeffreys, and he has given some general rules for constructing probabilities. He concedes (1939, p. 37) that there may not be an agreed upon probability in some cases, but argues (p. 406) that two people following the same rules should arrive at the same probabilities. However, the many rules stated frequently give contradictory results.

The difficulty with Jeffreys's approach is that it is not possible to construct unique probabilities according to the stated rules; it is not possible to infer what Jeffreys means by probability by examining his constructive rules; it is not possible to interpret the results of a Jeffreys calculation.

1.3. Empirical Theories: Von Mises

Let $X_1, X_2, \ldots, X_n, \ldots$ denote an infinite sequence of points in a set. Let $f(A)$ be the limiting proportion of points lying in a set A, if that limit exists. Then f satisfies the axioms of finite probability. In frequency theories, probabilities correspond to frequencies in some (perhaps hypothetical) sequence of experiments. For example "the probability of an ace is 1/6" means that if the same die were tossed repeatedly under similar conditions the limiting frequency would be 1/6.

Von Mises (1928/1964) declares that the objects under study are not single events but sequences of events. Empirically observed sequences are of course always finite. Some empirically observed sequences show approximate convergence of relative frequencies as the sample size increases, and approximate random order. Von Mises idealizes these properties in an infinite sequence or collective in which each elementary event has limiting frequency that does not change when it is computed on any subsequence in a certain family. The requirement of invariance is supposed to represent the impossibility (empirically observed) of constructing a winning betting system.

Non trivial collectives do not exist satisfying invariance over all subsequences but it is a consequence of the strong law of large numbers that
1. Theories of Probability

collectives exist that are invariant over any specified countable set of sub-sequences. Church (1940) suggests selecting subsequences using recursive functions, functions of integer variables for which an algorithm exists that will compute the value of the function for any values of the arguments in finite time on a finite computing machine. There are countably many recursive functions so the collective exists, although of course, it cannot be constructed. Further interesting mathematical developments are due to Kolmogorov (1965) who defines a finite sequence to be random if an algorithm required to compute it is sufficiently complex, in a certain sense; and to Martin-Löf (1966) who establishes the existence of finite and infinite random sequences that satisfy all statistical tests.

How is the von Mises theory to be applied? Presumably to those finite sequences whose empirical properties of convergent relative frequency and approximate randomness suggested the infinite sequence idealization. No rules are given by von Mises for recognizing such sequences and indeed he criticizes the “erroneous practice of drawing statistical conclusions from short sequences of observations” (p. ix). However the Kolmogorov or Martin-Löf procedures could certainly be used to recognize such sequences.

How does frequency probability help us learn? Take a long finite “random” sequence of 0’s and 1’s. The frequency of 0’s in the first half of the sequence will be close to the frequency of 0’s in the second half of the sequence, so that if we know only the first half of the sequence we can predict approximately the frequency of 0’s in the second half, provided that we assume the whole sequence is random. The prediction of future frequency is just a tautology based on the assumption of randomness for the whole sequence.

It seems necessary to have a definition, or at least some rules, for deciding when a finite sequence is random to apply the von Mises theory. Given such a definition, it is possible to construct a logical probability distribution that will include the von Mises limiting frequencies: define the probability of the sequence \(x_1, x_2, \ldots, x_n \) as

\[
\lim_{N_k(x)} \frac{N_k(x)}{N_k} \quad \text{where} \quad N_k(x) \text{ is the number of random sequences of length } k \text{ beginning with } x_1, x_2, \ldots, x_n \text{ and } N_k \text{ is the number of random sequences of length } k.
\]

In this way a probability is defined on events which are unions of finite sequences. A definition of randomness would not be acceptable unless \(P[x_{n+1} = 1 | \text{proportion of 1's in } x_1, \ldots, x_n = p_n] - p_n \rightarrow 0 \) as \(n \rightarrow \infty \), that is, unless the conditional probability of a 1 at the next trial converged to the limiting frequency of 1’s.

True, definitions of randomness may vary, so that this is no unique solution—but the arbitrariness necessary to define finite randomness for applying frequency theory is the same arbitrariness which occurs in defining prior probabilities in the logical and subjective theories.

Asymptotically all theories agree; von Mises discusses only the asymptotic case; to apply a frequency theory to finite sequences, it is necessary to make the same kind of assumptions as Jeffreys makes on prior probabilities.
1.4. Empirical Theories: Kolmogorov

Kolmogorov (1933) formalized probability as measure: he interpreted probability as follows.

1. There is assumed a complex of conditions C which allows any number of repetitions.
2. A set of elementary events can occur on establishment of conditions C.
3. The event A occurs if the elementary event which occurs lies in A.
4. Under certain conditions, we may assume that the event A is assigned a probability $P(A)$ such that
 a. one can be practically certain that if the complex of conditions C is repeated a large number of times n, then if m be the number of occurrences of event A, the ratio m/n will differ very slightly from $P(A)$.
 b. if $P(A)$ is very small one can be practically certain that when conditions C are realized only once, the event A would not occur at all.

The axioms of finite probability will follow for $P(A)$, although the axiom of continuity will not.

As frequentists must, Kolmogorov is struggling to use Bernoulli's limit theorem for a sequence of independent identically distributed random variables without mentioning the word probability. Thus “the complex of conditions C which allows any number of repetitions”—how different must the conditions be between repetitions? Thus “practically certain” instead of “with high probability.” Logical and subjective probabilists argue that a larger theory of probability is needed to make precise the rules of application of a frequency theory.

1.5. Empirical Theories: Falsifiable Models

Statisticians in general have followed Kolmogorov's prescription. They freely invent probability models, families of probability distributions that describe the results of an experiment. The models may be falsified by repeating the experiment often and noting that the observed results do not concur with the model; the falsification, using significance tests, is itself subject to uncertainty, which is described in terms of the original probability model. A direct interpretation of probability as frequency appears to need an informal extra theory of probability (matching the circularity in Laplace's equally possible cases), but the "falsifiable model" interpretation appears to avoid the circularity. We propose a probability model, and then reject it, or modify it, if the observed results seem improbable. We are using Kolmogorov's rule (4) (b) that "formally" improbable results are "practically"
certain not to happen. If they do happen we doubt the formal probability.

The weaknesses in the model approach:

(1) The repetitions of the experiment are assumed to give independent, identically distributed results. Otherwise laws of large numbers will not apply. But you can’t test that independence without taking some other series of experiments, requiring other assumptions of independence, and requiring other tests. In practice the assumption of independence is usually untested (often producing very poor estimates of empirical frequencies; for example, in predicting how often a complex piece of equipment will break, it is dangerous to assume the various components will break independently). The assumption of independence in the model theory is the analogue of the principle of insufficient reason in logical theories. We assume it unless there is evidence to the contrary, and we rarely collect evidence.

(2) Some parts of the model, such as countable additivity or continuity of a probability density, are not falsifiable by any finite number of observations.

(3) Arbitrary decisions about significance tests must be made; you must decide on an ordering of the possible observations on their degree of denial of the model—perhaps this ordering requires subjective judgment depending on past knowledge.

1.6. Subjective Theories: De Finetti

De Finetti (1930/1937) declares that the degree of probability attributed by an individual to a given event is revealed by the conditions under which he would be disposed to bet on that event. If an individual must bet on all events \(A \) which are unions of elementary events, he must bet according to some probability \(P(A) \) defined by assigning non-negative probabilities to the elementary events, or else a dutch book can be made against him—a combination of bets is possible in which he will lose no matter which elementary event occurs. (This is only a little bit like von Mises's principle of the impossibility of a gambling system.) De Finetti calls such a system of bets coherent.

In the subjectivist view, probabilities are associated with an individual. Savage calls them “personal” probabilities; a person should be coherent, but any particular event may be assigned any probability without questioning from others. You cannot say that “my probability that it will rain this afternoon is .97” is wrong—it reports my willingness to bet at a certain rate. Bayes (1763) defines probability as “the ratio between the value at which an expectation depending on the happening of the event ought to be computed, and the value of the thing expected upon its happening.” His probability describes how a person ought to bet, not how he does bet. It should be noted that the subjectivist theories insist that a person be coherent in his betting,
so that they are not content to let a person bet how he pleases; psychological probability comes from the study of actual betting behavior, and indeed people are consistently incoherent (Wallsten (1974)).

There are numerous objections to the betting approach some technical (is it feasible?), others philosophical (is it useful?).

(i) **People don't wish to offer precise odds**—Smith (1961) and others have suggested ranges of probabilities for each event; this is not a very serious objection.

(ii) **A bet is a price, subject to market forces**—depending on the other actors; Borel (1924) considers the case of a poker player, who by betting high, increases his probability of winning the pot. Can you say to him “your probability of winning the pot is the amount you are willing to bet to win the pot divided by the amount in the pot.”

Suppose you are in a room full of knowledgeable meteorologists, and you declare the probability it will rain tomorrow is .95. They all rush at you waving money. Don’t you modify the probability? We may not be willing to bet at all if we feel others know more. Why should the presence of others be allowed to affect our probability?

(iii) **The utility of money is not linear**—You may bet $1 to win $500 when the chance of winning is only 1/1000; the gain of $500 seems more than 500 times the loss of $1. Ramsey (1926) and Savage (1954) advance theories of rational decision making, choosing among a range of available actions, that produce both utilities and probabilities for which the optimal decision is always that decision which maximizes expected utility.

The philosophical objection is that I don't particularly care how you (opinionated and uninformed as you are) wish to bet. To which the subjectivists will answer that subjective judgments are necessary in forming conclusions from observations; let us be explicit about them (Good (1976, p. 143)). To which the empiricists will reply, let us separate the “good” empirically verifiable probabilities, the likelihoods, from the “bad” subjective probabilities which vary from person to person. (Cox and Hinkley (1974, p. 389) “For the initial stages… the approach is… inapplicable because it treats information derived from data as on exactly equal footing with probabilities derived from vague and unspecified sources.”)

1.7. Subjective Theories: Good

Good (1950) takes a degree of belief in a proposition E given a proposition H and a state of mind of a person M, to be a primitive notion allowing no precise definition. Comparisons are made between degrees of belief; a set of comparisons is called a body of beliefs. A reasonable body of beliefs contains no contradictory comparisons.

The usual axioms of probability are assumed to hold for a numerical
probability which has the same orderings as a body of beliefs. Good recommends a number of rules for computing probabilities, including for example the device of imaginary results: consider a number of probability assignments to a certain event; in combination with other fixed probability judgments, each will lead through the axioms to further probability judgments; base your original choice for probabilities on the palatability of the overall probabilities which ensue. If an event of very small probability occurs, he suggests that the body of beliefs be modified.

Probability judgments can be sharpened by laying bets at suitable odds, but there is no attempt to define probability in terms of bets. Good (1976, p. 132) states that “since the degrees of belief, concerning events over which he has no control, of a person with ideally good judgment, should surely not depend on whether he uses his beliefs in any specific manner, it seems desirable to have justifications that do not mention preferences or utilities. But utilities necessarily come in whenever the beliefs are to be used in a practical problem involving action.”

Good takes an attitude, similar to the empirical model theorists, that a probability system proposed is subject to change if errors are discovered through significance testing. In standard probability theory, changes in probability due to data take place according to the rules of conditional probability; in the model theory, some data may invalidate the whole probability system and so force changes not according to the laws of probability. There is no contradiction in following this practice because we separate the formal theory from the rules for its application.

1.8. All the Probabilities

An overview of the theories of probability may be taken from the stance of a subjective probabilist, since subjective probability includes all other theories. Let us begin with the assumption that an individual attaches to events numerical probabilities which satisfy the axioms of probability theory.

If no rules for constructing and interpreting probabilities are given, the probabilities are inapplicable—for all we know the person might be using length or mass or dollars or some other measure instead of probability. Thus the theories of Laplace and Keynes are not practicable for lack of rules to construct probability. Jeffreys provides rules for many situations (although the rules are inconsistent and somewhat arbitrary). Good takes a belief to be a primitive notion; although he gives numerous rules for refining and correcting sets of probabilities, I believe that different persons might give different probabilities under Good’s system, on the same knowledge, simply because they make different formalizations of the primitive notion of degree of belief. Such disagreements are accepted in a subjective
theory, but it seems undesirable that they are caused by confusion about meanings of probability. For example if you ask for the probability that it will rain tomorrow afternoon, one person might compute the relative frequency of rain on afternoons in the last month, another might compute the relative amount of today's rain that fell this afternoon; the axioms are satisfied. Are the differences in computation due to differences in beliefs about the world, or due to different interpretations of the word probability?

The obvious interpretation of a probability is as a betting ratio, the amount you bet over the amount you get. There are certainly some complications in this interpretation—if a probability is a price, it will be affected by the market in which the bet is made. But these difficulties are overcome by Savage's treatment of probability and utility in which an individual is asked to choose coherently between actions, and then must do so to maximize expected utility as measured by an implied personal probability and utility. The betting interpretation arises naturally out of the foundations of probability theory as a guide to gamblers, and is not particularly attached to any theory of probability. A logical probabilist, like Bayes, will say that a probability is what you ought to bet. A frequentist will say that a bet is justified only if it would be profitable in the long run—Fisher's evaluation of estimation procedures rests on which would be more profitable in the long run. A subjectivist will say that the probability is the amount you are willing to bet, although he will require coherence among your bets. It is therefore possible to adopt the betting interpretation without being committed to a particular theory of probability.

As Good has said, the frequency theory is neither necessary nor sufficient. Not sufficient because it is applicable to a single type of data. Not necessary because it is neatly contained in logical or subjectivist theories, either through Bernoulli's celebrated law of large numbers which originally generated the frequency theory, or through de Finetti's celebrated convergence of conditional probabilities on exchangeable sequences, which makes it clear what probability judgments are necessary to justify a frequency theory. (A sequence $x_1, x_2, \ldots, x_n, \ldots$ is exchangeable if its distribution is invariant under finite permutations of the indices, and then if the x_i have finite second moment, the expected value of x_{n+1} given x_1, \ldots, x_n and $(1/n)\sum x_i$ converge to the same limiting random variable.) Thus the frequency theory gives an approximate value to conditional expectation for data of this type: the sequence of repeated experiments must be judged exchangeable.

The frequency theory does not assist with the practical problem of prediction from short sequences. Nor does it apply to other types of data. For example we might judge that the series is stationary rather than exchangeable: the assumption is weaker but limit results still apply under certain conditions. The frequency theory would be practicable if data consisted of long sequences of exchangeable random variables (the judgment of exchangeability being made informally, outside the theory); but too many important problems are not of this type.
The model theory of probability uses probability models that are “falsified” if they give very small probability to certain events. The only interpretation of probability required is that events of small probability are assumed “practically certain” not to occur. The advance over the frequency theory is that it is not necessary to explain what repeatable experiments are. The loss is that many probabilities must be assumed in order to compute the probabilities of the falsifying events, and so it is not clear which probabilities are false if one of the events occur. The interpretation of small probabilities as practically zero is not adequate to give meaning to probability. Consider for example the model that a sample of \(n \) observations is independently sampled from the normal: one of the observations is 20 standard deviations from the rest; we might conclude that the real distribution is not normal or that the sampled observations are not independent (for example the first \((n-1) \) observations may be very highly correlated). Thus we cannot empirically test the normality unless we are sure of the independence; and assuming the independence is analogous to assuming exchangeability in de Finetti's theories.

Finally the subjective theory of probability is objectionable because probabilities are mere personal opinions: one can give a little advice; the probabilities should cohere, the set of probabilities should not combine to give unacceptable probabilities; but in the main the theory describes how ideally rational people act rather than recommends how they should act.

1.9. Infinite Axioms

Two questions arise when probabilities are defined on infinite numbers of events. These questions cannot be settled by reference to empirical facts, or by considering interpretations of probability, since in practice we do not deal with infinite numbers of events. Nevertheless it makes a considerable difference in the mathematics which choices are made.

In Kolmogorov’s axioms, the axiom of countable additivity is assumed. This makes it possible to determine many useful limiting probabilities that would be unavailable if only finite additivity is assumed, but at the cost of limiting the application of probability to a subset of the family of all subsets of the line. Philosophers are reluctant to accept the axiom, but mathematicians are keen to accept it; de Finetti and others have developed a theory of finitely additive probability which differs in exotic ways from the regular theories—he will say “consider the uniform distribution on the line, carried by the rationals”; distribution functions do not determine probability distributions on the line. Here, the axiom of countable additivity is accepted as a mathematical convenience.

The second infinite axiom usually accepted is that the total probability should be one. This is inconvenient in Bayes theory because we frequently need uniform distributions on the line; countable additivity requires that total probability be infinite.
1.10. Probability and Similarity

Allowing total probability to be infinite does not prevent interpretation in any of the standard theories. Suppose probability is defined on a suitable class of functions \(X \). Probability judgments may all be expressed in the form \(PX \geq 0 \) for various \(X \). In the frequency theory, given a sequence \(x_1, x_2, \ldots, x_n, \ldots \), \(PX \geq 0 \) means that \(\sum_{i=1}^{n} x_i \geq 0 \) for all large \(n \). In the betting theory, \(PX \geq 0 \) means that you are willing (subjective) or ought (logical) to accept the bet \(X \).

1.10. Probability and Similarity

I think there is probability about 0.05 that there will be a large scale nuclear war between the U.S. and the U.S.S.R. before 2000. By that I certainly don't mean that such nuclear exchanges will occur in about one in twenty of some hypothetical infinite sequence of universes. Nor do I mean that I am willing to bet on nuclear war at nineteen to one odds—I am willing to accept any wager that I don't have to pay off until after the bomb. (I trust the U.S.S.R. targeting committee to have put aside a little something for New Haven, and even if they haven't, bits of New York will soon arrive by air.)

What then does the probability 0.05 mean? Put into an urn 100 balls differing only in that 5 are black and 95 are white. Shake well and draw a ball without looking. I mean that the probability of nuclear war is about the same as the probability of getting a black ball (or more precisely, say, war is more probable than drawing a black ball when the urn has 1 black and 99 white balls, and less probable than drawing a black ball when the urn has 10 black and 90 white balls.) You might repeat this experiment many times and expect 5% black balls, and you might be willing to bet at 19 to 1 that a black ball will appear, although of course the decision to bet will depend on other things such as your fortune and ethics. To me, the probability .05 is meaningful for the 5 out of 100 balls indistinguishable except for color, without reference to repeating the experiment or willingness to bet.

Why should you believe the assessment of .05? I need to offer you the data on which the probability calculation is based. The superpowers could become engaged in a nuclear war in the following ways.

1. *Surprise attack.* Such an attack would seem irrational and suicidal; but war between nations has often seemed irrational and suicidal. For example the Japanese attack on the United States in 1941 had a good chance of resulting in the destruction of the Japanese Empire, as the Japanese planners knew, but they preferred chancy attack to what they saw as sure slow economic strangulation. Might not the U.S. or the U.S.S.R. attack for similar reasons? If such an attack occurs once in 1000 years, the chance of it occurring in the next twenty is .02 (I will concede that the figure might be off by a factor of 10.)

2. *Accidental initiation.* Many commanders have the physical power to
launch an attack, because the strategic systems emphasize fast response times to a surprise attack. Let us say 100 commanders, and each commander so stable that he has only one chance in 100,000 of ordering a launch, in a given year, and that the isolated launch escalates to a full scale exchange with probability .2. In twenty years, a nuclear war occurs with probability one .004.

3. Computer malfunction. Malfunctions causing false alerts have been reported at least twice in the U.S. press in the last twenty years. Let us assume that a really serious malfunction causing a launch is 100 times as rare. In the next twenty years we expect only .02 malfunctions.

4. Third party initiation. Several embattled nations have nuclear capability—Israel (.99 probability), South Africa (.40), India (.60), Pakistan (.40), Libya (.20). Of these Israel is the most threatened and the most dangerous. Who would be surprised by a preemptive nuclear attack by Israel on Libyan nuclear missile sites? Let us say the probability is .01, and the chance of escalation to the superpowers is .2. The overall probability is .002.

Summing the probabilities we get .046, say .05, which I admit may be off by a factor of 10. There is plenty of room for disagreement about the probabilities used in the calculations; and indeed I have committed apparently a circular argument characteristic of probability calculations; I am supposed to be showing how a probability is to be calculated, but I am basing the calculation on other probabilities. How are they to be justified?

The component probabilities are empirical, based on occurrences of similar events to the one being assessed. An attack by the U.S. on the U.S.S.R. is analogous to the attack by Japan on the U.S. Dangerously deceptive computer malfunctions have already occurred. Of course the analogies are not very close, because the circumstances of the event considered are not very similar to the circumstances of the analogous events.

The event of interest has been expressed as the disjoint union of the intersections of "basic" events (I would like to call them atomic events but the example inhibits me!). Denote a particular intersection as $B_1B_2\ldots B_n$. The probability $P(B_1B_2\ldots B_n) = P(B_1)P(B_2|B_1)\ldots P(B_n|B_1B_2\ldots B_{n-1})$ is computed as a product of conditional probabilities. The conditional probability $P(B_1|B_1B_2\ldots B_{i-1})$ is computed from the occurrence of events similar to B_i under conditions similar to $B_1B_2\ldots B_{i-1}$. We will feel more or less secure in the probability assessment according to the degree of similarity of the past events and conditions to B_i and $B_1B_2\ldots B_{i-1}$. The probability calculations have an objective, empirical part, in the explicit record of past events, but also a subjective judgmental part, in the selection of "similar" past events. Separate judgments are necessary in expressing the event of interest in terms of basic events—we will attempt to use basic events for which a reasonable empirical record exists.

The future is likely to be like the past. Probability must therefore be a function of the similarities between future and past events. The similarities will be subjective, but given the similarities a formal objective method should be possible for computing probabilities.
1.11. References

Bernoulli, James (1713), *Ars Conjectandi*.

CHAPTER 2
Axioms

2.0. Notation

The objects of probability will be bets $X, Y, ...$ that have real-valued payoffs $X(s), Y(s), ...$ according to the true state of nature s, where s may be any of the states in a set S.

Following de Finetti, events will be identified with bets taking only the values 0 and 1. In particular, the notation $\{s \text{ satisfies certain conditions}\}$ will denote the event equal to 1 when s satisfies the conditions, and equal to 0 otherwise. For example $\{X \leq 5\}$ denotes the event equal to 1 when s is such that $X(s) \leq 5$, and equal to 0 otherwise.

In general algebraic symbols $+, -, \leq, \lor, \land$ will be used rather than set theoretic symbols \cup, \cap, \subset.

2.1. Probability Axioms

Let S denote a set of outcomes, let $X, Y, ...$ denote bets on S, real valued functions such that $X(s), Y(s), ...$ are the payoffs on the bets when s occurs. A probability space \mathcal{X} is a set of bets such that

(1) $X, Y \in \mathcal{X} \Rightarrow aX + bY \in \mathcal{X}$ for a, b real
(2) $X \in \mathcal{X} \Rightarrow |X| \in \mathcal{X}$
(3) $X \in \mathcal{X} \Rightarrow X \land 1 \in \mathcal{X}$
(4) $|X_n| \leq X_0 \in \mathcal{X}, \quad X_n \to X \Rightarrow X \in \mathcal{X}$.

A probability P on \mathcal{X} is a real valued function on \mathcal{X} that is

LINEAR: $P(aX + bY) = aPX + bPY$ for $X, Y \in \mathcal{X}$ and a, b real
NON-NEGATIVE: $P|X| \geq 0$ for $X \in \mathcal{X}$
CONTINUOUS: $|X_n| \leq X_0 \in \mathcal{X}, \quad X_n \to X \Rightarrow PX_n \to PX$.

14
A unitary probability P is defined on a probability space \mathcal{X} such that $1 \in \mathcal{X}$, and satisfies $P1 = 1$. A finitely additive probability P is defined on a linear space such that $X \in \mathcal{X} \Rightarrow |X| \in \mathcal{X}$, $1 \in \mathcal{X}$, and P is linear and non-negative, but not necessarily continuous.

A probability space \mathcal{X} is complete with respect to P if

(i) $X_n \in \mathcal{X}$, $P|X_n - X_m| \to 0$, $X_n \to X \Rightarrow X \in \mathcal{X}$

(ii) $Y \in \mathcal{X}$, $0 \leq X \leq Y$, $PY = 0 \Rightarrow X \in \mathcal{X}$.

The standard definition of probability, set down in Kolmogorov (1933), requires that it be unitary. According to Keynes (1921, p. 155), it was Leibniz who first suggested representing certainty by 1. However, in Bayes theory it is convenient to have distributions which have $P1 = \infty$, such as the uniform distributions over the line and integers. Jeffreys allows $P1 = \infty$, because his methods of generating prior distributions frequently produce such P, but in theoretical work with probabilities, he usually assumes $P1 = 1$. Renyi (1970) handles infinite probabilities using families of conditional probabilities. But there is no formal theory to handle probabilities with $P1 = \infty$, which are therefore called improper. The measure theory for this case is well developed; see for example, Dunford and Schwartz (1964).

The betting theory interpretation of probability is straightforward; PX_1/PX_2 is the relative value of bet X_1 to bet X_2; you accept only bets X such that $PX \geq 0$. It is true that you may effectively give value ∞ to the constant bet 1; those bets which you wish to compare are infinitely less valuable than 1.

It is also possible to make a frequency interpretation of non-unitary probability. Consider for example the uniform distribution over the integers. This would be the limiting frequency probability of a sequence of integers, such as

$$1 12 123 1234 12345 123456...$$

in which each pair of integers occurred with the same limiting relative frequency. If it is insisted that continuity hold, then total probability is infinite. If it is insisted that total probability is 1, then continuity breaks down and the limiting frequency probability is finitely additive.

It is not possible to justify either the continuity axiom or probabilities with $P1 = \infty$ by reference to actual experience, which is necessarily finite. Indeed de Finetti rejects the continuity axiom on this and other grounds. But the continuity axiom equally cannot be denied by reference to experience, and it is mathematically convenient in permitting unique extension of P defined on some small set of functions to P defined on a larger set of interesting limit functions: we begin by assuming that intervals have probability proportional to their length, and end by stating that the rationals have probability zero. [In contrast, de Finetti (1972) can say: consider the uniform distribution on the real line carried by the rationals, or carried by the irrationals.] We need to invent methods to handle invented concepts such as the
set of rationals; the main justification must be mathematical convenience; and the same reasoning applies to non-unitary probabilities — they must be mathematically convenient or they would not be so improperly ubiquitous (see them used by de Finetti, 1970, p. 237).

2.2. Prespaces and Rings

A prespace \(\mathcal{A} \) is a linear space such that \(X \in \mathcal{A} \Rightarrow |X| \in \mathcal{A} \), \(X \wedge 1 \in \mathcal{A} \). A limit space \(L \) is such that \(X_n \in L, X_0 \in L, |X_n| \leq X_0, X_n \to X \) implies \(X \in L \). A probability space is both a prespace and a limit space.

Lemma. The smallest probability space including a prespace \(\mathcal{A} \) is the smallest limit space including \(\mathcal{A} \).

Proof. Let \(L \) be the intersection of limit spaces, containing \(\mathcal{A} \). For each \(X \), let \(L(X) \) be the set of functions \(Y \) such that \(\mathcal{A}(X, Y) : |X|, |Y|, X \wedge 1, Y \wedge 1, aX + bY \) lie in \(L \); \(L(X) \) is a limit space. If \(X \in \mathcal{A} \), then \(\mathcal{A}(X, Y) \subset \mathcal{A} \subset L \) for \(Y \in \mathcal{A} \). Thus \(L(X) \supset \mathcal{A} \Rightarrow L(X) \supset L \). If \(X \in L \), then \(L(Y) \supset \mathcal{A} \) for \(Y \) in \(\mathcal{A} \). Thus \(L(X) \supset \mathcal{A} \Rightarrow L(X) \supset L \). If \(X \in L \), \(Y \in L \) then \(\mathcal{A}(X, Y) \subset L \), so \(L \) is a prespace and therefore a probability space.

A probability \(P \) on a prespace \(\mathcal{A} \) is linear, non-negative and continuous: \(X_n \to 0, |X_n| \leq X \in \mathcal{A} \Rightarrow PX_n \to 0 \).

Theorem. A probability \(P \) on a prespace \(\mathcal{A} \) may be uniquely extended to a probability \(P \) on a completed probability space including \(\mathcal{A} \).

Proof. Let \(\mathcal{X} \) consist of functions \(X \) for which \(|X - a_n| \leq \sum_{i=1}^{\infty} a_i^n, a_n \geq 0, \sum_{i=1}^{\infty} Pa_i^n \to 0 \) where \(a_n, a_i^n \in \mathcal{A} \). Say that the sequence \(a_n \) approximates \(X \) and define \(PX = \lim Pa_n \). It follows from continuity that the definition is unique, which implies that \(P \) is unchanged for \(X \) in \(\mathcal{A} \). If \(a_n, b_n \) approximate \(X, Y \) then \(a_n + b_n \) approximates \(aX + bY \) with \(P(aX + bY) = aPX + bPY \). \(|a_n| \) approximates \(|X| \) with \(P|X| \geq 0 \), and \(a_n \wedge 1 \) approximates \(X \wedge 1 \).

Now suppose \(X_n \in \mathcal{X}, X \in \mathcal{X}, |X_n| \leq X \) and \(X_n \to Y \). We will show that \(Y \in \mathcal{X} \) and \(PY = \lim PX_n \). First assume \(X_n \uparrow Y \). Then \(P|X_{n+1} - X_n| < 2^{-n} \) on a suitably chosen subsequence. Also \(|X_{n+1} - X_n| \leq \sum_{i=1}^{\infty} a_i^n \) where \(a_i^n \in \mathcal{A} \), \(a_i^n \geq 0 \) and \(\sum Pa_i^n < 2^{-n+1} \), since \(|X_{n+1} - X_n| \in \mathcal{A} \). Thus \(|Y - X_n| \leq \sum_{i=n}^{\infty} |X_{i+1} - X_i| \leq \sum_{i=n}^{\infty} a_i^n \) where \(\sum Pa_i^n \leq 2^{-n+2} \). Approximate \(X_n \) by \(a_n \) where \(P|X_n - a_n| < 2^{-n+2} \). Then \(Y \) is approximated by \(a_n \), and \(PY = \lim Pa_n = \lim PX_n \). The general result follows using

\[
\sup_{N \leq n \leq M} X_n \uparrow \sup_{N \leq n} X_n \quad \text{and} \quad \sup_{N \leq n} X_n \downarrow Y.
\]
If $X_n \in \mathcal{X}$, $X_n \to X$ and $P[X_n - X_m] \to 0$, a similar argument, first considering monotone convergence, shows that $X \in \mathcal{X}$. If a_n approximates Y, it approximates X, $0 \leq X \leq Y$, so \mathcal{X} is complete with respect to P.

Suppose P' is a probability on \mathcal{X} which agrees with P on \mathcal{A}. Then $P'[X - a_n] \to 0$ if a_n approximates X, so $P'X = \lim P'a_n = \lim Pa_n = PX$. Thus P is uniquely defined on \mathcal{X}. □

A subset of S is a function on S taking the values 0 and 1.
A family \mathcal{F} of subsets of S is a ring if $A, B \in \mathcal{F}$, $A \cap B \in \mathcal{F}$.
A function P on \mathcal{F} is a probability if

(i) $P(A + B) = PA + PB$ if $A, B \in \mathcal{F}$, $AB = 0$

(ii) $PA \geq 0$ for A in \mathcal{F}

(iii) $A_n \to 0$, $A_n \leq A \in \mathcal{F}$ if $PA_n \to 0$.

(iii)' $A_n \downarrow 0 \Rightarrow PA_n \downarrow 0$.

[Note that (iii) and (iii)' are equivalent. Obviously (iii) \Rightarrow (iii)'). Suppose that (iii)' holds, and $A_n \to 0$, $A_n < A$. Define $B_n = A_n \cup A_{n+1} \cdots \cup A_m$ where $2^{-n} + PB_n > \sup P(A_{n+1} \cup \cdots \cup A_m) \leq PA$. Then

$$P[B_m - B_n] = P[B_m \cup B_n - B_n] < 2^{-n} \text{ for } m > n$$

$$P[B_mB_n - B_mB_{n+1}] \leq P[B_m - B_{m+1}] \leq 2^{-(n+1)} \text{ for } m > n + 1$$

$$P[B_m - \prod_{i=m}^{n} B_i] \leq 2^{-n+1}$$

Since $\prod_{i=m}^{n} B_i \downarrow 0$ as $m \to \infty$, $P(\prod B_i) \downarrow 0$, so $\lim PB_m \leq 2^{-n+1}$ for every n. Since $A_m \leq B_m$, $\lim PA_m < 2^{-n+1}$ for every n, $PA_m \to 0$]

If P is a probability on \mathcal{F} it may be uniquely extended to the prespace \mathcal{A} consisting of elements $\sum_{i=1}^{n} a_i A_i$, where a_i is real, by $P(\sum_{i=1}^{n} a_i A_i) = \sum_{i=1}^{n} a_i PA_i$. It is easily checked that P is well defined, linear and non-negative on \mathcal{A}. The continuity condition is a little more difficult; suppose $a_n \to 0$, $|a_n| \leq A$. Then $|a_n| \leq \lambda A$ for some positive $\lambda, A \in \mathcal{F}$.

$$|a_n| \leq \varepsilon A + \{ |a_n| \geq \varepsilon \} \lambda A$$

Since $\{ |a_n| \geq \varepsilon \} A \to 0$ and $\{ |a_n| \geq \varepsilon \} A \leq A$, $P\{ |a_n| \geq \varepsilon \} \lambda A \to 0$. Thus $\lim P|a_n| \leq \varepsilon PA$ for every $\varepsilon > 0$ and $P|a_n| \to 0$ as $n \to \infty$.

If P is a probability on \mathcal{F} it may, by Theorem 2.2, be extended uniquely to the smallest complete probability space \mathcal{X} including \mathcal{F}. It is customary to call P on \mathcal{X} an expectation or an integral, but we follow de Finetti in identifying sets and functions, probabilities and expectations.

If P is a probability on \mathcal{X}, P defined on the ring \mathcal{F} of 0-1 functions in \mathcal{X} extends uniquely to a complete probability space $\mathcal{X}(\mathcal{F})$ that includes \mathcal{X}. See Loomis (1953). Thus specifying P on \mathcal{F} determines it on \mathcal{X}; the function X is approximated by the step functions

$$\sum_{1 \leq |k| < K^2} k \left\{ \frac{k}{K^2} \leq X < \frac{k + 1}{K^2} \right\}$$
and

\[PX = \lim_{k \to \infty} \sum_{k} \frac{k}{K} P \left\{ \frac{k}{K} \leq X < \frac{k+1}{K} \right\}. \]

Example. Let \(\mathcal{F} \) be the set of finite unions of half-open intervals \(A = U(a_i, b_i) \). Define \(P_A = \sum |b_i - a_i| \) if the intervals \((a_i, b_i) \) are disjoint. To check that \(P \) is a probability, it is difficult only to prove (iii'). Assume \(A_n \downarrow 0 \).

Let \(A_n = U_{i=1}^{n} (a_{in}, b_{in}) \), and if \(A_n < A \), let \(A \) be the interval \([a, b]\). The function \(A - A_n \) is a union of half open intervals which converges to \(A \). Define \(E = U U(a_{in} - (\epsilon/2^n), a_{in} + (\epsilon/2^n)) \). Then \((A - A_n) \cup E \) is an open set, and \(U(A - A_n) \cup E \) includes \([a, b]\). From compactness, a finite number of \((A - A_n) \cup E \) cover \([a, b]\), and since \(A - A_n \uparrow \), for some \(n \), \((A - A_n) \cup E \supseteq A \). Since \(E \) has total length less than \(\epsilon \), \(A_n \) must have total length less than \(\epsilon \). Thus \(PA_n \to 0 \).

From length of intervals on \(\mathcal{F} \), we define a probability on a prespace of step functions on intervals; from the prespace we define probabilities on a probability space \(\mathcal{X} \) which includes, for example, all continuous functions zero outside a finite interval. This is lebesgue measure.

2.3. Random Variables

Let \(P \) be a probability on \(\mathcal{Y} \) a probability space on \(T \), and let \(\mathcal{X} \) be a probability space on \(S \). A random variable \(X \) is a function from \(T \) to \(S \) such that \(f(X) \in \mathcal{Y} \) for each \(f \) in \(\mathcal{X} \). A probability \(P^X \) is induced on \(\mathcal{X} \) by

\[P^X f = P[f(X)] \quad \text{each } f \text{ in } \mathcal{X}. \]

The distribution of \(X \) is defined to be \(P^X \), also denoted by \(P^X \).

If \(S \) is the real line, and \(\mathcal{X} \) is the smallest probability space including finite intervals, from 2.2, \(P^X \) is determined by the values it gives finite intervals \(P\{a < X \leq b\} = G(b) - G(a) \). The distribution function \(G \) is right continuous and uniquely determined up to an additive constant. If \(\sup P\{a < X \leq 0\} < \infty \), set \(G(b) = \sup P\{a < X \leq b\} \). If \(P^X \) is unitary, it will follow that \(\lim_{a \to -\infty} G(a) = 0 \), \(\lim_{a \to \infty} G(a) = 1 \).

2.4. Probable Bets

Let \(X \) be a linear space of bets: \(X, Y \in \mathcal{X} \Rightarrow aX + bY \in \mathcal{X} \) for \(a, b \) real.

Let \(\mathcal{P} \), the probable set, be a cone of bets: \(X, Y \in \mathcal{P} \Rightarrow aX + bY \in \mathcal{P} \) for \(a, b \geq 0 \).
A generalized probability P for \mathcal{P} is a linear functional on \mathcal{P} (a real valued function on \mathcal{P} with $P(aX + bY) = aPX + bPY$) such that $PX \geq 0$ for X in \mathcal{P}, $PX > 0$ some X in \mathcal{P}. For sections 2.4 and 2.5, P will be referred to as a probability.

Theorem. If $\mathcal{X} = \mathcal{P} \neq \emptyset$ and \mathcal{P} contains an internal point (a point X_0 such that for every X in \mathcal{X}, $X + kX_0 \in \mathcal{P}$ for some k), then a probability P exists for \mathcal{P}.

Proof. [Following Dunford and Schwartz (1964), p. 412.]

Let $N = \mathcal{P} \cap (-\mathcal{P})$ be the neutral set of bets, bets X such that both X and $-X$ are probable. If $\{\mathcal{P}_n\}$ is a chain of probable sets with neutral sets N, then $\cup \mathcal{P}_n$ is a probable set with neutral set N. From Zorn’s lemma, there is a maximal probable set \mathcal{P}_0 containing \mathcal{P} and having neutral set N. Then $\mathcal{X} = \mathcal{P}_0 \cup (-\mathcal{P}_0)$, for if $X \in \mathcal{P}_0$, $X \notin -\mathcal{P}_0$, the set $\mathcal{P}_0(X) = \{\alpha X + Y, \alpha \geq 0, Y \in \mathcal{P}_0\}$ is a probable set with neutral set N and $\mathcal{P}_0(X)$ strictly includes \mathcal{P}_0.

The internal point X_0 does not lie in $-\mathcal{P}$ for $X = X + kX_0 + k(-X_0)$ would lie in \mathcal{P} for each X contradicting $\mathcal{P} \neq \mathcal{X}$. Also X_0 is an internal point for \mathcal{P}_0. Define $PX = \sup \{\alpha | X - \alpha X_0 \in \mathcal{P}_0\}$; then $-\infty < PX < \infty$ since $X + kX_0 \in \mathcal{P}_0$ and $-X + k'X_0 \in \mathcal{P}_0$ some k, k'; P is a linear functional because $X - \alpha X_0 \in \mathcal{P}_0$ or $-\mathcal{P}_0$ for every X, α; for $X \in \mathcal{P} \subset \mathcal{P}_0$, $PX \geq 0$; and $PX_0 = 1$. Thus P is a probability for \mathcal{P}.

It is necessary that $\mathcal{P} \neq \mathcal{X}$, for otherwise we cannot separate probable bets from others, and it is necessary to assume an internal point so that one of the probable bets will be comparable to all possible bets.

It is usual to take the bets as real values received according to whichever state of nature occurs, but it is not necessary to do so. See Ramsey (1926) and Savage (1954). The space of bets and probable set may be constructed from a preference ordering among a set of mixed actions as follows. Let \mathcal{A} be an arbitrary set (not necessarily countable) of actions a_1, a_2, \ldots; let \mathcal{A}^* be the mixed actions $\sum_{i=1}^n p_ia_i$ (perhaps constructed by generating new actions by taking action a_i with chance p_i) where $p_i \geq 0, \sum p_i = 1$; and let \geq be a preference between mixed actions such that for $0 \leq \alpha \leq 1$, $a \geq \alpha a + (1 - \alpha)a \geq a$ and $a \geq b, c \geq d \Rightarrow \alpha a + (1 - \alpha)c \geq \alpha b + (1 - \alpha)d$. Construct the space \mathcal{X} of bets $\sum_{i=1}^n x_ia_i$ where $\sum x_i = 0$, and define the probable set \mathcal{P} to consist of bets $\lambda(a - b)$ where $\lambda \geq 0$ and $a \geq b, a, b \in \mathcal{A}^*$. A probability P for \mathcal{P} will now satisfy $Pa \geq Pb$ whenever $a \geq b$ and $Pa > Pb$ for at least one pair $a \geq b$.

The condition that an internal point exists is equivalent to assuming a pair $a_0 \geq b_0$ such that for each $a, b, \alpha a + (1 - \alpha)a_0 \geq \alpha b + (1 - \alpha)b_0$ some $\alpha, 0 \leq \alpha \leq 1$.

On the other hand there is no harm in assuming that bets are real valued functions. Assume that $\mathcal{P} \neq \mathcal{X}$, and that an internal point exists. Then there exists a basis of \mathcal{X}, $\{X_\alpha\}, X_\alpha \in \mathcal{P}$ such that each X in \mathcal{X} is represented uniquely by $\sum c_\alpha X_\alpha$ where only a finite number of c_α are non-zero, and so X corresponds to the real valued function $f, f(\alpha) = c_\alpha$. Note that $X \in \mathcal{P}$ whenever $f \geq 0$.

2.5. Comparative Probability

In comparative probability, all pairs of events in \mathcal{F} are compared by the relation \leq, "is no more probable than":

(i) $\phi \leq A$ for $A \in \mathcal{F}$,
(ii) $S \leq \phi$ is not true,
(iii) $A \leq B$, $C \leq D$ implies $A + C \leq B + D$ if $AC = BD = 0$.

The statements $A \leq B$ may be interpreted as offering the bet: pay 1 unit if A occurs to receive 1 unit if B occurs. The family of bets $\sum_{i=1}^{n} \alpha_i(B_i - A_i)$ for B_i, A_i in \mathcal{F} forms a betting space; suppose the statements $A_i \leq B_i$ are construed as accepting all bets $\sum_{i=1}^{n} \alpha_i(B_i - A_i)$ for which $\alpha_i \geq 0$. It may be possible to make a book against the bets $\{A_i \leq B_i\}$: find a linear combination $\sum_{i=1}^{n} \alpha_i(B_i - A_i)$ which is negative. Otherwise, for S finite, the set of combinations of \leq bets is probable, and there exists a probability P on \mathcal{F} such that $A \leq B$ implies $P(A) \leq P(B)$. An example of such a "beatable" comparative probability is given by Kraft, et al. (1959) for a set of 5 elements. See also Scott (1964) who connects "unbeatability" with the existence of a conforming numerical probability, and Fine (1973) for a general discussion, and for continuity axioms.

The above axioms of comparative probability are unsatisfactory because they may not generate a probable set of bets. One solution to the problem is to prohibit negative combinations, which is just equivalent to requiring that a certain subset of a betting space, generated by pairs of events, is probable. An alternative approach followed by Koopman (1940) and Savage (1954) supposes that S may be partitioned into sets of arbitrarily small probability: Koopman requires that for each n there exist a partition into n events of equal probability. Since all pairs of events are comparable, each event has a precise numerical probability determined by comparison with events in increasingly fine partitions, and this numerical probability satisfies the usual finitely additive axioms with $P(S) = 1$.

2.6. Problems

Exercises (E), are supposed to be easier than problems (P).
Probability is used in the sense of Section 2.4.

E1. Let $\mathcal{X} = \mathbb{R}^2$, define $\mathcal{P} = \{x, y \mid y + x \geq 0, y + \frac{1}{2} x \geq 0\}$. Show that \mathcal{P} is a probable set, and find all probabilities P such that $P(X) \geq 0$ for X in \mathcal{P}.

P1. A bookie offers the following odds for various teams to win a basketball pennant.

Knicks: 6/1 Bullets: 2/1 Braves: 2/1 Celtics: 1/1

Odds of 6/1 means that he receives $1 if the Knicks lose and pays $6 if the Knicks win. Consider the space of bets $\mathcal{X}\{(x_1, x_2, x_3, x_4)\}$ in which the bookie receives
2.6. Problems

E2. Let $\mathcal{X} = \mathbb{R}^k$. Let P be a probability on \mathcal{X} with $PX \geq 0$ for $X \in \mathcal{X}$, $X \geq 0$. Show that there exist $p_1, \ldots, p_k, p_i \geq 0$ such that $P(X) = \sum_{i=1}^k p_i X_i$, where X_i denotes the ith co-ordinate of X.

E3. Let \mathcal{X} consist of linear combinations of bets $\{s | a < s \leq b\}$, $a < b$. Let \mathcal{P} consist of non-negative combinations of bets $(a, a + 2\delta] - (a - \delta, a]$. Find a probability on \mathcal{X} which is positive for all nonzero bets in \mathcal{P}.

E4. Let \mathcal{X} be the real sequences, and let \mathcal{P} consist of sequences X with $\lim \sum_{i=1}^n X_i \geq 0$. Show that if a probability P on $(\mathcal{X}, \mathcal{P})$ is such that $X_0 = (1, 1, 1, \ldots)$ has $P(X_0) = 1$, the positive sequence $X = (1, \frac{1}{2}, \frac{1}{3}, \ldots, 1/n, \ldots)$ has $P(X) = 0$.

E5. Let \mathcal{X} be the set of real-valued sequences $X = (X_1, X_2, \ldots)$, let \mathcal{P} be the sequences X with $\lim \sum_{i=1}^n X_i \geq 0$. Show that the first probability is continuous if and only if $\sum p_i < \infty$, and the second probability is bounded if and only if $\sum p_i \leq 00$.

E6. Replace the third axiom of comparative probability by (iii)' if $\sum_{i=1}^n (A_i - B_i) = \sum_{i=1}^n (A_i' - B_i')$, and all $A_i \leq B_i$, then at least one $A_i' \leq B_i'$. Then the set of bets $\sum_{i=1}^n \alpha_i (B_i - A_i)$ where $A_i \leq B_i, \alpha_i \geq 0$ is a probable set in the space of real-valued function on S.

P3. The axioms of comparative probability are satisfied by subsets of $S = (1, 2, 3, 4, 5)$ with $\emptyset < 2 < 3 \leq 4 < 23 < 24 < 1 < 12 < 34 < 5 < 234 < 13 < 14 < 25 < 123 < 35 < 124$, the remaining sets being ordered by complements. Show that no numerical probability conforms to the order. [Kraft, et al., 1959.]

E10. Add a fineness axiom to the axioms of comparative probability:

(iv) for each n, there exists $\{A_i\}$ with $\sum_{i=1}^n A_i = S$, $A_i A_j = 0$, $A_i \leq A_j$ each i, j.

Then there is a unique probability with $A \subseteq B \Rightarrow P(A) \geq P(B)$, $A, B \in \mathcal{F}$. [Koopman, 1940.]

P4. Let a finitely additive probability P be defined on the plane so that $P(|x| + |y| > a) = 0$ for $a > 0$, $P[x < 0] = P[x = 0] = P[x > 0] = \frac{1}{3}$, $P[y < 0] = P[y = 0] = P[y > 0] = \frac{1}{3}$, events determined by x are independent of y, and (A) $P[x + y = 0, x > 0, y < 0] = P[x + y = 0, x < 0, y > 0] = \frac{1}{5}$. These conditions determine P uniquely. Show that a different P is determined if (A) is replaced by $P[x + y < 0, x > 0, y < 0] = P[x + y < 0, x < 0, y > 0] = \frac{1}{5}$, demonstrating that the distribution of $x + y$ is not determined from the distributions of x and y when x and y events are independent.

P5. Let X be a random variable from U, Z to S, \mathcal{A} where S is the real line and \mathcal{A} includes all finite intervals. Show that the P-completion of Z includes X if $\sum_{k=0}^{\infty} P \{|s| \leq k\} < \infty$.

2.7. References

CHAPTER 3
Conditional Probability

3.0. Introduction

Kolmogorov's exquisite formalization of conditional probability in the unitary case (1933) does not readily generalize to non-unitary probabilities. Stone and Dawid (1972) show one type of difficulty with their marginalization paradoxes for improper priors.

Consider the case of the uniform distribution over pairs of positive integers \{i, j\}. The desired conditional distribution of \{i, j\} given \(j = j_o\) is uniform over \(i\). Following Kolmogorov, the conditional distribution given \(j\) should combine with the marginal distribution to return the joint distribution:

\[p(i, j) = p(i|j_o)p(j_o). \]

But the event \([\{i, j\}, j = j_o]\) is not given a probability so the marginal probabilities \(p(j_o)\) are not determined by \(p(i, j), 1 \leq i, j \leq \infty\). Correspondingly the uniform distribution over \{i, j\} given \(j = j_o\) is equally well represented by \(p(i|j_o) = k(j_o)\) for any \(k(j_o)\). Thus although these conditional distributions are determined by the joint distribution, the marginal distribution is not. (This is the explanation of the marginalization paradoxes of Stone and Dawid.)

It is assumed therefore that the joint distribution, the conditional distribution, and the marginal distribution are specified separately to follow the axioms of conditional probability. In particular the probabilities of the \{i, j\} and of \([\{i, j\}, j = j_o]\) are separately specified. We are declaring that \{i, j\} has the same probability as \{i', j\}, and in addition that \([\{i, j\}, j = j_o]\) has the same probability as \([\{i, j\}, j = j_o]\).
3.1. Axioms of Conditional Probability

Let \mathcal{X}, \mathcal{Y}, \mathcal{Z}, ... be probability spaces of functions on S. The conditional probability on \mathcal{X} given \mathcal{Y} is a function P from \mathcal{Y} to \mathcal{X} that is

- **LINEAR**: $P(Y_1X_1 + Y_2X_2) = Y_1PX_1 + Y_2PX_2$ for $X_i \in \mathcal{X}$, $Y_i \in \mathcal{Y}$, $Y_iX_i \in \mathcal{X}$
- **NON-NEGATIVE**: $P|X| \geq 0$
- **CONTINUOUS**: $PX_n \to PX$ for $|X_n| \leq X_0 \in \mathcal{X}$, $X_n \to X$
- **INVARIANT**: If $Y \in \mathcal{X} \cap \mathcal{Y}$, $PY = Y$

A family of conditional probabilities is assumed to satisfy the

PRODUCT RULE: If $P_X^{x}, P_Y^{y}, P_Z^{z}$ denote conditional probabilities from \mathcal{X} to \mathcal{Y}, \mathcal{Y} to \mathcal{Z} and \mathcal{X} to \mathcal{Z} respectively,

$$P_Z^{z} = P_Y^{y}P_X^{x}.$$

The conditional probability P is determined as a probability on \mathcal{X} given the results of an experiment which determines the values of all functions in \mathcal{Y}. Each result of the experiment will give rise to possibly different values of functions in \mathcal{Y}, and possibly different probabilities. The conditional probability P determines these different probabilities for all possible results of the experiment. If $PX \in \mathcal{X}$, then PX may be interpreted as a bet equivalent to X that has known value after the experiment is performed.

The above axioms generalize the axioms of probability. Let \mathcal{X}_1 denote the probability space of constant functions on S, and let 1 denote the constant function. Then P is a probability on \mathcal{X} if and only if $P_{x}^{x}: X \to (PX)\mathcal{I}$ is a conditional probability on \mathcal{X} given \mathcal{X}_1. Indeed $P_{x}^{x} = P_{x}^{y}P_{x}^{y}$ implies that P_{x}^{y} is determined almost uniquely by P_{x}^{x}, and P_{y}^{y}. [Suppose $P_{x}^{x}X$ could have values Y_1 or Y_2; then $P_{y}^{y}[Y(Y_1 - Y_2)] = 0$ all $Y \in \mathcal{Y}$, so $P_{x}^{x}|Y_1 - Y_2| = 0$.] Kolmogorov (1933) defines conditional probability in terms of probability; under certain regularity conditions, there exists a “conditional probability” that satisfies the above axioms except on a subset of S of probability zero. Here we are following the more traditional scheme of axiomatizing conditional probability rather than defining it in terms of probability.

Example 1: Toss a penny twice. Let \mathcal{X} be the bets $\{X_{HH}, X_{HT}, X_{TH}, X_{TT}\}$ where X_{HH} means the amount received if two heads occur, and similarly for the other three results. The result of the first toss of the experiment, heads or tails, determines the values of all bets in $\mathcal{Y} = \{X|X_{HH} = X_{HT}, X_{TH} = X_{TT}\}$, bets of form (X_H, X_H, X_T, X_T). Assuming that tails and heads have probability 1/2 given the results of the first toss, the conditional probability of $X = (X_{HH}, X_{HT}, X_{TH}, X_{TT})$ is $P_Y^X = (X_H, X_H, X_T, X_T)$ where $X_H = \frac{1}{2}(X_{HH} + X_{HT})$ and $X_T = \frac{1}{2}(X_{TH} + X_{TT})$. Here P_Y^X is a bet equivalent to X that has known value, either X_H or X_T, once the first toss is known.
3.1. Axioms of Conditional Probability

Suppose that head on the first toss has probability p, and tail has probability $1-p$. Then

$$P^x_{x', Y} X = P^x_{x', Y} P^x_Y X = P^x_{x', Y} [X_H, X_H, X_T, X_T] = p X_H + (1-p) X_T = \frac{1}{2} p X_{HH} + \frac{1}{2} p X_{HT} + \frac{1}{2} (1-p) X_{TH} + \frac{1}{2} (1-p) X_{TT}.$$

The probability on \mathcal{X} corresponds to giving probability $\frac{1}{2} p$, $\frac{1}{2} p$, $\frac{1}{2} (1-p)$, $\frac{1}{2} (1-p)$ to the four outcomes HH, HT, TH, TT. These probabilities have been developed from conditional probability using the product rule, but in the finite case we could just as well define conditional probability in terms of probability; a separate axiomatization of conditional probability is necessary only in the infinite case.

Example 2: Uniform distribution on the square. Let \mathcal{X} denote the smallest probability space of functions including the continuous functions on the square; let $X(u,v)$ denote the value of X at the point $(u,v), 0 \leq u, v \leq 1$. Let \mathcal{Y} denote the set of functions in \mathcal{X} depending only on $u - Y(u,v) = Y(u,1)$ for all v.

Define $P^x_{x', Y} = \int X(u,v) dv$.

Define $P^x_{x', Y} = \int Y(u,v) du$.

Here $P^x_{x', Y} X$ is a bet equivalent to X that is a function of u alone. From the product axiom, $P^x_{x', Y} X = \int (\int X(u,v) dv) du = \int \int X(u,v) dudv$. Thus the probability on \mathcal{X} is just Lebesgue measure, in which the probability of a set is its area. Beginning with $P^x_{x', Y}$, it is possible to construct the conditional probability $P^x_{x', Y}$ to satisfy the product axiom almost uniquely—any other solution $Q^x_{x', Y}$ satisfies $P^x_{x', Y} = Q^x_{x', Y}$. Tjur (1974) assures uniqueness by requiring continuity of the conditional probability, but then, establishing existence is sometimes formidable.

Example 3: Uniform distribution on the integers. Let \mathcal{X} be the space of sequences $\{x_1, x_2, \ldots, x_n, \ldots\}$ with $\sum |x_i| < \infty$, let \mathcal{Y} be the space of sequences $\{\alpha, \beta, \alpha, \beta, \ldots\}$.

Define $P^x_{x', Y} X = \{\alpha(X), \beta(X), \alpha(X), \beta(X), \ldots\}$ where $\alpha(X) = 2 \sum_{i=1}^{\infty} x_{2i-1}$, $\beta(X) = 2 \sum_{i=1}^{\infty} x_{2i}$.

Define $P^x_{x', Y} Y = \frac{1}{2} \alpha + \frac{1}{2} \beta$.

Then $P^x_{x', Y} X = P^x_{x', Y} P^x_{x', Y} X = \sum_{i=1}^{\infty} x_i$.

Here $P^x_{x', Y}$ is a uniform distribution on the evens and the odds, according as $Y = (0,1,0,1,0,1,\ldots)$ is one or zero. The conditional distribution is not unitary. The distribution on \mathcal{Y} gives probability 1/2 to the evens, probability 1/2 to the odds; this distribution is unitary. The distribution on \mathcal{X} is uniform over the integers; it is non-unitary.

Note that $P^x_{x', Y}$ is not determined by saying that it is uniform given evens and uniform given odds; probabilities given even must be compared explicitly.
with probabilities given odds (such comparisons are implicit when probabilities are unitary, since 1 has the same probability under all conditions).

Let the conditioning family \(\mathcal{Z} \) be the sets of sequences \(X \) with \(x_{2i} = x_{2i-1} \), \(i = 1, 2, \ldots \). Define
\[
\begin{align*}
P_{\mathcal{Z}} X &= \{ \frac{1}{2} x_1, \frac{1}{2} x_2, \frac{1}{2} x_3, \frac{1}{2} x_4, \ldots \} \\
P_{\mathcal{Z}} Z &= 2 \sum Z_i.
\end{align*}
\]
Then again \(P_{\mathcal{Z}} = \sum x_i \).

Here the conditional probability is uniform given 1 or 2, or given 3 or 4, or given 5 or 6, ... The conditional probability is unitary; the probability on \(\mathcal{Z} \) is non-unitary. In this case, some elements of \(\mathcal{Z} \) lie in \(\mathcal{Z} \) and for these \(P_{\mathcal{Z}} Z = Z \), satisfying invariance.

Example 4: Uniform distribution in the plane. Let \(\mathcal{X} \) be the smallest probability space which includes continuous functions zero outside some square in the plane, \(-\infty \leq u, v \leq \infty \). Let \(\mathcal{Y} \) be the probability space of such functions depending only on \(u \).

Define
\[
\begin{align*}
P_{\mathcal{X}} X &= \int X(u, v) dv \\
P_{\mathcal{Y}} Y &= \int Y(u, v) du.
\end{align*}
\]
Then
\[
P_{\mathcal{X}} X = \int (\int X(u, v) dv) du = \int X(u, v) du dv,
\]
corresponding to the uniform distribution on the plane.

Note that the conditional distribution is not determined by requiring that the distribution be uniform given each \(u \); since the uniform distribution is non-unitary, it is possible to have a conditional distribution which is uniform given each \(u \), a distribution on \(u \) which is not uniform, a distribution over the whole plane which is uniform. The marginal distribution on \(\mathcal{Y} \) is not determined by the distribution on \(\mathcal{X} \); the conditional distribution is determined only up to an arbitrary weighting factor depending on \(u \). Given the distribution on \(\mathcal{X} \) and the distribution on \(\mathcal{Y} \), the product axiom determines \(P_{\mathcal{X}} \) almost uniquely.

3.2. Product Probabilities

For arbitrary \(S \) and \(T \) define the function subscript \(S \), denoted by \(s \), by \(s(s)(t) = (s, t) \). Thus \(s \) is a function from \(S \) to the space of functions from \(T \) to \(S \times T \). Define \(t \) similarly.

Fubini's Theorem. Let \(P \) be a probability on \(\mathcal{X} \) on \(S \), let \(Q \) be a probability on \(\mathcal{Y} \) on \(T \), let \(X \times Y \) be the function on \(S \times T \): \((s, t) \rightarrow X(s)Y(t) \), and let \(\mathcal{X} \times \mathcal{Y} \) be the smallest probability space including all \(X \times Y \).

Then \(P \times QW = PQW_s = QPW_t \) is the unique probability on \(\mathcal{X} \times \mathcal{Y} \) such that \(P \times QX \times Y = PX \times QY \). (Note that \(QW_s \) is the function \(s \rightarrow QW_s(s) \).)
PROOF. Let \(\mathcal{W}_0 \) be the set of functions \(W \) in \(\mathcal{X} \) such that \(W \in \mathcal{S} \) for each \(s \in \mathcal{S} \). Then \(\mathcal{W}_0 \) includes all functions \(X \times Y \), and is a probability space, so \(\mathcal{W}_0 = \mathcal{X} \times \mathcal{Y} \).

Again let \(\mathcal{W}_0 \) be the set of functions \(W \) in \(\mathcal{X} \times \mathcal{Y} \) such that \(QW \in \mathcal{S} \) for each \(s \in \mathcal{S} \). Then \(\mathcal{W}_0 \) includes all functions \(X \times Y \), and is a probability space, so \(\mathcal{W}_0 = \mathcal{X} \times \mathcal{Y} \).

Define \(P \times QW = PQW_S \); note that
\[
PQX \times Y_S = P(XQY) = P(XQY).
\]
It is easy to show that \(P \times Q \) is a probability. For example, continuity requires \(W_n \to W, \ |W_n| \leq W_0 \Rightarrow P \times QW_n \to P \times QW \). For each \(s, W_{ns}(s) \to W_{s}(s), \ |W_{ns}(s)| \leq W_{os}(s) \) so \(QW_{ns}(s) \to QW_{s}(s) \) and \(|QW_{ns}| \leq |QW_{s}| \). Therefore \(PQW_{ns} \to PQW_s \) as required.

Also \(P \times Q \) is the only probability on \(\mathcal{X} \times \mathcal{Y} \) such that \(P \times QX \times Y = PXQY \); for any \(W \) in \(\mathcal{X} \times \mathcal{Y} \) may be approximated by a sequence of functions of form \(\sum_{n=1}^{N} a_n X_n \times Y_n \). By symmetry \(P \times QW = QPW_T \), and the theorem is proved.

3.3. Quotient Probabilities

Let \(\mathcal{X}, \mathcal{Z} \) be probability spaces on \(S \) and let \(Y \) be a random variable from \(S, \mathcal{Z} \) to \(T, \mathcal{Y} \). The conditional probability of \(\mathcal{X} \) given \(Y \) is defined by \((P^X_{Y}(X))(Y) = P^X_{Y^{-1}(Y)}X \). Thus for each \(X, P^X_{Y}X \) is a function in \(\mathcal{Y} \), such that \(P^X_{Y}(t) \) is a probability on \(\mathcal{X} \) for each \(t \). The notation \(P(X \mid Y) \) means \((P^X_{Y}(X))(Y) \), a function in \(Y^{-1}(\mathcal{Y}) \).

Suppose that \(X, Y \) and \(X \times Y \) are random variables on \(U, \mathcal{Z} \) to \(S, \mathcal{X}, T, \mathcal{Y} \) and \(S \times T, \mathcal{X} \times \mathcal{Y} \), and that there exists a conditional probability on \((X \times Y)^{-1} \mathcal{X} \times \mathcal{Y} \) given \(Y^{-1}(\mathcal{Y}) \). The conditional probability of \(X, Y \) given \(Y \) is \((P^X_{Y}(W))(Y) = P^X_{Y^{-1}(Y)}X(Y) \). Thus for each \(W \) in \(\mathcal{X} \times \mathcal{Y}, P^X_{Y}(W) \) is a function in \(\mathcal{Y} \), such that \(P^X_{Y}(t) \) is a probability on \(\mathcal{X} \times \mathcal{Y} \) for each \(t \). The notation \(P(W(X, Y) \mid Y) \) means \((P^X_{Y}(W))(Y) \) and is useful for indicating that \(X \) is summed over while \(Y \) is held fixed. The product rule becomes \(P^X_{Y} = P^Y_{Y} P^X_{Y} \).

A quotient probability \(P^X_{Y} \) is a probability on \(\mathcal{X} \) for each \(t \) such that \(gP^X_{Y}f \in \mathcal{Y} \).
for each \(g \in \mathcal{G}, f \in \mathcal{X} \). A conditional probability \(P_{XY}^{X,Y} \) is defined from a quotient probability by \(P_{Y}^{X,Y}fg = gP_{Y}^{X}f \) each \(g \in \mathcal{G}, f \in \mathcal{X} \); this equation determines \(P_{Y}^{X,Y} \) on \(\mathcal{X} \times \mathcal{Y} \). A quotient probability is not a conditional probability because \(P_{Y}^{X,Y}f \) may not lie in \(\mathcal{Y} \) for each \(f \in \mathcal{X} \); it is convenient to use quotient probabilities to generate conditional probabilities because it is necessary to specify probabilities on \(\mathcal{X} \) for each \(t \), rather than on \(\mathcal{X} \times \mathcal{Y} \) for each \(t \). As before \(P[f(X)]\mathcal{Y} \) means \((P_{Y}^{X,Y})f\)(\(\mathcal{Y} \)).

The random variables \(X \) and \(Y \) are independent if \(P_{XY}^{X,Y}fg = P_{X}^{X}fP_{Y}^{Y}g \) for \(f \in \mathcal{X}, g \in \mathcal{Y} \) or equivalently, given that \(P_{Y}^{X} \) is defined, if \(P_{Y}^{X} = P_{X}^{X} \). Similarly, the random variables \(\{X_{r}\} \) are independent if for any finite subset \(X_{1}, \ldots, X_{n} \)

\[
P_{X_{1}, \ldots, X_{n}}(f_{1}, f_{n}) = \prod_{i=1}^{n} P_{X_{i}}^{X_{i}}(f_{i}, f_{i}) \in \mathcal{X}_{i}.
\]

The random variables \(X \) and \(Y \) are conditionally independent given \(Z \) if \(P_{Z}^{X,Y}fg = P_{Z}^{X}fP_{Z}^{Y}g, f \in \mathcal{X}, g \in \mathcal{Y} \), that is, if \(P_{Z}^{X,Y} = P_{Z}^{X} \).

Example. Let \(S \) be the set of positive integer pairs \((i, j), i \geq j \). Let \(\mathcal{X} \) be the probability space of functions \(X : \sum_{i \geq j} |X(i, j)| < \infty \). Let \(\mathcal{Y} \) be the probability space of real valued functions on \(S \). Let \(Y \) be the function \(Y(i, j) = j \) from \(S, \mathcal{Y} \) to \(T, \mathcal{Y} \) where \(T \) denotes the positive integers and \(Y \) consists of functions \(g \) where \(\sum |g(i)| < \infty \).

A conditional probability \(P_{Y}^{X} \) is

\[
(P_{Y}^{X}X)(j) = \sum_{i \geq j} X(i, j).
\]

For each \(j, (P_{Y}^{X}X)(j) \) defines a probability on \(\mathcal{X} \). For each \(X, P_{Y}^{X}X \) is a function in \(\mathcal{Y} \). The function \((P_{Y}^{X}X)(Y) \) has value at \((i, j)\): \(P_{Y}^{X}XY(i, j) = (P_{Y}^{X}X)(j) = \sum_{i \geq j} X(i, j) \) defining a conditional probability of \(\mathcal{X} \) given \(Y^{-1}(\mathcal{Y}) \).

Now let \(X(i, j) = i \), and define \(\mathcal{X} \) and \(\mathcal{Y} \) to be the space of functions \(f \) that take finitely many non-zero values.

Then \(P_{Y}^{X}W(j) = \sum_{i \geq j} W(i, j) \) where \(W \) is any real valued function finitely non-zero.

\[
P_{Y}^{X,Y}(W) = P_{Y}^{X,Y}W(Y) = \sum_{i \geq j} W(i, Y), \text{ a function in } Y^{-1}(\mathcal{Y}).
\]

The quotient probability \(P_{Y}^{X,f}(j) = \sum_{i \geq j} f(i) \) defines a probability on \(\mathcal{X} \) for each \(j \), such that \(\{g(j)P_{Y}^{X,f}(j)\} \in \mathcal{Y} \) for each \(g \) in \(\mathcal{Y} \).

\[
P_{Y}^{X,Y}fg = \sum_{i \geq j} f(i)g(j) = gP_{Y}^{X,f}.
\]

Here \(X \) and \(Y \) are not independent because \(P_{Y}^{X,f}(j) \) varies with \(j \).

3.4. Marginalization Paradoxes

In Stone and Dawid (1972), and in Dawid, Stone and Zidek (1973) a number of “marginalization paradoxes” are produced using improper priors. See also Sudderth (1980) where it is shown that no marginalization paradox arises with unitary finitely additive priors.
Consider example 1, Stone and Dawid (1972). Random variables X and Y are independent exponential given parameters $\theta \phi$ and ϕ, and θ, ϕ have density $e^{-\theta}$ with respect to Lebesgue measure on the positive quadrant. The joint density of X, Y, θ, ϕ is $e^{-\theta \phi^2} \exp \left[- \phi (\theta X + Y) \right]$, and the product rule $p_{X,Y,\theta,\phi} = p_{\theta,\phi} p_{X,Y,\theta,\phi}$ is satisfied.

The conditional density of θ, ϕ given X, Y is $e^{-\theta \phi^2} \exp \left[- \phi (\theta X + Y) \right] / f(X, Y)$ where $f(X, Y)$ is the density of X, Y:

$$\int e^{-\theta \phi^2} \exp \left[- \phi (\theta X + Y) \right] d\theta d\phi.$$ Again the product rule is satisfied.

However the conditional density of ϕ given $X, 2$ where $2 = Y/X$ is $e^{-\phi/(\phi + 2)} f(2)$ which does not depend on X; Stone and Dawid take this to imply that the conditional density of ϕ given X is $e^{-\phi/(\phi + 2)} f(2)$. Similarly the conditional density of Z given θ and ϕ is $\theta/(\theta + Z)^2$ independent of ϕ; Stone and Dawid take this to imply the density of Z given θ is $\theta/(\theta + Z)^2$, which is inconsistent with the conditional density of θ given Z being $e^{-\theta \phi^2}/(\theta + Z)^3$.

The paradox is caused by the implicit assumption that $p_{\theta,\phi} = p_{\theta,\phi}$ if $p_{Z,\theta,\phi}$ is independent of ϕ; this assumption is valid if θ, ϕ given θ is unitary for then, letting f be a continuous function of two real variables, vanishing outside some square,

$$p_{Z,\theta,\phi} = p_{\theta,\phi} p_{Z,\theta,\phi} = p_{\theta,\phi} f$$ (which is independent of ϕ).

Thus $p_{Z,\theta,\phi} = p_{\theta,\phi} f$.

However, if θ, ϕ given θ is not unitary, $p_{\theta,\phi} p_{Z,\theta,\phi} f$ is not defined, since $p_{\theta,\phi}$ is not defined for non-zero functions constant over ϕ. Instead,

$$p_{Z,\theta,\phi} [h(\phi) f] = p_{\theta,\phi} h(\phi) p_{Z,\theta,\phi} f.$$ Thus the joint distribution of ϕ and Z given θ is a product distribution, but because ϕ given θ is not unitary it is not possible to determine the marginal distribution of Z given θ. (In the same way, if X, Y is uniformly distributed over the plane we cannot determine that X is uniformly distributed on the line.)

In the example, take θ to have density $e^{-\theta}$ and ϕ given θ to be uniform. Then Z, ϕ given θ has density $\theta/(\theta + Z)^2$; but Z given θ does not have density $\theta/(\theta + Z)^2$ because it is not valid to integrate over ϕ.

3.5. Bayes Theorem

A real valued function f on S is a density on \mathcal{X} if $f(X) \in \mathcal{X}$ for $X \in \mathcal{X}$. A probability space \mathcal{X} is σ-finite if there exists $X_0 \in \mathcal{X}$, $X_0 > 0$; or equivalently, if there exists $X_n \in \mathcal{X}$, $X_n \uparrow 1$ as $n \to \infty$.

Bayes Theorem.

Let \(P \) be a probability on \(U, \mathcal{U} \).
Let \(X, Y \) and \(X \times Y \) be random variables from \(U, \mathcal{U} \) to \(S, \mathcal{T}, \mathcal{Y} \) and \(S \times T, \mathcal{X} \times \mathcal{Y} \).
Let \(f \) be a density on \(\mathcal{X} \times \mathcal{Y} \).
Let \(\mathcal{X} \times \mathcal{Y} \) be \(\sigma \)-finite.
Let \(f_T(t) : s \rightarrow f(s, t) \in \mathcal{X} \) each \(t \).
Let \(f/P^Xf_T: (s, t) \rightarrow f(s, t)/P[f(X, t)] \) be a density on \(\mathcal{X} \times \mathcal{Y} \).
Let \(P^Yf = Q^Y(gf_s) \) for some \(Q \) on \(\mathcal{Y} \), each \(g \in \mathcal{Y} \).
[that is \((P^Yf)(s) = Q^{Y^{-1}(\mathcal{Y})}[(g(Y)f(s, Y)] \)

Then
\[
\begin{align*}
P^Yg &= Q^Y(gP^Xf_T) \quad g \in \mathcal{Y}.
p^Xh &= P^X(hf_T)/P^X[f_T] \text{ as } P^Y \text{ each } h \in \mathcal{X}.
\end{align*}
\]
[that is \((P^Yf)(t) = P[h(X)f(X, t)]/Pf(X, t), \text{ except for a set } T_0 \text{ of } t \text{ values with } P^Yt_0 = 0].

PROOF. Let \(h_n \in \mathcal{X}, h_n \uparrow 1 \), since \(\mathcal{X} \) is \(\sigma \)-finite. For \(g \in \mathcal{Y}, g \geq 0, h_ng \uparrow g; \text{ since } h_ng \in \mathcal{X} \times \mathcal{Y} \) and \(g \in \mathcal{Y} \),
\[
\begin{align*}
P^{X,Y}h_ng &= P^{X,Y}^{-1}(\mathcal{X} \times \mathcal{Y} \times \mathcal{H})g(X(Y) \uparrow P^{Y^{-1}(\mathcal{Y})}g(Y) = P^Yg \\
P^{X,Y}h_ng &= P^X P^Yh_ng = P^X[h_nQ^Y(gf_s)] \\
P^Yg &= P^XQ^Y(gf_s) = Q^Y P^X(gf_T) = Q^Y(gP^Xf_T).
\end{align*}
\]
This shows \(P^Yg = Q^Y(gP^Xf_T) \) for \(g \geq 0 \), and general \(g \) follow easily.
Secondly, it is necessary to show that \(P^X \) is a quotient probability; from the given definition,
\[
P^{X,Y}_Y[gh] = P^X[ghf_T]/P^X[f_T].
\]
Then
\[
\begin{align*}
P^YP^{X,Y}_Ygh &= P^Y(gP^Xhf_T/P^Xf_T) \\
&= Q^Y(gP^Xhf_T) \quad \text{from the first part of the proof,} \\
&= P^XQ^Y(ghsf_s) \\
&= P^X[hP^Y_Xg] \quad \text{from (v)} \\
&= P^{X,Y}gh.
\end{align*}
\]
Thus \(P^{X,Y}_Y \) as defined satisfies the product rule, and for any other conditional probability \(Q^{X,Y}_Y \) satisfying the product rule,
\[
P^Y[P^{X,Y}_YW - Q^{X,Y}_YW] = 0.
\]
Thus \(P^Yg|P^{X,Y}_Y - Q^{X,Y}_Y| = 0 \) for any quotient probability \(Q \) satisfying the product rule. Since \(\mathcal{Y} \) is \(\sigma \)-finite, \(g \) may be chosen positive, and so \(P^Y|P^{X,Y}_Y - Q^{X,Y}_Y| = 0. \)

In terms of densities, we have that \(Y \) given \(X \) has density \(f_s \) with respect to some probability \(Q^X \); under specified conditions on \(f \) and \(\mathcal{X}, X \) given \(Y \) is
3.6. Binomial Conditional Probability

A unitary probability with density \(f_T / P^X f_T \) with respect to \(P^X \). In the usual terminology, \(f_S \) would be the likelihood of \(Y \) given \(X \), \(P^X \) is the prior distribution of \(X \), and \(f_T / P^X f_T \) is the posterior density of \(X \) given \(Y \). Frequently \(P^X \) has some prior density \(P \) with respect to a probability \(R^X \), and then the conditional probability of \(X \) given \(Y \) has posterior density \(f_T p/R^X(f_T p) \) with respect to \(R^X \).

Note that \(P^X \) and \(P^Y \) may not be unitary, but under the conditions of the theorem \(P^X \) is unitary. Renyi (1970) takes unitary conditional probabilities as the basic concept, expressing non-unitary probabilities such as lebesgue measure by families of such conditional probabilities. It seems simpler to go the other way, to define unitary conditional probabilities from non-unitary probabilities; indeed we allow non-unitary conditional probabilities in general, though our Bayes theorem produces only unitary conditional probabilities.

3.6. Binomial Conditional Probability

The binomial distribution is defined for \(n \) \(0 \rightarrow 1 \) random variables \(X_1, X_2, \ldots, X_n \) given a parameter \(p, 0 \leq p \leq 1 \), by

\[
P[X_i = X_i, i = 1, \ldots, n | p] = p^{x_i}(1 - p)^{n - x_i}.
\]

The random variables \(X_1, X_2, \ldots, X_n \) are independent and identically distributed given \(p \), with \(P(X_i | p) = p \).

In Bayesian analysis \(p \) (as well as the \(X_i \)) is taken to be a random variable on some underlying probability space \(\mathcal{F} \) and a probability \(P \) is assumed on \(\mathcal{F} \) such that the conditional distribution of \(X_1, \ldots, X_n \) given \(p \) is binomial. If \(p \) is not unitary, the marginal probability of \(X_1, \ldots, X_n = P(p^{X_i}(1 - p)^{n - X_i}) \) is not defined for all \(x \); thus conditional probability given the observations must be carefully handled. For example, if \(P_\mathcal{F} = \int [f(p)/p(1 - p)] dp \) using Haldane’s prior, then \(P[X_1 = 0] \) is not defined and the conditional distribution of \(P \) given \(X_1 = 0 \) is not uniquely defined.

Assume that \(p^m(1 - p)^m \in \mathcal{F} \) whenever \(m \geq a, m' \geq b \). Then define \(\mathcal{F}_{a,b}^n \) to be the probability subspace of \(\mathcal{F} \) including all functions

- \(X_i = x_i, i = 1, \ldots, n', n' > n, x_{n'} = 1, \sum x_i = a, n' - \sum x_i \geq b \)
- \(X_i = x_i, i = 1, \ldots, n', n' > n, x_{n'} = 0, \sum x_i \geq a, n' - \sum x_i = b \)
- \(X_i = x_i, i = 1, \ldots, n, \sum x_i \geq a, n - \sum x_i \geq b \).

Thus \(\mathcal{F}_{a,b}^n \) corresponds to the shortest sequences of observations containing at least \(n \) observations, at least \(a \) successes, and at least \(b \) failures. The conditional probability of \(p \) given \(\mathcal{F}_{a,b}^n \) is

\[
P[f(p) | \mathcal{F}_{a,b}^n] = \frac{P[f(p) p^{X_i}(1 - p)^{n' - X_i}]}{P[p^{X_i}(1 - p)^{n' - X_i}]}.
\]

It may be verified that \(P[P(f(p) | \mathcal{F}_{a,b}^n)] = Pf(p) \).
Consider, for example, Haldane's prior; here $a = 1$, $b = 1$ since $\int [f(p)/P(1 - p)]dp$ exists whenever $f(p) = p^m(1 - p)^{m'}$, $m \geq 1$, $m' \geq 1$. (Of course a and b could be positive fractions but this does not change $\mathcal{X}_{a,b}$.) Then $\mathcal{X}_{1,1}$ is generated from the sequences

001, 0001, 00001, ...
110, 1110, 11110, ...
01, 10.

The conditional probability of p given $\mathcal{X}_{1,1}$ is

$$P[f(p)|X] = \frac{\int f(p)p^{\sum x_i - 1}(1 - p)^{n' - \sum x_i - 1} dp}{\int p^{\sum x_i - 1}(1 - p)^{n' - \sum x_i - 1} dp}$$

which is defined for each of the specified sequences since $\sum x_i \geq 1$, $n' - \sum x_i \geq 1$. If $a = 0$, $b = 0$ we would have $\mathcal{X}_{0,0}$ generated from 00, 01, 10, 11; and the conditional probability of $f(p)$ averages to the probability of $f(p)$ when weighted by the probabilities of 00, 01, 10, 11. In the case $a = 1$, $b = 1$ the sequences 00 and 11 do not have defined probabilities, so the average that validates conditional probabilities is not available—00 is replaced by 001, 0001, ..., and 11 is replaced by 110, 1110, ..., and an average with valid marginal weights becomes available.

In application, we will be able to give conditional probabilities whenever the data sequence has at least one 1 and at least one 0. If the data are of form: all 0's or all 1's, no conditional probability consistent with the axioms is available.

3.7. Problems

Problems (Q) are ones that I find very hard.

E1. Let N denote the positive integers, and let \mathcal{Z} be the space of sequences $\{z_1, z_2, \ldots, z_n, \ldots\}$ with $\sum |z_i| < \infty$. Let X and Y be random variables into (N, \mathcal{Z}), and let $X \times Y$ be a random variable into $N \times N$, with $P\{X = i, Y = j\} = p_{i,j}$. Define $p_j = \sum_i p_{i,j}$.

Let $\delta(k) = \{i = k\}$, $k \in \mathcal{Z}$.

Then $P_\delta^Y(j) = \{p_j > 0\} (p_j/p_j)$.

E2. Let \mathbb{R} be the real line, \mathcal{B} be the space of bounded lebesgue integrable functions (obtained by completing the probability that values an interval by its length, and accepting bounded functions in that completion). Let X and Y be random variables into $(\mathbb{R}, \mathcal{B})$ and let $f(x, y)$ be such that $g(y)f(x, y) \in \mathcal{B} \times \mathcal{B}$ for each $g \in \mathcal{B}$.

Suppose $P^{X,Y}W = \int \int W(x, y)f(x, y)dxdy$.

Then $P^Yg = \int g(y)f(x, y)dxdy$,

and $P^X(h)(y) = \int h(x)f(x, y)dx/\int f(x, y)dx$.

P1. Let X be a real valued random variable uniformly distributed, and let the condition-
3.8. References

al distribution of Y given X give probability $\frac{1}{2}$ to $X - \frac{1}{2}$ and probability $\frac{1}{2}$ to $X + \frac{1}{2}$. Find the joint distribution of $X \times Y$ and the conditional distribution of X given Y. (Bayes theorem fails.)

P2. Say $X \sim N(\mu, \sigma^2)$ if X is a real random variable having density $\exp\left[-\frac{1}{2}(\mu - x)^2/\sigma^2\right]/(\sigma\sqrt{2\pi})$ with respect to lebesgue measure. Suppose $\theta \sim N(\mu, \sigma^2)$, $X|\theta \sim N(\theta, \sigma^2)$. Find the distribution of θ given X.

If, in addition $Y|X, \theta \sim N(X - \theta, \sigma^2)$, find $\theta|X, Y$.

P3. The three observations $1, 3, 7$, given θ, are from a normal family $(1/\sqrt{2\pi})\exp\left[-\frac{1}{2}(x - \theta)^2\right]$ with probability $\frac{1}{4}$, or from the family $\frac{1}{2}\exp\left[-|x - \theta|\right]$ with probability $\frac{3}{4}$. The prior distribution of θ is uniform. Find the posterior distribution of θ given the observations, and the posterior probability that the normal is the true distribution.

P4. Assume that $X|\theta \sim N(\theta, 1)$, and that $\theta \sim N(\theta_0, \sigma^2)$. Usually θ_0 and σ^2 are assumed known, but suppose, as an afterthought, you decide that $\theta_0 \sim N(0, \sigma^1)$. Find the posterior distribution of θ given X.

P5. Let X_1, \ldots, X_n be a sample from the uniform $(\theta - \frac{1}{2}, \theta + \frac{1}{2})$ given θ. Let the prior probability of θ be uniform. Find the posterior probability of $\theta|X_1, \ldots, X_n$ and compute the posterior mean and variance.

Q1. Suppose \mathcal{X} and \mathcal{Y} are probability spaces on S, and that $P: \mathcal{X}$ to \mathcal{Y} satisfies the axioms of conditional probability, but that $\mathcal{X} \supseteq \mathcal{Y}$ is not assumed. When is it possible to extend P to \mathcal{X} including \mathcal{X} and \mathcal{Y}, so that $P: \mathcal{X}$ to \mathcal{Y} is a conditional probability?

Q2. If P is a conditional probability on \mathcal{X} to \mathcal{Y}, does there exist a complete conditional probability P' on \mathcal{X}' to \mathcal{Y} such that P' coincides with P on $\mathcal{X} \subset \mathcal{X}'$?

3.8. References

CHAPTER 4
Convergence

4.0. Introduction

Notions of convergence, as the amount of information increases, are necessary to check the consequences of probability assignments in empirical fact. For example, if we assume that a penny has probability 1/2 of coming down heads on each toss, and that the different tosses are independent, it follows that the limiting proportion of heads will be 1/2 almost surely.

A standard method of evaluating statistical procedures is through their asymptotic properties; partly this is a matter of necessity because the asymptotic behavior is simple. For example, one of the desirable properties of a maximum likelihood estimate is that it converges, in a certain sense under certain regularity conditions, to the unknown parameter value. A famous theorem due to Doob (1949) handles consistency of Bayes procedures—if any estimate converges to the unknown parameter value in probability then the posterior distribution concentrates on the unknown value as the data increases.

4.1. Convergence Definitions

Let \mathcal{X} be a probability space on S. A real valued function X on S is measurable if $\{X > a\}, \{X < -a\} \in \mathcal{X}$ for each $a > 0$. Thus X is a random variable into \mathbb{R}, \mathcal{B}_0, where \mathcal{B}_0 is the smallest probability space containing intervals (a, ∞), $(-\infty, -a)$ for each $a > 0$.

The space of measurable functions is a probability space which includes \mathcal{X}. In the following X, X_1, \ldots, X_n, are assumed to be measurable functions
with respect to \mathcal{X} on S, and it is assumed that there is a probability P on \mathcal{X} on S.

$X_1 = X_2$ as P means $P(X_1 \neq X_2) = 0$.

$X_n \to X$ as P means $P\{s \mid X_n(s) \to X(s)\} = 0$; equivalently, for each $\varepsilon > 0$, $P\{|X_n - X| > \varepsilon \text{ for some } n > N\} \to 0$ as $N \to \infty$.

$X_n \to X$ in P means $P\{|X_n - X| > \varepsilon \} \to 0$ for each $\varepsilon > 0$.

$X_n \to X$ by P means $P|X_n - X| \to 0$ as $n \to \infty$.

If $X_n \to X$ by P or $X_n \to X$ as P then $X_n \to X$ in P.

If $X \in \mathcal{X}$, $X_n \in \mathcal{X}$, $X_n \to X$ in P, and $\sup P(|X_n|(|X_n| > A) + \{|X_n| < 1/A\}) \to 0$ as $A \to \infty$, then $X_n \to X$ by P. The sup condition is a generalization of the notion of uniform integrability, necessary to handle non-unitary P. With some mess, it may be shown that it is sufficient to prove the result for $X = 0$;

$$\limsup P|X_n| \leq \sup_n P\left(|X_n|\left(\{|X_n| > A\} + \left\{\frac{1}{A} \leq |X_n| < A\right\}\right)\right) + \lim P\left(|X_n|\left(\frac{1}{A} \leq |X_n| < A\right)\right)$$

Since $\limsup P(|X_n|(|X_n| > A) + \{|X_n| < 1/A\}) \leq A \lim P(|X_n| \geq 1/A) = 0$ all A, $\lim P|X_n| = 0$.

$X_n \to X$ in D (in distribution) if $P[f(X_n)] \to P[f(X)]$ for each bounded continuous f that vanishes near zero. It is not necessary that the X_n and X be defined on the same probability space; the definition involves only the distribution of the X_n and X.

If $X_n \to X$ in P then $X_n \to X$ in D. To show this, for each f there is a fixed ε_0 such that $|f(x)| = 0$ for $|x| \leq \varepsilon_0$, and for each k, δ there is an $\varepsilon < \varepsilon_0 / 2$ depending on (k, δ) such that $|f(x) - f(y)| < \delta$ for $|x| < k$, $|x - y| < \varepsilon$. Thus

$$|f(x) - f(y)| \leq 2 \sup f(|x| > k) + \{|x - y| > \varepsilon\}) + \delta\{|x| \geq \varepsilon_0 / 2\}$$

Choosing k large and δ small gives $P|f(X) - f(X_n)| \to 0 \Rightarrow X_n \to X$ in D.

4.2. Mean Convergence of Conditional Probabilities

Theorem. Let \mathcal{X}_n be a sequence of probability spaces contained in the probability space \mathcal{X}, let P be a probability on \mathcal{X}, and let $P_n = P^P = P_{\mathcal{X}_n}$ be the conditional probability of \mathcal{X} given \mathcal{X}_n. Let $X \in \mathcal{X}$.

(i) If X is mean-approximable by \mathcal{X}_n (that is $P|X_n - X| \to 0$ for $X_n \in \mathcal{X}_n$), then X is mean-approximable by the sequence $P_n X$.

(ii) If X is square-approximable by \mathcal{X}_n (that is $P(X_n - X)^2 \to 0$ for $X_n \in \mathcal{X}_n$), then X is square-approximable by the sequence $P_n X$.

4.2. Mean Convergence of Conditional Probabilities
PROOF. Since $\mathcal{F}_n \subset \mathcal{F}$, $P_n X_n = X_n$ for each X_n in \mathcal{F}_n, so $P_n P_n = P_n$.

$$P_n |X - P_n X| \leq P_n |X - X_n| + P_n |X_n - P_n X| = P_n |X - X_n| + P_n |P_n(X_n - X)|$$

$$= P_n |X - X_n| + P_n P_n |X_n - X| = 2P_n |X - X_n|.$$

Thus if X is mean-approximable by \mathcal{F}_n, it is mean-approximable by $P_n X$.

$$P_n(X - X_n)^2 = P_n(X - P_n X)^2 + 2P_n[(X - P_n X)(P_n X - X_n)] + P_n(X_n - P_n X)^2$$

$$= P_n(X - P_n X)^2 + 0 + P_n(X_n - P_n X)^2.$$

Thus if X is square-approximable by \mathcal{F}_n, it is square-approximable by $P_n X$. \(\square\)

EXAMPLE.

Let P be a complete probability on \mathcal{G} on U.

Let θ, X, X_1, \ldots, X_n be random variables on U, \mathcal{G}.

Suppose X_1, \ldots, X_n, \ldots are independent and identically distributed given θ; let $P_{\theta}^X = P_{\theta}^X$ for $i = 1, 2, \ldots$.

Assume that X is a real valued random variable such that $X, X^2 \in \mathcal{G}$.

Set $\mu = P(X | \theta)$.

Since X_1, \ldots, X_n are independent given θ,

$$P\left[\left(\frac{1}{n}\sum X_i - \mu\right)^2 | \theta\right] = P\left[(X - \mu)^2 | \theta\right]/n$$

$$P\left[\frac{1}{n}\sum X_i - \mu\right]^2 = P\left[X - \mu\right]^2/n.$$

Note that $\mu^2 \in Z$ because $\mu^2\{|\mu| \leq k\} \uparrow \mu^2$ as $k \uparrow \infty$, $\mu^2\{|\mu| \leq k\} = |\mu|(|\mu| \wedge k) \in \mathcal{G}$, and $P\mu^2\{|\mu| \leq k\} \leq PX^2$ all k.

Thus μ is square-approximable by $1/n\sum X_i$ and hence by $P[\mu | X_1, X_2, \ldots, X_n]$. This is a Bayesian adaptation of the law of large numbers, in which the unknown population mean μ is increasingly well approximated by its best estimate from the sample X_1, \ldots, X_n.

4.3. Almost Sure Convergence of Conditional Probabilities

Theorem. Let P be a probability on \mathcal{F}, and let \mathcal{F}_n be an increasing sequence of subspaces of \mathcal{F}. Let $P_n = P_{\mathcal{F}_n}$. Let $X \in \mathcal{F}$. If X is mean or square-approximable by $\{\mathcal{F}_n\}$, then

$$P_n X \rightarrow X \text{ as } P.$$

Proof. Let $X_n = P_n X$. Then $P_{n-1} X_n = X_{n-1}$ by the product law, so X_n is...
4.3. Almost Sure Convergence of Conditional Probabilities

a martingale when P is unitary; in this case the theorem is well known, Doob (1953).

Lemma. \[P\left\{ \sup_{1 \leq i \leq n} |X_i| \geq \varepsilon \right\} \leq P X_n^2 / \varepsilon^2 \text{ if } X_n \in \mathcal{A}, \]
\[P\left\{ \sup_{1 \leq i \leq n} |X_i| \geq \varepsilon \right\} \leq P |X_n| / \varepsilon. \]

PROOF. Let $A_i = \{ |X_1| < \varepsilon, |X_2| < \varepsilon, \ldots, |X_i| \geq \varepsilon \}, i = 1, 2, \ldots, n$. Then
\[\sum_{i=1}^n A_i = \{ \sup_{1 \leq i \leq n} |X_i| \geq \varepsilon \}. \]
\[A_i X_n^2 = A_i (X_i^2 + 2(X_n - X_i)X_i + (X_n - X_i)^2), \]
\[P[A_i(X_n - X_i)X_i] = PP[A_i(X_n - X_i)] = P[A_iX_iP_i(X_n - X_i)] = 0, \]
\[P(A_iX_n^2) \geq \varepsilon^2 PA_i \text{ since } |X_i| \geq \varepsilon \text{ when } A_i \neq 0, \]
\[PX_n^2 \geq \varepsilon^2 \sum_{1 \leq i \leq n} A_i = \varepsilon^2 P \left\{ \sup_{1 \leq i \leq n} |X_i| \geq \varepsilon \right\} \text{ as required.} \]

For the second result, define $B_i = \{ X_1 < \varepsilon, X_2 < \varepsilon, \ldots, X_i \geq \varepsilon \}$

Then
\[\sum_{1 \leq i \leq n} B_i = \{ \sup_{1 \leq i \leq n} X_i \geq \varepsilon \}, \]
\[X_n B_i = B_i (X_i + X_n - X_i), \]
\[PX_n B_i = PB_i X_i + PP_i B_i (X_n - X_i) = PB_i X_i \]
\[\geq \varepsilon PB_i. \]
\[P(X_n^+ \geq \varepsilon \sum_{i} B_i \geq \varepsilon P(\sum B_i) = \varepsilon P \{ \sup X_i \geq \varepsilon \} \]
\[- P(X_n^- \geq \varepsilon \sup X_i \leq - \varepsilon \}
\[P|X_n| \geq \varepsilon P \{ \sup |X_i| \geq \varepsilon \}. \]

Turning to the theorem, if X is square-approximable, from 4.2,
\[P(X_n - X)^2 \to 0, \text{ and for a suitable subsequence } \sum P(X_n - X)^2 < \infty. \]
\[\{ \sup_{i,j \geq N} |X_i - X_j| \geq 4\varepsilon \} \leq \sup \{ \sup_{n_r \geq N} X_i - X_{n_r} \geq \varepsilon + \{ |X - X_{n_r}| \geq \varepsilon \} \}
\[P\left\{ \sup_{i,j \geq N} |X_i - X_j| \geq 4\varepsilon \right\} \leq \sum_{n_r \geq N} \left[P(X_n - X_{n_r})^2 / \varepsilon^2 + P(X - X_{n_r})^2 / \varepsilon^2 \right] \]
\[\to 0 \text{ as } N \to \infty, \]

using the lemma and $\sum P(X_n - X)^2 < \infty$.

If X is mean approximable, the same argument holds with $P|X_n - X|$ replacing $P(X_n - X)^2$ and $P|X_n - X_{n_r}|$ replacing $P(X_n - X_{n_r})^2$. \qed
4.4. Consistency of Posterior Distributions

Doob's Theorem. Let \(\mathcal{X}_n \) be an increasing sequence of subprobability spaces of \(\mathcal{X} \).

Let \(P \) be a probability on \(\mathcal{X} \), let \(P_n \) be conditional probabilities of \(\mathcal{X} \) given \(\mathcal{X}_n \).

Let \(\theta \) be a real valued random variable such that \(\{ a \leq \theta \leq b \} \in \mathcal{X} \) for \(a, b \) finite, and suppose that \(\theta \) is approximable by \(\mathcal{X}_n \); \(X_n \to \theta \) in \(P \) some \(X_n \) in \(\mathcal{X}_n \).

Let \(C_n(a, b) = P_n\{a \leq \theta \leq b\} \).

Then \(C_n(\theta - \varepsilon, \theta + \varepsilon) \to 1 \) as \(P \).

Proof. Doob (1949) proved a version of this theorem for \(P \) unitary. See also Schwartz (1965) and Berk (1970).

Let \(a \) and \(b \) not be atoms of \(\theta : P\{a = \theta\} = P\{b = \theta\} = 0 \) and \(\big|\{a \leq \theta \leq b\} - \{a \leq X_n \leq b\}\big| \leq \{a - \theta \leq \varepsilon\} + \{|b - \theta| \leq \varepsilon\} + \{|X_n - \theta| \geq \varepsilon\} \). Since \(P\{|X_n - \theta| \geq \varepsilon\} \to 0 \) as \(n \to \infty \), and \(P\{|a - \theta| \leq \varepsilon\} + P\{|b - \theta| \leq \varepsilon\} \to 0 \) as \(\varepsilon \to 0 \), \(P\{a \leq \theta \leq b\} - \{a \leq X_n \leq b\} \to 0 \).

From 4.3, \(P_n\{a \leq \theta \leq b\} \to \{a \leq \theta \leq b\} \) as \(P \).

\[
C_n(a, b)(s) \to \{a \leq \theta(s) \leq b\} \text{ except for } s \in A, \, PA = 0.
\]

\[
C_n(\theta(s) - \varepsilon, \theta(s) + \varepsilon) \to 1 \text{ except for } s \in A.
\]

\[
C_n(\theta - \varepsilon, \theta + \varepsilon) \to 1 \text{ as } P.
\]

The condition of approximability and the conclusion of consistency may both be expressed conditionally on \(\theta ; \theta \) is approximable by \(\mathcal{X}_n \) if \(P_n[|X_n - \theta| > \varepsilon] \to 0 \) except for a set of \(\theta \)-values of probability zero; and \(C_n(\theta - \varepsilon, \theta + \varepsilon) \to 1 \) as \(P \) implies that \(C_n(\theta - \varepsilon, \theta + \varepsilon) \to 1 \) as \(P_\theta \), except for a set of \(\theta \) values of probability zero.

Example. Let \(X_1, X_2, \ldots, X_n \) be a random sample from \(N(\theta, 1) \); let \(\theta \) be uniformly distributed on the line. Let \(\mathcal{X}_n \) denote the probability space generated by \(X_1, \ldots, X_n \) and note that \(|\mathcal{X}_n - \theta| \to 0 \) in probability given \(\theta \). The conditional distribution of \(\theta \) given \(\mathcal{X}_n \) is unitary. Therefore it concentrates on the true value \(\theta \) as \(n \to \infty \), except for a set of \(\theta \) values of probability zero.

4.5. Binomial Case

Let \(P \) be a probability on \(\mathcal{X} \) on \(S \).

Let \(P \), the binomial parameter, be a real valued random variable, \(0 \leq p \leq 1 \), defined on \(\mathcal{X} \).

Let \(X_1, X_2, \ldots, X_n \) be \(n \) Bernoulli random variables, each taking the values 0 or 1; thus \(X_1, X_2, \ldots, X_n \) maps \(S \) to the space of \(n \)-tuples \((x_1, x_2, \ldots, x_n) \) where \(x_i = 0 \) or 1.

A binomial distribution has \(X_1, X_2, \ldots, X_n \) independent and identically
distributed given \(p \):

\[
P[X_i = x_i, i = 1, \ldots, n|p] = p^{x_i}(1 - p)^{n - \Sigma x_i}.
\]

The posterior distribution of \(p \) given \(X_1, \ldots, X_n \) is

\[
P_n[p] = P[f(p)|X_1, \ldots, X_n] = \frac{P[f(p)p^{\Sigma x_i}(1 - p)^{n - \Sigma x_i}]/P(p^{\Sigma x_i}(1 - p)^{n - \Sigma x_i})}{\text{defined whenever } p^{\Sigma x_i}(1 - p)^{n - \Sigma x_i} \in \mathcal{X}}.
\]

(Note that the conditioning space \(\mathcal{X} \) must contain observations of varying length if \(P \) is not unitary.)

Theorem. Let \(p, X_1, \ldots, X_n \) be random variables on \(\mathcal{X} \), and let \(X_1, \ldots, X_n, \ldots \) be Bernoulli given \(p \). Assume that \(p^m(1 - p)^m \in \mathcal{X} \) for \(m \geq a, m' \geq b \). Say that \(p_0 \) is in the support of \(P \) if \(P[|p - p_0| < \varepsilon] > 0 \) for each \(\varepsilon > 0 \). Then \(P_n[|p - p_0| < \varepsilon] \rightarrow 1 \) as \(P \to 0 \), if and only if \(p_0 \) is in the support of \(P \).

Proof. Note that \(P_n[|p - p_0| < \varepsilon] \) is a function in \(\mathcal{X}_n \). Let \(R = \sum X_i \). If \(p_0 \) is not in the support of \(P \), \(P[|p - p_0| < \varepsilon] = 0 \) for some \(\varepsilon > 0 \), and so \(P_n[|p - p_0| < \varepsilon] = 0 \) for all \(n \). This establishes the “only if.”

Now suppose \(p_0 \) lies in the carrier of \(P \). Assume \(0 < p_0 < 1 \).

Let \(f(p_0, p) = p_0 \log p + (1 - p_0) \log(1 - p) \).

Then \(f(p_0, p) \), as a function of \(p \), is continuous and has a unique maximum at \(p = p_0 \). Thus for each small \(\delta > 0 \), there exists \(\Delta > 0 \) with

\[
f(p_0, p_1) > f(p_0, p_2) + \Delta \quad \text{whenever} \quad |p_0 - p_1| < \delta, \quad |p_0 - p_2| > 2\delta.
\]

As \(n \to \infty \), \(R/n \to p_0 \) as \(P \) from the strong law of large numbers.

\[
f\left(\frac{R}{n}, p_1\right) > f\left(\frac{R}{n}, p_2\right) + \Delta \quad \text{whenever} \quad |p_0 - p_1| < \delta, \quad |p_0 - p_2| > 2\delta,
\]

for all large \(n \), with probability approaching 1 as \(n \to \infty \). (Note that the conditioning space may include observation sequences of length greater than \(n \), but the inequality holds for all these sequences.)

\[
P_n[|p - p_0| \leq \delta]/P_n[|p - p_0| \geq 2\delta]
\]

\[
= P\left[\{|p - p_0| \leq \delta\} \exp\left[n f\left(\frac{R}{n}, p\right)\right]\right]/
\]

\[
P\left[\{|p - p_0| \geq 2\delta\} \exp\left[n f\left(\frac{R}{n}, p\right)\right]\right]
\]

\[
\geq e^{n\Delta}P[|p - p_0| < \delta]/P[|p - p_0| > 2\delta] \to \infty \quad \text{as} \quad P \to 0.
\]

Thus \(P_n[|p - p_0| \geq 2\delta] \to 0 \) as \(P \to 0 \), as required. \(\square \)
4. Convergence

Remark: The same result generalizes to multinomial distributions, but not to observations carried by a countable number of points, as shown by Freedman (1963).

4.6. Exchangeable Sequences

Let P be a probability on a space \mathcal{X}. A sequence of random variables $X_1, X_2, \ldots, X_n, \ldots$ defined on \mathcal{X} is said to be exchangeable if X_1, X_2, \ldots, X_n has the same distribution as $X_{\sigma_1}, X_{\sigma_2}, \ldots, X_{\sigma_n}$ for each n and each permutation σ.

De Finetti’s Theorem. Let $X_1, X_2, \ldots, X_n, \ldots$ be an exchangeable sequence of $0 - 1$ random variables on a probability space \mathcal{X} with unitary probability P. Then $X_1, X_2, \ldots, X_n, \ldots$ are conditionally independent and identically distributed given the random variable $p = \lim \sum_{i=1}^{2^n} X_i/2^n$ if the limit exists, $p = 0$ if the limit fails.

Proof. Let $\bar{X}_n = (1/n)\sum_{i=1}^n X_i$.

Then $P(\bar{X}_n - \bar{X}_m)^2 = [P(X_1^2) - P(X_1, X_2)](m - n)/mn$

$\sum P(|\bar{X}_{2^{r+1}} - \bar{X}_{2^r}| \leq \infty$

$P(|\bar{X}_{2^{r+1}} - \bar{X}_{2^r}| > \varepsilon) \leq P\left\{ \sum_{r=N}^{M} |\bar{X}_{2^{r+1}} - \bar{X}_{2^r}| > \varepsilon \right\} \rightarrow 0$ as $N, M \rightarrow \infty$.

Thus $p = \lim \sum_{i=1}^{2^n} X_i/2^n$ is defined except for a set A of probability 0; define $p = 0$ on the set A. Define a conditional probability on $X_1, X_2, \ldots, X_n, \ldots$ given p by $P[1|p] = 1, P[X_i|p] = p$, and let the $X_1, X_2, \ldots, X_n, \ldots$ be independent and identically distributed given p. The specified probability obviously satisfies the axioms of conditional probability except for possibly axiom 1 and the product axiom.

For axiom 1 we need show that for Baire functions h, and for functions g in the smallest probability space including X_1, \ldots, X_n, $P[h(p)g|p] = h(p)P[g|p]$.

Take h to be continuous and bounded, and note that the class of functions g satisfying the identity is a limit space, so that we need only verify that $P[h(p)][X_i|p] = h(p)P[\prod X_i|p]$. (The probability space generated by X_1, X_2, \ldots, X_n is the smallest limit space including $X_{i_1}, X_{i_2}, \ldots, X_{i_n}$ for each sequence i_1, i_2, \ldots, i_n. If the axiom is satisfied for $X_{i_1}, X_{i_2}, \ldots, X_{i_n}$, by symmetry it is satisfied for $X_{i_1}, X_{i_2}, \ldots, X_{i_n}$.) Define $\bar{X}_{2^{r,i}} = \sum_{j=2^{r-1}}^{2^r-1} X_j \times \{2^{r-1} < j \leq 2^r\}/[2^r - 2^{r-1}]$. Then $\bar{X}_{2^{r,i}} \rightarrow p$ as $r \rightarrow \infty$, whenever $\bar{X}_{2^r} \rightarrow p$ as $r \rightarrow \infty$. If $\bar{X}_{2^r} \rightarrow p$,

$P[h(p)[X_i|p] = P[\lim h(\bar{X}_{2^r})][X_i|p]$

$= P[\lim h(\bar{X}_{2^r})][\bar{X}_{2^{r,i}}|p]$

$= h(p)p^n$ by the law of large numbers

$= h(p)P[\prod X_i|p]$.

If the limit \bar{X}_{2^r} does not exist, then $p = 0$ and $P[h(p)[X_i|p] = 0$. The axiom
is true for bounded and continuous h, and it is true on a limit space of functions, so it is true for Baire functions.

For the product axiom, proceeding as before requires that

$$PP(\prod X_i|p) = P(\prod X_i).$$

Now

$$P(\prod X_i) = P(\prod X_{2r,i}) = P(\lim_r \prod X_{2r,i}) = P(p^n) = P[P(\prod X_i|p)].$$

Thus the product axiom holds concluding the proof.

Notes: This theorem, proved first by de Finetti, has philosophical importance in relating Bayes and frequentist theory. In the frequentist approach, probabilities are based on a sequence of observations $X_1, X_2, \ldots, X_n, \ldots$ that have limiting frequency p. De Finetti argues that this form of evidence requires the judgement that the $X_1, X_2, \ldots, X_n, \ldots$ are exchangeable; then the limiting frequency p exists except for a set of probability zero. Thus the frequentist probability statements may be derived from Bayes theory.

The generalization is straightforward for real valued random variables; in this case the conditioning random variables are the functions

$$\lim \sum_{i=1}^{2^r} \{X_i \leq x\}/2^r$$

for rational x. The "$\prod X_i$" for generating the probability space including X_1, X_2, X_3, \ldots are the functions $\prod_{i=1}^{n} \{X_i \leq x\}$ where the x_i are rational. See for example, Loeve (1955), p. 365.

How can the theorem be generalized to non-unitary probabilities? Consider a special case, corresponding to the prior density proportional to

$$1/p(1-p).$$

Let S be the set of all $0-1$ sequences. Consider the smallest probability space \mathcal{S} on S that includes all functions X depending on a finite number of elements of the sequence s, such that $X(s) = 0$ for $s = 0, 0, 0, \ldots$ or $s = 1, 1, 1, \ldots$. For example the finite sequences containing at least one 1 and one 0 will lie in this space.

Let the sequence x_1, x_2, \ldots, x_n have probability

$$1/\left(\frac{n-1}{\sum x_i - 1}\right)$$

for $0 < \sum x_i < n$. This assignment of probability satisfies the axioms. For example

$$1 = P(01) = P(011) + P(010).$$

The function $\tilde{x}_n = (1/n)\sum x_i$ does not lie in the probability space, but the functions $\tilde{x}_n - \tilde{x}_m$ do, since they give value 0 to $s \equiv 0$ or $s \equiv 1$. Since

$$P(\tilde{x}_n - \tilde{x}_m)^2 = \frac{1}{2} P(x_1 - x_2)^2 |n - m|/mn,$$

the sequence \tilde{x}_{2n} converges except on a set of probability zero to a function, p say. Let \mathcal{Y} be the probability space generated by the polynomials $p^{k_1}(1-p)^{k_2}$ where $k_1, k_2 > 0$. Define a conditional probability on \mathcal{X} given \mathcal{Y} by

$$P[x_1, x_2, \ldots, x_n|\mathcal{Y}] = p^{\sum x_i}(1-p)^{n-\sum x_i}.$$

This conditional probability satisfies the product axiom:

$$PP[x_1, x_2, \ldots, x_n|\mathcal{Y}] = P[p^{\sum x_i}(1-p)^{n-\sum x_i}] = P[\lim \prod X_{i}^{\sum x_i}(1-\tilde{X}_{2n})^{n-\sum x_i}] = P(x_1, x_2, \ldots, x_n).$$
And different sequences x_1, x_2, \ldots, x_n and $x_{n+1}, x_{n+2}, \ldots, x_N$ are independent given p.

4.7. Problems

E1. In the binomial case the prior P is carried by the rationals $(0, 1]$, with $P(r) = \log \left(\frac{1 - 2^{-r}}{2^r} \right)$, where N is the first integer for which rN is an integer. If p_0 is the true value of p, show that the posterior distribution of p concentrates on p_0 as $n \to \infty$.

E2. Two parameters U, V are independent uniforms. A coin is tossed giving heads with probability $|U - V|$. Find the posterior distribution of U, V given r heads in n tosses, and specify its behavior as $n \to \infty$.

P1. In the binomial case, assume $P_1(\frac{1}{4}) = P_1(\frac{3}{4}) = \frac{1}{2}$. Find the asymptotic behavior of P_n, as the true probability p_0 ranges over $(0, 1)$. Generalize results to P carried by a finite number of points.

P2. Let p be a binomial parameter, and let $\theta = \frac{1}{2}p\{0 \leq p \leq \frac{1}{2}\} + (\frac{1}{2} + \frac{1}{2}p)\{p > \frac{1}{2}\}$. Let P be the prior distribution on θ which is uniform over $(0, \frac{1}{2}) \cup (\frac{3}{4}, 1)$. Let P_n be the posterior distribution of θ after R successes in n trials, and consider its distribution as R varies given the true value $\theta_0 = \frac{1}{4}$. Show that P_n’s distribution converges to a distribution over the two point distributions carried by $\{\theta = \frac{1}{4}\}$ and $\{\theta = \frac{3}{4}\}$, with $P(\theta = \frac{1}{4})$ uniformly distributed between 0 and 1.

P3. In the binomial case, show that for a particular $\varepsilon > 0$, it may happen that $P(p_0 - \varepsilon, p_0 + \varepsilon) > 0$ but $P_n(p_0 - \varepsilon, p_0 + \varepsilon) \to 0$ as p_0.

P4. In the binomial, let the probability P be defined by

$$P(f) = \int_0^1 f[p(1-p)]dp.$$

Show that for each p_0, $0 \leq p_0 \leq 1$, $P_n(p_0 - \varepsilon, p_0 + \varepsilon) \to 1$ as $n \to \infty$.

P5. The observation X is poisson with parameter λ, where $P(\lambda = 1 + 1/i) = 2^{-i}$, $1 \leq i < \infty$. Given $\lambda = 1$, specify the asymptotic behavior of the posterior distribution of λ.

P6. Let X be $0 - 1$ with probability given the parameter p, $0 \leq p \leq 1$,

$$P[X|p] = p + \frac{1}{2}(p = \frac{1}{4}) - \frac{1}{2}(p = \frac{3}{4}).$$

Let the prior distribution of p be uniform. Show that the posterior distribution given n i.i.d. observations X_1, X_2, \ldots, X_n is not consistent for $p = \frac{1}{4}$ or $p = \frac{3}{4}$.

P7. Let P be a unitary probability on \mathcal{A}. Let Y be a random variable, let \mathcal{G} be the probability space containing sets of form $\{Y \leq a\}$, and let \mathcal{G}_n be the probability space generated by sets of form $\{Y \leq k/2^n\}$, $-\infty < k < \infty$.

Let

$$S_{nk} = \left\{ \frac{k}{2^n} < Y \leq \frac{k+1}{2^n} \right\}.$$

Show that

$$P_n(X) = \sum_{P(S_{nk}) > 0} S_{nk}P(S_{nk}X)/P(S_{nk})$$
is a conditional probability on \mathcal{X} to \mathcal{Y}. Suppose that P_n is a conditional probability on \mathcal{X} to \mathcal{Y} such that $P_n P_n = P_n$. Then $P_n(X) \to P_n(X)$ in P. (In this way, the conditional probability of \mathcal{X} given the random variable Y is approximated by directly computed conditional probabilities given discrete random variables Y_n which approximate Y.)

P8. A Markov chain, with a finite number of states, has probability p_i for the initial state to be state i, and probability p_{ij} for a transition from state i to state j. The initial state and an infinite sequence of transitions is observed. Assume that the prior distribution for $\{p_i\}$ and $\{p_{ij}\}$ is uniform over the sets $0 \leq p_i \leq 1$, $\sum p_i = 1$; $0 \leq p_{ij} \leq 1$, $\sum_j p_{ij} = 1$. Specify the limiting posterior distribution of $\{p_i\}$ and $\{p_{ij}\}$.

P9. Let P be a probability on \mathcal{X} such that $X \in \mathcal{X} \Rightarrow X^2 \in \mathcal{X}$. Let \mathcal{Y} be a probability subspace of \mathcal{X} such that $PY^2 = 0 \Rightarrow Y = 0$, and suppose that \mathcal{Y} is complete with respect to the metric $\rho(Y_1, Y_2) = P(Y_1 - Y_2)^2$: if $\rho(Y_n, Y_m) \to 0$, there exists $Y \in \mathcal{Y}$ such that $\rho(Y, Y_n) \to 0$. Define $P(X | \mathcal{Y}) = Y$ if $Y \in \mathcal{Y}$ minimizes $P(X - Y)^2$. Show that $P(X | \mathcal{Y})$ is uniquely defined, and is a conditional probability on \mathcal{X} to \mathcal{Y}. (Doob, 1953).

P10. In the binomial case, if P has an atom at p_0, then $P_n \{p_0\} \to 1$ as P if p_0 is true.

4.8. References

CHAPTER 5
Making Probabilities

5.0. Introduction

The essence of Bayes theory is giving probability values to bets. Methods of generating such probabilities are what separate the various theories. If probabilities are personal opinions, then they are determined by asking questions or observing which of a family of bets an individual accepts. There is a small theory for extracting personal probabilities, the elicitation of probabilities, for example Winkler (1967). To discover a person’s probabilities for the disjoint events A_i for example, you offer to pay $+\log x_i$ if A_i occurs where x_i is the person’s stated probability for the event A_i. If the person’s “true” probabilities are p_i, his expected gain is $\sum p_i \log x_i$ which is maximized when $x_i = p_i$. This elicitation function is not entirely satisfactory, since he may over-estimate the probability of unlikely events to avoid large losses.

There are a number of objective methods of generating probabilities that are sophisticated versions of the principle of insufficient reason—they attempt to give probabilities that correspond to no information, in the hope that any information may be incorporated using Bayes theorem. It is necessary in every case to assume some prespecified probabilities on which to build the “indifferent” probabilities.

We have rested the tortoise four square upon the elephant; but what does the elephant stand on? A method of basing probabilities on similarity judgments is proposed.

5.1. Information

If f is a density with respect to \mathcal{X}, and $P_X = Q(f_X)$ each X in \mathcal{X}, write $f = dP/dQ$ and $P = Q.f$.

The information of P with respect to Q is $I(P, Q) = Q(dP/dQ) \log(dP/dQ)$.
5.2. Maximal Learning Probabilities

Let P be a probability on \mathcal{X} and let X, Y and $X \times Y$ be random variables defined on \mathcal{X}. Suppose that a quotient probability P^x_y exists, satisfying $P^{x,y} = P^x P^y_x$.

Note: It may happen that no minimal information P exists, but that there exists $P_0 = Q \cdot f_0$ such that for each A with $0 < P_0(A) < \infty$, $P_A = Q(f_0 A)/P_0(A)$ is the minimal probability P under the additional constraints $P A = 1$, $P(X) = 0$ if $X A = 0$. The P_As are conditional probabilities given A corresponding to P_0, and P_0 may reasonably be taken to be the minimal P. For example, if Q is uniform on the integers, the optimal P under the constraints that all but a finite number of probabilities are zero and $P1 = 1$, has all non-zero probabilities equal. Thus the overall minimal P should be taken to be uniform on the integers.

Note: Since $I(P, Q)$ is convex as a function of P, it may be shown that the minimal information P is unique if it exists.

Note: Since $I(P, Q)$ is convex as a function of P, it may be shown that the minimal information P is unique if it exists.

Note: Since $I(P, Q)$ is convex as a function of P, it may be shown that the minimal information P is unique if it exists.

Note: Since $I(P, Q)$ is convex as a function of P, it may be shown that the minimal information P is unique if it exists.

Note: Since $I(P, Q)$ is convex as a function of P, it may be shown that the minimal information P is unique if it exists.

Note: Since $I(P, Q)$ is convex as a function of P, it may be shown that the minimal information P is unique if it exists.

Note: Since $I(P, Q)$ is convex as a function of P, it may be shown that the minimal information P is unique if it exists.

Note: Since $I(P, Q)$ is convex as a function of P, it may be shown that the minimal information P is unique if it exists.

Note: Since $I(P, Q)$ is convex as a function of P, it may be shown that the minimal information P is unique if it exists.

Note: Since $I(P, Q)$ is convex as a function of P, it may be shown that the minimal information P is unique if it exists.

Note: Since $I(P, Q)$ is convex as a function of P, it may be shown that the minimal information P is unique if it exists.

Note: Since $I(P, Q)$ is convex as a function of P, it may be shown that the minimal information P is unique if it exists.

Note: Since $I(P, Q)$ is convex as a function of P, it may be shown that the minimal information P is unique if it exists.

Note: Since $I(P, Q)$ is convex as a function of P, it may be shown that the minimal information P is unique if it exists.

Note: Since $I(P, Q)$ is convex as a function of P, it may be shown that the minimal information P is unique if it exists.
If \(P^{X,Y} \) has density \(f \) with respect to \(P^X \times P^Y \) (that is \(P^{X,Y}W = P^X P^Y[fW] \) for \(W \in \mathcal{X} \times \mathcal{Y} \)),
define the information between \(X \) and \(Y \) to be \(P^{X,Y}[\log f] = P^{X,Y}[\log (dP^{X,Y}/dP^X \times P^Y)] \). This measure is zero if \(X \) and \(Y \) are independent (\(P^X_Y = P^Y \)), and it is non-negative if \(P \) is unitary. Define the conditional information of \(Y \) given \(X \) by \(I(Y|X) = I(p^Y_X, P^Y) \); then \(P^X[I(Y|X)] \) is the information between \(X \) and \(Y \). See Lindley (1956).

If \(P^X \) is \(\sigma \)-finite, and \(P^Y_X \) has density \(h \) with respect to a probability \(Q^Y_X \), \(h = dP^Y_X/dQ^Y \), then \(P^Y \) has density \(P^X h_T \) with respect to \(Q \), and
\[
P[A \log dP/dQ \times dP^Y] = P^X[I(p^Y_X, Q)] - I[p^Y_X, Q],
\]
which may be interpreted as the probable change of information about \(Y \) with respect to \(Q \), due to learning \(X \).

If \(P^Y_X \) is known, \(P^{X,Y} \) is determined by \(P^X \); Good (1969), Zellner (1977) and Bernardo (1979) have suggested determining \(P^X \) to be a "maximal learning probability," maximizing \(P^{X,Y}[\log (dP^{X,Y}/P^X \times P^Y)] \); thus learning \(Y \) will maximally increase the information about \(X \).

Theorem. Let \(P^{X,Y} \) be unitary, with marginal probabilities \(P^X, P^Y \) and quotient probability \(P^Y_X \). For \(P^Y_X \) fixed, if there exists \(P^X \) with
\[
(1) \quad P^X[I(p^Y_X, P^Y)] = \alpha
\]
\[
(2) \quad I(p^Y_X, P^Y) = \alpha
\]
then the maximal information between \(X \) and \(Y \) is \(\alpha \), and \(Q^X_X \) produces maximal information if and only if it satisfies (1), (2) and \(P^Y = Q^Y_X \).

Proof. \(Q^X_X[I(p^Y_X, Q^Y) - I(p^Y_X, P^Y)] \)
\[
= Q^X_X[I(p^Y_X, P^Y)]
\]
\[
= Q^Y_X [\log dP^Y/dQ^Y] \leq 0 \text{ with equality only if } P^Y = Q^Y.
\]
Thus \(Q^X_X[I(p^Y_X, Q^Y)] \leq \alpha = P^X[I(p^Y_X, P^Y)] \) with equality only if \(P^Y = Q^Y \) and if (1) and (2) are satisfied by \(Q \). \(\square \)

Example. Let \(Y = 0 \) or \(1 \), let \(X \) be a binomial parameter \(0 \leq X \leq 1 \), so that \(P^X_X Y = X, P^X_Y Y = P^X \).
\[
I[p^Y_X, P^Y] = (1 - X) \log \frac{1 - X}{1 - P^X_Y} + X \log \frac{X}{P^X}.
\]
If \(P^X = 1 \) and \(P^X = 1/2 \), then \(I(p^Y_X, P^Y) = \ln 2 \) at \(X = 0, 1 \) and \(I[p^Y_X, P^Y] = (1 - X) \log (1 - X) + X \log X - \ln 2 \leq \ln 2 \) for all \(X \). Thus \(P^X \) is a maximal learning probability, and it is unique.

For two binomial observations, the maximal learning probability is \(P^X = 15/34, P^X = 4/34, P^X = 15/34 \); empirical evidence suggests that the maximal learning probability is carried by \((n + 1)\) atoms for \(n \).
observations and converges weakly to the Jeffreys distribution with $\sin^{-1} \sqrt{X}$ uniform.

5.3. Invariance

Let X be a random variable from U, \mathcal{X} to S, \mathcal{X}. Let σ be a $1-1$ transformation of S onto itself such that $f \sigma \in \mathcal{X}$ each $f \in \mathcal{X}$. A probability P^X is relatively invariant under σ, or σ-invariant if

$$P^X = k P^{\sigma X} \text{ some } k, \text{ that is }$$

$$Pf(X) = k Pf(\sigma X), \text{ each } f \in \mathcal{X}.$$

(If P^X is unitary, $k = 1$; note that $P^{\sigma X} f = P^X f \sigma$ for any σ.)

For example, let $X = X_1, X_2, \ldots, X_{10}$ denote the results, in heads or tails, of tossing a penny ten times; and suppose we have no reason to differentiate between the tosses—each order is equally likely. Let σ be a permutation of 10 numbers; $\sigma X = X_{\sigma_1}, X_{\sigma_2}, \ldots, X_{\sigma_{10}}$. Then X and σX have the same distribution.

A quotient probability P^X_Y is relatively invariant under σ, τ if σ is a $1-1$ transformation of S, \mathcal{X}, τ is a $1-1$ transformation of T, \mathcal{Y} and

$$P^X_Y = k P^{\sigma \tau X} \text{ some } k.$$

(Note that $P^X_Y f = P^{\sigma \tau X}_{\sigma \tau Y} f \tau$ for any $1-1 \tau$.) If P^Y is relatively invariant under τ, and P^X_Y is relatively invariant under σ, τ, it follows from the product rule that $P^{X,Y}$ is relatively invariant under σ, τ—that is $P^{\sigma X, \tau Y} = k P^{X,Y}$. Conversely, if P^Y is relatively invariant under τ and $P^{X,Y}$ is relatively invariant under σ, τ, and if P^X_Y is defined, then P^X_Y is relatively invariant under σ, τ as P^Y. More precisely, for each $f \in \mathcal{X}, \tau \in \mathcal{Y}$, $P^Y(\{P^X_Y f - k P^{\sigma \tau X}_{\tau Y} f \mid g\} = 0$.

Invariances are used to generate prior probabilities as follows. Suppose that X is an observation, Y is an unknown parameter. A model specifies the quotient probability P^X_Y, and transformations σ and τ are found such that P^X_Y is σ, τ-invariant. It is now assumed that the same invariance applies to the posterior distribution of Y given X; this will occur if the prior distribution is τ-invariant. Thus each invariance found on the model induces a constraint on the prior; conceivably, we might find so many invariances on the model that no prior satisfies them all! Here, we are arguing by analogy that observing σX given τY is similar to observing X given Y, since the probability models are the same—therefore conclusions about τY given σX should correspond to conclusions about Y given X. See Hartigan (1964), Stone (1970), and also Fraser (1968) for a non-Bayesian theory of inference using invariances.

Example. Let X and Y be real valued random variables with $(P^X_Y f)(t) = \int f(s)h(s - t)ds$ some density h. Equivalently, $X - Y$ has density h given Y with respect to Lebesgue measure. Let $\sigma X = X + c, \tau Y = Y + c$.
Then \(P_{\sigma \tau}^X f = P_{\gamma}^X f \sigma = P_{\gamma}^X (f \sigma) \tau^{-1} \) for any \(\sigma, \tau \).

Thus \(\sigma, \tau \) is an invariant transformation for \(P_{\gamma}^X \), and so \(P_{\gamma}^Y \) is required to be invariant under \(\tau \). Thus \(P_{\gamma}^Y \) has density \(P(t) = e^{\delta t} \) with respect to lebesgue measure. The posterior density for \(P_{\gamma}^X \) is \(e^{\delta t} f(s - t) / \int e^{\delta t} f(s - t) dt \) with respect to lebesgue measure—and \(P_{\gamma}^X \) is \(\tau, \sigma \)-invariant.

5.4. The Jeffreys Density

Let a distance \(\rho \) be a non-negative function on \(S \times S \), and assume \(\{ s \mid \rho(t, s) \leq c \} \) lies in \(\mathcal{X} \) on \(S \). A local \(\rho \)-probability on \(\mathcal{X} \) is a probability \(P \) such that

\[
\lim_{c \to 0} P\{ \rho(t_1, s) \leq c \} / P\{ \rho(t_2, s) \leq c \} = 1 \quad \text{for each } t_1, t_2 \text{ in } S.
\]

Such a probability gives approximately equal value to small spheres.

Jeffreys (1946) considered a number of measures of distance between two probabilities. Write \(f = dP/dQ \) if \(P \) has density \(f \) with respect to \(Q \).

- **Information distance:**
 \[
 I(P, Q) = P\left(\log \frac{dP}{dQ} \right)
 \]

- **Root or Hellinger distance:**
 \[
 r(P, Q) = Q\left(\frac{(dP/dQ)^{1/2} - 1}{1} \right)^2
 \]

- **Absolute distance:**
 \[
 a(P, Q) = Q\left| \frac{dP}{dQ} - 1 \right| = \sup_{|X| \leq 1} (P X - Q X).
 \]

Since \((u^{1/2} - 1)^2 \leq |u - 1|, r(P, Q) \leq a(P, Q) \). Using Schwartz's inequality, for \(P \) and \(Q \) unitary, \(a(P, Q) \leq 2r(P, Q)^{1/2} \). See Pitman (1979) for applications of \(r(P, Q) \) to non-Bayesian inference.

Lemma. Let \(\{ P_n \} \) and \(P \) be unitary. Then \(r(P_n, P) \to 0 \) as \(n \to \infty \) if and only if \(dP_n/dP \to 1 \) in \(P \).

Proof. Let \(f_n = dP_n/dP \).

Then \(r(P_n, P) \to 0 \Rightarrow P[f_n^{1/2} - 1]^2 \to 0 \Rightarrow f_n^{1/2} \to 1 \) in \(P \Rightarrow f_n \to 1 \) in \(P \).

Conversely

\[
f_n \to 1 \text{ in } P \Rightarrow f_n^{1/2} \to 1 \text{ in } P \Rightarrow f_n^{1/2} - 1 \{ |f_n^{1/2} - 1| < \varepsilon \} \to 0 \text{ in } P
\]

\[
\Rightarrow P[f_n^{1/2} - 1 \{ |f_n^{1/2} - 1| < \varepsilon \}] \to 0
\]

\[
\Rightarrow Pf_n^{1/2} \{ |f_n^{1/2} - 1| < \varepsilon \} \to 1 \text{ since } P \{ |f_n^{1/2} - 1| < \varepsilon \} \to 1
\]

\[
P(f_n^{1/2} - 1)^2 = 2 - 2Pf_n^{1/2} \leq 2 - 2P \{ f_n^{1/2} |f_n^{1/2} - 1| < \varepsilon \} \to 0.
\]

5.4. The Jeffreys Density

Theorem. Let \mathcal{P} be a family of unitary probabilities P_t on \mathcal{X}, indexed by T, a compact subset of \mathbb{R}^p such that the interior of T is dense in T. Assume

1. P_t has density f_t with respect to some probability μ on \mathcal{X}.
2. $f_t = f_s$ as $\mu \Rightarrow s = t$.
3. For all t, there exists a vector derivative $(\partial/\partial t)f_t^{1/2}$ such that

$$h(s, t) = (f_s^{1/2} - f_t^{1/2} - (s - t)' \frac{\partial}{\partial t} f_t^{1/2}) \left\| s - t \right\| \to 0 \text{ as } \left\| s - t \right\| \to 0$$

where $\left\| s - t \right\|$ is euclidean distance.
4. For $\left\| s - t \right\| < \delta_t > 0$, $h(s, t) < Z_t$ where $\mu(Z_t^2) < \infty$.

The probability J that has density with respect to lebesgue measure on T equal to the determinant $j(t) = \mu[(\partial/\partial t)f_t^{1/2}((\partial/\partial t)f_t^{1/2})]^{1/2}$, is a local ρ-measure where ρ is the Hellinger distance, provided $j(t)$ is continuous and non-zero in T.

Proof. $r(P_s, P_t) = \mu(f_s^{1/2} - f_t^{1/2})^2$. Fix t.

As $r(P_s, P_t) \to 0, f_s/f_t \to 1$ in P_t; let s_0 be a limit point of the sequence of s values (by compactness, s_0 exists). From (3), $f_s \to f_s \circ_0$. Therefore $f_{s_0}/f_t = 1$ in P_t which implies $s_0 = t$ from (2).

Thus $r(P_s, P_t) \to 0$ if and only if $s \to t$, so that the set of s values with $r(P_s, P_t) < \varepsilon$ may be found in a neighbourhood of t.

From (3), $r(P_s, P_t) = (s - t)' \mu[(\partial/\partial t)f_t^{1/2}((\partial/\partial t)f_t^{1/2})]^{1/2} + o(|s - t|^2)$.

The sphere $r(P_s, P_t) \leq \varepsilon$ corresponds to an approximate ellipsoid in T, $(s - t)' \sum_{t}(s - t) \leq \varepsilon$ of volume $K \varepsilon^{1/2p}|\sum_{t}|^{-1/2}$ where $j(t) = |\sum_{t}|^{1/2}$. The probability of $r(P_s, P_t) \leq \varepsilon$, with the specified density $j(t)$, is $K \varepsilon^{1/2p}[1 + o(1)]$ since j is continuous and positive. The density $j(t)$ thus generates a local ρ-probability.

The Jeffreys density was put forward simultaneously by Jeffreys (1946) and by Perks (1947). Perks considered confidence regions for t which may be constructed from a sequence of independent observations each distributed as P_t. The confidence region in the neighbourhood of t has volume asymptotically proportional to j_t^{-1}, under certain regularity conditions similar to those in the theorem. Thus if t_0 is the true value of t, we will have a confidence region closely concentrated near t_0 if j_t is large; Perks places density j_t on t to represent this expectation. A more explicit confidence justification is given by Welch and Peers (1966), for the case where T is the real line: after n observations from \mathcal{X}, the conditional probability of t given n observations is P_n: choose $t_{n, a}$ so that $P_n(t < t_{n, a}) = a$; under regularity conditions the confidence size of the interval estimate $\{t < t_{n, a}\}$ is $P_n(t < t_{n, a}) = a + 0(n^{-1/2})$, but for Jeffreys’ density $P_n(t < t_{n, a}) = a + 0(n^{-1})$. Thus the Jeffreys density gives Bayes one-sided intervals which are more nearly confidence intervals than the intervals for any other prior. It should be noted
that the same justification does not hold for two-sided intervals, Hartigan (1966).

The Jeffreys density is also obtained from maximum learning probabilities (Bernardo (1979): suppose that \(n \) independent observations with probability \(P_t \) generate the space \(\mathcal{X}_1 \times \cdots \mathcal{X}_n \), and let \(\mathcal{U} \) be the Baire functions on \(T \). As \(n \to \infty \), the information between \(\mathcal{X}_1 \times \cdots \mathcal{X}_n \) and \(\mathcal{U} \), denoted by \(I_n \), satisfies, under regularity conditions

\[
I_n - \frac{1}{2} \log n \to - I(P^u, J) + K.
\]

Thus the maximal learning probability for the asymptotic information between \(\mathcal{X}_1 \times \cdots \mathcal{X}_n \) and \(\mathcal{U} \), is the Jeffreys probability \(J \).

The Jeffreys probability is induced on the indexing set \(T \) by the family of probabilities \(\mathcal{P} = \{ P_t, t \in T \} \); it will provide the same probability on \(\mathcal{P} \) regardless of the particular set \(T \) used to index \(\mathcal{P} \). The topology on \(T \) is induced by the Hellinger distance on \(\mathcal{P} \). The probability on \(T \) is unchanged if Jeffreys' probability is computed using a number of observations from \(\mathcal{X} \) rather than a single observation. These properties are also possessed by the family of densities \(P_x(t) \)

\[
\frac{d}{dt} \log P_x(t) = \left\{ \frac{\partial}{\partial t} \log f \frac{\partial^2}{\partial t^2} \log f \right\} + \alpha P \left(\frac{\partial}{\partial t} \log f \right)^3 \right. \left\{ \frac{\partial}{\partial t} \log f \right\}^2
\]

for \(t \) one dimensional, Hartigan (1965). This family gives the Jeffreys probability when \(\alpha = 1/2 \), and often generates commonly accepted prior densities with suitable choice of \(\alpha \). Perhaps there is an interpretation in differential geometry.

If a subset of \(\mathcal{P} \) is considered, \(\mathcal{P}' = \{ P_t, t \in T' \} \), where \(T' \) is a compact set in \(R^k \) whose interior is dense in \(T' \), then the Jeffreys probability on \(T' \) may be obtained by conditioning the probability on \(T \) to \(T' \), provided \(J(T') > 0 \). If however the indexing set \(T \) is partitioned into a family \(\{ T_x \} \) of indexing sets of lower dimensionality, the Jeffreys probabilities on each of the \(T_x \) might not be conditional probabilities from Jeffreys' probability on \(T \); the Jeffreys construction is not consistent with the combination of conditional probabilities.

5.5. Similarity Probability

Let \(X, Y \) and \(X \times Y \) be random variables from some probability space into \((S, \mathcal{X}), (T, \mathcal{U}) \) and \((S \times T, \mathcal{X} \times \mathcal{U}) \). If \(P^X, Y \) has density \(l \) with respect to \(P^X \times P^Y \) (that is \(P^X Y = P^X P^Y[I] \)) for \(W \) in \(\mathcal{X} \times \mathcal{U} \), call \(l \), a real valued function on \(S \times T \), the likeness or similarity between \(S \) and \(T \).

The random variable \(Y \) describes a number of possible outcomes in the past, the random variable \(X \) describes outcomes in the future, and \(l \) specifies similarities between pairs of these outcomes. We propose that \(l \) be specified
subjectively to correspond to perceived similarities, and that the probabilities $P^{X,Y}$, P^X and P^Y be determined from l. (Hartigan, 1971). In the notation of 5.2, $l = dP^X / dP^X$, the density of the quotient probability P^X relative to the marginal probability P^X. If X and Y are both discrete,

$$l(x, y) = P(X = x, Y = y) / P(X = x)P(Y = y).$$

If P^X and P^Y have densities with respect to some probabilities Q^X and Q^Y

$$l(x, y) = p^{X,Y}(x, y) / p^X(x)p^Y(y)$$

where $p^{X,Y}$, p^X and p^Y are densities of $P^{X,Y}$, P^X and P^Y.

Example 1: Selecting from a deck of cards. A deck of cards is composed of 52 cardboard rectangles of apparently identical dimensions, one side of the rectangles being distinguished by different markings, the other side marked the same for all cards. The deck is shuffled with the uniform side showing. What is the probability that the top card is the ace of spades?

Let X denote the top card. Let Y denote past knowledge about this deck of cards, observations of the shuffling process, and any other information. For x one of the expected 52 cards, and for y past knowledge that does not refer to a particular card, take $l(x, y)$ to be constant. Thus

$$P(X = x, Y = y) = cP(X = x)P(Y = y)$$

$$P(X = x | Y = y) = cP(X = x).$$

Now consider the event that the top card is either x, one of the 52, or a card with a picture of a rabbit (the children have been at the cards again). Call this event $\{X = x$ or $R\}$.

Then

$$P[X = x or R | Y = y] = c'P[X = x or R], \quad c' \neq c$$

$$P[X = R | Y = y] = c'P[X = R] + (c' - c)P[X = x].$$

Thus $P(X = x | Y = y)$ and $P(X = x)$ are the same for all x. I do not feel happy about the rabbit, but some event of different similarity is necessary to show that all probabilities are equal. Note that $P[X = x | Y = y]$ is the same for all x only if the knowledge y contains nothing to distinguish the cards.

This looks like the principle of insufficient reason, but it is not subject to partitioning paradoxes. Consider for example the rotatable cards—21 cards that look different when rotated through 180°. Distinguish between the two versions of these cards when selecting the top card, so that there are 73 possible results. There are now a number of different similarities.

$l(x, y)$: rotatable x to a typical y

$l(z, y)$: non-rotatable z to a typical y

$l(x$ or $R, y)$: rotatable x or rabbit to a typical y

$l(z$ or $R, y)$: non-rotatable z or rabbit to a typical y

$l(x' or x, y)$: either version of a rotatable x to a typical y.

Assume that \(l(x' \text{ or } x, y) = l(z, y) \) but that the other three similarities are different from each other and from \(l(z, y) \). Then \(P(x | y) = P(x' | y) \) and \(P(x \text{ or } x' | y) = P(z | y) \) so that the probabilities are 1/52 for non-rotatable cards and 1/104 for rotatable cards.

Example 2: Uniform on the integers. It is not possible to present realistic examples of infinite sample spaces in a bounded universe, but such sample spaces have proved to be mathematically convenient. Who would give up Poisson and normal distributions?

Let \(X \) be a random variable taking integer values.

Let \(Y \) be past knowledge.

Suppose \(y \) is such that no integer for \(X \) is preferred, and take \(l(x, y) \) to be the same for all \(x \). Again we need some outside event \(E \) such that \(l(x \text{ or } E, y) \) is the same for all \(x \), and different to \(l(x, y) \). Then \(P[X = x | y] \) is the same for all \(x \), and the distribution on the integers is uniform. The uniform distribution on the line may be handled similarly—it will require that, \(l(\{x_1 \leq x \leq x_2\}, y) \) depend only on the length of the interval \(\{x_1 \leq x \leq x_2\} \).

Nothing much is happening, just the transfer of equal similarity perceptions to equal probability statements.

Example 3: A sequence of coin tosses. Let \(X_1, X_2, X_3, \ldots \) denote the sequence of heads or tails in tossing a coin. Let \(Y \) be past knowledge about this and other coins and other things. If \(x = x_1, x_2, \ldots, x_n \) is a particular sequences of \(n \) tosses, let \(x' = x_{\sigma_1}, x_{\sigma_2}, \ldots, x_{\sigma_n} \) denote a permutation of \(x \). Suppose \(l(x, y) = l(x', y) \) for all permutations \(x' \), and suppose

\[
l(x_1, y) \neq l(x_1 \text{ or } x_2, y) \text{ for } x_2 \text{ not a permutation of } x_1.
\]

\[
l(x_1 \text{ or } x_2, y) = l(x'_1 \text{ or } x'_2, y).
\]

Then \(P(x | y) = P(x' | y) \) and the sequence \(X_1, X_2, \ldots \) is exchangeable.

The probability distribution for \(X_1, X_2, \ldots \) is then independent Bernoulli given \(p = \lim(\sum x_i / n) \), which exists almost surely. Frequency theory assumes no more than this—thus the small probability assumptions of frequency theory may be derived from equal similarities of permuted sequences to given knowledge. To have a full probability model for a sequence of coin tosses, it is necessary to specify in addition the prior distribution of \(P \), that is to specify the similarities of various \(P \) values to given knowledge.

Assume that only a finite number of \(p \) values are possible, say \(p_1, p_2, \ldots, p_N \). Then

\[
P(p | y) = \frac{1 - l(p_i \text{ or } p_j, y)}{l(p_j, y)}
\]

More generally, \(P_z(p \in A | y) = P_{\int} \left[\{p \in A\} | l(p, y) \right] \).
If the distribution of \(p \) given \(y \) has a density \(f_y(p) \) with respect to Lebesgue measure, differentiation of this formula gives

\[
\frac{f_y(p_0)}{l(p \leq p_0, y)} + \left(\int_0^{p_0} f_y(p) dp \right) \frac{d}{dp_0} \left[\frac{1}{l(p \leq p_0, y)} \right] = \frac{f_y(p_0)}{l(p_0, y)}.
\]

For example, if \(l(p \leq p_0, y) = p_0 \) for \(0 \leq p_0 \leq 1/2 \),
\[
l(p_0, y) = 2p_0 \quad \text{for} \quad 0 \leq p_0 \leq 1/2,
\]
\[
f_y(p_0) = cp_0 \quad \text{for} \quad 0 \leq p_0 \leq 1/2.
\]

We might, by symmetrical similarity judgments, require that \(f_y(p) \) be symmetrical about \(p = 1/2 \).

I might be charged with replacing mystical methods of determining priors by mystical methods of specifying similarities. I am not proposing formal methods of determining similarities. They are subjective judgments relating expected events to past knowledge; they may come only as comparative judgments — this \(p \) value is more similar than that; even such comparative judgments may usefully constrain the conditional distribution given \(y \).

5.6. Problems

E1. Find the minimum information probability with respect to Lebesgue measure on the plane, with means, variances and covariance fixed.

E2. Let \(X > 0 \) have minimum information with respect to Lebesgue measure subject to \(P(X) = 1 \), and let \(Y > 0 \) have minimum information with respect to Lebesgue measure subject to \(P(Y^2) = 1 \). Show that \(X \) and \(Y^2 \) have different distributions, illustrating lack of invariance of minimum information probabilities.

E3. Let \(X \) and \(Y \) be two integer variables with fixed marginal distributions. Find the minimum information joint distribution of \(X \) and \(Y \) with respect to uniform probability on pairs of integers \((i,j), -\infty < i < \infty, -\infty < j < \infty \).

P1. A person ranks \(N \) candy bars, which have delectability coefficients \(d_1, d_2, \ldots, d_N \) such that the \(i \)th bar is preferred to the \(j \)th bar with probability \(d_i/(d_i + d_j) \). Find the minimum information probability for the complete ranking of the candy bars, with the probabilities that \(i \) is ranked above \(j \) as given, with respect to uniform probability over permutations of the candy bars.

P2. Let \(X_1, \ldots, X_n \) be \(n \) discrete variables with known pairwise distributions. Find the minimum information probability for the joint distribution of \(X_1, \ldots, X_n \) with respect to counting measure on atoms.

Q1. Show that a minimal information \(P \) with respect to \(Q \) may exist, satisfying \(n \) constraints \(PX_i = a_i \), but not satisfying
\[
dP/dQ = \exp \left(\lambda_0 + \sum_{i=1}^n \lambda_i X_i \right) \quad \text{for any} \ \lambda_0, \lambda_i.
\]
5. Making Probabilities

P3. Let \(\mathcal{Y}, \mathcal{X}_1, \ldots, \mathcal{X}_n, \ldots \) be probability subspaces of \(\mathcal{X} \) such that \(\mathcal{X}_n \uparrow \). Assume that a conditional probability \(P_n : \mathcal{X} \to \mathcal{X}_n \) exists for each \(n \) with \(P_n P_{n+1} = P_n \). Assume \(I(\mathcal{Y} \mid \mathcal{X}_n) \in \mathcal{X}_n \). Then \(I(\mathcal{Y} \mid \mathcal{X}_n) \) is a sub-martingale, that is

\[
P_{n-1}[I(\mathcal{Y} \mid \mathcal{X}_n)] \geq I[\mathcal{Y} \mid \mathcal{X}_{n-1}].
\]

(Roughly translated, we expect to learn something by knowing \(\mathcal{X}_n \).)

P4. Let \(P_\mu \) be a normal distribution on \(\mathcal{X} \) with mean \(\mu \), variance 1. Find the invariant transformations \((\sigma, \tau) \) for the quotient probabilities \(P_\mu^\tau \), and show that the only probability on \(\mu \) which is \(\tau \)-invariant for every \(\tau \) is lebesgue measure.

P5. Let \(P_\nu \) be a normal distribution on \(\mathcal{X} \) with mean 0, variance \(V \). Find the invariant transformations \((\sigma, \tau) \) for \(P_\nu \), and find measures on \(V \) which are \(\tau \)-invariant (more than one!).

P6. Let \(P_\nu^\chi \) be a bivariate normal distribution on \(\mathcal{X} \), with means 0 and covariance matrix \(V \). Find the invariant transformations \((\sigma, \tau) \) for \(P_\nu \), and find measures on \(V \) which are \(\tau \)-invariant.

E4. In the binomial case, find that function of \(p \) which is uniformly distributed according to the Jeffreys density.

E5. Compute the Jeffreys density in the bivariate normal case with unknown means and covariances.

P7. A contingency table has 1000 cells with cell probabilities \(p_1, \ldots, p_{1000} \), with \(\sum_{i=1}^{1000} p_i = 1 \). Show that the Jeffreys density implies that the number of cells with \(p_i > 1/1000 \) is approximately \(N(160, 134) \). Suppose that examination of the contingency table produced 12 empirical frequencies greater than 1/1000. Would you use the Jeffreys density for constructing estimates of \(p_i \)?

P8. An observation comes from the normal mixture, \(N(\theta_1, 1) \) with probability \(\frac{1}{2} \) and \(N(\theta_2, 1) \) with probability \(\frac{1}{2} \). Find the Jeffreys probability for \((\theta_1, \theta_2) \).

P9. Observe the toss of a coin, with unknown success probability \(p \), until \(r \) successes appear. Find the Jeffreys density for \(p \). Now observe \(n \) tosses of the coin, and find the Jeffreys density for \(p \). You observe a man toss a coin 50 times, getting 20 successes, and he asks you, as consulting Bayesian, to compute the posterior density of \(p \). In an effort to be impartial, you do so with the Jeffreys density for \(p \) for 50 tosses of a coin. He then confides in you that he stopped tossing when 20 successes were reached. Do you change the posterior density?

P10. Let \(P_x \) have density \((1 + \theta x)/4\pi \) with respect to uniform probability on the three dimensional sphere, for each \(x, \theta \) in the sphere. Show that the Jeffreys probability is uniform over the sphere. If \(\theta \) is constrained to lie in a great circle through the poles, show that Jeffreys probability is uniform over the great circle. Show that the constrained Jeffreys probability is not a conditional probability for the unconstrained Jeffreys probability. (Similarly it is not possible to have joint probabilities and conditional probabilities which are rotation invariant.)
5.7. References

CHAPTER 6
Decision Theory

6.0. Introduction

Fisher (1922) compared two estimators by considering their distributions given an unknown parameter of interest. For example, in estimating a normal distribution mean the sample mean is unbiased with variance $\frac{2}{\pi}$ times the variance of the sample median, for all values of the distribution mean, so it is to be preferred to the sample median. Of course, it may be difficult in general to decide between the two families of distributions.

Neyman and Pearson (1933) proposed evaluation of a test statistic by considering the probability of rejection of the null hypothesis under various values of the parameter of interest.

Wald (1939) proposed a general theory to cover both of these cases, in which a general decision function (of the data) is evaluated by its average loss for each value of the parameter. Wald suggested minimax techniques for selecting decisions, that arose out of von Neumann's theory of games—we play a game against nature (the unknown parameter value) so that our loss will not be too severe if nature chooses the worst parameter value.

Ramsey, de Finetti and Savage use similar ideas from the theory of games in showing that a coherent betting strategy requires a probability distribution on the set of bets. There is no technical or conceptual difference between coherent betting and admissible decision making. If we decide to use one decision function rather than another, we are accepting the bet corresponding to the difference in losses for the two decision functions.

6.1. Admissible Decisions

It is necessary to choose one of a set of decisions D. The consequences of the decisions are determined by the outcome s in a set of possible outcomes S. For decision d, and outcome s, there is a loss $L(d, s)$. Since there is no reason
to differentiate between two decisions which have the same loss for each value of \(s \), one may regard the decision set \(D \) as a set of real valued functions on \(S : d(s) \) is the loss incurred by decision \(d \) if outcome \(s \) occurs.

Let \(d_1 \leq d_2 \) mean \(d_1(s) \leq d_2(s) \) for \(s \in S \). Say that \(d \) is admissible if it is minimal in \(D \), that is \(d' \leq d, d' \in D \Rightarrow d' = d \). A complete class \(C \) is a subset of \(D \) such that \(d' \in D - C \) implies \(d \leq d' \) for some \(d \) in \(C \). A complete class is minimal if it contains no proper complete class. It is easy to show that if a minimal complete class exists, it is the set of admissible decision functions. However, no admissible decision functions may exist; consider \(S = \{1\}, D = \{d | - \infty < d(s) < \infty \} \); every decision is inadmissible, no minimal complete class exists. See Wald (1939, 1950) for the first theory, and Ferguson (1967) and Berger (1980) for expository texts.

If \(P \) is a probability on a probability space \(\mathcal{X} \) on \(S \), such that \(D \subseteq \mathcal{X} \), a decision \(d_0 \) is a Bayes decision if \(P(d_0) \leq P(d), d \in D \). If a Bayes decision is unique it must be admissible (for otherwise there exists \(d' \leq d_0, d' \neq d_0 \), which implies \(P(d') \leq P(d_0) \), so that \(d' \) is also a Bayes decision, contradicting uniqueness). We will say that \(d_0 \) is \(P \)-Bayes.

If \(P \) is a finitely additive probability on \(\mathcal{X} \), a linear space of functions including \(D \), then \(d_0 \) is \(P \)-Bayes if \(P(d - d_0) \geq 0, d \in D \).

Theorem. Let \(P \) be a finitely additive probability on \(\mathcal{X} \) including \(D \). If \(d_0 \) is unique \(P \)-Bayes, then \(d_0 \) is admissible. If \(d_0 \) is admissible and \(D \) is a convex space of bounded functions then \(d_0 \) is \(P \)-Bayes with respect to a finitely additive probability \(P \) on a space \(\mathcal{X} \) including \(D \) [Heath and Sudderth (1978)].

Proof. If \(d_0 \) is \(P \)-Bayes, then \(P(d - d_0) \geq 0, d \in D \). If \(d \leq d_0 \), then \(P(d - d_0) \leq 0 \), so \(d \) must be \(P \)-Bayes. Since \(d_0 \) is unique, \(d = d_0 \) and so \(d_0 \) is admissible.

If \(d_0 \) is admissible, let \(\mathcal{X} \) be the bounded real valued functions, and define \(\mathcal{P} = \{X | d_0 + aX \geq d, \text{some } a > 0, \text{some } d \in D\} \).

Then \(X_1, X_2 \in \mathcal{P} \Rightarrow aX_1 + bX_2 \in \mathcal{P} \) for \(a \geq 0, b \geq 0 \) by convexity of \(D \). From Theorem 2.1, it is possible to extend \(\mathcal{P} \) to \(\mathcal{P}^* \supset \mathcal{P} \), such that \(\mathcal{P}^* \cap - \mathcal{P}^* = \mathcal{P} \cap - \mathcal{P} \) and \(\mathcal{P}^* \cup - \mathcal{P}^* = \mathcal{X} \). Note that \(\mathcal{P} \) includes all \(X \geq 0 \), and excludes all \(X < 0 \).

Set \(PX = \sup \{x | X - xd_0 \in \mathcal{P}^*\} \). Then \(- \infty < PX < \infty \) because \(X \) is bounded, and \(P \) is an additive functional on \(X \) with \(PX \geq 0 \) for \(X \in \mathcal{P} \); in particular \(P \) is non-negative, that is, \(PX \geq 0 \) for \(X \geq 0 \).

Since \(d_0 + (d - d_0) \geq d, d - d_0 \in \mathcal{P} \) and \(P(d - d_0) \geq 0 \) all \(d \in D \). Thus \(d_0 \) is \(P \)-Bayes as required.

Note. The idea of this theorem is that accepting \(d_0 \) over all other decisions \(d \) is accepting the bets \(d - d_0 \), all \(d \in D \). You will surely lose money (that is, \(d_0 \) is inadmissible) unless there is a finitely additive probability \(P \) such that \(P(d - d_0) \geq 0 \) all \(d \in D \).

Apparently we should be satisfied with finitely additive probability; however finitely additive probabilities do not discriminate well between deci-
sions, so that a unique P-Bayes decision is unusual; many inadmissible decisions may be also optimal for a given functional P.

Consider for example estimation of a normal mean. The data is x, the unknown mean θ, and the decision is a function of x, say δ. In the loss framework, the decision will be represented as a real valued function of θ, $d(\theta) = \int (\delta(x) - \theta)^2 \exp[-\frac{1}{2}(x - \theta)^2]dx/\sqrt{2\pi}$. Consider D to be composed of decisions d: estimate θ by $\delta(x)$ with probability α_i, where $\delta_i(x) \to x \to 0$ as $|x| \to \infty$, $i = 1, \ldots, n$. For all such decisions $d(\theta) \to 1$ as $|\theta| \to \infty$. Uniform finitely additive probability on θ gives value $\lim_{|\theta| \to \infty} X(\theta)$ to X when this limit exists. Thus all the decisions proposed are finitely additive Bayes with respect to the uniform distribution; they are not all admissible, demonstrating that optimality by a finitely additive probability is rather too easy. See Heath and Sudderth (1972, 1978).

6.2. Conditional Bayes Decisions

Let X be a random variable into S, \mathcal{X} and let Y be a random variable into T, \mathcal{Y} and assume that $X \times Y$ is a random variable into $S \times T, \mathcal{X} \times \mathcal{Y}$. Assume there is a quotient probability P^Y_X on Y given X, and denote the value of P^Y_X at s by $P^Y_X(s)$; this defines a probability on \mathcal{Y}. Similarly assume a quotient probability P^X_Y. By the product rule $P^Z = P^X_P^Y_Z = P^Y_P^X_Z$ each Z in $\mathcal{X} \times \mathcal{Y}$.

Now suppose a decision d in D is to be taken using an observation t in T. The loss, if d is taken when the parameter s is true, is $L(d, s)$. A family Δ of decision functions $\delta: T \to D$ is constructed satisfying $(s, t) \sim L(\delta(t), s) \in \mathcal{X} \times \mathcal{Y}$ for each $\delta \in \Delta$. The loss associated with δ is the risk $r(\delta, s) = P^X(s)[L(\delta, s)]$.

Theorem. Suppose that, for each t, $\delta_0(t)$ is $P^Y_X(t)$-Bayes. If $\delta_0 \in \Delta$, then δ_0 is P^X-Bayes. Conversely if δ_0 is P^X-Bayes, and $\delta_0(t)$ is $P^Y_X(t)$-Bayes, then $\delta_0(t)$ is P^Y_X-Bayes as P^Y.

Proof.

$$P^X(t)[L(\delta_0(t), \cdot) - L(d, \cdot)] \leq 0 \text{ all } d.$$
$$P^X(t)[L(\delta_0(t), \cdot) - L(\delta(t), \cdot)] \leq 0 \text{ all } \delta \in \Delta.$$

Since

$$P^X_P^Y = P^Y_P^X,$$

$$P^X_P^Y[L(\delta_0, \cdot) - L(\delta, \cdot)] \leq 0 \text{ all } \delta \in \Delta,$$

$$P^Y_P^X[r(\delta_0, \cdot) - r(\delta, \cdot)] \leq 0 \text{ all } \delta \in \Delta.$$

Thus δ_0 is P^X-Bayes.

Conversely if δ_0 is also P^X-Bayes,

$$P^Y_P^X(t)[L(\delta_0(t), \cdot) - L(\delta_0(t), \cdot)] \leq 0,$$

$$P^X(t)[L(\delta_0(t), \cdot) - L(\delta_0(t), \cdot)] = 0 \text{ as } P^Y.$$

\[\square\]
Note. The theorem makes it practicable to find Bayes decision functions, since it is easier to search over the smaller space of decisions D to obtain a conditional Bayes decision, than to search over the larger space of decision functions Λ.

Example. Let S, T be the real line, let $P_X^Y(s)$ denote the normal distribution with mean s and variance 1. Let \mathcal{X} and \mathcal{Y} be the Baire functions on S and T. Take P_X to be normal with mean 0 and variance σ^2. Then $P_X^Y(t)$ is normal with mean $\sigma^2 t/(1 + \sigma^2)$ and variance $\sigma^2/(1 + \sigma^2)$.

Let D be the real line, $L(d, s) = (d - s)^2$, and let Λ be the set of Baire functions on D. Then $r(\delta, s) = \int ((\delta(t) - s)^2 \exp\left[-\frac{1}{2}(t - s)^2\right] dt/\sqrt{2\pi}$. For a particular t, the $P_X^Y(t)$-Bayes decision $\delta_0(t)$ minimizes

$$\int (d - s)^2 \exp\left[-\frac{1}{2}\left(s - \frac{\sigma^2 t}{1 + \sigma^2}\right)^2 \frac{1 + \sigma^2}{\sigma^2}\right] ds, \delta_0(t) = \frac{\sigma^2 t}{1 + \sigma^2}.$$

Thus the P_X^Y-Bayes decision function is $\delta_0(t) = \sigma^2 t/(1 + \sigma^2)$.

It may happen that δ_0 is conditionally Bayes (that is $\delta_0(t)$ is $P_X^Y(t)$-Bayes for each t), but not Bayes because $\delta_0 \notin \Lambda$. In the present example, if P_X is uniform, $\delta_0(t) = t$ is the conditional Bayes decision but it has risk $r(\delta_0, s) = 1$ which is not integrable, so it is not the Bayes decision; in certain cases, conditional Bayes decisions are even inadmissible (see Chapter 9 on many means). It should not be thought that the possible inadmissibility of conditionally Bayes decisions is caused by P_X not being unitary; in the present example, if $P_X = N(0, \sigma^2)$, and $L(d, s) = \exp(\frac{1}{2} s^2/\sigma^2) (d - s)^2$, the conditional Bayes estimate is $\delta_0(t) = t$, but it is not the Bayes estimate. In the same way, the inadmissible estimate for many normal means is conditionally Bayes with respect to a unitary prior distribution. See also Chapter 7 on conditional bets.

6.3. Admissibility of Bayes Decisions

If a Bayes decision d_0 is unique it is admissible [for any decision beating it would also have to be the Bayes decision].

If the decisions d in D are continuous in some topology on S, and the finitely additive probability P is supported by S (that is, $Pf > 0$ if f is continuous, non-negative, and not identically zero), then any decision which is P-Bayes is admissible.

[If d_0 is P-optimal and $d' \leq d_0$, then $P(d_0) \leq P(d') \Rightarrow P(d_0 - d') = 0$. Thus $d' = d_0$ since P is carried by S.]

Let P be a probability on \mathcal{X} on S. Say that P is supported by S if for each continuous X in \mathcal{X}, $X \neq 0, X \geq 0$ implies $PX > 0$. Say that P is X_n-finite if some sequence X_n in \mathcal{X} has $X_n \uparrow 1$. Say that a decision d_0 is X_n-limit Bayes if $\sup_{d \in D} P[X_n(d_0 - d)] \to 0$ as $n \to \infty$.
Theorem. If P is supported by S and is X_n-finite for some continuous X_n, and if D consists of continuous functions, and if d_0 is X_n-limit Bayes, then d_0 is admissible.

Proof. If $d' \leq d_0$ and $d' \neq d_0$, $X_n(d_0 - d') \geq 0$, $X_n(d_0 - d') \neq 0$ for n large enough, so $P[X_n(d_0 - d')] > 0$ for n large. Since $X_n(d_0 - d') \uparrow (d_0 - d')$, $P[X_n(d_0 - d')] \to 0$ is impossible. Thus d_0 is admissible. \hfill \Box

Note. If P is carried by S, if D consists of continuous functions in \mathcal{X}, and if d_0 is P-Bayes, then d_0 is admissible. The present theorem applies to decisions d_0 which may not lie in \mathcal{X}.

Example. Let x be an observation from $N(\theta, 1)$, and suppose that θ is to be estimated with squared error loss function. The theorem will be used to show that x is admissible, being X_n-limit Bayes with respect to uniform probability μ on θ.

The estimate δ generates the decision

$$d(\theta) = \int (\delta(x) - \theta)^2 \exp\left[-\frac{1}{2}(x - \theta)^2 \right] dx/\sqrt{2\pi}$$

The decisions d are θ-continuous. The measure μ is σ-finite with respect to $f_n(\theta) = \exp(-\theta^2/n) \uparrow 1$ as $n \to \infty$

$$\inf_d \mu(f_n) = \inf \int (\delta(x) - \theta)^2 \exp\left[-\frac{1}{2}(x - \theta)^2 - \theta^2/n \right] dx d\theta/\sqrt{2\pi}$$

$$= \int \inf_\delta (\delta - \theta)^2 \exp\left[-\frac{1}{2}(x - \theta)^2 - \theta^2/n \right] d\theta dx/\sqrt{2\pi}$$

$$= \int \exp\left[x^2/(n + 2) \right] dx \left(1 + \frac{2}{n} \right)^{3/2}$$

$$= \sqrt{\pi n^{3/2} / (2 + n)}$$

$$\mu(f_n) = \sqrt{n\pi}$$

$$\sup_d \mu(f_n(1 - d)) = \sqrt{n\pi} \left[1 - \frac{n}{2 + n} \right] = 2\sqrt{n\pi/(n + 2)} \to 0.$$

Since the estimate $\delta_0(x) = x$ generates the decision $d \equiv 1$, δ_0 is continuous σ-finite Bayes as required. (Here the decision $d \equiv 1$ does not lie in \mathcal{X}.)

Example 2. Let r be a binomial observation, with $P_r\{r\} = \binom{n}{r} p^r(1 - p)^{n-r}$, $0 \leq r \leq n$. Suppose that p is to be estimated with squared error loss function—the estimator δ corresponds to

$$d(p) = \sum_{r=0}^{n} (\delta(r) - p)^2 \binom{n}{r} p^r(1 - p)^{n-r}.$$
6.4. Variations on the Definition of Admissibility

For the measure $\mu, \mu(f) = \int_0^1 f(p)[p(1 - p)]^{-1} dp$, take the functions

$$f_\alpha(p) = [p(1 - p)]^{\alpha} \uparrow 1 \text{ as } \alpha \downarrow 0.$$

$$\inf_d \mu(df_\alpha) = \inf_\delta \left\{ \sum_{r=0}^n (\delta(p) - p)^2 \binom{n}{r} p^r(1 - p)^{n-r}[p(1 - p)]^{\alpha-1} dp \right\}$$

$$= \sum_{r=0}^n \left(\frac{\Gamma(r + \alpha)\Gamma(n - r + \alpha)(n - r + \alpha)(n - r + \alpha + 1)}{\Gamma(n + 2\alpha)(n + 2\alpha + 1)} \right) \frac{1}{n} \text{ as } \alpha \to 0.$$

For $\delta_0 = \frac{r}{n}, \mu(d_\alpha f_\alpha) = \int \frac{p(1-p)}{n} p^{\alpha-1}(1 - p)^{\alpha-1} dp$

$$= \int \frac{p^\alpha(1-p)^\alpha dp}{n} = \frac{\Gamma(\alpha+1)}{\Gamma(2\alpha+2)n} \to \frac{1}{n} \text{ as } \alpha \to 0.$$

Thus $\sup_d \mu[f_\alpha(d_\alpha - d)] \to 0 \text{ as } \alpha \to 0$. Also μ is carried by the interval $[0, 1]$. Therefore d_0 is admissible.

6.4. Variations on the Definition of Admissibility

A decision d is beaten by d' at θ if $d(\theta) > d'(\theta)$. We say

- d is somewhere beaten by d' if $d'(\theta) \leq d(\theta)$ all θ, $d'(\theta) < d(\theta)$ some θ,
- d is everywhere beaten by d' if $d'(\theta) < d(\theta)$ all θ,
- d is uniformly beaten by d' if $\inf[d(\theta) - d'(\theta)] > 0$.

Then d is admissible in a set of decisions D if d is not somewhere beaten by any d' in D. Say that d is weakly admissible if it is not everywhere beaten by any d' in D, and that d is very weakly admissible if it is not uniformly beaten by any d' in D.

The sense of admissibility appropriate for finitely additive probabilities is very weak. If d_0 is a finitely additive Bayes decision with respect to P, then d_0 is very weakly admissible. [Heath and Sudderth (1978).] Conversely, the argument of Theorem 6.1 shows that if d_0 is very weakly admissible, and D is convex with $\sup s(d(s) < \infty$ each d in D, then d_0 is finitely additive Bayes with respect to some P.

The sense of admissibility appropriate for probabilities is weak. If d_0 is a Bayes decision with respect to P, then d_0 is weakly admissible. However, converse results are more complicated than in the finitely additive case. See for example Farrell (1968).
If D consists of continuous functions and S is compact, then a finitely additive P on the space of continuous functions on S is countably additive (since if a decreasing sequence of functions converges to zero it converges uniformly to zero). Thus if d_0 is weakly admissible, it is P-Bayes with respect to a unitary probability P. More generally if D consists of continuous functions zero outside compact subsets of S, a weakly admissible d_0 is P-Bayes with respect to a unitary probability P. [If d_0 is carried by S', consider decisions and probabilities restricted to S'.]

6.5. Problems

E1. Let the sample space S be finite. Let D be a set of decisions on S (real valued functions on S). Let P give positive probability to each non-zero non-negative X on S. Show that a P-Bayes decision is admissible.

E2. For decisions D on a finite S, show that no P-Bayes decision may exist, and that it might not be admissible if it does exist.

P1. Let X be a Poisson observation with $P(X = x) = \lambda^x e^{-\lambda}/x!$. Show that X is an admissible estimate of λ with squared error loss.

P2. Let X be binomial with $P(X = x) = \binom{n}{x} p^x (1 - p)^{n-x}, 0 \leq x \leq n$. Consider estimates δ of p using squared error loss. Show that the estimate $\delta(x) = x/n$ is weakly admissible.

6.6. References

CHAPTER 7
Uniformity Criteria for Selecting Decisions

7.0. Introduction

The set of admissible decision functions in a particular problem is usually so large that further criteria must be introduced to guide selection of a decision function. Many such criteria require that the unknown parameter values be treated “uniformly” in some way; decision procedures are required to be invariant or unbiased or minimax or to have confidence properties. Since selection of a decision function, from a Bayesian point of view, is selection of a probability distribution on the parameter values according to which the decision function is optimal, these criteria may be viewed as methods of selecting indifference probability distributions on the parameter values.

The general conclusion is that the various uniformity criteria are satisfied by no unitary Bayes decision procedures, establishing the necessity for considering non-unitary probabilities.

7.1. Bayes Estimates Are Biased or Exact

Let P be a probability on \mathcal{X}, let $\theta \in \mathcal{X}$ be such that a conditional probability $P[X | \theta]$ exists satisfying $PX = P[P(X | \theta)]$ for all X. Let \mathcal{Y} be a subspace of \mathcal{X}. An estimate Y in \mathcal{Y} of θ is unbiased if $P[Y | \theta] = \theta$ and exact if $P[Y \neq \theta] = 0$. A Bayes estimate of θ in \mathcal{Y} with respect to squared error loss is a Y such that $P[Y - \theta]^2$ is a minimum over $P[Y^* - \theta]^2$ with $Y^* \in \mathcal{Y}$, $(Y^* - \theta)^2 \in \mathcal{X}$.

Theorem. An unbiased Bayes estimate is exact.

Proof. Let Y be an unbiased Bayes estimate. Define $X^d = (-A) \vee X \wedge A$ for each $A \geq 0$. Note $|X|A \geq (X^d)^2 \in \mathcal{X}$.

63
Setting $Y^* = Y + \varepsilon Y^A$,

$$P[Y - \theta]^2 \leq P[Y^* - \theta]^2 = P[Y - \theta]^2 + 2\varepsilon P[Y^A(Y - \theta)] + \varepsilon^2 P(Y^A)^2.$$

Taking ε small and of sign $P[Y^A(\theta - Y)]$,

$$PY^A[\theta - Y] = 0.$$

If Y is unbiased,

$$P[Y | \theta] = \theta$$
$$P[Y - \theta | \theta] = 0$$
$$P[(Y - \theta)\theta^A | \theta] = 0$$
$$P[(Y - \theta)\theta^A] = 0.$$

Thus if Y is Bayes and unbiased,

$$P[Y - \theta][\theta^A - Y^A] = 0.$$

Since $x - y \geq x^A - y^A$ if $x \geq y$,

$$P[\theta^A - Y^A]^2 \leq 0,$$
which implies

$$P[\theta^A \neq Y^A] = 0$$
all A,

$$P[\theta \neq Y] = 0,$$
so Y is exact.

Note. It may happen that a posterior mean be unbiased. For example, let Y given θ be distributed as $N(\theta, 1)$ and let θ be uniform on the line; the posterior mean of θ given Y is Y, and

$$P[\theta^A - Y^A]^2 \leq 0.$$

Also Y is unbiased, $P[Y | \theta] = \theta$. However Y is not the Bayes estimate of θ in the class of functions $\delta(Y)$ because none of the functions $[\delta(Y) - \theta]^2$ are integrable.

7.2. Unbiased Location Estimates

Let X_1, X_2, \ldots, X_n and θ be real valued random variables on \mathfrak{X}. Suppose X_1, \ldots, X_n are independent and identically distributed given θ, and that $X_1 - \theta$ given θ has a distribution which does not depend on θ; assume that this distribution has density f with respect to Lebesgue measure.

An invariant estimator δ of θ satisfies $\delta(X + a) = \delta(X) + a$.

Theorem. Suppose that X_1 has finite second moment given θ. The Pitman estimator, the posterior mean of θ given X corresponding to a uniform prior probability on θ, is unbiased and has minimum mean square error given θ of all invariant estimators.
PROOF. Consider first the case of one observation. Any invariant estimator is of the form \(\delta(X) = X + a \) and has mean square error \(\text{var } X + [P_\theta \delta(X) - \theta]^2 \), so the Pitman estimate \(\delta_0 \) will be optimal if it is unbiased.

Now

\[
\delta_0 = \int \theta f(x - \theta) d\theta / \int f(x - \theta) d\theta = \int (x - u) f(u) du
\]

\[
P_\theta \delta_0 = \int x f(x - \theta) dx - \int uf(u) du = \theta.
\]

Thus the Pitman estimator is unbiased and optimal.

For \(n \) observations, consider the behavior of an invariant estimator \(\delta(X) \) and the Pitman estimator \(\delta_0(X) \) conditional on \(X_2 - X_1, X_3 - X_1, \ldots, X_n - X_1 \). The conditional density of \(X_1 \) is \(\prod f(X_i - \theta)/\int f(X_i - \theta) d\theta \); the conditional Pitman estimate corresponding to this density is just \(\delta_0(X) \).

Also \(\delta(X) \) is an invariant estimator of \(\theta \), considered as a function of \(X_i \) with \(X_i - X_1 \) fixed, \(i = 2, \ldots, n \). Thus the conditional risk of \(\delta_0 \) is no greater than that of \(\delta \), and hence the unconditional risk of \(\delta_0 \) is optimal. Similarly, since \(\delta_0 \) is conditionally unbiased for \(\theta \), it is unconditionally unbiased.

Note: The Pitman estimator is not the Bayes estimator corresponding to a uniform prior, because it has constant risk which is not integrable. Stein (1959) shows that the Pitman estimator is admissible whenever \(X_1 \) has finite third moment given \(\theta \), and Brown and Fox (1974) have shown admissibility under weak conditions.

7.3. Unbiased Bayes Tests

In testing, a decision is made whether a parameter \(\theta \) lies in a set \(H_0 \) or in a set \(H_1, H_0 H_1 = 0, H_0 + H_1 = 1 \). Thus \(d \) takes the values \(H_0 \) or \(H_1 \) and has loss

\[
L(d, \theta) = \alpha \{d = H_1 \} H_0 + \beta \{d = H_0 \} H_1.
\]

The loss is \(\alpha \) if you mistakenly decide \(\theta \in H_1 \) and \(\beta \) if you mistakenly decide \(\theta \in H_0 \).

A decision function based on a random variable \(Y \) is a function \(\delta(Y) \) taking values \(H_0 \) or \(H_1 \). The decision function is unbiased if \(P_\theta L(\delta(Y), \theta) \leq P_\theta L(\delta(Y), \theta') \) for \(\theta, \theta' \), which is equivalent to

\[
P_\theta[\delta = H_1] \leq \beta/(\alpha + \beta) \leq P_{\theta'}[\delta = H_1] \quad \text{for } \theta \in H_0, \theta' \in H_1.
\]

Since \(\alpha \) and \(\beta \) are usually arbitrary, the more usual definition of unbiasedness requires

\[
P_\theta[\delta = H_1] \leq P_{\theta'}[\delta = H_1] \quad \text{for } \theta \in H_0, \theta' \in H_1.
\]
Suppose now that Y and θ are random variables on \mathcal{X}, a probability P is defined on \mathcal{X}, and a quotient probability P^θ_Y exists such that $P^\theta_P = P^\theta_Y P^\theta$. The conditional Bayes decision $\delta(Y)$ minimizes $P_Y[\alpha(H_1)H_0 + \beta(H_0)H_1]$ which requires

$$P_Y[\theta \in H_1] \leq a/(a + b) \leq P_Y[\theta \in H_1] \quad \text{for } \theta = H_0, \delta(Y') = H_1.$$

Compare the form of the Bayes decision with the unbiasedness requirement. The conditional Bayes decision δ is the Bayes decision if $L(\delta(Y), \theta) \in \mathcal{X}$. The Bayes decision is saying the obvious, that you decide $\theta = H_0$ if the conditional probability of H_0 is large, and that you decide $\theta = H_1$ if the conditional probability of H_0 is small.

To test $\theta = \theta_0$ against $\theta \neq \theta_0$, assume that P^θ_Y has density $f_\theta(Y)$ with respect to some probability Q. The posterior distribution of θ given Y is given by

$$(P^\theta_Y g)(t) = P[g(\theta)f_\theta(t)]/P[f_\theta(t)]$$

and the conditional Bayes decision is:

$$\delta(t) = 1 \text{ if } P[\theta = \theta_0]f_{\theta_0}(t)/P[f_\theta(t)] \leq a/(a + b).$$

For a given prior P on θ, consider the mixture P^θ_a:

$$P^\theta_a X = aX(\theta_0) + PX.$$

The conditional Bayes decision is $\delta(t) = 1$ if $f_{\theta_0}(t)/P[f_\theta(t)] \leq k$ where k depends on a, a^\prime, b. The atom at $\{\theta_0\}$ affects only k. A test of this form will be called a P-Bayes test for $\theta = \theta_0$ against $\theta \neq \theta_0$.

Theorem. Let θ be a real valued random variable. Let Y be a random variable such that P^θ_Y has density f_θ with respect to a probability Q. Assume that $f_\theta(t)$ is θ-differentiable for each t, and $\sup_{\theta \in I} |(df_\theta)/d\theta|$ is Q-integrable for each finite interval I of θ values. Let the prior probability for θ be P^θ.

The test $\delta(t) = 1$ if $f_{\theta_0}(t)/P[f_\theta(t)] \leq k$ is unbiased for every θ_0, k if and only if $f_{\theta_0}(t)/P[f_\theta(t)]$ has the same distribution for every θ_0, letting t have the distribution of Y.

Proof. Let $h(t) = P^\theta f_\theta(t), g(\theta, Y) = f_\theta(Y)/h(Y)$. Unbiasedness requires

$$P^\theta_g \{g(\theta, \cdot) \leq k\} \leq P^\theta_g \{G(\theta, \cdot) \leq k\}$$

$$Q \{g(\theta, \cdot) \leq k\} (f_\theta - f_{\theta_0}) \leq 0$$

$$Q \left[d\theta \{g(\theta, \cdot) \leq k\} \right] = 0$$

where the differentiation is justified because $\sup_{\theta \in I} |(df_\theta)/d\theta|$ is Q-integrable.

$$Q \left[h^d\theta \{g(\theta, \cdot) \leq k\} \right] = 0$$
Let Y and θ be random variables, let P_θ^Y be the quotient probability on Y given θ. Suppose we wish to select a set of likely θ-values; a decision d will be a set of θ-values, and a decision function $d(Y)$ selects such a set for each Y value.

A set selection function δ is a confidence procedure if $P_\theta^Y[\theta \in \delta] = \alpha_0$ for all θ. This requirement is analogous to invariance or unbiasedness in that all θ-values are given the same treatment.

Consider a family of testing decisions $d(\theta)$, where $d(\theta_0) = 1$ decides $\theta = \theta_0$ and $d(\theta_0) = 0$ decides $\theta \neq \theta_0$. The set $\{d(\theta) = 1\}$ is selected by d, giving a correspondence between families of tests and set selection decisions.

The loss (analogous to testing loss) for d is
\[
L(d, \theta_0, \theta) = \alpha\{d(\theta_0) \neq 1\} \{\theta = \theta_0\} + \beta\{d(\theta_0) = 1\} \{\theta \neq \theta_0\}
\]
\[
P_\theta^Y[L(\delta, \theta_0, \theta)] = \alpha P_\theta^Y[\theta_0 \notin \delta] \{\theta = \theta_0\} + \beta P_\theta^Y[\theta_0 \in \delta] \{\theta \neq \theta_0\}
\]

Thus we want a large probability $P_\theta^Y[\theta \in \delta]$ and a small probability $P_\theta^Y[\theta_0 \in \delta]$ with $\theta \neq \theta_0$. The standard decision theory is not applicable because of the appearance of both θ and θ_0 in the loss function; it is necessary to consider a prior distribution over θ and θ_0 to discover admissible set selection procedures θ. For a given prior P^θ on θ, the Bayes set d given Y minimizes
\[
\alpha P_\theta^{\theta_0, \theta_0}\{d(\theta_0) \neq 1\} \{\theta = \theta_0\} + \beta P_\theta^{\theta_0, \theta_0}\{d(\theta_0) = 1\} \{\theta \neq \theta_0\}
\]
which requires $d(\theta_0) = 1$ if $P_\theta^{\theta_0, \theta_0}\{\theta = \theta_0\} \geq \beta/(\alpha + \beta)$.

For a given prior P^θ on θ, the conditional prior $P^\theta_{\theta_0}$ suggested by testing is
\[
P^\theta_{\theta_0}X = aX(\theta_0) + P^\theta X,
\]
and then the set selection procedure is $d(\theta_0) = 1$ if
\[
f_{\theta_0}(Y)/P^\theta[f_\theta(Y)] \leq K
\]
where \(Y \) has density \(f_\theta \) given \(\theta \). Regions of this form are called Bayes high density regions; see for example Box and Tiao (1973) and Hartigan (1966).

From theorem 5.2, it follows that unitary Bayes high density regions are confidence regions for all \(K \) only if the probability \(P \) is a maximal learning probability; in the many cases where maximal learning probabilities do not exist, confidence regions cannot be unitary Bayes high density regions. However, confidence regions are often Bayes high density regions corresponding to non-unitary prior measures. Hartigan (1966) shows that high density regions are asymptotically closest to confidence regions for the Jeffreys density.

7.5. One-Sided Confidence Intervals Are Not Unitary Bayes

Let \(Y \) be a random variable on \(\mathcal{X} \), and let \(\theta \) be a real valued random variable on \(\mathcal{X} \). A one-sided confidence interval \([- \infty, \theta(Y) \]) is such that \(P_\theta[\theta \leq \theta(Y)] = \alpha \) all \(\theta \). A one-sided Bayes interval \([- \infty, \theta(Y) \]) is such that \(P_\theta[\theta \leq \theta(Y)] = \alpha \) all \(Y \).

Theorem. A one-sided unitary Bayes interval of size \(\alpha \), \(0 < \alpha < 1 \), is not a confidence interval.

Proof. Let \(P_\theta[\theta \leq \theta(Y)] = \alpha \). Then \(P[\theta \leq \theta(Y)] = \alpha \). For each fixed \(\theta_0 \), \(P[\theta \leq \theta(Y) | \theta \leq \theta_0] > \alpha \) if \(P[\theta(Y) \geq \theta_0 | \theta \leq \theta_0] > 0 \).

If \(P[\theta(Y) \geq \theta_0 | \theta \leq \theta_0] = 0 \) for all \(\theta_0 \), \(P[\theta(Y) \leq \theta] = 1 \) which contradicts \(0 < \alpha < 1 \). Thus \(P[\theta \leq \theta(Y) | \theta \leq \theta_0] > \alpha \) for some \(\theta_0 \).

If \(\theta \leq \theta(Y) \) is a confidence interval, \(P_\theta[\theta \leq \theta(Y)] = \alpha \) all \(\theta \), so \(P_\theta[\theta \leq \theta(Y) | \theta \leq \theta_0] = \alpha \), \(P[\theta \leq \theta(Y) | \theta \leq \theta_0] = \alpha \) which is a contradiction. \(\square \)

7.6. Conditional Bets

Let \(Y \) and \(\theta \) be random variables on \(\mathcal{X} \). A bet \(Z(Y, \theta) \) is conditionally probable given \(Y \) if \(Z(Y, \theta) \in \mathcal{X} \) each \(Y \) and \(P_\theta Z(Y, \theta) \geq 0 \). A bet \(Z(Y, \theta) \) is conditional given \(Y \) if \(P_\theta[Z(Y, \theta)f(Y)] < 0 \) all \(\theta \) for no \(f \geq 0 \) such that \(Z(Y, \theta)f(Y) \in \mathcal{X} \) all \(\theta \).

If \(Y \) and \(\theta \) take finitely many values, the two conditions are equivalent—for any matrix \(X_{ij} \) there exists no \(\beta_j \geq 0 \) such that \(\sum_i X_{ij} \beta_j < 0 \) all \(i \) if and only if there exists \(\alpha_i \geq 0 \) (\(\alpha \neq 0 \)) such that \(\sum_j X_{ij} \alpha_i \leq 0 \). (Equivalently, a convex set disjoint from the negative quadrant is separated from the negative quadrant by a hyperplane.)

In general, the two senses of conditionality are not equivalent. For example, suppose that \(Y \) and \(\theta \) take values on the integers \(1, 2, \ldots \).
7.7. Problems

Define $P^Y_i(Y = i) Z(i, 0) = \frac{\{0 \leq i\} + \{0 > i\}}{2}$.

Then $\sum_{i} P^Y_i(Y = i) Z(i, \theta) g(i) = -\sum_{\theta \leq i} g(i) + \sum_{\theta > i} g(i)$. This quantity is defined only if $\sum g(i)/i^2$ converges, and thus it cannot be negative for every θ when $g \geq 0$, and $Z(i, \theta)$ is a conditional bet. For any probability ρ, $\sum_{\theta} \rho_{\theta} P^Y_i(Y = i) Z(i, \theta) = -\sum_{\theta \leq i} \rho_{\theta} + \sum_{\theta > i} \rho_{\theta}$ is necessarily negative for some θ, so Z cannot be conditionally probable.

Theorem. Let Y and θ be real valued random variables, and suppose that $(-\infty, \theta)$ is a confidence interval of size α for θ, and that $0 < P^\theta_Y(Y \leq a) < 1$ for all a. Then $Z(Y, \theta) = \{\theta \leq Y\} - \alpha$ is not a conditional bet given Y.

Proof. For $\theta \leq a$,

$$P^\rho(Z(Y, \theta)\{Y \leq a\}) = P^\rho(\theta \leq Y \leq a) - \alpha P^\rho(Y \leq a) = (1 - \alpha) P^\rho(Y \leq a) - P^\rho(Y < \theta) = (1 - \alpha) P^\rho(Y \leq a) - 1 < 0.$$

For $\theta > a$,

$$P^\rho(Z(Y, \theta)\{Y \leq a\}) = -\alpha P^\rho(Y \leq a) < 0.$$

Thus $Z(Y, \theta)$ is not a conditional bet.

Note. See Olshen (1973) for references and an application to confidence ellipsoids. From 7.5, we know that one sided confidence intervals are not conditionally probable with respect to a unitary probability, but they may be conditionally probable with respect to a non-unitary probability. If the definition of a conditional bet is weakened so that $Z(Y, \theta)$ is weakly conditional given Y provided $P^\rho_{\theta} Z(Y, \theta) f(Y) < 0$ for no f such that $Z(Y, \theta) f(Y) \in \mathcal{F}$ all θ, AND $Z(Y, \theta) f(Y) \in \mathcal{F}$ taking Y and θ random, then if $Z(Y, \theta)$ is conditionally probable it is weakly conditional given Y. Thus for example if $Y \sim N(\theta, 1)$ where θ is uniform, $\theta < Y + 1.64$ is a 95% confidence interval, conditionally probable, and weakly conditional given Y, but not conditional given Y. The bets $(\{\theta < Y + 1.64\} - .95)\{Y \leq 0\}$ have negative conditional probability given θ, but are not integrable overall.

Freedman and Purves (1969) and Dawid and Stone (1972) show, under regularity conditions, that the notions of conditionally probable and conditional bet coincide if and only if the distributions P^ρ_Y and P^ρ_{θ} are constructed according to Bayes theorem.

7.7. Problems

E1. Let $t, 0 \leq t \leq n$ be an observation from the binomial distribution with $P^t_{\theta} = \binom{n}{t} p^t (1 - p)^{n-t}$. Show that the posterior mean for p, corresponding to any prior unitary probability P, is biased.
P1. Show that the Bayes estimate $\tilde{\theta}$ corresponding to the loss function $L(d, \theta) = |d - \theta|$ is the median of the posterior probability of θ given Y. Does there exist a non-atomic posterior probability for which $\tilde{\theta}$ is median unbiased, that is

\[P_{\theta}[\theta < \tilde{\theta}] = P_{\theta}[\theta \leq \tilde{\theta}] = \frac{1}{2} \quad \text{all } \theta? \]

Q1. Let Y_1, Y_2, \ldots, Y_n denote independent observations from $f(\theta, Y)$, and let P have density $g(\theta)$ with respect to Lebesgue measure on the line. Under suitable regularity conditions, when θ_0 is true, show the posterior mean

\[P[\theta | Y_1, \ldots, Y_n] = \theta_0 + \frac{1}{n} \left[\frac{-\partial}{\partial \theta_0} \log f + P_{\theta_0}(f_1 f_2 + f_3) / P_{\theta_0} f_2 \right] + 0(n^{-3/2}) \]

where $f_i = (\partial / \partial \theta^i \log f)_{\theta = \theta_0}$. Then show that g is asymptotically unbiased if

\[g(\theta) = -P_{\theta_0} \left[\frac{\partial}{\partial \theta^2} \log f(\theta, Y) \right] \]

(the square! of the Jeffreys density). Hartigan (1965).

E2. Let Y, $0 \leq Y < 2\pi$, have density $f(\theta, Y) = \frac{1}{2}[1 + \cos(Y - \theta)]$, where $0 \leq \theta \leq 2\pi$. Let the prior probability be uniform over $0 \leq \theta \leq 2\pi$. Show that the Bayes high density region is a confidence region.

Q2. As the number of observations Y_1, \ldots, Y_n becomes infinite, under suitable regularity conditions, find an asymptotic expression for the confidence size of the Bayes high density region with respect to P,

\[P_{\theta_0}\{nf(\theta_0, Y)/P_{\theta}[nf(\theta, Y)] > k\} \]

P2. Let the decision d be an ordering of the parameter values θ, with $L(d, \theta) = l\{d(\cdot) > d(\theta)\} - l\{d(\cdot) < d(\theta)\}$ for some loss measure l. Show that the Bayes decision given the observation Y orders θ according to dP_{θ}/dl.

P3. Let the decision d be an interval $(-\infty, c]$ on the line. Let θ be on the line, and set $L(d, \theta) = -\{\theta \leq c\} + K(c - \theta)^+$. Show that the Bayes decision corresponding to a probability P with density g, satisfies

\[K \int_{-\infty}^{c} g(\theta) d\theta = g(c). \]

P4. Consider the 95% confidence interval for θ based on one sample from $N(\theta, 1)$, $\{\theta \leq Y + 1.64\}$. Bet 95 to win 5 that $\theta \leq Y + 1.64$ whenever $Y \geq 0$, and bet 5 to win 95 that $\theta > Y + 1.64$ whenever $Y < 0$. Find your probable gain as a function of θ.

P5. In the normal location case, show the 95% confidence interval for θ, $(Y - 1.96, Y + 1.96)$, is not a conditional bet. (Bet an amount proportional to e^θ that θ lies outside the interval.)

P6. Let x_1, x_2, \ldots, x_n be a sample from $N(\mu, \sigma^2)$. Let \bar{x} be the mean of x_1, \ldots, x_n and let s be the standard deviation. Show that the confidence interval for μ, $\bar{x} - ks, \bar{x} + ks$ can be beaten by betting that the interval contains μ if $s > 1$, and that it doesn't contain μ when $s \leq 1$. (Buehler and Fedderson (1963)).
P7. If y, x₁, ..., xₙ are sampled from \(N(\mu, 1) \), show that the 95% tolerance interval for \(y < \bar{x} + 1.64[1 + (1/n)]^{1/2} \) may be beaten by betting differently according to the value of \(\bar{x} \).

E3. The decision \(d \) chooses one of two parameter values \(s₁, s₂ \) and \(L(d, s) = |s - d| \). Show that the Bayes decision, given an observation \(t \) with density \(f(s, t) \), for any prior probability which has \(P\{s₁\} > 0, P\{s₂\} > 0 \), is

\[
\begin{align*}
 d &= s₁ \quad \text{if} \quad f(s₁, t)/f(s₂, t) > c, \\
 d &= s₂ \quad \text{if} \quad f(s₁, t)/f(s₂, t) \leq c.
\end{align*}
\]

P8. \(x₁, x₂ \) are observations from \(N(\mu, \sigma^2) \). A test for \(\mu = 0 \) against \(\mu \neq 0 \) is similar if the probability of deciding \(\mu \neq 0 \) when \(\mu = 0 \) is independent of \(\sigma^2 \). Are any Bayes tests similar?

P9. If \(X \) and \(Y \) are random variables with the same distribution, show that \(P(X - Y > a) \leq P(|X| > \frac{1}{2}a) \). Let \(P_θ \) be a family of probability distributions with positive densities \(f(θ, Y) \), \(0 ≤ θ ≤ ∞ \), satisfying the conditions of theorem 7.3, such that \(f(θ, Y)/f(θ₀, Y) \to 0 \) as \(θ \to ∞ \) for each \(Y \). Show that no unbiased unitary Bayes test exists.

P10. Let \(x \) be an observation with density \(f(x - θ) \) with respect to lebesgue measure, where

\[
f(u) = (2/|u| - 1)f(2 - |u|)(|u| ≤ 2).
\]

Let \(g \) be a prior density with respect to lebesgue measure,

\[
g(θ) = \{[2θ] = 2[θ]\}
\]

where \([θ]\) is the largest integer ≤ \(θ \). Show that the posterior mean with respect to \(g \) is unbiased for \(θ \). [The uniform distribution is not the only unbiased distribution in location problems].

7.8. References

CHAPTER 8
Exponential Families

8.0. Introduction

Let \(\mu \) be a probability on \(\mathcal{Y} \), and choose a unitary probability \(P \) on \(\mathcal{Y} \) to minimize the information \(P(\log(dP/d\mu)) \) subject to \(PY_i = c_i, \ i = 1, \ldots, k\). The optimal probability \(P \) has density

\[
\frac{dP}{d\mu} = \exp\left[\sum_{i=1}^k a_i Y_i(t) + b \right].
\]

Such a \(P \) is said to be exponential with respect to \(\mu \), for the functions \(Y \) and the parameters \(a \), denoted \(E[\mu, Y, a] \). The further parameter \(b \) is determined as a function of \(a \) by \(P1 = 1 \). An exponential family \(\{P_s, s \in S\} \) consists of \(E[\mu, Y, s] \), \(s \in S \) where \(S \) is a subset of \(k \)-dimensional Euclidean space. The set of all values \(s \) with \(\mu[\exp s'Y] < \infty \) is convex because \(\exp \) is convex.

Exponential families are attractive for statistical analyses because they remain exponential under repeated sampling and under formation of posterior distributions. If \(X \) is distributed as \(E[\mu, Y, s] \), then the random sample \(X_1, X_2, \ldots, X_n \) is distributed as \(E[\mu^n, \sum Y(X_i), s] \). If \(s \) has prior probability \(P \), and \(X \) is distributed as \(E[\mu, Y, s] \), the posterior probability of \(s \) given \(X_1, X_2, \ldots, X_n \) is

\[
P_x = E[P, [s_1, s_2, \ldots, s_k, \lambda(s)], [\sum Y_1(X_i), \ldots, \sum Y_k(X_i), n]]
\]

where \(\lambda(s) = -\log P_s \exp[s'Y(t)] \). Thus the posterior probabilities, for all data \(X \), belong to the same exponential family! (This occurs for all prior probabilities \(P \); there is no special family of “conjugate” prior distributions!)
8.1. Examples of Exponential Families

(i) BERNOULLI

\[T = \{0, 1\}, \quad \mu\{0\} = 1, \quad \mu\{1\} = 1. \]

\[P_p = p^t (1 - p)^{1-t} \quad \text{for } t = 0, 1, 0 \leq p \leq 1. \]

Let \(s = \log p/(1 - p) \),

\[P_s = \exp\left[t \log p + (1 - t) \log (1 - p) \right] \]

\[= \exp\left[ts + \lambda(s) \right], \quad \lambda(s) = -\log (1 + e^s). \]

For \(n \) observations, this becomes the binomial.

(ii) POISSON

\[T = \{0, 1, \ldots\}, \quad \mu\{t\} = 1/t!. \]

\[P_{\lambda}\{t\} = \lambda^t e^{-\lambda}/t! = \exp\left[t \log \lambda - \lambda \right] \mu\{t\}. \]

\[P_s\{t\} = \exp\left[ts - e^s \right] \quad \text{with } s = \log \lambda. \]

(iii) EXPONENTIAL

\[T = [0, \infty), \quad \mu \text{ uniform on } T. \]

\[f_\lambda(t) = e^{-t/\lambda}/\lambda. \]

\[f_s(t) = \exp\left[ts + \log(-s) \right], \quad s = -1/\lambda. \]

(iv) NORMAL LOCATION

\[T = (-\infty, \infty), \quad \mu \text{ unit normal.} \]

\[f_\theta(t) = \exp\left[\theta t - \frac{1}{2} \theta^2 \right], \quad s = \theta. \]

(v) NORMAL SCALE

\[T = (-\infty, \infty), \quad \mu \text{ uniform} \]

\[f_\sigma(t) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left[-\frac{1}{2} t^2/\sigma^2 \right] \]

\[f_s(t) = \exp\left[st^2 + \frac{1}{2} \log(-s/\pi) \right], \quad s = -1/2\sigma^2. \]

[Note. The \(\lambda(s) \) for the posterior density is the second expression in the exponential argument.]

[Note. Here parameters have been transformed to demonstrate reduction to exponential form; in computations, it is usually better to leave the parameters untransformed.]

8.2. Prior Distributions for the Exponential Family

If \(P_s = E[\mu, Y, s] \), the Jeffreys density is \(\text{[var } Y\text{]}^{1/2} \); only the binomial among the standard families has the Jeffreys density unitary.

Since \(Y \) is of minimum variance among unbiased estimators of \(P_s Y \), it is of interest to discover the prior distribution such that the posterior mean is \(Y \). This prior distribution is necessarily not unitary.

Theorem. Suppose \(P_s = E[\mu, Y, s] \), \(s_1 < s < s_2 \) and that, for a given \(Y \), \(\exp(Ys)/\mu[\exp(Ys)] \to 0 \) as \(s \to s_1 \) or \(s \to s_2 \). The posterior mean, given \(Y \), of \(P_s Y \) is \(Y \) if the prior probability of \(s \) is uniform over \((s_1, s_2) \).
PROOF. \[P_s Y = \mu(Y \exp(Y_s))/\mu(\exp(Y_s)) = \frac{\partial}{\partial s} \log \mu[\exp(Y_s)]. \]

\[\int_s^{s_2} (P_s Y - Y)[\exp(Y_s)/\mu(\exp Y_s)] ds \]
\[= \int_s^{s_2} \frac{\partial}{\partial s} \exp\{Y_s - \log[\mu(\exp(Y_s))]\} ds \]
\[= 0. \] \[\square \]

EXAMPLE. In the binomial case \(t/n \) is the minimum variance unbiased estimate of \(p \). If \(s = \log(p/1-p) \) is uniform over \(-\infty, \infty\), then \(t/n \) is the posterior mean of \(p \), provided \(0 < t < n \); in the case \(t = 0, n \) the posterior mean is not defined (the limiting conditions of the theorem break down).

<table>
<thead>
<tr>
<th>Name</th>
<th>Family</th>
<th>Parameter</th>
<th>The Jeffreys Density (for (s))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial</td>
<td>((n \choose t) p^t(1-p)^{n-t})</td>
<td>(s = \log \frac{p}{1-p})</td>
<td>(e^{(1/2)s}/(1+e^s))</td>
</tr>
<tr>
<td>Poisson</td>
<td>(\lambda e^{-\lambda/t!})</td>
<td>(s = \log \lambda)</td>
<td>(e^{(1/2)s})</td>
</tr>
<tr>
<td>Exponential</td>
<td>(e^{-t\lambda/\lambda})</td>
<td>(s = -1/\lambda)</td>
<td>(1/s)</td>
</tr>
<tr>
<td>Normal Location</td>
<td>(\frac{1}{\sqrt{2\pi}} e^{n-(1/2)s^2})</td>
<td>(s = \theta)</td>
<td>(1)</td>
</tr>
<tr>
<td>Normal Scale</td>
<td>(\frac{1}{\sigma\sqrt{2\pi}} \exp\left(-\frac{1}{2}t^2/\sigma^2\right))</td>
<td>(s = -1/2\sigma^2)</td>
<td>(1/s)</td>
</tr>
</tbody>
</table>

8.3. Normal Location

Assume \(X_1, \ldots, X_n, \theta \) are random variables such that \(X_1, \ldots, X_n \) given \(\theta \) are independent, \(P_{X_i}^{X_i} = N(\theta, 1) \).

(i) The posterior distribution. If \(\theta \) has prior probability \(P \), the posterior probability \(P_{X_1,\ldots,X_n} \) has density \(\exp[-\frac{1}{2}n(\bar{X} - \theta)^2] / P \exp[-\frac{1}{2}n(\bar{X} - \theta)^2] \) with respect to \(P \), where \(\bar{X} \) denotes the mean of \(X_1, \ldots, X_n \). The posterior probability is defined for \(n \) large enough provided \(P[\exp(-A\theta^2)] < \infty \) for some \(A \). Say that such a \(P \) is docile.

(ii) Asymptotics. If \(\theta_0 \) is in the support of a docile \(P \), then \(P_X \) eventually concentrates on \(\theta_0 \) as \(P_{\theta_0} \). (For each \(\epsilon > 0 \),

\[P_{\theta_0} \{ P_X(\theta - \theta_0 > \epsilon) \not\to 0 \} = 0. \]

If a docile \(P \) has a density wrt Lebesgue measure that is continuous and positive at \(\theta_0 \), the posterior distribution is asymptotically normal \(N(\bar{X}, 1/n) \).
given \(\theta_o \). (That is,

\[
P_x(\theta \leq X + z/\sqrt{n}) \rightarrow \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}u^2\right)du \quad \text{[in } P_{\theta_o}\text{].})
\]

If a docile \(P \) has a density \(p \) wrt Lebesgue measure that is continuously differentiable and positive at \(\theta_o \), the posterior distribution is asymptotically \(N(X + z/(\partial/\partial \theta_o) \log p)/n, 1/n) \) given \(\theta_o \). (That is,

\[
\sqrt{n} \left[P_x\left(\theta \leq X + \left[\frac{1}{\partial \theta_o} \log p \right]/n + z/\sqrt{n} \right) - \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}u^2\right)du \right] \rightarrow 0 \quad \text{[in } P_{\theta_o}\text{].})
\]

Thus the principal effect asymptotically of a smooth prior density is a shift in location of the mean of the posterior distribution.

(iii) The uniform prior. The uniform prior is Lebesgue measure on the line. It is docile, the Jeffreys density, the only density invariant under location and sign changes, the only density for which the corresponding location estimate is unbiased.

The posterior distribution is \(P_{\theta}^\theta = N(X, 1/n) \). The posterior mean \(X \) is mean-square admissible, unbiased, of minimum variance among unbiased estimators.

The high density regions \(\{ \theta | n(\theta - X)^2 < k \} \) of posterior probability \(\alpha \) are confidence regions of confidence size \(\alpha \).

To test \(\theta < 0 \) against \(\theta \geq 0 \), the Bayes decision accepts \(\theta < 0 \) if \(P_x(\theta < 0) > k \), which is equivalent to \(X < c \), the uniformly most powerful test of \(\theta < 0 \) against \(\theta \geq 0 \). If \(X_o \) is observed, it is customary to report the tail probability \(P_{\theta=0}(X > X_o) \) in testing \(\theta < 0 \) against \(\theta \geq 0 \); this is the same as \(P_x(\theta < 0) \), the posterior probability of the null hypothesis.

To test \(\theta = 0 \) against \(\theta \neq 0 \), the Bayes test is of form accept \(\theta = 0 \) if \(|X| < c \), which is the most powerful unbiased test. If \(X_o \) is observed, it is customary to report the tail probability \(P_{\theta=0}(|X| > |X_o|) \), which is the same as \(P_x(|X_o - \theta| < |X_o|) \), the posterior probability that the true mean is farther away from the observed mean than 0.

(iv) Normal priors. If \(P = N(\theta_0, \sigma_0^2) \), then \(P_{\theta}^\theta = N\{ [(\sigma_0^2/\sigma_0^2) + nX]/((1/\sigma_0^2) + n), ((1/\sigma_0^2) + n)^{-1}\} \); the posterior mean is of the same form as the prior. (This is true for any prior; see 8.0.)

The formulae for means and variances may be remembered by the following scheme:

PRIOR: \(\theta \sim N(\theta_0, \sigma_0^2) \)

OBSERVATION: \(X \sim N(\theta, 1/n) \)

Act as if \(\theta_o \) is an observation on \(\theta \); combine with the observation \(X \) inversely weighting by variances:

\[
1/\text{var}_x(\theta) = 1/\text{var}_\theta(X) + 1/\text{var} \theta
\]

\[
P_x(\theta)/\text{var}_x(\theta) = X/\text{var}_\theta X + \theta_o/\text{var} \theta.
\]
It may happen that the prior $N(\theta_0, \sigma_0^2)$ and the observed \overline{X} contradict each other. Note that $\overline{X} - \theta_0 \sim N(0, \sigma_0^2 + 1/n)$. Thus if $(\overline{X} - \theta_0)^2/(\sigma_0^2 + 1/n)$ is very large, we might decide to revise the observation \overline{X}, its distribution given θ, or the prior for θ. The contradiction will not arise if σ_0^2 is very large.

The posterior distribution P_x approaches the posterior distribution $N(\overline{X}, 1/n)$ corresponding to the uniform as $\sigma_0 \rightarrow \infty$, and so this family of priors is useful in showing admissibility of classical statistical procedures corresponding to the uniform.

(v) Two stage normal priors. Consider a family of normal priors $P_\lambda = N[\theta(\lambda), \sigma^2(\lambda)]$. Given λ, the posterior distribution $P_{\lambda, X}$ is normal with parameters given in (iv). Suppose that λ itself has a prior distribution Q; then the prior distribution on θ is $Q(P_\lambda)$, a mixture of normal priors. The posterior distribution corresponding to $Q(P_{\lambda})$ is also a mixture of normals $Q_x(P_{\lambda, X})$ where $Q_{\cdot, X}$ is the posterior distribution for λ for the prior Q and for the observation $\overline{X} \sim N[\theta(\lambda), \sigma^2(\lambda) + 1/n]$. [Given λ, θ is distributed as $N[\theta(\lambda), \sigma^2(\lambda)]$ and \overline{X} is distributed as $N(\theta, 1/n)$; ignoring θ, $\overline{X} \sim N(\theta(\lambda), \sigma^2(\lambda) + 1/n).$] Thus values of λ for which $[\overline{X} - \theta(\lambda)]^2/[\sigma^2(\lambda) + 1/n]$ is large will be down-weighted, and contradiction between the prior mean $\theta(\lambda)$ and the observed \overline{X} is prevented.

8.4. Binomial

The number of successes $t, 0 \leq t \leq n$ has probability $\binom{n}{t} p^t (1 - p)^{n-t}$. The prior P is docile if $p^A(1 - p)^B$ is integrable for some A, B.

(i) The posterior density with respect to the docile prior P is $p^t (1 - p)^{n-t} / P[p^t (1 - p)^{n-t}]$. The posterior density concentrates with probability 1 on p_0 if p_0 is true and p_0 lies in the support of P. If P has a density that is continuous and positive at p_0, then P_t is asymptotically normal $N[t/n, \frac{p_0(1-p_0)}{n}]$.

(ii) Beta priors. If P is $Be(\alpha, \beta)$, having density $p^{\alpha-1}(1-p)^{\beta-1}/B(\alpha, \beta)$ wrt Lebesgue measure, then P_t is $Be(\alpha + t, \beta + n - t)$. Note that if $P = Be(\alpha, \beta)$, then $P_P = \alpha(\alpha + \beta)$, var $P = \alpha \beta / [(\alpha + \beta)^2 (\alpha + \beta + 1)]$. The Jeffreys density is $Be(1/2, 1/2)$. The “unbiased” prior, $P = Be(0, 0)$ has posterior mean $P_s = t/n$ for $0 < t < n$; the posterior distribution is not defined for $t = 0, \ t = n$. The admissibility of t/n may be demonstrated by considering it as a limit of the Bayes posterior means $(t + \alpha) / (n + 2x)$ corresponding to priors $Be(x, \alpha)$ as $\alpha \rightarrow 0$.

(iii) Confidence properties of beta priors. The discreteness of t makes it impossible to achieve unbiasedness of two sided tests $p = p_0$ against $p \neq p_0$, or to find set selection procedures that have the confidence property. Welch and Peers (1963) show that the Jeffreys density generates Bayes one sided intervals which are most nearly confidence intervals; but their proof is invalid for discrete observations.
For a particular prior, consider the one sided Bayes intervals \([0, p_t]\), such that \(P_t(p \leq p_t) = \alpha\), \(0 \leq t \leq n\). The confidence properties of such intervals are determined by the function \(P_p(p \leq p_t)\); this function is discontinuous in general at \((p_0, p_1, \ldots, p_n)\).

For the prior Be(0, 1), \(P_p(p \leq p_t) \leq \alpha\) all \(p > 0\) and for the prior Be(1, 0), \(P_p(p \leq p_t) \geq \alpha\) all \(p < 1\) (Thatcher, 1964). These might be viewed as “liberal” and “conservative” confidence regions for \(p\). The inequalities follow from the identity:

\[
\sum_{t=t_0}^{n} \binom{n}{t} p^t(1-p)^{n-t} = \int_0^p p^{t_0-1}(1-p)^{n-t_0}dp/B(t_0, n-t_0+1)
\]

which relates binomial and beta (confidence and Bayes) probabilities.

For Be(1, 0), \(P_p(p \leq p_t) \downarrow \alpha\) as \(p \uparrow p_k, 0 < k < n\).

For Be(0, 1), \(P_p(p \leq p_t) \uparrow \alpha\) as \(p \downarrow p_k, 0 \leq k < n\).

Let \(p_{t, \lambda}\) be such that \(P_p(p \leq p_{t, \lambda}) = \alpha\) for the prior Be[\(\lambda, 1-\lambda\], \(0 \leq \lambda \leq 1\). Then \(p_{t, \lambda}\) is increasing in \(\lambda\). [The prior is equivalent to observing \(\lambda\) successes and \(1-\lambda\) failures; the larger \(\lambda\), the more the posterior for a particular \(t\) is shifted to the right.] Thus for each prior Be[\(\lambda, 1-\lambda\], \(0 \leq \lambda \leq 1\), \(\lim P_p(p \leq p_{t, \lambda}) \geq \alpha\), \(\lim P_p(p \leq p_{t, \lambda}) \leq \alpha\). The confidence values cross the correct probability \(\alpha\) at each of the points of discontinuity \(p_{t, \lambda}\).

In Figure 1, \(n = 10, \alpha = 0.9\) and the upper and lower bounding confidence curves for Be(0, 1) and Be(1, 0) are given, together with the intermediate curve for Be(1/2, 1/2), the Jeffreys density. Note that \(P_p(p \leq p_t) \to 1\) as \(p \to 0\), \(P_p(p \leq p_t) \to 0\) as \(p \to 1\) for the Jeffreys density, so that it can never give confidence values uniformly near \(\alpha\). It does give confidence values which are closer on the average to the correct \(\alpha\) than the bounding priors Be(0, 1) and Be(1, 0).
An arbitrary interval selection procedure specifies an interval \(\{ p \leq p_i \} \) for each of \(t = 0, 1, \ldots, n \). Its confidence properties are given by the function
\[P_p(p \leq p_i), \]
which is discontinuous at each of the points \(p_0 < p_1 < \cdots < p_n \).

The overall error of the procedure might be assessed by
\[\sup_{\varepsilon < p < 1 - \varepsilon} |P_p(p \leq p_i) - \alpha|; \]
it is necessary to bound \(p \) away from 0 and 1, because 0 lies in every interval and 1 usually lies in no intervals, so that \(P_0(p \leq p) = 1, P_1(p \leq p) = 0 \).

The maximum error is achieved at the points of discontinuity; it will be minimized by ensuring that \(\frac{1}{2} \left(\lim_{p \to p_i} P_p(p \leq p_i) + \lim_{p \to p_i} P_p(p \leq p_i) \right) = \alpha \) at each point of discontinuity \(p_s \). In this case, the asymptotic error at \(p_s \) is
\[\frac{1}{2} \left(\frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2} Z_a^2 \right) \right) \frac{1}{\sqrt{p_s (1 - p_s)}} \frac{1}{n}, \]
where \(Z_a \) is such that \(P(Z \leq Z_a) = \alpha \) for a normally distributed \(Z \). (This result is obtained by equating binomial and beta tail areas and then using Edgeworth expansions for the beta distribution, involving the first three moments.)

For a Bayes procedure, the asymptotic error is
\[\frac{1}{2} \left(\frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2} Z_a^2 \right) \right) \frac{1}{\sqrt{p_s (1 - p_s)}} \frac{1}{n} \sup \left(|A|, |A - 1| \right), \]
where the prior density \(h \) satisfies \(A = \left[(\partial/\partial p) \log(h(p)) (1 - p) \right]_{p = p_s} \).

This error is minimized for all \(p_s \), precisely when \(h = j \), the Jeffreys density, and in this case the interval selection procedure is close as possible to being a confidence procedure. (The error \(\sup_{\varepsilon < p < 1 - \varepsilon} |P_p(p \leq p_i) - \alpha| \) is \(O(n^{-1/2}) \) for every prior, but is smallest for the Jeffreys prior. If \(p_0, p_1, \ldots, p_n \) are the upper bounds of intervals taken to ensure \(\frac{1}{2} \left(\lim_{p \to p_i} P_p(p \leq p_i) + \lim_{p \to p_i} P_p(p \leq p_i) \right) = \alpha \) for each \(p_s \), and if \(p'_s \) denote the Bayes upper bounds, then \(p'_s = p_s + O(1/n) \) for any Bayes procedure, and \(p'_s = p_s + o(1/n) \) for the Jeffreys density.)

In the table below, the intervals \(\{ p \leq p_i \} \) are specified corresponding to the three priors \(\text{Be}(0, 1), \text{Be}(1, 0), \text{Be}(\frac{1}{2}, \frac{1}{2}) \), and also for a confidence procedure minimizing maximum error.

Example. For \(n = 10, \alpha = .90 \), the intervals for various methods:

<table>
<thead>
<tr>
<th></th>
<th>Be(0, 1)</th>
<th>Be(1, 0)</th>
<th>Be((\frac{1}{2}, \frac{1}{2}))</th>
<th>Confidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_0)</td>
<td>.0</td>
<td>.2057</td>
<td>.1236</td>
<td>.1487</td>
</tr>
<tr>
<td>(p_1)</td>
<td>.2057</td>
<td>.3368</td>
<td>.2744</td>
<td>.2981</td>
</tr>
<tr>
<td>(p_2)</td>
<td>.3368</td>
<td>.4496</td>
<td>.3948</td>
<td>.4063</td>
</tr>
<tr>
<td>(p_3)</td>
<td>.4496</td>
<td>.5517</td>
<td>.5018</td>
<td>.5118</td>
</tr>
<tr>
<td>(p_4)</td>
<td>.5517</td>
<td>.6458</td>
<td>.5997</td>
<td>.6090</td>
</tr>
<tr>
<td>(p_5)</td>
<td>.6458</td>
<td>.7327</td>
<td>.6901</td>
<td>.6990</td>
</tr>
<tr>
<td>(p_6)</td>
<td>.7327</td>
<td>.8124</td>
<td>.7735</td>
<td>.7823</td>
</tr>
<tr>
<td>(p_7)</td>
<td>.8124</td>
<td>.8842</td>
<td>.8494</td>
<td>.8584</td>
</tr>
<tr>
<td>(p_8)</td>
<td>.8842</td>
<td>.9455</td>
<td>.9164</td>
<td>.9257</td>
</tr>
<tr>
<td>(p_9)</td>
<td>.9955</td>
<td>.9895</td>
<td>.9704</td>
<td>.9799</td>
</tr>
<tr>
<td>(p_{10})</td>
<td>.9895</td>
<td>1.0000</td>
<td>.9998</td>
<td>1.0000</td>
</tr>
</tbody>
</table>
8.5. Poisson

The number of occurrences t, $0 \leq t < \infty$, has probability $P_{\lambda}\{t\} = \lambda^t e^{-\lambda}/t!$.

The prior P is docile if $\lambda^t e^{-\lambda}$ is integrable some K.

(i) The posterior density, with respect to the prior probability P is $\lambda^t e^{-\lambda}/P(\lambda^t e^{-\lambda})$. The posterior density concentrates on λ_0 with probability 1, if λ_0 is true and lies in the support of P. If P has a continuous positive density at λ_0, then P is asymptotically normal $N(\lambda_0, \lambda_0/n)$.

(ii) Gamma priors. The prior $G(m, a)$ has density $a^m \lambda^{m-1} e^{-a\lambda}/\Gamma(m)$, the gamma density. The posterior given t is $G(m + t, a + 1)$. The Jeffreys density is $G(1/2, 0)$, not unitary. The “unbiased” prior is $G(0, 0)$, which has posterior mean t; the posterior distribution is not defined for $t = 0$.

(iii) Confidence properties of gamma priors. Similar considerations to those for the binomial apply. Exact confidence intervals are not possible because of the discreteness of the Poisson. For a particular prior P, let $0 \leq \lambda \leq \lambda_t$ be the α-probability interval, $P_t(0 \leq \lambda \leq \lambda_t) = \alpha$. The confidence function $P(\lambda \leq \lambda_t)$ will be discontinuous at $\lambda_0, \lambda_1, \ldots$.

For the prior $G(0, 0), P(\lambda \leq \lambda_t) \leq \alpha$ all t, and for the prior $G(1, 0), P(\lambda \leq \lambda_t) \geq \alpha$ all t. These results follow from the equivalence between Poisson and gamma tails:

$$\sum_{t=t_0}^{\infty} \frac{\lambda^t}{t!} e^{-\lambda} = \int_{0}^{\infty} x^{t_0-1} e^{-x} dx.$$

As in the binomial case, Jeffreys’ density gives intervals which are closest to confidence intervals in that

$$\frac{1}{2} \left(\lim_{\lambda \uparrow \lambda_s} P(\lambda \leq \lambda_t) + \lim_{\lambda \downarrow \lambda_s} P(\lambda \leq \lambda_t) \right)$$

is closest to α at every λ_s.

8.6. Normal Location and Scale

Suppose X_1, X_2, \ldots, X_n are from $N(\mu, \sigma^2)$, where μ and σ^2 are unknown; then X_1, \ldots, X_n is $E\left[v^n \left(\frac{\sum X_i}{\sum X_i^2} \right) \left(\frac{\mu/\sigma^2}{-1/2\sigma^2} \right) \right]$ where v^n is Lebesgue measure on R^n. The prior P is docile if $\exp\left[-(A + B \mu^2)/\sigma^2 \right]$ is integrable for some $A, B > 0$.

(i) General priors. For the prior P, the posterior P_t has density $\sigma^{-n} \exp\left[-\frac{1}{2} \sum X_i^2/\sigma^2 + \sum X_i \mu/\sigma^2 - \frac{1}{2} n \mu^2/\sigma^2 \right] k(X_1, \ldots, X_n)$ with respect to P. If (μ_0, σ_0^2) lies in the support of P, and μ_0, σ_0^2 is the true value, then the posterior distribution concentrates on (μ_0, σ_0^2) with probability 1. If P has a positive continuous density at (μ_0, σ_0^2), then the posterior density is asymptotically normal.
(ii) Invariance generated priors. A prior with density [with respect to Lebesgue measure on μ, σ^2] $\sigma^{-4} \exp(-\frac{1}{2}B/\sigma^2 + C\mu/\sigma^2 - \frac{1}{2}D\mu^2/\sigma^2 + K)$ is called an invariance generated prior $\text{IG}(A, B, C, D)$. After the observations X_1, X_2, \ldots, X_n, the posterior is $\text{IG}(A + n, B + \sum X_i^2, G + \sum X_i, D + n)$. Priors of the form $\text{IG}(A, 0, 0, 0)$ are improper, invariant priors under the transformations $X_i \rightarrow a + bX_i$, $\mu \rightarrow a + b\mu$, $\sigma \rightarrow |b|\sigma$; by considering posterior distributions obtained from invariant priors, for various types of data, we obtain the distributions $\text{IG}(A, B, C, D)$ where $B \geq 0$, D is an integer, $C^2 \leq BD$.

The Jeffreys density is $\text{IG}(2, 0, 0, 0)$.

The density $\text{IG}(5, 0, 0, 0)$, for parameters \((\frac{1}{n})\text{P}(\frac{1}{n})\frac{1}{\sigma^2}\) and \((\frac{1}{n})\text{P}(\frac{1}{n})\frac{1}{\sigma^2}\), has posterior means \((\frac{1}{n})\sum X_i\) and \((\frac{1}{n})\sum X_i^2\); this corresponds to \((\mu/\sigma^2, -1/2\sigma^2)^T\) being uniform in the plane, see 8.2.

(iii) Marginal distributions of μ and σ^2. The marginal density of μ corresponding to $\text{IG}(A, B, C, D)$ is $K_1(\frac{1}{2}B - C\mu + \frac{1}{2}D\mu^2)^{-\frac{(A-1)}{2}}$, which is a student distribution with $A - 2$ degrees of freedom. (The conditional density of μ given σ^2 is normal.)

The marginal density of $\sigma^2 = u$ corresponding to $\text{IG}(A, B, C, D)$ is $K_2(\frac{1}{2}B - C\mu + \frac{1}{2}D\mu^2)^{-\frac{(A-1)}{2}}$, which is a gamma distribution with $A - 2$ degrees of freedom.

(iv) The “confidence” prior $\text{IG}(1, 0, 0, 0)$. For this prior, the posterior is $\text{IG}(n + 1, \sum X_i^2, \sum X_i, n)$, and the marginal densities of μ and σ^2 are:

$$\sqrt{n}(\bar{X} - \mu)/s \sim T_{n-1},$$

$$(n-1)s^2/\sigma^2 \sim \chi^2_{n-1}$$

where $\bar{X} = 1/n\sum X_i$, $s^2 = \sum(X_i - \bar{X})^2/(n-1)$, T_{n-1} denotes a student distribution on $(n - 1)$ degrees of freedom, χ^2_{n-1} denotes a chi-square distribution on $(n - 1)$ degrees of freedom.

Since the same distributions hold when μ and σ^2 are fixed, and \bar{X} and s are random, Bayes intervals and regions have a confidence interpretation. For example, the high density region of μ, \{\mu | \sqrt{n}|\bar{X} - \mu| \leq sT_{n-1,\alpha} \} has posterior probability α given X_1, \ldots, X_n, but also probability α given μ, σ^2. (Here $P(|T_{n-1}| \leq T_{n-1,\alpha}) = \alpha$.) Or, the one-sided Bayes interval for σ^2, \{\sigma^2 | (n-1)s^2/\sigma^2 \leq \chi^2_{n-1,\alpha} \} has posterior probability α of containing σ^2, but also probability α given σ^2. (Here $P(\chi^2_{n-1} \leq \chi^2_{n-1,\alpha}) = \alpha$.)

(It should be noted that the high posterior density region for μ and σ^2 is not a confidence region for this prior; the Jeffreys prior $\text{IA}(2, 0, 0, 0)$ gives a high posterior density region

$$(s/\sigma)^n \exp[-\frac{1}{2}(n-1)s^2/\sigma^2 - \frac{1}{2}n(\bar{X} - \mu)^2/\sigma^2] \geq c$$

which is also a confidence region.)

The Bayes test for $\mu = \mu_0$ against $\mu \neq \mu_0$ is: accept $\mu = \mu_0$ if $|\bar{X} - \mu_0| < cs$. The tail area $P[|T_{n-1}| \geq \sqrt{n}|\bar{X} - \mu_0|/s]$ is the Bayes posterior probability
8.6. Normal Location and Scale

If \(X \) is further from the observed \(\bar{X} \) than \(\mu_0 \), the probability that \(\mu \) is further from the observed \(\bar{X} \) than \(\mu_0 \).

(v) Unbetworthiness of confidence interval for \(\mu \). The interval \(\sqrt{n}|\mu - \bar{X}| \leq T_{n-1,\alpha} s \), where \(P(|T_{n-1,\alpha}| < T_{n-1,\alpha} \sigma) = \alpha \) is not betworthy. If \(s < 1 \), bet \(1 - \alpha \) to receive 1 if \(\sqrt{n}|\mu - \bar{X}| > T_{n-1,\alpha} s \). If \(s \geq 1 \), bet \(\alpha \) to receive 1 if \(\sqrt{n}|\mu - \bar{X}| \leq T_{n-1,\alpha} s \). The strategy is to bet that \(\mu \) does not lie in the interval when \(s \) is small, and to bet that \(\mu \) does lie in the interval when \(s \) is large. Since \(P[\sqrt{n}|\bar{X} - \mu| \leq T_{n-1,\alpha} s | s, \mu, \sigma] \) increases strictly with \(s \), and averages \(\alpha \) over all \(s \),

\[
P[\sqrt{n}|\bar{X} - \mu| \leq T_{n-1,\alpha} s | s < 1] \leq \alpha < P[\sqrt{n}|\bar{X} - \mu| \leq T_{n-1,\alpha} s | s > 1].
\]

The above bet will always have positive expectation, no matter what the value of \(\mu, \sigma \). However, as \(\sigma^2 \to 0 \) or \(\infty \), the net gain from the bet will be arbitrarily close to zero.

More generally, bet \(z k(s) \) to receive \(k(s) \) if \(\sqrt{n}|\mu - \bar{X}| \leq T_{n-1,\alpha} s \), where \(k(s) \) may be negative. Whenever the function \(k(s) \) is strictly increasing in \(s \), the net gain from the bet is \(P_{\mu,\sigma}[k(s)] \{ \sqrt{n}[|\mu - \bar{X}| \leq T_{n-1,\alpha} s] - \alpha \} > 0. \)

For \(k(s) = s^4 \), the net gain is \(\sigma^4 K(n, \alpha, \lambda) \) where \(K(n, \alpha, \lambda) \) has the same sign as \(\lambda \). Thus the bet \(s^4 / K(n, \alpha, 2) + s^{-2} / K(n, \alpha, -2) \) has gain \(\sigma^2 + \sigma^{-2} \geq 2 \). It is thus possible to devise bets whose net gain is greater than 2 for all \(\sigma^2 \). See Brown (1967).

(vi) The Behrens–Fisher problem. Suppose that \(X_1, \ldots, X_n \) are a sample from \(N(\mu_1, \sigma_1^2) \), and \(Y_1, \ldots, Y_m \) are a sample from \(N(\mu_2, \sigma_2^2) \). Taking the “confidence” prior density (with respect to Lebesgue measure \(v \) on \(\mu_1, \mu_2, \sigma_1, \sigma_2, \sigma_1^{-1}, \sigma_2^{-1} \)), and letting

\[
\bar{X} = \frac{1}{n} \sum X_i, s_\bar{X}^2 = \sum (X_i - \bar{X})^2 / (n - 1),
\]

\[
\bar{Y} = \frac{1}{m} \sum Y_i, s_\bar{Y}^2 = \sum (Y_i - \bar{Y})^2 / (m - 1),
\]

the posterior distributions of \(\mu_1 \) and \(\mu_2 \) are independently

\[
\mu_1 \sim \bar{X} + s_\bar{X} T_{n-1}/\sqrt{n},
\]

\[
\mu_2 \sim \bar{Y} + s_\bar{Y} T_{m-1}/\sqrt{m}.
\]

Then \(\mu_1 - \mu_2 \) is the convolution of two student distributions.

In order to test \(\mu_1 = \mu_2 \) against \(\mu_1 \neq \mu_2 \), Behrens and Fisher propose the test which rejects \(\mu_1 = \mu_2 \) if

\[
P_{X,Y}[|\mu_1 - \mu_2 - (\bar{X} - \bar{Y})| > |\bar{X} - \bar{Y}|] \text{ is sufficiently small.}
\]

The Bayes test would reject \(\mu_1 = \mu_2 \) if the posterior density of \(\mu_1 - \mu_2 \) at 0 is
sufficiently small—that is, if
\[
\int \left[\sum_{i=1}^{m} (X_i - v)^2 \right]^{-(m+1)/2} \left[\sum_{i=1}^{n} (Y_i + v)^2 \right]^{-(n+1)/2} dv
\]
is small enough.
Both tests have probability of rejection, given \(\mu_1 = \mu_2 \), that depends on \(\sigma_1/\sigma_2 \).

8.7. Problems

E1. Suppose \(X_1, \ldots, X_n \) is a random sample from \(N(\theta, 1) \), and that the prior distribution \(P \) has \(P\{-1\} = P\{1\} = \frac{1}{2} \). If \(\theta = 0 \), what is the asymptotic behavior of the posterior distribution?

E2. If \(X \) is an observation from \(N(\theta, 1) \), show that for every unitary prior \(P \), \(PP_{\theta}[\theta - P_{\theta}(\theta)]^2 < 1 \).

P1. If \(X \) is an observation from \(N(\theta, 1) \), show that \(aX \) is an admissible estimate of \(\theta \) using the loss function \(L(d, \theta) = (d - \theta)^2 \), for \(0 \leq a \leq 1 \).

P2. If \(X \) is Poisson with parameter \(\lambda \), and the prior on \(\lambda \) is gamma, \(G(m, a) \), find the Bayes estimate of \(\lambda \) with loss \(L(d, \lambda) = (d/\lambda - \lambda/d)^2 \).

Q1. In a test of 10 questions, a child gets \(t \) questions correct where \(t \) is binomial with parameter \(p \). Over many children, the parameter \(p \) has prior distribution \(P \). The observed number of successes over many children is:

<table>
<thead>
<tr>
<th>NUMBER CORRECT</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>NUMBER OF CHILDREN</td>
<td>66</td>
<td>240</td>
<td>540</td>
<td>960</td>
<td>2450</td>
<td>3016</td>
<td>2520</td>
<td>2520</td>
<td>2970</td>
<td>2640</td>
<td>1716</td>
</tr>
</tbody>
</table>

Estimate \(P \).

P3. If an observation \(t \) has probability \(P_s = E[\mu, Y, s] \), show that Bayes tests of \(s \leq s_0 \) against \(s > s_0 \) are of form: decide \(s \leq s_0 \) if \(Y \leq Y_0 \).

P4. If \(X_1, \ldots, X_n \) are observations from \(N(\theta, 1) \), and for the uniform prior on \(\theta \), find the conditional distribution of \(X_{k+1}, \ldots, X_n \) given \(X_1, X_2, \ldots, X_k \).

E3. For a normal sample \(X_1, \ldots, X_n \) from \(N(\mu, \sigma^2) \), with the prior \(IG(1, 0, 0, 0) \), find the posterior mode of \(\mu \) and \(\sigma^2 \), and the posterior means of \(\mu \) and \(\sigma^2 \), based on the posterior density of \(\mu \) and \(\sigma^2 \).

P5. For a normal sample \(X_1, \ldots, X_n \) from \(N(\mu, \sigma^2) \), with prior \(IG(1, 0, 0, 0) \) find the Bayes estimator of \(\sigma^2 \) using loss function \(L(d, \sigma^2) = (d - \sigma^2)^2 \), and compare its risk function with those of maximum likelihood and unbiased estimates of \(\sigma^2 \).
8.8. References

9.0. Introduction

Given X, suppose $P_{X}^{i} = N(X_{i}, 1), i = 1, 2, \ldots, n$, and the Y_{i} are independent. The straight estimate Y_{i} of X_{i} is least squares, maximum likelihood, of minimum variance among unbiased estimators, posterior means with respect to the Jeffreys density (the X_{1}, \ldots, X_{n} are uniform) but for all these virtues inadmissible with loss function $\sum_{i=1}^{n} (d_{i} - X_{i})^{2}$ for $n > 2$, Stein (1956).

9.1. Baranchik’s Theorem

Lemma. If $Y \sim N(X, 1), X \geq 0$, and if f is integrable

\begin{align*}
P[f(Y^{2})] &= \sum_{k=0}^{\infty} p_{k} P[f(\chi_{2k+1}^{2})] \\
P[Yf(Y^{2})] &= X \sum_{k} p_{k} P[f(\chi_{2k+3}^{2})]
\end{align*}

where χ_{2k+1}^{2} denotes a variable with the chi-square distribution, and

$p_{k} = \exp\left(-\frac{1}{2}X^{2}\right)\left(\frac{1}{2}X^{2}\right)^{k}/k!$

are Poisson probabilities with expectation $\frac{1}{2}X^{2}$.

Proof. The first result, that a non-central chi-square is a mixture of central chi-squares with Poisson mixing probabilities, should have a nice probabilistic proof, but I don’t know one.
9.1. Baranchik's Theorem

(i) \(P[f(Y^2)] = \int_{-\infty}^{\infty} f(Y^2) \exp \left[-\frac{1}{2} (X - Y)^2 \right] dY / \sqrt{2\pi} \)

\[= \int f(Y^2) \exp \left(-\frac{1}{2} Y^2 \right) dY \exp \left[-\frac{1}{2} X^2 \right] / \sqrt{2\pi} \]

\[= \int_{-\infty}^{\infty} f(Y^2) \sum_{k=0}^{\infty} \frac{X^k Y^k}{k!} \exp \left[-\frac{1}{2} Y^2 \right] dY \exp \left[-\frac{1}{2} X^2 \right] / \sqrt{2\pi}. \]

{Note \(\chi^2_{2k+1} = Y^2 = u \) has density: \(u^{k-1/2} \exp(-\frac{1}{2} u (\frac{1}{2})^{k+1/2} / \Gamma(k + \frac{1}{2})). \)}

\[P[f(Y^2)] = 2 \int_0^\infty f(Y^2) \sum_{k=0}^{\infty} \frac{X^k Y^k}{2k!} \exp \left[-\frac{1}{2} Y^2 \right] dY \exp \left[-\frac{1}{2} X^2 \right] / \sqrt{2\pi} \]

\[= \sum \int_0^\infty f(Y^2) p_k \left(\frac{1}{2} Y^2 \right)^{k-1/2} \frac{1}{\Gamma(k + \frac{1}{2})} \exp \left[-\frac{1}{2} Y^2 \right] dY^2 / 2 \left[\text{since } \Gamma(\frac{1}{2}) = \sqrt{\pi} \right] \]

\[= \sum p_k P[f(\chi^2_{2k+1})]. \]

(ii) \(P[Yf(Y^2)] = \int_{-\infty}^{\infty} f(Y^2) \sum_{k=0}^{\infty} \frac{X^k Y^{k+1}}{k!} \exp \left[-\frac{1}{2} Y^2 \right] dY \exp \left[-\frac{1}{2} X^2 \right] / \sqrt{2\pi} \)

\[= 2 \int_0^\infty f(Y^2) \sum_{k=0}^{\infty} \frac{X^{2k+1} Y^{2k+2}}{(2k + 1)!} \exp \left[-\frac{1}{2} Y^2 \right] dY \exp \left[-\frac{1}{2} X^2 \right] / \sqrt{2\pi} \]

\[= X \sum_{k=0}^{\infty} p_k P[f(\chi^2_{2k+3})] \text{ after some algebra.} \]

\[\square \]

Theorem (Baranchik (1970)). Let \(Y_i \) be independent \(N(X_i, 1) \), \(i = 1, \ldots, n \). Let \(S = \sum Y_i^2 \), and let \(f \) be a non-decreasing non-negative function with \(f < 2(n - 2) \). Then \(P[\sum (Y_i[1 - f(S)/S] - X_i)^2] < P[\sum (Y_i - X_i)^2] \) for every \(X_1, X_2, \ldots, X_n \), if \(n > 2 \).

Proof. Since \(S = \sum_{i=1}^n Y_i^2 \) is invariant under rotations of the \(Y_i \), \(\sum (Y_i[1 - f(S)/S] - X_i)^2 \) has the same distribution if \(Y \) and \(X \) undergo the same rotation. It is sufficient therefore to consider \(X_i \geq 0, X_i = 0 \) for every \(i \geq 2 \).

Let \(g(S) = 1 - f(S)/S \)

\[P[\sum (Y_ig(S) - X_i)^2] = P[\sum Y_i^2 g^2(S) - 2X_1 Y_1 g(S) + X_1^2]. \]

Then \(S = Y_1^2 + Z \) where \(Z \sim \chi^2_{n-1} \) independent of \(Y_1 \).
\[
P[Sg^2(S)] = P^2 P_z(Y_i^2 + Z)g^2(Y_i^2 + Z)
= P^2 \sum p_k P_z(\chi_{2k+1}^2 + Z)g^2(\chi_{2k+1}^2 + Z)\text{ from the lemma}
= \sum p_k P[\chi_{2k+n}^2 g^2(\chi_{2k+n}^2)]\text{, } p_k = \exp(-\frac{1}{2}X_i^2)(\frac{1}{2}X_i^2)^k/k!
\]

\[
P[Y_ig(S)] = X_1 \sum p_k P[g(\chi_{2k+n+2}^2)]\text{ from the lemma}
= \sum p_k P[\chi_{2k+n}^2 g^2(\chi_{2k+n}^2) - 2X_i^2 g(\chi_{2k+n+2}^2) + X_i^2]
= \sum p_k P[\chi_{2k+n}^2 g^2(\chi_{2k+n}^2) - 4kg(\chi_{2k+n}^2) + 2k]
= \sum p_k P[\chi_{2k+n}^2 g^2(\chi_{2k+n}^2) - 4kg(\chi_{2k+n}^2) + 2k + n - n].
\]

This expression is to be shown < 0.

Set \(g(S) = 1 - f(S)/S\) and note that
\[
P[f(\chi_{2k+n}^2)/\chi_{2k+n}^2] \leq P f(\chi_{2k+n}^2)P \frac{1}{\chi_{2k+n}^2}
\]
because \(f(\chi^2)\) and \(1/\chi^2\) are negatively correlated.
\[
P[\chi_{2k+n}^2 g^2(\chi_{2k+n}^2) - 4kg(\chi_{2k+n}^2) + 2k - n]
= Pf(\chi_{2k+n}^2)[2 + f/\chi_{2k+n}^2 + 4k/\chi_{2k+n}^2]
< Pf(\chi_{2k+n}^2)[2 + \frac{2(n - 2) + 4k}{n + 2k - 2}] = 0.
\]
since \(f < 2(n - 2)\) and \(P[1/\chi_{2k+n}^2] = 1/(n + 2k - 2)\). Thus \(Yg(S)\) beats \(Y\).

\text{Note.} \(Yg(S)\) shrinks the estimate towards 0, but the same result holds if it is shrunk towards any other point \(Z\) by \(Z + (Y - Z)g(SZ)\) where \(S_Z = \sum (Y_i - Z_i)^2\). Or shrunk towards \(\bar{Y}\) if \(f < 2(n - 3)\).

\section{Bayes Estimates Beating the Straight Estimate}

Theorem. Suppose \(Y_i \sim N(X_i; \sigma^2)\), \(i = 1, 2, \ldots, n\), \(\sigma^2\) known. Let the prior distribution for \(X_i\) be \(X_i \sim N(0, \sigma_0^2)\) independently given \(\sigma_0^2\), where \(\sigma_0^2\) has a density \(g\) such that \(\log g\) is concave in \(\log(\sigma^2 + \sigma_0^2)\) and \((\sigma^2 + \sigma_0^2)^{1 - (1/2)\alpha}g\) is increasing for some \(\alpha\). The posterior mean of \(X_i\) given \(Y_i\) has smaller mean square error as an estimate of \(X_i\) than \(Y_i\) for every choice of \(X_1, \ldots, X_n\), whenever \(n \geq 4 - \alpha\).

Proof. First fixing \(\sigma_0^2\),
\[
P[X_i \mid Y_i, \sigma_0^2] = Y_i \left(1 + \frac{\sigma^2}{\sigma_0^2}\right).
\]
\(Y_i \sim N(0, \sigma^2 + \sigma_0^2)\) independently.
The posterior density of σ_0^2 given Y_1, \ldots, Y_n is

$$g[\sigma_0^2 | Y] \propto \left(\sigma^2 + \sigma_0^2\right)^{-n/2} \exp\left[-\frac{1}{2} \sum Y_i^2 / (\sigma_0^2 + \sigma_0^2)\right]g(\sigma^2 + \sigma_0^2).$$

Letting $S = \sum Y_i^2$, $V = S / (\sigma^2 + \sigma_0^2),

$$P[V | Y] = \int V^{n/2-1} \exp\left(-\frac{1}{2}V\right)g(S/V)dV / \int V^{n/2-2} \exp\left(-\frac{1}{2}V\right)g\left(S \over V\right)dV

= P[\chi_n^2 g(S / \chi_n^2)] / P[g(S / \chi_n^2)].$$

Now

$$P[X_i | Y] = Y_i P\left[\left(1 + \frac{\sigma^2}{\sigma_0^2}\right)^{-1} | Y\right] = Y_i [1 - P(V | Y) \sigma^2 / S].$$

From Theorem 9.1, the estimate $P[X_i | Y]$ will beat Y_i if $P(V | S) = P(V | Y)$ is a non-negative, non-decreasing function of $S \sigma^2$ such that $P(V | S) < 2(n - 2)$. It is obviously non-negative.

Let $k(V) = V^{n/2-2} \exp\left(-\frac{1}{2}V\right)$. For $S > S'$

$$P[V | S] / P[V | S'] = \frac{\int V k(V) g(S/V) k(S'/U) dV dU}{\int U k(U) g(S'/U) k(V) g(S/V) dV dU} \geq 1$$

if $\int (V - U) k(V) k(U) \left[g(S/V) g(S'/U) - g(S/U) g(S'/V)\right] dU dV \geq 0$. Since log g is concave in log($\sigma^2 + \sigma_0^2$), $g(S/V) g(S'/U) - g(S/U) g(S'/V) \geq 0$ for $S \geq S'$, $V \geq U$. Thus $P[V | S]$ is increasing in S.

Since $(\sigma^2 + \sigma_0^2)^{1-(1/2)\alpha} g = h$ is increasing,

$$P[V | S] = \int V^{(n-\alpha)/2} \exp\left(-\frac{1}{2}V\right) h\left(S \over V\right) dV / \int V^{(n-\alpha)/2} \exp\left(-\frac{1}{2}V\right) h\left(S \over V\right) dV

= P[\chi_{n-\alpha}^2 h(S / \chi_{n-\alpha}^2)] / P[h(S / \chi_{n-\alpha}^2)]

\leq P[\chi_{n-\alpha}^2 = n - \alpha \leq 2(n - 2) \text{ if } n \geq 4 - \alpha].$$

Thus $P[V | S]$ satisfies the conditions of Theorem 9.1 and the theorem is proved.

Note. Priors of the above type will be unitary only if $\alpha < 0$, so that for a unitary Bayes estimate $n \geq 5$ is required to beat the straight estimate.

For $\alpha < 2$, the loss $\sum (X_i - P[X_i | Y])^2$ is integrable, so the posterior mean is Bayes and hence admissible; a Bayes estimate may thus be obtained for $n \geq 3$. Strawderman (1971) considers the densities $g(\sigma_0^2) \propto (\sigma_0^2 + \sigma^2)^{1/2\alpha - 1}$; then $P[V | S] = P[\chi_{n-\alpha}^2 | \chi_{n-\alpha}^2 < S / \sigma^2]$. The particular choice $\alpha = 0$ is suggested by Jeffreys (1961).

James and Stein (1961) showed that estimates $Y_i (1 - ((n - 2) \sigma^2) / \sum Y_i^2$) beat Y_i whenever $n > 2$; these estimates are not admissible. This estimate may be justified by noting that $P(n - 2) / \sum Y_i^2 = 1 / (\sigma^2 + \sigma_0^2)$ under the conditions of the theorem, so that the shrinking factor is estimated unbiasedly. The
Bayes estimates, in contrast, shrink rather less when S is small than when it is large; for large S, the shrinking factor $P[V|S]$ will be close to $(n - \alpha)$; for small S, it will be close to zero.

If $(n - \alpha)$ is even, $P[V|S] = (n - \alpha)P[Z > (n - \alpha)/2]/P[Z \geq (n - \alpha)/2]$ where Z is Poisson with expectation $\frac{1}{2}S/\sigma^2$. For example, for $n = 3, \alpha = 1$, $P[V|S] = 2[1 - e^{-(1/2)S/\sigma^2}(1 + \frac{1}{2}S/\sigma^2)]/[1 - e^{-(1/2)S/\sigma^2}]$, and the estimate is $Y_i[1/(1 - \exp(-\frac{1}{2}S/\sigma^2))] - 2\sigma^2/S$.

Let $\sigma = 1$, and consider the sample $Y_1 = 1.2, Y_2 = -0.6, Y_3 = 0.8$. Then $S = 2.44$, the shrinking factor is .6, and the new estimates are .72, -.36, .48.

9.3. Shrinking towards the Mean

Lindley and Smith (1972) use the prior $X_i \sim N(\theta_0, \sigma_0^2)$, independently for $i = 1, 2, \ldots, n$ given θ_0, and $\theta_0 \sim N(0, \tau^2)$. For the moment σ_0^2 and τ^2 will be assumed known. Then

$$P[X_i|Y, \theta_0] = [Y/\sigma^2 + \theta_0/\sigma_0^2]/(1/\sigma^2 + 1/\sigma_0^2)$$

and $Y_i \sim N[\theta_0, \sigma^2 + \sigma_0^2]$ independently for $i = 1, 2, \ldots, n$

$$\bar{Y}|\theta_0 \sim N\left(\theta_0, \frac{\sigma^2 + \sigma_0^2}{n}\right).$$

$$P[\theta_0|Y] = P[\theta_0|\bar{Y}] = \frac{\sum Y_i}{\sigma^2 + \sigma_0^2}/\left(\frac{n}{\sigma^2 + \sigma_0^2 + 1}\right)$$

$$P[X_i|Y] = \left[Y/\sigma^2 + \bar{Y}\left(1 + \frac{\sigma_0^2 + \sigma^2}{n\tau^2}\right)/\sigma_0^2\right]/\left(1/\sigma^2 + 1/\sigma_0^2\right)$$

$$= \left[Y/\sigma^2 + \bar{Y}/\sigma_0^2\right]/\left(1/\sigma^2 + 1/\sigma_0^2\right) \text{ if } \tau = \infty.$$

$$P_n\sum(P(X_i|Y) - X_i)^2 = \sigma^2 + \left[(n - 1)\frac{1}{\sigma^2} + \frac{1}{\sigma_0^2}\sum(X_i - \bar{X})^2\right]\left(\frac{1}{\sigma^2} + \frac{1}{\sigma_0^2}\right)$$

$$< n\sigma^2 \text{ if } \sum(X_i - \bar{X})^2/(n - 1) < 2\sigma_0^2 + \sigma^2.$$

Note that

$$P[X_i|Y, \sigma_0^2] = \bar{Y} + (Y_i - \bar{Y})\left[1 - \frac{\sigma^2}{\sigma^2 + \sigma_0^2}\right].$$

If σ_0^2 has prior density $(\sigma^2 + \sigma_0^2)^{-(1/2)n\sigma^2}, P[\sum(Y_i - \bar{Y})^2/(\sigma^2 + \sigma_0^2)] = P[\chi^2_{n-\alpha-1}|\chi^2_{n-\alpha-1} < \sum(Y_i - \bar{Y})^2/\sigma^2]$ and the estimate beats Y_i if $n \geq 5 - \alpha$, from Theorem 9.1. Shrinking towards the mean rather than towards an arbitrary constant loses a degree of freedom, but doesn't change the basic arguments.
9.4. A Random Sample of Means

Suppose \(Y_i \sim N(X_i, 1) \) independently, and the \(X_i \) are a random sample from some prior \(P_0 \). The \(Y_i \) are then a random sample from the density \(g \),

\[
g(y) = P_0 \left[\exp \left(-\frac{1}{2}(X - y)^2 \right) / \sqrt{2\pi} \right].
\]

Assuming first that \(g \) is known, the posterior mean of \(X_i \) given \(Y_i \) is \(P_0 \left[X \exp \left(-\frac{1}{2}(X - Y_i)^2 \right) \right] / P_0 \left[\exp \left(-\frac{1}{2}(X - Y)^2 \right) \right] = Y_i + (d/dY_i) \log g. \)

If \(g \) is not known, it is necessary to place a prior distribution on it so that the posterior expectation of the “correction” \((d/dY_i) \log g \) may be computed.

An “empirical Bayes” approach permits estimation of \(g \) by any method, not necessarily a Bayesian method. It is known that \(Y_1, \ldots, Y_n \) form a random sample from \(g \). A density estimation technique might be used to estimate \((d/dY) \log g \). For example, if \(\log g \) has a continuous first derivative at \(y \),

\[
P \left[Y - y \mid Y - y \leq \varepsilon \right] / P \left[(Y - y)^2 \leq \varepsilon \right] \rightarrow \frac{d}{dy} \log g \text{ as } \varepsilon \rightarrow 0.
\]

Thus \((d/dy) \log g \) may be estimated by \(\sum_{|Y_i - y| < \varepsilon} (Y_i - y) / \sum_{|Y_i - y| < \varepsilon} (Y_i - y)^2 \) for sensibly selected \(\varepsilon \). (For \(\varepsilon \) large enough to include all data values, the estimate will be similar to the James–Stein estimate (9.2). The estimate \(Y_i \) will be replaced by an estimate closer to the mean of those observations near \(Y_i \).

9.5. When Most of the Means Are Small

In 9.2 and 9.3, \(g \) is normal with mean 0 and unknown variance, and a prior distribution is placed on the variance. In many regression and analysis of variance problems, most of the means \(X_i \) are very close to zero, but a few are quite large. Such a situation is not well represented by a normal \(g \), because it is not sufficiently long tailed. One alternative is to assume that \(X_i \) comes from a distribution \(p\delta_0 + (1 - p)N(0, \sigma^2) \) where \(\delta_0 \{0\} = 1 \). Then \(Y_i \) is a random sample from \(pN(0, 1) + (1 - p)N(0, \sigma^2 + 1) \),

\[
g(y) = \frac{1}{\sqrt{2\pi}} \left\{ p \exp \left(-\frac{1}{2}y^2 \right) + \frac{(1 - p)}{\sqrt{1 + \sigma^2}} \exp \left(-\frac{1}{2}y^2/(1 + \sigma^2) \right) \right\}
\]

\[
d \log g(y) = -y \left\{ p \exp \left(-\frac{1}{2}y^2 \right) + \frac{(1 - p)}{(1 + \sigma^2)^{3/2}} \exp \left(-\frac{1}{2}y^2/(1 + \sigma^2) \right) \right\}
\]

\[
\frac{d}{dy} \log g(y) = \left\{ p \exp \left(-\frac{1}{2}y^2 \right) + \frac{1 - p}{\sqrt{1 + \sigma^2}} \exp \left(-\frac{1}{2}y^2/(1 + \sigma^2) \right) \right\}
\]

If \(y \) is small, the adjustment is close to \(-y \); if \(y \) is large it is close to \(y/(1 + \sigma^2) \); in this way the small observed values \(Y_i \) are moved very close to zero, but
the large observed values \(Y_i \) are relatively unchanged. In practice \(p \) and \(\sigma_0^2 \) must be estimated from the \(Y_i \). A Bayesian approach requires computation of the posterior mean of \((d/dy) \log g(y)\) but no prior on \(p \) and \(\sigma_0 \) is known which permits explicit computation. It is straightforward computationally to estimate \(p \) and \(\sigma_0^2 \) to maximize the likelihood of the observations, but explicit expressions are not available, and it is not known whether the resulting estimates of the \(X_i \) beat the straight estimates.

A standard approach to the problem of many small means is to carry out a significance test on each mean separately, and to set all those means to zero which do not exceed some significance level. Here, the estimate would be \(\hat{X}_i = Y_i \{ |Y_i| \geq c \} \), where \(c \) is the cutoff point in the significance test. Then

\[
\sum P(Y_i - X_i)^2 - \sum P(\hat{X}_i - X_i)^2 = \sum P(\{ |Y_i| < c \}) (Y_i^2 - 2Y_iX_i) = \sum P(\{ |Z_i + X_i| < c \}) (Z_i^2 - X_i^2)
\]

where \(Z_i \sim N(0, 1) \). If \(|X| > 1 \), \(P(\{ |Z + X| < c \}) (Z^2 - X^2) < 0 \) for every choice of \(c \). Thus there is no way to choose \(c \) so that the estimates \(\hat{X}_i \) have uniformly smaller mean square error than \(Y_i \); it does not help to allow \(c \) to depend on the \(Y_i \).

Yet there is practical value in setting many small means to be exactly zero if there is no evidence of significant departure from zero. Suppose the loss function is

\[
L(d, s) = \{d \neq s\} + k(d - s)^2.
\]

Let \(P_o \) be a unitary probability on \(S \) which has an atom \(P_o \{ s_0 \} \) only at \(s_0 \). Then the probable loss for \(d \) is \(P_o \{d \neq s\} + kP_o(d - s)^2 = P_o s_0 + \{d = s_0\} (1 - 2P_0 s_0) + k(d - P_0 s)^2 + kP_0 (s - P_0 s)^2 \). The Bayes decision is \(d = s_0 \) if \(2P_0 \{s_0\} > k(s_0 - P_0 s)^2 + 1 \), and \(d = P_0 s \) otherwise.

If \(Y_i \sim N(X_i, 1) \) independently, where the \(X_i \) are sampled from \(\bar{p} \delta_0 + (1 - \bar{p})N(0, \sigma_0^2) \), then

\[
X_i | Y_i \sim p_{Y_i} \delta_0 + (1 - p_{Y_i})N \left[\frac{Y_i}{1 + \frac{1}{\sigma_0^2}}, \frac{1}{1 + \frac{1}{\sigma_0^2}} \right]
\]

where

\[
p_{Y_i} = \left\{ 1 + \frac{1 - p}{p} \frac{1}{\left(1 + \sigma_0^2\right)^{1/2}} \exp \left[\frac{1}{2} \frac{Y_i^2}{\sigma_0^2} \right] \right\}^{-1}
\]

is the posterior probability that \(Y_i \) came from the 0 component. The Bayes estimate will be \(X_i = 0 \) if

\[
1 + \left((1 - p_{Y_i}) \frac{Y_i}{\sigma_0^2 + 1} \right)^2 k < 2p_{Y_i},
\]
9.6. Multivariate Means

Let \(Y \sim N(X, \Sigma) \), \(X \sim N(0, k\Sigma_0) \) where \(Y \) and \(X \) are \(n \) dimensional vectors, \(\Sigma \) and \(\Sigma_0 \) are known covariance matrices, and \(k \) is unknown. By a linear transformation applied to \(Y \) and \(X \), this case may be reduced to \(Y_i \sim N(X_i, \sigma_i^2), X_i \sim N(0, \sigma_0^2) \) where \(\sigma_0^2 \) is unknown, and the distributions are independent for different \(i \). See Efron and Morris (1973).

Given \(\sigma_0^2 \), \(P(X_i | Y_i) = Y_i (1 - (\sigma_i^2 / \sigma_0^2 + \sigma_i^2)) \).

A Bayes procedure for a prior density \(f(\sigma_0^2) \) on \(\sigma_0^2 \) would use

\[
P\left(\left(\frac{1}{\sigma_0^2 + \sigma_i^2} \right) \right) = \frac{1}{\prod (\sigma_0^2 + \sigma_i^2)^{-1/2} \exp \left(-\frac{1}{2} Y_i^2 / (\sigma_0^2 + \sigma_i^2) \right) f(d\sigma_0^2)}
\]

but no magical \(f \) exists that permits a simple explicit computation. As a practical matter, taking a uniform discrete prior on \(\sigma_0^2 \) from 0 to \(\sum Y_i^2 / (1 + \sqrt{8/n}) \) in 100 steps, should give a reasonable Bayes estimate of \(1 / (\sigma_0^2 + \sigma_i^2) \). [For a continuous \(f \), the above integrals will have to be approximated as if the prior were discrete, anyway.]

A simple alternative to a Bayes procedure uses \(P[Y_i^2 | \sigma_0^2] = \sigma_0^2 + \sigma_i^2, P[\sum Y_i^2 | \sigma_0^2] = n\sigma_0^2 + \sum \sigma_i^2, \) so that \(\sigma_0^2 \) is estimated unbiasedly by \(\sum (Y_i^2 - \sigma_i^2) / n \). This estimate is sometimes embarrassed by being negative, and may not lead to a good estimate of \(1 / (\sigma_0^2 + \sigma_i^2) \).

A slightly better non-Bayesian method is maximum likelihood, which finds \(\sigma_0^2 \) to maximize \(-\sum \log(\sigma_i^2 + \sigma_0^2) - \sum Y_i^2 / (\sigma_0^2 + \sigma_i^2) \). The maximum value occurs at 0, or at a solution of an equation \(\sum (Y_i^2 - \sigma_i^2 - \sigma_0^2) / (\sigma_i^2 + \sigma_0^2)^2 = 0; \) thus \(\sigma_0^2 \) is the weighted average of \(Y_i^2 - \sigma_i^2 \) with weights inversely proportional to the variances of \(Y_i^2 \) given \(\sigma_0^2 \). However the solution may not be unique, and checking a spectrum of \(\sigma_0^2 \) values is about as difficult as doing a Bayes approximate integration.

The above procedures are not known to be uniformly better than the straight estimates \(Y_i \), which have sum of squared error loss \(\Sigma \sigma_i^2 \). Given \(\sigma_0^2 \), the loss of the Bayes estimate is \(\sum (\sigma_i^2 / (\sigma_0^2 + \sigma_i^2)^2) + \sigma_0^4 X_i^2 / (\sigma_0^2 + \sigma_i^2)^2 \) which is less than \(\sum \sigma_i^2 \) if

\[
\sum (\sigma_0^2 + \sigma_i^2)^{-2} [-2\sigma_0^2 - \sigma_i^2 + X_i^2] < 0.
\]
This condition is analogous to one given in 9.3; it will always be satisfied
for σ_0^2 large enough. This suggest that an estimate beating Y_i might be obtained
by overestimating σ_0^2. Of course, if loss is measured by $P(\sum(X_i - X)^2/
\sigma_i^2|X)$, the problem may be transformed to one in which all the σ_i^2 are equal
and Stein's estimate and unitary Bayes estimates exist beat Y_i. Brown
(1966) shows the estimate Y_i to be inadmissible for a large class of loss func-
tions; better estimators are given by Brandwein and Strawderman (1978).

9.7. Regression

Suppose $Y|X \sim N(AX, \sigma^2 I_p)$, $X \sim N(0, \sigma_0^2 I_p)$ where Y is $n \times 1$, A is $n \times p$, X
is $p \times 1$ and I_n denotes an $n \times n$ unit matrix. Then

$$X|Y \sim N[(A' A/\sigma^2 + I/\sigma_0^2)^{-1} A' Y/\sigma^2, (A' A/\sigma^2 + I/\sigma_0^2)^{-1}]$$

The estimate $P(X|Y)$ of X is often advocated for purely computational
reasons, to guard against singularity or near-singularity of $A' A$, Hoerl and
Kennard (1970). As in 9.6, it is difficult to estimate σ_0^2 by a simple Bayes
procedure. It is tempting to use the unbiased estimate

$$\hat{\sigma}_0^2 = [Y' A (A'A)^{-1} A' Y - p\sigma^2]/\text{trace}(A' A),$$

but this is dangerous because it might be negative.

The maximum likelihood estimate for σ_0^2, assuming σ^2 known, minimizes
log $[\sigma_0^2 A A' + \sigma^2 I] + Y'(\sigma_0^2 A A' + \sigma^2 I)^{-1} Y$. This looks nasty, but when AA'
is diagonalized, it reduces to the likelihood expression in 9.6.

See Lindley and Smith (1972).

9.8. Many Means, Unknown Variance

Let $Y_i|X_i \sim N(0, \sigma^2)$, $X_i \sim N(0, \sigma_0^2)$, $i = 1, 2, \ldots, n$, independently for each i,
and suppose there is an independent estimate of variance S, with $S \sim \sigma^2 \chi^2_k$.
Such a situation arises in regression problems. Given σ^2 and σ_0^2,

$$P[X|Y] = Y_i \left[1 - \frac{\sigma^2}{\sigma^2 + \sigma_0^2}\right].$$

The density of S, Y given σ^2 and σ_0^2 is proportional to

$$\frac{S^{(k/2)-1}}{(\sigma^2)^{k/2}} \exp\left(-\frac{1}{2} S/\sigma^2 \right) \frac{(\sum Y_i^2)^{(m/2)-1}}{(\sigma^2 + \sigma_0^2)^{m/2}} \exp\left[-\frac{1}{2} Y_i^2/(\sigma^2 + \sigma_0^2)\right]$$

We may estimate σ^2 and σ_0^2 unbiasedly by solving

$$S = k\sigma^2, \quad \sum Y_i^2 = n(\sigma^2 + \sigma_0^2).$$
but it is better to estimate the coefficient $\sigma^2 / (\sigma^2 + \sigma_0^2)$ unbiasedly by $(n - 2)/k$. $S/\sum Y_i^2$: the estimator $Y_i[1 - ((n - 2)/k)S/\sum Y_i^2]$ beats Y_i, from Baranchik (1971). Even so the estimator can occasionally give foolish results with the coefficient of Y_i negative.

A maximum likelihood procedure gives the same results as the unbiased method $S = k\sigma^2, \sum Y_i^2 = n(\sigma^2 + \sigma_0^2)$ except when σ_0^2 is estimated negative; in that case σ_0^2 is estimated to be zero, and σ^2 is estimated by $(S + \sum Y_i^2)/ (n + k)$.

For the prior density $(\sigma^2 + \sigma_0^2)^{(1/2)\alpha - 1}(\sigma^2 + \sigma_0^2)^{-1} \sim \chi^2_{n-\delta}/S,$ $(\sigma^2 + \sigma_0^2)^{-1} \sim \chi^2_{n-\delta}/\sum Y_i^2$ where the $\chi^2_{n-\delta}$ are sampled from independent chi-squares but accepted only if $\sigma^{-2} \geq (\sigma^2 + \sigma_0^2)^{-1}$. Thus $\sigma^2/(\sigma^2 + \sigma_0^2) \sim (S/\sum Y_i^2)^{\chi^2_{n-\delta}/\chi^2_{k-\beta}}$ constrained not to exceed 1, and $P[\sigma^2/(\sigma^2 + \sigma_0^2)|Y] = (S/\sum Y_i^2)^2P[\chi^2_{n-\delta}/\chi^2_{k-\beta} \leq \sum Y_i^2/S].$ The computation is an incomplete beta integral. From Baranchik (1971), the estimator $Y_i[1 - (S/\sum Y_i^2)\alpha(\sum Y_i^2/S)]$ beats Y_i if r is non-decreasing, $r \leq 2(n - 2)/(k + 2)$. Here r is obviously non-decreasing, $r \leq P[\chi^2_{n-\delta}/\chi^2_{k-\beta}] = (n - \alpha)(k - \beta - 2)$. Thus the posterior mean beats Y_i if $(n - \alpha)/(k - \beta - 2) \leq 2(n - 2)/(k + 2)$. (These estimates are not Bayes because the loss is not integrable. For example, when $\alpha = 0, \beta = 0$ the condition is satisfied for no k, n; when $\alpha = 2, \beta = -4$, it is satisfied for $n \geq 3$.

9.9. Variance Components, One Way Analysis of Variance

Suppose that a number of normal samples estimate the means X_1, \ldots, X_n; for the j^{th} sample

$$Y_{ij} \sim N(X_j, \sigma^2), \quad i = 1, \ldots, m$$

The X_j's are assumed to be sampled from $N(X, \sigma^2)$. Finally $X \sim N(0, \sigma_M^2)$. Since $\bar{Y}_j \sim N[X_j, \sigma^2/m]$ this is essentially the same situation considered in 9.3. Given $\sigma_0^2, \sigma^2, \sigma_M^2$ there will be posterior mean estimates of the X_j. In practice, it is necessary to estimate the “variance components” $\sigma_0^2, \sigma^2, \sigma_M^2$ somehow, and they are of interest in themselves to indicate how important between group effects (represented by σ^2) and within group effects (represented by the σ_j^2) are:

Here

$$\sum_j \sum_i (Y_{ij} - \bar{Y}_j)^2 \sim \sigma^2 \chi^2_{nm(m-1)}$$

$$\sum (Y_j - \bar{Y})^2 \sim \left(\frac{\sigma^2}{m} + \frac{\sigma_0^2}{n}\right) \chi^2_{n-1}$$

$$\bar{Y}^2 \sim \left(\frac{\sigma^2}{mn} + \frac{\sigma_0^2}{n} + \frac{\sigma_M^2}{n}\right) \chi^2_{1}$$
independently. (The distributions are not so simple if there are unequal numbers in the different samples.) Unbiased estimates of σ^2, σ_0^2 and σ_M^2 may be easily constructed from linear combinations of the sums of squares in Y, but the estimates are inadmissible because they may be negative. Maximum likelihood gives the same estimates if the solutions to the equations are positive.

For a prior uniform in $\log \sigma^2$, $\log(\sigma^2/m + \sigma^2)$ and $\log(\sigma^2/mn + \sigma_0^2/n + \sigma_M^2)$, the posterior distribution of σ^2, $\sigma^2/m + \sigma_0^2$, $\sigma^2/mn + \sigma_0^2/n + \sigma_M^2$ is $\sum \sum (Y_{ij} - \tilde{Y}_j)^2/\chi_{m(m-1)}^2$, $\sum (\tilde{Y}_j - \overline{Y})^2/\chi_{n-1}^2$, \overline{Y}^2/χ_1^2 where the chi-squares are taken independently, but accepted only if the appropriate inequalities hold between the three variables. Computation of posterior means would require formidable numerical integrations in three dimensions. Similar considerations arise in estimating variance components for more complicated analysis of variance models.

9.10. Problems

P1. A surveyor, poor but honest, measures the three angles $(\theta_1, \theta_2, \theta_3)$ of a triangle with independent errors $N(0, 1)$. The measured angles are $\theta_1 = 63^\circ$, $\theta_2 = 31^\circ$, $\theta_3 = 92^\circ$. For a suitable prior on θ, find the posterior distributions of each of $\theta_1, \theta_2, \theta_3$ given the data. [The true values should add to 180°.]

![Triangle with angles $\theta_1, \theta_2, \theta_3$]

P2. In football, the scoring difference between team i and team j is distributed as $N[\mu_i - \mu_j, \sigma^2]$. The prior distributions at the beginning of a season are, independently,

- Yale: $\mu_1 \sim N(0, \sigma^2)$
- Harvard: $\mu_2 \sim N(0, \sigma^2)$
- Princeton: $\mu_3 \sim N(0, \sigma^2)$
- Dartmouth: $\mu_4 \sim N(6, \sigma^2)$

Game scores are: Harvard 13–Princeton 6
Princeton 27–Dartmouth 20
Princeton 21–Yale 3.

Compute the probability that Harvard will beat Yale, given the observed scores.

P3. For $Y_i \sim N(X_i, 1)$ independent

- $X_i \sim N(X_0, \sigma_0^2)$ independent

assume $g(X_0, \sigma_0^2) = 1/(\sigma_0^2 + 1)$.

Find the posterior mean of X_i given Y_1, \ldots, Y_n.
9.11. References

P4. Votes for the Democratic candidate for President:

<table>
<thead>
<tr>
<th></th>
<th>South</th>
<th>Central</th>
<th>New England</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>21</td>
<td>43</td>
<td>61</td>
</tr>
<tr>
<td></td>
<td>29</td>
<td>47</td>
<td>62</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>42</td>
<td>65</td>
</tr>
<tr>
<td></td>
<td>27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Construct a model II analysis of variance, and estimate variance components, using unbiased estimates and Bayes estimates.

P5. Show that the following estimate in the Stein problem, \(Y_i \sim N(\theta_i, I) \), is Bayes and beats \(Y_i \):

\[
\hat{\theta}_i = Y_i \left\{ 1 - \frac{2}{\sum Y_i^2} \left[1 - e^{-(1/2)\sum Y_i^2} \right] \right\}
\]

Show that the multiplier is never negative.

9.11. References

CHAPTER 10
The Multinomial Distribution

10.0. Introduction

A discrete random variable X takes values $i = 1, 2, ..., k$ with probabilities $\{p_i, i = 1, 2, ..., k\}$. A sample of size n from X gives the value $X = i$ n_i times. The multivariate distribution $\{n_i, i = 1, ..., k\}$ is multinomial with parameters $n, \{p_i, i = 1, ..., k\}$. It is ubiquitous in problems dealing with discrete data. The values $1, 2, ..., k$ are called categories or cells.

If $(n_1, n_2, ..., n_k)$ is multinomial $n, \{p_i\}$ then $n_1 + n_2, n_3, ..., n_k$ is multinomial $n, \{p_1 + p_2, p_3, ..., p_k\}; n_1, n_2, ..., n_j$ given $\sum_{i=1}^{j} n_i$ is multinomial $\sum_{i=1}^{j} n_i, \{p_i/\sum_{i=1}^{j} p_i, i = 1, ..., j\}$.

The multinomial is obtained from k independent Poissons n_i with expectations λ_i; the distribution of $n_1, ..., n_k$ given $n = \sum n_i$ is multinomial with parameters $n, \{\lambda_i/\sum_{i=1}^{k} \lambda_i, i = 1, ..., k\}$. This fact is very convenient in formulating models and handling computations, because the Poisson n_i are independent.

In general, the interesting problems in asymptotics and decision theory arise when some of the p_i are small. For example the usual maximum likelihood estimates of p_i are inadmissible if $|p_i| \geq \varepsilon, i = 1, ..., k$.

Standard families of prior distributions exist for the multinomial, but they don’t work too well for many parameter problems. It is necessary to incorporate expected similarities between the p_i’s into the prior for many parameter problems.

10.1. Dirichlet Priors

The multinomial X taking values $i = 1, 2, ..., k$ with probabilities p_i

$$p(X) = \prod_{i=1}^{k} p_i^{X = i}$$

$$= \exp \left[\sum_{i=1}^{k-1} \{X = i\} \log \left[p_i/(1 - p_k) \right] + \log(1 - p_k) \right]$$

96
is exponential $E[\mu, T, \theta]$ where T is the vector $\{X = i\}$, $i = 1, \ldots, k - 1$ and θ is the vector $\log[p_i/(1 - p_k)]$, $i = 1, \ldots, k - 1$, and μ is counting measure on 1, 2, ..., k. Because of the asymmetry of this parameterization, it is often convenient to think of the multinomial as $E[\mu, \{X = i\}, \log[p_i], i = 1, \ldots, k] \{\sum p_i = 1\}$ where the parameters $\log p_i$ are constrained to lie in a $(k - 1)$ dimensional subset $(\sum p_i = 1)$ of R^k. For n observations, with $n_i = \sum_{j=1}^n \{X_j = i\}$,

$$p[X_1, \ldots, X_n] = \prod_{i}^{n} p_i^{n_i}$$

$$p[n_1, \ldots, n_k] = \frac{n!}{\prod_{n_i!}^{i} \prod_{i}^{n_i}}.$$

If $\{p_i\}$ is uniformly distributed over the simplex $p_i \geq 0, \sum p_i = 1$, the posterior density given n_1, \ldots, n_k is $\prod_{i}^{n_i} ((n + k - 1)!/\prod_{n_i}!)$. More generally, the Dirichlet density on $\{p_i\}$, with respect to the uniform μ over $p_i \geq 0, \sum p_i = 1$ is $d_\alpha(p) = \Gamma(\sum \alpha_i) \prod_{i}^{n_i - 1}/\Gamma(\alpha_i)$; the Dirichlet probability is $D_\alpha = E[\mu, \log p_i], \{\alpha_i - 1\}$.

The Dirichlet generalizes the beta to many dimensions. If U_i are independent gamma with densities $\propto u_i^{\alpha_i - 1} \exp(-au_i)$, then $\{U_i/\sum_i U_i\}$ is Dirichlet D_α (similarly to the multinomial being independent Poissons n_1, \ldots, n_k conditioned by $\sum n_i = n$). If the prior density is d_α, then the posterior given n_1, \ldots, n_k is $d_{\alpha + n}$.

$$D_\alpha[P] = \alpha/\sum \alpha_i, D_\alpha[PP'] = \left(\begin{array}{c} \alpha' \\ \alpha_1 \\ \vdots \\ \alpha_k \end{array}\right) / \sum \alpha_i (\sum \alpha_i + 1).$$

If (p_1, \ldots, p_k) is Dirichlet D_α then $p_1, p_2, \ldots, p_r, 1 - \sum_{i=1}^r p_i$ is $D_{\alpha_1, \ldots, \alpha_r, \sum_{i=r+1}^k \alpha_i}$, and p_1, \ldots, p_r given p_{r+1}, \ldots, p_k is $(1 - \sum_{i>r} p_i)D_{\alpha_1, \ldots, \alpha_r}$.

10.2. Admissibility of Maximum Likelihood, Multinomial Case

The maximum likelihood estimates of p_i are n_i/n; these are posterior means for the non-unitary prior density $1/\prod p_i$. They are the only estimates that do not depend on the fineness of subdivision of the multinomial cells, Johnson (1932). If there are very many p_i, all probability estimates will be $0/n$ or $1/n$ which is unsatisfactory.

Theorem (Johnson (1971)). The maximum likelihood estimator $\hat{p}_i = n_i/n$ is an admissible estimator of p_i with loss function $L(d, p) = \sum_{i=1}^k (p_i - d_i)^2$.

Proof. The technique of 6.3 would approximate \hat{p}_i by Bayes estimates for densities $\prod p_i^{\alpha - 1}$, with $\alpha \to 0$, but this is not effective for $k > 2$ because more than one of the n_i may be zero, and this causes irretrievable degeneracy in the
posterior densities when the corresponding p_i are zero. The essence of Johnson's proof is careful handling of the cases where some n_i are zero.

Consider first $k = 2$ and suppose δ has risk nowhere greater than the risk of n/n.

$$r(\delta, p) = \sum_{n_1+n_2=n} \binom{n}{n_1} [(\delta_1 - p_1)^2 + (\delta_2 - p_2)^2]p_1^{n_1}p_2^{n_2}$$

$$= 0 \text{ at } p_1 = 0 \text{ or } p_2 = 0$$

since n/n has zero risk for $p_1p_2 = 0$. Thus $\delta_1(0, n) = 0$, $\delta_2(0, n) = 1$ and so δ and n/n agree when $n_1 = 0$ or $n_1 = n$.

$$r(\delta, p) - r(n/n, p) = \sum_{0 < n_1 < n} \binom{n}{n_1} \sum_{i=1}^{2} [(\delta_i - p_i)^2 - (n_i/n - p_i)^2]p_1^{n_1}p_2^{n_2}$$

$$= \sum_{0 < n_1 < n} \binom{n}{n_1} \sum_{i=1}^{2} [(\delta_i - p_i)^2 - (n_i/n - p_i)^2]p_1^{n_1}p_2^{n_2-1} dp_1$$

$$\geq 0 \text{ since } n/n \text{ is Bayes on prior } 1/p_1p_2,$$

with equality only if $\delta_i = n_i/n$, $i = 1, 2$. Thus if δ has risk no greater than n/n, it equals n/n; thus n/n is admissible.

Note that integration is possible after multiplying by $1/p_1p_2$ because the cases $n_1 = 0$ and $n_1 = n$ have been eliminated.

Consider next $k = 3$, and suppose that δ has risk no greater than that of n/n. Letting $p_1 = 0$,

$$r(\delta, p) = \sum_{n} \binom{n}{n_1} \frac{1}{3} \sum_{i=1}^{3} (\delta_i - p_i)^2 \prod_{i=1}^{n_i} p_i^{n_i}$$

$$= \sum_{n_2+n_3=n} \binom{n}{n_2} \frac{1}{3} \sum_{i=2}^{3} (\delta_i(0, n_2, n_3) - p_i)^2 \prod_{i=2,3} p_i^{n_i}$$

$$+ \sum_{n_2+n_3=n} \binom{n}{n_2} \frac{1}{3} \sum_{i=2,3} (\delta_i(0, n_2, n_3) - p_i)^2 \prod_{i=2,3} p_i^{n_i}$$

Since $r(\delta, p) \leq r(n/n, p)$, then $\sum_{n_2+n_3=n} \binom{n}{n_2} \frac{1}{3} \sum_{i=2}^{3} (\delta_i(0, n_2, n_3) - p_i)^2 \prod_{i=2,3} p_i^{n_i}$ is not greater than $r(0, n_2/n, n_3/n; p)$, which implies $\delta_i(0, n_2, n_3) = n_i/n$, $i = 1, 2, 3$.

[Note that $\delta_i(0, n_2, n_3) = 0$ since otherwise, for $p_1 = 0$, $r(\delta, p) > r(n/n, p)$.] Similarly, δ agrees with n/n whenever n_1 or n_2 or $n_3 = 0$.

$$\int [r(\delta, p) - r(n/n, p)] \frac{dp_1 dp_2}{p_1p_2p_3} = \sum_{n, n_i > 0} \binom{n}{n_i} \int \sum_{i=1}^{3} (\delta_i - p_i)^2 $$

$$- (n_i/n - p_i)^2 \prod_{i=1}^{n_i} p_i^{n_i-1}$$

$$\geq 0,$$
10.3. Inadmissibility of Maximum Likelihood, Poisson Case

If the n_i are independent Poissons with expectations λ_i, then n_1, \ldots, n_k given $\sum n_i = n$ are multinomial with parameters $\lambda_i/\sum \lambda_i$. For this reason, it is often convenient to formulate multinomial models using independent Poissons. A convenient family of prior densities for the Poisson P_λ, $P_\lambda \{n\} = e^{-\lambda} \lambda^n/n!$ is the gamma $G(m, a)$ with density $a^m \lambda^{m-1} e^{-a\lambda}/\Gamma(m)$; given observation n, the posterior density is $G(m + n, a + 1)$.

Theorem (Clevenson and Zidek (1975)). Let n_i be independent Poisson with expectations λ_i, $i = 1, 2, \ldots, k$. Then, for $k \geq 2$

$$P \left(\sum \left[\frac{n_i}{(1 + \frac{k - 1}{\sum n_i}) - \lambda_i} \right]^2 / \lambda_i \right) < P(\sum (n_i - \lambda_i)^2 / \lambda_i)$$

for all λ_i. Thus n_i is inadmissible as an estimate of λ_i.

Proof. Given $n = \sum_{i=1}^k n_i$, the n_i are multinomial with parameters $p_i = \lambda_i/\sum \lambda_i$

$$P[\sum (an_i - \lambda_i)^2 / \lambda_i | n] = \sum [a^2 np_i(1 - p_i)/\lambda_i + (anp_i - \lambda_i)^2 / \lambda_i]$$

$$= a^2 n(k - 1)/\sum \lambda_i + (an - \sum \lambda_i)^2 / \sum \lambda_i$$

The value a which minimizes this expression is $\sum \lambda_i/(n + k + 1)$, which is estimated by $n/(n + k + 1) = a_n$. Set $\lambda = \sum \lambda_i$.

$$P[\sum (a_n n_i - \lambda_i)^2 / \lambda_i] = a_n^2 (n(k - 1) + n^2)/\sum \lambda_i - 2a_n n + \sum \lambda_i$$

$$= n^3/(n + k - 1) + n^2/(n + k - 1) + \sum \lambda_i$$

$$n^3/(n + k - 1) - 2n^2 \lambda/(n + k - 1) = n^2 - (2\lambda + k - 1)n + (k - 1)(2\lambda + k + 1)$$

$$= (k - 1)^2(2\lambda + k - 1)$$

$$P[\sum (a_n n_i - \lambda_i)^2 / \lambda_i] < \lambda^2 + \lambda + (2\lambda + k - 1)(k - 1 - \lambda)$$

$$- (k - 1)^2(2\lambda + k - 1)/(\lambda + k - 1)$$
since X and $1/X$ are negatively correlated.

$$
P[\sum (a_n n_i - \lambda_i)/\lambda_i^2 < 2\lambda + 1 - (2\lambda + k - 1)\lambda_i/\lambda_i^2 - k - (k - 1)^2/\lambda_i^2 < k] = P[\sum (n_i - \lambda_i)/\lambda_i^2].$$

\section{10.4. Selection of Dirichlet Priors}

Jeffreys's prior is $D_1^{1/2} D_2^{1/2} \ldots D_k^{1/2}$ giving density $\propto \prod P_i^{-1/2}$, and posterior means $(n_i + 1/2)/(\sum n_i + k/2)$; the cell estimate depends significantly on k, so that if other cells are subdivided into, say, 100 more cells, a given estimate is substantially reduced. Perks (1947) suggests $\prod P_i^{1/k}$ which gives estimates $(n_i + 1/k)/(\sum n_i + 1)$. Following the binomial case, it is useful to consider the family of prior densities $\prod P_i^{\alpha_i - 1}$, $\alpha_i > 0$, $\sum \alpha_i = 1$ which gives ranges of estimates unaffected by amalgamation or subdivision of cells; these are analogous to confidence priors in the binomial case.

Another possibility is to estimate the Dirichlet prior; assume the prior $\prod P_i^{\alpha_i}$; then $P[n_i] = n/k$, $P[n_i^2] = n/k + (n - 1)(\alpha(\alpha + 1)n/k\alpha(k\alpha + 1))$, and $P(\sum n_i^2) = n + n(n - 1)/(k\alpha + 1)$. Thus α is estimated by solving $\sum n_i^2 = n + n(n - 1)/(k\alpha + 1)$, or equivalently, $\sum (n_i - n/k)^2 = n(k\alpha + n)/(k\alpha + 1)k$. There may be no non-negative solution α if n_i has small enough variance; set $\alpha = \infty$ if $(1/(k - 1))\sum (n_i - n/k)^2 \leq n/k$.

A more satisfactory (and more difficult) procedure due to Good (1965) selects α to maximize the likelihood

$$
P(n|\alpha) = \frac{\Gamma(k\alpha)\Gamma(n + 1)}{\Gamma(\alpha)^k\Gamma(n + \alpha)^k}\prod \frac{\Gamma(n_i + \alpha)}{\Gamma(n_i + 1)}.
$$

Good (1975) shows that $P(n|\alpha)$ is maximized by $\alpha = \infty$ when the chi-square goodness of fit statistic, $X = (k/n)\sum (n_i - n/k)^2 \leq k - 1$. He suggests using $G = \sup \{2 \log P(n|x)/P(n_0|x)\}^{1/2}$ as a test statistic for deciding $p_i = 1/k$, where $n_{0i} = n/k$. In Good (1967) it is asserted that G^2 is distributed as χ^2_1 given that $G > 0$, asymptotically as $n \to \infty$ for k fixed. However, asymptotically, the expansions for gamma functions (Abramowitz and Stegun, 1964, p. 257) show

$$
G(\alpha) = \log P(n|\alpha)/P(n_0|\alpha) \approx \frac{1}{2}(k - 1)(\log(\alpha k/(n + \alpha k)) + \frac{1}{2}Xn/(n + \alpha k)
$$

which is maximized by $\alpha = \infty$ if $X \leq k - 1$, and $\alpha = (n - 1/k)/(X - k + 1)$ if $X > k + 1$, which is the same as the estimate based on the first two moments.

Thus $\sup G(\alpha) \approx \{\frac{1}{2}(X - k + 1) - \frac{1}{2}\log[1 + (X - k + 1)/(k - 1/n)]\}^+$ which is a monotone function of X; its asymptotic distribution is determined from the asymptotic distribution of X, which is χ^2_{k-1}; and Good's test
10.6. Multinomials with Clusters

statistic G is just a monotone function of X asymptotically, without the asymptotic behavior stated in Good (1967). Of course, a complete Bayesian notes that $P(p_i | x) = (n_i + x)/(n + kx)$; specifies a prior density for x; and computes $P[p_i | n] = P[(n_i + x)/(n + k | n)]$ averaging over the posterior density of x given n. The likelihood $P(n | x)$ is messy enough to suggest no simple closed form expression will be available. Good (1967) uses a log-Cauchy distribution for x.

10.5. Two Stage Poisson Models

Suppose n_i are Poisson λ_i, and the λ_i are drawn from some distribution P_0, as in 9.4. The n_i are sampled from the discrete distribution with density p_0,

$$p_0(n) = P_0[\lambda^n e^{-\lambda}/n!].$$

The posterior mean of λ_i given n_i is $P_0[\lambda^{n_i + 1} e^{-\lambda}/n_i!] / P_0[\lambda^n e^{-\lambda}/n_i!]$ which equals $(n_i + 1)p_0(n_i + 1)/p_0(n_i)$.

Thus we can compute posterior means (and variances and other moments) if we know p_0. If p_0 is not completely known, as good Bayesians, we would need a prior distribution for it; the whole data set n_1, \ldots, n_k would determine a posterior distribution for p_0 and the estimate $P[\lambda_i | n] = (n_i + 1)P[p_0(n_i + 1)/p_0(n_i)] n$.

For many Poissons n_i, we might estimate $p_0(n)$ by $\#[n_i = n]/\# n_i$, the maximum likelihood estimate; however this does not take advantage of smoothness induced by $p_0(n) = P_0[\lambda^n e^{-\lambda}/n!]$. See Robbins (1956).

A special case is P_0 gamma with density $a^\lambda 2^{-\lambda -1} e^{-a\lambda}/\Gamma(a)$. Then $p_0(n) = (1 + a)^{-(\alpha + n)} \binom{\alpha + n - 1}{n}$, the negative binomial; and a, α may be estimated from the observed n_i by maximum likelihood or by the moments $Pn = a\alpha/(1 + a), P(n - Pn)^2 = a[a/(1 + a)]^2$. Also $P[\lambda_i | n] = P[(n_i + \alpha)/(1 + a)| n]$; if only we could think of a nice prior distribution g of a, α, the posterior density $g \prod_{i=1}^k (1 + a)^{-\alpha + n_i} \binom{\alpha + n_i - 1}{n_i}$ could be used to obtain a Bayes estimate of λ.

10.6. Multinomials with Clusters

In previous sections, all cells have been treated symmetrically, but it will frequently happen that some groups of probabilities p_i will be expected to be similar. One possibility is that the cells are grouped in clusters C_1, C_2, \ldots, C_j and then the prior density might be taken to be $\prod (\sum_{i \in C} p_i)^{n_i - 1}$;
this is as if we had made previous observations in which α_j individuals occurred in the cluster C_j. If the clusters are hierarchical, so that C_i and C_j overlap only if $C_i \subseteq C_j$ or $C_j \subseteq C_i$, this model may be reformulated as a number of Dirichlet priors on conditional probabilities, and probability estimates may be simply computed. Suppose for example the multinomial is a 2×3 contingency table:

<table>
<thead>
<tr>
<th></th>
<th>n_11</th>
<th>n_12</th>
<th>n_13</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_21</td>
<td>n_22</td>
<td>n_23</td>
<td></td>
</tr>
</tbody>
</table>

Let $C_1 = (11, 12, 13), C_2 = (21, 22, 23), C_{ij} = \{ij\}$. The prior density

$$\prod (\sum_{j \in C_k} p_{ij})^{\alpha_k - 1} = (p_{11} + p_{12} + p_{13})^{\alpha_1 - 1}(p_{21} + p_{22} + p_{23})^{\alpha_2 - 1}\prod p_{ij}^{\alpha_{ij} - 1}$$

may be transformed to a density on the marginal probabilities $p_1 = p_{11} + p_{12} + p_{13}, p_2 = 1 - p_1,$ and conditional probabilities $p_{ij} = p_{ij}/p_i$.

$$= \left(\sum_{j \in C_k} p_{ij}\right)^{- \alpha_k} \prod p_{ij}^{\alpha_{ij} - 1} p_{11} dp_{12} dp_{13} dp_{21} dp_{22}$$

(Note that only five parameters appear in the differential element, since $\sum p_{ij} = 1$.) The new density is

$$p_1^{\alpha_1 + 1 + \Sigma (\alpha_{1j} - 1)} p_2^{\alpha_2 + 1 + \Sigma (\alpha_{2j} - 1)} \prod p_{ij}^{\alpha_{ij} - 1}$$

The advantage of this formulation is that the marginal and conditional probabilities are independent, and so it is easy to do posterior computations. For example $P[p_{ij} | n] = P[p_i | n] P[p_{ij} | n_i]$. See Good (1965) for other methods of generating priors for contingency tables.

10.7. Multinomials with Similarities

It may happen that the cells of a multinomial are ordered in such a way that neighboring probabilities are likely to be close. The prior density ensures that neighboring probabilities are not too different. Pioneering work in this area occurs in Good and Gaskins (1971, 1980) studying density functions. For multinomial probabilities, Leonard (1973) presents the following prior density.

Let $[\log p_i]$ be multivariate normal, subject to the constraint $\sum p_i = 1$; neighboring p_i's are required to be highly correlated. A similar prior density is considered by Simonoff (1980), the density $\exp \left[A \sum (\log^2 p_i/p_i + 1) \right]$; the penalty function $\sum \log^2 (p_i/p_{i+1})$ ensures that p_i and p_{i+1} must be close.

In order to avoid the pesky dependence $\sum p_i = 1$, let us assume n_i Poisson with expectation λ_i, and that the log λ_i form a normal autoregressive process with lag one,

$$[\log \lambda_{i+1} - \mu] = \rho [\log \lambda_i - \mu] + \sigma \epsilon_{i+1}, \quad \epsilon_i \text{ independent } N(0, 1).$$
A simple limiting case, with \(p = 1 \), has log \(\lambda_i \) uniform, log \(\lambda_{i+1}/\lambda_i \) independent \(N(0, \sigma^2) \). The posterior density with respect to Lebesgue measure on \(\{\log \lambda_i\} \) is \(\propto \exp\left[\sum n_i \log \lambda_i - \frac{1}{2} \sum \log^2(\lambda_{i+1}/\lambda_i)/\sigma^2 - \sum \lambda_i \right] \). It is difficult to compute posterior means, but the posterior mode is easier to compute: the function to be maximized is called a penalized likelihood function by Good and Gaskins (1971), with penalty function \(\sum \log^2(\lambda_{i+1}/\lambda_i) \) requiring neighboring \(\lambda_i \)’s to be close. It is not feasible to estimate the \(\sigma^2 \) in the obvious way, to maximize the posterior density, because the inaccessible constant of proportionality includes \(\sigma \).

The modal value of \(u_i = \log \lambda_i \) satisfies

\[
n_i + (2u_i - u_{i-1} - u_{i+1})/2\sigma^2 - e^{u_i} = 0.
\]

Concavity of \(\sum n_i u_i - \sum (u_{i+1} - u_i)^2/2\sigma^2 - \sum e^{u_i} \) guarantees the existence and uniqueness of a modal value. The solution may be found by a Newton–Raphson technique. Simonoff (1980) shows that for large \(k \), with \(n_i \) moderate, the estimates \(\hat{\lambda}_i \) are weighted averages of the \(n_j \) for \(j \) near \(i \), giving asymptotic behavior similar to kernel estimates. These techniques are related to spline fitting methods used in regression and density estimation; see for example Wahba’s remarks in the discussion of Stone (1977).

An alternative prior on log \(\lambda_i \) is \(\exp\left[- A \sum |\log(\lambda_{i+1}/\lambda_i)| \right] \) which specifies the absolute differences to be exponentially distributed. The model \(u_i = \log \lambda_i \) maximizes \(n_i u_i - A \sum |u_{i+1} - u_i| - \sum e^{u_i} \); thus \(e^{u_i} = n_i - 2A, n_i + 2A, e^{u_{i+1}} \) or \(e^{u_{i-1}} \). The solution may be described by a number of intervals \((I_r, J_r)\) such that \(u_i \) is constant for \(I_r \leq i \leq J_r \). If \(u_{I_r-1} < u_{I_r} < u_{I_r+1} \), then \((J_r - I_r + 1)e^{u_{I_r}} = \sum_{I_r \leq i \leq J_r} n_i \); this is equivalent to amalgamating the cells \(i, I_r \leq i \leq J_r \). Search for the optimal intervals requires techniques similar to Barlow et al. (1972). This method clusters the cells which have similar \(n_i \) and is clearer in its action than the normal prior considered previously. Its asymptotic properties are unknown.

10.8. Contingency Tables

The entries in a contingency table may be regarded as multinomial or Poisson; the special structure of the contingency table requires special priors for the parameters. Good (1965) has many useful ideas for such priors. See also Leonard (1975).

For a two way contingency table with entries \(n_{ij}, 1 \leq i \leq I, 1 \leq j \leq J \) and probabilities \(\{p_{ij}\} \), we often expect independence \(p_{ij} = p_i p_j \) where \(p_i = \sum_j p_{ij}, p_j = \sum_i p_{ij} \). Good considers putting a prior density on the parameters \([p_{ij}/p_i, p_j] \), which has the effect of moving all parameter estimates \(\hat{p}_{ij} \) towards independence.

For large tables with ordered rows and columns, the prior density in the Poisson model, \(\exp\left[- A \log^2(\lambda_{ij+1}/\lambda_{ij+1}/\lambda_{i+1}) \right] \), with respect to
log \lambda_{ij} \text{ Lebesgue, encourages each } 2 \times 2 \text{ table of neighboring cells to be nearly independent. The modal posterior estimates of } \lambda \text{ are then approximate weighted averages of counts in nearby cells.}

With prior density \(\exp(-\sum A|\log(\lambda_{ij}\lambda_{i+1,j+1}/\lambda_{i+1,j+1}\lambda_{i,j+1})|) \), the posterior mode requires blocks of neighboring \(2 \times 2 \) tables to be independent, and so breaks the contingency table into a number of (unbalanced) subtables where independence is achieved. Computations with both these techniques are formidable.

10.9. Problems

P1. For all \(n_i \) large, find an approximate expression for the Dirichlet parameter \(\alpha \) maximizing the likelihood \((\Gamma(k\alpha)/\Gamma(\alpha))^{\alpha^2/2} \Gamma(n + \alpha) \Gamma(n + \alpha) \Gamma((n + \alpha)/\Gamma(n + \alpha + 1)) \).

P2. Let \(\lambda_i \) be independent gamma variables with density \(a(a\lambda)^{a-1} \exp(-a\lambda)/\Gamma(a) \). Let \(n_i \) be independent Poisson with expectations \(\lambda_i \). Show that \(\{\lambda_i/\lambda_{\sum\lambda_i}\} \) given \(\{n_i\} \) has the same posterior distribution as \(\{p_i\} \) in the multinomial model with Dirichlet prior density \(\alpha \prod p_i^{a-1} \).

P3. In a binomial model with \(n = 10 \), compute the mean square error of the Bayes estimators corresponding to beta prior densities \([p(1-p)]^{a-1} \) for \(a = -1, 0, \frac{1}{2}, 1, 10 \) and sketch the risks as a function of \(p \). [Hand computation will suffice.]

Obtain the distribution of \(r \) (the number of successes) given \(\alpha \) and estimate \(\alpha \) given \(r \).

If \(P_0[\alpha = 1/2] = P_0[\alpha = 1/2] = \frac{1}{2} \), find \(P[p|r] \).

E1. If \(p \) can take only the values \(k/N, 0 \leq k \leq N \), show that the proportion of successes in \(n \) trials in the binomial model, is inadmissible as an estimate of \(p \) with squared error loss, when \(n > N \).

P4. On visiting a new cafeteria, a distinguished statistician took five cubes of sugar for his coffee. On each wrapper was pictured a bird; of the first four, the third was a cardinal but the other three were swallows; what bird is likely to appear on the fifth wrapper? (See Good (1965).)

E2. In a week books were borrowed from a library by persons in the following categories

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>First year students</td>
<td>6</td>
</tr>
<tr>
<td>Second year students</td>
<td>10</td>
</tr>
<tr>
<td>Third year students</td>
<td>7</td>
</tr>
<tr>
<td>Fourth year students</td>
<td>5</td>
</tr>
<tr>
<td>Statistics faculty</td>
<td>3</td>
</tr>
<tr>
<td>Undergraduates</td>
<td>2</td>
</tr>
<tr>
<td>Other graduate students</td>
<td>8</td>
</tr>
<tr>
<td>Other faculty</td>
<td>1</td>
</tr>
<tr>
<td>Other persons</td>
<td>3</td>
</tr>
</tbody>
</table>

Estimate the probability that the next book is borrowed by a person in each of the above categories.
P5. For a 2×2 table, find a prior distribution on the probabilities $p_{11}, p_{12}, p_{21}, p_{22}$ so that the Bayes test for independence is Fisher's test, rejecting independence if the first observation n_{11} is too large or too small given n_+, n_-.

E3. Is the estimate $\hat{p} = 0$ admissible as an estimate of p in binomial problems, with mean squared error loss?

Q1. Do a two stage analysis of the multinomial model analogous to the two stage Poisson model, 10.5.

P6. In the binomial, is the maximum likelihood estimate \hat{p} admissible with loss $(p - \hat{p})^2/p(1 - p)$ or $\hat{p} \log p + (1 - \hat{p}) \log(1 - p)$? Assume $0 < p < 1$.

P7. Johnson (1971). In the binomial problem, given r successes in n trials, admissible estimates of p are of form:

\[
\hat{p} = 0, \quad r \leq L \\
\hat{p} = \frac{p_0[p^{r-L}(1 - p)^{U-r-1}]/P_0(p^{r-L-1}(1 - p)^{U-1})}{p_0}, \quad r \geq U
\]

where $-1 \leq L < U \leq n + 1$, and P_0 is not carried by $\{0, 1\}$.

P8. (Clevenson and Zidek, 1975) For p independent Poissons n_i with means λ_i, show that $\hat{\delta}(n) = (1 - (\beta + p - 1)/(\sum n_i + \beta + p - 1))n$ beats n as an estimate of λ, using loss function $\sum((\hat{\delta}_i - \lambda_i)^2/\lambda_i)$, for $1 \leq \beta \leq p - 1$.

P9. In the multinomial, show that $\{n/n\}$ is inadmissible for $\{p_i\}$, with squared error loss, if the parameter values satisfy $|p_i| > e, i = 1, 2, \ldots, k$.

10.10. References

CHAPTER 11
Asymptotic Normality of Posterior Distributions

11.0. Introduction

Suppose \(X_1, \ldots, X_n\) are independent observations from \(P_\theta, \theta \in \mathbb{R}\). Suppose that \(P_\theta\) has density \(f_\theta(x)\) with respect to some measure \(\nu\). The maximum likelihood estimate of \(\theta\) (or the value of \(\theta\) that maximizes the density of the posterior probability relative to the prior probability), maximizing \(\prod_{i=1}^{n} f_\theta(X_i)\) is denoted by \(\hat{\theta}_n\). As \(n \to \infty\), Fisher established that \(\hat{\theta}_n\) is asymptotically normal with mean \(\theta_0\) and variance \((nI(\theta_0))^{-1}\), where \(\theta_0\) is the true value of \(\theta\), and \(I(\theta_0)\) is Fisher's information—\(\{-(d^2/d\theta^2)P_{\theta_0} [\log f_\theta(X)]\}_{\theta=\theta_0}\).

The asymptotic normality requires a tedious list of regularity conditions, first promulgated by Wald.

Under almost the same conditions, with the additional requirement that the prior density be positive and continuous in the neighborhood of \(\theta_0\), the posterior distribution of \(\theta\) given \(X_1, \ldots, X_n\) is asymptotically normal with mean \(\hat{\theta}_n\) and variance \([nI(\hat{\theta}_n)]^{-1}\).

In the same way that the posterior distribution is consistent for \(\theta_0\) under very general conditions, it may be shown to be normal under very general conditions; however these elegant general conditions are often more difficult to verify than the longer maximum likelihood list.

The prior density does not affect the asymptotic distribution of \(\theta\) in the terms of \(O(1)\) or \(O(n^{-1/2})\). It does shift the mean of the asymptotic distribution by a term \(O(n^{-1})\).

Similar results hold for \(k\)-dimensional parameter spaces.
11.1. A Crude Demonstration of Asymptotic Normality

Let P_0 denote the prior probability.

The posterior distribution P_X is given by

$$P_X Y = P_0 \left[\prod f_\theta(X_i) Y(\theta) \right] / P_0 (\prod f_\theta(X_i)).$$

For θ near θ_n,

$$\sum \log f_\theta(X_i) = \sum \log f_{\theta_n}(X_i) + \frac{1}{2} (\theta - \theta_n)^2 \sum \frac{d^2}{d\theta_n^2} \log f_{\theta_n}(X_i) + \text{small}.$$

Assume that X_1, X_2, \ldots, X_n are drawn from Q, not necessarily a member of the family P_θ, $\theta \in R$; if $Q = P_{\theta_0}$, say θ_0 is the true value of θ.

Then

$$\sum \log f_\theta(X_i) = \log f_{\theta_n}(X_i) + \frac{1}{2} (\theta - \theta_n)^2 n \frac{d^2}{d\theta_n^2} Q(\log f_{\theta_n}) + \text{small}.$$

Let P_0 have density p_0 with respect to Lebesgue measure μ.

Then $\log p_0(\theta) = p_0(\theta_n) + \text{small}$ for θ near θ_n.

And P_X has density p_X with respect to Lebesgue measure

$$p_X(\theta) \approx \exp \left[\frac{1}{2} (\theta - \theta_n)^2 n \frac{d^2}{d\theta_n^2} Q(\log f_{\theta_n}) \right] c(X)$$

so that θ has the asymptotic density of a normal distribution with mean θ_n and variance $(nI(\theta_n))^{-1}$.

It is necessary to produce regularity conditions which will validate the omission of various "small" terms.

11.2. Regularity Conditions for Asymptotic Normality

See also Walker (1969).

Theorem.

(i) Observations X_1, X_2, \ldots, X_n are drawn from the unitary probability Q on \mathcal{Y}.

(ii) It is contemplated that X_1, \ldots, X_n might be drawn from P_θ, some $\theta \in R$. It is assumed that P_θ has density $f_\theta(X)$ with respect to a measure ν on \mathcal{Y}.

(iii) The function $Q(\log f_\theta)$ has a unique maximum at $\theta = \theta_0$. (If $Q = P_{\theta_0}$, necessarily $\theta_0 = \theta_0'$.)
The prior P_θ has a density $p_\theta(\theta) > 0$, p_θ continuous at θ_0.

(v) $P_X[|\theta - \theta_0| > \varepsilon] \to 0$ as Q each $\varepsilon > 0$.

(vi) In a neighborhood of θ_0, the derivatives $(d/d\theta)\log f_\theta$, $(d^2/d\theta^2)\log f_\theta$ exist and are continuous in θ, uniformly in X.

(vii) $Q[(d/d\theta_0)\log f_{\theta_0}]^2 < \infty$, $Q((d^2/d\theta_0^2)\log f_{\theta_0}) < 0$.

(viii) Let $\hat{\theta}_n$ be the maximum likelihood estimate for θ near θ_0 (necessarily unique as $n \to \infty$). Let $\phi_n = (\theta - \hat{\theta}_n)[\sum (d^2/d\theta^2)\log f_{\theta_0}(X_i)]_{\theta=\hat{\theta}_n}$. Then the posterior density of ϕ_n with respect to Lebesgue measure satisfies

$$\sup_{|\phi_n| \leq \delta} \left| \frac{p_n(\phi_n)}{\sqrt{2\pi}} \exp\left(-\frac{1}{2} \phi_n^2\right) - 1 \right| \to 0 \quad \text{as} \quad Q \text{ for each } K > 0.$$

Proof. (1) First it will be shown that $\sum \log f_{\theta}(X_i)$ is maximized by a unique $\hat{\theta}_n$ in a small neighborhood of θ_0, as Q as $n \to \infty$, with $\sum (d/d\theta)\log f_{\theta_0}(X_i) = 0$.

Since $(d/d\theta)\log f_{\theta}$ is continuous in θ uniformly in X, $(d/d\theta)(\log f_{\theta}) = Q((d/d\theta)\log f_{\theta})$. Since $Q(\log f_{\theta})$ has a unique maximum at $\theta = \theta_0$,

$$(d/d\theta_0)Q(\log f_{\theta_0}) = 0.$$

Let $Q[(d^2/d\theta_0^2)\log f_{\theta_0}(X_i)] = -\Delta_0$.

$$\frac{1}{n} \sum \frac{d^2}{d\theta^2} \log f_{\theta_0}(X_i) = \frac{1}{n} \sum \frac{d^2}{d\theta^2} \log f_{\theta_0}(X_i) + \Delta,$$

where $\Delta < \Delta_0/2$ whenever $|\theta - \theta_0| < \delta$, by uniform continuity, (vi). Since

$$\frac{1}{n} \sum \frac{d^2}{d\theta^2} \log f_{\theta_0}(X_i) \to Q\left[\frac{d^2}{d\theta^2} \log f_{\theta_0}(X) \right] \quad \text{as} \quad Q,$$

$$\frac{1}{n} \sum \frac{d^2}{d\theta^2} \log f_{\theta_0}(X_i) < -\Delta_0/2$$

whenever $|\theta - \theta_0| < \delta$, for all large n as Q.

Thus $\sum \log f_{\theta}(X_i)$ has at most one maximizing value in $|\theta - \theta_0| < \delta$ as Q. Also

$$\frac{1}{n} \sum \frac{d}{d\theta} \log f_{\theta_0}(X_i) = \frac{1}{n} \sum \frac{d}{d\theta} \log f_{\theta_0}(X_i) + \frac{1}{n} (\theta - \theta_0) \sum \frac{d^2}{d\theta^2} \log f_{\theta_0}(X_i)$$

where $|\theta - \theta^*|, |\theta_0 - \theta^*| \leq |\theta_0 - \theta|$. As $n \to \infty$, $(1/n)\sum (d/d\theta_0)\log f_{\theta_0}(X_i) \to 0$ as Q.

Thus

$$\frac{1}{n} \sum \frac{d}{d\theta} \log f_{\theta_0}(X_i) < (\theta - \theta_0)\Delta/2 \quad \text{for} \quad |\theta - \theta_0| < \delta, \theta > \theta_0 \quad \text{as} \quad Q,$$

$$\frac{1}{n} \sum \frac{d}{d\theta} \log f_{\theta_0}(X_i) > (\theta - \theta_0)\Delta/2 \quad \text{for} \quad |\theta - \theta_0| < \delta, \theta < \theta_0 \quad \text{as} \quad Q.$$

Thus $\sum (d/d\theta)\log f_{\theta_0}(X_i)$ has a zero in $|\theta - \theta_0| < \delta$ as Q as $n \to \infty$, and the
zero is unique because \(\sum (d^2/d\theta^2) \log f_\theta(X_i) < -\Delta_0/2 \) in \(|\theta - \theta_0| < \delta \) as \(Q \); the zero at \(\theta = \hat{\theta}_n \) will maximize \(\sum \log f_\theta(X_i) \); since \(\hat{\theta}_n \) lies in \(|\theta - \theta_0| < \delta \) for \(n \) large enough, for each choice of \(\delta, \hat{\theta}_n \rightarrow \theta_0 \) as \(Q \).

(2) \(\hat{\theta}_n \) is asymptotically normal with mean \(\theta_0 \) and variance \(\sigma^2/n \) where
\[
\sigma^{-2} = -Q \left[(d^2/d\theta^2_0) \log f_{\theta_0}(X) \right].
\]

\[
0 = \frac{d}{d\theta} \sum \log f_{\theta_n}(X_i) = \frac{d}{d\theta} \sum \log f_{\theta_0}(X_i) + (\hat{\theta}_n - \theta_0) \frac{d^2}{d\theta^2} \sum \log f_{\theta_0}(X_i)
\]
\[
+ n\varepsilon(\theta, X)
\]

where \(\varepsilon(\theta, X) \to 0 \) as \(Q \) from (vi).

Now \((1/n)(d/d\theta) \sum \log f_{\theta_0}(X) \) is asymptotically normal
\[
N \left[0, (1/n)Q \left(\frac{d}{d\theta_0} \log f_{\theta_0}(X) \right) \right]
\]

and
\[
(1/n)(d^2/d\theta^2) \sum \log f_{\theta_0}(X_i) \to Q \left[(d^2/d\theta^2_0) \log f_{\theta_0}(X) \right] \quad \text{as} \quad Q.
\]

Thus \(\hat{\theta}_n - \theta_0 \) is asymptotically normal with mean 0 and variance \(\sigma^2/n \).

(3) To conclude, let \(\delta_n \to 0 \);
\[
\log p_X(\theta)/p_X(\hat{\theta}_n) = \log p_0(\theta)/p_0(\hat{\theta}_n) + \sum \log f_\theta(X_i) - \sum \log f_{\hat{\theta}_n}(X_i)
\]
\[
= \varepsilon(\theta, \hat{\theta}_n) + \frac{1}{2}(\theta - \hat{\theta}_n)^2 \left(\sum \frac{d^2}{d\theta^2} \log f_{\theta_n}(X_i) + n\varepsilon(\theta, X) \right)
\]

where by (iv) and (vi), \(\varepsilon(\theta, \hat{\theta}_n) \to 0 \) as \(Q \) and \(\varepsilon(\theta, X) \to 0 \) as \(Q \), uniformly over \(|\theta - \theta_0| \leq \delta_n \).

From (vii), \((1/n)(d^2/d\theta^2) \log f_{\theta_0}(X_i) \to -\Delta_n \), and \(\phi_n \) is a linear transformation of \(\theta \), with \(\phi_n(\hat{\theta}_n) = 0 \). Thus \(p_X(\theta)/p_X(\hat{\theta}_n) = p_n(\phi_n)/p_n(0) \),

(A) \(\log p_n(\phi_n)/p_n(0) + \frac{1}{2} \phi_n^2 \to 0 \) as \(Q \) uniformly over \(|\phi_n| \leq K \).

(B) Also \(\log p_n(\phi_n)/p_n(0) < -\frac{1}{4}(\theta - \hat{\theta}_n)^2 n\Delta \) for all \(|\theta - \hat{\theta}_n| \leq \delta_n \) as \(Q \) as \(n \to \infty \).

(C) Finally, from (v) \(P_X(|\theta - \theta_0| > \delta_n) \to 0 \) as \(Q \) for some \(\delta_n \to 0 \).

It is necessary to combine facts (A), (B), (C) to determine \(p_n(0) \). From (C),
\[
\int_{|\theta - \theta_0| \leq \delta_n} p_n(\phi_n) d\phi_n \to 1
\]
From (B),
\[
\int_{|\theta - \theta_0| \leq \delta_n} p_n(\phi_n) d\phi_n \leq p_n(0) \int_{|\theta - \delta_n| > K/\sqrt{n}} \exp \left[-\frac{1}{4}(\theta - \hat{\theta}_n)^2 n\Delta \right] d\phi_n
\]
\[
\leq p_n(0) C_n \exp \left[-\frac{1}{4} K^2 \Delta \right] \quad \text{for large} \quad n.
\]

From (A),
\[
p_n^{-1}(0) \int_{|\theta - \delta_n| < K/\sqrt{n}} p_n(\phi_n) d\phi_n \to \lim \int_{|\theta - \delta_n| < K/\sqrt{n}} \exp(-\frac{1}{2} \phi_n^2) d\phi_n
\]
\[
= (\sqrt{2\pi} - C_n \exp \left[-\frac{1}{4} K^2 \Delta \right]).
\]
11.3. Pointwise Asymptotic Normality

Here C_n and C' are bounded by 1 as $K \to \infty$, $n \to \infty$, so $p_n(0)\sqrt{2\pi} \to 1$.

Thus $p_n(\phi_n)/[\exp(-\frac{1}{2}\phi_n^2)/\sqrt{2\pi}] - 1 \to 0$ uniformly over $|\phi_n| \leq K$ as required.

Notes: The conditions of the theorem look forbidding but they are merely those conditions which permit neglect of “small” terms in the Taylor series expansion. It is not necessary that the X_1, \ldots, X_n be sampled from a member of the family P_θ, but it is necessary that a unique member P_{θ_0} be “closest” to Q in maximizing $Q[\log dP_\theta/dQ]$; if there are θ_0, θ'_0 such that P_{θ_0} and $P_{\theta'_0}$ are both closest, then the limiting posterior distribution should be bimodal with modes near θ_0 and θ'_0. The regularity conditions on $\log f_\theta$ near θ_0 are far stronger than is necessary. It is necessary that the prior density be positive at θ_0, and that it be continuous at θ_0 (the conclusion of the theorem requires $p_\theta(\theta_n)/p_\theta(\theta_0) \to 1$ as $\sqrt{n(\theta_n - \theta_0)} \to 0$, $n \to \infty$; continuity of $(d/d\theta) \log f_\theta(X)$ requires $p_\theta(\theta_n)/p_\theta(\theta_0) \to 1$ as $n(\theta_n - \theta_0) \to 0$, which requires continuity of p_θ).

It is necessary that the posterior distribution concentrates at θ_0; maximum likelihood conditions for convergence of $\hat{\theta}_n$ to θ_0 might be given, governing the behavior of the likelihood outside neighborhoods of θ_0, but it may be easier to check convergence of the posterior distribution directly.

11.3. Pointwise Asymptotic Normality

Theorem.

(i) Let X_1, X_2, \ldots, X_n be sampled from a unitary Q on \mathcal{X}.
(ii) Let $P_\theta, \theta \in \mathbb{R}$ be a family of probabilities on \mathcal{X} with densities f_θ with respect to some measure ν on \mathcal{X}.
(iii) Let $\theta = \theta_0$ be a local maximum of $Q(\log f_\theta)$.
(iv) Let a prior probability P_θ have density p_θ positive and continuous at θ_0.
(v) $(d/d\theta_0) \log f_{\theta_0}$ exists as Q and $Q((1/\delta) \log (f_{\theta_0+b}/f_{\theta_0}) - (d/d\theta_0) \log f_{\theta_0})^2 \to 0$ as $\delta \to 0$.
(vi) $Q((d/d\theta_0) \log f_{\theta_0})^2 < \infty$; $(d^2/d\theta_0^2)Q(\log f_{\theta_0}) = -1/\nu < 0$.

Then the posterior density p_X of θ is pointwise asymptotically normal in the neighborhood of θ_0 with mean $\theta_0 + (v/n)\sum(d/d\theta_0) \log f_{\theta_0}(X_i)$ and variance ν/n; that is

$$p_X(\theta_0 + \xi\sqrt{\nu/n})/p_X(\theta_0) - \phi \left[\frac{\xi - \sqrt{\nu/n} \sum d}{\sqrt{n} \sum d \log f_{\theta_0}(X_i)} \right] \to 0$$

in Q-probability for each ξ, where $\phi(u) = \exp(-\frac{1}{2}u^2)/\sqrt{2\pi}$.

Proof. Let
\[
I_h(X) = -\log f_\theta_0 h(X) f_\theta_0(X)
\]
\[
h_0(X) = \frac{d}{d\theta_0} \log f_\theta_0(X) = \lim_{\delta \to 0} h_\delta(X)
\]
defined as \(Q \).

Let
\[
\delta_n = \xi \sqrt{v/n}.
\]

Then
\[
p_X(\theta_0 + \delta_n)/p_X(\theta_0) = [p_0(\theta_0 + \delta_n)/p_0(\theta_0)] \times \left[\prod \left[f_\theta_0 + \delta_n(X_i)/f_\theta_0(X_i) \right] \right]
\]
\[
L_n(\xi) = \log p_X(\theta_0 + \delta_n)/p_X(\theta_0) = \log p_0(\theta_0 + \delta_n)/p_0(\theta_0) + \sum \delta_n h_\delta(X_i)
\]
From (iv), \(L_n(\xi) - \sum \delta_n h_\delta(X_i) \to 0 \) as \(n \to \infty \).

Also, \(\sum \delta_n [h_\delta(X_i) - h_0(X_i)] \) has mean \(n\delta_n Q(h_\delta - h_0) \) and variance \(n\delta_n^2 Q(h_\delta - h_0)^2 \) as \(n \to \infty \) by (v).
From (iii) and (v), \((d/d\theta_0) Q(\log f_\theta_0) = Q((d/d\theta_0) \log f_\theta_0) = Q h_0 = 0 \).
From (vi), \(Q(\log f_\theta_0 + \delta_n) = Q(\log f_\theta_0) + \delta_n (d/d\theta_0) Q(\log f_\theta_0) + \frac{1}{2} \delta_n^2 [-1/v + \varepsilon \delta_n^2] \) where \(\varepsilon \delta_n \to 0 \) as \(n \to \infty \). Thus \(n\delta_n Q(h_\delta - h_0) + \frac{1}{2} n\delta_n^2/v \to 0 \) as \(n \to \infty \).
Therefore
\[
L_n(\xi) - \sum \delta_n h_\delta(X_i) + (1/2)n\delta_n^2/v \to 0 \text{ in } Q\text{-probability}
\]

\[
(*)
\]
\[
L_n(\xi) - \xi \sqrt{\frac{v}{n}} \sum h_0(X_i) + \frac{1}{2} \xi^2 \to 0 \text{ in } Q\text{-probability}.
\]
\[
\log \{p_X(\theta_0 + \xi \sqrt{v/n})/p_X(\theta_0)\} - \log \{\phi \left[\xi - \sqrt{\frac{v}{n}} \sum h_0(X_i) \right] \} \to 0
\]
in \(Q\)-probability.
\[
p_X(\theta_0 + \xi \sqrt{v/n})/p_X(\theta_0) - \phi \left[\xi - \sqrt{\frac{v}{n}} \sum h_0(X_i) \right] / \phi \left[\sqrt{\frac{v}{n}} \sum h_0(X_i) \right] \to 0
\]
in \(Q\)-probability as required.

Notes: The condition (iii) is weaker than the corresponding condition (iii) of Theorem 11.2; also there is no condition corresponding to 11.2(v) which requires the posterior distribution to concentrate on \(\theta_0 \). Thus the posterior density may be asymptotically normal in the neighborhood of \(\theta_0 \) without concentrating there!

Condition 11.3(v) is much weaker than 11.2(vi); thus it is only possible to prove pointwise convergence of the posterior density, rather than uniform convergence. The core of the proof is showing that the log posterior density is parabolic near the "optimal" \(\theta_0 \), as in equation (*).

Note that the expression for asymptotic variance is \((d^2/d\theta_0^2) Q(\log f_\theta_0) \) rather than \(Q((d^2/d\theta_0^2) \log f_\theta_0) \); the second derivatives of \(\log f_\theta \) may not exist for many \(X \) and \(\theta \), but the second derivatives of \(Q(\log f_\theta) \), averaging out \(X \), may well exist. See Ibragimov and Khäs'minskii (1973) and LeCam (1970) for some related results in maximum likelihood asymptotics.
11.4. Asymptotic Normality of Martingale Sequences

Theorem. Let \(\mathcal{X}_0 \subseteq \mathcal{X}_1 \subseteq \cdots \subseteq \mathcal{X}_n \subseteq \cdots \subseteq \mathcal{X}\) be probability spaces, and let \(P_0\) be a unitary probability on \(\mathcal{X}\). Let \(P_i\) be probabilities on \(\mathcal{X}\) to \(\mathcal{X}_i\) with \(P_i = P_i|P_j\), \(i \leq j\). Let \(X\) be an element of \(\mathcal{X}_\infty\), where \(\mathcal{X}_\infty\) is the minimal complete probability space with a probability \(P_\infty\) equal to \(P_0\) on \(\mathcal{X}_n\) each \(n\). Define

\[
\begin{align*}
 u_n &= P_nX - P_{n-1}X \\
 s_n^2 &= P_n(X - P_nX)^2
\end{align*}
\]

Assume

1. \(0 < s_n^2 < \infty\) all \(n\), as \(P_0\).
2. \(\sum_{j=n+1}^\infty P_{j-1}(u_j^2)/s_n^2 \to 1\) as \(n \to \infty\), as \(P_0\).
3. \(\sup_{j > n} P_{j-1}(u_j^2)/s_n^2 \to 0\) as \(n \to \infty\), as \(P_0\).
4. \(\sum_{j=n+1}^\infty P_{j-1}|u_j|^3/s_n^3 \to 0\) as \(n \to \infty\), as \(P_0\).

Then

\[
P_nf[(X - P_nX)/s_n] \to \frac{1}{\sqrt{2\pi}}f(u)e^{-(1/2)u^2}du, \quad \text{as } P_0.
\]

for each bounded continuous function \(f\) (so that \(X\) is asymptotically normal with mean \(P_nX\) and variance \(s_n^2\) given \(\mathcal{X}_n\)).

Proof. The proof parallels the usual method for proving a central limit theorem for sums. Here \(X - P_nX = \sum_{j=n+1}^\infty u_j = \lim_{N \to \infty} \sum_{j=n+1}^N u_j\); the quantities \(\{u_j\}\) play the role of the summands in the central limit theorem; they are not independent, but satisfy \(u_j P_0\)-uncorrelated with \(f(u_k)\) for \(k \neq j, f\) measurable.

Let \(f_n(u) = \exp(itu/s_n)\).

Then

\[
P_n[f_n(u_{n+1} + u_{n+2})/P_n f_n(u_{n+1})P_{n+1} f_n(u_{n+2})] = P_n P_{n+1} [f_n(u_{n+1})/P_n f_n(u_{n+1})]
\]

By induction \(P_n[f_N(\sum_{i=1}^N u_i)]/P_N f_N(u_i) = 1\) (this makes the characteristic function of \(P_NX - P_nX\) nearly the same as a product). From Theorem 4.2, \(P_n|P_NX - X| \to 0\) as \(N \to \infty\).

Also \(|f_n(x) - f_n(y)| \leq |x - y|\), and \(|f_n(x)| \leq 1\), \(|f_n^{-1}(x)| \leq 1\). Therefore \(|P_n [(f_n(\sum_{i=1}^N u_i) - f_n(X - P_nX)]/P_{i=1}^N P_{i-1} f_n(u_i)]| \leq P_n |P_NX - X| \to 0\) as \(N \to \infty\).

\[
P_{i-1} f_n(u_i) = 1 + it/s_n P_{i-1} u_i - \frac{1}{2}t^2 P_{i-1} u_i^2/s_n^2 + v |t|^3 P_{i-1} |u_i|^3/s_n^3 \quad \text{with } |v| \leq 1
\]

\[
\sum_{i=n+1}^N \log P_{i-1} f_n(u_i) = -\frac{1}{2}t^2 \sum_{i=n+1}^N P_{i-1} u_i^2/s_n^2 + v |t|^3 \sum_{i=n+1}^N P_{i-1} |u_i|^3/s_n^3 + \xi_n
\]

where \(\xi_n \to 0\) as \(n \to \infty\) by (iii).
114 II. Asymptotic Normality of Posterior Distributions

[Using the facts \(x - \frac{1}{2}x^2 < \log(1 + x) < x \),

\[
\sum x_i - \sup |x_i| \sum |x_i| < \sum \log(1 + x_i) < \sum x_i.
\]

Thus \(\sum_{i=n+1}^{\infty} \log P_{i-1} f_n(u_i) \) exists by (ii) and (iv), and approaches \(-\frac{1}{2}t^2\) as \(n \to \infty \) as \(P_0 \). Since \(\sum_{i=n+1}^{\infty} \log P_{i-1} f_n(u_i) \to 0 \) as \(N \to \infty \),

\[
P_n \left[f_n(X - P_n X) \left/ \prod_{i=n+1}^{\infty} P_{i-1} f_n(u_i) \right. \right]
\]

\[
= P_n \left[f_n(X - P_n X) \left/ \prod_{i=n+1}^{N} P_{i-1} f_n(u_i) \times \prod_{N+1}^{\infty} P_{i-1} f_n(u_i) \right. \right]
\]

\[
= P_n \left[f_n(X - P_n X) \left/ \prod_{i=n+1}^{N} P_{i-1} f_n(u_i) Z_N \right. \right]
\]

where \(Z_N \to 1 \) as \(N \to \infty \)

\[
= \lim_{N \to \infty} P_n \left[f_n(X - P_n X) \left/ \prod_{i=n+1}^{N} P_{i-1} f_n(u_i) \right. \right] = 1.
\]

\[
P_n \left[f_n[X - P_n X] \right] \to e^{-{(1/2)t^2}} \text{ as } n \to \infty, \text{ since } \prod_{i=n+1}^{\infty} P_{i-1} f_n(u_i) \to e^{-{(1/2)t^2}}.
\]

Thus the characteristic function of \((X - P_n X)/s_n\) approaches the characteristic function of the unit normal as \(Q \). Since any continuous function that is zero outside a compact set can be uniformly approximated on the set by a finite sum \(\sum a_j \exp(it \mu) \), the same result holds for such continuous functions. Extension to arbitrary bounded continuous functions is straightforward.

Notes: These results are very free of regularity conditions, and especially of independence conditions. The conditions on the increments in posterior means \(P_n X - P_{n-1} X \) might be difficult to verify. Conditions (iv) might be weakened to the Lindeberg-like condition \(\sum_{i=n+1}^{\infty} P_{i-1} \{ |u_j|^2 \{ |u_j| > \epsilon \} / s_n^2 \to 0 \). See Hall and Heyde (1980), and Brown (1971).

Example. Suppose \(\mathcal{X}_n \) is generated by \(X_1, \ldots, X_n \), a sample from the Bernoulli distribution \(P[X] = p \{ x = 1 \} (1 - p) \{ x = 0 \} \) given \(p \), and where \(p \) has some prior distribution \(P_0 \). See Awad (1978), p. 53. Letting \(r = \sum X_i \),

\[
P_n(p) = f(r, n) = P_0[p^{r+1}(1-p)^{n-r}]/P_0[p^{r}(1-p)^{n-r}]
\]

\[u_{n+1} = f(r + X_{n+1}, n + 1) - f(r, n)\]

\(u_{n+1} \) given \(\mathcal{X}_n \) has values \(f(r + 1, n + 1) - f(r, n) \) with probability \(f(r, n) \),

\(f(r + 1, n + 1) - f(r, n) \) with probability \(1 - f(r, n) \).

\[
P_n(u_{n+1}) = 0, \text{ so } f(r, n + 1) \{ 1 - f(r, n) \} + f(r + 1, n + 1) f(r, n) = f(r, n).
\]

\[
\begin{align*}
 s_n^2 &= P_n(p - P_n p)^2 = f(r + 1, n + 1) f(r, n) - f(r, n)^2 \\
 P_n(u_{n+1}^2) &= s_n^2/f(r, n)(1 - f(r, n)) \\
 P_n[u_n^3] &= \frac{s_n^3}{f^{-2}(r, n) + (1 - f(r, n))^{-2}}.
\end{align*}
\]

Note that \(f(r, n) = P_n p \to p \) as \(n \to \infty \), as \(P_0 \).
11.5. Higher Order Approximations to Posterior Densities

Assume that \(ns_n^2 \to p(1 - p) \), as \(P_0 \).

Then \[n \sum_{j=n+1}^{\infty} \frac{1}{(j-1)^2} \to 1 \] as \(n \to \infty \), (ii) is satisfied.

\[\sup_{j>n} \frac{\mathrm{P}_j}{\mathrm{P}_j} \leq (1 + \varepsilon)/n \to 0 \] as \(n \to \infty \), satisfying (iii)

\[\sum_{j=n+1}^{\infty} \frac{1}{(j-1)^2} \to \frac{1}{p^2 + \frac{1}{(1-p)^2}} \to 0 \] satisfying (iv).

Thus the posterior distribution of \(p \) given \(x_1, \ldots, x_n \) is normal whenever \(ns_n^2 \to p(1 - p) \), as \(P_0 \), that is, whenever the posterior variance converges to the asymptotic variance of the maximum likelihood estimator.

11.5. Higher Order Approximations to Posterior Densities

Let's just blast away with Taylor series expansions and leave the regularity conditions till later. See Johnson (1967) and Hartigan (1965).

(i) Assume \(X_1, \ldots, X_n \) are a sample from \(P_\theta \) having density \(f_\theta \) with respect to some measure \(v \) on \(\mathcal{Y} \). Let \(\theta \) be a real valued random variable.

Let \[h_r(X) = \frac{d}{d\theta} \log f_\theta(X) \bigg|_{\theta = \theta_0}. \]

(ii) Assume \(Q(\log f_\theta) \) is maximal at \(\theta = \theta_0 \).

(iii) Assume the prior \(P_0 \) on \(S \) has density \(p_0 \), and the posterior \(P_x \) has density \(p_x \).

Then

\[\log p_x(\theta) = \log p_x(\theta_0) + \log p_0(\theta)/p_0(\theta_0) + \sum_{i=1}^{n} \log f_\theta(X_i)/f_\theta(0) \]

\[\log \left[\frac{p_x(\theta)}{p_x(\theta_0)} \right] = (\theta - \theta_0) \frac{d}{d\theta_0} \log p_\theta(\theta_0) \]

\[+ (\theta - \theta_0) \sum h_1(X_i) + \frac{1}{2}(\theta - \theta_0)^2 \sum h_2(X_i) \]

\[+ \frac{1}{6}(\theta - \theta_0)^3 \sum h_3(X_i) \]

\[+ o[(\theta - \theta_0) + o[n(\theta - \theta_0)^3]] \]

(iv) This expansion is justified by requiring the first three derivatives \([d/d\theta] \log f_\theta(X) \) to be continuous in a neighborhood of \(\theta_0 \), uniformly in \(X \); and by requiring the derivatives \((d/d\theta) \log p(\theta) \) to be continuous in a
neighborhood of θ_0. In order to ensure that large deviations $|\theta - \theta_0|$ have negligible probability, assume $P_X[|\theta - \theta_0| > n^{-1/2} + \epsilon]n^k \to 0$ for every $k > 0$. The later terms are negligible if $Qh_2 < 0$.

$$P_X(\theta) = c(X) \exp \left\{ \frac{1}{2} \sum h_2(X_i) \left[\theta - \theta_0 + \left[\sum h_1(X_i) + \frac{d}{d\theta_0} \log p_0 \right] / \sum h_2(X_i) \right]^2 \right\} \times \{1 + \frac{1}{6}(\theta - \theta_0)^3 h_3(X_i) + o(\theta - \theta_0) + o(n(\theta - \theta_0)^3)\}.$$

Here the term $\frac{1}{6}(\theta - \theta_0)^3 h_3(X_i)$ causes an $O(n^{-1/2})$ skewness departure from normality. The only effect of the prior is in shifting the mean by $-(d/d\theta_0) \log p_0 / \sum h_2(X_i)$. The first three moments determine the asymptotic distribution

$$P_n = \theta_0 - \frac{1}{2} \sum h_2(X_i) / \sum h_2(X_i)$$

$$- \left\{ \frac{d}{d\theta_0} \log p_0 + \frac{1}{2} \left[(\sum h_1)^2 - \sum h_2 \sum h_3 / (\sum h_2)^2 \right] \right\} / \sum h_2 + O(n^{-2})$$

$$P_n(\theta - P_n)^2 = (\sum h_1 \sum h_3 / \sum h_2 - \sum h_2)^{-1} + O(n^{-2})$$

$$P_n(\theta - P_n)^3 = -\sum h_3 / (\sum h_2)^3 + O(n^{-3})$$

11.6. Problems

E1. Show that the binomial model satisfies conditions 11.2, when the prior density is continuous and positive at p_0, $0 < p_0 < 1$, and p_0 is assumed true.

E2. In the binomial case, if the prior distribution has an atom at p_0, show that the conditions of 11.4 are not satisfied.

E3. Let $f[X_1, X_2, \ldots, X_n]$ be the marginal density of the observations, and let $p(\theta)$ be the prior density. Show, under conditions 11.2, that

$$f(X_1, X_2, \ldots, X_n) \prod f(X_i|\theta) \to p(\theta_0) \sqrt{2\pi} \left\{ nQ \left[-\frac{\partial^2}{\partial \theta_0} \log f \right] \right\}^{-1/2}$$

P1. Observations X are $N(\mu, 1)$ and μ has prior density uniform on $|\mu| \geq 1$. Give the asymptotic behavior of the posterior distribution as the true μ_0 ranges from $-\infty$ to ∞.

E4. Under the conditions 11.2, when θ_0 is true, show that $P(\theta < \theta_0 | X_n)$ is asymptotically uniformly distributed.

E5. Under the conditions 11.2, the posterior distribution of $\log[\prod f(X_i|\theta) \prod f(X_i|\theta_n)]$ is asymptotically $-\frac{1}{2} \chi_1^2$. [Bayes intervals for θ thus coincide approximately with maximum likelihood intervals.]

E6. X_1, \ldots, X_n are uniform over $[\theta - \frac{1}{2}, \theta + \frac{1}{2}]$ and θ is uniform over $-\infty$ to ∞. Give the asymptotic behavior of the posterior density when $\theta = 0$.

E7. \(f(x|\theta) = \frac{1}{\theta} \quad 0 < x < \theta \\
= \frac{1}{1(1 - \theta)} \quad \text{if } \theta \leq x < 1 \\
= 0 \quad \text{elsewhere.} \)

If \(\theta \) is uniform over \((0, 1)\), specify the asymptotic behavior of the posterior density of \(\theta \) when \(\theta = 1/2 \) is true.

P2. \(f(x|\mu) = \frac{1}{\sqrt{2\pi}} \exp \{ -\frac{1}{2} (x - \mu) \}, \mu \) uniform. Specify the asymptotic behavior of the posterior density of \(\mu \), given \(\mu = 0 \).

P3. Let \(g \) be such that \(g(X) \) and \(g^2(X) \) are \(P_\theta \) integrable. If \(X_1, \ldots, X_n \) is a sample from \(P_\theta \), and \(P \) on \(\theta \) is unitary, show that

\[
P(n \var[P_\theta[g(X)]|X]) \leq PP_\theta[\theta^2(X)] - P[P_\theta^2g(X)].
\]

Thus \(P_\theta g(X) \) is known, given \(X \), to order \(n^{-1/2} \).

E8. Generalise theorem 11.2 to \(k \)-dimensional parameters.

P4. For the binomial model, the prior on \(p \) has density \(h_0 \sim p \) and \(h_1 \sim p \), \(h_0 \) and \(h_1 \) are independent. What is the posterior distribution of \(p \) asymptotically, when the true value is \(p = \frac{1}{2} \) ?

P5. The observation \(X, Y \) is bivariate normal, means \(a(\theta), b(\theta) \), identity covariance matrix, \(a(\theta) = 0 \) for \(\theta \leq 0 \), \(a(\theta) = \theta \) for \(\theta \geq 0 \), and \(b(\theta) = a(\theta) \). Find the asymptotic posterior distribution of \(\theta \), when the true value of the means is \((1, 1)\). Assume a uniform prior distribution for \(\theta \).

P6. In the binomial model, find nondegenerate prior distributions for \(p \) for which \(n \var[p|X_n] \to 0 \).

P7. For \(X_1, \ldots, X_n \) from \(N(\mu, \sigma^2) \), prior \(\mu \sim N(\mu_0, \sigma_0^2) \) verify the conditions of the martingale central limit theorem.

Q1. Let \(X_1, \ldots, X_n \) be from the normal mixture \(pN(\mu_1, \sigma_1^2) + (1 - p)N(\mu_2, \sigma_2^2) \) where \(p \) has uniform prior, \(\mu_1 \) and \(\mu_2 \) are independently \(N(0, 1) \), \(\sigma_0^2 \) fixed. What is the asymptotic posterior distribution of \(p, \mu_1, \mu_2 \) for various true values of \(p, \mu_1 \) and \(\mu_2 \) ?

Q2. Let \(\mathcal{X}_1 \subset \mathcal{X}_2 \subset \ldots \subset \mathcal{X}_n \) be increasing, \(\theta \in \mathcal{X}_\infty \), and suppose \(Z_n \in \mathcal{X}_n, Z_n \to \theta \) has the property that \((Z_n - \theta)/\sigma_n(\theta) \to N(0, 1)\) in distribution given \(\theta \). Show that \((\theta - Z_n)/\sigma_n(Z_n) \to N(0, 1)\) in distribution given \(Z_n \), provided \(\theta \) has continuous positive density on the line. (Note: \(Z_n \) may not have a convergent density.) [Here \(\sigma_n(\theta) \) is the standard deviation of \(\theta \) given \(\mathcal{X}_n \) and \(\sigma_n(Z_n) \) is the standard deviation of \(Z_n \) given \(\mathcal{X}_n \).]

P8. Let \(X_0, X_1, X_2, \ldots \) be observations from an autoregressive process \(X_t = aX_{t-1} + \xi_t \), where the \(\xi_t \) are i.i.d. normal. Assume \(a \) is uniform on \((-1, 1)\). Find the asymptotic behavior of the posterior distribution of \(a \) given \(X_0, X_1, X_2, \ldots, X_n \).

P9. Let \(X_1, \ldots, X_n \) be a sample from the density \(\exp(\theta - X), X \geq \theta \). Let \(\theta \) have a prior density which is continuous and positive at \(\theta = 0 \). Find the asymptotic distribution of \(\theta \) given \(X_1, \ldots, X_n \) if \(X_1, \ldots, X_n \) are sampled from the uniform on \((0, 1)\).
11.7. References

12.0. Introduction

A statistical procedure is robust if its behavior is not very sensitive to the assumptions which justify it. In classical statistics these are assumptions about a probability model \(\{P_\theta, \theta \in \Theta\} \) for the observations in \(\mathcal{Y} \), and about a loss function \(L \) connecting the decision and unknown parameter value. In Bayesian statistics, there is in addition an assumed prior distribution.

Bayesian techniques have been used by Box and Tiao (1973) and others to study classical robustness questions such as the choice of a good estimate of a location parameter for "near-normal" distributions; they imbed the normal in a family with one more parameter, and then use standard Bayesian techniques to determine the posterior distribution of the location parameter. The usual robustness studies allow for a much larger neighborhood of distributions however.

In studying Bayesian robustness, we wish to evaluate the effect on the posterior distribution and on Bayesian decisions of various components of the probability model. Since the loss function is chosen by the decision maker it seems plausible to concentrate on the probability parts of the model.

(i) the likelihood component \(\{P_\theta, \theta \in \Theta\} \)
(ii) the prior component \(P_0 \)

Here we consider mainly the prior component \(P_0 \), using the techniques of de Robertis and Hartigan (1981).
12.1. Intervals of Probabilities

Let Q_1 and Q_2 be probabilities on \mathbb{X}.

Define $Q_1 \leq Q_2$ if $Q_1 X \leq Q_2 X$ whenever $X \geq 0$.

The interval of probabilities (L, U) is the set of probabilities Q with $L \leq Q \leq U$. The probability L will be called the lower probability, and the probability U will be called the upper probability. If L has density l, and U has density u with respect to v, then (L, U) consists of the probabilities with density q, $l \leq q \leq u$.

Theorem. Inf $\{Q(Y)/Q(X) | L \leq Q \leq U\}$ is the unique solution λ of $U(Y - \lambda X)^- + L(Y - \lambda X)^+ = 0$, provided $UX^- + LX^+ > 0$.

Proof. Note that $X^+ = X\{X(s) \geq 0\}$, $X^- = X\{X(s) \leq 0\}$.

Since $Q(Y) \geq UY^- + LY^+$ for $L \leq Q \leq U$, and $Q_0 Z = U\{Y \leq 0\}Z + L\{Y \geq 0\}Z$ satisfies $L \leq Q_0 \leq U$, inf $\{Q(Y) | L \leq Q \leq U\} = Q_0 Y = UY^- + LY^+$.

Now inf $Q(Y)/Q(X) \geq \lambda$ if and only if inf $[Q(Y) - \lambda Q(X)] \geq 0$, since $Q(X) \geq 0$ for $L \leq Q \leq U$.

Thus inf $Q(Y)/Q(X) \geq \lambda$ if and only if $U(Y - \lambda X)^- + L(Y - \lambda X)^+ \geq 0$.

Also

$$\frac{d}{d\lambda} \{U(Y - \lambda X)^- + L(Y - \lambda X)^+\} = U(-X\{Y \leq \lambda X\}) + L[-X\{Y \geq \lambda X\}] \leq -UX^- - LX^+ < 0$$

(since $Q_0 Z = U\{Y \leq \lambda X\}Z + L\{Y \geq \lambda X\}Z$ lies in (L, U)).

Thus $U(Y - \lambda X)^- + L(Y - \lambda X)^+$ is strictly decreasing, and is zero at $\lambda = \inf Q(Y)/Q(X)$ as required.

12.2. Intervals of Means

Theorem. Let $L = N(0, 1)$, $U = kL$.

For $Q \in (L, U)$, the mean of Q is $QX/Q1$ where $X(s) = s$.

Then $QX/Q1$ has range $[-\gamma(k), \gamma(k)]$ where $\gamma(k)$ satisfies

$$k\gamma = (k - 1)[\phi(\gamma) + \gamma\Phi(\gamma)]$$

where $\phi(x) = \exp(-\frac{1}{2}x^2)/\sqrt{2\pi}$, $\Phi(x) = \int_{-\infty}^x \phi(u)du$.

Proof. From 12.1, $\inf QX/Q1$ is the solution of $U(X - \lambda)^- + L(X - \lambda)^+ = 0$.

That is

$$\int_{x \leq \lambda} (x - \lambda)k\phi(x)dx + \int_{x \geq \lambda} (x - \lambda)\phi(x)dx = 0$$
that is
\[-k\phi(\lambda) - k\lambda\Phi(\lambda) + \phi(\lambda) - \lambda[1 - \Phi(\lambda)] = 0\]
\[\lambda = (k - 1)[\phi(\lambda) + \lambda\Phi(\lambda)]\]
\[-k\lambda = (k - 1)[\phi(-\lambda) - \lambda\Phi(-\lambda)]\]
Thus \(-\gamma(k) = \inf QX/Q_1\). Similarly \(\gamma(k) = \sup QX/Q_1\).

Thus quite substantial changes in the probability \(Q\) do not affect the mean too much. Similar Bayes estimates will arise from a wide range of priors.

12.3. Intervals of Risk

Theorem. Suppose that the risk \(r(d, \theta)\) is the loss in making decision \(d\) when \(\theta\) is true. Let the Bayes risk \(B(Q) = \inf_Q(r(d, \theta)/Q(1))\), the probable loss when \(d\) the best decision is taken. Assume \(0 < L(1) \leq U(1) < \infty\).

\[\inf\{B(Q)\mid L \leq Q \leq U\}\]

is the unique solution of

\[\beta_1(\lambda) = \inf_d\left[U(r(d, \theta) - \lambda)^+ + L(r(d, \theta) - \lambda)^-\right] = 0\]

\[\sup\{B(Q)\mid L \leq Q \leq U\}\]

is no greater than the unique solution of

\[\beta_2(\lambda) = \inf_d\left[L(r(d, \theta) - \lambda)^- + U(r(d, \theta) - \lambda)^+\right] = 0\].

Proof. It is straightforward to show that \(\beta_1(\lambda)\) and \(\beta_2(\lambda)\) are continuous, strictly decreasing and have unique zeroes \(\lambda_1\) and \(\lambda_2\).

\[
\inf\{B(Q)\mid L \leq Q \leq U\} = \sup\{\lambda \mid B(Q) \geq \lambda\} \quad \text{for } \lambda \text{ such that } L \leq Q \leq U
\]

\[= \sup\{\lambda \mid Q[r(d, \theta)] \geq \lambda Q(1) \quad \text{for all } d \text{ and } Q, L \leq Q \leq U\}
\]

\[= \sup\{\lambda \mid Q[r(d, \theta) - \lambda] \geq 0 \quad \text{all } d \text{ and } Q, L \leq Q \leq U\}
\]

\[= \sup\{\lambda \mid \inf_d(L[r(d, \theta) - \lambda]^+ + U[r(d, \theta) - \lambda]) > 0\}
\]

\[= \sup\{\lambda \mid \beta_1(\lambda) > 0\} = \lambda_1
\]

\[
\sup\{B(Q)\mid L \leq Q \leq U\} = \inf\{\lambda \mid B(Q) < \lambda\} \quad \text{for } \lambda \text{ such that } L \leq Q \leq U
\]

\[= \inf\{\lambda \mid Q[r(d, \theta)] < \lambda Q(1) \quad \text{some } d.\]

\[\text{for each } Q, L \leq Q \leq U\}
\]

\[\leq \inf\{\lambda \mid \sup_Q Q[r(d, \theta) - \lambda] < 0 \quad \text{some } d\}
\]
\[= \inf \{ \lambda | L[r(d, \theta) - \lambda]^- + U[r(d, \theta) - \lambda]^+ < 0 \} \]
\[= \inf \{ \lambda | \beta_2(\lambda) < 0 \} = \lambda_2. \]

12.4. Posterior Variances

For the normal location problem, take \(L = N(0, 1), U = kL. \)

For \(r(d, \theta) = (d - \theta)^2, B(Q) \) is the variance of \(\theta. \)

It is bounded by the solutions of
\[
\inf_d U\{ k[(d - \theta)^2 - \lambda_1^-] + [(d - \theta)^2 - \lambda_1]^+ \} = 0
\]
\[
\inf_d U\{ k[(d - \theta)^2 - \lambda_2^-] + [(d - \theta)^2 - \lambda_2]^+ \} = 0.
\]
By symmetry of \(U \) about 0, the optimal solution is \(d = 0 \) for both equations. (Consider probabilities of form \(k\phi[(d - \theta)^2 < \lambda_1] + \phi[(d - \theta)^2 > \lambda_1] \); note that the mean value of such probabilities lies between \(d \) and 0 for \(k > 1 \); this implies that the only solution to the first equation is \(d = 0 \). For the second equation, \(k[(d - \theta)^2 - \lambda_2]^+ + [(d - \theta)^2 - \lambda_2]^+ \) is convex so its minimizing value is unique. By symmetry if \(d \) is a minimum, so is \(-d. \)

Therefore \(d = 0. \)

The solutions \(\lambda_1 \) and \(\lambda_2 \) are posterior variances of elements of \((L, U) \) so the bounds of Theorem 12.3 are sharp.

\[
\lambda_1 = \lambda_1^1 \text{ is the solution of } \Delta \phi(\Delta) + (\Delta^2 - 1) \left[\Phi(\Delta) - \frac{k - 1}{2k - 2} \right] = 0
\]
\[
\lambda_2 = \lambda_2^2 \text{ is the solution of } \Delta \phi(\Delta) + (\Delta^2 - 1) \left[\Phi(\Delta) - \frac{2k - 1}{2k - 2} \right] = 0
\]

<table>
<thead>
<tr>
<th>(k)</th>
<th>(1.25)</th>
<th>(1.50)</th>
<th>(1.75)</th>
<th>(2)</th>
<th>(2.5)</th>
<th>(3)</th>
<th>(4)</th>
<th>(5)</th>
<th>(6)</th>
<th>(7)</th>
<th>(8)</th>
<th>(9)</th>
<th>(10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A_1)</td>
<td>.947</td>
<td>.904</td>
<td>.870</td>
<td>.840</td>
<td>.792</td>
<td>.754</td>
<td>.697</td>
<td>.654</td>
<td>.621</td>
<td>.574</td>
<td>.592</td>
<td>.552</td>
<td>.535</td>
</tr>
<tr>
<td>(A_2)</td>
<td>1.055</td>
<td>1.100</td>
<td>1.140</td>
<td>1.174</td>
<td>1.233</td>
<td>1.282</td>
<td>1.360</td>
<td>1.421</td>
<td>1.472</td>
<td>1.515</td>
<td>1.552</td>
<td>1.585</td>
<td>1.615</td>
</tr>
</tbody>
</table>

Thus, again, a very large change in the probability density causes a relatively minor change in posterior variance. [Factor of 10 for density gives factor of 2 for variance.]

12.5. Intervals of Posterior Probabilities

Lemma. \(L \leq cQ \leq U \) for some \(c, \) if and only if \(QX/QY \leq UX/LY \) for each \(X \geq 0, Y \geq 0. \)

Proof. The "only if" is obvious.
If $QXY \leq UXQY$ all $X, Y \geq 0$

$\sup_{X \geq 0} Q(X)/UX = c_1 \leq c_2 = \inf_{Y \geq 0} QY/LY$

$c_2 LX \leq QX \leq c_1 UX$

$c_2 LX \leq QX \leq c_2 UX$

$1 \leq L \leq \frac{1}{c_2} Q \leq U$ as required.

Theorem. Let X, Y be random variables satisfying the conditions of Bayes' theorem (3.4):

(i) X, Y and $X \times Y$ are random variables from U, \mathcal{X} to $S, \mathcal{T}, \mathcal{Y}$ and $S \times T, \mathcal{X} \times \mathcal{Y}$.

(ii) f is a density on $\mathcal{X} \times \mathcal{Y}$.

(iii) \mathcal{X} and \mathcal{Y} are σ-finite.

(iv) $f_Y(t) : s \rightarrow f(s, t) \in \mathcal{X}$ each t.

(v) $P^Y X = R^Y (g f)$ for some probability R on \mathcal{Y}.

(vi) For each $QX, LX \leq QX \leqUX, f/QX f_T$ is a density on $\mathcal{X} \times \mathcal{Y}$.

Then the quotient probability $Q^X Y$ corresponding to the prior probability Q^X satisfies, for some $k(Y)$,

$LX Y \leq Q^X Y_k(Y) \leq UX Y (U^X f_T/L^X f_T)$.

PROOF. By Bayes' theorem,

$Q^X Y h = Q^X (h f_T)/Q^X (f_T)$

$Q^X Y h_1/Q^X Y h_2 = Q^X (h_1 f_T)/Q^X (h_2 f_T) \leq UX Y (h_1 f_T)/L^X (h_2 f_T)$.

From the lemma,

$(L^X f_T)/L^X Y \leq k(Y) Q^X Y \leq (U^X f_T)/U^X Y$.

\[\square \]

12.6. Asymptotic Behavior of Posterior Intervals

Theorem.

(i) Let $X, Y_1, Y_2, \ldots, Y_n, \ldots$ be random variables from \mathcal{X} to $\mathcal{X}, \mathcal{Y}_1, \ldots, \mathcal{Y}_n, \ldots$, and assume that $Y_i^{-1}(\mathcal{Y}_i)$ is increasing.

(ii) Let the quotient probability $P^X_{Y_i} [g] = R^Y (g f^n)$ for some f^n which is a density with respect to $\mathcal{X} \times \mathcal{Y}_n$ on $S \times T_n$, and some probability R on \mathcal{Y}_n. Assume that these quotient probabilities agree with a conditional probability P_X defined on the smallest probability space including all $Y_i^{-1}(\mathcal{Y}_i); P_X g_n (Y_n) = P^X g_n$ for $g_n \in \mathcal{Y}_n$.

(iii) Assume that $P^X_{Y_i}$ is unitary.
(iv) Let L^X, U^X be unitary probabilities such that $f^* / L^X(f^*_n)$ is a density with respect to $\mathcal{X} \times \mathcal{Y}_n$, and $L^X g = U^X [g]$ where $U^X \{l = 0\} = 0$.

(v) Assume that $g_0 \in \mathcal{X}$ and $l \in \mathcal{X}$ are \mathcal{Y}_n-approximable in U-probability that is, $k_n \in \mathcal{Y}_n, k' \in \mathcal{Y}_n'$,

$$U^X P^Y_{X} | g_0 - k_n | \to 0,$$

$$U^X P^Y_{X} | l - k'_n | \to 0.$$

Then

$$\sup_{L^X \leq Q^X \leq U^X} | Q^X_{Y_n} g_0 - g_0(X) | \to 0 \text{ almost surely.}$$

PROOF. Assume $l(X) > 0$ without loss of generality. Let A be the set of values of X such that, for all rational λ,

$$U^X_{Y_n} \{l[g_0 - \lambda]^+ + [g_0 - \lambda]^\} \to \{l(X)[g_0 - \lambda]^+ + [g_0 - \lambda]^\}$$

as P_X. By Doob's Theorem (Doob, 1949), $U^X(A^c) = 0$.

For a fixed value of X in A, suppose $g_0(X) > \alpha$, rational. Then

$$l(X)[g_0(X) - \alpha]^+ + [g_0(X) - \alpha]^\geq 0,$$

so $U^X_{Y_n} \{l[g_0 - \alpha]^+ + [g_0 - \lambda]^\} > 0$

for large n, so

$$\sup_{L^X \leq Q^X \leq U^X} Q^X_{Y_n} g_0 > \alpha \text{ for all large } n, \text{ as } P_X.$$

Similarly, if $g_0(X) < \beta$ for β rational, inf $Q^X_{Y_n} g_0 < \beta$ all large n, as P_X. Since these results hold for all rational α and β, sup $Q^X_{Y_n}(g_0(X)) - g_0 \to 0$ as P_X, except for a set of X values of U probability zero. \square

Note: A similar theorem is proved in deRobertis and Hartigan (1981) with $L, U \sigma$-finite.

12.7. Asymptotic Intervals under Asymptotic Normality

Theorem. Let $X, Y_1, \ldots, Y_n, \ldots$ be random variables satisfying the conditions of Theorem 12.6, and, in addition, assume that $g_0(X)$ is asymptotically conditionally normal under U:

$$U^X_{Y_n} c \left[(g_0 - \mu_n) / \sigma_n \right] \to c(u) \exp \left(-\frac{1}{2} u^2 \right) du / \sqrt{2\pi} \text{ as } U,$$

for each bounded continuous c, where $\mu_n = U^X_{Y_n} g_0, \sigma_n^2 = U^X_{Y_n} g_0^2 - \mu_n^2$.

Then

$$\sigma_n^{-1} \left[\sup_{L \leq Q \leq U} Q^X_{Y_n} g_0 - (\mu_n + \sigma_n \gamma(k_n)) \right] \to 0 \text{ as } U,$$

$$\sigma_n^{-1} \left[\inf_{L \leq Q \leq U} Q^X_{Y_n} g_0 - (\mu_n - \sigma_n \gamma(k_n)) \right] \to 0 \text{ as } U,$$

where $\gamma(k)$ is the solution of $k \gamma = (k - 1) [\phi(\gamma) + \gamma \Phi(\gamma)], k_n = 1 / U^X_{Y_n} l(X)$.

Proof. By 12.6, \(k_n = 1/U_{Y_n} \to 1/l(l(X)) \) as \(U \).

By asymptotic normality of \(g_0(X) \), for each \(\lambda \),
\[
U_{Y_n} \left\{ \left[\frac{g_0 - \mu_n}{\sigma_n} - \lambda \right]^+ + l \left[\frac{g_0 - \mu_n}{\sigma_n} - \lambda \right]^+ \right\} \to \left\{ [u - \lambda]^+ + l[u - \lambda]^+ \right\} \phi(u)du \quad \text{as} \quad U.
\]

Let \(A \) be the set \(X \) values for which \(l(X) > 0 \), and the above convergence occurs for all rational \(\lambda \). If \(\gamma[1/l(X)] < \alpha \), then \(\{ (u - \alpha)^+ + l(X)(u - \alpha)^+ \} \phi(u)du < 0 \) all large \(n \), so \(\sup Q_{Y_n}^X [(g_0_0 - \mu_n)/(\sigma_n) - \alpha] > \alpha \) all large \(n \). If \(\gamma[1/l(X)] > \alpha \), then \(\sup Q_{Y_n}^X [(g_0_0 - \mu_n)/(\sigma_n) - \alpha] > \alpha \) all large \(n \). Also \((k_n) \to \gamma[1/l(X)] \) as \(U \).

Thus,
\[
\sigma_n^{-1} \sup \left\{ Q_{Y_n}^X g_0 - \mu_n - \sigma_n \gamma(k_n) \right\} \to 0 \quad [U].
\]

Note: This theorem permits a close approximation to the interval of posterior means \(Q_{Y_n}^X g_0(X) \), computed by assuming that \(g_0(X) \) has upper probability \(N(\mu_n, \sigma_n^2) \) and lower probability \(N(\mu_n, \sigma_n^2)U_{Y_n}X[l(X)] \).

If \(L \leq Q \leq U \), and the measures have densities \(l, q, u \), then \(l \leq q \leq u \) and \(q(s_1)/q(s_2) \leq u(s_1)/u(s_2) \). This formulation has the advantage of permitting \(Q \) to be a unitary probability. A difficulty in the present interval of probabilities is that \(q \) may be dramatically discontinuous.

More generally let \(q(s_1)/q(s_2) \leq u(s_1, s_2) \) define \(Q \in R \).

The function \(u(s_1, s_2) \) might be such that \(u(s_1, s_2) \to 1 \) as \(s_1 \to s_2 \).

Necessarily \(u(s_1, s_2) \leq u(s_1, s_2)u(s_3, s_3) \).

The posterior density \(q_1(s_1)/q_1(s_2) \leq (f_1(s_1)/f_1(s_2))u(s_1, s_2) \), so posterior densities are handled in the same framework. It is sometimes convenient to use \(\log[q(s_1)/q(s_2)] \leq \rho(s_1, s_2) \). Then \(\rho(s_1, s_2) \leq \rho(s_1, s_3) + \rho(s_2, s_3) \).

(Note that \(\rho \) may be negative, so it is not a metric.)

For conditional densities \(f_3(t) \) it seems desirable to constrain movements in \(f_3(t) \) and \(f_3(t) \) where \(s_1 \) and \(s_2 \) are close. This suggests the baroque \((f_3(t_1)/f_3(t_1))k_3(t_2)/f_3(t_2) \leq u(s_1, s_2, t_1, t_2) \). Again posterior densities obey a bound of the same type. Maybe \(u(s_1, s_2, t_1, t_2) = U(s_1, s_2)V(t_1, t_2) \) would be viable, but it doesn't force \(u(s_1, s_2, t_1, t_2) = 1 \) if \(s_1 = s_2 \) or \(t_1 = t_2 \).

It is necessary to decide if \(QX \geq 0 \) all \(Q \in R \). Let \(A^c = \{ s \mid X(s) \geq 0 \} \), \(A = \{ s \mid X(s) < 0 \} \). Then \(q(s) = \inf_{s \in A} q(s)/u(s, s') \) for \(s' \in A^c \), in a solution which minimizes \(QX \). But I can't see any simple way to characterize \(X \) with \(QX \geq 0 \), and such a characterization is really necessary to use the range.
12.9. Problems

E1. A prior distribution for the binomial parameter p is such that no interval of length I has more than twice the probability of any other interval of length I, for all I. Show $P_p \geq \sqrt{2} - 1$.

E2. Let X_1, \ldots, X_n be n observations from $N(\theta, 1)$. Let the prior for θ be Q, $L \leq Q \leq U$ where L is Lebesgue measure and $U = 2L$. Show that the posterior mean lies in the interval $\bar{X} \pm 0.276/\sqrt{n}$.

P1. Suppose 7 successes are observed in 10 binomial trials. Let the prior for p lie between $U = \text{uniform (0, 1)}$ and $2U$. Find the posterior mean's range. [Hint use the binomial cumulative distribution.]

P2. A prior distribution for the binomial parameter p lies between $U(0, 1)$ and $2U(0, 1)$. Find the range of the variance of p.

P3. Consider densities of form

$$f_d = c(d) \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{1}{2}d^2\right)\left[k\{|d - s| \leq \lambda\} + \{|d - s| \geq \lambda\}\right], \quad k \geq 1.$$

Find the value of d for which the density f_d has minimum variance.

P4. Suppose r successes are observed in n binomial trials. Let the prior for p lie between $U(0, 1)$ and $2U(0, 1)$. Find an asymptotic expression for the interval of posterior means.

P5. Let $f = 1/\sqrt{2\pi} \exp\left[-\frac{1}{2}x^2 + e(x)\right]$ where $|e(x)| \leq 1$. Find bounds for the posterior density of θ given X_1, \ldots, X_n where X_1, \ldots, X_n is a sample from $f(x - \theta)$, and θ has uniform prior density.

12.10. References

CHAPTER 13
Nonparametric Bayes Procedures

13.0. Introduction

Whereas Bayes procedures require detailed probability models for observations and parameters, nonparametric procedures work with a minimum of probabilistic assumptions. It is therefore of interest to examine nonparametric problems from a Bayesian point of view.

Usually nonparametric procedures apply to samples of observations from an unknown distribution function F. Inferences are made which are true for all continuous F. For example, if $x_{(1)}, x_{(2)}, \ldots, x_{(n)}$ denote order statistics of the sample, $[x_{(k)}, x_{(k+1)}]$ is a confidence interval for the population median of size $\frac{n}{2^n}$, provided the true F is continuous.

We must give some sort of family of distributions over distribution functions F which can be used as priors and posteriors in a Bayesian approach. Ferguson (1973) suggests the Dirichlet process, which for a general observation space \mathcal{Y}, gives a distribution over probabilities P on \mathcal{Y} such that $P(B_1), \ldots, P(B_k)$ is Dirichlet whenever $\{B_i\}$ is a partition of the sample space.

No unitary prior is known to reproduce nonparametric confidence procedures; worse, no prior of any sort is known that reproduces such confidence procedures. However some confidence procedures correspond to families of conditional probabilities, and Lane and Sudderth (1978) have used finitely additive probabilities to generate confidence procedures.

13.1. The Dirichlet Process

Let \mathcal{Y} on T be a probability space, let \mathcal{P} be the set of unitary probabilities P on \mathcal{Y}, and let \mathcal{X} denote the smallest probability space on \mathcal{P} such that $X: P \rightarrow PY$ lies in \mathcal{X} for all Y in \mathcal{Y}. A Dirichlet process D_α on \mathcal{X}, correspond-
ing to a bounded measure α on $T(\alpha(T) < \infty)$, is such that $P B_1, P B_2, \ldots, P B_k$ is distributed as a Dirichlet $D_{\alpha(B_1), \alpha(B_2), \ldots, \alpha(B_k)}$ for each partition B_1, B_2, \ldots, B_k of T. Proofs that a Dirichlet process exists are given in Ferguson (1973) and Blackwell and MacQueen (1973).

Following Blackwell and MacQueen, a sequence of random variables Y_1, Y_2, Y_3, \ldots taking values in \mathcal{Y}, T is a Pólya sequence with parameter α if

$$P[f(Y_i)] = \frac{\alpha(f)}{\alpha(T)}, \quad \text{for } f \in \mathcal{Y}$$

$$P_Y f = P[f(Y_{i+1}) | Y_1, Y_2, \ldots, Y_i] = \frac{\alpha(f) + \sum_{j \neq i} f(Y_j)}{\alpha(T) + i}.$$

Given Y_1, Y_2, \ldots, Y_i, the distribution of Y_{i+1} is a mixture, in the proportion of i to $\alpha(T)$, of the empirical distribution based on Y_1, Y_2, \ldots, Y_i and the distribution $\alpha/\alpha(T)$. As i approaches ∞, the empirical component predominates and the limiting distribution of Y_{i+1} given Y_1, Y_2, \ldots, Y_i is the limiting frequency distribution of Y_1, Y_2, \ldots, Y_i. This limiting distribution, when it exists, will be taken to be a realization P of the Dirichlet process. The different limiting distributions P, for different sequences $Y_1, Y_2, \ldots, Y_n, \ldots$ give a distribution of probabilities P that satisfy the definition of the Dirichlet process.

Theorem (Blackwell–MacQueen). Let \mathcal{Y} on T be separable (there exist a sequence of 0–1 functions $A_1, A_2, \ldots, A_n, \ldots$ such that \mathcal{Y} is the smallest probability space including $A_1, A_2, \ldots, A_n, \ldots$). Let $\{Y_i\}$ be a Pólya sequence with parameter α. For each $Y_1, Y_2, \ldots, Y_i, \ldots$, define

$$P^* f = \lim_{n \to \infty} \frac{\sum_{i} f(Y_i)}{n} \quad \text{when the limit exists for all } f \in \mathcal{Y}$$

$$P^* f = \frac{\alpha(f)}{\alpha(T)} \quad \text{when the limit does not exist for all } f \in \mathcal{Y}.$$

Then P^* is distributed as a Dirichlet process D_α on \mathcal{X}, and the conditional distribution of $Y_1, Y_2, \ldots, Y_i, \ldots$ given P^* is such that the Y_i are independent each with distribution P^*.

Proof. If Y_1, Y_2, Y_3, \ldots is a Pólya sequence, the Ionescu Tulcea theorem (Neveu, 1965, p. 162) states that a probability P exists on the product space $T \times T, w \times w, \ldots$ such that P is consistent with each of the conditional probabilities P_i. The separability of \mathcal{Y} guarantees that functions of the form $\{Y_1 = Y_2\}$ lie in $\mathcal{Y} \times \mathcal{Y}$, provided \mathcal{Y} includes all singleton functions $\{t\}, t \in T$. \[\{Y_1 \neq Y_2\} = \sup_{i} \{Y_i \in A_i\} - \{Y_2 \in A_i\} \in \mathcal{Y} \times \mathcal{Y}; \] otherwise there exist $y_1 \neq y_2$ such that y_1, y_2 lie both inside or both outside of every A_i, and \mathcal{Y} generated by A_i consists of functions f with $f(y_1) = f(y_2)$; thus the singleton function $\{y_1\}$ is excluded from \mathcal{Y}. If \mathcal{Y} does not include all singletons, consider the space \mathcal{Y}^*, T^* where T^* consists of the equivalence classes $B_i, t \in T; t' \in B_i$ if and only if $t \in A_i = \{t' \in A_i\}$ all A_i. And \mathcal{Y}^* consists of the functions $f^*(B_i) = f(t), f \in \mathcal{Y}$. Note that f^* is well defined since $f(t) = f(t')$...
whenever \(t' \in B_1 \). Now \(\mathcal{Y}^* \) is separable and includes all singleton functions and the theorem may be proved for \(\mathcal{Y}^* \). The Dirichlet process \(P^* \) defined on \(\mathcal{Y}^* \times \mathcal{Y}^* \times \ldots \) has the desired properties. It will therefore be assumed that \(\mathcal{Y} \) includes singletons.

It will be shown first that \(P^* f = \lim_{n \to \infty} \sum f(Y_i)/n \) except for sequences \(\{Y_i\} \) in a set of probability zero. Let \(f_1(t) = \{ Y_1 = t \} \). Then \(f_1(Y_n) \) is an exchangeable sequence given \(Y_1 \), so from de Finetti's theorem, \(\lim_{n \to \infty} \sum f_1(Y_i)/n \) converges to say \(p_1 \) with probability 1. Next let \(f_2(t) = \{ Y_1 = t \text{ or } Y_2 = t \} \). Then \(\{ f_2(Y_n), n \geq 3 \} \) is an exchangeable sequence given \(Y_1, Y_2 \), and so \(\lim_{n \to \infty} \sum f_2(Y_i)/n \) converges to say \(p_2 \) with probability 1. Similarly, if \(f_k(t) = \bigcup_{1 \leq i \leq k} \{ Y_i = t \} \), then \(\lim_{n \to \infty} \sum f_k(Y_i)/n \) converges to say \(p_k \) with probability 1, for all \(k \), \(1 \leq k \leq \infty \). Now

\[
P[k(Y_n) | Y_1, Y_2, \ldots, Y_k] = \left[k + \alpha f_k \right]/[k + \alpha T] \to 1 \quad \text{as } k \to \infty
\]

\[
P[\sum f_k(Y_i)(n-k) | Y_1, Y_2, \ldots, Y_k] = P[f_k(Y_n) | Y_1, \ldots, Y_k] \to 1 \quad \text{as } k \to \infty
\]

\[
P[\sum f_k(Y_i)/n > 1 - \epsilon | Y_1, \ldots, Y_k] \to 1 \quad \text{as } k \to \infty, \text{ each } \epsilon > 0
\]

\[
P[p_k > 1 - \epsilon | Y_1, \ldots, Y_k] \to 1 \quad \text{as } k \to \infty.
\]

A probability \(P \) exists on \(\mathcal{Y} \times \mathcal{Y} \times \mathcal{Y} \times \ldots \) consistent with these conditional probabilities, and from separability, the functions \(f_k(Y_i) \) lie in \(\mathcal{Y} \times \mathcal{Y} \times \mathcal{Y} \times \ldots \). Thus with probability 1, all the limits \(\lim_{k \to \infty} \sum f_k(Y_i)/n \) exist and

\[
\lim_{k \to \infty} \lim_{n \to \infty} \sum f_k(Y_i)/n = 1.
\]

This guarantees that \(P^* f = \lim_{n \to \infty} \sum f(Y_i)/n \) exists for all \(f \) in \(\mathcal{Y} \); \(P^* \) is a discrete distribution carried by \(\{ Y_i \} \). To show this,

\[
\sum_{i=1}^{n} f(Y_i)/n = f(Y_1)\left[\sum f_1(Y_1)/n \right] + f(Y_2)\left[\sum f_2(Y_2)/n - \sum f_1(Y_1)/n \right] + \ldots + f(Y_k)\left[\sum f_k(Y_k)/n - \sum f_{k-1}(Y_{k-1})/n \right] + A[n - \sum f_k(Y_i)/n] = \sup |A| \leq \sup |f|\left(1 - p_k \right).
\]

Thus all the limits \(\sum f(Y_i)/n \) exist if the \(p_i \) exist and \(\lim p_k = 1 \). It is straightforward to show that \(P^* f = \sum f(Y_i)(p_i - p_{i-1}), p_0 = 0 \), defines a probability on \(\mathcal{Y} \), for each sequence \(Y_1, Y_2, \ldots, Y_i \) where the limits exist. Since \(P^* f = \alpha f/\alpha T \) defines a probability \(\mathcal{Y} \) when the limits don't exist, \(P^* \) always takes values in \(\mathcal{P} \).

To show that \(P^* \) is distributed as \(D_{\alpha} \), it is necessary to show that \(P^* B_1, \ldots, P^* B_k \) defined as Dirichlet \(D_{\alpha(B_1), \ldots, \alpha(B_k)} \) for each partition \(B_1, \ldots, B_k \) of \(T \).

\[
P^* B_j = \lim_{n \to \infty} \sum_{Y_i \in B_j}/n
\]

Define

\[
Z_i = \sum_{j \in \mathcal{B}_j} Y_i.
\]
Then Z_i is a random variable taking k discrete values, and it may be shown that Z_i is a Pólya sequence with parameter $\alpha^*, \alpha^*\{i\} = \alpha(B_i)$. Since $P^*B_j = \lim \sum\{Z_i = j\}/n$, the problem is reduced to showing that P^* is distributed as D_2 when T is finite. If $T = \{1, 2, \ldots, k\}$, let $P^* = \{p_1, p_2, \ldots, p_k\}, \sum p_i = 1$, and note from de Finetti's theorem that the Y_i are independent multinomial given P^*, with $P[Y_i = j | P^*] = p_j$.

Then

$$P[p_1^{\gamma_1}p_2^{\gamma_2} \ldots p_k^{\gamma_k}] = P[\text{first } \gamma_1 \text{'s } Y’s = 1, \text{next } \gamma_2 \text{'s } Y’s = 2, \ldots, \text{last } \gamma_k \text{'s } Y’s = k]$$

$$= \frac{\alpha(1)}{\alpha(T)} \frac{\alpha(1) + 1}{\alpha(T) + 1} \frac{\alpha(1) + \gamma_1 - 1}{\alpha(T) + \gamma_1 - 1} \times$$

$$\frac{\alpha(2)}{\alpha(T) + \gamma_1} \frac{\alpha(2) + 1}{\alpha(T) + \gamma_1 + 1} \frac{\alpha(2) + \gamma_2 - 1}{\alpha(T) + \gamma_1 + \gamma_2 - 1}$$

The expression on the right is the $\gamma_1, \gamma_2, \ldots, \gamma_k$th moment of a Dirichlet distribution with parameters $\alpha(1), \alpha(2), \ldots, \alpha(k), \sum \alpha(i) = \alpha(T)$. Since the Dirichlet distributions is characterized by its moments, the result follows.

It remains to be shown that the Y_i are independent given P^* with distribution P^*. It is necessary to check that $P[\prod f_i(Y_i) | P^*] = \prod P^*[f_i(Y_i)]$ obeys the product law: $P[\prod P^*[f_i(Y_i)] = P[\prod f_i(Y_i)]$. If the f_i are each members of the partition B_1, B_2, \ldots, B_k this follows from de Finetti's theorem for the case \emptyset finite. More general f_i may be approximated by linear combinations of these simple f_i.

\[\square \]

13.2. The Dirichlet Process on (0,1)

(1) Let α be uniform.

$F(x)$ has expectation x; thus $F(x)$ is beta with density $F^{x-1}(1-F)^{-x}$.
We could generate a single random F from D_a as follows:

(a) select $F(\frac{1}{2})$ from $\text{Be}(\frac{1}{2}, \frac{1}{2})$
(b) select $F(\frac{k}{2^n})/F(\frac{1}{2})$ from $\text{Be}(\frac{1}{4}, \frac{1}{4})$, $[F(\frac{3}{4}) - F(\frac{1}{2})]/F(\frac{1}{2})$ from $\text{Be}(\frac{1}{4}, \frac{1}{4})$.
(c) select $[F((2k + 1)/2^n) - F(k/2^{n-1})]/[F((k + 1)/2^{n-1}) - F(k/2^{n-1})]$ from $\text{Be}(1/2^n, 1/2^n)$
(d) continue forever ... after you're finished:

\[F(x) \]

Note that F will be quite bumpy, because the relative changes in F will be near 0 or 1.

(2) x gives weights 1 to 1/4, 1/2, 3/4, 1 and is zero elsewhere.

$F(x)$ is $\text{Be}[x(0, x), x(x, 1)]$. Thus $F(x) = 0$ for $x < 1/4$, and $F(x) = 1$ for $x = 1$; $F(x)$ changes value only at $x = 1/4$, 1/2, 3/4, 1 and has atoms $\Delta F(\frac{1}{4})$, $\Delta F(\frac{1}{2})$, $\Delta F(\frac{3}{4})$, $\Delta F(1)$ which are Dirichlet $D_{1,1,1,1}$.

13.3. Bayes Theorem for a Dirichlet Process

Theorem. Let x be a finite measure on \mathcal{Y}, and let D_a be a prior distribution on \mathcal{P} the family of probabilities P on \mathcal{Y}. Let t be an observation from T according to P. The posterior distribution of P given t is $D_{x+\delta t}$, where $\delta t Y = Y(t)$.

Proof. The joint probability Q on $\mathcal{P} \times \mathcal{Y}$ is defined by

\[Q[Z(P) \times Y] = Q^\theta[Z(P)Q^\delta_{\theta} Y] = D_{2}(Z(P)PY). \]
The marginal distribution on \mathcal{P} is D_x, the marginal distribution on \mathcal{Q} is $\alpha Y/\alpha x$.

If B_1, \ldots, B_k is a partition of T, then $P(Y_{B_i}|PB_i)$ is independent of PB_1, \ldots, PB_k when P is a Dirichlet process. (Since $P(Y_{B_i})$ is the limit of a linear combination of disjoint sets B_i, $\sum_j B_{ij} = B_i$ and $\{PB_{ij}/PB_i\}$ are Dirichlet $\{\alpha(B_{ij})/\alpha B_i\}$ independent of B_i.)

Thus if $Z(P)$ is of form $Z(PB_1, \ldots, PB_k) = Z_k$ say

$$D_x[Z(PB_1, \ldots, PB_k)_{PB_i}] = \sum_{i=1}^k D_x[Z(PB_1, \ldots, PB_k)_{PB_i}] D_x[P(Y_{B_i})/PB_i]$$

If $t \in B_i$, $D_{x+\delta_t} Z_k = D_{x+\delta_t} (Z_k PB_i)/D_x PB_i$

Thus

$$D_{x+\delta_t} Z_k = \sum_i B_i D_x(Z_k PB_i)/D_x PB_i$$

$$QD_{x+\delta_t} (Z_k \times Y) = Q(Y \sum_i B_i D_x(Z_k PB_i)/D_x PB_i)$$

Thus $QD_{x+\delta_t} (Z_k \times Y) = Q(Z_k \times Y)$ whenever $Z = Z_k$ depends only on $\{PB_i\}$.

Taking limits, the result holds for all Z, and so $D_{x+\delta_t}$ is the posterior distribution of P given t.

13.4. The Empirical Process

The limiting case of the Dirichlet D_x occurs when $\alpha \equiv 0$; this corresponds to the prior density $1/p(1 - p)$ for a binomial parameter p, which is not unitary.

It is very difficult to imagine generating P from D_0. The conditional distributions of P and t_{n+1} given t_1, \ldots, t_n are nice and simple:

(i) $P_{n+1} Y = P[Y(T_{n+1})|t_1, \ldots, t_n] = (1/n) \sum Y(t_i)$, the empirical distribution over $\{t_i\}$.

(ii) $P|t_1, \ldots, t_n$ is Dirichlet $D_{\alpha(t_i)}$; thus $[P(t_1), \ldots, P(t_n)]$ is Dirichlet $D_{1,1, \ldots, 1}$ and P is a discrete distribution carried by the observed sample points t_1, \ldots, t_n. See Hartigan (1971).

We are in the embarrassing position of declaring t_{n+1} to be surely equal to one of the previous sample points; carried back, this would imply $t_n = t_1$ with probability 1, which is dull. We can pretend to the surprised at each new observation t_{n+1} which is not equal to t_1, \ldots, t_n—after all events of probability zero do occur; but our credibility may be weakened by our always insisting that the next observation is just one of the previous ones, and our always being surprised!

To do error analysis of a parameter $Y(P)$ estimated by $Y(P_n)$, we compute the distribution of YP where $P \sim D_{\alpha(t_i)}$. For example, if $Y(P_n) = (1/n) \sum t_i,$
13.5. Subsample Methods

\[Y(P) = \int \hat{t} dF \] is distributed as \(\sum p_i t_i \) where \(p \sim D_i \); \(P(\sum p_i t_i) = \bar{t} \), \(\text{var}(\sum p_i t_i) = \frac{1}{n(n+1)} \). This procedure gives approximate error behavior for any statistic based on the empirical distribution; it works best, when as here for the mean, the excessive discreteness is smoothed out by the statistic.

13.5. Subsample Methods

Consider the following competitors of the empirical process for generating posterior distributions of a functional \(Y(P) \) estimated by \(Y(P_n) \).

(i) Subsamples: Select a random subsample \(t_1, \ldots, t_n \) of \(t_1, \ldots, t_n \) where the \(i^{th} \) observation lies in the subsample with probability \(1/2 \); regard \(k \) random subsample values \(Y(P_n) \) as a random sample from the posterior distribution of \(Y(P) \). See Hartigan (1969).

(ii) Jackknife: Divide the sample into disjoint groups of size \(k \) (randomly say). Define the \(i^{th} \) pseudo-value by

\[Y_i = \frac{n}{k} Y(t_1, \ldots, t_n) - \left(\frac{n}{k} - 1 \right) Y(t_1, \ldots, t_n \text{ less } i^{th} \text{ group}) \]

Act as if \(Y(P) \) is a location parameter and \(\{Y_i\} \) is a sample from \(N(Y(P), \sigma^2) \). See Tukey (1958).

For example, let \(n = 50 \) and suppose \(Y(P) \) denotes the correlation of a bivariate distribution. For the empirical process, sample \(p_1, \ldots, p_{50} \) from \(D_1 \), and recompute the correlation on the data values weighted by \(p_i \); obtain 3 such values. For subsamples, select \(3 \) random subsamples each of size roughly 25. Do jackknifing with group size 25; if \(r_1 \) and \(r_2 \) are the correlations on the groups, the pseudo values are \(2r - r_1, 2r - r_2 \); the values \(2r - r_1, 2r - r_2, 2r - (r_1 + r_2)/2 \) are regarded as a random sample from the posterior distribution.

Each of the techniques gives 3 values, which divide the line into four intervals; in 100 repetitions, the true correlations lay in the four intervals as follows:

<table>
<thead>
<tr>
<th></th>
<th>Bivariate normal</th>
<th>Mixture of normals</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\rho = .95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Empirical process</td>
<td>31 25 22 22</td>
<td>37 28 19 16</td>
</tr>
<tr>
<td>Subsamples</td>
<td>31 23 28 20</td>
<td>33 23 27 17</td>
</tr>
<tr>
<td>Jackknife</td>
<td>28 29 21 21</td>
<td>28 27 25 21</td>
</tr>
</tbody>
</table>

That's a bit nasty! By what accident could the humble \textit{ad hoc} Jackknife beat such delightful Bayesian trickery? Hartigan (1975) shows that the asymptotic inclusion probabilities are correct for the various techniques.
13.6. The Tolerance Process

If \(t_1, \ldots, t_n \) form a sample from a continuous distribution function \(F \), and if \(t_{(1)}, \ldots, t_{(n)} \) denote the order statistics, then \(\{ t_{(k-1)} < t_{n+1} < t_{(k)} \} \) is a tolerance interval for \(t_{n+1} \) of size \(1/(n+1) \); that is, \(P[t_{(k-1)} < t_{n+1} < t_{(k)}] = 1/(n+1) \), averaging over all \(t_1, \ldots, t_n, t_{n+1} \). After all, why should \(t_{n+1} \) be any particular place in the ordered sample of \(t_1, t_2, \ldots, t_n, t_{n+1} \)?

The tolerance process defines \(t_{n+1} \) given \(t_1, \ldots, t_n \) to be such that

\[
P[t_{(k-1)} < t_{n+1} < t_{(k)} | t_1, \ldots, t_n] = \frac{1}{n+1}.
\]

More detailed probability statements are made as evidence accumulates. The joint distribution of \(t_{n+1}, t_{n+2} \) given \(t_1, \ldots, t_n \) may be computed by combining the \(t_{n+1} | t_1, \ldots, t_n \) with \(t_{n+2} | t_1, \ldots, t_n, t_{n+1} \); more generally \(t_{n+1}, t_{n+2}, \ldots, t_1, \ldots, t_n \) has a certain joint distribution. Obviously, \(PA = \lim(1/\sqrt{n})\sum \{ t_i \in A \} \), so the distribution of \(P \) may be obtained from the distribution of \(t_{n+1}, t_{n+2}, \ldots \); the distribution of \(P \) is just that \(F(t_1), F(t_2) - F(t_1), \ldots, F(t_n) - F(t_{n-1}), 1 - F(t_n) \) is \(D_1 \) or \(F(t_1), \ldots, F(t_n) \) is a random sample from \(U(0, 1) \).

\[
P[t_{(k)} < \text{median} < t_{(k+1)} | t_1, \ldots, t_n] = \left(\frac{n}{k} \right) 2^{-n} \text{ reproduces non-parametric confidence intervals for the median.}
\]

Here the probability space on which the distribution of \(P \) is defined changes as evidence accumulates; Hill (1968) shows that no unitary probability on \(P \) and \(Y_1, \ldots, Y_n \) will reproduce these conditional probabilities, but Lane and Sudderth (1978) show that a finitely additive probability \(P \) exists which produces these conditional probabilities.

13.7. Problems

E1. For observations 5, 7, 10, 11, 15 compute 50\% confidence intervals for the median using the empirical process, subsamples, jackknife with group size 1, and the tolerance process.

P1. For \(\mathbf{p} \sim D_1 \), show that \(\sum p_i X_i \) has skewness of opposite sign to that of \(\mu - \bar{X} \).

Thus if the \(X_i \)'s are positively skew, \(\sum p_i X_i \) tends to be less than \(\bar{X} \), but \(\mu \) tends to be greater than \(\bar{X} \).

P2. Let \(t = \sum a_i X_i \) where \(a_i = [(Z_i - (1/n)\sum Z_i)/Y] + (1/n) \), the \(Z_i \) are independent \(N(0, 1) \), and \(Y \) is independent \(\left[nX_{n-1}^2 \right]^{1/2} \). If \(\{ X_j \} \) is a sample from \(N(\mu, \sigma^2) \), and the prior density for \((\mu, \sigma^2) \) is \(1/\sigma^2 \), show that \(t \mid X_1, \ldots, X_n \) and \(\mu \mid X_1, \ldots, X_n \) have the same distribution.

P3. Let \(X_1, \ldots, X_n \) be independent and symmetrically distributed about \(\theta \). Let \(Y_1, \ldots, Y_{2^n-1} \) denote the ordered means of the \(2^n - 1 \) subsets of \(X_1, \ldots, X_n \). Show that \(P_{\delta}(Y_k < \theta < Y_{k+1}) = 2^{-n}, 1 \leq k \leq 2^n - 1 \).
E2. If $X_{n+1} | X_1, \ldots, X_n$ is such that $P(X_{(k)} \leq X_{n+1} \leq X_{(k+1)} | X_1, \ldots, X_n) = 1/(n + 1)$, find $X_{n+1}, X_{n+2} | X_1, \ldots, X_n$.

13.8 References

Author Index

A

Abramowitz, M. 100, 105

C

Clevenson, M.L. 99, 105
Cox, D.R. 7, 13

D

Dawid, A.P. 23, 28, 33, 69, 71
DeFinetti, B. ix, 6, 7, 9, 10, 13, 14, 15, 17, 22, 40
DeRobertis, L. 119, 126
Doob, J.L. 34, 38, 43, 124, 126
Dunford, N. 15, 22

E

Efron, B. 91, 95

F

Farrell, R. 61, 62
Feddersen, A.P. 70, 71
Ferguson, T.S. 57, 62, 127, 128, 135
Fine, T. 20, 22
Fisher, R.A. 56, 62, 107
Fox, M. 65, 71
Fraser, D.A.S. 47, 55
Freedman, D. 40, 43, 69, 71
Author Index

G

Gaskins, R. 102, 103, 105
Geiringer, H. 13
Good, I.J. ix, 7, 8, 9, 13, 45, 46, 55, 101, 102, 103, 105

H

Hall, P. 114, 118
Hartigan, J.A. 47, 50, 51, 55, 68, 70, 71, 115, 118, 119, 126, 132, 133, 135
Heath, D.C. 58, 61, 62
Heyde, C.C. 114, 118
Hill, B.M. 134
Hinkley, D. 7, 13
Hoerl, A.E. 92, 95

I

Ibragimov, I.A. 112, 118

J

James, W. 87, 95
Jaynes, E.T. 45, 55
Jeffreys, H. ix, x, 3, 8, 13, 15, 22, 48, 49, 50, 55, 68, 73, 74, 75, 76, 77, 78, 79, 84, 87, 95, 100
Johnson, B.M. 97, 105
Johnson, R.A. 115, 118
Johnson, W.E. 97, 105

K

Kennard, R.W. 92, 95
Keynes, J.M. ix, 2, 3, 8, 13, 15
Khasminskii, R.Z. 112, 118
Kolmogorov, A.N. ix, 4, 5, 10, 13, 15, 22, 23, 24, 33
Koopman, B.O. 20, 22

Kraft, C. 20, 21, 22
Kullback, S. 45, 55

L

Lane, D.A. 127, 134, 135
Laplace, P.S. ix, 1, 2, 8, 13
Leibler, R.A. 45, 55
Leonard, T. 102, 103, 105
Lindley, D.V. 88, 92, 95
Loeve, M. 41, 43
Loomis, L.H. 17, 22

M

MacQueen, J.B. 128, 135
Martin-Löf, M. 4, 13
Morris, C. 91, 95

N

Neveu, J. 128, 135
Neyman, J. 56, 62

O

Olshen, R.A. 69, 71

P

Pearson, E.S. 56, 62
Peers, H.W. 49, 55, 76, 83
Perks, W. 49, 55, 100, 106
Pollard, D. vii
Pratt, J. 22
Purves, R.A. 69, 71

R

Ramsey, F. 7, 13, 19, 22
Renyi, A. 15, 22, 31, 33
Robbins, H.E. 101, 102, 103, 104, 105
S

Savage, L.J. 6, 7, 9, 13, 19, 20, 22
Schwartz, J.T. 15, 22
Schwartz, L. 38, 43
Scott, D. 20, 22
Seidenberg, A. 22
Shannon, C.E. 45, 55
Simonoff, J.S. 103, 105
Smith, A.F.M. 88, 92, 95
Smith, C.A.B. 7, 13
Stegun, I.A. 100, 105
Stein, C. 65, 71, 84, 87, 95
Stone, C.J. 103, 106
Stone, M. 23, 28, 33, 47, 55, 69, 71
Strawderman, W. 87, 92, 95
Sudderth, W. 28, 33, 58, 61, 62, 127, 134, 135

T

Thatcher, A.R. 77, 83
Tiao, G.C. 68, 71, 119, 126

Tjur, T. 25, 33
Tukey, J.W. 133, 135
Tulcea, I. 128

V

Von Mises, R.V. ix, 3, 4, 13

W

Wahba, G. 103
Wald, A. 56, 57, 62, 107
Walker, A.M. 108, 118
Wallsten 7, 13
Welch, B.L. 49, 55, 76, 83
Winkler, R.L. 44, 55

Z

Zellner, A. 46, 55
Zidek, J.V. 28, 33, 99, 105
Subject Index

A

Absolute distance 48
Admissibility 56–62, 63, 75, 76, 87, 97, 98, 104, 105
of Bayes decisions x, 56–62
various definitions of x, 61–62
Analogy, Keynes uses 2
Approximable, mean-square- 35
Approximating sequence 16, 38
Asymptotic normality,
crude demonstration xii, 108
examples 74–79
martingale sequences xii, 113–115
of posterior distributions xii, 107–118
pointwise xii, 111, 112
regularity conditions xii, 108, 109
Autoregressive process 102, 117
Axioms ix, 14–22
Kolmogorov’s 5, 10, 15
of conditional probability 23, 24

definition of probability 6
estimates xi, 63, 86–87, 90, 92
postulate 2
robustness of methods xii, 119–126
theorem x, 30
theory iii
unbiased tests xi, 65–66, 75
Bayesian law of large numbers 36
Behrens-Fisher 81, 82
beta priors 76, 104
Bets 6, 9
Binomial,
admissibility 61, 104
asymptotics 116, 117, 126
conditional probability for x, 31–32
convergence x, 38–39
exponential family 73
methods 76–78
priors xi, 76–79

B

Baire functions 40, 41
Baranchik’s Theorem xi, 84–86
Bayes 13
decisions 57–62, 75

Chisquares 93, 94
Clusters, multinomials with 101–102
Coherence 6
Collectives 3, 4
Complete Bayesian 101
Complete class 57
Complexity 4
Subject Index

Conditional Bayes decisions 58–59
Conditional bets 68–69
Conditional probability ix, 9, 23–33
- axioms x, 24
- binomial x, 31, 32
Conditionally probable 68–69
Confidence regions xi, 67–69
- beaten for normal location 70
- for binomial 76–78
- for poisson 79
- not conditional bets 68–69
- not unitary Bayes xi, 68
- prior for location and scale 80
Confidence interval 127
Conjugate priors, a chimera 72
Consistency, of posterior distributions x, 38
Constructing probabilities 3
Contingency tables xii, 103, 105, 106
Convergence x, 34–43
- definitions x, 35
- in distribution 35
- of conditional probabilities almost sure x, 36–38
- of conditional probabilities in mean x, 35–36
Countable additivity 10

D

Decision theory x, 56–62
Degree of belief 7
Density estimation 103
Dirichlet, priors xi, 96–97, 104
- process xii, 127–131
- selection of xi, 100, 102
Dirichlet process 127–135
- Bayes theorem for 131, 132
- existence 127–130
- on (0,1) 130, 131
Docile priors 74, 75, 76
Dutch book 6

E

Edgeworth expansions 78
Elementary events 1

Elephant 44
Elicitation of probabilities 44
Empirical Bayes 89
Empirical process xii, 132, 133
Empirical theories ix, 3–6
- Kolmogorov 5
- falsifiable models 5
- Von Mises 3–4
Entropy 45
Exact Bayes estimates 63, 64
Exchangeable sequences x, 9, 10, 40, 41, 52
Exponential families xi, 72–83
- prior distributions for xi, 73
Extension,
- from a prespace 16
- from a ring 17

F

Falsifiable models ix, 5
Fineness 20, 21
Finite additivity 10, 15, 57–61
Fisher’s test 105
Frequency theory 5
- neither necessary nor sufficient 9
Fubini’s theorem 26
Future, can’t be sure about it 2
- but like the past, probably 12

G

Gambling system, impossible 3, 6
Gamma priors 79, 97, 99, 100, 104

H

Haldane’s prior 31
Hellinger distance 48, 49, 50
High density region 68, 75, 80
Higher order approximations 115, 116

I

Imaginary results 8
Improper 15, 16, 28
<table>
<thead>
<tr>
<th>Subject Index</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Improper distributions, embarrassingly frequent</td>
<td>vii</td>
</tr>
<tr>
<td>Inadmissibility of maximum likelihood, Poisson</td>
<td>99</td>
</tr>
<tr>
<td>multinomial</td>
<td>105</td>
</tr>
<tr>
<td>Inadmissible means</td>
<td>84, 92</td>
</tr>
<tr>
<td>Independence, like insufficient reason</td>
<td>6</td>
</tr>
<tr>
<td>conditional</td>
<td>28</td>
</tr>
<tr>
<td>of random variables</td>
<td>28</td>
</tr>
<tr>
<td>Indifference, principle of</td>
<td>2</td>
</tr>
<tr>
<td>Indifference priors</td>
<td>63</td>
</tr>
<tr>
<td>Infinite axioms</td>
<td>ix, 9–10</td>
</tr>
<tr>
<td>Information</td>
<td>44–45, 72, 107</td>
</tr>
<tr>
<td>Information distance</td>
<td>48</td>
</tr>
<tr>
<td>Insufficient reason, principle of</td>
<td>2</td>
</tr>
<tr>
<td>Internal point</td>
<td>19</td>
</tr>
<tr>
<td>Intervals, asymptotic behavior of</td>
<td>xii, 123–125</td>
</tr>
<tr>
<td>of means</td>
<td>xii, 120, 121</td>
</tr>
<tr>
<td>of posterior probabilities</td>
<td>xii, 122, 123</td>
</tr>
<tr>
<td>of probabilities</td>
<td>xii, 120</td>
</tr>
<tr>
<td>of risk</td>
<td>xii, 121, 122</td>
</tr>
<tr>
<td>of variances</td>
<td>xii, 122</td>
</tr>
<tr>
<td>Invariance</td>
<td>x, 3, 47–48</td>
</tr>
<tr>
<td>inconsistency of</td>
<td>3, 54</td>
</tr>
<tr>
<td>priors</td>
<td>75, 80</td>
</tr>
<tr>
<td>J</td>
<td></td>
</tr>
<tr>
<td>Jackknife, beats all</td>
<td>133</td>
</tr>
<tr>
<td>Jeffreys density</td>
<td>x, 48–50, 68, 73–79, 84, 100</td>
</tr>
<tr>
<td>L</td>
<td></td>
</tr>
<tr>
<td>Least squares</td>
<td>84</td>
</tr>
<tr>
<td>Lebesgue measure</td>
<td>18</td>
</tr>
<tr>
<td>Leibniz, probability</td>
<td>1, 15</td>
</tr>
<tr>
<td>Likelihood</td>
<td>31</td>
</tr>
<tr>
<td>Limit space</td>
<td>16–18</td>
</tr>
<tr>
<td>Location parameter, for the normal</td>
<td>56</td>
</tr>
<tr>
<td>Logical theories</td>
<td>ix, 1–2</td>
</tr>
<tr>
<td>and randomness</td>
<td>4</td>
</tr>
<tr>
<td>Jeffreys</td>
<td>3, 8</td>
</tr>
<tr>
<td>Keynes</td>
<td>2, 8</td>
</tr>
<tr>
<td>Laplace</td>
<td>1–2, 8</td>
</tr>
<tr>
<td>M</td>
<td></td>
</tr>
<tr>
<td>Many normal means</td>
<td>84–95</td>
</tr>
<tr>
<td>Marginal distribution</td>
<td>23, 80</td>
</tr>
<tr>
<td>Marginalization paradoxes</td>
<td>x, 23, 28–29</td>
</tr>
<tr>
<td>Markov chain</td>
<td>43</td>
</tr>
<tr>
<td>Martingale sequences</td>
<td>xii, 37, 113–115, 117</td>
</tr>
<tr>
<td>Maximal learning probability</td>
<td>45–47, 68</td>
</tr>
<tr>
<td>Maximum likelihood</td>
<td>91, 92, 97, 101, 105, 107, 116</td>
</tr>
<tr>
<td>Means, many normal</td>
<td>xi, 84–95</td>
</tr>
<tr>
<td>mostly small</td>
<td>89</td>
</tr>
<tr>
<td>multivariate</td>
<td>89</td>
</tr>
<tr>
<td>random sample of</td>
<td>89</td>
</tr>
<tr>
<td>shrinking towards</td>
<td>88</td>
</tr>
<tr>
<td>unknown variance</td>
<td>92</td>
</tr>
<tr>
<td>Measurable</td>
<td>34</td>
</tr>
<tr>
<td>Median</td>
<td>127</td>
</tr>
<tr>
<td>Minimum variance prior</td>
<td>73</td>
</tr>
<tr>
<td>Minimum variance unbiased</td>
<td>84</td>
</tr>
<tr>
<td>Multinomial distribution</td>
<td>xi–xii, 96–105</td>
</tr>
<tr>
<td>maximum likelihood</td>
<td>xi, 97</td>
</tr>
<tr>
<td>with clusters</td>
<td>xi, 101</td>
</tr>
<tr>
<td>with similarities</td>
<td>xii, 102</td>
</tr>
<tr>
<td>Multivariate means</td>
<td>91, 92</td>
</tr>
<tr>
<td>Mystical methods</td>
<td>53</td>
</tr>
<tr>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Neutral</td>
<td>19</td>
</tr>
<tr>
<td>Non-central chisquare</td>
<td>84</td>
</tr>
<tr>
<td>Non-parametric Bayes</td>
<td>xii, 127–136</td>
</tr>
<tr>
<td>Non-unitary</td>
<td>16, 25, 26, 30, 41, 63</td>
</tr>
<tr>
<td>Normal location</td>
<td>xi, 74–76</td>
</tr>
<tr>
<td>location and scale</td>
<td>xi, 79–82</td>
</tr>
<tr>
<td>many means</td>
<td>xi, 84–95</td>
</tr>
<tr>
<td>priors</td>
<td>75</td>
</tr>
<tr>
<td>scale</td>
<td>73</td>
</tr>
<tr>
<td>Nuclear war, probability of</td>
<td>11–12</td>
</tr>
<tr>
<td>O</td>
<td></td>
</tr>
<tr>
<td>Order statistics</td>
<td>127</td>
</tr>
</tbody>
</table>
P

P-Bayes 57–62
Penalized likelihood 103
Personal probability 6, 10
Pitman estimator 64, 65
not the Bayes estimator 65
Poisson xi, 73, 79, 84, 96, 101–105
inadmissibility of maximum
likelihood xi, 99
two stage models xi, 101
Pólya sequence 128, 135
Posterior distributions, consistency x, 38
asymptotic normality xii, 107–118
higher order approximations xii, 115
Posterior mean 86, 87, 89, 93, 94, 101
Practically certain, in interpreting
frequencies 5
Prespaces ix, 16–18
Prior density 31
Probable bets ix, 18–20
Probability,
axioms ix, 14–22
betting definition 6–7
comparative ix, 20
complete 15
conditional ix, 23–33
finitely additive 15
making x, 44–55
maximum learning x, 45–47
product x, 26–27
quotient x, 27–28
space 14
theories ix, 1–13

R

Random variables ix, 18
Randomness 4
Range of probabilities xii, 125
Rational belief 2
Recursive functions 3
Regression xi, 89, 92, 103
Relatively invariant 47
Rings ix, 16–18
Robustness 119–126

S

Sample mean 56
admissibility of 60
Sample median 56
Shrinking 88
Significance tests 5, 6, 8, 90
Similarities, probabilities from vii
and probability ix, 11–12
multinomials with 102
Similarity probability 50–53
Spline methods 103
Subjective theories ix, 6–8
bad probabilities 7
betting definition 6–7
de Finetti 6–7
Good 7–9
Subsample methods xii, 133
Support 39, 59, 60

T

Tail probability 75
Tolerance process xii, 134
Tortoise 44
Two stage normal priors 76

U

Unbetworthiness 81
Unbiased,
Bayes tests xi, 65–66
location estimates xi, 63–65, 91–94
Uniform distribution 10, 15, 75, 84
on the integers 25
on the plane 26
on the square 25
Uniform integrability, generalized 35
Uniformity criteria x, 63–71
Unitary probability 10, 15, 25, 26, 30,
37, 40, 59, 63, 67–69, 72, 73, 87,
108, 113, 123

V

Variance 73, 74, 75
Variance, components xi, 93–94
Subject Index

X

X_n-limit Bayes 59, 60

Y

Yale 94