
1

XML Indexing

CPS 296.1
Topics in Database Systems

2

Roadmap
� Index fabric

� Cooper et al. �A Fast Index for Semistructured Data.� VLDB,
2001

� DataGuide
� Goldman and Widom. �DataGuides: Enabling Query

Formulation and Optimization in Semistructured Databases.�
VLDB, 1997

� T-indexes
� Milo and Suciu. �Index Structures for Path Expressions.�
ICDT, 1997

� Some recent papers
� Grust; Chung et al.; Kaushik et al., SIGMOD, 2002
� Kaushik et al., ICDE, 2002

3

DataGuides
� Can handle graph data and arbitrary regular path

expressions
� Given a semistructured/XML database instance DB, a

DataGuide for DB is a graph G such that:
� Every label path in DB also occurs in G

� Complete coverage

� Every label path in G also occurs in DB
� Accurate coverage (no bogus path)

� Every label path in G (starting from a particular object) is
unique (i.e., G is a DFA)

� Efficient search: to process a label path of length n, just examine n
nodes in G

4

DataGuide example

Database

DataGuide
Each node in the DataGuide can
point to a set of database nodes

5

Multiple DataGuides for same data

Database DataGuide G1 DataGuide G2

Which is better?

6

Strong DataGuides
� Let p, p� be two label path expressions and G a graph;

define p ≡G p� if p(G) = p�(G)
� That is, p and p� are indistinguishable on G

� G is a strong DataGuide for a database DB if the
equivalence relations ≡G and ≡DB are the same

� Example
� G1 is strong; G2 is not
� A.C(DB) = { 5 }, B.C(DB) = { 6, 7 }

� Not equal
� A.C(G2) = { 20 }, B.C(G2) = { 20 }

� Equal

2

7

Size of DataGuides
� If DB is a tree, then | G | ≤ | DB |

� Linear construction time
� In the worst case, however, the size of a strong

DataGuide may be exponential in | DB |
o1

o2 o3

o4 o5 o6

A A

B B B

B

B

8

T-indexes
� Can handle graph data and, in general, multiple

path expressions chained in sequence
� 1-index indexes all objects reachable through an

arbitrary path expression P from a root
� 2-index indexes all pairs of objects connected by an

arbitrary path expression P
� T-index indexes all sequences of objects connected by

a sequence of path expressions

9

A first attempt at 1-index (slide 1)

� Let Lv be the set of words on paths from some
root node to v
� Lv = { l1l2�ln | root → v1 →� → v }
� That is, all path queries that lead to v

� Define equivalence relation ≡ on the nodes in DB
� u ≡ v if Lu = Lv
� That is, u and v are indistinguishable by path queries

starting from the root
� Notation: [u] is the equivalent class containing u

l1 l2 ln

10

A first attempt at 1-index (slide 2)

� Index is also a graph (no bigger than DB)
� Each index node corresponds to an equivalent class; it

points to the set of DB nodes in that equivalent class
� There is an index edge labeled e from s to s� if there is

a DB edge labeled e from a node in s to a node in s�

!Any accurate index should
have at least this many nodes

!Expensive to construct
(PSPACE-complete)

11

1-index
Idea: use simulation/bi-simulation instead of ≡
� Stronger conditions " finer equivalence classes
" more index nodes

� Simulation and bi-simulation are much easier to
compute (PTIME)
� Details in other papers
� To be practical, still need

� External-memory construction algorithm
� Incremental index update algorithm

12

Simulation/bi-simulation (slide 1)

� A binary relation ~ on DB nodes is a (backward) bi-
simulation if
� If v ~ v� and v is a root, then so is v� (and vice versa)

� Root nodes can be bi-similar only to root nodes

� If v ~ v�, then for any edge u→ v there exists u�→ v� such that
u ~ u� (and vice versa)

� Edges are mapped consistently

� Simulation: no �vice versa� (not symmetric in general)

v v�~

u
e

"
v v�~

u
e

u�
e

~

e e

3

13

Simulation/bi-simulation (slide 2)

� Two nodes u and v are bi-similar (u ≈b v) if they
are related in some bi-simulation

� Two nodes u and v are similar (u ≈s v) if there are
two simulations ~ and ~� s.t. u ~ v and v ~� u

� Fact: u ≈b v ⇒ u ≈s v⇒ u ≡ v
� Why?

14

1-index example
� x ≡ y ≡ z
� x ≈s y ≈s z
� x ≈b y ≈b z

⁄
⁄ ⁄

(using bi-simulation)

15

Analyzing 1-index
� For a tree-structured DB, 1-indexes using ≈b, ≈s, ≡ are all

identical to DataGuide
� Always: size(1-index) ≤ size(DB)

� Unlike DataGuide
� But we are back to NFS; is lookup time bounded?

� Always: can construct index in O(|DB| log|DB|)
� Still need: external-memory construction algorithm and

incremental update algorithm
� Designed to answer arbitrarily complex path expressions,

but such expressions may not show up often in queries
16

2-index
� 1-index is for queries of the form: root → x

� Given P, find all x�s that satisfy the query
� 2-index is for queries of the form: root → x1 → x2

� Given P, find all (x1, x2) pairs that satisfy the query
� Again, index is a graph

� What are the nodes?
� What are the edges?

P

P*

17

Nodes of 2-index
� Let L(u, v) be the set of words on the paths from u to v

� L(u, v) = { l1l2�ln | u→� → v }
� That is, all path queries that return (u, v) as one of its answers

� Define equivalence relation ≡ on pairs of nodes in DB
� (u, v) ≡ (u�, v�) if L(u, v) = L(u�, v�)

� That is, they are indistinguishable by path queries of the form:
root → x1 → x2

� Nodes in a 2-index correspond to equivalent classes
defined by ≡; each 2-index node points to [(u, v)], a set
of pairs in the same equivalent class as (u, v)
� Again, we can use a refinement of ≡ that is easier to compute

l1 ln

P*

18

Edges of 2-index
� Define 2-index edges in a way such that:

A path query P on the 2-index returns a set of 2-
index nodes that point to the answer to the query
root → x1 → x2 in DB

� If u→ u� in DB, then for each node v in DB,
[(v, u)] → [(v, u�)] in the 2-index
� Intuitively, if v and u are connected via P, then v and
u� are connected via P.e

� A root of a 2-index has the form [(u, u)] because
L(u, u) contains the empty word

e

e

P*

4

19

2-index example

� In general, size of
the 2-index may be
quadratic in | DB |

20

T-index
� T-index handles template: root → x1 →� → xn

� Each Ti can be
� A constant path expression, or
� An arbitrary path expression
!Example template: Restaurant x1, x1.P x2
!The paper also handles an arbitrary formula (single-step

path), but we will not consider it here for simplicity
� Given T1, �, Tn, find (x1, �, xn) tuples that satisfy the

query
� Queries matching the example template:

Restaurant x1, x1.owner x2
Restaurant x1, x1.manager.lastname x2

T1 T2 Tn

21

Nodes of T-index
� Query template: root → x1 →� → xn
� Let T(v1, �, vi) be the language generated by regular

expression R1 $ R2 $ � $ Ri, where $ is a special
symbol, and
� If Tj represents an arbitrary path expression, then Rj = L(vj � 1, vj)
� If Tj represents a constant path expression, and if there is such

a path from vj � 1 to vj, then Rj = Sj (a special symbol); otherwise
Rj = ∅

� (v1, �, vi) ≡ (u1, �, ui) if T(v1, �, vi) = T(u1, �, ui)
� Nodes of the T-index include

� Equivalence classes of the form [(v1, �, vi)], where i · n
� For each [(v1, �, vi)] a new node [(v1, �, vi)]$

T1 T2 Tn

22

Edges of T-index
� For each [(v1, �, vi � 1, vi)]$, there is an edge in T-index

[(v1, �, vi � 1, vi)]$ → [(v1, �, vi � 1, vi, vi)]
� Intuition: after binding xi to vi, start matching Ti + 1 from vi

� If Ti represents an arbitrary path expression
� If vi→ vi� in DB, then [(v1, �, vi � 1, vi)] → [(v1, �, vi � 1, vi�)]

� Intuition: e can be part of Ti
� [(v1, �, vi � 1, vi)] → [(v1, �, vi � 1, vi)]$

� Intuition: Ti can be of any length and terminated right here

� If Ti represents a constant path expression
� If vi→ vi� in DB, then [(v1, �, vi � 1, vi)] → [(v1, �, vi � 1, vi�)]$

� Intuition: special symbol Si represents a complete match of Ti

$

e e

ε

Ti Si

23

Roots, terminals, and an example
� Roots have the form [(v)], where v is a root of DB
� Terminals have the form [(v1, �, vn � 1, vn)]$

� Remove all nodes not reachable from root or not
having any path to terminal

� Example: t x1, x1.* x2

[(1)]

[(2)]$

[(2, 2)] [(2, 2)]$

[(2, 7)]

[(2, 7)]$

[(3, 8)] [(3, 9)]

[(3, 8)]$ [(3, 9)]$

S1

$

ε ε ε

ε
a

b a c
[(4, 11)]

[(4, 11)]$
ε

d

24

Indexing XPath axes
� Most indexing work so far concentrates on

speeding up parent-child traversals
� What about other types of XPath axes such as

following, preceding, etc.?
� Example: �preceding� axis contains all nodes that are

before the context node in document order, excluding
any ancestors
//event[name=“end”]/preceding::event[name=“begin”]

! Grust. �Accelerating XPath Location Steps.� SIGMOD, 2002

5

25

Pre- and post-order traversal

� Pre-order traversal (self; left subtree; right subtree)
� a, b, c, d, e, f, g, h, i, j
� Pre-order ranks of nodes: pre(a) = 0, pre(b) = 1, pre(c) = 2, �

� Post-order traversal (left subtree; right subtree; self)
� d, e, c, b, g, i, j, h, f, a
� Post-order ranks of nodes: post(d) = 0, post(e) = 1, �

� Idea: use these ranks to determine node relationship 26

Node descriptor indexing
� Descriptor of a node v: desc(v) = h pre(v), post(v), par(v),

att(v), tag(v) i
� par(v): the pre-order rank of v�s parent
� att(v): true if node is attribute; false otherwise
� tag(v): element tag or attribute name of v

� Use R-tree or B-tree on node descriptor table

27

Adaptive path indexing
� Most indexing work indexes all possible paths in

the data, but few paths actually come up in
queries

� Index only the frequently used paths (mined from
a query workload)

! Chung et al. �APEX:
An Adaptive Path Index
for XML Data.�
SIGMOD, 2002

28

More XML indexing work
!Kaushik et al. �Exploiting Local Similarity to Efficiently

Index Paths in Graph-Structured Data.� ICDE, 2002
� Instead of (bi-)similarity, consider (bi-)similarity w.r.t. paths of

up to length k (may get false positives)
� Consider index updates

!Kaushik et al. �Covering Indexes for Branching Path
Queries.� SIGMOD, 2002
� Consider branching path queries such as //part[bolt AND nut]
� Index each edge both forward and backward
� Reduce the size of the index by ignoring unimportant tags,

limiting k, and limiting the tree depth of branching queries

