XML Indexing

CPS 296.1

Topics in Database Systems

Roadmap

* Index fabric
— Cooper et al. “A Fast Index for Semistructured Data.” VLDB,
2001
» DataGuide
— Goldman and Widom. “DataGuides: Enabling Query
Formulation and Optimization in Semistructured Databases.”
VLDB, 1997
* T-indexes
— Milo and Suciu. “Index Structures for Path Expressions.”
ICDT, 1997
» Some recent papers
— Grust; Chung et al.; Kaushik et al., SIGMOD, 2002
— Kaushik et al., ICDE, 2002 2

DataGuides

+ Can handle graph data and arbitrary regular path
expressions

» Given a semistructured/ XML database instance DB, a
DataGuide for DB is a graph G such that:
— Every label path in DB also occurs in G
« Complete coverage
— Every label path in G also occurs in DB
« Accurate coverage (no bogus path)
— Every label path in G (starting from a particular object) is
unique (i.e., G is a DFA)
« Efficient search: to process a label path of length , just examine n

nodes in G .

DataGuide example

Ti
" =
Database et
A o
DataGuide = == =
Each node in the DataGuide can = P :
LR vk

point to a set of database nodes =~

Multiple DataGuides for same data

¥ i " i A ™
i
r n E T 1 L
i

Database ~ DataGuide G, DataGuide G,
Which is better?

Strong DataGuides

* Letp, p’ be two label path expressions and G a graph;
define p = p’ if p(G) = p’(G)
— That is, p and p’ are indistinguishable on G

* G is a strong DataGuide for a database DB if the
equivalence relations =, and =) are the same

» Example el ¥
— G, is strong; G, is not
- ACMDB)={5},B.C(DB)={6,7} &+ =+ * = =2
* Not equal
- AC(G)={20},B.C(G)={20} i & 5 & F

* Equal

Size of DataGuides

» If DBisatree, then | G| <| DB |

— Linear construction time

* In the worst case, however, the size of a strong
DataGuide may be exponential in | DB |

ol

A first attempt at 1-index (slide 1)

* Let L, be the set of words on paths from some
root node to v

L= { Ll | to0t > v, 25 Ly
— That is, all path queries that lead to v

* Define equivalence relation = on the nodes in DB
—u=vifL,=L,

— That is, u and v are indistinguishable by path queries
starting from the root

* Notation: [u] is the equivalent class containing u

9

T-indexes

* Can handle graph data and, in general, multiple
path expressions chained in sequence
— l-index indexes all objects reachable through an
arbitrary path expression P from a root

— 2-index indexes all pairs of objects connected by an
arbitrary path expression P

— T-index indexes all sequences of objects connected by
a sequence of path expressions

A first attempt at 1-index (slide 2)

* Index is also a graph (no bigger than DB)

— Each index node corresponds to an equivalent class; it
points to the set of DB nodes in that equivalent class

— There is an index edge labeled e from s to s’ if there is
a DB edge labeled e from a node in s to a node in s’

» Any accurate index should g LIS e
have at least this many nodes - 1

» Expensive to construct — I
(PSPACE-complete) :

1-index

Idea: use simulation/bi-simulation instead of =

« Stronger conditions - finer equivalence classes
—> more index nodes

 Simulation and bi-simulation are much easier to
compute (PTIME)
— Details in other papers
— To be practical, still need

« External-memory construction algorithm
* Incremental index update algorithm

Simulation/bi-simulation elide 1)

* A binary relation ~ on DB nodes is a (backward) bi-
simulation if
— If v~ v’ and v is a root, then so is v’ (and vice versa)
* Root nodes can be bi-similar only to root nodes
— If v~’, then for any edge u % v there exists u” <> v* such that
u ~u’ (and vice versa)

« Edges are mapped consistently

%0

 Simulation: no “vice versa” (not symmetric in genera}l’)

Simulation/bi-simulation (stide 2)

* Two nodes u and v are bi-similar (u =, v) if they
are related in some bi-simulation

» Two nodes u and v are similar (u =, v) if there are
two simulations ~and ~’ s.t. u ~vand v~" u

e Fact u=,v u=vou=v
— Why?

I-index example

Analyzing 1-index

* For a tree-structured DB, 1-indexes using ~,, =, = are all
identical to DataGuide
* Always: size(1-index) < size(DB)
— Unlike DataGuide
— But we are back to NFS; is lookup time bounded?
* Always: can construct index in O(|DB| log|DB)|)
+ Still need: external-memory construction algorithm and
incremental update algorithm
» Designed to answer arbitrarily complex path expressions,
but such expressions may not show up often in queries

15

e X = y =7 -
* XA YR Z P o .
C XZYEZ ' ' ot Ry

i 4 i | #

OB 1
(using bi-simulation
14
2-index

« 1-index is for queries of the form: root £ x
— Given P, find all x’s that satisfy the query
« 2-index is for queries of the form: root — x, & x,
— Given P, find all (x;, x,) pairs that satisfy the query
» Again, index is a graph
— What are the nodes?
— What are the edges?

Nodes of 2-index

* LetL, , be the set of words on the paths from u to v
’ = ll ln
— Ly ={hh L Ju=s .. v
— That is, all path queries that return (u, v) as one of its answers
+ Define equivalence relation = on pairs of nodes in DB
- (u,v)=w’,v) ifL(w w=La, v
— That is, they are indistinguishable by path queries of the form:
root % x, & x,
* Nodes in a 2-index correspond to equivalent classes
defined by =; each 2-index node points to [(u, v)], a set
of pairs in the same equivalent class as (u, v)

— Again, we can use a refinement of = that is easier to compute
17

Edges of 2-index

* Define 2-index edges in a way such that:
A path query P on the 2-index returns a set of 2-
index nodes that point to the answer to the query
root - x, > x, in DB

« Ifu 5w’ in DB, then for each node v in DB,
[(v, u)] = [(v,)] in the 2-index
— Intuitively, if v and u are connected via P, then v and
u’ are connected via P.e
* A root of a 2-index has the form [(u, ©)] because
L, , contains the empty word 18

(u,u

2-index example

* In general, size of i "T—"{r .-'l,_
the 2-index may be b

e -E_-'_ B 0 L
quadratic in | DB | ,,*’JI T, . '?'-\b
oy T LY

1J

T-index

+ T-index handles template: root 7> x, 2 ... Lo x

— Each 7, can be

A constant path expression, or

* An arbitrary path expression

»Example template: Restaurant x,, x,.P x,

»The paper also handles an arbitrary formula (single-step

path), but we will not consider it here for simplicity
—Given T, ..., T,, find (x,, ..., x,) tuples that satisfy the
query
¢ Queries matching the example template:

Restaurant x,, x,.owner x,
Restaurant x,, x;.manager.lastname x,

n

Nodes of T-index

T, T, T,
Query template: root 5 x; - ... 2 x,

* LetT, ., be the language generated by regular
expression R; $ R, $... $ R, where § is a special
symbol, and

— If 7; represents an arbitrary path expression, then R, =L,
— If 7; represents a constant path expression, and if there is such
a path from v; | to v, then R; = S; (a special symbol); otherwise
R=0
(Vs) =y, e uy) if T, — D)
Nodes of the T-index include
— Equivalence classes of the form [(v|, ..., v;)], where i <n
— For each [(v,, ..., v;)] a new node [(v,, ..., v;)]?

Edges of T-index

For each [(v,, ..., v; |, v;)]5, there is an edge in T-index
[(vlﬂ s Vil V,-)]$ - [(vla s Viep Vis vi)]
— Intuition: after binding x; to v,, start matching 7}, | from v,

* If T, represents an arbitrary path expression
— Ifv, % v, in DB, then [(v,, ..., Vi il (T Viip vl
« Intuition: e can be part of 7;
&€
o (PP T A) R (PP
« Intuition: 7} can be of any length and terminated right here
« If T, represents a constant path expression
7y . S,
— Ifv; =5 v in DB, then [(v}, ..., v;_1, V)] = [V}, - s Vi1)P

« Intuition: special symbol S; represents a complete match of 7,
2

Roots, terminals, and an example

* Roots have the form [(v)], where v is a root of DB
« Terminals have the form [(v, ..., v, , v,)]*

* Remove all nodes not reachable from root or not
having any path to terminal

Examplesige: * e
e Example: t x;, x;.* x .

p X1 X [§2)]$

A 212152, 2
. O -

e T e e %l& d
& G0 T T @1 1G9 (G)]
ot ETw e chogr el el &} €
T i iman (@D [GRF [GI9F (@, 1D)]

23

Indexing XPath axes

* Most indexing work so far concentrates on
speeding up parent-child traversals
* What about other types of XPath axes such as
following, preceding, etc.?
— Example: “preceding” axis contains all nodes that are
before the context node in document order, excluding

any ancestors
/leventiname="end”]/preceding::event[name="begin”]

» Grust. “Accelerating XPath Location Steps.” SIGMOD, 2002

24

Pre- and post-order traversal

i

* Pre-order traversal (self; left subtree; right subtree)
—a,b,c,d, e, f,g h,1,j
— Pre-order ranks of nodes: pre(a) = 0, pre(b) = 1, pre(c) = 2, ...
 Post-order traversal (left subtree; right subtree; self)
—d,e,c,b, g, i,j,h,f,a
— Post-order ranks of nodes: post(d) = 0, post(e) =1, ...
+ Idea: use these ranks to determine node relationship s

Node descriptor indexing

* Descriptor of a node v: desc(v) = (pre(v), post(v), par(v),
att(v), tag(v))
— par(v): the pre-order rank of v’s parent
— att(v): true if node is attribute; false otherwise
— tag(v): element tag or attribute name of v
» Use R-tree or B-tree on node descriptor table

T ——

Adaptive path indexing

* Most indexing work indexes all possible paths in
the data, but few paths actually come up in
queries

* Index only the frequently used paths (mined from
a query workload)

» Chung et al. “APEX: k
An Adaptive Path Index —_—
for XML Data.” i
SIGMOD, 2002 s

More XML indexing work

> Kaushik et al. “Exploiting Local Similarity to Efficiently
Index Paths in Graph-Structured Data.” ICDE, 2002
— Instead of (bi-)similarity, consider (bi-)similarity w.r.t. paths of

up to length & (may get false positives)

— Consider index updates

» Kaushik et al. “Covering Indexes for Branching Path
Queries.” SIGMOD, 2002
— Consider branching path queries such as //part[bolt AND nut]
— Index each edge both forward and backward

— Reduce the size of the index by ignoring unimportant tags,
limiting &, and limiting the tree depth of branching queries
28

