
Mining XML Functional Dependencies through
Formal Concept Analysis

Viorica Varga

May 6, 2010



Outline

Definitions for XML Functional Dependencies

Introduction to FCA

FCA tool to detect XML FDs

Finding XML keys

Detecting XML data redundancy

Conclusions and Future Work



Outline

Definitions for XML Functional Dependencies

Introduction to FCA

FCA tool to detect XML FDs

Finding XML keys

Detecting XML data redundancy

Conclusions and Future Work



Outline

Definitions for XML Functional Dependencies

Introduction to FCA

FCA tool to detect XML FDs

Finding XML keys

Detecting XML data redundancy

Conclusions and Future Work



Outline

Definitions for XML Functional Dependencies

Introduction to FCA

FCA tool to detect XML FDs

Finding XML keys

Detecting XML data redundancy

Conclusions and Future Work



Outline

Definitions for XML Functional Dependencies

Introduction to FCA

FCA tool to detect XML FDs

Finding XML keys

Detecting XML data redundancy

Conclusions and Future Work



Outline

Definitions for XML Functional Dependencies

Introduction to FCA

FCA tool to detect XML FDs

Finding XML keys

Detecting XML data redundancy

Conclusions and Future Work



XML Design

I XML data design: choose an appropriate XML schema, which
usually come in the form of DTD (Document Type Definition)
or XML Scheme.

I Functional dependencies (FDs) are a key factor in XML
design.

I The objective of normalization is to eliminate redundancies
from an XML document, eliminate or reduce potential update
anomalies.

I Arenas, M., Libkin, L.: A normal form for XML documents.
TODS 29(1), 195-232 (2004)

I Yu, C., Jagadish, H. V.: XML schema refinement through
redundancy detection and normalization. VLDB J. 17(2):
203-223 (2008)



Schema definition

Definition
(Schema) A schema is defined as a set S = (E ,T , r), where:

I E is a finite set of element labels;

I T is a finite set of element types, and each e ∈ E is associated
with a τ ∈ T , written as (e : τ), τ has the next form:
τ ::= str | int | float | SetOf τ | Rcd [e1 : τ1, . . . , en : τn];

I r ∈ E is the label of the root element, whose associated
element type can not be SetOf τ .

I Types str, int and float are the system defined simple types
and Rcd indicate complex scheme elements.

I Keyword SetOf is used to indicate set schema elements

I Attributes and elements are treated in the same way, with a
reserved ”@” symbol before attributes.



Figure: CustOrder XML tree



Customer’s Orders Example Scheme

0 CustOrder : Rcd
1 Customers : SetOf Rcd
2 CustomerID : s t r
3 CompanyName : s t r
4 Address : s t r
5 C i t y : s t r
6 Posta lCode : s t r
7 Country : s t r
8 Phone : s t r
9 Order s : SetOf Rcd

10 OrderID : i n t
11 CustomerID : s t r
12 OrderDate : s t r
13 O r d e rDe t a i l s : SetOf Rcd
14 OrderID : i n t
15 Product ID : i n t
16 Un i tP r i c e : f l o a t
17 Quant i t y : f l o a t
18 ProductName : s t r
19 Category ID : i n t



I A schema element ek can be identified through a path
expression, path(ek) = /e1/e2/.../ek , where e1 = r , and ei is
associated with type τi ::= Rcd [..., ei+1 : τi+1, ...] for all
i ∈ [1, k − 1].

I A path is repeatable, if ek is a set element. We adopt XPath
steps ”.” (self) and ”..” (parent)

Definition (Data tree) An XML database is defined to be a rooted
labeled tree T = 〈N,P,V, nr 〉, where:

I N is a set of labeled data nodes, each n ∈ N has a label e and
a node key that uniquely identifies it in T ;

I nr ∈ N is the root node;

I P is a set of parent-child edges, there is exactly one
p = (n′, n) in P for each n ∈ N (except nr ), where
n′ ∈ N, n 6= n′, n′ is called the parent node, n is called the
child node;

I V is a set of value assignments, there is exactly one v = (n, s)
in V for each leaf node n ∈ N, where s is a value of simple
type.



Descendant, repeatable element definition

I We assign a node key, referred to as @key, to each data node
in the data tree in a pre-order traversal.

I A data element nk is a descendant of another data element n1

if there exists a series of data elements ni , such that
(ni , ni+1) ∈ P for all i ∈ [1, k − 1].

I Data element nk can be addressed using a path expression,
path(nk) = /e1/ . . . /ek , where ei is the label of ni for each
i ∈ [1, k], n1 = nr , and (ni , ni+1) ∈ P for all i ∈ [1, k − 1].

I A data element nk is called repeatable if ek corresponds to a
set element in the schema.

I Element nk is called a direct descendant of element na, if nk is
a descendant of na, path(nk) = . . . /ea/e1/ . . . /ek−1/ek , and
ei is not a set element for any i ∈ [1, k − 1].



Warehouse Example



Warehouse Example Scheme

0 warehouse : Rcd
1 s t a t e : SetOf Rcd
2 name : s t r
3 s t o r e : SetOf Rcd
4 con ta c t : Rcd
5 name : s t r
6 add r e s s : s t r
7 book : SetOf Rcd
8 ISBN : s t r
9 autho r : SetOf s t r

10 t i t l e : s t r
11 p r i c e : s t r



Element-value equality

Definition(Element-value equality) Two data elements n1 of
T1 = 〈N1,P1,V1, nr1〉 and n2 of T2 = 〈N2,P2,V2, nr2〉 are
element-value equal (written as n1 =ev n2) if and only if:

I n1 and n2 both exist and have the same label;

I There exists a set M, such that for every pair (n′1, n
′
2) ∈ M,

n′1 =ev n′2, where n′1, n
′
2 are children elements of n1, n2,

respectively. Every child element of n1 or n2 appears in
exactly one pair in M.

I (n1, s) ∈ V1 if and only if (n2, s) ∈ V2,where s is a simple
value.

Example Data elements node 30 and 50 are element value equal if
and only if the subtrees rooted at those two elements are identical
when the order among sibling elements is ignored.



Path-value equality

Definition(Path-value equality) Two data element paths p1 on
T1 = 〈N1,P1,V1, nr1〉 and p2 on T2 = 〈N2,P2,V2, nr2〉 are
path-value equal (written as T1.p1 =pv T2.p2) if and only if there
is a set M ′ of matching pairs where

I For each pair m′ = (n1, n2) in M ′, n1 ∈ N1, n2 ∈ N2,
path(n1) = p1, path(n2) = p2, and n1 =ev n2;

I All data elements with path p1 in T1 and path p2 in T2

participate in M ′, and each such data element participates in
only one such pair.

Value equality between two paths is complicated by the fact that a
single path can match multiple data elements in the data tree.
This definition consider two paths value equal if each node which
is pointed to by one path must have a corresponding node that is
pointed to by the other path, where the two nodes are element
value equal.



Generalized tree tuple

Definition A generalized tree tuple of data tree T = 〈N,P,V, nr 〉,
with regard to a particular data element np (called pivot node), is
a tree tT

np
= 〈Nt ,Pt ,Vt , nr 〉, where:

I Nt ⊆ N is the set of nodes, np ∈ Nt ;

I Pt ⊆ P is the set of parent-child edges;

I Vt ⊆ V is the set of value assignments;

I nr is the same root node in both tT
np

and T ;

I n ∈ Nt if and only if:
I n is a descendant or ancestor of np in T , or
I n is a non-repeatable direct descendant of an ancestor of np in

T ;

I (n1, n2) ∈ Pt if and only if n1 ∈ Nt , n2 ∈ Nt , (n1, n2) ∈ P;

I (n, s) ∈ Vt if and only if n ∈ Nt , (n, s) ∈ V.



Tuple class

I A generalized tree tuple is a data tree projected from the
original data tree.

I It has an extra parameter called a pivot node. In contrast with
tree tuple defined in Arenas and Libkin’s article, which
separate sibling nodes with the same path at all hierarchy
levels, the generalized tree tuple separate sibling nodes with
the same path above the pivot node

I Based on the pivot node, generalized tree tuples can be
categorized into tuple classes:

Definition(Tuple class) A tuple class CT
p of the data tree T is the

set of all generalized tree tuples tT
n , where path(n) = p. Path p is

called the pivot path.



Figure: Example tree tuple



Figure: Example tree tuple



XML Functional Dependency

Definition(XML FD) An XML FD is a triple 〈Cp, LHS ,RHS〉,
written as LHS → RHS w.r.t. Cp, where Cp denotes a tuple class,
LHS is a set of paths (Pli , i = [1, n]) relative to p, and RHS is a
single path (Pr ) relative to p.
An XML FD holds on a data tree T (or T satisfies an XML FD) if
and only if for any two generalized tree tuples t1, t2 ∈ Cp

- ∃i ∈ [1, n] , t1.Pli =⊥ or t2.Pli =⊥, or
- If ∀i ∈ [1, n], t1.Pli =pv t2.Pli , then
t1.Pr 6=⊥, t2.Pr 6=⊥, t1.Pr =pv t2.Pr .
A null value, ⊥, results from a path that matches no node in the
tuple, and =pv is the path-value equality defined previous.



XML Functional Dependency Example

Example

(XML FD) In our running example whenever two products agree
on ProductID values, they have the same ProductName . This
can be formulated as follows:
./ProductID → ./ProductName w.r.t. COrderDetails

Another example is:
./ProductID → ./CategoryID w.r.t COrderDetails

Example

(XML FD) In warehause tree:
./ISBN → ./title w.r.t Cbook

../contact/name,./ISBN → ./price w.r.t Cbook

./ISBN → ./author w.r.t Cbook

./author,./title → ./ISBN w.r.t Cbook



Trivial XML FD

Definition: (Trivial XML FD) An XML FD 〈Cp, LHS ,RHS〉 is
trivial if:
1. RHS ∈ LHS , or
2. For any generalized tree tuple in Cp, there is at least one path
in LHS that matches no data element.
The 2. point can arrise, because of the existence of Choice
elements.
Example If Contact is a Choice element instead of Rcd, i.e. it
can have either name or address as its childs, but not both, then
the XML FD:
〈Cstore , ./contact/name, ./contact/address, ./@key〉
is trivial, because no Cstore tuple will have both LHS node.



XML key

Definition (XML key) An XML Key of a data tree T is a pair
〈Cp, LHS〉, where T satisfies the XML FD 〈Cp, LHS , ./@key〉.

Example

We have the XML FD: 〈COrders , ./OrderID, ./@key〉, which implies
that 〈COrders , ./OrderID〉 is an XML key.

Example

〈CState , ./name〉
〈CStore , ./contact/name, ./contact/address〉 are XML keys.



Structurally redundant XML FDs

Theorem

I Let FD = 〈Cp, LHS ,RHS〉,
I if none of the paths in LHS and RHS specifies a data element

that is descendent of the pivot node in the tuple,

I then FD holds on a data tree T

I if and only if FD ′ = 〈Cp′ , LHS ′,RHS ′〉 holds on T , where

I Cp′ is the lowest-repeatable-ancestor tuple class of Cp

I paths in LHS ′ and RHS ′ are equivalent to paths in LHS and
RHS (i.e. they correspond to the same absolute paths).

Example
../ISBN → ../title w.r.t Cauthor

is structurally redundant with
./ISBN → ./title w.r.t Cbook



Interesting XML FD

Tuple classes with repeatable pivot paths are called essential tuple
classes.
Definition(Interesting XML FD) An XML FD 〈Cp, LHS ,RHS〉 is
interesting if it satisfies the following conditions:

I RHS /∈ LHS;

I Cp is an essential tuple class;

I RHS matches to descendent(s) of the pivot node.

An interesting XML FD is a non-trivial XML FD with an essential
tuple class and is not structurally redundant to any other XML FD.



XML data redundancy

Definition(XML data redundancy) A data tree T contains a
redundancy if and only if T satisfies an interesting XML FD
〈Cp, LHS ,RHS〉, but does not satisfy the XML Key 〈Cp, LHS〉.
Intuitively:

I if 〈Cp, LHS〉 is not a key for T , then there exists two distinct
tuples in Cp that share the same LHS.

I T satisfies 〈Cp, LHS ,RHS〉, so RHS of these two tuples must
be value equal

I so: data is redundantly stored



GTT-XNF

Definition(GTT-XNF) An XML schema S is in GTT-XNF given
the set of all satisfied interesting XML FDs if and only if for each
such XML FD (〈Cp, LHS ,RHS〉), 〈Cp, LHS〉 is an XML key.
Intuitively: GTT-XNF disallows any satisfied interesting XML FD
that indicates data redundancies.
Rule 1 (Reflexivity) LHS → P1 w.r.t. Cp is satisfied if P1 ⊆ LHS .
Rule 2 (Augmentation) LHS → P1 w.r.t. Cp ⇒
{LHS ,P2} → P1 w.r.t. Cp.
Rule 3 (Transitivity) LHS → P1 w.r.t. Cp ∧ . . . ∧ LHS → Pn

w.r.t. Cp ∧ {P1, . . . ,Pn} → P w.r.t. Cp ⇒ LHS → P w.r.t. Cp.



XML Data Flat Representation

Figure: One relation for the whole XML data



XML Data Hierarhical Representation

Figure: Set of relations



Intra-relation FDs/Keys, Inter-relation FDs/Keys

Example

(XML FD) In warehause tree:
./ISBN → ./title w.r.t Cbook intra-relation FD
../contact/name,./ISBN → ./price w.r.t Cbook inter-relation FD
./ISBN → ./author w.r.t Cbook inter-relation FD
./author,./title → ./ISBN w.r.t Cbook inter-relation FD

Yu, C., Jagadish, H. V.: XML schema refinement through
redundancy detection and normalization. VLDB J. 17(2): 203-223
(2008) presents algorithm based on partitioning to detect
intra-relation FDs, another very complicated for inter-relation FDs.



Eliminating redundancy-indicating FDs

I if 〈Cp, LHS〉 is not a key for T

I T satisfies 〈Cp, LHS ,RHS〉, so RHS is redundantly stored

I to eliminate such FD, the schema element corresponding to
RHS is moved into a new schema location, such that those
data elements are no longer redundantly stored.

I Let Σ be the set of redundancy-indicating FDs.

Example
./ISBN → ./title w.r.t Cbook

{ ../../name, ../contact/name,./ISBN } → ./price w.r.t Cbook

Assumption:
{ ../name, ./contact/name} is a key for Cstore .



Local/global XML FD

Definition (Local/global XML FD) An XML FD 〈Cp, LHS ,RHS〉
is local if there exists LHS ′ ⊂ LHS such that 〈Cp′ , LHS ′〉 is an
XML key, where Cp′ is an ancestor tuple class of Cp (i.e. p′ is a
prefix of p). Otherwise, the FD is global .
Example
./ISBN → ./title w.r.t Cbook is global, because no subset of its
LHS is a key for any tuple class above Cbook

means: 2 books, regardless whether they are under the same store
or state, if they have the same ISBN, then they will have the same
title
Example
{ ../../name, ../contact/name,./ISBN } → ./price w.r.t Cbook is
local, because { ../../name, ../contact/name} is a key for Cstore .
means: state name and store name uniquely identifies each store,
any 2 books, if they have the same ISBN, they will have the same
price, as long as they are under the same store.



Eliminate global FD

Procedure 1
I Let F = {P1, . . . ,Pn} → Pr w.r.t. Cp be a redundancy

indicated global FD on Schema Sroot ;
I {ei |i ∈ [1, n]} and {τi |i ∈ [1, n]} be the sets of schema

element labels and types, respectively, associated with each
Pi ;

I er and τr be the schema element label and type,respectively,
associated with Pr ;

I τparent be the schema element type of the parent element of
Pr ;

I τroot=Rcd[e ′1 : τ ′1, . . . , e
′
m : τ ′m] be the element type of the

root element.

Eliminating redundancy:
I Create a new schema element with label enew and type
τnew =SetOfRcd[e1 : τ1, . . . , en : τn, er : τr ]

I Set τroot=Rcd[e ′1 : τ ′1, . . . , e
′
m : τ ′m, enew : τnew ]

I Remove (er : τr ) from τparent



Eliminate global FD Example

./ISBN → ./title w.r.t Cbook

Scheme after eliminating global FD:

0 warehouse : Rcd
1 s t a t e : SetOf Rcd
2 name : s t r
3 s t o r e : SetOf Rcd
4 con ta c t : Rcd
5 name : s t r
6 add r e s s : s t r
7 book : SetOf Rcd
8 ISBN : s t r
9 autho r : SetOf s t r

10 p r i c e : s t r
11 new−book : Seto fRcd
12 ISBN : s t r
13 t i t l e : s t r



Adjusting FD

I remove F from Σ.

I the semantics of F is captured by: {P1, . . . ,Pn} → Pr w.r.t.
Cnew , it is not redundancy, does not need to be added to Σ

I remove all FDs from Σ that are affected by the move of Pr .

Example
{ ./author, ./title} → ./ISBN w.r.t Cbook

is removed, because it is not valid.
It is safe to do, because ISBN is no longer redundant.



Eliminate local FD

Procedure 2
I Let F = {P1, . . . ,Pk−1,Pk , . . . ,Pn} → Pr w.r.t. Cp be a

redundancy indicated local FD on Schema Sroot ;
I {P1, . . . ,Pk−1} is the key for C ′p;
I C ′p is is an ancestor tuple class of Cp and there is no other

subset L of {Pi |i ∈ [1, n]} such that L is a key for C
′′
p

I C
′′
p is an ancestor of Cp and a descendant of C ′p (i.e. C ′p is the

lowest tuple class that can be identified)
I {ei |i ∈ [k, n]} and {τi |i ∈ [k, n]} be the sets of schema

element labels and types, respectively, associated with each
Pi ;

I er and τr be the schema element label and type,respectively,
associated with Pr ;

I τparent be the schema element type of the parent element of
Pr ;

I τp′=Rcd[e ′1 : τ ′1, . . . , e
′
m : τ ′m] be the element type of the

schema element corresponding to the pivot path of Cp′ .



Eliminate redundancy

I Create a new schema element with label enew and type
τnew =SetOfRcd[ek : τk , . . . , en : τn, er : τr ]

I Set τp′=Rcd[e ′1 : τ ′1, . . . , e
′
m : τ ′m, enew : τnew ]

I Remove (er : τr ) from τparent

Explanation

I to eliminate a local FD like
{ ../../name, ../contact/name,./ISBN } → ./price w.r.t
Cbook

I create a new schema element containing the subset of its LHS
(ISBN) that are not part of the key for ancestor tuple class
(Cstore) and RHS element (price)

I put this new element under the schema element corresponding
to the pivot path of the ancestor tuple class
(/warehouse/state/store).

I RHS element is removed from its original position



Eliminate redundancy cont.

I by creating the new schema element under the non-root
ancestor, fewer elements needs to be copied under the new
scheme

I after the the modification of the scheme remove any FD that
is affected by the move of Pr

Scheme after eliminating local FD:

0 warehouse : Rcd
1 s t a t e : SetOf Rcd
2 name : s t r
3 s t o r e : SetOf Rcd
4 con ta c t : Rcd
5 name : s t r
6 add r e s s : s t r
7 book : SetOf Rcd
8 ISBN : s t r
9 autho r : SetOf s t r

10 t i t l e : s t r
11 new−book : SetOfRcd
12 ISBN : s t r
13 p r i c e : s t r



Special case for Procedure 2

I if the entire LHS of the FD is a key for some ancestor tuple
class

Example In DBLP scheme year of an article is determined by the
identity (@key) of the issue containing the article

I instead of creating a new scheme element containing a single
element year

I we move year after issue



Normalization algorithm



Normalization algorithm explanation

I FDs are grouped according to their LHS
Example
./ISBN → ./title w.r.t Cbook

./ISBN → ./author w.r.t Cbook

I if they are dealt separately two new scheme element are
created

I FDs are processed according to the number of paths in their
LHS to reduce the storage cost.
Example
{ ./title, .author} → ./ISBN w.r.t Cbook

I If this FD is processed first, then the elements title and
author will remain under book, not ISBN



Normalization algorithm explanation cont.

I FDs are processed according to the hierarchy depth of their
tuple class in a bottom-up fashion (lowest first)

I this is because during the process of FDs for a lower hierarchy
tuple class, redundancy-indicating FDs for a higher hierarchy
tuple class may be created

I algorithm terminates because each application of Procedure 1
and 2 either removes one redundancy-indicating FD or
converts one redundancy-indicating FD into another one with
a tuple class at a higher hierarchy



GTT-XNF Scheme of Warehouse xml data

I Eliminating first:
./ISBN → ./title w.r.t Cbook

./ISBN → ./author w.r.t Cbook

I this FD is no longer redundancy indicating
{ ../../name, ../contact/name,./ISBN } → ./price w.r.t
Cbook

0 warehouse : Rcd
1 s t a t e : SetOf Rcd
2 name : s t r
3 s t o r e : SetOf Rcd
4 con ta c t : Rcd
5 name : s t r
6 add r e s s : s t r
7 book : SetOf Rcd
8 ISBN : s t r
9 p r i c e : s t r

10 new−book : SetOfRcd
11 ISBN : s t r
12 t i t l e : s t r
13 autho r : SetOf s t r



Introduction to FCA

I From a philosophical point of view a concept is a unit of
thoughts consisting of two parts:

I the extension, which are objects;
I the intension consisting of all attributes valid for the objects of

the context;

I Formal Concept Analysis (FCA) introduced by Wille gives a
mathematical formalization of the concept notion.

I A detailed mathematic foundation of FCA can be found in:
I Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical

Foundations. Springer, Berlin-Heidelberg-New York. (1999)

I Formal Concept Analysis is applied in many different realms
like psychology, sociology, computer science, biology, medicine
and linguistics.

I FCA is a useful tool to explore the conceptual knowledge
contained in a database by analyzing the formal conceptual
structure of the data.



Introduction to FCA

I FCA studies how objects can be hierarchically grouped
together according to their common attributes. In FCA the
data is represented by a cross table, called formal context.

I A formal context is a triple (G ,M, I ).

I G is a finite set of objects

I M is finite set of attributes

I The relation I ⊆ G ×M is a binary relation between objects
and attributes.

I Each couple (g ,m) ∈ I denotes the fact that the object
g ∈ G is related to the item m ∈ M.



Introduction to FCA

I For a set A ⊆ G of objects we define

A′ := {m ∈ M | gIm for all g ∈ A}

the set of all attributes common to the objects in A.

I Dually, for a set B ⊆ M of attributes we define

B ′ := {g ∈ G | gIm for all m ∈ B}

the set of all objects which have all attributes in B.

I A formal concept of the context K := (G ,M, I ) is a pair
(A,B) where A ⊆ G , B ⊆ M, A′ = B, and B ′ = A.

I We call A the extent and B the intent of the concept (A,B).

I The set of all concepts of the context (G ,M, I ) is denoted by
B(G ,M, I ).



Example formal context

I The following cross table describes for some hotels the
attributes they have.

I In this case the objects are: Oasis, Royal, Amelia, California,
Grand, Samira;

I and the attributes are: Internet, Sauna, Jacuzzi, ATM,
Babysitting.

I ({California,Grand})′ := {Sauna, Jacuzzi}.

Internet Sauna Jacuzzi ATM Babysitting
Oasis X X X X
Royal X X X
Amelia X X
California X X
Grand X X
Samira X X

Table: Formal context of the Hotel facilities example



FCA tool to detect XML FDs

I we elaborate an FCA based tool that identify functional
dependencies in XML documents.

I to achieve this, as a first step, we have to construct the
Formal Context of functional dependencies for XML data.

I we have to identify the objects and attributes of this context
in case of XML data.

I tuple-based XML FD notion proposed in the above section
suggests a natural technique for XFD discovery

I XML data can be converted into a fully unnested relation, a
single relational table, and apply existing FD discovery
algorithms directly.

I given an XML document, which contains at the beginning the
schema of the data, we create generalized tree tuples from it.



Construct Formal Context of XML FDs

I each tree tuple in a tuple class has the same structure, so it
has the same number of elements.

I we use the flat representation which converts the generalized
tree tuples into a flat table

I each row in the table corresponds to a tree tuple in the XML
tree

I in the flat table we insert non-leaf and leaf level elements (or
attributes) from the tree

I for non-leaf level nodes the associated keys are used as values

I we include non-leaf level nodes with associated key values, to
detect XML keys



Flat table for tuple class COrders

Example

Let us construct the flat table for tuple class COrders . There are
two non-leaf nodes:

I Orders, appears as Orders@key

I OrderDetails, appears as OrderDetails@key.



Formal Context for class COrders

I Context’s Attributes: PathEnd/ElementName

I for non-leaf level nodes: the name of the attribute is
constructed as: <ElementName>+”@key” and its value will
be the associated key value

I for non-leaf level nodes: the element names of the leaves.

I Context’s Objects: the objects are considered to be the tree
tuple pairs, actually the tuple pairs of the flat table. The key
values associated to non-leaf elements and leaf element’s
values are used in these tuple pairs.

I Context’s Properties: the mapping between objects and
attributes is defined by a binary relation, this incidence
relation of the context shows which attributes of this tuple
pairs have the same value.



Beginning of the Formal Context of functional
dependencies for tuple class COrders

I the analyzed XML document may have a large number of tree
tuples.

I we filter the tuple pairs and we leave out those pairs in which
there are no common attributes, by an operation called
”clarifying the context”, which does not alter the conceptual
hierarchy.



Concept Lattice of functional dependencies’ Formal
Context for tuple class COrders

I we run the Concept Explorer (ConExp) engine to generate the
concepts and create the concept lattice.



Processing the Output of FCA

I a concept lattice consists of the set of concepts of a formal
context and the subconcept-superconcept relation between
the concepts;

I every circle represents a formal concept;

I each concept is a tuple of a set of objects and a set of
common attributes, but only the attributes are listed;

I an edge connects two concepts if one implies the other
directly;

I each link connecting two concepts represents the transitive
subconcept-superconcept relation between them;

I the top concept has all formal objects in its extension;

I the bottom concept has all formal attributes in its intension.



The relationship between FDs in databases and
implications in FCA

a FD X → Y holds in a relation r over R iff the implication
X → Y holds in the context (G ,R, I ) where
G = {(t1, t2)|t1, t2 ∈ r , t1 6= t2} and ∀A ∈ R,
(t1, t2)IA⇔ t1[A] = t2[A].

I objects of the context are couples of tuples and each object
intent is the agree set of this couple

I the implications in this lattice corresponds to functional
dependencies in XML.

Example

〈COrders , ./OrderID, ./CustomerID〉
〈COrders , ./Orders@key , ./CustomerID〉
〈COrders , ./OrderDetail/OrderID, ./CustomerID〉



Reading the Concept Lattice

I in the lattice we list only the attributes, these are relevant for
our analysis;

I let there be a concept, labeled by A,B and a second concept
labeled by C , where A, B and C are FCA attributes;

I let concept labeled by A,B be the subconcept of concept
labeled by C ;

I tuple pairs of concept labeled by A,B have the same values
for attributes A, B, but for attribute C too.

I tuple pairs of concept labeled by C do not have the same
values for attribute A, nor for B, but have the same value for
attribute C .

I tuple pairs of every subconcept of concept labeled by A,B
have the same values for attributes A, B.

I the labeling of the lattice is simplified by putting each
attribute only once, at the highest level.



Reading the Concept Lattice

I we analyze attributes A and B:
I if we have only A→ B, then A would be a subconcept of B;
I if only B → A holds then B should be a subconcept of A;
I we have A→ B and B → A, that’s why they come side by side

in the lattice.
I So attributes from a concept imply each other.

Example

We have the next XML FDs:

〈COrders , ./OrderID, ./OrderDetails/OrderID〉
〈COrders , ./OrderID, ./Orders@key〉
〈COrders , ./Orders@key , ./OrderID〉
〈COrders , ./Orders@key , ./OrderDetails/OrderID〉
〈COrders , ./OrderDetails/OrderID, ./Orders@key〉
〈COrders , ./OrderDetails/OrderID, ./OrderID〉



The functional dependencies found by software
FCAMineXFD

Figure: Functional dependencies in tuple class COrders



The concept lattice for the whole XML document



Data Analysis

I we can see the hierarchy of the analyzed data:

I the node labeled by Customers/Country is on a higher level,
than node labeled by Customers/City ;

I the Customer’s node with every attribute is a subconcept of
node labeled Customers/City ;

I in our XML data, every customer has different name, address,
phone number, so these attributes appear in one concept node
and imply each other;

I the Orders node in XML is child of Customers, in the lattice,
the node labeled with the key of Orders node, is subconcept
of Customers node, so the hierarchy is visible;

I these are 1:n relationships, from Country to City, from City to
Customers, from Customers to Orders.

I information about products is on the other side of the lattice;
Products are in n:m relationship with Customers, linked by
OrderDetail node in this case.



FDs for the whole XML document



Finding XML keys

FDs with RHS as ./@key values can be used to detect the keys in
XML.
In tuple class COrders we have XML FD:

I 〈COrders , ./OrderID, ./@key〉, which implies that
I 〈COrders , ./OrderID〉 is an XML key.

I 〈COrders , ./OrderDetails/OrderID, ./@key〉, so
I 〈COrders , ./OrderDetails/OrderID〉 is an XML key too.

In tuple class CCustomers software found XML FD:
I 〈CCustomers , ./CustomerID, ./@key〉, which implies that

I 〈CCustomers , ./CustomerID〉 is an XML key.

I other detected XML keys are:
I 〈CCustomers , ./Orders/CustomerID〉;
I 〈CCustomers , ./CompanyName〉;
I 〈CCustomers , ./Address〉;
I 〈CCustomers , ./Phone〉.



Detecting XML data redundancy

I having the set of functional dependencies for XML data in a
tuple class, we can detect interesting functional dependencies.

I in essential tuple class COrders an interesting FD:
〈COrders , ./OrderDetails/ProductID, ./OrderDetails/ProductName〉

I but 〈COrders , ./OrderDetails/ProductID〉 is not an XML key
I So it is a data redundancy.

I the same reason applies for XML FD
〈COrders , ./OrderDetails/ProductName, ./OrderDetails/ProductID〉.

I the other XML FD’s have as LHS a key for tuple class COrders .



Conclusions

I This paper introduces an approach for mining functional
dependencies in XML documents based on FCA.

I Based on the flat representation of XML, we constructed the
concept lattice.

I We analyzed the resulted concepts, which allowed us to
discover a number of interesting dependencies.

I Our framework offers an graphical visualization for
dependency exploration.



Future Work

I given the set of dependencies discovered by our tool:

I propose a normalization algorithm for converting any XML
schema into a correct one


	Definitions for XML Functional Dependencies
	Introduction to FCA
	FCA tool to detect XML FDs
	Finding XML keys
	Detecting XML data redundancy
	Conclusions and Future Work

