Mining XML Functional Dependencies through Formal Concept Analysis

Viorica Varga

May 6, 2010

Outline

Definitions for XML Functional Dependencies

Introduction to FCA

FCA tool to detect XML FDs

Finding XML keys

Detecting XML data redundancy

Conclusions and Future Work

Outline

Definitions for XML Functional Dependencies

Introduction to FCA

FCA tool to detect XML FDs

Finding XML keys

Detecting XML data redundancy

Conclusions and Future Work

Outline

Definitions for XML Functional Dependencies

Introduction to FCA

FCA tool to detect XML FDs

Finding XML keys

Detecting XML data redundancy

Conclusions and Future Work

Outline

Definitions for XML Functional Dependencies

Introduction to FCA

FCA tool to detect XML FDs

Finding XML keys

Detecting XML data redundancy

Conclusions and Future Work

Outline

Definitions for XML Functional Dependencies

Introduction to FCA

FCA tool to detect XML FDs

Finding XML keys

Detecting XML data redundancy

Conclusions and Future Work

Outline

Definitions for XML Functional Dependencies

Introduction to FCA

FCA tool to detect XML FDs

Finding XML keys

Detecting XML data redundancy

Conclusions and Future Work

XML Design

- XML data design: choose an appropriate XML schema, which usually come in the form of DTD (Document Type Definition) or XML Scheme.
- Functional dependencies (FDs) are a key factor in XML design.
- The objective of normalization is to eliminate redundancies from an XML document, eliminate or reduce potential update anomalies.
- Arenas, M., Libkin, L.: A normal form for XML documents. TODS 29(1), 195-232 (2004)
- Yu, C., Jagadish, H. V.: XML schema refinement through redundancy detection and normalization. VLDB J. 17(2): 203-223 (2008)

Schema definition

Definition

(Schema) A schema is defined as a set $S=(E, T, r)$, where:

- E is a finite set of element labels;
- T is a finite set of element types, and each $e \in E$ is associated with a $\tau \in T$, written as ($e: \tau$), τ has the next form: $\tau::=\mathbf{s t r} \mid$ int \mid float $|\operatorname{SetOf} \tau| \operatorname{Rcd}\left[e_{1}: \tau_{1}, \ldots, e_{n}: \tau_{n}\right]$;
- $r \in E$ is the label of the root element, whose associated element type can not be SetOf τ.
- Types str, int and float are the system defined simple types and Rcd indicate complex scheme elements.
- Keyword SetOf is used to indicate set schema elements
- Attributes and elements are treated in the same way, with a reserved "@" symbol before attributes.

Figure: CustOrder XML tree

Customer's Orders Example Scheme

```
CustOrder:Rcd
    Customers:SetOf Rcd
        CustomerID: str
        CompanyName: str
        Address: str
        City: str
        PostalCode:str
        Country: str
        Phone: str
        Orders: SetOf Rcd
            OrderID: int
            CustomerID: str
            OrderDate: str
            OrderDetails: SetOf Rcd
                OrderID: int
            ProductID: int
            UnitPrice: float
            Quantity: float
            ProductName: str
            CategoryID: int
```

- A schema element e_{k} can be identified through a path expression, $\operatorname{path}\left(e_{k}\right)=/ e_{1} / e_{2} / \ldots / e_{k}$, where $e_{1}=r$, and e_{i} is associated with type $\tau_{i}::=\operatorname{Rcd}\left[\ldots, e_{i+1}: \tau_{i+1}, \ldots\right]$ for all $i \in[1, k-1]$.
- A path is repeatable, if e_{k} is a set element. We adopt XPath steps "." (self) and ".." (parent)
Definition (Data tree) An XML database is defined to be a rooted labeled tree $T=\left\langle N, \mathcal{P}, \mathcal{V}, n_{r}\right\rangle$, where:
- N is a set of labeled data nodes, each $n \in N$ has a label e and a node key that uniquely identifies it in T;
- $n_{r} \in N$ is the root node;
- \mathcal{P} is a set of parent-child edges, there is exactly one $p=\left(n^{\prime}, n\right)$ in \mathcal{P} for each $n \in N$ (except n_{r}), where $n^{\prime} \in N, n \neq n^{\prime}, n^{\prime}$ is called the parent node, n is called the child node;
- \mathcal{V} is a set of value assignments, there is exactly one $v=(n, s)$ in \mathcal{V} for each leaf node $n \in N$, where s is a value of simple type.

Descendant, repeatable element definition

- We assign a node key, referred to as @key, to each data node in the data tree in a pre-order traversal.
- A data element n_{k} is a descendant of another data element n_{1} if there exists a series of data elements n_{i}, such that $\left(n_{i}, n_{i+1}\right) \in \mathcal{P}$ for all $i \in[1, k-1]$.
- Data element n_{k} can be addressed using a path expression, $\operatorname{path}\left(n_{k}\right)=/ e_{1} / \ldots / e_{k}$, where e_{i} is the label of n_{i} for each $i \in[1, k], n_{1}=n_{r}$, and $\left(n_{i}, n_{i+1}\right) \in \mathcal{P}$ for all $i \in[1, k-1]$.
- A data element n_{k} is called repeatable if e_{k} corresponds to a set element in the schema.
- Element n_{k} is called a direct descendant of element n_{a}, if n_{k} is a descendant of n_{a}, path $\left(n_{k}\right)=\ldots / e_{a} / e_{1} / \ldots / e_{k-1} / e_{k}$, and e_{i} is not a set element for any $i \in[1, k-1]$.

Warehouse Example

Warehouse Example Scheme

```
warehouse:Rcd
    state:SetOf Rcd
        name: str
        store: SetOf Rcd
            contact: Rcd
            name: str
            address: str
            book: SetOf Rcd
            ISBN: str
            author: SetOf str
            title: str
            price: str
```


Element-value equality

Definition(Element-value equality) Two data elements n_{1} of $T_{1}=\left\langle N_{1}, \mathcal{P}_{1}, \mathcal{V}_{1}, n_{r 1}\right\rangle$ and n_{2} of $T_{2}=\left\langle N_{2}, \mathcal{P}_{2}, \mathcal{V}_{2}, n_{r 2}\right\rangle$ are element-value equal (written as $n_{1}=e_{v v} n_{2}$) if and only if:

- n_{1} and n_{2} both exist and have the same label;
- There exists a set M, such that for every pair $\left(n_{1}^{\prime}, n_{2}^{\prime}\right) \in M$, $n_{1}^{\prime}={ }_{e v} n_{2}^{\prime}$, where $n_{1}^{\prime}, n_{2}^{\prime}$ are children elements of n_{1}, n_{2}, respectively. Every child element of n_{1} or n_{2} appears in exactly one pair in M.
- $\left(n_{1}, s\right) \in \mathcal{V}_{1}$ if and only if $\left(n_{2}, s\right) \in \mathcal{V}_{2}$, where s is a simple value.
Example Data elements node 30 and 50 are element value equal if and only if the subtrees rooted at those two elements are identical when the order among sibling elements is ignored.

Path-value equality

Definition(Path-value equality) Two data element paths p_{1} on $T_{1}=\left\langle N_{1}, \mathcal{P}_{1}, \mathcal{V}_{1}, n_{r 1}\right\rangle$ and p_{2} on $T_{2}=\left\langle N_{2}, \mathcal{P}_{2}, \mathcal{V}_{2}, n_{r 2}\right\rangle$ are path-value equal (written as $T_{1} \cdot p_{1}={ }_{p v} T_{2} \cdot p_{2}$) if and only if there is a set M^{\prime} of matching pairs where

- For each pair $m^{\prime}=\left(n_{1}, n_{2}\right)$ in $M^{\prime}, n_{1} \in N_{1}, n_{2} \in N_{2}$, $\operatorname{path}\left(n_{1}\right)=p_{1}, \operatorname{path}\left(n_{2}\right)=p_{2}$, and $n_{1}=$ ev n_{2};
- All data elements with path p_{1} in T_{1} and path p_{2} in T_{2} participate in M^{\prime}, and each such data element participates in only one such pair.
Value equality between two paths is complicated by the fact that a single path can match multiple data elements in the data tree.
This definition consider two paths value equal if each node which is pointed to by one path must have a corresponding node that is pointed to by the other path, where the two nodes are element value equal.

Generalized tree tuple

Definition A generalized tree tuple of data tree $T=\left\langle N, \mathcal{P}, \mathcal{V}, n_{r}\right\rangle$, with regard to a particular data element n_{p} (called pivot node), is a tree $t_{n_{p}}^{T}=\left\langle N^{t}, \mathcal{P}^{t}, \mathcal{V}^{t}, n_{r}\right\rangle$, where:

- $N^{t} \subseteq N$ is the set of nodes, $n_{p} \in N^{t}$;
- $\mathcal{P}^{t} \subseteq \mathcal{P}$ is the set of parent-child edges;
- $\mathcal{V}^{t} \subseteq \mathcal{V}$ is the set of value assignments;
- n_{r} is the same root node in both $t_{n_{p}}^{T}$ and T;
- $n \in N^{t}$ if and only if:
- n is a descendant or ancestor of n_{p} in T, or
- n is a non-repeatable direct descendant of an ancestor of n_{p} in T;
- $\left(n_{1}, n_{2}\right) \in \mathcal{P}^{t}$ if and only if $n_{1} \in N^{t}, n_{2} \in N^{t},\left(n_{1}, n_{2}\right) \in \mathcal{P}$;
- $(n, s) \in \mathcal{V}^{t}$ if and only if $n \in N^{t},(n, s) \in \mathcal{V}$.

Tuple class

- A generalized tree tuple is a data tree projected from the original data tree.
- It has an extra parameter called a pivot node. In contrast with tree tuple defined in Arenas and Libkin's article, which separate sibling nodes with the same path at all hierarchy levels, the generalized tree tuple separate sibling nodes with the same path above the pivot node
- Based on the pivot node, generalized tree tuples can be categorized into tuple classes:
Definition(Tuple class) A tuple class C_{p}^{T} of the data tree T is the set of all generalized tree tuples t_{n}^{T}, where $\operatorname{path}(n)=p$. Path p is called the pivot path.

Figure: Example tree tuple

Figure: Example tree tuple

XML Functional Dependency

Definition(XML FD) An XML FD is a triple $\left\langle C_{p}, L H S, R H S\right\rangle$, written as LHS \rightarrow RHS w.r.t. C_{p}, where C_{p} denotes a tuple class, LHS is a set of paths ($P_{l i}, i=[1, n]$) relative to p, and $R H S$ is a single path $\left(P_{r}\right)$ relative to p.
An XML FD holds on a data tree T (or T satisfies an XML FD) if and only if for any two generalized tree tuples $t_{1}, t_{2} \in C_{p}$
$-\exists i \in[1, n], t_{1} . P_{l i}=\perp$ or $t_{2} . P_{l i}=\perp$, or

- If $\forall i \in[1, n], t_{1} \cdot P_{l i}={ }_{p v} t_{2} \cdot P_{l i}$, then
$t_{1} \cdot P_{r} \neq \perp, t_{2} \cdot P_{r} \neq \perp, t_{1} \cdot P_{r}=p v t_{2} . P_{r}$.
A null value, \perp, results from a path that matches no node in the tuple, and $=_{p v}$ is the path-value equality defined previous.

XML Functional Dependency Example

Example

(XML FD) In our running example whenever two products agree on ProductID values, they have the same ProductName. This can be formulated as follows:
./ProductID \rightarrow./ProductName w.r.t. CorderDetails
Another example is:
./ProductID \rightarrow./CategoryID w.r.t CorderDetails
Example
(XML FD) In warehause tree:
./ISBN \rightarrow./title w.r.t $C_{\text {book }}$
../contact/name,./ISBN \rightarrow./price w.r.t $C_{\text {book }}$
./ISBN \rightarrow./author w.r.t $C_{\text {book }}$
./author,./title \rightarrow./ISBN w.r.t $C_{\text {book }}$

Trivial XML FD

Definition: (Trivial XML FD) An XML FD $\left\langle C_{p}, L H S, R H S\right\rangle$ is trivial if:

1. $R H S \in L H S$, or
2. For any generalized tree tuple in C_{p}, there is at least one path
in LHS that matches no data element.
The 2. point can arrise, because of the existence of Choice elements.
Example If Contact is a Choice element instead of Rcd, i.e. it can have either name or address as its childs, but not both, then the XML FD:
$\left\langle C_{\text {store }}, . /\right.$ contact/name, ./contact/address, ./@key \rangle
is trivial, because no $C_{\text {store }}$ tuple will have both LHS node.

XML key

Definition (XML key) An XML Key of a data tree T is a pair $\left\langle C_{p}, L H S\right\rangle$, where T satisfies the XML FD $\left\langle C_{p}, L H S, . / @ k e y\right\rangle$.

Example

We have the XML FD: 〈Corders, ./OrderID,./@key〉, which implies that $\left\langle C_{\text {Orders }}, . / O r d e r I D\right\rangle$ is an XML key.

Example

$\left\langle C_{\text {State }}\right.$./name \rangle
$\left\langle C_{\text {Store }}, . /\right.$ contact/name, ./contact/address \rangle are XML keys.

Structurally redundant XML FDs

Theorem

- Let $F D=\left\langle C_{p}, L H S, R H S\right\rangle$,
- if none of the paths in LHS and RHS specifies a data element that is descendent of the pivot node in the tuple,
- then FD holds on a data tree T
- if and only if $F D^{\prime}=\left\langle C_{p^{\prime}}, L H S^{\prime}, R H S^{\prime}\right\rangle$ holds on T, where
- $C_{p^{\prime}}$ is the lowest-repeatable-ancestor tuple class of C_{p}
- paths in $L H S^{\prime}$ and $R H S^{\prime}$ are equivalent to paths in $L H S$ and RHS (i.e. they correspond to the same absolute paths).
Example
../ISBN \rightarrow../title w.r.t $C_{\text {author }}$
is structurally redundant with
./ISBN \rightarrow./title w.r.t $C_{\text {book }}$

Interesting XML FD

Tuple classes with repeatable pivot paths are called essential tuple classes.
Definition(Interesting XML FD) An XML FD $\left\langle C_{p}, L H S, R H S\right\rangle$ is interesting if it satisfies the following conditions:

- RHS \notin LHS;
- C_{p} is an essential tuple class;
- RHS matches to descendent(s) of the pivot node.

An interesting XML FD is a non-trivial XML FD with an essential tuple class and is not structurally redundant to any other XML FD.

XML data redundancy

Definition(XML data redundancy) A data tree T contains a redundancy if and only if T satisfies an interesting XML FD $\left\langle C_{p}, L H S, R H S\right\rangle$, but does not satisfy the XML Key $\left\langle C_{p}, L H S\right\rangle$. Intuitively:

- if $\left\langle C_{p}, L H S\right\rangle$ is not a key for T, then there exists two distinct tuples in C_{p} that share the same LHS.
- T satisfies $\left\langle C_{p}, L H S, R H S\right\rangle$, so RHS of these two tuples must be value equal
- so: data is redundantly stored

GTT-XNF

Definition(GTT-XNF) An XML schema S is in GTT-XNF given the set of all satisfied interesting XML FDs if and only if for each such XML FD $\left(\left\langle C_{p}, L H S, R H S\right\rangle\right),\left\langle C_{p}, L H S\right\rangle$ is an XML key. Intuitively: GTT-XNF disallows any satisfied interesting XML FD that indicates data redundancies.
Rule 1 (Reflexivity) LHS $\rightarrow P_{1}$ w.r.t. C_{p} is satisfied if $P_{1} \subseteq L H S$.
Rule 2 (Augmentation) $L H S \rightarrow P_{1}$ w.r.t. $C_{p} \Rightarrow$
$\left\{L H S, P_{2}\right\} \rightarrow P_{1}$ w.r.t. C_{p}.
Rule 3 (Transitivity) $L H S \rightarrow P_{1}$ w.r.t. $C_{p} \wedge \ldots \wedge L H S \rightarrow P_{n}$
w.r.t. $C_{p} \wedge\left\{P_{1}, \ldots, P_{n}\right\} \rightarrow P$ w.r.t. $C_{p} \Rightarrow L H S \rightarrow P$ w.r.t. C_{p}.

XML Data Flat Representation

warehouse	state	name	store	contact	contact/name	contact/address	book	ISBN	author	title	price
1	10	WA	12	13	Borders	Seattle	20	$00 \ldots 269$	Post	DBMS	126.99
1	10	WA	12	13	Borders	Seattle	30	$00 \ldots 638$	Rama \ldots	DBMS	79.90
1	10	WA	12	13	Borders	Seattle	30	$00 \ldots 638$	Gehrke	DBMS	79.90
\ldots											

Figure: One relation for the whole XML data

XML Data Hierarhical Representation

Intra-relation FDs/Keys, Inter-relation FDs/Keys

Example

(XML FD) In warehause tree:
./ISBN \rightarrow./title w.r.t $C_{\text {book }}$ intra-relation FD
../contact/name,./ISBN \rightarrow./price w.r.t $C_{\text {book }}$ inter-relation FD
./ISBN \rightarrow./author w.r.t $C_{\text {book }}$ inter-relation FD
./author,./title \rightarrow./ISBN w.r.t $C_{\text {book }}$ inter-relation FD
Yu, C., Jagadish, H. V.: XML schema refinement through redundancy detection and normalization. VLDB J. 17(2): 203-223 (2008) presents algorithm based on partitioning to detect intra-relation FDs, another very complicated for inter-relation FDs.

Eliminating redundancy-indicating FDs

- if $\left\langle C_{p}, L H S\right\rangle$ is not a key for T
- T satisfies $\left\langle C_{p}, L H S, R H S\right\rangle$, so RHS is redundantly stored
- to eliminate such FD, the schema element corresponding to RHS is moved into a new schema location, such that those data elements are no longer redundantly stored.
- Let Σ be the set of redundancy-indicating FDs.

Example

./ISBN \rightarrow./title w.r.t $C_{\text {book }}$
$\{$../../name, ../contact/name,./ISBN $\} \rightarrow$./price w.r.t $C_{\text {book }}$
Assumption:
$\{$../name, ./contact/name $\}$ is a key for $C_{\text {store }}$.

Local/global XML FD

Definition (Local/global XML FD) An XML FD $\left\langle C_{p}, L H S, R H S\right\rangle$ is local if there exists $L H S^{\prime} \subset L H S$ such that $\left\langle C_{p^{\prime}}, L H S^{\prime}\right\rangle$ is an XML key, where $C_{p^{\prime}}$ is an ancestor tuple class of C_{p} (i.e. p^{\prime} is a prefix of p). Otherwise, the FD is global.

Example

./ISBN \rightarrow./title w.r.t $C_{\text {book }}$ is global, because no subset of its LHS is a key for any tuple class above $C_{\text {book }}$
means: 2 books, regardless whether they are under the same store or state, if they have the same ISBN, then they will have the same title

Example

$\{$../../name, ../contact/name,./ISBN $\} \rightarrow$./price w.r.t $C_{\text {book }}$ is local, because $\{$../../name, ../contact/name $\}$ is a key for $C_{\text {store }}$. means: state name and store name uniquely identifies each store, any 2 books, if they have the same ISBN, they will have the same price, as long as they are under the same store.

Eliminate global FD

Procedure 1

- Let $F=\left\{P_{1}, \ldots, P_{n}\right\} \rightarrow P_{r}$ w.r.t. C_{p} be a redundancy indicated global FD on Schema $S_{\text {root }}$;
- $\left\{e_{i} \mid i \in[1, n]\right\}$ and $\left\{\tau_{i} \mid i \in[1, n]\right\}$ be the sets of schema element labels and types, respectively, associated with each P_{i};
- e_{r} and τ_{r} be the schema element label and type, respectively, associated with P_{r};
- $\tau_{\text {parent }}$ be the schema element type of the parent element of P_{r};
- $\tau_{\text {root }}=\operatorname{Rcd}\left[e_{1}^{\prime}: \tau_{1}^{\prime}, \ldots, e_{m}^{\prime}: \tau_{m}^{\prime}\right]$ be the element type of the root element.
Eliminating redundancy:
- Create a new schema element with label $e_{\text {new }}$ and type $\tau_{\text {new }}=\operatorname{SetOfRcd}\left[e_{1}: \tau_{1}, \ldots, e_{n}: \tau_{n}, e_{r}: \tau_{r}\right]$
- Set $\tau_{\text {root }}=\operatorname{Rcd}\left[e_{1}^{\prime}: \tau_{1}^{\prime}, \ldots, e_{m}^{\prime}: \tau_{m}^{\prime}, e_{\text {new }}: \tau_{\text {new }}\right]$
- Remove $\left(e_{r}: \tau_{r}\right)$ from $\tau_{\text {parent }}$

Eliminate global FD Example

./ISBN \rightarrow./title w.r.t $C_{\text {book }}$

Scheme after eliminating global FD:

```
warehouse:Rcd
    state:SetOf Rcd
        name: str
        store: SetOf Rcd
            contact: Rcd
            name: str
            address: str
            book: SetOf Rcd
                        ISBN: str
                        author: SetOf str
                        price: str
    new-book: SetofRcd
        ISBN: str
        title:str
```


Adjusting FD

- remove F from Σ.
- the semantics of F is captured by: $\left\{P_{1}, \ldots, P_{n}\right\} \rightarrow P_{r}$ w.r.t. $C_{\text {new }}$, it is not redundancy, does not need to be added to Σ
- remove all FDs from Σ that are affected by the move of P_{r}.

Example

$\{$./author, ./title $\} \rightarrow$./ISBN w.r.t $C_{\text {book }}$
is removed, because it is not valid.
It is safe to do, because ISBN is no longer redundant.

Eliminate local FD

Procedure 2

- Let $F=\left\{P_{1}, \ldots, P_{k-1}, P_{k}, \ldots, P_{n}\right\} \rightarrow P_{r}$ w.r.t. C_{p} be a redundancy indicated local FD on Schema $S_{\text {root }}$;
- $\left\{P_{1}, \ldots, P_{k-1}\right\}$ is the key for C_{p}^{\prime};
- C_{p}^{\prime} is is an ancestor tuple class of C_{p} and there is no other subset L of $\left\{P_{i} \mid i \in[1, n]\right\}$ such that L is a key for $C_{p}^{\prime \prime}$
- $C_{p}^{\prime \prime}$ is an ancestor of C_{p} and a descendant of C_{p}^{\prime} (i.e. C_{p}^{\prime} is the lowest tuple class that can be identified)
- $\left\{e_{i} \mid i \in[k, n]\right\}$ and $\left\{\tau_{i} \mid i \in[k, n]\right\}$ be the sets of schema element labels and types, respectively, associated with each P_{i};
- e_{r} and τ_{r} be the schema element label and type, respectively, associated with P_{r};
- $\tau_{\text {parent }}$ be the schema element type of the parent element of P_{r};
- $\tau_{p^{\prime}}=\operatorname{Rcd}\left[e_{1}^{\prime}: \tau_{1}^{\prime}, \ldots, e_{m}^{\prime}: \tau_{m}^{\prime}\right]$ be the element type of the schema element corresponding to the pivot path of $C_{p^{\prime}}$.

Eliminate redundancy

- Create a new schema element with label $e_{\text {new }}$ and type $\tau_{\text {new }}=\operatorname{SetOfRcd}\left[e_{k}: \tau_{k}, \ldots, e_{n}: \tau_{n}, e_{r}: \tau_{r}\right]$
- Set $\tau_{p^{\prime}}=\operatorname{Rcd}\left[e_{1}^{\prime}: \tau_{1}^{\prime}, \ldots, e_{m}^{\prime}: \tau_{m}^{\prime}, e_{\text {new }}: \tau_{\text {new }}\right]$
- Remove $\left(e_{r}: \tau_{r}\right)$ from $\tau_{\text {parent }}$

Explanation

- to eliminate a local FD like $\{$../../name, ../contact/name,./ISBN \} \rightarrow./price w.r.t $C_{\text {book }}$
- create a new schema element containing the subset of its LHS (ISBN) that are not part of the key for ancestor tuple class ($C_{\text {store }}$) and RHS element (price)
- put this new element under the schema element corresponding to the pivot path of the ancestor tuple class (/warehouse/state/store).
- RHS element is removed from its original position

Eliminate redundancy cont.

- by creating the new schema element under the non-root ancestor, fewer elements needs to be copied under the new scheme
- after the the modification of the scheme remove any FD that is affected by the move of P_{r}

Scheme after eliminating local FD:

```
warehouse:Rcd
    state:SetOf Rcd
        name: str
        store: SetOf Rcd
            contact: Rcd
            name: str
            address: str
            book: SetOf Rcd
                ISBN: str
                author: SetOf str
                title: str
            new-book: SetOfRcd
                ISBN: str
                price: str
```


Special case for Procedure 2

- if the entire LHS of the FD is a key for some ancestor tuple class

Example In DBLP scheme year of an article is determined by the identity (@key) of the issue containing the article

- instead of creating a new scheme element containing a single element year
- we move year after issue

Normalization algorithm

```
Algorithm SchemaNormalization:
Input: Schema \(S\), a set \(\Sigma\) of redundancy-indicating FDs,
    a set \(\Upsilon\) of XML Keys (to determine local vs. global FD).
1. Group FDs in \(\Sigma\) based on tuple class \(C_{p}\) and \(L H S\),
    order them according to decreasing depth of \(C_{p}\) (lowest first)
    and increasing number of paths in LHS second (fewest first);
    2. while \(\Sigma\) is not empty:
3. let \(\mathcal{F}\) be the first set of FDs in \(\Sigma\) with the same LHS and \(C_{p}\);
4. let \(F\) be the first FD in \(\mathcal{F}\);
5. if \(F\) is local: Modify \(S\) by applying Procedure 2;
6. else Modify \(S\) by applying Procedure 1; // \(F\) is global
7. foreach additional \(F^{\prime} \in \mathcal{F}\) :
8. Modify \(S\) in the same way by applying procedures 1 or 2 ,
        but using the new schema element already created in
        dealing with \(F^{\prime}\)
9. remove all FDs in \(\mathcal{F}\) from \(\Sigma\);
10. foreach \(F \in \Sigma\) :
11. if \(F\) is no longer valid: remove \(F\) from \(\Sigma\);
12. if \(F\) is now structurally-redundant:
13. convert \(F\) into its equivalent \(F^{\prime}\) that is not structurally
        redundant and add \(F^{\prime}\) to \(\Sigma\) (see Theorem 2);
Output: Schema \(S\), the modified redundancy-free schema
```


Normalization algorithm explanation

- FDs are grouped according to their LHS

Example

./ISBN \rightarrow./title w.r.t $C_{\text {book }}$
./ISBN \rightarrow./author w.r.t $C_{\text {book }}$

- if they are dealt separately two new scheme element are created
- FDs are processed according to the number of paths in their LHS to reduce the storage cost.

Example

$\left\{\right.$./title, .author\} \rightarrow./ISBN w.r.t $C_{\text {book }}$

- If this FD is processed first, then the elements title and author will remain under book, not ISBN

Normalization algorithm explanation cont.

- FDs are processed according to the hierarchy depth of their tuple class in a bottom-up fashion (lowest first)
- this is because during the process of FDs for a lower hierarchy tuple class, redundancy-indicating FDs for a higher hierarchy tuple class may be created
- algorithm terminates because each application of Procedure 1 and 2 either removes one redundancy-indicating FD or converts one redundancy-indicating FD into another one with a tuple class at a higher hierarchy

GTT-XNF Scheme of Warehouse xml data

- Eliminating first:
./ISBN \rightarrow./title w.r.t $C_{\text {book }}$
./ISBN \rightarrow./author w.r.t $C_{\text {book }}$
- this FD is no longer redundancy indicating $\{$../../name, ../contact/name,./ISBN $\} \rightarrow$./price w.r.t Cbook

```
warehouse:Rcd
    state:SetOf Rcd
        name: str
        store: SetOf Rcd
            contact: Rcd
            name: str
            address: str
            book: SetOf Rcd
            ISBN: str
            price: str
    new-book: SetOfRcd
        ISBN: str
        title: str
        author: SetOf str
```


Introduction to FCA

- From a philosophical point of view a concept is a unit of thoughts consisting of two parts:
- the extension, which are objects;
- the intension consisting of all attributes valid for the objects of the context;
- Formal Concept Analysis (FCA) introduced by Wille gives a mathematical formalization of the concept notion.
- A detailed mathematic foundation of FCA can be found in:
- Ganter, B., Wille, R.: Formal Concept Analysis. Mathematical Foundations. Springer, Berlin-Heidelberg-New York. (1999)
- Formal Concept Analysis is applied in many different realms like psychology, sociology, computer science, biology, medicine and linguistics.
- FCA is a useful tool to explore the conceptual knowledge contained in a database by analyzing the formal conceptual structure of the data.

Introduction to FCA

- FCA studies how objects can be hierarchically grouped together according to their common attributes. In FCA the data is represented by a cross table, called formal context.
- A formal context is a triple (G, M, I).
- G is a finite set of objects
- M is finite set of attributes
- The relation $I \subseteq G \times M$ is a binary relation between objects and attributes.
- Each couple $(g, m) \in I$ denotes the fact that the object $g \in G$ is related to the item $m \in M$.

Introduction to FCA

- For a set $A \subseteq G$ of objects we define

$$
A^{\prime}:=\{m \in M \mid g / m \text { for all } g \in A\}
$$

the set of all attributes common to the objects in A.

- Dually, for a set $B \subseteq M$ of attributes we define

$$
B^{\prime}:=\{g \in G \mid g / m \text { for all } m \in B\}
$$

the set of all objects which have all attributes in B.

- A formal concept of the context $\mathbb{K}:=(G, M, I)$ is a pair (A, B) where $A \subseteq G, B \subseteq M, A^{\prime}=B$, and $B^{\prime}=A$.
- We call A the extent and B the intent of the concept (A, B).
- The set of all concepts of the context (G, M, I) is denoted by $\mathfrak{B}(G, M, I)$.

Example formal context

- The following cross table describes for some hotels the attributes they have.
- In this case the objects are: Oasis, Royal, Amelia, California, Grand, Samira;
- and the attributes are: Internet, Sauna, Jacuzzi, ATM, Babysitting.
- (\{ California, Grand $\})^{\prime}:=\{$ Sauna, Jacuzzi $\}$.

	Internet	Sauna	Jacuzzi	ATM	Babysitting
Oasis	X	X	X	X	
Royal	X	X	X		
Amelia	X				X
California		X	X		
Grand		X	X		
Samira				X	X

Table: Formal context of the Hotel facilities example

FCA tool to detect XML FDs

- we elaborate an FCA based tool that identify functional dependencies in XML documents.
- to achieve this, as a first step, we have to construct the Formal Context of functional dependencies for XML data.
- we have to identify the objects and attributes of this context in case of XML data.
- tuple-based XML FD notion proposed in the above section suggests a natural technique for XFD discovery
- XML data can be converted into a fully unnested relation, a single relational table, and apply existing FD discovery algorithms directly.
- given an XML document, which contains at the beginning the schema of the data, we create generalized tree tuples from it.

Construct Formal Context of XML FDs

- each tree tuple in a tuple class has the same structure, so it has the same number of elements.
- we use the flat representation which converts the generalized tree tuples into a flat table
- each row in the table corresponds to a tree tuple in the XML tree
- in the flat table we insert non-leaf and leaf level elements (or attributes) from the tree
- for non-leaf level nodes the associated keys are used as values
- we include non-leaf level nodes with associated key values, to detect XML keys

Flat table for tuple class $C_{\text {Orders }}$

Example

Let us construct the flat table for tuple class $C_{\text {Orders }}$. There are two non-leaf nodes:

- Orders, appears as Orders@key
- OrderDetails, appears as OrderDetails@key.

Formal Context for class Corders

- Context's Attributes: PathEnd/ElementName
- for non-leaf level nodes: the name of the attribute is constructed as: <ElementName>+" @key" and its value will be the associated key value
- for non-leaf level nodes: the element names of the leaves.
- Context's Objects: the objects are considered to be the tree tuple pairs, actually the tuple pairs of the flat table. The key values associated to non-leaf elements and leaf element's values are used in these tuple pairs.
- Context's Properties: the mapping between objects and attributes is defined by a binary relation, this incidence relation of the context shows which attributes of this tuple pairs have the same value.

Beginning of the Formal Context of functional dependencies for tuple class $C_{\text {Orders }}$

- the analyzed XML document may have a large number of tree tuples.
- we filter the tuple pairs and we leave out those pairs in which there are no common attributes, by an operation called "clarifying the context", which does not alter the conceptual hierarchy.

Concept Lattice of functional dependencies' Formal Context for tuple class Corders

- we run the Concept Explorer (ConExp) engine to generate the concepts and create the concept lattice.

Processing the Output of FCA

- a concept lattice consists of the set of concepts of a formal context and the subconcept-superconcept relation between the concepts;
- every circle represents a formal concept;
- each concept is a tuple of a set of objects and a set of common attributes, but only the attributes are listed;
- an edge connects two concepts if one implies the other directly;
- each link connecting two concepts represents the transitive subconcept-superconcept relation between them;
- the top concept has all formal objects in its extension;
- the bottom concept has all formal attributes in its intension.

The relationship between FDs in databases and implications in FCA
a FD $X \rightarrow Y$ holds in a relation r over R iff the implication $X \rightarrow Y$ holds in the context (G, R, I) where
$G=\left\{\left(t_{1}, t_{2}\right) \mid t_{1}, t_{2} \in r, t_{1} \neq t_{2}\right\}$ and $\forall A \in R$, $\left(t_{1}, t_{2}\right) I A \Leftrightarrow t_{1}[A]=t_{2}[A]$.

- objects of the context are couples of tuples and each object intent is the agree set of this couple
- the implications in this lattice corresponds to functional dependencies in XML.

Example
$\left\langle C_{\text {Orders }}, . /\right.$ OrderID,.$/$ CustomerID \rangle
$\left\langle C_{\text {Orders }}\right.$,./Orders@key, ./CustomerID \rangle
$\left\langle C_{\text {Orders }}\right.$,./OrderDetail/OrderID, ./CustomerID〉

Reading the Concept Lattice

- in the lattice we list only the attributes, these are relevant for our analysis;
- let there be a concept, labeled by A, B and a second concept labeled by C, where A, B and C are FCA attributes;
- let concept labeled by A, B be the subconcept of concept labeled by C;
- tuple pairs of concept labeled by A, B have the same values for attributes A, B, but for attribute C too.
- tuple pairs of concept labeled by C do not have the same values for attribute A, nor for B, but have the same value for attribute C.
- tuple pairs of every subconcept of concept labeled by A, B have the same values for attributes A, B.
- the labeling of the lattice is simplified by putting each attribute only once, at the highest level.

Reading the Concept Lattice

－we analyze attributes A and B ：
－if we have only $A \rightarrow B$ ，then A would be a subconcept of B ；
－if only $B \rightarrow A$ holds then B should be a subconcept of A ；
－we have $A \rightarrow B$ and $B \rightarrow A$ ，that＇s why they come side by side in the lattice．
－So attributes from a concept imply each other．

Example

We have the next XML FDs：

$\left\langle C_{\text {Orders }}, . /\right.$ OrderID,.$/$ OrderDetails／OrderID \rangle
〈Corders，．／OrderID ，．／Orders＠key〉
$\left\langle C_{\text {Orders }}, . /\right.$ Orders＠key，．／OrderID \rangle
〈Corders，．／Orders＠key，．／OrderDetails／OrderID〉
〈Corders，．／OrderDetails／OrderID，．／Orders＠key〉
〈Corders，．／OrderDetails／OrderID，．／OrderID〉

The functional dependencies found by software FCAMineXFD

```
Emplications
OrderDetails/ProductID -> OrderDetails/ProductName, OrderDetails/CategoryID
OrderDetails/ProductName >> OrderDetails/ProductID, OrderDetails/CategoryID
Orders/Orders@key -> Orders/OrderID, OrderDetails/OrderID, Orders/CustomerID, Orders/OrderDate
Orders/OrderID -> Orders/Orders@key, OrderDetails/OrderID, Orders/CustomerID, Orders/OrderDate
OrderDetails/OrderID -> Orders/Orders@key, Orders/OrderID, Orders/CustomerID, Orders/OrderDate
OrderDetails/OrderDetails@key -> Orders/Orders@key, Orders/OrderID, Orders/CustomerID,
Orders/OrderDate, OrderDetails/OrderID, OrderDetails/ProductID, OrderDetails/UnitPrice,
OrderDetails/Quantity, OrderDetails/ProductName, OrderDetails/CategoryID
```

Figure: Functional dependencies in tuple class $C_{\text {Orders }}$

The concept lattice for the whole XML document

Data Analysis

- we can see the hierarchy of the analyzed data:
- the node labeled by Customers/Country is on a higher level, than node labeled by Customers/City;
- the Customer's node with every attribute is a subconcept of node labeled Customers/City;
- in our XML data, every customer has different name, address, phone number, so these attributes appear in one concept node and imply each other;
- the Orders node in XML is child of Customers, in the lattice, the node labeled with the key of Orders node, is subconcept of Customers node, so the hierarchy is visible;
- these are 1:n relationships, from Country to City, from City to Customers, from Customers to Orders.
- information about products is on the other side of the lattice; Products are in $\mathrm{n}: \mathrm{m}$ relationship with Customers, linked by OrderDetail node in this case.

FDs for the whole XML document

Customers/City \rightarrow Customers/Country
OrderDetails/ProduciD \rightarrow OrderDetails/ProductName, OrderDetails/CategoryID
OrderDetails/ProductName $>$ OrderDetails/ProductID, OrderDetails/CategoryID
Customers/Customers@key \rightarrow Customers/CustomeriD, Customers/CompanyName, Customers/Address, Customers/Phone, Orders/CustomeriD. Customers/City, Customers/Country
Customers/CustomerID \rightarrow Customers/Customers@key, Customers/CompanyName, Customers/Address, Customers/Phone, Orders/CustomeriD, Customers/City, Customers/Country
Custorners/ComparyName \rightarrow Customers/Customers@key, Customers/CustomerID, Customers/Address, Customers/Phone, Orders/Customer1D, Customers/City, Customers/Country Customers/Address \rightarrow Customers/Customers@key, Customers/CustomerID, Customers/CompanyName, Customers/Phone, Orders/CustomerID, Customers/City, Customers/Country Customers/Phone -> Customers/Customers@key, Customers/CustomerID, Customers/CompanyName, Customers/Address, Orders/CustomerID, Customers/City, Customers/Country Orders/CustomerID \rightarrow Customers/Customers@key, Customers/CustomerID, Customers/CompanyName, Customers/Address, Customers/Phone, Customers/City, Customers/Country
 Orders/CustomerID, Orders/OrderDate
 Orders/CustomerID. Orders/OrderDate
 OrdersiCustiriOn, Ond
\Rightarrow Customers/Customers@key, Customers/CustomerID, Customers/CompanyName, Customers/Address, Customers/City, Customers/Country, Customers/Phone, Orders/Orders@key, Orders/OrderID, Orders/CustomerID, Orders/OrderDate, OrderDetails/OrderID, OrderDetails/ProductID, OrderDetails/UnitPrice, OrderDetails/Quantity, OrderDetails/Produc/Name, OrderDetails/CategoryID

Finding XML keys

FDs with RHS as ．／＠key values can be used to detect the keys in XML．
In tuple class $C_{\text {Orders }}$ we have XML FD：
－〈Corders, ．／OrderID，．／＠key \rangle ，which implies that
－$\left\langle C_{\text {Orders }}\right.$ ，／OrderID \rangle is an XML key．
－〈Corders, ．／OrderDetails／OrderID，．／＠key〉，so
－$\left\langle C_{\text {Orders }}\right.$ ．$/$ OrderDetails／OrderID \rangle is an XML key too．
In tuple class $C_{\text {Customers }}$ software found XML FD：
－$\left\langle C_{\text {Customers }}, . /\right.$ CustomerID，$/$ ©key \rangle ，which implies that
－$\left\langle C_{\text {Customers }}\right.$ ．$/$ CustomerID \rangle is an XML key．
－other detected XML keys are：
－$\left\langle C_{\text {Customers }}, . /\right.$ Orders／CustomerID \rangle ；
－〈C Customers, ．／CompanyName \rangle ；
－$\left\langle C_{\text {Customers }}, . /\right.$ Address \rangle ；
－$\left\langle C_{\text {Customers }}, . /\right.$ Phone \rangle ．

Detecting XML data redundancy

- having the set of functional dependencies for XML data in a tuple class, we can detect interesting functional dependencies.
- in essential tuple class Corders an interesting FD:
$\left\langle C_{\text {Orders }}\right.$,./OrderDetails/ProductID , ./OrderDetails/ProductName〉
- but $\left\langle C_{\text {Orders }}, . /\right.$ OrderDetails/ProductID \rangle is not an XML key
- So it is a data redundancy.
- the same reason applies for XML FD
$\left\langle C_{\text {Orders }}, . /\right.$ OrderDetails/ProductName, ./OrderDetails/ProductID \rangle.
- the other XML FD's have as LHS a key for tuple class Corders

Conclusions

- This paper introduces an approach for mining functional dependencies in XML documents based on FCA.
- Based on the flat representation of XML, we constructed the concept lattice.
- We analyzed the resulted concepts, which allowed us to discover a number of interesting dependencies.
- Our framework offers an graphical visualization for dependency exploration.

Future Work

- given the set of dependencies discovered by our tool:
- propose a normalization algorithm for converting any XML schema into a correct one

