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Most of studies on the automated generation of composite Web services create composite services by
chaining available services’ inputs and outputs, but do not consider their functional semantics. Therefore,
unsatisfied results may be generated against users’ intentions. Furthermore, the time complexity is very
high since every possible combination of available services should be considered. To resolve these prob-
lems, we propose a composition method that explicitly specifies and uses the functional semantics of Web
services. Specifically, the proposed method is based on a graph model, which represents the functional
semantics of Web services.
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1. Introduction

With the spread of Web services in various fields, there is a grow-
ing interest in building a composite Web service, which supports
high-level business processes. A composite Web service provides
more complicated functions than can be provided by a single ser-
vice by combining multiple services. However, as the number of
Web services increases and user requests are becoming more and
more comple, it is difficult and time consuming for a user to find
the desired services. Furthermore, it is becoming harder and harder
to manually build a composite Web service.

To resolve the difficulty of manually building a composite Web
service, there have been many studies on the automated compo-
sition of Web services [12]. Previous works specify the semantic
description of a service using service specification languages such as
OWL-S[14], WSMO [21],and SAWSDL[13] based on a domain ontol-
ogy, which is built by an ontological language such as OWL [20].
Likewise, a user’s request is specified in terms of inputs, outputs,
preconditions and effects. From these specifications, they auto-
matically build composite Web services using various Al (Artificial
Intelligence) techniques.

Previous methods construct composite Web services, which take
the inputs entered by a user and return the outputs requested, by
repeatedly finding and chaining appropriate services. When two
services are chained, the preceding service should satisfy the pre-
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condition of the following service. Generally, two services with
identical inputs, outputs, preconditions, and effects are regarded as
identical services. Therefore, ifa composite Web service satisfies the
inputs, outputs, pre-conditions, and effects requested by a user, it is
regarded as satisfying the user requirement. However, when com-
ponent services or user requirements do not have pre-conditions
and effects, the conventional methods may generate composite
Web services, which differ from a user’s intention, as shown in Fig. 1.

Fig. 1 illustrates how inappropriate composite services can be
generated. A user is looking for a travel service, which takes dura-
tion, destination, and the number of passengers as input, and
returns travel packages, which include transportation, accommo-
dation, itinerary, and travel expense as output. Since the service
is requested without specifying its precondition and effect, a ser-
vice composition system may construct a conference search service,
which finds the information about conference schedules such as
duration, place, and registration fee. This does not match the user
intention.

In general, two services with the same IOPE (input, output, pre-
condition and effect) are considered to be identical each other.
However, information services, which provide certain information
to users, may not need any preconditions and have no effects after
execution. If the precondition and effect of services are not spec-
ified, their functionalities may be different although their inputs
and outputs match each other, as shown in the example of Fig. 1.
Previous works based on IOPE cannot compose services correctly,
which do not specify their preconditions and effects. Furthermore,
previous works have exponential time complexity in proportion to
the number of available services, since they have to consider every
possible combination of available services.
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Fig. 1. An example of Web service composition without considering functional semantics.

To improve the functional correctness and time complexity of
service composition, this paper proposes an efficient method for
composing Web services. The proposed method explicitly specifies
the functional semantics of a Web service based on a domain ontol-
ogy. WSMO [21] defines the functional semantics of a Web service
as the formal description of the service functionality, describing
what a service can offer to its clients when it is invoked. By the
definition, the description includes the capability and categoriza-
tion of a service. Compared with this, in this paper, we define the
functional semantics of a service as describing what a service actu-
ally does. In our approach, the service functionality of a service is
represented by a pair of its action and the object of the action. The
information about services is organized and stored in a proposed
two-layer graph model. Given a user request, we search for compo-
sition paths in the graph model and construct a composite service
from the paths discovered.

To evaluate the performance of the proposed method, we
have conducted several experiments in terms of the speed and
accuracy of composition. The experimental results show that the
proposed method is faster and more accurate than the conventional
graph-search based method. Our method improves the functional
correctness of composite Web services by considering the func-
tionality of the Web service itself and reduces the time complexity
of the composition process by considering only combinations of
functionally related services.

The remainder of this paper is organized as follows. Section 2
describes the features and drawbacks of previous works concern-
ing automated composition of Web services. Section 3 explains how
we specify the functional semantics of Web services and organize
the specifications in the proposed two-layer graph. Section 4 gives
a detailed explanation of the proposed composition method. In
Section 5, the performance of the proposed method is evaluated
and analyzed. Finally, Section 6 summarizes the conclusions and
discusses opportunities for future works.

2. Related works

In general, a composite Web service corresponds to a state tran-
sition system, which has multiple states, arcs and available actions
in certain states and represents transitions from an initial state

Preconditions
Inputs

accepting user inputs to a final state providing requested outputs
and effects as shown in Fig. 2. In the transition system, applica-
ble actions correspond to available services. If pre-conditions and
required inputs of an action are satisfied in a certain state, transi-
tion from that state to another state can be made by applying the
action. Most studies on automated composition of Web services try
to resolve the composition problem by converting it into the prob-
lem of finding adequate transition systems. For this reason, various
Al techniques such as HTN (Hyper Task Network) planning, con-
tingency planning, constraint logic programming and linear logic
theorem proof are used [3,6,7,9,11,15,19].

Rao et al. [6] convert service specifications and user require-
ments into axioms and theorems of linear logic, respectively, and
then find an appropriate composite service through theorem prov-
ing. Agarwal et al. [19] classify Web services as their interfaces and
build a composite service through logical and physical composition.
In the logical composition step, they support building a composite
service, including conditional branches, by applying contingency
planning. Akkiraju et al. [9] use semantic matching, which consid-
ers domain dependant information as well as domain independent
information, and improves semantic precision of generated com-
posite services by considering semantic ambiguity during the
planning process. Kona et al. [15] use constraint logic program-
ming to discover a Web service and build a composite service. Their
method checks whether requested outputs and effects are reach-
able from the provided inputs and preconditions using available
services. Then they build an appropriate composite service based
on the reachability.

However, the methods mentioned above assume that every
available service has pre-conditions and effects. Therefore, if infor-
mation services are necessary to build a composite Web service,
their method must build the composite service using only I/O
parameter matching. There may be multiple services with quite
different functionality, although they have the same type of input
and output parameters. The resulting composition may not satisfy
the user’s intention. In addition, since all possible combinations
of available services must be considered in their composition pro-
cesses, they have high time complexity.

Meanwhile, Alkamari et al. [1] note that semantic Web service
composition (SWC) approaches based on Al techniques have limita-

Effects
Outputs

Fig. 2. A composite Web service and its state transition representation.



334 D.-H. Shin et al. /| Web Semantics: Science, Services and Agents on the World Wide Web 7 (2009) 332-343

tions in practical environments with large scale search space due to
high computational costs. They propose a signature-based compo-
sition of services utilizing WSDL specification and UDDI. Alkamari
et al. claim that their method reduces the computational cost of the
composition process, without excessive loss of correctness, by nar-
rowing the search space to services which are within a particular
business domain. Although their claim is persuasive from a practical
point of view, it seems that most approaches based on Al tech-
niques tend to create more accurate composite services for the user
requirement. To resolve these problems of correctness and com-
plexity, there have been many other efforts [2-5,8,10,11,16,22,23]
in the SWC fields.

To improve the correctness of a Web service search, Ye and
Zhang [8] proposed a method that explicitly specifies the functional
semantics of services. They specify a service and a user requirement
using object, action and constraints as well as input and output
parameters. Utilizing this information, they find a service to sat-
isfy the user requirement. However, they don’t consider how the
specification of functional semantics can be applied to service com-
position.

Liu et al. [23] proposes a Web service model in which inputs and
outputs of service are expressed using RDF graph pattern, as well
as a domain ontology. They improve the correctness of composite
services without preconditions and effects using semantic propaga-
tion based on graph substitution. Thakker et al. [2] try to improve
the accuracy of automatic matchmaking of Web services by tak-
ing into account the knowledge of past matchmaking experiences
for the requested task. In their method, service execution experi-
ences are modeled using case based reasoning. These two methods
are helpful for improving the correctness of composite service, but
their method is still not free from the complexity problems of the
composition process.

Unlike previously mentioned works, some studies [4,5,10,16,22]
explicitly or implicitly notice the time complexity problem of the
composition process. Hoffmann et al. [5] mention that the time
complexity problem of SWC stems from the combinatorial explo-
sion of available services, and that the problem can be resolved by
using their polynomial computation of a successor state and heuris-
tic function. However, they fail to suggest an appropriate heuristic
function, leaving it for future work.

Gambha et al. [22] and Li et al. [4] classify available services
according to their functionalities, where each set of services with
the same functionality is called a community service or meta-
service, respectively. They build abstract composite services which
consist of community services (or meta-services), and then substi-
tute each community service with concrete services. Although the
goal of their method is to improve the dynamism of composition, it
is also helpful to improve the time complexity of the composition
process by reducing the search space.

Hashemian and Mavaddat [16] store I/O dependencies between
available Web services in their dependency graph, and then build
composite services by applying a graph search algorithm to the

Available services

graph. In their graph, each service and I/O parameter is repre-
sented as a vertex. Also, input to a service and output from a
service are represented as incoming and outgoing edges, respec-
tively. Using their dependency graph, Hashemian and Mavaddat
can only search connectable services, and this makes it possible
to have low time complexity, compared with previous Al based
approaches. However, they cannot guarantee that generated com-
posite services correctly provide the requested functionality, since
they only consider matching and dependencies between input and
output parameters without considering functional semantics.

Meanwhile, Sirin et al. [3] and Thiagarajan [11] propose a Web
service composition method which considers functional seman-
tics of services and improves time complexity of the composition
process based on HTN planning. HTN predefines how every ser-
vice should be chained, composed or decomposed. Generally, it is
impossible to find out the functionality of every service and the
composition or decomposition relations between whole services
and then use that information to construct a HTN. Their approach is
appropriate to find an execution path, which processes a given input
in a large composite service. However, it is not suitable for gen-
eral Web service composition, which provides new functionality
by composing multiple services from a user’s request.

This paper proposes a Web service composition method which
guarantees functional correctness of Web service composition,
including information services, and also improves the time com-
plexity of the composition process by considering only functionally
related services during the composition process, similar to the
method of Hashemian and Mavaddat. For these purposes, the pro-
posed method specifies the functional semantics of a service with
an object and an action similar to the method of Ye and Zhang, and
extends the dependency graph of Hashemian and Mavaddat so that
the graphincludes functional semantics as well as [/O dependencies
between available services.

3. Specification and organization of services

As shown in Fig. 3, our method explicitly specifies functionalities
of available services as well as /O types, and stores this information
in the proposed graph model, a service relation graph. Composite
services which meet a user requirement are automatically built by
searching the graph.

In this section, we present a method to specify the function-
ality of a Web service using a domain ontology, which consists
of data ontology and action ontology. We describe how a service
relation graph is constructed from a domain ontology and service
specifications using functional semantics.

3.1. Specifying functional semantics
Many Web services that provide useful information are speci-

fied by 1/O without pre-conditions and effects. However, /O cannot
sufficiently describe the functionality of the service itself. Function-
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Fig. 3. Specifying services and constructing a service relation graph.
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Fig. 4. An example of a domain ontology.

alities which are provided by two services may differ from each
other, although the I/O types of the services are the same. There-
fore, when a requested service requires to one or more information
services, previous works cannot guarantee that the composed ser-
vice will provide the requested functionality. As shown in Fig. 1,
if a service is composed by chaining input and output parameters
of available services without considering the functional semantics
of the service itself, the composed service may not provide the
expected functionality, even if it provides the requested outputs.

To resolve this problem, this paper uses a method which explic-
itly specifies the functionality of Web services. The method, similar
to Ye and Zhang's, describes the functionality of a service as a
performed action and an object of that action. For example, the
functionality of a Web service! which calculates distance can be
specified as {Calculate, Distance}.

e Service functionality = {action, object}

A service is specified by its functionality and the sets of I/O
as follows. For example, a service, which calculates the distance
between two cities in km, can be specified as {{Calculate, Dis-
tance}, {City, City}, {Dist_km}}.

e Web service = (service functionality, input set, output set)

The service specification of the proposed method may not cor-
rectly specify a service or a user’s intention. There are some cases
where two services have an identical description by the proposed
specification method but provide different functions in reality. For
example, one service may determine the geographic coordinates
of a city while the other determines the geographic coordinates of
a post office in the city. These services may not be distinguished
by the proposed specification method. Although our method has
alimitation, it is simple and useful means to directly express what
a service actually does.

To specify a Web service, this paper also uses a domain ontology
which separately defines domain data and action. Domain data
defines concepts which are used to specify I/O and objects of ser-
vices within a domain. Domain action defines concepts which are
used to specify actions performed by services within a domain.
In other words, I/O and an object of a service are mapped to con-
cepts of domain data, and an action of the service is mapped to a
concept of domain action.

Generally, there are many actions in a domain which can be
defined in a variety of manners. However, in order to effectively

1 Generally, a Web service can have multiple operations with different function-
alities, so it should be specified by a set of operations. However, this paper assumes
every service has a single operation for convenience of explanation.

reflect functional semantics into a composition process and facil-
itate and generalize the process, it is essential to define domain
action in a consistent manner for every domain. To do that, this
paper proposes and uses the following four constraints for defining
domain action.

e Averb is used to define the concept of an action.

e When there are multiple verbs describing an action, only one of
them must be used to define the concept of the action.

e An action described as a concept can only be provided by combi-
nations of one or more its children.

® An action described by a concept cannot be provided by combi-
nations of any other concepts that are not its children.

Fig. 4 shows an example of a domain ontology, which consists
of data and action ontologies. Unlike general domain ontology, the
proposed ontology contains sub-ontology for specifying the action
of a service. This action ontology defines action concepts, which
explain a semantic hierarchy of functions and are used to specify
the functionalities of services in a specific domain. The ontology
should be defined by an ontology expert who has a good knowl-
edge of a domain. Using the action ontology, service providers can
explicitly specify the functionally of services and users can also
effectively express their requirement. Meanwhile, the North Ameri-
can Industry Classification System (NAICS) [17] and United Nations
Standard Products Services Code (UNSPSC) [18] are standards for
the classification of products and services. They are similar to the
proposed ontology in terms that a lot of their classifications of ser-
vices are defined using verbs and nouns. They can be used as domain
ontology for the proposed composition method after appropriate
modifications.

3.2. Organizing a service relation graph

To facilitate building a composite Web service, service specifi-
cations are stored in the proposed graph model, which is called
the SRG (Service Relation Graph). The SRG consists of three
components: a data dependency graph, which represents data
dependencies between services, an action graph, which represents
relations between domain actions, and mappings between the two
graphs. Table 1 shows an example of available services which are
specified by the proposed method using the geographic ontology of
Fig. 4. We borrowed this example from Hashemian and Mavaddat
and slightly modified it into a suitable form. Fig. 5 shows the SRG
which is constructed with services from Table 1.

A data dependency graph is constructed by chaining available
services and their I/O concepts mapped to the domain data on the
domain ontology. It is similar to the dependency graph which was
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Table 1
An example of services in a geographic domain.
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Service name Specification

Functionality

G {{Inform, Capital}, {Country}, {Capital}} Outputs the capital of a country

(&} {{Calculate, Distance}, {City, City}, {Dist_km}} Calculates a distance between two cities in km
G {{Determine, Physical_Loc}, {City, Province}, {Latitude, Longitude}} Determines the latitude and longitude of a city
Cy {{Convert, Distance}, {Dist_Mile}, {Dist_km}} Converts a unit of distance from miles into km
Cs {{Convert, Distance}, {Dist_km}, {Dist_Mile}} Converts a unit of distance from km into miles
Ce {{Search, Logical_Loc}, {PhNo}, {Address}} Searches an address from a phone number

(&)

{{Provide, Map}, {Address}, {Map}}

Provides a map of a city

Inform

1c, ¢y

» Calculate

ic, Cgh H
G, Cg
G C Convert nE '

’

g
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p
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Data Dependency Graph
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s e

Longitude

Fig. 5. An example SRG constructed from Table 1.

proposed by Hashemian and Mavaddat. However, our data depen-
dency graph is different from their graph in that every service
becomes a node, as well as an I/O concept. This makes it easy to
find a specific service that accepts a particular set of /0. In our
graph model, each service node is connected to its I/O concepts
with incoming and outgoing edges. Like C, of Fig. 5, if a service has
more than one input (or output) that is mapped to the same con-
cept, their number becomes the label of an incoming (or outgoing)
edge between the service and the concept node. Also, like City and
Capital in Fig. 5, if there is a parent—child relation between two con-
cept nodes in the domain ontology, an edge from the child concept
node to the parent node is created on the graph.

An action graph is constructed with action concepts of domain
action. In the graph, every action concept becomes a node. Every
service node of the data dependency graph is mapped to an action
concept which the service provides. If there is an edge between two
adjacent service nodes on the data dependency graph, a new edge is
created on the action graph between the nodes which are mapped
to the service nodes. The new edge has the same direction as the

edge between the service nodes, and a set which consists of the
services becomes its label.

4. Composition of services

The proposed Web service composition method consists of three
steps: constructing sets of candidate Web services, path finding
on the service graph, and building composite services as shown
in Fig. 6.

This section explains each step in detail with appropriate exam-
ples. Four kinds of candidate service sets are introduced, and the
method used to construct these service sets from user requirements
is explained in Section 4.1. A method which finds composition paths
to build composite services on the SRG is presented in Section 4.2.

In Section 4.3, a method which builds composite services from
composition paths found in earlier steps is explained. Finally, our
composition algorithm is introduced.

4.1. Finding candidate services

A composite service which meets a user requirement has gen-
eral constraints which have to be satisfied. The service has to be
executable without any other inputs except user provided ones, and
has to return requested outputs. Most importantly, the service has
to provide requested functionality. Our approach finds candidate
services as a starting point to generate composite services which
satisfy the constraints mentioned above. Possible candidate ser-
vices of a composition can be discovered from a user requirement.
We classify these candidate services into core service and auxiliary
service. This is a conceptual classification. In a practical compo-
sition process, core services and auxiliary services are classified
againinto four types of sets according to their characteristics: CWS;,
(Input Acceptable Candidate Web Services), CWS,, (Output Accept-
able Candidate Web Services), CWSs. (Single Core Candidate Web
Services), and CWS.. (Composite Core Candidate Web Services). In
this classification, CWSs. and CWS.. come under core services and
CWS;, and CWS,, come under auxiliary services.

A core service is an essential service for satisfying the user-
requested functionality. Unlike core service, auxiliary service
supports a transformation between I/O types of connected services,
rather than directly implementing a requested functionality. In our
approach, core and auxiliary services are dynamically determined
during runtime based on requested functionality and separately
searched on the SRG. This makes our method focus on search-
ing only functionally related services and also helps to reduce

the time required to discover available composition paths on the
SRG.
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Fig. 6. The proposed Web service composition method.

For example, assume that a user requests a service which accepts
two cities and returns the distance between two cities in mile.
The user requirement is specified as {{Calculate, Distance}, {City,
City}, {Dist_Mile}}. In Fig. 7, there is no single service satisfying
the requirement, but the combination of C; and Cs can provide
the requested functionality. In this example, C,, which provides the
requested functionality specified by {Calculate, Distance}, is a core
service and Cs, which supports the transformation between Dist_km
and Dist_Mile, is an auxiliary service.

In our composition process, CWS;, consists of services which
accept at least one user input, while CWS,, consists of services
which provide at least one output requested. In order to guaran-
tee that a composite service is executable with the user-provided
inputs, the composite service has to include at least one of the CWS;,
elements. Similarly, a composite service has to include at least one
CWS,q element in order to provide the requested outputs. CWS,
is constructed with services which have the same type object and
action concepts as those requested. In other words, CWS;. is a set of
core services which provide the requested functionality by them-
selves. If a composite service with an element of CWS;. is executable
without any other inputs except the user provided ones and the
service provides requested outputs, it can be a solution for the user
requirement.

Fig. 7 is an example of candidate service sets that are constructed
from a user request ({Calculate, Distance}, {Country, Country},
{Dist_Mile}). Service C;, which accepts user input ‘Country’, is
selected as an element of CWS;, and service Cs5, which returns the
requested output ‘Dist_Mile’, is selected as an element of CWS,,.
In a similar way, service C, provides the requested function-
ality {Calculate, Distance}, thus it is selected as an element of
CWSse.

CWS;,= {Cy}, CWS,, = {C5}
CWS={Cy}, CWS = {}

Province

Map

Meanwhile, CWS. consists of services whose action concepts are
child concepts of those requested and whose object concepts are
the same concepts or descendent concepts of those requested. In
Section 3.1, we have proposed four constraints for defining domain
action which can be performed within a domain. According to the
constraints, if an action with a required functionality has children
in the domain ontology, the functionality may be provided by a
composition of one or more child concepts from the action. This
means that if a user requests complex functionality represented as
a high-level action concept, the functionality can be provided by a
composition of services which have a child concept of the requested
action.

Fig. 8 is another example that constructs candidate service sets
from a user requirement ({inform, Location}, {Country, Province,
PhNo}, {Address, Latitude, Longitude}). In this example, there is
no service which has the same action and object concept as that
requested. However, there are services which have child concepts of
Inform (Search, Determine, and Calculate) and they become elements
of CWS,..

4.2. Finding composition paths

After finding candidate service sets, every path between action
concepts of CWS;, and CWS,, elements, which is called a composi-
tion path, is searched on the action graph of the SRG. On the action
graph, if there is an edge between two nodes, it means that two ser-
vice nodes on the data dependency graph are adjacent, and there
is an edge between the nodes. Additionally, it is also revealed that
the two services can be sequentially composed. On the other hand,
if there is no edge between two nodes on the action graph, two
services which have those concepts as an action can never be com-

Calculate

Dist_Mile

Country —» g—fﬁipltal \ Dist_Km
Cy

Fig. 7. An example of constructing candidate service sets.
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Fig. 8. An example of constructing candidate service sets.
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Fig. 9. An example of finding composition paths on the action graph.

posed sequentially. Therefore, if there is no path between action
concepts of CWS;, and CWS,, elements on the action graph, any
composite Web service which meets a user requirement cannot be
built.

As mentioned before, core service is an essential service which
provides required functionality for a user. To guarantee that a com-
posite service provides a required functionality, the service must
contain a core service. In our approach, CWSs. and CWS,. consist
of candidate core services. CWS;. includes services which directly
provide requested functionality and CWS,. includes services which
may provide requested functionality in combination. Therefore,
paths which are searched in the second step should contain at least
one action concept from the CWS,. or CWS,. elements.

Fig. 9 is an example of a composition path, which is discovered
on the action graph for given candidate service sets in Fig. 7. In
Fig. 9, element C; of CWS;,, element C, of CWSy4, and element Cs
of CWSs. have Inform, Convert, and Calculate, respectively, as their
action concepts. The proposed method finds a path which starts
from Inform, passes through calculate, and ends in Convert on the
action graph.

AC,

@ {C}, C3}, {C1, C3}

C,, Cyl

4.3. Building composite services

This section describes how to build composite services from the
paths found. At first, for each composition path, all of the possi-
ble service chains are extracted from the labels of the composition
path. A service chain is a sequential connection of services and is
constructed from the sets that are selected in order from each label
of the composition path. A setis selected from each label and its first
element should be the same as the last element of the set selected
just before. If the composition path consists of one action concept
node, each service that provides the action constructs a service
chain for itself. Fig. 10 illustrates the extraction of service chains
from a composition path. Note that this example uses a composi-
tion path, which is not taken from the SRG of Fig. 5. Here, AC, and C,
within the given composition path represent action concepts and
available services, respectively.

After extracting every possible service chains, a set of candidate
composite services (CCS) is built by combining the service chains
and are optimized by merging common services. A CCS is a compos-
ite service, which does not require inputs other than those provided

AC3 {CJs Cﬂ}s {C-h C(,}

AC,

Service Chain,: {C;, C,}U {Cy, Cy} U {Cy, C5}={Cy, G5, €y G5}

» ()

I BN .
LG ca G5

Service Chain,: {C,, C,}U {C,, C4}U

{Cy C}={Cy, C;,Cy Cg}

‘[CI]_[ (3 KN e E

Service Chainy : {C{C,) U () €} — Discarded

Fig. 10. An example of extracting service chains from the path found.
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* Possible Service Chain:
ServiceChain,: {C,, C;} U {C,, C5}={C,, C, C5}

» (c}—a)}c)

* CCS for ServiceChain,:

H_ €
H_ ¢

Country—| [ ¢, M ¢ ) | —> Dist_Mile
Country—>» [ (T ]—[ C,

CCS

) | —> Dist_Mile

Fig. 11. An example of constructing CCS from service chains.

by a user request and satisfy all the outputs of the user request. Con-
sequently, a CCS is returned as a solution after optimizing. A set of
CCS is constructed as follows:

e For each input provided by a user, if there is a service chain, which
starts with a service taking the input, the service chain is selected
as a CCS. If the cardinality of an input is more than one, the input
selects service chains as many as the cardinality.

e If a CCS requires inputs other than those provided by a user
request, it is discarded.

e If a CCS does not cover all the outputs requested, it is discarded.

¢ The CCS found is added to the CCS set.

e The above steps are repeated until there are no more combina-
tions of service chains.

Fig. 11 illustrates how a service chain is constructed from the
composition path of Fig. 9 and a CCS is constructed from the service
chain. In this example, with the user input, City, of cardinality 2, the
CCS constructed includes two identical service chains.

As the final step of the composition, the proposed method opti-
mizes all of CCSs included in the CCS set by merging common
services, which do not need to be executed more than once. This
optimization is applied to every pair of the service chains contained
in a CCS. The merging of two common services can be allowed only
when the CCS still does not require other inputs than those pro-
vided by its user after merging. Finally, the optimized CCS set is
returned, where the CCS set contains all possible solutions for the
user request. Fig. 12(a) is the result after the CCS of Fig. 11 has been
optimized. Fig. 12(a) and (b) corresponds to the final solutions to
the user requirements of Figs. 8 and 9, respectively.

Meanwhile, in Fig. 12(b), a user might want a service, which
returns an address and its latitude and longitude. However, the

{Co, C3}

proposed method may return a composite service, which returns
an address and the latitude and longitude of the city, where the
address is located. It is approximately what the user is searching
for and may be an incorrect answer for the user intention. As men-
tioned in Section 3.1, this is because a user’s intention may not be
wholly expressed by the proposed specification method. Given a
service request, the proposed method finds all the possible answers.
However, they may contain a service, whose functionality does not
coincide with the user intention. This problem can be solved by
incorporating users’ feedback or a more sophisticated service spec-
ification. We leave this problem as a future improvement.

5. Experimental results and analysis

Similar to previous works, the proposed method builds a com-
posite Web service by chaining services with the same type of I/O.
However, the method also considers the functional semantics of ser-
vices as well as I/O type. Based on this, functionally unrelated paths
are removed in the composition process. Through this, our method
builds composite services faster than previous works, and the gen-
erated services have high precision on average. To verify this, we
have conducted two types of experiments for composition speed
and precision of generated composite services, and have compared
the results with previous methods. Also, the time complexity of our
method has been analyzed.

5.1. Composition speed

Most previous works for the automated composition of Web
services have exponential time complexity since they have to con-
sider every combination of available services for creating required
composite service. Unlike the previous works, Hashemian and
Mavaddat chain services with the same type of I/O and store that
information in the form of a graph model when the services are pub-
lished. Through this, their method can chain possible services and
has relatively lower time complexity than the previous methods.

Meanwhile, Sirin et al. built a composite service rapidly using a
pre-defined HTN for a certain domain. However, their method is not
suitable for building a composite service for providing functional-
ity which did not exist at the design time. This paper examines
the composition speed of our method and compares the result
with the method of Hashemian and Mavaddat, which has the low-
est time complexity among previous works (except the method of
Sirin et al.).

{Cy, Cs}

Calculate

Dist_Mile

G

Country = H C
Country II = g

(a) An example of building a composite service with single core

{Ci. G5}

@ ™ i

Country -C -C — Latitude

Province . 2 —~ Longitude
PhNo 9 Cs | Address

(b) An example of building composite service with composite core

Fig. 12. An example of the composite services constructed from the paths found.
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Table 2
Experimental settings for the comparison of composition speed.

The number of available Ontology size

The number of I/O included in

services The number of data concepts The number of action concepts a user requirement
Experiment 1 50-250 100 50 5
Experiment 2 150 25-225 13-118 3
Experiment 3 100 50 25 2-10

Generally, a precise evaluation for a service composition method
needs to analyze composite services built by the method and
measure the execution time of the whole composition process.
However, Hashemian and Mavaddat failed to clearly provide a
method to combine the composition paths found on their graph,
resulting in difficulty building a composite service from the paths.
Because of this, we have compared the elapsed time for the path
finding of each method, and indirectly evaluated the performance
of each method based on the results. Since both methods build a
composite service from composition paths found in earlier steps
and these processes are very similar, we confirm that the processes
are performed with the same time complexity. Consequently our
experiment is meaningful for evaluating the composition speed of
the two methods, although the experiment does not consider the
whole composition process.

Elapsed time for path finding on a graph depends on the graph
size and the number of paths to be discovered. In both our method
and the method of Hashemian and Mavaddat, graph size is decided
by the number of services and the size of the domain ontology.
Also, the number of paths that should be discovered is decided by
the number of inputs and outputs in the user requirements. Based
on these observations, we have conducted three experiments, as
shown in Table 2, and compared the experimental results of the
two methods.

We have implemented our method and the method of
Hashemian and Mavaddat using Java, and then measured the
elapsed time to find the composition paths using the time stamp
of the system. For fair evaluation, the original implementations of
both of the approaches should be compared. However, we could
not help implementing the approach of Hashemian and Mavaddata
by ourselves for our experiments since we could not obtain the
implementation. To conduct fair experiments, we need a sufficient
number of services and ontologies with a variety of sizes. However,
it is very hard to collect or manually construct appropriate data.
For this reason, we randomly generated experimental data which
conforms to the conditions of Table 2.

In Experiment 1, we measured the time elapsed to find every
composition path on each graph model by increasing the num-
ber of services from 50 to 250. In this experiment, a domain
ontology which contains 100 data, 50 action concepts and 20
user requirements, where each requirement contains 5 input and
output parameters, has been used. Similarly, we have conducted
Experiment 2 and Experiment 3 after changing the size of the
domain ontology and the number of I/O requirements, respectively.
Figs. 13-15 show the experimental results.

Fig. 13 shows that the more available services there are, the
more time it takes to find composition paths on the graph. The
size of the data dependency graph grows larger as the number
of available services increases in both methods. However, the pro-
posed method finds paths not on the data dependency graph but
on the action graph, whose size is determined by the number of
action concepts. Although the size of candidate service sets grows
larger and the number of paths discovered increases as the num-
ber of services increases, the elapsed time to find path does not
increase rapidly. This is since the size of the action graph is rela-
tively tiny compared with the dependency graph of Hashemian and
Mavaddat.
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Fig. 13. Experiment 1: Elapsed time to find paths in terms of the number of available
services.
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Fig. 14. Experiment 2: Elapsed time to find paths in terms of the size of a domain
ontology.

Fig. 14 shows that the elapsed time to find composition paths
decreases as the size of the domain ontology grows larger. This
result is caused by fixing the number of services to 150. In the
method of Hashemian and Mavaddat, the size of the dependency
graph is decided based on the number of available services and
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Fig. 15. Experiment 3: Elapsed time to find paths in terms of the number of 1/O
requirements.
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Table 3
Experimental setting to compare precision of generated composite services.

The number of available Ontology size

The number of [/O included in a

services

The number of data concepts

The number of action concepts R

Test data 50-250 100

50 2-5

the I/O concepts of those services. Although the size of the domain
ontology increases, the size of the dependency graph is unchanged.

Similarly, in the proposed method, the size of the data depen-
dency graph has nothing to do with the size of the domain ontology.
Even if the size of the action graph grows larger as the number
of concepts in the domain action increases, it does not affect the
elapsed time to find paths, since the number of edges on the action
graph is unchanged. Edges on the action graph can be changed only
when the number of available services is changed.

However, if the size of domain ontology grows, the connectiv-
ity of a service relation graph may decrease since the number of
data and action concepts for service specification also increases.
The decrease in connectivity means that the probability of finding
a solution to a user request decreases. By this reason, it frequently
occurs that a composite service which meets a user requirement
cannot be built as the number of data and action concepts increases.
In this case, path finding is terminated in an early stage, resulting in
a decrease in time. Consequently, Experiment 2 is to show how the
size of domain ontology affects the failure of service composition
in terms of the numbers of available services.

Fig. 15 shows that the elapsed time to find paths increases as the
number of input and output parameters increases. The method of
Hashemian and Mavaddat searches every path between the input
and output concepts of a user requirement on the dependency
graph. Therefore, as the number of parameters of a user require-
ment increases, the number of paths to be discovered increases,
resulting in the increment of elapsed time. Similarly, the number of
paths to be discovered also increases in the proposed method as the
number of parameters increases. However, elapsed time increases
only slightly in our method, since the size of the action graph where
the searching is performed is relatively tiny.

5.2. Precision of generated composite services

The proposed method uses action ontology which is used to
define the functionality of a Web service, as well as data ontology.
Using this action ontology, our method does not consider compo-
sition paths which consist of functionally unrelated services with
a user request in the composition process. Therefore, the proposed
method can build more precise composite services for the user’s
intention compared with previous methods, which build composite
services by simply chaining input and output parameters of ser-
vices. To verify this, we have conducted an experiment to compare
the precision of generated composite services by our method and
by previous methods.

The experimental data of Table 3 was prepared as follows.
Domain ontology was randomly generated and nine sets of avail-
able services were generated based on the ontology. Each available
service set contains different numbers of services from 50 to 250.
We also constructed 15 composite services manually by referring
to the ontology and the services. The 15 specifications were used
as user requirements. Consequently, for a user request, there is at
least a composite service as a solution while the ontology and the
available services were randomly generated.

Functional similarity
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Fig. 16. Performance comparison in terms of precision.

Generally, we use accuracy, which consists of precision and
recall, to measure the performance of a composition method. How-
ever, it is hard to know how many solutions there are in our
experiments since domain ontology and available services were
randomly generated. Since we are able to find how close a gen-
erated composite service is to a user requirement, we use precision
to evaluate the accuracy of the proposed method.

A composite service, which accepts as many user inputs as pos-
sible and includes services that provide the similar functionality
to a user request, can be considered as a more suitable service
for the user intention. Therefore, we calculate the precision of a
composite service using Eq. (1), where the weight w; and w, were
set to 0.2 and 0.8, respectively. Fig. 16 presents the result of this
experiment.

The precision of a composite services
= (usage rate of user input) x wy + (functional similarity) x w,

(1)

The usage rate of Eq. (1) is calculated by Eq. (2), in which inputs
with the same type are counted once. Our method and the method
of Hashemian and Mavaddat do not construct composite services,
which require other more inputs than a user does. As a result, the
number of inputs required by a composite service is not more than
the number of the inputs provided by a user.

Usage rate of user input

_ Thenumber of the inputs required by a composite service
B The number of user inputs

(2)

The functional similarity of Eq. (1) is calculated by Eq. (3), where
semDist denotes a minimum distance between the action concepts,
only for the descendant concepts of the requested action concept, of
component services and the requested action concept on the action
graph.

if acomposite service contains a service whose action and object concept is equal to the requirement’ 01

= { elseif acomposite service contains a service whose action concept is a descendant concept of the requested

Else

0.8
" QsemDsit—1 3)

:0
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Fig. 16 shows that the precision of the method of Hashemian and
Mavaddat generally decreases as the number of services increases.
Previous composition methods, which do not use action ontol-
ogy, generate all possible combinations of available services that
are executable by user inputs and provide the requested outputs.
Therefore, the result of previous methods includes composite ser-
vices, which provide quite different functionality from the user’s
intention, resulting in a low precision.

In addition, the number of services that can be chained increases
as the number of available services increases, and the number of
possible combinations of available services also increases. However,
the number of services functionally unrelated to a user’s intention
increases more than the number of functionally related services.
The result of previous methods includes more and more composite
services which do not correspond to the user’s intention. Conse-
quently, precision in previous works decreases as the number of
available services increases.

Compared with this, the proposed method explicitly specifies
functionalities of user requirements and Web services, and then the
information is organized and stored in the SRG. By using the SRG,
our method can only search composition paths which necessarily
include core services to provide requested functionality in the path-
finding step. Therefore, the result of our method does not include
composite services which consist of functionally unrelated services.
This makes our method maintain high precision, regardless of the
number of available services.

Meanwhile, although the precision of our method is high on
average, it cannot be perfect since composite services with multiple
core services are included in the result. Correctness of a compos-
ite service with multiple core services can only be judged by the
user. We only know that certain combinations of multiple core ser-
vices can provide the requested functionality since a user describes
his/her requirement using high-level ontological conceptualiza-
tion. This is a drawback, and will be the next research issue for
our method. Nevertheless, a composite service with multiple core
services is meaningful from a viewpoint that it raises the possibil-
ity of finding a required composite service while maintaining high
precision in every case.

Since the data sets used in our experiments are randomly gener-
ated, the results may not completely guarantee that the proposed
method is superior to previous methods. However, the experi-
mental results show that our method is more able to be scaled
and has faster composition speed than previous methods in the
domain that has fewer action concepts than data concepts. Also,
the proposed method builds more correct composite services than
previous methods regardless of the number of available services
within a domain.

5.3. Time complexity

Many challenges remain to apply automated composition of
Web services to the real world. Of these challenges, one of the great-
est is the time complexity of a composition algorithm. Generally,
for a given request, finding a valid composition that provides the
expected functionality is a very complex problem. Most studies on
automated composition create a composition by simply chaining
inputs and outputs of services. This results in high time complex-
ity, since every possible combination of available services must be
considered. In this section, we analyze the time complexity of the
proposed composition method and compare it with the complexity
of Hashemian and Mavaddat.

As mentioned before, the proposed composition algorithm con-
sists of three steps: constructing candidate service sets, discovering
composition paths on the SRG and building composite services. In
this section, we calculate the time complexity of each step and then
determine the total time complexity for the entire process. To cal-

culate and analyze a time complexity, we assume an upper bound
for some parameters according to the analysis of Hashemian and
Mavaddat: i and o for the numbers of inputs and outputs in the
user requirements, t and a for the numbers of objects and actions
in a user requirement. A time complexity for each step is described
in Eqgs. (4)-(6), and the time complexity of the entire process is
calculated with Eq. (7).

When constructing candidate service sets, the four sets CWS;,,
CWS,q, CWSsc and CWS,., should be found based on a user require-
ment. This process can be done in a constant amount of time by
using a hash table of ontological concepts. Therefore, to find all
elements of CWS;,, there are i hash table lookups. Similarly, con-
structing CWS,q, CWSsc and CWS,. requires o, t +a, and t +a lookups
for the hash table, respectively. As a result, the complexity of this
step has constant order.

Complexity of constructing candidate service sets = O(c),

where c denotes a constant. (4)

In the second step, every path on the action graph between
action concept nodes implemented by elements of CWS;, and CWS,,
is searched for, where all paths should pass through at least one
action concept node implemented by elements of CWSs. or CWS..
Path finding on a graph is a linear process based on the size of the
graph and the time complexity O(v + e), where v and e are the num-
ber of nodes and edges in the graph. Meanwhile, our action graph
may have cycles, and these can disturb termination of path find-
ing. To ensure that path finding terminates in all cases, we can use
a length limit for the paths found. By using a constant limit of [
for the length of the paths, we only have to check O(1') paths in
the worst case. Generally, to find every path on a graph requires a
time complexity O(v!(v + e)), where the length limit of each path is
I. However, our algorithm searches for paths which pass through
at least one specific action concept node, which are implemented
by elements of CWS,. or CWS... Therefore, the complexity of the
second step is O(v'~1(v + e)), as in Eq. (5).

Complexity of discovering composition paths on the SRG
= 0(' (v +e)),
where vand e are the number of nodes and edges, respectively, in
the action graph of SRG, and lis alimit on the length of the paths.
(5)

In the last step, for each path found, possible sequential service
chains are sought and then possible compositions which provide
requested output from the user input are built from combinations
of these service chains. Since the number of paths found in ear-
lier steps is v/~! and the length limit of each path is I, the process of
searching for sequential service chains can be done with complexity
O(v*-1). Building valid compositions from sequential service chains
requires more time. To find every possible composition, every com-
bination of a service chain which ends with a service that returns
each requested output should be checked. For each requested out-
put, there are v'~! service chains which end with a service that
returns said output in the worst case. Therefore, building valid
compositions from service chains has a complexity of O(v°(=1),

Complexity of building composite services = O(v/~1) + 0(v°U-1)
= O(voU-1),
(6)

Using Egs. (4)-(6), the time complexity of the whole composi-
tion process is calculated in Eq. (7) and polynomial in the graph size
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and the number of user inputs.
Complexity of the entire process = 0(c) + O~ (v + e)) + O(v°U-1)
=0(v°-1)) (whereo > 2)

(7)

In their paper, Hashemian and Mavaddat determine that the
time complexity of their method is O(v’l(v’ +¢€')), where v and ¢’
are the number of nodes and edges in the graph, respectively. The
complexity of their method is also polynomial in the graph size and
seems to have lower complexity than that of the method proposed
here. However, their complexity was not calculated from the whole
composition process, but from the process of path finding. They
discuss the process of path finding to determine the complexity
of the whole process, since building the composition setup based
on valid paths is very straightforward. However, if there is more
than one valid path for each input-output pair, every combination
of paths found should be checked to find all the possible composi-
tions. It is reasonable that their complexity is o(v°") for the whole
composition process.

Moreover, their dependency graph consists of nodes with the
same number of data concepts on domain ontology, while the action
graph of the proposed method consists of nodes with the same
number of action concepts. Generally, domain ontology has fewer
action concepts than data concepts, as shown in Fig. 2. Therefore,
it is reasonable that v and e are smaller than v' and e’ in most
cases. Consequently, it is expected that our proposed method is
able to find possible composite services faster than the method of
Hashemian and Mavaddat. This also suggests that the proposal has
a lower time complexity than most previous works, which do not
consider the functional semantics of the Web service itself.

6. Conclusions and future works

Most previous composition methods based on Al techniques do
not consider functional semantics, and consequently, cannot suffi-
ciently capture the functionalities of information services without
preconditions and effects. They may generate composite services
which do not satisfy users’ intention when the generated compos-
ite service requires information services as its component service.
To resolve this problem, we proposed a composition method that
explicitly specifies the functional semantics of a service itself.

In our method, Web service specifications are stored in the
proposed graph model. A composite service which meets a user
requirement is automatically built by searching the graph. Based on
the user requirement, available services are dynamically classified
into core services and auxiliary services at run-time. Consequently,
a composite service contains a core service, which provides the
requested functionality. The proposed method improves the cor-
rectness of the composite services generated. Additionally, the
proposed method has lower time complexity than previous works
since our composition process is mostly performed on the action
graph, which includes a relatively small number of nodes. Func-
tionally unrelated services are automatically excluded from the
searching process.

To evaluate performance, we conducted several experiments in
terms of composition speed and precision. The experimental results
for composition speed shows that our method generates composite
services faster than previous methods when the number of action
concepts is smaller than the number of data concepts. Also, the
composite service generated by our method has higher precision
than those of previous methods, which do not consider functional
semantics of Web services.

The proposed method specifies the functionality of a Web
service as a one-to-one relationship of action and object. However,
there may be cases where two services have an identical description
by the proposed specification method, but may function differently

in reality. In addition, a user may have to use a combination of
multiple actions and objects to specify certain functionality. To
resolve this problem, we will develop a more sophisticated method
of specifying services. We have a plan to enhance the proposed
method in order to improve the time complexity and precision
of the composition process. We will also consider non-functional
attributes of services such as QoS and user-defined constraints in
the composition process.
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