
Future Generation Computer Systems 25 (2009) 290–300
Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

Scalable community-driven data sharing in e-science gridsI

Tobias Scholl ∗, Bernhard Bauer, Benjamin Gufler, Richard Kuntschke, Angelika Reiser, Alfons Kemper
Institut für Informatik, Technische Universität München, 85748 Garching bei München, Germany

a r t i c l e i n f o

Article history:
Received 30 November 2007
Received in revised form
14 April 2008
Accepted 14 May 2008
Available online 20 May 2008

Keywords:
Data sharing (H.3.5)
Distributed databases (H.2.4)
Scientific databases (H.2.8)

a b s t r a c t

E-science projects of various disciplines face a fundamental challenge: thousands of users want to obtain
new scientific results by application-specific and dynamic correlation of data from globally distributed
sources. Considering the involved enormous and exponentially growing data volumes, centralized data
management reaches its limits. Since scientific data are often highly skewed and exploration tasks
exhibit a large degree of spatial locality, we propose the locality-aware allocation of data objects onto a
distributed network of interoperating databases. HiSbase is an approach to datamanagement in scientific
federated Data Grids that addresses the scalability issue by combining established techniques of database
research in the field of spatial data structures (quadtrees), histograms, and parallel databases with the
scalable resource sharing and load balancing capabilities of decentralized Peer-to-Peer (P2P) networks.
The proposed combination constitutes a complementary e-science infrastructure enabling load balancing
and increased query throughput.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

E-science communities such as climatology, astrophysics,
medicine, and the geosciences face the fundamental challenge of
managing data volumes generated by upcoming applications with
expected data rates of several terabytes a day and petabytes a
year. The anticipated continuous growth at an exponential rate
further increases the need for scalable information management.
Collaborating researchers from all over the world access these
distributed data sources [15] in order to find new scientific results.

1.1. Challenges

Future e-science communities require the efficient processing
of data volumes that centralized data processing or a data
warehouse approach cannot sufficiently scale up to. Centralized
data processing, where researchers ship data on demand from
the distributed sources to a processing site – most often their
own computer – has the deficiency of high transmission cost.
On the other hand, a data warehouse cannot cope with the
high query load and demanding throughput requirements. In
astronomy, for example,most often the individual projects provide

I This work is part of the AstroGrid-D project and of D-Grid and is funded by
the German Federal Ministry of Education and Research (BMBF) under contract
01AK804F and by Microsoft Research Cambridge (MSRC) under contract 2005-041.
∗ Corresponding author. Tel.: +49 89 2 89 17276; fax: +49 89 2 89 17263.
E-mail addresses: scholl@in.tum.de (T. Scholl), bauerb@in.tum.de (B. Bauer),

gufler@in.tum.de (B. Gufler), kuntschk@in.tum.de (R. Kuntschke),
reiser@in.tum.de (A. Reiser), kemper@in.tum.de (A. Kemper).

0167-739X/$ – see front matter© 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2008.05.006
interfaces to their own data set for interactive or service-based
data retrieval. These service interfaces are standardized by the
International Virtual Observatory Alliance (IVOA)1 in order to ensure
interoperability between the various interfaces. User queries can
consume only a limited amount of CPU resources (e.g., 10 min),
have a result size limit (e.g., 100000 rows), and the number of
parallel queries per user is restricted in order to allow fair use
and to avoid overloading the servers. Batch systems (such as
CasJobs [20]) offer less restrictive access to the data sources and
sometimes even a private database for later processing or sharing
the results with colleagues. However, some queries might suffer
from long queuing times.
Furthermore, we observe that in many e-science communities,

data sets are highly skewed and scientific data analysis tasks
exhibit a large degree of spatial locality. Dealing with data
skew while preserving spatial locality is fundamental to realize a
scalable information infrastructure for these communities. A more
detailed scenario from the astrophysics domain exhibiting these
characteristics is given in Section 2.
To avert the scalability issues of their current systems, commu-

nities investigate different technologies. The adaption to domain-
specific data and query characteristics is fundamental for these
approaches to result in benefits for the researchers. These char-
acteristics can include properties such as data skew and com-
plex multi-dimensional range queries. Among the technologies
investigated are community-driven Data Grids which use decen-
tralized Peer-to-Peer (P2P) technologies in order to provide scal-
able communication and data management. Community-driven

1 http://www.ivoa.net.

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:scholl@in.tum.de
mailto:bauerb@in.tum.de
mailto:gufler@in.tum.de
mailto:kuntschk@in.tum.de
mailto:reiser@in.tum.de
mailto:kemper@in.tum.de
http://www.ivoa.net
http://dx.doi.org/10.1016/j.future.2008.05.006

T. Scholl et al. / Future Generation Computer Systems 25 (2009) 290–300 291
Fig. 1. HiSbase architecture.

Data Grids are built on the data sharing approach of federated Data
Grids [35] and extend it by relaxing the data autonomy require-
ment for achieving better data load balancing and improving query
throughput. Distributed hash tables (DHT) allow the seamless inte-
gration of new peers and resources. The symmetry of these net-
works, i.e., the fact that peers act as servers (providing data) and
as clients (issuing queries), offers increased fault-tolerance and ro-
bustness. In a DHT system, peers automatically detect node failures
and fix the overlay communication.

1.2. HiSbase Architecture

In this paper, we describe HiSbase, a distributed information
infrastructure that allows sharing of CPU resources and storage
across scientific communities to build a community-driven Data
Grid. We distribute data across (e.g., hundreds of) peers according
to predominant query patterns to achieve a higher throughput
for data analysis tasks. Therefore, most processing tasks can be
performed locally, achieving high cache locality as peers mainly
process queries on logically related data hosted by themselves.
Fig. 1 illustrates this approach on an abstract level. In the
figure, logically related data originating from (possibly) different
distributed sources are denoted by the same geometric shapes.
HiSbase partitions and allocates data fed into the system bymeans
of community-specific distribution functions, called histograms.
Thereby, related data objects of various sources are mapped to
the same peers. In Section 3, we discuss several candidate data
structures that preserve spatial locality and adapt to the data
distribution.
HiSbase, as described in Section 4, incorporates multi-dimen-

sional data and histograms as follows:
– We precompute the histogram of the actual data space in a
preparatory training phase based on a training set and pass it
to the initial HiSbase peer during startup (Section 4.1).

– Additional peers subsequently joining the network receive their
own local copy of the histogram from a neighboring HiSbase
peer.

– HiSbase allocates data at peers according to the precomputed
histogram (Section 4.2) and uses the histogram as a routing
index. Data archives feed data into HiSbase by sending their
data to any HiSbase peer which routes the data to the
responsible peer (Section 4.3).

– Every HiSbase peer accepts queries and routes them to a
coordinator peer which owns (some of) the data needed to
process the query. If the coordinator does not cover all the data
relevant to the query, it guides cooperative query processing
among all peers contributing to the query result (Section 4.4).
In Section 5, we discuss the performance of a single peer and

a multi-peer HiSbase instance within a local area network in
comparison to a centralized database server with regard to query
throughput. We further outline the projected experiments within
the AstroGrid-D testbed.
1.3. Contributions

Scalable data sharing for e-science grids.
HiSbase realizes a scalable information economy [5] for

e-science Data Grids by building on advances in proven DHT-
based P2P systems such as Chord [33] and Pastry [26], as well
as on achievements in P2P-based query processing [17]. HiSbase
combines these techniques with histograms for preserving data
locality, spatial data structures such as the quadtree [27] for
efficient access to histogram buckets, and space filling curves [21]
for mapping histogram buckets to the DHT key space. There
have been inspiring contributions extending DHTs to support
multi-dimensional range queries [4,12,32,34] and describing load-
balancing schemes for data and execution skew [2,7,11,23] in
the face of a varying data population and high network churn.
However, these systems currently treat the data items individually
which results in prohibitive costs in an e-science environment,
e.g., it requires several months to distribute data of several million
objects to the participating sites.

Preserving locality and handling data skew through domain specific
partitioning.
We suggest reconsidering static partitioning schemes as an

application domain specific hash function to allow scalable
information management in e-science communities. Occasionally,
this hash function is updated to accommodate better load-
balancing, just as database systems regularly update query
optimizer statistics. HiSbase targets collaborative communities
having vast data volumes with fairly stable data distributions.
Long-termdistribution changes can also be leveled by reorganizing
the histogram.

Increased query throughput.
We investigate the potential offered by P2P networks for in-

creasing query throughput in data-intensive e-science applica-
tions. Achieving sufficient query throughput constitutes one of the
main deficiencies of centralized data management.

2. Sample application domain: Astrophysics

The abstract scenario above is applicable to many e-science
domains including climatology, geophysics, and medicine. We
employ data and use cases from the astrophysics domain
for further illustrations, since we are currently developing a
distributed information management platform for the German
astrophysics community (AstroGrid-D) [8] within D-Grid, the
German e-science and Grid Computing initiative. This platform
facilitates collaborations with national as well as international
partners.
In e-science, results of different investigations (experiments,

surveys, observations, etc.) are compared or combined to gain
further insight or to obtain the complete picture of a particular
phenomenon. Astrophysical example use cases comprise the
creation of probability maps for galaxy clusters [6,31] and the
combination of observational data from several archives covering,
for example, variouswavelength ranges in order to classify spectral
energy distributions [19].
In previous work we focused on the practical aspects of devel-

oping a HiSbase instance for the astrophysics community [29]. Im-
plementing a prototype in realistic scenarios closely cooperating
with a community is fundamental in our view to ensure the appli-
cability of our approach. Using solely simulation studies often does
not correctly represent the challenges of distributed systems, e.g., if
the simulationmodel does not capture all relevant parameters.We
deployed a HiSbase instance with up to 56 nodes on the resources
of the AstroGrid-D test bed, D-Grid resources, and on nodes within

292 T. Scholl et al. / Future Generation Computer Systems 25 (2009) 290–300
Fig. 2. The HiSbase GUI.
the PlanetLab test bed in order to demonstrate the functionality
of our system. Fig. 2 illustrates some aspects of HiSbase such as
submitting queries, comparing different histogramdata structures,
and providing status information on the connected HiSbase nodes.
Our prototype uses the relational data model and SQL as the cur-
rent specification for the IVOA Astronomical Data Query Language
(ADQL) is also SQL-based.
Furthermore, in earlier work we proposed a framework for

comparing various a priori calculated histogram data structures
and gave several different measures to evaluate the effectiveness
of the data structures [30]. This framework allows communities to
experiment with different data structures before deciding which
suits their needs best. This is a necessity for efficiently distributing
and processing data sets at a large scale and distinguishes HiSbase
from other proposals in the literature.
To give an idea of the future scalability challenges, Table 1

summarizes the size, the number of objects, and the approx-
imate size of an individual object for three of the major
current astrophysical catalogs SDSS (http://www.sdss.org/dr5/),
TWOMASS (http://www.ipac.caltech.edu/2mass/), and USNO-B1.0
(http://www.nofs.navy.mil/data/fchpix/cfra.html). Assuming aHiS-
base network for astrophysics with one thousand dedicated Data
Grid nodes, the catalogs of Table 1 could be kept almost completely
in the main memory, each node covering about 5 GB of data.
These data sets still could be managed at a single site,

although with restrictions such as high transmission costs
or limited resource availability. Upcoming e-science projects
(see Table 2) in astrophysics and high energy physics face
a data deluge which will be distributed across several sites.
Examples for such upcoming projects are the Panoramic Survey
Telescope and Rapid Response System (Pan-STARRS, http://pan-
starrs.ifa.hawaii.edu/public/), the Large Synoptic Survey Telescope
Table 1
Current astronomical data sets

Catalog Size (TB) No. of objects (million) ≈Object size (kB)

SDSS (DR5) 3.6 215 14
TWOMASS 1 471 2
USNO-B1.0 0.08 1000 0.9

Table 2
Upcoming e-science data sets

Project Daily data rate (TB) Yearly rate (PB)

Pan-STARRS 10 4
LSST 18 7
LOFAR 33 12
LHC 42 15

(LSST, http://lsst.org/), and the Low Frequency Array (LOFAR,
http://www.lofar.org/) in astrophysics, as well as the Large Hadron
Collider (LHC, http://lhc.web.cern.ch/lhc/) in high energy physics.
Researchers usually access and analyze logically related subsets

of these data volumes. The restrictions of such subsets are mostly
based on specific data characteristics. Typical access patterns
over astrophysical data sets are point-near-point queries, point-
in-region queries, and nearest-neighbor-searches. Such queries
are usually region-based, i.e., they process data within certain
regions of the sky. These regions are specified by the two-
dimensional celestial coordinates right ascension and declination.
Region-based queries can, of course, also contain predicates on
attributes other than the celestial coordinates. In case of celestial
objects, other attributes might comprise detection time, catalog-
identifier, temperature, or energy level. In Fig. 1, objects of the
same region in the sky would have the same shape and can be

http://www.sdss.org/dr5/
http://www.ipac.caltech.edu/2mass/
http://www.nofs.navy.mil/data/fchpix/cfra.html
http://pan-starrs.ifa.hawaii.edu/public/
http://pan-starrs.ifa.hawaii.edu/public/
http://pan-starrs.ifa.hawaii.edu/public/
http://lsst.org/
http://www.lofar.org/
http://lhc.web.cern.ch/lhc/

T. Scholl et al. / Future Generation Computer Systems 25 (2009) 290–300 293
Fig. 3. Sample data space with skewed data distribution.

processed locally at the peerwhich is responsible for the respective
region.
After a period of grace of about one year, basically all outcomes

of astrophysical projects supported by public funding become
publicly available. An increasing share of scientific research is
performed by looking ‘‘at databases’’ rather than by looking
directly at the sky. In order to ensure reproducibility, published
data sets are not changed. Instead, new additional versions are
made available.
Through the outreach of astronomy projects, many amateurs,

school children, and university students do their research on these
data sets. Basically, everyonewho is able to surf theweb can access
astrophysics data. Therefore, suitable information systems need to
support many users.
Traditionally, federated Data Grids retain data autonomy, i.e., the

participating institutes keep full control over their data and deploy
security policies that only allow users with appropriate credentials
to access shared data resources. In situations such as the ones
described above, where institutes are keen on making already
published data sets available to a large audience, community-
driven Data Grids constitute an interesting approach to distributed
data management.

3. Locality preservation

To allow efficient query processing on logically related data
sets we need to preserve the locality of data. Data locality is
especially important for the performance of data analysis tasks
in astrophysics. Distributing data objects randomly across a
global information network severely impairs the performance of
astrophysical query patterns.

3.1. Data skew

Many application domains have highly skewed data sets. This
skew originates from data spaces with a mix of densely and
sparsely populated regions. The differences in data density may
arise from the original data distribution or from the fact that some
regions have been investigated more extensively than others, i.e.,
more data has been collected and is available. In astrophysics,
celestial objects are not distributed uniformly over the sky, e.g.,
considering high data density in the galactic plane or a supernova.
We use an abstract skewed data sample (Fig. 3) for illustration.
In HiSbase, we preserve spatial proximity to efficiently process

region-based queries (Section 4.1) while addressing the imbalance
of the data distribution. HiSbase achieves this goal by calculating
a histogram that equips the Data Grid with a community-specific
data distribution. Among others, we describe the Z-quadtree
histogram data structure that we designed to preserve spatial
locality for astrophysics data sets. Z-quadtrees are quadtreeswhose
leaves correspond to histogram buckets and are linearized on the
DHT key space using a space filling curve. These trees provide
efficient access to histogram buckets (regions) while balancing
the data load across data nodes.2 The extension of histogram data
structures to additionally consider query skew is part of ongoing
work and we outline some of our ideas in Section 4.5.

3.2. Histogram data structures

HiSbase enables communities to design data structures for
distributing their data across several nodes and to adapt to data
and query characteristics of that particular community. We call
these data structures histograms for their similarities to standard
histograms. Histograms are, for example, commonly used in
relational database management systems as means for selectivity
estimations [24].
Within HiSbase, histograms H are used in order to look up

multi-dimensional areas A and points p.

lookupArea(H,A) : S This method plays a central part during
query processing. Given a multi-dimensional data area
A, lookupArea returns the set S of region identifiers of
histogram H which intersect with A.

lookupPoint(H,p) : r Mainly used during data distribution,
lookupPoint returns the region identifier r of histogram
H which contains a multi-dimensional data point p.

Most of the following histogram data structures are inspired
by the intensive research conducted by the computer science
community on locality-aware data structures developed for
accessing and efficiently storing multi-dimensional data [10,28].
The individual community is free to choose any data structures
implementing the interface required by HiSbase and, therefore, we
are strengthening the histogram-aspect rather than the aspect of
indexing multi-dimensional data.

3.2.1. Z-quadtree: A histogram based on quadtrees
The shape of data partitions defined by candidate data

structures should be simple (e.g., squares). This allows simple (SQL)
queries to retrieve data during the process of integrating newpeers
(see Section 4.2).
In the following, we describe the Z-quadtree as our preferred

data structure which is inspired by quadtrees [27].
A Z-quadtree partitions the data space according to the

principle of recursive decomposition. For a d-dimensional data
space, a Z-quadtree node either is a leaf with a d-dimensional data
region or an inner nodewith 2d children. The leaves of the quadtree
correspond to the histogram buckets. After the Z-quadtree buckets
are calculated they are linearized using the Z-order space filling
curve [21].
The linearization is then used tomap the buckets on theDHT key

space. We use a space filling curve instead of a random mapping
as the curve preserves spatial proximity if one peer covers several
buckets. If buckets are adjacent, they are likely to be managed by
the same peer.
Starting with a single leaf covering the entire data space, we

sequentially insert the training set into the tree (Section 4.1). If
the number of objects in the area of a leaf exceeds a predefined
threshold, its capacity, the leaf is split into 2d subareas according
to the quadtree splitting strategy. Inner nodes forward the objects
to the corresponding child. On the left in Fig. 4, we show the
decomposition of our two-dimensional example data set of Fig. 3
using a leaf capacity of two objects. After the complete training set
is inserted, each leaf is assigned a region identifier using a depth-
first search (Fig. 4, middle). This immediately gives the desired leaf

2 In the following, we use the terms regions and histogram buckets interchange-
ably. The leaves of a Z-quadtree represent the histogram buckets for that particular
histogram data structure.

294 T. Scholl et al. / Future Generation Computer Systems 25 (2009) 290–300
Fig. 4. Left: Z-quadtree regions of our data sample. Middle: Corresponding
quadtree. Right: Leaf linearization.

linearization which is shown in Fig. 4 on the right. While using the
Z-order is the canonical leaf linearization, other space filling curves
such as the Hilbert curve [16] are also applicable. Without the
region linearization, queries intersecting multiple regions would
most likely introduce additional traffic as the regions would be
located at multiple nodes. Yet from our experience, most queries
intersect one region only.
Algorithm 1 describes how the set S of region identifiers that

intersectwith a query areaA is retrieved in a Z-quadtreeH . Starting
at the root node, lookupArea is executed recursively. If the region
rn of a leaf n intersects with query area A, its region identifier
rn.id is added to the result set S. Intersecting inner nodes invoke
lookupArea on every subtree. The method to find the region which
contains a data point, lookupPoint, can be realized similarly.

Algorithm 1 lookupArea(H, A) for Z-quadtrees
Require: Z-quadtree H with root node nroot , query area A
Ensure: Set S = {region id r.id | region r intersects with A}
S ← {}
n← nroot
if region rn of n intersects with A then

if n is leaf then
S ← S ∪ {rn.id}

else {n is inner node}
for all subtrees Hchild of n do
S ← S ∪ lookupArea(Hchild, A)

end for
end if

end if

Z-quadtrees use the same concept as linear quadtrees [13], a
data structure used in image encoding. Using a lower resolution for
sparsely populated data subspaces in Z-quadtrees corresponds to
compressing the representation for common subpixels of the linear
quadtrees.
In contrast to the original quadtree, which is a spatial index

structure, the Z-quadtree is used for data dissemination, as a
routing index, and during query processing. The actual training
data used to create a histogram is not stored in the data structure
distributed to all peers.
Lookups performed during data feeding and query processing

benefit from the regular structure of the quadtree leaves. The center
splitting strategy divides the region of a node into equally sized
subregions and is the default strategy for quadtrees. Therefore
the (final) quadtree is insensitive to the insertion order of the
data. Furthermore, the tree can be stored and communicated in
a very compressed form as region boundaries can be derived by
recursively dividing the complete data space until the position of
the region is reached.
As the capacity of quadtree leaves is only an upper bound, not

all quadtree leaves will be fully filled. Rare pathological cases, e.g.,
a high data concentration in a very small area of the data space,
might result in a degenerated tree having many empty regions.
While we define the Z-quadtree top-down, we actually build
the Z-quadtree bottom up. We prefer bottom-up construction
over building the tree top-down because the latter requires to
Algorithm 2 Publish data in HiSbase
Require: Histogram H , multi-dimensional data point p
Region id r ← lookupPoint(H, p)
Send newPointMessage(p) to r .

Algorithm 3 Query data in HiSbase
Require: Histogram H , multi-dimensional query area A.
Set of relevant region ids SR ← lookupArea(H, A)
Select coordinator rc from SR
Send newQueryMessage(A, SR) to rc .

determine the capacity for the quadtree leaves before starting
the training phase as splitting a leaf is triggered if its capacity
is exceeded. Furthermore, building Z-quadtrees bottom-up is a
requirement for other splitting strategies to work correctly such as
the median splitting strategy introduced in the following section.

3.2.2. Related histogram data structures
In [30], we report on experiments with an additional quadtree-

based histogram which uses a median splitting strategy in order to
address the issue of empty leaves. It uses median-based heuristics
for splitting a leaf at the median instead of at the center. For
our astronomical example, the heuristics determine the split
point (mra,mdec) by computing the median for ra-coordinates
and dec-coordinates independently. Our heuristics are similar to
the technique used by optimized point Quadtrees [9], which only
compute the median in the first dimension and thus guarantee
that no leaf contains more than half the data of the original leaf.
In the average case, our heuristics offer a better data distribution
by computing the median in all dimensions independently. Fig. 5
contrasts a quadtree with regular decomposition (Fig. 5(a)) with
a quadtree using our median heuristics (Fig. 5(b)), respectively.
We furthermore discuss how application-specific data structures,
such as the zones index [14], can be applied as histogram data
structure offering various trade-offs. Further interesting spatial or
multi-dimensional data structures can be found in the survey by
Gaede and Günther [10] and the book by Samet [28].

4. Architectural design

The architectural design of HiSbase offers researchers a
framework for data and resource sharing within their community.
Algorithms 2 and 3 formally define the interface for data
publication and access within HiSbase.
In this section, we outline the creation of histograms during the

training phase and the information maintained at HiSbase nodes.
Finally,wedescribe data publication andnode collaboration during
query processing.

4.1. Training phase (Histogram build-up)

The Training phase comprises three steps:

(i) Extracting the training samples,
(ii) defining the partitioning of the data space,
(iii) and distributing the partitions to the data nodes.

For constructing the histogram, data from each data source is
taken into account. We can either use the entire data archive or a
representative subsample. However, transmitting the entire data
archive for histogram extraction is presumably prohibitive. For
example, the subset could be extracted using a random sample.
We achieved good histograms using 10 percent data samples in
our a priori analysis. Such an a priori analysis is applicable as the

T. Scholl et al. / Future Generation Computer Systems 25 (2009) 290–300 295
(a) Center splitting strategy. (b) Median splitting strategy.

Fig. 5. A Z-quadtree employing different splitting strategies.
data distribution does not change significantly very often (e.g., on
a yearly basis) in many scientific domains.
After the training set is inserted into the histogram, the

histogram is serialized for distribution within the network. We
note that only the histogram structure is serialized. The training
data is discarded.
The resulting histogram is passed to the initial peer in the

HiSbase network. Peers subsequently joining the network receive
the histogram from any other peer in the network. So each peer
keeps a copy of the histogram.
The number of histogram regions is determined beforehand.

In our experiments, we used histograms with up to ten times
more regions than the anticipated number of peers. This offers
a good trade-off between allowing more peers than initially
estimated, histogram size, and complexity of finding the relevant
regions during query processing. The size of the histogram is
small in comparison to the amount of data transmitted during
query processing. As peers presumably get their histogram from
a physical neighbor, histogram distribution adds little overhead to
the setup phase of the HiSbase network.

4.2. HiSbase network

While the overall design of HiSbase abstracts from the
underlying DHT implementation, we use the distributed hash
table (DHT) infrastructure Pastry [26] to manage peers and route
messages inHiSbase. Like Chord [33], Pastrymapsdata andpeers to
a one-dimensional key ring. In contrast to Chord, Pastry optimizes
the initial phase of routing by preferring physical neighbors to
speed up communication within the overlay network.

4.2.1. Mapping nodes to regions
The histogram regions are uniformlymapped onto the DHT ring

identifiers. Remember, the skew is accounted for by varying the
size of the regions. In the case of the Z-quadtree, the histogram
regions correspond to the leaves. Due to this uniform distribution,
all regions are mapped to a peer with equal probability regardless
of their individual size. The size of regions might vary due to the
adaption to data skew. The peers get a random identifier and are
responsible for regions close to their identifier. Fig. 6 illustrates the
evenly distributed regions (0–6) and their mapping to randomly
distributed peers (a, b, c, d) on the DHT key space. We use the
routing of the underlying DHT system to automatically assign
regions to peers. To ensure that messages destined for a specific
region are received by the appropriate peer, we use the region
identifiers for message routing.
Fig. 6. Mapping of the quadtree of Fig. 4 to multiple peers.

We prefer to use the key-based routing functionality of the
underlying DHT infrastructure over using a direct mapping of
histogram buckets on peers or using a centralized directory for the
histogram in combinationwith a histogram cache at the individual
peers. A direct mapping would require every peer to maintain
the complete list of participating peers and also the mapping of
the individual histogram buckets to the peers. Using the key-
based routing, each peer stores only O(log n) neighbors and the
mapping is done automatically by the underlying fabric. Updating
a histogram via a distributed broadcast is not more expensive than
distributing an updated histogram from a central site. We can
reuse functionality already implemented by the P2P substrate and
leverage the increased flexibility and the automatic handling of
node failures.

4.2.2. Evolving the histogram
The histogram serves HiSbase as a partitioning function,

defining the data set a node is responsible for. To either achieve a
better load-balancing or level long-term data distribution changes,
HiSbase nodes maintain three histograms and their accompanying
data sets. Each pair of histogram and data set can evolve during
the run-time of HiSbase and has one of the following three
functionalities: the build-up, active, and backup functionality.

build-up The currently running feeding process, which is de-
scribed in the following section, distributes data accord-
ing to the build-up histogram. After a new histogram has
been distributed among the peers, HiSbase prepares this
build-up data set and stores it on disk.

active Once the build-up phase is completed, the active
histogram and data set are used during query processing
and nodes keep them completely (or at least the relevant
parts) in main memory. The active histogram is further
used for messaging.

296 T. Scholl et al. / Future Generation Computer Systems 25 (2009) 290–300
Fig. 7. Histogram evolution.
Algorithm 4 Handling node arrivals
Node p covers a set of regions P . Let Pnew be the set of regions p is
responsible for after a new node has arrived. ai denotes the area of
a region i.

if Pnew 6= P then
find Pmove = P \ Pnew
for all r ∈ Pmove do
ar = getArea(r)
redistribute data from ar to region r

end for
end if

backup The completed build-up data set is additionally kept on
disk as backup for the active data set. This preserves the
active data set beyond the lifetime of the current network
and can be used if a node is restarted with the same
identifier.

Fig. 7 illustrates a scenario where the build-up histogram con-
tains additional regions while the active and backup histograms
are the same as in Fig. 6.
Any of the participating nodes can be used to inject an updated

version of a histogram by broadcasting it to the HiSbase network.

4.2.3. Node arrival
When a node joins the HiSbase network, the active histogram

will be transmitted to that node and the node needs to receive
the data according to its responsibilities. For this purpose, HiSbase
reuses the mechanisms of the DHT structure to determine the
arrival of new nodes. In Pastry [26], nodes are notified if the leaf
set (the nodes which have similar identifiers) changes. Algorithm
4 describes how a notified node determines the data it is no longer
responsible for. It then redistributes this data and the newly joined
peer can update its database.

4.2.4. Node departure
HiSbase is developed for an environment where the participat-

ing servers are quite reliable. High churn is currently not in our
focus as distributing the envisioned amounts of data across unreli-
able peers is not very useful. Nonetheless, some peers might tem-
porarily fail. As mentioned in the introduction, HiSbase does not
replace but complement the ‘‘traditional’’ data centers since these
also serve as data sources for distributing the data in HiSbase. A
peer that recognizes the departure of a neighboringnode andneeds
to take over parts of the data refetches the data from the according
archives.

4.3. Data distribution (feeding)

Connected data centers directly feed data into HiSbase as
suggested by Fig. 1. Data integration is not in the focus of our
work. We assume that the data being fed into HiSbase adheres to
a common schema or is already properly transformed. In HiSbase,
the histogram is used to determine which peer stores which data.
All peers maintain the data objects which are in their histogram
buckets, independently from the archive the data comes from.
HiSbase abstracts from the specific database system which allows
the use and comparison of various traditional as well as main
memory database systems.
Data archives which want to publish their data in HiSbase

connect to any HiSbase peer, preferably to a peer nearby or to a
peer which has a high network bandwidth. Proceeding according
to Algorithm 2, the peer uses its histogram to determine which
histogram bucket contains a data object by using the lookupPoint
method. Then it routes the object to the DHT identifier of this
region. The message contains the data object and information
about the data source. Via the underlyingDHTmechanism, the data
item arrives at the responsible peer which updates its database.
Distributing each data item individually would introduce a very

high overhead. The precomputed histogram allows us to optimize
the feeding stage by introducing bulk feeding. A peer which feeds
the network can buffer several objects for the same region until a
threshold is reached. Time-based aswell as count-based thresholds
are applicable.
Integrating new data sets is achieved by feeding them into the

network as described above after the according tables are created
at each node. If the new data set is a detailed survey of a sky
region that has not yet been covered by any existing archive in
the community network, it might be appropriate to create a new
histogram in order to improve data load balancing. In that case,
a data sample of the survey is extracted and integrated into the
training phase.

4.4. Query processing

Region-based queries are submitted to any peer of the HiSbase
network. The peer extracts the multi-dimensional area A from
the query predicate. It selects an arbitrary identifier rc from the
set of intersecting regions which is determined by lookupArea.
The peer pc which is responsible for region rc is the coordinator.
The coordinator collects intermediate results and performs post-
processing tasks (e.g., duplicate elimination).
Let us assume a region-based query was issued at peer d

in Fig. 6. The area of the query is marked with the thick-lined
rectangle in Fig. 4. The regions relevant to our example query
are the regions 1 and 3. If peer d covers regions relevant to the
query, it becomes the coordinator itself. This is not the case in our
example. We select region 1 as rc and thus peer a becomes the
coordinator. Peer d forwards a coordination request to peer a. The
coordination request contains the query and the relevant regions.
After peer a receives the coordination request, it issues the query
to its own database (as it covers relevant regions) and sends the
query to all other relevant regions. Peer b also participates in the
query processing in our example as it covers region 3. It sends its

T. Scholl et al. / Future Generation Computer Systems 25 (2009) 290–300 297
Fig. 8. Evaluation data sets.

intermediate results back to the coordinator, peer a. After having
received all intermediate results, peer a sends the complete result
to peer d.
Peers may cover several regions. As region identifiers are used

for submitting queries, peers can receive the same query several
times. Each peer stores a hash of currently processed queries
to avoid multiple evaluations of the same query. Results and
error messages are directly transmitted to the coordinator or the
submitting node without using the overlay routing algorithm.

4.5. Query load-balancing

Currently we are looking at several techniques for combining
our data load balancing approach with query load balancing
techniques to efficiently handle query hot spots. We investigate
extensions to our training phase as well as techniques which
redistribute load during run-time.
We currently enhance the training phase with query statistics

such as earlier workloads. Based on these statistics, data partition-
ing can bemodified to enable the application of query load balanc-
ing techniques such as replication or load migration.
Using two parallel Pastry rings with different histograms

increases data availability within the HiSbase network. By
changing the offset (or even the space filling curve) of themapping
process from Section 4.2.1, the second histogram stores the data
on different nodes and both copies are available during query
processing.
We are also considering introducing a master–slave hierarchy,

where idle peers can support overloaded nodes by offering their
storage and compute resources. These may be necessary to cope
with short-term changes in query load distribution. Whether
a peer is overloaded or constitutes a potential slave-node is
determined based on workload statistics collected during run-
time. These statistics can also augment the training phase for the
next histogram evolution (see Section 4.2.2).

5. System evaluation

We evaluate HiSbase by performing throughput measurements
with our Java-based prototype [29] using the FreePastry3 imple-
mentation of Pastry. The evaluation data set comprises about 137
million objects from subsets of the ROSAT (25 million objects),
SDSS (84 million objects), and TWOMASS (28 million objects) cat-
alogs and has a size of about 50 GB. Fig. 8 illustrates the data skew
of these data samples.

3 http://freepastry.org.
5.1. Throughput measurements

We measure throughput for varying multi-programming levels
(MPLs), i.e., a varying number of parallel queries in the system, to
evaluate at what degree of parallelism a distributed architecture
can outperform a centralized solution. Each run has k peers, a batch
containing lqueries, and anMPLm.MPL=mdenotes that eachpeer
keeps m parallel queries in the system. At the start of a run, each
peer immediately submitsm queries. Wemeasure timestamps sp,q
and rp,q when peer p has submitted its q-th query and has received
the results, respectively. After receiving an answer, peers submit
their next query in order to sustain the multi-programming level.
For measuring the throughput T , we only consider queries

processed in the time span when every peer is guaranteed to work
on MPL = m parallel queries, the saturation phase Isat . Isat is the
time interval between the point in time when the last peer has
submitted its m-th query and the first peer has submitted its last
query, which is expressed formally as:

Isat =
[
max
1≤p≤k

(sp,m), min
1≤p≤k

(sp,l)
]

. (1)

We shortly illustrate the case of computing Isat for one single
HiSbase node p1. Let MPL = 10 and l = 500, then the node
submits 10 queries to HiSbase in order to reach the desired
degree of parallelism. In this scenario, Isat starts at s1,10. As soon
as a query result is received, a new query is issued to HiSbase.
Finally, the saturation phase Isat ends when the node submits
its last (500th) query at timestamp s1,500. When multiple nodes
participate in the HiSbase network, the last sp,10 and the first
sp,500 timestamp determine the saturation phase of the complete
network, as defined in Eq. (1).
The throughput T is based on the number of successfully

processed queries during the saturation phase Isat :

T =
|{(p, q) | rp,q ∈ Isat , 1 ≤ p ≤ k, 1 ≤ q ≤ l}|

Isat
. (2)

We used a body of 730 cross-match queries for our evaluation.
Cross-match queries determinewhether data points fromdifferent
sources are likely to stem from the same celestial object. The
querieswere created from730 random sources of the SDSS catalog,
using rectangular regions with an edge length of 0.05◦. The size of
the query rectangles is based on realistic values and each query
covers approximately an area which is 2

107
of the whole sky. Peers

submit these queries in random order. To this end, we present
results for a histogram based on a Z-quadtree with 256 regions
using the center splitting strategy.

5.1.1. Single peer instance
The first experiment compares the query throughput of a

standalone database with the query throughput of the same
database used by a single HiSbase peer to measure the overhead
introduced by the HiSbase layer. The peer is a Linux server with
an Intel Xeon processor at 3.06 GHz, 2 GB RAM, and IBM DB2 V8.1.
Queries to the standalone database are submitted via parallel JDBC
connections. Fig. 9 shows the throughput in queries per second
of the standalone database and the single peer HiSbase instance.
The throughput increases for both single node setups through
higher parallelism until their maximum throughput (sweet spot)
is reached. Themaximum throughput of both systems is roughly at
10 queries: 1.17 queries per second at MPL= 8 for the standalone
database and 0.97 for the single peer HiSbase instance at MPL= 9.
Although the standalone database performedbetter than the single
HiSbase node in our evaluation, HiSbase introduces an acceptable
overhead as in practice an instance with multiple (typically
hundreds of) peers is used. Just to give an impression of current

http://freepastry.org

298 T. Scholl et al. / Future Generation Computer Systems 25 (2009) 290–300
Fig. 9. Query throughput results for the standalone database and single peer
configurations.

Fig. 10. Throughput comparison of the multi-peer instance with the projected
values of the single-peer configuration.

throughput figures, the traffic statistics of the SkyServer4 archive
show that in 2007 during an average month about 2312 queries
have been submitted to the SQL interface which corresponds
roughly to less than one query per second. However, there are
already several occasions where the number of queries per second
is significantly higher.

5.1.2. Multi-peer instance
We tested a multi-peer instance in a local area network (LAN)

which measures how HiSbase performs in a setting with low
latency and high network bandwidth. The LAN configuration of
HiSbase was set up on 16 consumer-class Windows PCs equipped
with 1.6 GHz Processors, 512MB RAM, and againwith the IBMDB2
V8.1 database system. Fig. 10 contrasts the projected throughput
of the single peer configuration described above (by multiplying
the previous results with 16) and the 16-peer instance. The 16
peers achieve a stable super-linear throughput compared to the
single peer from MPL = 20 onwards. Smaller data partitions
and especially a higher cache locality constitute this throughput
improvement as peers only process similar queries. We did
not continue the measurements beyond an MPL = 600, which
corresponds to 9600 parallel queries, as expected numbers of
parallel users are currently below this degree of parallelism.

5.1.3. AstroGrid-D and PlanetLab instance
In order to verify the scalability of our HiSbase approach,

we also conducted benchmarks on resources within AstroGrid-D
and D-Grid as well as on the PlanetLab test bed, as PlanetLab is
widely used for evaluating globally decentralized applications. In
PlanetLab, applications run in so-called slices (virtual machines)
and in parallel with several other installed applications.Within the
AstroGrid-D test bed, the resources are more dedicated, reliable,
and have high-bandwidth links. We successfully demonstrated
HiSbase using up to 56 resources from our labs, the AstroGrid-D
test bed, and on PlanetLab. Performing throughput measurements

4 http://skyserver.sdss.org/log/en/traffic/.
on such a distributed and heterogeneous environment has many
challenges which we want to summarize briefly.
For demonstration purposes, we used the Derby database

system which is a pure-Java embedded database developed by
Apache. For performing our benchmarks, however, Derby cannot
keep upwith the performance of full-fledged commercial database
systems. Deploying these commercial database systems on all
network nodes is not only difficult with regards to licensing issues
but also with regard to maintaining the infrastructure. Taming the
heterogeneity of the resources is also a non-trivial task as different
protocols are needed for transferring data and accessing nodes.
Within the LAN of our lab, data either resides on local hard disks
or a network attached storage (NAS) and therefore it is easy to
administer and to harvest the results. Data transfer between Grid
nodes is performed via GridFTP and gsissh, while in the PlanetLab
network ssh and scp are used. Supporting research communities
concerning these practical issues clearly is an important aspect of
solving their data management challenges.

6. Related work

The HiSbase approach provides several benefits to e-science
communities by addressing domain specific data and query char-
acteristics. HiSbase offers a higher throughput via parallelization,
higher cache locality, and load-balancing across several sites com-
pared to centralized data management. HiSbase enables scalable
sharing of decentralized resources within a community as it uses
the DHTmechanism of key-based routing for data distribution and
message routing. Using these techniques, new nodes are easily
added to the network and heterogeneous database management
systems can be integrated with little effort as each HiSbase peer
only needs to know its own local database configuration.
Using parallelism and partitioning to increase query through-

put is a well-established technique from distributed and parallel
databases [18]. Compared to HiSbase, distributed databases run
in a more homogeneous setting whereas parallel databases are
not designed for world-wide distributed resources. Autonomous
database systems [22] also deal with the correlation of several
data sources. However, data is not distributed across participat-
ing servers (adhering to the nodes’ autonomy) and thus correlation
needs to be done at the client sites which leads to additional data
traffic.
DHT architectures such as CAN [25], Chord [33], Pastry [26], and

Tapestry [36] overcome the limitations of centralized information
systems by storing data in a distributed one-dimensional key space
(except for CAN which uses a d-dimensional torus). While these
systems achieve load-balancing by randomly hashing data and
peers to their key space, they do not support multi-dimensional
range queries or preserve spatial locality.
A large variety of systems have been proposed to support

(multi-dimensional) range queries [4,12,32,34] or to address data
(or execution) load-balancing in P2P environments [2,7,11,23].
These systems are predominantly designed for settings that are
very dynamic, i.e., data hot spots and the data itself change very
frequently and the systems have a very high churn. This flexibility
comes at the price of dealing with each data object (of several
hundred million data objects) individually. We exemplify some of
these systems below and discuss how they relate to HiSbase.
One approach [4] uses Voronoi diagrams in order to partition

the data space and to support queries on multi-dimensional data.
Independently, MURK [12] uses k-d trees to realize a similar
idea. In these systems, peers covering large data partitions have
more neighbors, while in HiSbase the number of neighbors
is independent from the number and size of covered regions.
SCRAP [12] directly applies a space filling curve to the data
and assigns one-dimensional ranges to peers. In HiSbase, the

http://skyserver.sdss.org/log/en/traffic/

T. Scholl et al. / Future Generation Computer Systems 25 (2009) 290–300 299
submitting peer determines exactly the histogram regions in the
multi-dimensional data space and only these peers are contacted
during query processing while SCRAP can only approximate a
multi-dimensional query range using multiple one-dimensional
ranges.
The distributed quadtree index [34] also supports range queries

and objects with multi-dimensional extents. The representatives
for quadtree leaves are randomly placed on the key space of an
underlying DHT structure (e.g., Chord [33]). To a certain level
(fmin) no objects are stored (to avoid the bottleneck of higher-layer
nodes) or to avoid toomuch fragmentation (fmax). Each peer caches
direct links to the children of the quadtree nodes it is covering.
Thus, it takesO(log n) hops to find an fmin-node and then a constant
number of steps to reach the relevant leaves. This number of steps
also has to be processedwith data objects without an extent which
are stored at level fmax. In HiSbase, no additional routing steps
are necessary. HiSbase discovers the relevant region directly and
routes to the responsible peer using O(log n)messages.
Also based on quadtrees, an on-line balancing algorithm for

frequent changes in data hot spots has been described [32]. The
quadtree leaves are mapped on a skip graph [3] layer using a
space filling curve. While the concept is similar to Z-quadtrees,
peers need to cover quadtree leaves on the same tree level while
in HiSbase there is no such restriction. Accounting for stable
data distributions, e-science communities might not benefit as
much from such an approach as from techniques increasing query
throughput.
How to achieve load balancing in one-dimensional, range-

partitioned data is described in [11,2]. The authors of [11] show
that load balancing schemes for range-partitioned data in highly
dynamic P2P networks either need to adjust the load between
neighbors or need to change peer positions within the range.
SCRAP is an extension of [11] tomulti-dimensional data. In [2], only
representative values of the data ranges are maintained in the skip
graph. Load balancing between these data ranges is achieved by
arranging less-filled (open) buckets close to full (closed) buckets.
HotRod [23] addresses query hot spots on one-dimensional data
by replicating popular data ranges on additional rings. Their query
load-balancing technique could be integrated with our data load-
balancing.
P-Ring [7] addresses data skew in an orthogonal manner in

comparison to HiSbase. While HiSbase adapts the buckets of the
histogram data structure to data skew and distributes these across
the cooperating peers, P-Ring has the notion of ‘‘helper peers’’
that support peers which are overloaded by skewed insertions
either by data redistribution between neighbors or by merging
their data into a neighbor’s range. Considering multi-dimensional
range queries, P-Ring would need to approximate the query area
with multiple one-dimensional intervals. Using the insertion rate
of 4 data items per second as in the simulation study of P-Ring,
importing 80 million objects would last 33 weeks (20 million
seconds) which is inappropriate for e-science communities having
terabyte-scale data sets.
Related work in sensor networks (e.g., [1]) illuminates aspects

of data distribution and load balancing from a different perspective
where data is created within the network. Identifying synergies
betweenour capabilities to directly support data sets on a terabyte-
scale with billions of records and the existing approaches to on-
line load-balancing is an interesting and challenging task for future
research.

7. Conclusions and future work

In order to use P2P technologies for data-intensive e-science
applications on the Grid, we argue that peers require additional
distributed information, such as a histogram data structure.
HiSbase allows e-science communities to build up decentralized
and cooperative information networks and offers a framework
to design histogram data structures for accommodating specific
data characteristics and dominant query patterns. The histogram
data structure defines a partitioning scheme to benefit from high
throughput via parallelism and high cache locality and is also used
as routing index for increased flexibility. HiSbase complements
existing community-solutions. Given the enormous variety of use
cases and applications it is unlikely to find a single best solution.
Future aspects comprise support for the IVOA Astronomical Data

Query Language (ADQL) and to investigate other data intensive e-
science applications such as data mining.

References

[1] M. Aly, K. Pruhs, P.K. Chrysanthis, KDDCS: A load-balanced in-network data-
centric storage scheme for sensor networks, in: Proc. of the ACM Intl. Conf. on
Information and Knowledge Management, Arlington, VA, USA, 2006.

[2] J. Aspnes, J. Kirsch, A. Krishnamurthy, Load balancing and locality in range-
queriable data structures, in: Proc. of ACM Symposium on Principles of
Distributed Computing, St. John’s, Newfoundland, Canada, 2004.

[3] J. Aspnes, G. Shah, Skip graphs, in: Proc. of the ACM/SIAM Symposium on
Descrete Algorithms, Baltimore, MD, USA, 2003.

[4] F. Banaei-Kashani, C. Shahabi, SWAM: A family of access methods for
similarity-search in peer-to-peer data networks, in: Proc. of the ACM Intl. Conf.
on Information and Knowledge Management, Washington, DC, USA, 2004.

[5] R. Braumandl, A. Kemper, D. Kossmann, Quality of service in an information
economy, ACM Transactions on Internet Technology 3 (4) (2003) 291–333.

[6] A. Carlson, H. Böhringer, T. Scholl, W. Voges, Finding galaxy clusters using grid
computing technology, in: Proc. of the IEEE Intl. Conf. on e-Science and Grid
Computing (demo), Bangalore, India, 2007.

[7] A. Crainiceanu, P. Linga, A. Machanavajjhala, J. Gehrke, J. Shanmugasundaram,
P-Ring: An efficient and robust P2P range index structure, in: Proc. of the ACM
SIGMOD Intl. Conf. on Management of Data, Beijing, China, 2007.

[8] H. Enke, M. Steinmetz, T. Radke, A. Reiser, T. Röblitz, M. Högqvist, AstroGrid-
D: Enhancing astronomic sciencewith grid technology, in: Proc. of the German
e-Science Conference, Baden-Baden, Germany, 2007.

[9] R.A. Finkel, J.L. Bentley, Quad trees: A data structure for retrieval on composite
keys, Acta Informatica 4 (1974) 1–9.

[10] V. Gaede, O. Günther, Multidimensional access methods, ACM Computing
Surveys 30 (2) (1998) 170–231.

[11] P. Ganesan, M. Bawa, H. Garcia-Molina, Online balancing of range-partitioned
data with applications to peer-to-peer systems, in: Proc. of the Intl. Conf. on
Very Large Data Bases, Toronto, Canada, 2004.

[12] P. Ganesan, B. Yang, H. Garcia-Molina, One torus to rule them all: Multi-
dimensional queries in P2P systems, in: Proc. of the Intl.Workshop on theWeb
and Databases, Maison de la Chimie, Paris, France, 2004.

[13] I. Gargantini, An effective way to represent quadtrees, Communications of the
ACM 25 (12) (1982) 905–910.

[14] J. Gray, M.A.N. Santisteban, A.S. Szalay, The Zones algorithm for finding points-
near-point or cross-matching spatial datasets, Tech. Rep. MSR-TR-2006-52,
Microsoft Research, Microsoft Cooperation, Redmond, WA, USA, Apr. 2006.

[15] J. Gray, A. Szalay, The world-wide telescope, Communications of the ACM 45
(11) (2002) 50–55.

[16] D. Hilbert, Über die stetige Abbildung einer Linie auf ein Flächenstück,
Mathematische Annalen 38 (1891) 459–460.

[17] R. Huebsch, J.M. Hellerstein, N. Lanham, B.T. Loo, S. Shenker, I. Stoica, Querying
the internet with PIER, in: Proc. of the Intl. Conf. on Very Large Data Bases,
Berlin, Germany, 2003.

[18] D. Kossmann, The state of the art in distributed query processing, ACM
Computing Surveys 32 (4) (2000) 422–469.

[19] R. Kuntschke, T. Scholl, S. Huber, A. Kemper, A. Reiser, H.-M. Adorf, G. Lemson,
W. Voges, Grid-based data stream processing in e-Science, in: Proc. of the IEEE
Intl. Conf. on e-Science and Grid Computing, Amsterdam, The Netherlands,
2006.

[20] W. O’Mullane, N. Li, M. Nieto-Santisteban, A. Szalay, A. Thakar, J. Gray, Batch is
back: CasJobs, serving multi-TB data on the Web, in: Proc. of the Intl. Conf. on
Web Services, Orlando, FL, USA, 2005.

[21] J. Orenstein, T. Merrett, A class of data structures for associative searching,
in: Proc. of the ACM SIGACT-SIGMOD Symp. on Principles of Database Sys.,
Waterloo, Ontario, Canada, 1984.

[22] F. Pentaris, Y. Ioannidis, Query optimization in distributed networks of
autonomous database systems, ACM Transactions on Database Systems 31 (2)
(2006) 537–583.

[23] T. Pitoura, N. Ntarmos, P. Triantafillou, Replication, load balancing, and
efficient range query processing in DHT data networks, in: Proc. of the Intl.
Conf. on Extending Database Technology, Munich, Germany, 2006.

[24] V. Poosala, Y.E. Ioannidis, P.J. Haas, E.J. Shekita, Improved histograms for
selectivity estimation of range predicates, in: Proc. of the ACM SIGMOD Intl.
Conf. on Management of Data, Montreal, Quebec, Canada, 1996.

300 T. Scholl et al. / Future Generation Computer Systems 25 (2009) 290–300
[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker, A scalable content-
addressable network, in: Proc. of the ACM SIGCOMM Intl. Conf. on Data
Communication, 2001.

[26] A.I.T. Rowstron, P. Druschel, Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems., in: Proc. of the IFIP/ACM Intl.
Conf. on Distributed Systems Platforms (Middleware), Heidelberg, Germany,
2001.

[27] H. Samet, The Design and Analysis of Spatial Data Structures, AddisonWesley,
1990.

[28] H. Samet, Foundations of Multidimensional and Metric Data Structures,
Morgan Kaufmann, 2006.

[29] T. Scholl, B. Bauer, B. Gufler, R. Kuntschke, D. Weber, A. Reiser, A. Kemper,
HiSbase: Histogram-based p2p main memory data management, in: Proc. of
the Intl. Conf. on Very Large Data Bases (demo), Vienna, Austria, 2007.

[30] T. Scholl, R. Kuntschke, A. Reiser, A. Kemper, Community training: Partitioning
schemes in good shape for federated data grids, in: Proc. of the IEEE Intl. Conf.
on e-Science and Grid Computing, Bangalore, India, 2007.

[31] P. Schücker, H. Böhringer, W. Voges, Detection of X-ray clusters of galaxies
by matching RASS photons and SDSS galaxies within GAVO, Astronomy &
Astrophysics 420 (2004) 61–74.

[32] Y. Shu, B.C. Ooi, K.-L. Tan, A. Zhou, Supportingmulti-dimensional range queries
in peer-to-peer systems, in: Proc. of the IEEE Intl. Conf. on Peer-to-Peer
Computing, Konstanz, Germany, 2005.

[33] I. Stoica, R. Morris, D.R. Karger, M.F. Kaashoek, H. Balakrishnan, Chord: A
scalable peer-to-peer lookup service for internet applications, in: Proc. of the
ACM SIGCOMM Intl. Conf. on Data Communication, San Diego, CA, USA, 2001.

[34] E. Tanin, A. Harwood, H. Samet, Using a distributed quadtree index in peer-to-
peer networks, VLDB Journal 16 (2007) 165–178.

[35] S. Venugopal, R. Buyya, K. Ramamohanarao, A taxonomy of data grids for
distributed data sharing, management, and processing, ACM Computing
Surveys 38 (1) (2006) 3.

[36] B. Zhao, L. Huang, J. Stribling, S. Rhea, A. Joseph, J. Kubiatowicz, Tapestry: A
resilient global-scale overlay for service deployment, IEEE Journal on Selected
Areas in Communications 22 (1) (2004) 41–53.

Tobias Scholl is a Ph.D. student at the Database Systems
Group in the Department of Computer Science at the Tech-
nische Universität München, Germany. He graduated from
the University of Passau, Germany, in 2005. His current re-
search interests include data management within scien-
tific communities, P2P systems, Grid Computing, and data
stream processing.

Bernhard Bauer is a Diploma Candidate in the Depart-
ment of Computer Science at the Technische Universität
München, Germany. His research interests include ma-
chine learning, data management and P2P systems.
BenjaminGufler is a Ph.D. Candidate in the Department of
Computer Science at the Technische Universität München,
Germany. He received a Diploma in Computer Science
from Technische Universität München in 2006. His re-
search interests include data mining, distributed algo-
rithms and grid- and p2p-computing.

Richard Kuntschke is a Ph.D. student at the Database
Systems Group in the Department of Computer Science
at the Technische Universität München, Germany. He re-
ceived his Diploma (equivalent to a Master’s) degree from
the University of Passau, Germany, in 2003. His current
research interests include XML data management, data
stream processing, and query optimization in distributed
data stream management systems.

Angelika Reiser is a senior researcher at the Database
Systems Group in the Department of Computer Science
at the Technische Universität München, Germany. She
graduated from the University of Bonn and received her
Ph.D. from the Technische Universität München. She is
currently mainly interested in the wide field of data
exploration.

Prof. Alfons Kemper studied Computer Science at the
University of Dortmund from 1977–1980 and, thereafter
at the University of Southern California, Los Angeles, USA,
from 1980 to 1984. He completed his M.Sc. in 1981 and
his Ph.D. in 1984, both at USC. From 1984 until 1991 he
was an Assistant Professor at the University of Karlsruhe,
Germany. In 1991 he became Associate Professor at
the RWTH Technical University Aachen, Germany. From
1993 until 2004 he was a Full Professor for Database
Systems at the University of Passau, Germany. Starting
in 2004 he holds the Chair for Computer Science with

emphasis on Database Systems at the Technische Universität München (TUM),
Germany. His research interests are in the realization of highly scalable, distributed
database systems, data stream management, peer-to-peer information systems,
grid computing, query optimization and dynamic information fusion of Internet
data sources to cope with the ever growing data explosion using automated
analysis and query processing techniques. Beside numerous international research
publications he is the author of the market leading German database textbook,
which is currently available in its sixth edition by Oldenbourg-Verlag.

	Scalable community-driven data sharing in e-science grids
	Introduction
	Challenges
	HiSbase Architecture
	Contributions

	Sample application domain: Astrophysics
	Locality preservation
	Data skew
	Histogram data structures
	Z-quadtree: A histogram based on quadtrees
	Related histogram data structures

	Architectural design
	Training phase (Histogram build-up)
	HiSbase network
	Mapping nodes to regions
	Evolving the histogram
	Node arrival
	Node departure

	Data distribution (feeding)
	Query processing
	Query load-balancing

	System evaluation
	Throughput measurements
	Single peer instance
	Multi-peer instance
	AstroGrid-D and PlanetLab instance

	Related work
	Conclusions and future work
	References

