Future Generation Computer Systems 27 (2011) 20-31

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs e

Extending the SOA paradigm to e-Science environments

Andrea Bosin®P, Nicoletta Dessi®*, Barbara Pes®

2 [stituto Nazionale di Fisica Nucleare, Sezione di Cagliari, Italy
b Universita degli Studi di Cagliari, Dipartimento di Matematica e Informatica, Via Ospedale 72, 09124 Cagliari, Italy

ARTICLE INFO ABSTRACT

Artic{e history: In the business world, Service Oriented Architecture (SOA) has recently gained popularity as a new

Received 20 November 2009 approach to integrate business applications. In a similar way, scientific workflows can accomplish

g‘}c?"zegllg revised form the automation of large-scale e-Science applications. However, the use of workflows in scientific
uly

environments differs from that in business environments. Scientific workflows need to handle large
amounts of data, deal with heterogeneous and distributed resources such as the Grid, and require
specialized software applications that are written in diverse programming languages, most of which are
Keywords: not popular in business environments.
e-Science In this paper, we analyze the preparedness and the shortcomings of the SOA paradigm in addressing
Distributed systems the needs of e-Science and the extent to which this can be done. The paper identifies the characteristics
Workflow management of a Virtual Organization providing scientific services, and presents a model placing particular emphasis
Web Services on BPEL processes as a mean for supporting the interaction with Web Services. We discuss the challenges
encountered in the seamless integration of BPEL processes within an e-Science infrastructure and we
propose a set of complementary infrastructural services. By providing business utilities and automation
technology founded on Web Services, infrastructural services cooperate with BPEL in ensuring on-demand
resource provisioning for the execution of scientific workflows, while addressing some critical issues
such as security, access control and monitoring. Furthermore, the paper presents our experience in
adopting the proposed approach within a collaborative environment for bioinformatics. To illustrate how
a scientific experiment can be formalized and executed, we focus on micro-array data processing, a field
that will be increasingly common in applications of machine learning to molecular biology.

© 2010 Elsevier B.V. All rights reserved.

Accepted 10 July 2010
Available online 17 July 2010

1. Introduction stages, while hiding the complexity associated with programming
)) N)) languages, libraries and hardware infrastructures.

.Re.cent advances in computer science fac111ta.te a paradigmatic Many scientific workflow systems are currently in use [3].
shift in the way researchers conduct modern science, and enable However, each system only tailors some (specific) technical aspect
scientists to validate new research practlces for many SClentlflC such as the use of Computational resources [4_7]' user_friendly
aPPthlQHS such as blology‘ astronomy and particle physics. interfaces [8-10] or applications related to a particular scientific
_ Scientists of today routinely rely on computers and data and domain [11-13]. Often, the monolithic design strategy of scientific
1nf9rmat10nFharmg.ove.rf.the Internet to aldht.henll)lm thellr re;fearclﬁ workflow systems has hindered the development of a common
iictlvmesi Qtten, stc'lenti 1c l%)rl;)gress 1s.ac 1eval € ont3}/1 throug terminology and standards, resulting in systems that support
arge-scale international coflaborations: €xamples are the human solutions that are only suitable for the specific problem at hand
genome project and particle physics experiments. The term e- . . .

. . . oy and for a specific execution environment.

Science [1] refers to this type of large-scale cooperation, within a

- : - . A similar situation occurs in industrial and business domains
typical experimental scenario that requires data to undergo several where a Service Oriented Architecture [14,15] (SOA) is advocated
pre-processing, computing, post-processing and output storage . . . o ’ -

for improving interoperability between systems engaged in

stages. ; s .
s mutually dependent business activities. In the SOA paradigm,

Workflow systems [2] provide specialized computing environ- ; . - ; T . Lo,
ments for automating this process, allowing the scientist to or- functionality provided by business applications is enclosed within

chestrate a set of abstract tasks that represent the experimental ~ Web Service (WS) [16] technology, and this has stimulated a
growing interest in research environments. Exposed as Web

Services, scientific applications can be integrated into complex

* Corresponding author. Tel.: +39 0706758501; fax: +39 0706758504, workflows, which may be deployed on multiple and distributed
E-mail addresses: andrea.bosin@dsf.unica.it (A. Bosin), dessi@unica.it resources. Howe_ver, since Web Serches do not preglude the use of
(N. Dessi), pes@unica.it (B. Pes). other technologies (for example middleware solutions), the point

0167-739X/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.future.2010.07.003

http://www.elsevier.com/locate/fgcs
http://www.elsevier.com/locate/fgcs
mailto:andrea.bosin@dsf.unica.it
mailto:dessi@unica.it
mailto:pes@unica.it
http://dx.doi.org/10.1016/j.future.2010.07.003

A. Bosin et al. / Future Generation Computer Systems 27 (2011) 20-31 21

is not whether the WS technology can be adopted by e-Science
environments, but if it can be done in such a way to access and
virtually integrate a potentially enormous number of physically
distributed resources, belonging to different organizations that
may use a wide variety of mechanisms (schedulers, reservation
systems, control interfaces, authentication, etc.).

Recent work [17,18] has shown that embracing BPEL for build-
ing and enacting service-based workflows in e-Science contexts
still remains a challenging task [3,19], especially when the scien-
tific environment is composed by heterogeneous and distributed
resources whose status (e.g., CPU or storage availability) changes
dynamically [20].

In this paper, we analyze the preparedness and the shortcom-
ings of the SOA paradigm in addressing the needs of e-Science
environments and propose an approach for on-demand resource
provisioning in distributed heterogeneous environments, includ-
ing the Grid.

Our proposal borrows many SOA concepts and standards from
the business domain, including the adoption of BPEL. A motivation
of our approach is almost evident: the SOA paradigm, and in
particular Web Services and BPEL, are based on widely accepted
standards and are supported by many software tools, both open
source and commercial.

Our goal is not to show that SOA is the best way for
implementing scientific workflows, but rather to suggest a new
direction, moving workflow systems from the class of specialized
applications towards the class of open standards service-based
systems for e-Science environments. This will allow scientific
workflow systems to achieve their potential as a new paradigm for
supporting the science socialization invoked as the next important
step in e-Science environments [12].

Moreover, the paper aims at:

e presenting an in-depth understanding of the fundamental
issues underpinning the application of SOA for e-Science
purposes;

e exposing the necessary background for addressing the chal-
lenges associated with the establishment of an e-Science envi-
ronment; and

e suggesting a way for the exploitation of the SOA approach in the
e-Science domain.

The paper is organized as follows. First, we introduce the
basic characteristics of a scientific Virtual Organization (VO),
whose participants are characterized by the common purpose
of executing scientific experiments through the design and
enactment of workflows. Then, we analyze the major limitations
regarding the integration of SOA and the Grid, and the execution
of BPEL workflows. After that, we discuss an on-demand resource
provisioning system that can interface a heterogeneous distributed
computing infrastructure including the Grid. Finally, a reference
implementation is presented and validated in the scenario of a
bioinformatics experiment designed and executed through a BPEL
workflow.

2. Extending the SOA paradigm to scientific virtual organiza-
tions

In this section we model a collaborative environment for a
scientific VO, i.e., a coordinated group of organizations (institutions
and/or individuals) who collaborate towards a common scientific
goal and share, on the basis of some policies, a set of resources
(computing, storage, instruments and data) and services.

Organizations offer services to their users (researchers that con-
sume services), and consume services provided by other organi-
zations. The collaboration between organizations promotes the
development and deployment of value-added services that users

throughout the whole VO can consume. Organizations manage
resources (computing, storage, instruments and data which live
encapsulated within the organizations and support them in accom-
plishing their goals), infrastructural components (architectural com-
ponents embedding the technology that supports collaboration),
business components (software components providing scientific ap-
plications) and business processes (workflows expressing scientific
experiments).

Every organization belonging to a scientific VO has to face the
problem of interoperating a number of software components:

o Workflows define and coordinate complex scientific experi-
ments in terms of business processes.

e Service interfaces expose the business logic of scientific
applications. They support communication contracts (message-
based communication, formats, protocols, security, etc.) that
different consumers require.

e Components implement business rules and perform business
tasks related to a specific scientific domain, regardless of
whether a scientific process consists of a single service or an
orchestrated workflow.

e Data access components provide a standard and abstract way
for accessing the storage systems as required by most services
at some point during a scientific process.

e Ports are access points to services as they offer a general schema
for the publish-and-subscribe pattern.

e Data structures wrap datasets, data-readers or XML streams
that are used internally for data exchange between compo-
nents.

Each partner in a VO has the same abstract organization shown
in Fig. 1 and described below.

The bottom layer, namely the fourth, represents various
computing, storage and instrumentation facilities that address a
large spectrum of resources. At one end of the computing spectrum
are desktop/laptop hardware and software for simple data analysis
and visualization. At the other end we find resources organized
in clusters managed by some kind of lower-level scheduler (e.g.
LSF [21], SGE [22]), possibly offering the image of a single
system through the use of Grid middleware such as gLite [23] or
Globus [24]. Legacy tools and applications, database systems and
interfaces to devices are also found at this level.

One level higher, the third layer consists of the interfaces and
software assets to computing, storage and instrumentation. It is
provided by services and components that manage and allow
the access to heterogeneous, distributed resources and widely
deployed infrastructures. The services at this level abstract the
access to resources in such a way to almost completely decouple
it from the low-level details (hardware, operating systems,
schedulers, etc.).

This layer is enabled by:

e Infrastructure services built on various middleware compo-
nents and APIs, etc.

e Grid collective services supporting standards like the Job
Submission Description Language (JSDL) or OGSA-DAI (Open
Grid Service Architecture Data Access and Integration) services.

The second layer includes scientific business services that can
be invoked as standalone activities or can be orchestrated by a
workflow engine. Such services are fine-grained, loosely coupled
and self-contained and automate experimental tasks, provide
value to the collaborative environment and are part of standard
experiment processes. According to the technology, we can find

e Web Services natively developed from WSDL documents, and
e Web Services that wrap existing software applications (e.g.,
scientific libraries).

22 A. Bosin et al. / Future Generation Computer Systems 27 (2011) 20-31

Processes
(workflows)

5"/'0\,

Scientific Services

/”}%

Infrastructural Services

-

Computing,
Storage &
Instrumentation
Laptops
Databases v‘ ?vv
Packaged
I Applications Smentmc instruments Grids

Fig. 1. The abstract organization of a VO partner.

Finally, the workflow layer manifests the business processes
related to scientific experiments and consists of BPEL workflows
that orchestrate the services belonging to the second and third
levels.

Among the technologies enabling the above scenario, the Grid
takes a leading role since it addresses issues related to access
provisioning, coordinated resource sharing, usage and security
policies, etc. Moreover, Open Grid Service Architecture (OGSA)
defines an open and extensible framework for merging Web
Services and Grid technologies.

The VO we consider is a Grid-aware cooperative system, where
organizations live on the Internet and offer their services as Web
Services described by WSDL standards.

3. Integration issues

The integration of the different technologies belonging to each
layer of the collaborative environment presented in the previous
section raises a number of problems. Some of these are discussed
in the following subsections.

3.1. Resource management

Scientific services are executed on resources, including the
Grid, which are heterogeneous and geographically distributed. In
addition, a scientific VO may comprise many different institutions
and thousand of researchers that collectively control hundred
or thousands of computers. Each individual researcher and
institution may participate in, and contribute resources to,
multiple collaborative projects that can vary widely in scale,
lifetime and application domain. A standard way to manage such
resources in order to allow a researcher to use only one mechanism
to request and use these resources is then mandatory.

OGSA services provided by Grid environments, according to
OGSA WSRF Basic Profile 1.0 [25], are based on the WS-RF [26]
specifications which are concerned with the creation, addressing,
inspection and lifetime management of stateful abstract resources,
namely WS-Resources. The properties of a WS-Resource are
described by a resource property document and addressed by
means of endpoint references (EPRs). However, a general scientific
VO is composed not only of Grid resources, but also of other
heterogeneous and distributed resources that are managed by a

wide variety of mechanisms (schedulers, queuing systems, etc.). In
addition, many existing Web Services developed according to the
WS-I Basic Profile 1.1 [27] are not concerned with WS-Resources,
and most of the applications running on the Grid are not even Web
Services.

3.2. Scientific workflow features

Scientific workflows have significant departures from business
workflows.

The primary difference stems from the fact that business work-
flows are built on a set of fixed repetitive tasks, while a scientist
is systematically altering the data and the execution patterns in
the workflow looking for new interesting or unexpected outcomes.
This means that a single workflow often requires many applica-
tions to be executed. Such applications are built with many differ-
ent technologies; i.e., they can be provided as libraries or binaries,
delivered as Web Services or web portals. Moreover, these appli-
cations are heterogeneous in their logic (since they can fit a vari-
ety of domains) and in their execution, all dealing with different
requirements (i.e., high-performance execution, graphic facilities,
fast database access, data streaming, etc.).

The second difference featuring scientific workflows is in the
need for processing large amounts of data from many sources
to gain the information needed during the experiment or to
compare results with. Thanks to the global network, the amount
of data available in public and specialized databases is rising
exponentially. Data can be accessed in a variety of a ways; often it is
possible to download data directly from public repositories, while
access to databases requires proper wrappers. Additional problems
occur in pipelining, i.e., in passing data between applications,
because this requires managing input and output formats.

Finally, one of the foundations of modern science is that
experiments must be repeatable. This suggests that the tasks
making up the scientific workflows should be stored and reused
in other experiments. After successfully designing and executing a
workflow, a scientist would like to save the workflow description
and to publish it, so all the members of the VO can execute the
same workflow with their own data. This aspect is very important
for scientific reproducibility.

A. Bosin et al. / Future Generation Computer Systems 27 (2011) 20-31 23

3.3. Integrating services in BPEL processes

As with a business application, a scientific workflow is a
whole that expresses the experiment strategy, and BPEL offers a
standardized way to describe its functional composition. However,
BPEL has some shortcomings that limit its usability in scientific
VOs. These shortcomings do not originate from the BPEL language
“per se”, but from some weaknesses exposed by BPEL in workflow
execution.

One drawback concerns the potential offered by BPEL in
procuring resources on heterogeneous distributed environments,
including the Grid. Dynamic resource provisioning is not part of
the language, but it is an essential feature of the reference model
proposed in Fig. 1, where the resources belonging to the fourth
layer may change during workflow execution, or may not even
exist before they are requested and created.

In BPEL, partner links are references to the Web Service
interfaces participating in the process and they contain the
endpoint reference of the services. Such endpoints are usually
static and come from the WSDL documents describing the
services, but they can be assigned dynamically during process
execution, thus allowing for a true dynamic provisioning of service
implementations.

Unfortunately, BPEL does not provide a simple way to work
with WS-RF services and resources. Even if is possible to manually
handle SOAP headers within a BPEL process, this is cumbersome
and error prone. Direct interaction with OGSA-compliant Grid
services is then a problem.

Moreover, available BPEL workflow engines are not fully inter-
operable with the security features of existing Grid middleware.
Such features are, for example, the support of the Globus toolkit in-
frastructure that relies on proxy certificates, or the support of SAML
assertions to present additional signed security tokens.

Also, the long-running nature of scientific workflows imposes
the availability of mechanisms for progress monitoring, inspection
of intermediate results, and error handling at runtime.

Error and compensation handlers offered by BPEL operate at
design time and do not provide appropriate support to workflow
monitoring. This makes it difficult to control the irregular
behaviours related to infrastructural failures such as network
timeouts and software faults in invoked services. Consequently,
compensation mechanisms for workflow fault-tolerant execution
are regarded as desirable.

The second drawback is related to the data-intensive nature
of many scientific experiments. Input data must be transferred
to the data-processing services, while output data must be
transferred back from the same services. BPEL follows the concept
of centralized control and centralized data flow. That means that
the BPEL engine is the broker for all message exchanges between all
the Web Services participating in the workflow. Embedding huge
data sets in SOAP messages is possible, but this is not a suitable
solution from the point of view of performance, and may lead to
serious problems of scalability of the BPEL engine. On the contrary,
data transfers should be minimized and storage resources for
parking temporary data should be available in the neighbourhood
of the computing resources needing them.

4. Infrastructural services for on-demand resource provision-
ing

4.1. Introduction

The above issues prevent the straightforward application of
the SOA paradigm within the proposed scientific VO. As a
possible solution, we propose a set of Web Services, namely
infrastructural services, which implement a dynamic resource

provisioning system for the execution of scientific business
services orchestrated by a standard BPEL workflow.

Both the BPEL process and the infrastructural services comple-
ment each other in workflow execution, but we prefer to keep a
clear separation of concerns between them, in such a way as to de-
couple BPEL workflow and resource management.

In more detail, the infrastructural services are responsible for

e the computing resources’ life cycle: allocation, activation,
monitoring, de-allocation and accounting;

e access to computing resources; and

e access to (temporary) storage resources needed by scientific
services during workflow execution.

The BPEL process is responsible for

e obtaining resources from the infrastructural services and using
them for the execution of scientific business services; and

e managing the control and data flow of the scientific business
services.

In designing infrastructural services we adopt a decentralized
approach that categorizes services as global and local.

In more detail, global services are the only components that
interact with the workflow engine. They are included into a
BPEL process as partner links. Global services carry on the
resource procurement and provide all the functionalities for
user registration and authentication. In addition, they maintain
information about the resources provided and have the capability
to monitor the resources in order to obtain up-to-date information
about their status.

Local services are responsible for managing the resources
of specific types (e.g., Grid-aware resources), needed for the
execution of the scientific services. They can be invoked exclusively
by the global services and act as their intermediaries in interfacing
with the lower-level middleware.

It is worth noticing that a BPEL process is a Web Service itself.
We have then a hierarchy of services (BPEL process, global and
local services) in which a global service may have to act as a local
service for the global BPEL workflow and can be executed by a BPEL
engine. This enables one to recursively partition Web Services into
aggregations of subservices, hiding the details of the aggregation
to higher-level services that BPEL orchestrates. This in accordance
with the SOA privacy principles which allow designing services at
the enterprise level (based on intra-company services), and then
exposing such services in a public repository.

In this sense, global services can be considered as public
services. They are accessible, in a standard way, by users and can be
orchestrated by BPEL. In contrast, local services are private services
since they can be invoked exclusively by the global services that are
responsible for their coordination.

A distinctive aspect of the proposed solution is that it operates
as a bridge that connects the two basic components of the
SOA architecture, the service client (i.e., the BPEL instance)
and the scientific business service providers, by means of the
infrastructural services. As scientific services are needed, the BPEL
engine invokes the infrastructural global services - which are
organized to coordinate an integrated and self-contained set of
local services - for procuring the resources needed for their
execution.

4.2. Service definition

The most important global and local services are shown in Fig. 2
together with the other parties, BPEL processes and resources, and
are described below.

The Resource Allocation (RA) global service implements the
public interface for resource provision and management. It accepts

24

Resource Allocation
2

1 WsDL

BPEL Engine

N

\
U\

R .

Monitor

WORKFLOWS GLOBAL SERVICES

A. Bosin et al. / Future Generation Computer Systems 27 (2011) 20-31

LSF cluster &
middleware

1
1
Resource & Security E
Manager (LSF) !

|

1

1

Resources & Business
Services (WSDL)

User desktfop

Resource & Security
Manager (gLite)

1
'
'
'
'
|
|
|
|
|
|
:
|

WSDL ,
|
|
|
|
|
|
|
|
|
|
|
|
'

glite grid &
middleware

LOCAL SERVICES RESOURCES

Fig. 2. Global and local services.

user requests for resource allocation/release, notifies users when
resources are available, keeps track of the resource endpoint
and status, and coordinates other infrastructural services. It
provides logging and monitoring capabilities for all the resources
provisioned to workflows.

The Proxy global service acts as an intermediary for routing
SOAP messages from BPEL to scientific business services and
vice versa. Its Business Service Proxy (BSP) component accepts all
user requests directed to scientific services and routes them to
the service endpoint (which may be on a private network); in
the case of request-response messages it can route the service
response back to the user. The Notification Proxy (NP) component
is responsible for routing the notification messages generated by
the scientific services to the user.

The Storage Manager (StM) global service provides temporary
storage to data-intensive scientific business services. When the
output from a scientific service serves as input for a subsequent
service invocation, it can be saved instead of transferring it
back and forth between BPEL processes. The Storage Manager
assigns a public URL to the data so that it can be easily retrieved
when needed. Many StMs can coexist, thus ensuring optimal
performance and scalability.

The Monitor global service is a simple service that shows
information about the resource context related to scientific
services, such as resource identifier, status, WSDL port type or last
operation invoked on the scientific service.

Resource allocation and user authentication are delegated to
the specific local services.

The Resource Manager (RM) local services are wrappers over
the underlying middleware or legacy schedulers. Their role is to
accept requests from the RA, verify user credentials by invoking
the Security Manager, and dispatch them to the underlying
middleware/scheduler.

The Security Manager (SM) is a local service that addresses
security and access control requirements according to the
policies enforced on the resources by the individual organizations
belonging to the VO. User authentication mechanisms are often
resource specific, and can range from no authentication for publicly
available resources to proxy certificates for Grid users or to
digitally signed security tokens for LDAP users with a public key

certificate. If the authentication is successful, the Security Manager
issues an authorization token (e.g., a session password) that grants
access to the given resource.

The component diagram in Fig. 3 shows the dependencies
between the various infrastructural services.

4.3. Service interaction

To show the role of infrastructural services in the execution
of a scientific workflow, let us consider a sample collaborative
scenario in which a researcher belonging to a scientific VO wishes
to execute a scientific application and view the result. The VO
provides a number of computing resources, shown in the right part
of Fig. 2, and grants to the researcher access to a cluster managed by
some batch scheduler (LSF in Fig. 2). Both the scientific application
and the viewer are Web Services, and the former needs a suitable
computing resource to be executed, while the latter runs on the
user desktop. The flow of execution is described by a BPEL process,
and the researcher enacts it by means of a BPEL engine (which
could also be running on the user desktop).

The arrows numbered from 1 to 12 in Fig. 2 show a typical col-
laboration sequence between the BPEL process, infrastructural ser-
vices and resources. Arrows with dashed lines represent a one-way
interaction while continuous lines represent request-response in-
vocations.

1. The Resource Allocation global service is invoked by the BPEL
process and it is in charge of provisioning a suitable computing
resource to execute the given scientific service; the resource
will be allocated on the LSF cluster for which the researcher has
provided authentication credentials; the BPEL process itself is
set as the endpoint for all asynchronous notifications; if the
invocation is successful (i.e., steps 2 and 3 are executed without
errors) the resource identifier is returned.

2. The Resource Manager and Security Manager local services
responsible for the LSF cluster are invoked by the Resource
Allocation global service; the authentication credentials are
verified.

3. If the credentials are valid, the LSF scheduler is directed to
allocate aresource (R1in Fig. 2) and, when available, to start on
it the given scientific service (the service binary is downloaded
on-the-fly from a network URL).

A. Bosin et al. / Future Generation Computer Systems 27 (2011) 20-31 25

Storage Manager
' -, &

! query

Monitor

5 i ’delegate

Resource Manager

-, query

3
: : Security Manager

Resource Allocation

read,fwrit.e- Faass

g Scientific Business Service

" queryjupdate

! Forwarding

queryjupdate - " "
Proxy

Fig. 3. Dependencies between infrastructural services.

4. When aresource is available and the scientific service has been
started, an asynchronous notification is sent to the Resource
Allocation service; the notification message contains all the
information about the resource context (resource identifier,
private endpoint, etc.); a mapping between the resource
identifier and its context is then created.

5. An asynchronous notification is sent to the BPEL process;
the notification message contains the resource identifier and
the public endpoint reference of the scientific service, which
points to the Proxy global service.

6. The BPEL process assigns the public endpoint reference of the
scientific service to the corresponding partner link and invokes
it with the input message; the public endpoint points to the
Proxy, so the message is sent to the Proxy; the input message
contains the resource identifier.

7. The Proxy uses the resource identifier as an index and retrieves
the private endpoint of the scientific service from the resource
context; then it forwards the input message to the scientific
service.

8. The scientific service performs its computation on the data
contained in the input message (the input message may also
indicate that data must be retrieved from a network URL,
e.g., from the Storage Manager); then it sends the result to
the Storage Manager global service for temporary storage; the
Storage Manager returns a public URL for retrieving the saved
data.

9. The scientific service sends an asynchronous notification to
the Proxy; the notification message contains the resource
identifier and the result in the form of a public URL.

10. The Proxy Service notifies the BPEL process.

11. The BPEL process invokes the viewer service on the user
desktop (R3 in Fig. 2) with an input message containing the
public URL of the result to be viewed.

The viewer retrieves the result previously saved (step 8),
from the Storage Manager public URL, and shows it to the
researcher.

12.

In the sample scenario presented above, and in the case
study/experiment presented in Section 8, resource allocation is
done using real-life authentication such as Grid proxy certificates
or digital signature, but the access to scientific services is granted
simply by checking the resource identifier contained in the input
messages. In the general case, where a stronger authentication is
needed, an authorization token (e.g., a session password) issued
by the Security Manager should also be used and HTTPS protocol

should be used to transport SOAP messages (as with Grid Services).
In a prototype environment this is an additional complication, and
we have not yet implemented it.

5. Implementation details

In this section, we present an overview of the prototype
implementation that aims to provide seamless access to the
different resources available through our local VO infrastructure,

e.g.,

e Clusters of Linux servers managed by LSF and SGE.

e Access to a nation-wide gLite-based Grid infrastructure (IGI,
Italian Grid Infrastructure [28]).

e Standalone servers and desktop computers.

The programming framework we have chosen is Java 1.6,
thanks to its support to Web Services, servlets, SOAP, HTTP,
gLite and security. The requirement of the availability of Java
Runtime Environment (JRE) for the execution of scientific services
is not a problem, since JRE can be installed even on-the-fly in a
download-install-run-uninstall fashion.

As already discussed, in the global services we have avoided
sophisticated WS-* protocols, such as WS-RF or WS-Security,
which are difficult to use in conjunction with BPEL and need
extra Java libraries. WS-Addressing has been employed for the
management of dynamic endpoint references of scientific business
services. All the information exchanged through SOAP messages
has been placed into the body of the messages.

5.1. Resource description

In our vocabulary, a resource is a logical entity which spans a
subset of the computing and storage elements available to the VO,
and has its own context, e.g., the resource properties document of
a WS-Resource. The complete context is in fact unnecessary to the
BPEL process provided it knows:

e the resource identifier to establish correlations;
o the authorization token that grants access to the resource; and

e the resource endpoint reference to perform dynamic assign-
ment to the corresponding partner link.

26 A. Bosin et al. / Future Generation Computer Systems 27 (2011) 20-31

<resourceRequest>
<notificationEndpoint>
<add:EndpointReference

<add:Address>

</add:Address>
</add:EndpointReference>
</notificationEndpoint>
<BSRequest>

</BSRequest>
<BSRequest>

</BSRequest>
</resourceRequest>

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">

http://10.12.0.6:8100/ResourceAllocatorNotification

Fig. 4. The XML fragment describing a resource set.

In contrast, infrastructural services need the complete context of
each resource to perform the required operations (query, release,
etc.), but this can be managed by keeping a mapping between
resource context and identifier.

To perform a scientific experiment described by a BPEL process,
we usually need one resource for each scientific service, namely a
resource set. A resource set request specifies the endpoint (usually
the BPEL process) to use for the asynchronous notification of
resource availability, and the set of the specific resources. An XML
fragment describing a resource set request is shown in Fig. 4.

For each resource in the resource set, the request specifies the
resource characteristics and the specific scientific business service
to be executed:

e scheduler (e.g.; LSF, SGE or gLite);

e network URL of the scientific service binary;

e endpoint (usually the BPEL process) to use for the asynchronous
notifications from the scientific service;

e resource requirements; and

e authentication credentials (e.g., anonymous user, digitally
signed security token, Grid proxy certificate).

Resource characteristic specification is, in fact, minimal and
depends on the resource type (e.g., Grid rather than LSF); it should
be more general and resource independent.

Fig. 5 shows an XML fragment describing a resource request.

5.2. Resource access and provisioning

When a BPEL process wishes to execute a scientific business
service, a resource is provisioned dynamically by the Resource Al-
location service and an endpoint reference is generated accord-
ingly. Resources typically live on private networks and can access
the Internet through NAT servers, but cannot be accessed from the
Internet. BPEL processes can run anywhere on the network, so a
transparent proxy mechanism is required, both for the invocation
of business scientific services (invoke BPEL activities) and for no-
tifications from the same services (receive BPEL activities). Trans-
parency is important, since BPEL processes should be unaware of
such complications, and a simple and effective solution is to replace
the real private endpoint reference of the scientific service with the
public endpoint reference of the Proxy service, before notifying it
to BPEL. The Proxy acts as an intermediary and routes the messages
to the right destinations. In such a way the Proxy can monitor the
flow of messages and can also detect network problems. Scalability
is not a real issue because multiple Proxy services can be deployed
simultaneously.

Infrastructure services are responsible for resource procure-
ment towards BPEL processes. Global services invoke local services

for specific types of resource, and the mission of the local services
is to interface with lower-level middleware and/or APIs. Often, ex-
isting middleware and APIs are not WS aware, and proprietary in-
terfaces must be used. In our current implementation,

e access to gLite middleware is performed by means of the open-
source jLite [29] library, and

e access to LSF and SGE schedulers is done through the respective
command line interfaces.

5.3. Authentication

Some of the security and authentication issues are discussed
at the end of Section 4. Here we give the details related to our
environment.

e glite authentication: a proxy user certificate is generated
through gLite or jLite command line interfaces and included in
the resource request.

e LSFand SGE authentication: an LDAP server provides password-
based user authentication, but this is not suitable over a
network, and we have added public key certificates for our
users to the LDAP server. User authentication is then performed
by verifying the digital signature placed on an authentication
token provided by the Resource Allocation service upon user
request.

5.4. Data management

As we have already discussed, the pipelining of data-intensive
scientific services can pose a serious limitation to BPEL orchestra-
tion, if data go back and forth inside SOAP messages. The Storage
Manager global service provides storage resources for temporary
data. Scientific services can read and write data directly over the
network to the Storage Manager, without the need of sending them
through BPEL processes. The Storage Manager is a service that im-
plements simple but effective HTTP POST uploads and HTTP GET
downloads. Uploads are available only during resource set lifetime.
Multiple Storage Managers can coexist if scalability is an issue.

5.5. Execution monitoring

BPEL engines may provide facilities for monitoring service
execution, but often they are difficult to use and are not
effective. The general problem of monitoring, fault detection and
compensation is still completely open, and here we are not
proposing a solution, but a tool to aid users in identifying problems
that prevent correct workflow completion. We have implemented
a simple Monitor service which, based on the resource context

A. Bosin et al. / Future Generation Computer Systems 27 (2011) 20-31 27

<BSRequest>
<BSScheduler>LSF</BSScheduler>

<BSNotificationEndpoint>
<add:EndpointReference

<add:Address>

</add:Address>

</wsa:ServiceName>
</add:EndpointReference>
</BSNotificationEndpoint>

<BSCredentials>
<NoAuth/>
</BSCredentials>
</BSRequest>

<BSURL>http://www.dsf.unica.it/~andrea/PrimeNumber. jar</BSURL>

xmlns:wsa="http://schemas.xmlsoap.org/ws/2004/08/addressing">
http://10.12.0.6:8100/PrimeNumberNotification
<wsa:ServiceName portName="PrimeNumberNotificationPort"

xmlns:pn="http://wsdl.prime.cybersar">
pn:PrimeNumberNotification

<BSRequirements>...</BSRequirements>

Fig. 5. The XML fragment describing a resource request.

information collected from the Resource Allocation and Proxy
services, shows some facts about the execution of scientific
business services, such as resource identifier, status, WSDL port
type or last invocation/notification.

6. A collaborative environment for bioinformatics

To illustrate how a scientific experiment can be formalized
and executed in the proposed scientific VO, let us consider a case
study from the bioinformatics field. In particular, we focus on
processing micro-array data, since they exemplify a situation that
will be increasingly common in applications of machine learning
to molecular biology.

6.1. Background

Micro-array technology enables to put the probes for the genes
of an entire genome onto a chip, such that each data point provided
by an experimenter lies in the high-dimensional space defined
by the size of the genome under investigation. Because of the
high cost of micro-array production, the number of replicas in
these experiments is often severely limited, and many laboratories
disseminate their results in the form of public datasets.

Related data are usually N x M matrices, where N is the num-
ber of genes (typically N > 10000) and M is the number of sam-
ples (M < 100). As such, micro-array data are prime examples of
extremely small sample-size but high-dimensional data. The large
volume of data generated by experiments utilizing such essays, as
well as the relatively high experimental noise often associated with
them, require a careful computational analysis.

Gene expression data generated using micro-arrays is generally
used to classify the biologic samples based on the pattern of
expression of all or a subset of genes on the micro-array. Although
classification is by no means a new subject in the literature,
the large and complex multivariate datasets generated by micro-
array experiments raise new methodological and computational
challenges. Excluding a few special cases, finding good classifiers
is known to be a very difficult task in the context of tumour
classifications where gene expression profiles are used as complex
biomarkers.

The construction of a classifier generally proceeds by selecting
an informative set of genes (features or attributes) that can dis-
tinguish between the various classes (feature selection), choosing

Micro-array Data

Classification
Feature Classifier Classifier
Selection Construction Application
Feature Mode!
Ranking Building
Extraction of Mode!
1 top-ranked 1 Validation/
features Refinement
|| Dataset Mode!
filtering Testing

Fig. 6. The schema of the micro-array classification process.

an appropriate mathematical model for the classifier and estimat-
ing parameters of the model based on the “training dataset” of tis-
sues whose classification we know in advance (classifier training)
[30,31]. Finally, the specificity and the sensitivity of the classifier
are tested on the “test dataset”, i.e., a set of data that was not used
in the process of constructing the classifier.

Fig. 6 shows the schema of the micro-array data classification
experiment we consider. In more detail, feature selection can be
decomposed into the following.

e Feature ranking, which orders features according to their
predictive power (by applying some statistical or entropic
evaluation measure).

e Extraction of top-ranked features, which implies defining a
threshold (often based on domain expert experience) to cut off
the ordered list of ranked features.

e Dataset filtering, which reduces the size of the original dataset
by keeping only selected features and removing all the others.

In addition, there are three separate tasks in classifier training.

e Model building, which builds a classification model for a
given training dataset, using classification algorithms such
as Bayesian Networks, Support Vector Machines, k-Nearest-
Neighbour, etc.

28 A. Bosin et al. / Future Generation Computer Systems 27 (2011) 20-31

e Model validation/refinement, which adjusts the model param-
eters in order to obtain its best performance, as evaluated on
a proper validation dataset (which can be extracted from the
original training dataset).

e Model testing, which evaluates the model performance on an
independent test dataset.

Finally, in Classifier Application, the classification model is
applied to a set of unlabeled data, in order to make a prediction
of the class (label) of each new instance.

6.2. Micro-array classification in SOA-enabled cooperative environ-
ments

The utilization of the SOA paradigm for the classification
experiments described in the previous subsection includes Web
Services acting both as data providers for public micro-array
datasets and functionality providers for machine learning and
other artificial intelligence techniques that are widely used and
combined to classify gene expression data. At a minimum, the
environment should provide the following categories of services.

e Data extraction services: a wide variety of useful scientific and
in particular biological datasets are available on the web for
classification experiments. Data can be downloaded from the
repositories provided by many organizations and identified
through an URL address, and usually differ in their format (i.e.,
RES, GCT, CLS, etc.). Data extraction services deal with data pre-
processing in order to map the datasets of interest into a format
suitable for the classification process.

e Data mining services: in terms of experiment design, the clas-
sification process can be partitioned into functional modules,
which we call experiment services, where single computing
functions are isolated and exposed as specific services to facili-
tate modularity and reuse. Typical experiment services are data
mining algorithms and feature selection procedures both avail-
able as open-source or proprietary tools.

e Visualization services; these deal with the proper visualization
of the experiment results in graphs and/or textual descriptions.

When running micro-array classification experiments, file stag-
ing mechanisms must be used for the processing of very large
datasets. Moreover, methods for finding good classifiers are com-
putationally intensive: comparing classifiers and selecting the best
for each micro-array dataset can be a non-straightforward task.
Consequently, the researcher is interested in combining different
algorithms and reusing some pieces of previous work to extract
useful knowledge from data. As such, the utilization of a workflow
system in an SOA environment provides some advantages with re-
gard to experiment orchestration and distributed computing.

6.3. Running micro-array classification experiments

The scientific business services developed in the context of the
chosen case study, presented in detail in the previous subsections,
are as follows.

e Weka Data Mining: a data mining service providing a subset
of the functionalities exposed by the Weka library [32], such
as feature ranking/selection, dataset filtering, classifier training,
classifier testing.

e Bar Chart: a graphical visualization service, which shows the
comparison between the accuracies of different classifiers in the
form a bar chart graph.

e Text Viewer: a textual visualization service, which can be used
to show confusion matrices and other measures related to
classifier test results.

At this point, most of the pieces of our puzzle have been
properly set in place; we are only missing a BPEL engine to
orchestrate them. We have tested a couple of engines, namely Sun
GlassFish v2 [33] in connection with NetBeans 6.5.1 [34], which
provides a graphical BPEL editor (incredibly and unfortunately in
the newer releases SOA support has been removed), and Apache
ODE 2.0b2 [35] deployed into Apache Tomcat 6.0.26 [36].

The interaction diagram in Fig. 7 shows a flow of execution
which illustrates the basic interaction between the SOA compo-
nents, i.e., researcher, BPEL process, infrastructural services and
scientific business services, and which is implemented in all BPEL
processes (obviously in much more complex and interesting ways).

As a practical example, we consider a researcher interested
in running a BPEL process which orchestrates scientific services
in such a way to perform the following experiment: retrieve the
training and test datasets of interest from a public repository
(network URL), build and compare the accuracy of two different
classifiers for an increasing number of selected attributes (by some
attribute selection algorithm), and view the accuracies in a bar
chart diagram as the number of attributes increases. The BPEL
process may be already available or may be created/modified by
the researcher and deployed to the preferred engine.

The resources required to perform the experiment are the
following:

e a graphical desktop workstation for running the visualization
service, which is started manually by the researcher;

e one computing resource for every instance of the data mining
service, provisioned on demand by the Resource Allocation
service; and

e storage resources for storing temporary results, provided by the
Storage Manager service.

To illustrate the existence of different authentication policies,
two categories of researchers or users are considered:

e Users exhibiting a valid gLite public key certificate issued by a
VO federated with IGI and willing to use available IGI resources;
such users are required to supply a valid proxy certificate.

e Anonymous users aiming at carrying out some tests on the
resources of our local LSF cluster; anonymous users do not
supply any credentials.

The input message to the BPEL process provides:

e Input data such as classifier names, URL of training and test
dataset, etc.

e Resource set request (Section 5.1), containing the list of
resources, URL of scientific service binaries, authentication
credentials, etc.

After receiving the input file, the BPEL engine creates a new
workflow instance performing the following activities.

1. Invoke (request-response) RA with resource set request:

a. RA invokes RM responsible for gLite/LSF.

b. RM invokes SM to validate authentication credentials; if
authentication is successful the proper job description is
formatted and submitted to the gLite/LSF for scheduling;
this is done for every request in the set.

c. RA returns the resource set identifier.

2. Receive (asynchronous) the resource set availability notifica-
tion from RA:

a. GLite/LSF schedules the jobs, and data mining service
binaries are downloaded from the specified URL and started.

b. RA is notified of data mining services start-up and of their
context information (private endpoint references, etc.).

c. RA sends to BPEL the list of resource identifiers and public
endpoint references of data mining services.

A. Bosin et al. / Future Generation Computer Systems 27 (2011) 20-31 29

reszarcher : | |BPEL: |

run(input)
requesi(resourceSetRequest) 1

resourceSetld

resourceSetld

ResourceAllocation :

WekaDataMining : A

‘{WekaDataMining ‘B

notify(resourceA) t]

notify(resourceB)

notify(resourceSet)

operation(inputA)
% operation(inputB)

?
]

notify(outputA)

notify(outputB)

view(result)

|
|
|
|
|
|
|
|
|
|
|
|
|
I
|
|
|
|
|
|
|
|

;
)
b
!
|
J
|
\
J
|
|

I

f
|

release(resourceA)

release(resourceB)

|
i

release(resourceSetid)
ﬂ(aknowledgement

Fig. 7.

. Assign the public endpoint references to the corresponding

partner links.

. Invoke (request-response) bar chart visualization service with

start-up data:
a. Visualization service initializes a new chart and returns its
identifier.

. Loop over increasing number of features.
. Invoke (one-way) data mining service operations:

a. Proxy receives input messages and routes them to the
correct data mining services.

b. (Optionally) data mining services read input (e.g., datasets)
from StM.

c. Data mining services start the computation.

d. Data mining services write output data to StM.

. Receive (asynchronous) output messages from data mining

services:
a. Proxy receives output messages form the data mining
services and routes them to BPEL.

. Invoke (one-way) visualization service with chart identifier

and computed classifier accuracy:
a. Visualization service updates the specified chart with
provided data.

. End of loop.
. Invoke (request-response) RA with resource set release

request:
a. RA releases the specified resource set and returns an
acknowledgement.

|
[
|
|
|
|
|
|
i
4

f
|
|
|
|
|
|

'
!

Indeed, steps 6 and 7 are multiple: feature selection, dataset
filtering, classifier training and classifier test operations are
executed in sequential order; the same sequences of operations,
executed for different classifiers, are instead executed in parallel
(flow activities).

Interactions between the SOA components.

7. Related work

The term cooperative system is used to denote distributed infor-
mation systems that are employed by Virtual Organizations. An ex-
tension of the cooperative paradigm, referred to as e-Applications,
is becoming more and more frequent: e-Applications allow the dy-
namic composition of services provided by different organizations
on the network. In addition to geographical distribution and inter-
organization cooperation, in e-Applications (i) cooperating orga-
nizations may not know each other in advance and (ii) services
can be composed both at design and at runtime. E-Applications are
a suitable mechanism for enabling coordination of heterogeneous
actors in open environments [37]. Taking into account many con-
cepts of Human Organization Theory, models for cooperation have
been developed [38,39] to describe the structural, functional, nor-
mative and environmental aspects of a system based on the main
concepts of organizational units, services, norm and environment.

Among the technologies available for the development of busi-
ness e-Applications, SOA [15] and in particular Web Services [16]
offer a promising approach [40,41] supporting enterprise VOs, and

30 A. Bosin et al. / Future Generation Computer Systems 27 (2011) 20-31

are among those which can support the development of cooper-
ative information systems, as extensively discussed in [42]. The
integration of such technologies within a research environment
requires a clear understanding of how scientific collaborations
are performed through activities whose underlying organizational
dynamics is similar to the processes occurring in distributed co-
operative enterprise units. Key aspects of scientific workflows are
presented in [18].

Software applications have been built to address a wide
spectrum of scientific workflows, ranging from basic tools that
are designed to handle “desktop” tasks such as simple data
analysis and visualization to complex workflow systems that are
designed to run large-scale e-Science applications on remote Grid
resources. These systems need to support multiple concurrent
users, deal with security requirements, and run workflows that
may require the use of a sophisticated layer of services [20].

McPhillips et al. [18] identify desiderata for scientific workflow
systems—namely clarity, predictability, reportability and reusabil-
ity. Moreover, ease of composition and editing, the ability to auto-
matically log and record workflow enactments and the flexibility
to incorporate new tools are all important features [20]. The inter-
operability aspects of scientific workflow systems are addressed
in [17], which investigates the differences in execution environ-
ments for local workflows and those executing on remote Grid
resources. A complete overview of features and capabilities of sci-
entific workflow systems is presented in [3].

There are a number of widely recognized Grid workflow
projects. Many of these began life in the “desktop” workflow
space, but they have evolved over time to address the large-
scale e-Science applications. A Grid-aware framework for the
construction of distributed workflows and their management and
execution is provided by systems like Triana [43], Kepler [9],
Pegasus [5], and ASKALON [7]. Specifically designed for the life
sciences, Taverna [11] was the first system to recognize the
importance of data provenance and semantic Grid issues. Based
on BPEL [44], QoWL [45] and GPEL [46] are significant examples
of workflow systems designed for dynamic, adaptive large-scale e-
Science applications.

In particular, BPEL is recognized [3] as the de facto standard
for Web-Service-based workflows. The use of BPEL for Grid service
orchestration is proposed as foundation in [47] since it fulfils many
requirements of the WSRF standard. The appropriateness of BPEL is
also examined and confirmed in [48-50]. These works mainly focus
on scientific workflows and rely on extending or adapting BPEL,
thus creating dialects. While developed for the business domain,
technologies like BPEL are then recognized suitable to address
the requirements of e-Science applications [19], supporting the
composition of large computational and data analysis tasks that
must execute on remote supercomputing resources.

An architecture for the dynamic scheduling of workflow
service calls is presented in [51], where control mechanisms of
BPEL are combined with an adaptive runtime environment that
integrates dedicated resources and on-demand resources provided
by infrastructures like Amazon Elastic Compute Cloud. Experience
with adapting a WS-BPEL runtime for Grid workflows is presented
in [52,53]. [54] presents BPEL extensions to invoke stateful Web
Services that are widely used in a Grid middleware.

Based on BPEL, a Grid-enabled workflow managed system is
presented in [55] in which the service binding at runtime is
achieved in a way similar to ours: a provisioning service looks up
the resource where the requested service is installed. However,
it does not provide mechanisms for dynamically procurement of
additional target resources.

The lack of a standard generic architecture for resource
provisioning is discussed in [56]. Similar to our infrastructural
services, the authors present a set of services for resource
procurement and BPEL-based workflows that make use of these
services.

8. Conclusions

E-Science applications require the ability to perform long-lived,
peer-to-peer collaborations between the participating researchers.
In this paper, we have demonstrated that combining Web Services,
Grids and other distributed resources is a promising way to lever-
age on existing work in both business and scientific environments,
since Web Service specifications offer a communication bridge be-
tween the heterogeneous computational environments used to de-
velop and host applications.

Starting from the analysis of the basic issues of the SOA
paradigm in addressing the needs of e-Science environments, we
presented the main features of an SOA-enabled scientific VO.
Since we expect that workflows will have a role as important as
they already have in business environment, we place particular
emphasis in their capabilities of managing and integrating
distributed resources and scientific applications.

The main advantages of this kind of approach are as follows.

e Efficiency: the procedures with high support (help to discover
and localize the resources) free the workflow designer from
technical and repetitive work and this contributes to the
creation of “best practices” that are eventually valuable,
comparable and can be shared with other people.

e Reproducibility: the workflow can be repeated with both
automation and precision in the time, and also by a third party,
on instances of different data and parameters.

e Traceability: the workflow is followed in an environment where
the data source can be traced and checked a priori.

The proposed approach is quite general and flexible. It has been
applied to bioinformatics environments and has returned a set of
results and feedbacks regarding its implementation, usage, and the
overall feasibility. However, application scenarios are not limited
and span brain dynamics investigation, geo-informatics and drug
discovery, as well as improving our current work on micro-array
data analysis.

The choice of complementing standard BPEL with a set
of infrastructural services, rather than developing new BPEL
extensions, somehow limits the full potential offered by a direct
access to WSRF-enabled Grid Services. Our goal was to suggest
a direction towards open standards service-based systems for
e-Science environments, and we believe that the compatibility
and interoperability offered by BPEL will support the migration
towards enhanced workflow systems built on concepts and
technologies that are inherited both from Grid and Web Services
communities.

Issues to be addressed, beyond the core issues of setting in
place the proposed collaboration environment, arise in various
areas, such as workflow execution monitoring, fault handling and
compensation, scalability, policy enforcement, trust and security
support, collaboration correctness monitoring, quality of service
monitoring, transaction logging, and so on.

References

[1] D. De Roure, Y. Gil,].A. Hendler (Eds.), e-Science, IEEE Intelligent Systems 19
(1) (2004) (special issue).

[2] L Taylor, E. Deelman, D. Gannon, M. Shields (Eds.), Workflows for e-Science,
Springer, New York, Secaucus, NJ, USA, 2007.

[3] E. Deelman, D. Gannon, M. Shields, I. Taylor, Workflows and e-Science: an
overview of workflow system features, Future Generation Computer Systems
25(2009) 528-540.

[4] E.Elmroth, F. Hernandez, J. Tordsson, A light-weight Grid workflow execution
engine enabling client and middleware independence, in: R. Wyrzykowski,
et al. (Eds.), Parallel Processing and Applied Mathematics, 7th Int. Conference,
PPAM 2007, in: LNCS, vol. 4967, Springer Verlag, 2008, pp. 29-270.

[5] E. Deelman, et al., Pegasus: a framework for mapping complex scientific
workflows onto distributed systems, Science Program 13 (3) (2005) 219-237.

[6] P.Kacsuk, et al., P-GRADE: a Grid programming environment, Journal of Grid
Computing 1(2)(2003) 171-197.

A. Bosin et al. / Future Generation Computer Systems 27 (2011) 20-31 31

[7] T.Fahringer,etal., ASKALON: a development and Grid computing environment
for scientific workflows, in: 1. Taylor, E. Deelman, D. Gannon, M. Shields (Eds.),
Workflows for eScience: Scientific Workflow for Grids, Springer-Verlag, 2007.

[8] D. Churches, G. Gombas, A. Harrison,]. Maassen, C. Robinson, M. Shields,
I. Taylor, I. Wang, Programming scientific and distributed workflows with
Triana services, Concurrency and Computation: Practice and Experience 18
(10) (2006) 1021-1037.

[9] D.D. Pennington, et al., Ecological Niche modeling using the Kepler workflow
system, in: I. Taylor, E. Deelman, D. Gannon, M. Shields (Eds.), Workflows for
eScience: Scientific Workflow for Grids, Springer-Verlag, 2007.

[10] T. Oinn, et al, Taverna: a tool for the composition and enactment of
bioinformatics workflows, Bioinformatics 20 (17) (2004) 3045-3054.

[11] T. Oinn, et al., Taverna/myGrid: aligning a workflow system with the life
sciences community, in: I. Taylor, E. Deelman, D. Gannon, M. Shields (Eds.),
Workflows for eScience: Scientific Workflow for Grids, Springer-Verlag, 2007.

[12] D. De Roure, C. Goble, R. Stevens, The design and the realization of the my
experiment virtual research environment for social sharing of workflows,
Future Generation Computer Systems 25 (2009) 561-567.

[13] G. Folino, A. Forestiero, G. Papuzzo, G. Spezzano, A Grid portal for solving
geoscience problems using distributed knowledge discovery services, Future
Generation Computer Systems 26 (2010) 87-96.

[14] M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-oriented
computing: state of the art and research challenges, IEEE Computer (2007).

[15] M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-oriented com-
puting: a research roadmap, International Journal of Cooperative Information
Systems 17 (2008) 223-255.

[16] G. Alonso, F. Casati, H.A. Kuno, V. Machiraju, Web Services—Concepts,
Architectures and Applications, Springer, 2004.

[17] E. Elmroth, F. Hernandez, J. Tordsson, Three fundamental dimensions of
scientific workflow interoperability: model of computation, language and
execution environment, Future Generation Computer Systems 26 (2010)
245-256.

[18] T. McPhillips, S. Bowers, D. Zinn, B. Ludascher, Scientific workflows for mere
mortals, Future Generation Computer Systems 25 (2009) 541-551.

[19] A. Akram, D. Meredith, R. Allan, Evaluation of BPEL to scientific workflows,
in: Proceedings of CCGRID’06, IEEE Computer Society, Washington, DC, USA,
2006, pp. 269-274.

[20] G. Fox, D. Gannon, A survey of the role and use of web services and service
oriented architectures in scientific/technical Grids, Technical Report, Indiana
University, 2006.

[21] http://www.platform.com/workload-management/high-performance-
computing.

[22] http://www.sun.com/software/sge/.

[23] http://glite.web.cern.ch/glite/.

[24] http://www.globus.org/.

[25] http://www.ogf.org/documents/GFD.72.pdf.

[26] http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf.

[27] http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html.

[28] http://www.italiangrid.org/.

[29] http://code.google.com/p/jlite.

[30] I. Guyon,]. Weston, S. Barnhill, V. Vapnik, Gene selection for cancer
classification using support vector machines, Machine Learning 46 (1-3)
(2002) 389-422.

[31] N. Dessi, B. Pes, Framework for multi-class learning in micro-array data
analysis, in: Lecture Notes in Computer Science, vol. 5651, 2009, pp. 275-284.

[32] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Reute-
mann, lan H. Witten, The WEKA data mining software: an update, SIGKDD Ex-
plorations 11 (1) (2009).

[33] https://glassfish.dev.java.net/.

[34] http://netbeans.org/.

[35] http://ode.apache.org/.

[36] http://tomcat.apache.org/.

[37] Americo Nobre G.G. Amorim, Virtual organization theory: current status and
demands, in: Integration and Innovation Orient to E-Society, Volume 1, vol.
251, Springer, Boston, 2008, pp. 1-8.

[38] J.T. Pollock, R. Hodgson, Adaptive information: improving business through
semantic interoperability, in: Grid Computing, and Enterprise Integration,
in: Wiley Series in Systems Engineering and Management, Wiley-Interscience,
2004.

[39] N. Criado, E. Argente, V. Julidn, V. Botti, Designing virtual organizations,
in: Advances in Soft Computing, Proc. of 7th International Conference on
Practical Applications of Agents and Multi-Agent Systems, PAAMS 2009,
Springer Verlag, 2009, pp. 440-449.

[40] A.Bosin, N. Dessi, M. Fugini, B. Pes, Cooperative e-organizations for distributed
bioinformatics experiments, in: Lecture Notes in Computer Science, vol. 5326,
2008, pp. 306-313.

[41] A. Bosin, N. Dessi, B. Madusudhanan, B. Pes, Will SOA accommodate the next
step of e-Science?, in: Notere, 10th Annual International Conference on New
Technologies of Distributed Systems, Tozeur, Tunisia, May 2010, pp. 51-58.

[42] E.Di Nitto,]. Mylopoulos, M. Papazoglou (Eds.), At Your Service: An Overview
of Results of Projects in the Field of Service Engineering of the IST Program,
in: Series on Information Systems, MIT Press, 2009.

[43] I Taylor, M. Shields, I. Wang, A. Harrison, Visual Grid workflow in Triana,
Journal of Grid Computing 3 (3-4) (2005) 153-169.

[44] http://www.oasis-open.org/committees/wsbpel.

[45] L Brandic, S. Pllana, S. Benkner, High-level composition of QoS-aware Grid
workflows: an approach that considers location affinity, in: Proceedings of
WORKSO06, Paris, 2006.

[46] Slominski, Adapting BPEL to scientific workflows, in: I. Taylar, E. Deelman,
D. Gannon, M. Shields (Eds.), Workflows for eScience: Scientific Workflow for
Grids, Springer-Verlag, 2007.

[47] F. Leymann, Choreography for the Grid: towards fitting BPEL to the resource
framework: research articles, Concurrency and Computation: Practice and
Experience 18 (10) (2006) 1201-1217.

[48] K. Chao, et al., Analysis of Grid service composition with BPEL4WS,
in: Proceedings of AINA'04, vol. 1, IEEE Computer Society, Los Alamitos, CA,
USA, 2004, p. 284.

[49] T. Dornemann, et al.,, Grid workflow modelling using Grid-specific BPEL
extensions, in: German e-Science, 2007.

[50] W. Emmerich, et al., Grid service orchestration using the business process
execution language, BPEL, Journal of Grid Computing (2006) 283-304.

[51] T. Dornemann, E. Juhnke, B. Freisleben, On-demand resource provisioning
for BPEL workflows using Amazon’s elastic compute cloud, in: 9th IEEE/ACM
International Symposium on Cluster Computing and the Grid, IEEE, 2009,
pp. 140-147.

[52] Di Penta, et al., WS binder: a framework to enable dynamic binding of
composite web services, in: International Workshop on Service Oriented
Software Engineering, ACM, 2006, pp. 74-80.

[53] A. Bosin, N. Dessi, B. Madusudhanan, A service-based approach for the
execution of scientific workflows in Grids, in: Conference on Computing
Frontiers, 2010, pp. 107-108.

[54] T. Dornemann, T. Friese, S. Herdt, E. Juhnke, B. Freisleben, Grid workflow
modelling using Grid specific BPEL extensions, in: Proceedings of German e-
Science Conference, GES, 2007, pp. 1-8.

[55] RY. Ma, YW. Wu, XX. Meng, SJ. Liu, L. Pan, Grid-enabled workflow
management system based on BPEL, International Journal of High Performance
Computing Applications 22 (3) (2008) 238-249.

[56] R. Mietzner, F. Leymann, Towards provisioning the cloud:on the usage
of multigranularity flows and services to realize a unified provisioning
infrastructure for SaaS applications, in: Proceedings of IEEE Congress on
Services, Los Alamitos, CA, USA, 2008, pp. 3-10.

Andrea Bosin is a University Researcher (Assistant Pro-
fessor) at the Department of Mathematics and Computer
Science of the University of Cagliari, where he teaches
Network Computing and Computer Architecture courses.

His research interests include Service Oriented Archi-
tectures, Web Services, Data Mining and Knowledge Dis-
covery in Databases and Grid computing (EGEE). Since
2006 he has been Chief Information Officer of the Cagliari-
Monoserrato computing infrastructure of the CyberSAR
project for implementation of a Grid infrastructure sup-
porting the research activity of the Universities and the
Research Centres in Sardinia.

Nicoletta Dessi is an Associate Professor of Database and
Information Systems at the University of Cagliari, Italy,
where, from 2004, she has been the Head of the Mathemat-
ics and Computer Science Department. Previously, from
1994 to 2004, she was the Director of the Scientific Com-
puting Centre of the University of Cagliari.

She conducts research in data mining and distributed
computing, with current focus on Grid computing, e-
Science applications and micro-array classification. In
8 recent years, Nicoletta’s interests have included collabo-
rative scientific environments making the results of scien-
tific research more accessible to the scientists. She is the author of about 60 papers
in national and international conferences and journals, and she is also a reviewer
for different national and international conferences and journals.

From 2007, she has been responsible for an international project funded by the
Italian Ministero dell'Istruzione, dell'Universita e della Ricerca (MIUR), which is pro-
moting collaboration with young researchers at Indian universities and research
activity related to Grid technology.

Barbara Pes was born in Cagllarl Italy, in 1976. She ob-
tained her laurea degree in Physics from the University
of Cagliari in 2001. From 2002 to 2005 she collaborated
with the Database and Data Mining Group at the depart-
W= ment of Mathematics and Computer Science, University
fi8 of Cagliari. Since 2006 she has been working as a Univer-
& sity Researcher (Assistant Professor) at the Science Faculty,
University of Cagliari, where she teaches Database Labora-
tory and Data Mining courses.

Her research interests include Service Oriented Archi-
® tectures and Web Services, Data Mining and Knowledge
Discovery in Databases, Bio-informatics, Feature Selection and Classification of
Micro-array Data.

;;z

http://www.platform.com/workload-management/high-performance-computing
http://www.platform.com/workload-management/high-performance-computing
http://www.platform.com/workload-management/high-performance-computing
http://www.sun.com/software/sge/
http://glite.web.cern.ch/glite/
http://www.globus.org/
http://www.ogf.org/documents/GFD.72.pdf
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrf
http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html
http://www.italiangrid.org/
http://code.google.com/p/jlite
https://glassfish.dev.java.net/
http://netbeans.org/
http://ode.apache.org/
http://tomcat.apache.org/
http://www.oasis-open.org/committees/wsbpel

	Extending the SOA paradigm to e-Science environments
	Introduction
	Extending the SOA paradigm to scientific virtual organizations
	Integration issues
	Resource management
	Scientific workflow features
	Integrating services in BPEL processes

	Infrastructural services for on-demand resource provisioning
	Introduction
	Service definition
	Service interaction

	Implementation details
	Resource description
	Resource access and provisioning
	Authentication
	Data management
	Execution monitoring

	A collaborative environment for bioinformatics
	Background
	Micro-array classification in SOA-enabled cooperative environments
	Running micro-array classification experiments

	Related work
	Conclusions
	References

