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ABS-I- RACT 1D Name Price

Item exchange is becoming a popular behavior and widely sup- i' Rmn 2;2

ported in more and more online community systems, e.g. enlin L Screwer $70

games and social network web sites. Traditional manuakkear 1, Hammer $80

for possible exchange pairs is neither efficient nor effectAuto- I Paint $100

matic exchange pairing is increasingly demanding in suchnoo- Is Drill $160

nity systems, and potentially leading to new business dppities. L — [

To meet the needs on item exchange in the market, each uer in t o Urmecded Lt IT o

system is entitled to list some items he/she no longer nesdsell - !
as some required items he/she is seeking for. Given thesalue " L T . <

all items, an exchange between two users is eligible if 1y buth ) Unnooded List L 1

have some unneeded items the other one wants, and 2) thangecha " I
items from both sides are approximately of the same totakvalo Wish List I, 1 < ’
efficiently support exchange recommendation servicesosiy Unneeded List I, I, 1,

with frequent updates on the listed items, new data strestare

proposed in this paper to maintain promising exchange pairs Figure 1: Example of transaction in CSEM

each user. Extensive experiments on both synthetic andiatal

sets are conducted to evaluate our proposed solutions. millions of players, every individual player only owns lired types

of resources. To finish the tasks in the game, the players mign o

Categories and Subject Descriptors resort to their online neighborhood for resource exchafije®ue
H.3.3 [NFORMATION STORAGE AND RETRIEVAL]: In- to the lack of effective channel, most of the players are nely-r
formation Search and Retrievakaformation filtering H.3.1 [IN- ing on the online forum, posting the unneeded and wantedsitem
FORMATION STORAGE AND RETRIEVAL]: Content Anal- to attract other users meeting the exchange requirementsle W
ysis and Indexing—adexing methods the items for exchange in online games are usually virtugatb,

there are also some emerging web sites dedicated to thergeha
services on second-hand commoditi8hedd4], for example, is a

General Terms quick-growing internet-based product exchange platfor@hina,

Algorithms, Performance reaching millions of transactions every year. Similar wisdsshave
also emerged in other countries, e.g. UK [3], Singapore {Zl.e
Keywords However, the users on the platform are only able to find magchi
. . exchange parties by browsing or searching with keyword$ién t
Recommender system, ltem exchange, Online community system. Despite of the huge potential value of the excharare m
ket, there remains a huge gap between the increasing deraadds
1. INTRODUCTION the techniques supporting automatic exchange pairing.

ltem exchange is becoming a popular internet phenomenon and !N this paper, we aim to bridge this gap with an effective and
widely supported in more and more online community systems, €fficient mechanism to support automatic exchange recomaren
e.g. online games and social network web sitesEromtier Ville, tions in large online communities. Generally speaking,augrof

for example, known as one of the most popular farming gamg's wi  candidate exchanges are maintained and displayed to eacinus

the system, suggesting the most beneficial exchanges to e

problem of online exchange recommendation is essentiiy-c

lenging in two folds. First, it is important to design a reaable
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personal or classroom use is granted without fee providaticbpies are are willing to follow. Second, all the recommendations mist
not made or distributed for profit or commercial advantage that copies updated in real time, to keep all users with the most recethban
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permission and/or a fee. - . .
EDBT 2012 March 2630, 2012, Berlin, Germany. To model the behaviors and requirements of the users in the

Copyright 2012 ACM 978-1-4503-0790-1/12/03 ...$10.00 community system [9], some online exchange models have been



1D Name
Iy Nail
I, Ribbon
I3 Screwer

Price
$10
$20
$70
$80

$100

$170

Iy Hammer

Is Paint
I Drill

Uy
Wish List I,
Unneeded List Iy Iy

Uz

Wish List Iy s
Unneeded List Iy Is

(O

(Ia1s)

A

Wish List Iy Is
Unneeded List I, I3 lg

Figure 2: Example of transaction in BVEM

proposed. The recent study in [5], for example, proposedeuCi
lar Single-item Exchange Model (CSEM). Specifically, gitae
users in the community, an exchange ring is eligible if thera
circle of users{us — w2 — ...um — w1} that each useu; in

the ring receives a required item from the previous user arebg
an unneeded item to the successive user. Despite of thessasce
of CSEM in kidney exchange problem [6], this model is not &ppl
cable in online community systems for two reasons. FirsEKS
does not consider the values of the items. The exchange lescom
unacceptable to some of the users in the transaction, ih&ass

Given a pair of two users in the community, the problem of figdi
the matching exchange pair with the highest total value osgm
to be NP-hard, whose computational complexity is expoaéti
the number of items the users own. Fortunately, the sizesaféim
lists are usually bounded by some constant number in mosieof t
community systems, leading to acceptable computationarote
search for the best exchange plan between two specified 0$ers
problem tends to be more complicated if the community system
highly dynamic, with frequent insertions and deletions loam item
lists of the users. To overcome these challenges on the ingpita-
tion of BVEM, we propose a new data structure to index thekop-
optimal exchange pairs for each user. Efficient updates tmihe
sertions and deletions are well supported by our data steicto
maintain the candidate top-k exchange pairs.

We summarize the contributions of the paper as listed below:

1. We propose the Binary Value-based Exchange Model, cap-
turing the requirements of online exchange behavior.

N

. We design a new data structure for effective and efficient i
dexing on the possible exchange pairs among the users.

3. We apply optimization techniques to improve the efficienc
of the proposed index structure.

4. We present extensive experimental results to prove the us
fulness of our proposals.

asked to give up valuable items and only gets some cheap items The remainder of the paper is organized as follows. Sectien 2

in return. Second, single-item constraint between anyeartve
users in the circle limits efficiencies of online exchangBsie to
the complicated protocol of CSEM, each transaction is cabenhi
only after all involved parties agree with the deal. The expé
waiting time for each transaction is too long to afford, espky in
online communities. In Figure 1, we present an example tis-ll
trate the drawbacks of CSEM. In this example, there are tgees
in the system{u1,u2,us}, whose wishing items and unwanted
items are listed in the the rows respectively. Based on tb®pol
of CSEM, one plausible exchange is a three-user cifglérom uq
to uz, Iz from us to u; and Is from us to us, as is shown with
the arrows in Figure 1. This transaction is not satisfactuiti -,
sincels is worth 100$ whilel;’s price is only 10$.

views some related work on online exchange models and mgthod
Section 3 presents the problem definition and preliminaignkn
edge of our problem. Section 4 discusses the indexing sheitd
maintain the possible exchange pairs between two userio8S&c
extends the index structure to support more users. Sectiwalé
uates our proposed solutions with synthetic data sets arttb8&
concludes this paper.

2. RELATED WORK

In this section, we review some related studies from differe
areas in computer science, including the kidney exchangb-pr
lem in electronic commerce, the exchange game model initdigor

In this paper, we present a new exchange model, called Binary mic game theory, and the exchange recommendation problem in

Value-based Exchange Model (BVEM). In BVEM, each exchange
is run between two users in the community. An exchange is eli-
gible, if and only if the exchanged items from both sides qre a
proximately of the same total value. Recall the example gufg

1, a better exchange option betweenandus is thus shown in
Figure 2. In this transaction,; gives two items/, and 5 at total
value at $180, whileis gives a single itends at value 170$. The
difference between the exchange pair is only 10$, or 5.9%@f t
counterpart. This turns out to be a fair and reasonable deabth

database system.

The problem of kidney exchange rises from the kidney trarspl
tation market, in which many relatives of the patients atéing to
donate their kidneys but not compatible with the patients.ufi-
lize the willing donors, a better solution is exchanging doors
among the patients [6]. With large number of patient-dorairsp
the kidney exchange problem aims to discover circles ambeag t
pairs with maximal length of., such that the kidney of each donor
is compatible to next patient on the circle. While the geherab-

users. On the other hand, each exchange in BVEM only involves lem of kidney exchange is NP-hard and difficult to find approx-

two users, which greatly simplifies the exchange procedBrgh
of the features make BVEM a practical model for online exgjgan
especially in highly competitive environment such as antiames.
To improve the flexibility and usefulness of BVEM model for-on
line communities, we propose a new type of query, callep-K
Exchange Recommendatiobdpon the updates on the users’ item
lists, the system maintains the top valued candidate exghpairs
for each user to recommend promising exchange opportanitie
Despite of the enticing advantages of top-k exchange query u
der BVEM on effectiveness, extensive development effoanaeded
for database system, especially with large number of onlgees.

imate solutions [8], some heuristics have been employedntb fi
simple circles [6]. In particular, in [6] the authors propdsa lin-
ear integer programming (ILP) formulation of the kidney lexge
problem. The tree search strategy with incremental fortiarap-
proach is applied to find some local optimal solution.

In computational economics, Arrow-Debreu Model is a gelnera
representation of exchange game among a group of parttsipan
with different commodities for trade [11, 12]. In this excige
game, each participant initially owns some cash as well asva c
bination of the commodities. Given the market prices of thec
modities, the users sell unnecessary commodities and bigotne
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Figure 3: Running Example of Top-K Exchange Pair Monitoringwith 8 = 0.8

other commaodities to optimize his utility function. The lwa&rrow-
Debreu Theorem [7] states that there exists a group of piéees
ing to a clear market, in which each user is satisfied with thal fi
allocation. While the theorem proves the existence of theepr
combination with Kakutani's Theorem, it does not provideya-s
tematic way to find the prices. In [11, 12], scientists in comep
theory tried to design explicit algorithms to find the optimpeces
to clear the market.

The general problem of exchange recommendation in database

system is extended from the kidney exchange problem, wisich i
closely related to our study. In [5], Abbassi and Lakshmgmran
posed the Circular Single-item Exchange Model (CSEM) ofell

ing the same transaction structure from kidney exchangeegam
CSEM is different from kidney exchange problem that each imse
CSEM is allowed to take different commodities while eachmkig
disease patient has only one associated donor. Moreov&MCS
can be extended to some sub-models, includwap Exchange
Model Short-Cycle Exchange Modahd Probabilistic Exchange
Model The authors of [5] presented some algorithms to find ap-
proximate solutions to all these models with approximafestor
linear to the maximal allowed cycle length Based on our analysis

in Section 1, CSEM s only practical if the items for exchamgh-

out explicit value label and efficiency requirement. In aelcom-
munity space, exchanges on valued items are expected tanbe ru
with fast response time, which need better exchange modblas
our proposal.

3. PROBLEM DEFINITION AND PRELIM-
INARIES

In the community system, we assume that thereiansersU =
{u1,uz2,...,un}, andm itemsO = {I1, I, ..., I }. Each user
u; has two item lists, the unneeded item Iist and the wishing
item list W;. Each item/; is labelled with a tag); as its public
price. Given a group of item®’ C O, the value of the item set is
the sum on the prices of all items @', i.e. V(O') = szea vj.

In the example for Figure 1 and Figure 2, the value of the item s
V ({11, Iz, Is}) =$100 according to the price list in the figures.

In this paper, we adopt the Binary Value-based Exchange Mode
(BVEM) as the underlying exchange model in the community sys
tem. Given two users; andu;, as well as two item setS; C L;
andS; C L;, an exchange transactidt = (us,ui, Ss, Si) rep-
resents the deal that gives all items inS; to u; and receivess;
in return. The gain of the exchangé for useru; is measured
by the total value of the items he receives after the excharge
G(E,u;) = V(S;). Similarly, the gain of uset; is G(E,w) =
V(S;). This exchange is eligible under BVEM with relaxation pa-
rameters (0 < 8 < 1), which follows the formal definition below.

DEerFINITION 1. Eligible Exchange Pair
The exchange transactiafi = (u;,u;, S;, Si) is eligible, if it sat-

isfies 1) Item matching conditior§; C W; andS; C W;; and 2)
Value matching condition3V (S;) < V(S;) < 87V (S:).

Assuming that all users in the system are rational, eachwjser
always wants to maximize his gain in the exchanges with other
users. In the following, we prove the existence of a uniqu op
mal exchange among all exchanges betweeanduw,;, maximizing
both of their gains.

LEMMA 1. For any pair of users,u; and u;, there exists a
dominating exchange paif = (u;, ui, Si, S;) such that for any
E' = (u;,u, S, S;) the following two events can never happen:
1) G(E/7 ui) > G(E7 ui), or 2) .E(E/7 ul) > G(E, ul).

PROOF We prove this lemma by construction and contradic-
tion. We order all eligible exchange pairs with non-inciegor-
der onG(E,u;). For all exchange pairs with exactly the maxi-
mal gain foru;, we further find the unique exchange pir =
(ui, u, Si, S;) by maximizing the gain for,. If £ does not sat-
isfy the condition in the lemma, there are two possible cases
the first case, there exists an exchange aithat G(E’, u;) >
G(E,u;). Depending on our construction method, this situation
can never occur. In the second casghas a better option with
higher gain inE’ = (u;,w, S;, S;), i.e. G(E',w) = V(S;) >
G(E,w;) = V(S;). If this happens, we will show in the following
that E” (u;, u, S}, S;) is also an eligible exchange pair, thus vio-
lating the construction principle of’. Based on the definition of
eligible exchange pair, we know that

Glus, B') = V(S{) = BV (S)) = BG(ur, E')

SinceG(u;, F) is the maximal gain ofi; on any exchange pair,
it is easy to verify thal/(S;) > V(S]) > BV(S;). On the other
hand, it can be derived that

V(S) < B7IV(S:) < BTV(SY)

Combining the inequalities, we conclud®’ = (u;,u, Si, Si)
is also eligible. Moreoverz(u;, E”) = V(S;) = G(u;, E) and
G(w, E") =V (8;) > V(S:) = G(w, E), which also violate our
construction method. This contradiction leads to the atness of
the lemma. O

The lemma suggests the existence of an optimal exchange so-
lution betweenu; andw; for both parties, denoted b§™ (u;, w;).
However, for each usei;, there may exist different eligible ex-
change pairs with different users at the same time. To stigya®
promising exchange pairs to the users, we defimeK Exchange
Pair as below.

DEFINITION 2. Top-K Exchange Recommendations
For useru;, the top-k exchange pairs, i.&.op(k, ), includes the
k most valued exchange paifs® (u;, u;) with k different users.



In the definition above, each pair of uger;, u;) contributes at
most one exchange pair Top(k, ). It is because there is a dom-
inating exchange plan between two usersaandwv;. Therefore, it
is less meaningful to output two different exchange suggeste-
tween a single pair of users. The main problem we want to solve
in this paper is providing an efficient mechanism to monitg-k
exchange recommendations for each user in real time.

PrROBLEM 1. Top-K Exchange Pair Monitoring
For each insertion or deletion on any item list and W; for user
u;, update thel'op(k, j) for every user; in the system.

Upon insertions or deletions on the item lists of uggrthe top-
k exchange pairs aof; or other users is subject to change. Figure
3 shows an example to help understand the impact of item epdat
At the initial timestamp, there is only one eligible excharmgir
betweernu; andus, i.e. (uz,us, {I¢}, {11, Is}). The gain ofus in
this potential exchange is 180%. At the second timestansnas
that there is no exchange happened and a new Itemm inserted
into u1’s wish list. The exchanging pair between andus be-
comes eligible, as is listed in the table. The gairugffrom the
new exchanging pair is $80, which is smaller than her gaimfro
the previous exchange suggestion with As a result, the new ex-
changing pair is the second best recommendation.forAt time
3, I5 is deleted from unneeded list af. This breaks the existing
eligible exchanging pair between. andus, and there is no other
eligible exchange pairs between them. Therefore, thisangihg
pair is deleted from the recommendation list of both usetss |
important to note that our system only presents the suggesto
the users, but never automatically commits these exchanges

In the following theorem, we prove that the computation gfio
exchange pair is difficult, even when there are only two uisettse
system.

THEOREM 1. Given two users:; and v, finding the optimal
eligible exchange pair between andw; is NP-hard.

PrROOF We reduce thé.oad Balancing Problento our prob-
lem. Given a group of integets = {z1,x2,...,zx}, the problem
of load balancing is deciding if there exists a partitin C X and
X, CX (X1 NXs = 1} and X; U X, = X) thatzwieX] T; =
sze& x;. Load balancing problem is one of the most famous
NP-hard problems [13].

Given each instance of loading balancing problem, Xg.we
construct the item lists fou; andw; as follows. For each; €
X, a corresponding itend; is constructed with value; = x;.
All these itemsI; (1 < j < n) are inserted into the wish item
list W; for u; and unneeded item list;. A new itemI,4; is
then created with value,+1 = szex z;/2. We insertl, 11

into L; andW;. This reduction can be finished @(n) time. By
setting8 = 0, our problem tries to find a subset W; with the
exact total value a$, 1. If such a solution is always discovered
by some algorithm in polynomial time, load balancing problis
also solvable in polynomial time. If this is the case, we \pilbve
P=NP. O

The last theorem shows that the complexity of finding topk ex
change pair between any two users is exponential to the tthe o
item lists. Fortunately, the number of items owned by thesise
usually limited in most of the online community systems. STjbar-
tially relieves the problem of optimal exchange pairingefigfore,
the major problem for top-k exchange pair monitoring to ceene
is how to effectively select some pairs of users to re-cateuthe
optimal exchange, when some insertion or deletion happerke

Notation

| Description

U= {u;} the set of users in the community
O={I} the set of items with all users
L; the unneeded item list for uses
W; the wishing item list for useu,;
v the value of the itend;
V(0" the value of an item s&” C O
Si S; item subset of.; and L, respectively
E(u;,u;, Si, S;) | exchange pair betweany andu;
G(E,u;) the gain ofu; from exchangel
B8 relaxation factor on value matching condition
E*(ui,u;) the optimal exchange pair betweepandu;
AVT approximate value table
AVT[m]| mth entry inAVT
N maximal number of items in any list
€ approximation bound
Vmin, Umax minimal and maximal value of any item combina-
tion
N maximal number of entries in ar§ VT’
Top(k,1) Top-k exchanges list for user;
0; minimal value of exchange pairs Hop(k, 1)
UL(I) set of users who havg; in their unneeded iteny
list
CL(I;) set of users who havg in their critical item set
K number of top results to be calculated initially
Ki number of top results; currently keep
K; critical item sets for usen;
Table 1: Table of Notations
Algorithm 1 Bruteforce algorithm  for T1U2

exchange(L,L, Wi, Ll7 Wl)
. Clear optimal solutions™
. Generate subsets, = 22"t and sort on value
: Generate subsets; = 2X4""¢ and sort on value
: Setm = |¢R|
: for n from |¢| to 1do
whilem > 0 andg  |¢pr[m]| > |¢z[n]| do
m=m-—1
end while
if ¢1.[n] and¢r[m] is an eligible exchangéhen
5% = (ui, w, ¢r[n], or[m]) if V(or[n]) = G(S™, us)
andV (¢r[m]) > G(S*,w)
end if
end for
ReturnS™

11:
12:
13:

rest of the paper, we present some data structure, whickeadbe
possible exchange pairs, supporting frequent updatestmn For
ease of paper reading, all of the notations are summarizéahle
1.

In the following, we try to answer some common questions re-
garding the item exchanging model, especially on appliitglaind
effectiveness issues:

Question 1: CSEM may find more exchanging options than BVEM
does?lt is true that CSEM finds more exchange candidates. How-
ever, due to the lack of value matching condition, most ofeke
changes found by CSEM are meaningless in our problem domains
e.g. online games.

Question 2: Top-K exchange pairs fay may overlap with each
other? Our BVEM only provides recommendations for exchanges.
Users in the real system may decide which exchange to commit
based on his own preference. An online game player, for eb@amp
is more willing to trade for a specific weapon than the others.
Question 3: What about using currency as intermediate nmediu



between usersReallvirtual currency is not used in many online
communities, e.gFrontier Ville. Even in some applications allow-
ing direct buying/selling operation with the central systealirect
exchanges are popular behavior with the users, because effih
ciency on getting highly prioritized items.

4. EXCHANGE BETWEEN TWO USERS

In this section, we focus on a special case of the exchangerec
mendation problem, with only two users in the system looKorg
the top-1 valued exchange pair between them. In the follgwet-
tions, we extend our discussion to the general case withranpi
number of users. For simplicity, we call it thELU2 Exchange
Algorithmically, TLU2 exchange can be solved by an offlingoal
rithm with exponential complexity in term of the list sizes.

The offline algorithm works as follows. It first computes the
intersections between the wish list and unneeded lisi}i;e\ L;
and L; N W;. Then all the subsets of the two temporary lists are
enumerated. The algorithm tests every pair of the subsdiado
the pairing satisfying Definition 1 and maximizing the gafrboth
users. Details about this algorithm is illustrated in Aigom 1.
The running time of this algorithm is exponential to the Bgte,
i.e. O(|S;|2!%14]5;]2!1). Unfortunately, there does not exist any
exact algorithm with polynomial complexity, unless P=NFride
it is more interesting to find some alternative solution,poiting
approximate results with much better efficiency.

DEFINITION 3. e-Approximate T1U2 Exchange for u;
AssumingE™ = (u;,u, Si,S;) is the highest valued exchange
pair between usex; andw;, an exchange paifz’ = (u;,w, S;, S]),
is said to bec-approximate foru; if the gain is no worse thai*
by factorl — ¢, i.e. G(E',u;) > (1 — €)G(E™*, u;).

Different from exact top-1 exchange pairingapproximate ex-
change does not possesses the similar property in Lemma 1.
e-approximate exchange pair fof may not bes-approximate for
u;. Therefore, the computation involving; and «; may return
different results to the users.

Inspired by the famous polynomial-time approximation aidpon
on the subset sum problem [10], we design a fully polynortimé
approximation scheme(FPTAS) to calculatapproximate T1U2
exchange. Moreover, we show how to utilize the solution &igte
a reusable index structure to support updates.

The approximation scheme follows the similar ideain the AP T
on subset sum problem. Generally speaking, the originakbru
force algorithm spends most of the time on generating alltdre
combinations of/; N L; andL; N W,. There are many redundant
combinations, which share almost the same value with atHars
the new algorithm, it only generates some of the combinatiafn
the items inlW; N L; andL; N W;. These combinations are main-
tained in table indexed by their approximate values. Therdtem
combinations are merged into the table when their valuendasi
to the existing ones. In particular, given the approximafiactor
¢, the exact value of an item sét;(O’), is transformed to some
approximate valuey(O’), guaranteeing that

V(0') <~(0") < (1—-e)7'V(0) @
To achieve this, we utilize the following rounding functigt).
In the functionymax andvmin are the maximal and minimal values
of any non-empty item combination. The parametés the error
tolerance anaV is the maximal number of items.

—log V(O")

(i-%)

/ log Umin
(0= | =55
og

@)

Algorithm 2 AVT Generation (Item setO’, Error bound: , max-
imal valuevmax, minimal valuevmin, maximal item numbeiV)

1: Generate an empty approximate value tabl&l

2: Create a new entrdVT'[0]

3: SetAVT|0].lbi = )

4: SetAVT[0].ubi = 0

5: SetAVT[0].value =0

6: SetAVT|[0].lb = AVT[0].ub =0

7: for eachiteml; € O’ do

8: for each entryAVT[m] € AVT do

9: CalculateM = f(AVT[m].value + v;)
10: if there isAVT'[n].value = M then

11: if AVT[m].lb+v; < AVT[n].Ibthen
12: UpdateAVT'[n].lb and AVT'[n].lbi
13: end if

14: if AVT[m].ub+ v; > AVT[n].ubthen
15: UpdateAV T [n].ub and AV T [n].ubi
16: end if

17: else

18: Create a new entdVT'[n] in AVT
19: AVT[n].value = M
20: AVT(n].lb = AVT[m].lb 4 v;

21: AVT[n].ub = AVT[m].ub + v;

22: AV TIn]lbi = AVT[m].lbi U {I;}
23: AVT[n].ubi = AVT[m].ubi U {I;}
24: end if

25:  end for

26: end for

27: ReturnAVT

—m

Intuitively, f(O") is the minimal integem thatvmin (1 - %

An> V(0'). Sincevmin < V(0') < vmax and f(O’) always out-

puts an integerf(O’) can only be a non-negative integer between
0 andA = [(10g Vmin — log Umax)/log(1 — +)]. Based on this
property, we implicitly merge the item combinationsX6groups,
i.e. {S1,52,...,Sn}. Each groupS,, contains every item com-
binationO’ with f(O’) = m, i.e. S; = {O0'|f(O") = m}. For
every item combinatio®’ € S,,,, we have the common approxi-
mate valuey(O’) for O’, i.e. ¥(O’) = vmin (1 — £) ™™, which
satisfies Equation (1).

These groups are maintained in a relational table, cAlpgaoxi-
mate Value Tabléor AVT in short). INAVT, each entryAV T [m]
records some statistical information of the grotip, to facilitate
the computation ot-approximate T1U2 exchange. Specifically,
we useAV T [m].value to denote the common approximate value
of all item combinations ir5,,,. We useAVT'[m].lb (AVT[m].ub
resp.) to denote the lower bound (upper bound resp.) of all th
item combinations inS,,. We also keep the item combinations
achieving the lower bound and upper bound, ¥&.7T'[m].lbi and
AVT[m].ubi. In Table 2, we present an exampleAV T

To construct theAV'T table, we sort all items based on their
identifiers. At the beginning, the algorithm initializestfirst en-
try AVT[0] in the table. We sedAVT'[0].value = AVT[0].lb =
AVT[0].ub = 0, empty AVT[0].lbi and AVT'[0].ubi at the same
time. For each iteni; in the input item setD’, the algorithm it-
erates every existing entdV'7'[m] in the AVT and updates as
follows. For every entryAVT[m], our algorithm tries to gener-
ate a new entnAVT'[n] with n = f(AVT[m].value + v;). If
AVT[n] already exists, it tries to mergg into AVT'[m].lbi and
AV'T[m].ubi, checking if they can generate new lower and upper
bound for groupS,,. If AVT'[n] does not exist in the table, a new
entry is created. The details are available in Algorithm 2.



[ Entry | approximate valud 1b | 1bi | ub | ubi | Allitem combinations |
AVT[L 2 21 {nL} 2 {I} {I1}.{I=}
AVT[2 4 3| {Is} | 4| {12} {Is}.{11, I}
AVT[3 8 5| {L,Is} | 7 | {L,I2,Is} | {I1,Is},{I2, I3}, {1, I2, I3}

Table 2: Example of approximate value table on a 3-item set

If we run the algorithm on a 3-item s&' = {I1, I, I3} with
item pricesvs = 2, v2 = 2 andvs = 3, the resultAV'T is pre-
sented in Table 2, witlil — ¢/N)™' = 2 andvgi, = 1. There
are 7 non-empty combinations @, including{I:}, {I.}, {I5},
{.[1, 12}, {117 .[3}, {.[27 .[3} and {117 .[27 .[3}. After flnlShIng the
construction of theAV'T table, there are only 3 entries in the ta-
ble, which is much smaller than than the original number erhit
combinations. The information of the groups are all listedtie
rows of the table. We also include the concrete item comizinat
in the last column for better elaboration, althoudgfT" does not
maintain them in the computation.

In the following lemma, we show that the outpdi’T" summa-
rizes every item combination within error bouad

LEMMA 2. Given any item sep’, for each item combination
0" C O, the AVT table calculated by Algorithm 2 contains at
least one entnAVT'[m] that

V(0") > (1 — €)AVT[m].value

AVT[m].lb < V(0") < AVT[m].ub

PrROOF For simplicity, letd = 1 — ¢/N. We apply mathemati-
cal induction to thatyO” € O’, there is anAVT'[n] such that:

V(0") > §1°"1 AV T [m].value ©)

4)

Basically, if|O”'| = 0, namelyO” = (), the Equation 3 and 4
hold by giving AVT[0].

Then we inductively prove the lemma. Assume that the the
Equation 3 and 4 hold for a0’ | = k, we are going to prove that
they also hold foO” with lengthk+1. LetO” = {I1, I2, ..., Ix11}.
By the assumption, fo®"’ = {I1, I», ..., I}, there is adVT'[n]
such that Equation 3 and 4 holds. According to line 9-12 incAlg
rithm 2, the AVT table is updated according gy and AV T'[n].

Let the updated (line 11-14) or new created (line 16-21) Avire
be AVT[m]. We can verify that:

AVT[m].lb < V(0") < AVT[m].ub

V(0") V(0" = Iis1) + vk
6kAVT[n].value + Vg1

6 (AVT[n).value + vy 1)

§F 1 F(AVT[n].value + vji1)

SF AV T [m] walue

vV IV IV

=
Q

V(O” — Ik+1) + Vg41
AVT[TL]U) + V41
AVT[m)].lb

v v

V(0" V(0" = Iks1) + v
AVT[n].ub + vikt1

AVT[m].ub

INIA

Sinced® > 6V = (1 —¢/N)N > 1 — ¢, Lemma 2 holds. [J

The size ofAVT is no larger thanV/. Therefore, the complex-
ity of the AV'T construction algorithm i©)(A?|0’|). Assuming
Umax, Umin, € ANAN are all known constants, the algorithm finishes
in linear time with respect to the item si#@’|, which is supposed
to be much faster than the exact algorithnaMfis much smaller
than2! ™!,

To utilize AV'T in TLU2 exchange problem, we create two tables
AV'T: andAVT;, based orl.; N W; andW; N L; respectively. If
there is an eligible exchange pair betwegrandw;, the following
lemma shows that there must also exist a paid ®fI'[m] € AVTy
andAVT[n] € AVT; with close values.

LEmMA 3. If E = (us,u,Si,S1) is any eligible exchange
ande < 1 — g, there exists two entriedVT1[m] € AVT: and
AVT, [n] € AVT, that

BAVT:[m].lb < AVTe[n].ub < 8~ AVTi[m)].lb

BAVTy[n).lb < AVTi[m].ub < B~ AV [n).lb

ProOF According to Lemma 2, we can findVT;[m| and
AVTy[n] such thatAVTi[m].lb < V(S;) < AVTi[m].ub, and
AVTs[n].lb < V(S;) < AVTs[n].ub. There could be two cases:

o AVT\[m].walue > AVTs[n].value
o AVTi[m].value < AVTy[n].value

These two cases correspond to the two inequalities resphcti
We will only prove the first case because of the symmetry.
The left side of the inequations:

BAVT1[m].lb BV (Ss)
V(Si)

AVTs[n].ub

ININIA

The right side of the inequations:

AVTy[n]).ub AVTs[n].value
AVTi[m].value
(1—€e) "AVTi[m].lb
B~ TAVTi[m].lb

VAN VAN VAN VAN

So far the first case has been proven. The second case cavée pro
similarly. [

The last lemma shows that we can find candidate pairs from the
approximate value tables, by testing the lower bounds aperup



Algorithm 3 Exchange Search on AVT (listsW,, L;, Wi, L))

1. Clear result seR.S; for u; and RS, for v,
2. GenerateAVTi onW; N Ly andAVTy onL; N W,
3: for each pair of entries\VT1[m] € AVT) andAVTz[n] €

AVTy do | in]
. AVT | ub AVTs[n].ub
4 if p < ST < 5 ands < G < then

5: Generatgu;, ui, AVT[m].ubi, AVT[n].lbi) for u; and
(ui, ur, AVT[m].lbi, AVT[n].ubi) for u;

6 UpdateRS; andRS; if necessary

7. endif

8: end for

9: ReturnRS; to u; andRS; to u;

bounds of the entries. Based on the lemma, we present dlgosit
to show how to discover-approximate exchange pair for andu;

at the same time. Note that the resultsdpandw; may not be the
same exchange pair. Given tld/T: on W; N L; and AV'T on

L; N Wy, every pair of entriestV T [m] € AVT; andAVTn] €
AV'T; are tested. If the condition in Lemma 3 is satisfied, two pairs
of eligible exchange pair are generated, i.e. an exchanydidzte
(wi, ur, AVT[m].ubi, AVT[n].lbi) for u; and another exchange
candidate(u;, u;, AV T [m].lbi, AVT[n].ubi) for u; respectively.
The algorithm then tests the optimality of the two exchanaiesp
for u; andu; separately. After finding all the eligible exchange
pairs, the optimal solutions are returnedicandwu; separately.

THEOREM 2. Algorithm 3 outputg-approximate optimal top-k
exchange pair between any two usersandw; in linear time.

PROOF Consider the top-1 eligible exchange;, u;, S;, Si).
By Lemma 3, we can find an upper (lower) bound item $ein
AV'Ty, and an lower (uppergsp) bound item setS] in AV T,
such that they form an eligible exchange, ands;) > (1 —
)V (S:), V(S)) > (1 — €)V(S,). Therefore(u;, ui, S;, S;) is an
e-approximate top-1 exchange pair. Since hsiland.S; are lower
or upper bound item sets, and Algorithm 3 compares all pdirs o
lower / upper bound valuesy; and S’ are guaranteed to be found
by Algorithm 3. [

The algorithm to find approximate T1U2 is described in Algo-
rithm 3. Since there are at maaf entries in either table, the time
complexity of Algorithm 3 isO(A?). By sorting all the entries in
decreasing order on approximate value and scanning eimtiies-
down fashion, we can easily reduce the complexity of therédlyn
to O(N).

5. GENERAL TOP-K EXCHANGE

In last section, we use the technique of approximate valie ta
to search top-1 exchange pair between two useenduw;. In real
systems, however, there are usually thousands of userseoati
the same time. To support large community systems for exgghan
recommendation, we extend our discussion from two users-to a
bitrary number of users in this section. A straightforwaptlison
to the problem is maintainind/|(|JU| — 1) approximate value ta-
bles. For each pair of usetis andw;, two approximate value tables
AV'T;; and AVTy; are constructed and maintained for item com-
binations inW; N L; and L; N W, respectively. Upon any update
of the lists with usem;, the system re-computes T1U2 betwegn
and any other usew;. Top(k,i) andTop(k,l) are thus updated
accordingly with respect to the new optimal exchange beatwee
andw;. Unfortunately, this solution is not scalable in large pali
community systems on table indexing and maintenance, dileto
quadratic number of tables used in this solution.

To reduce the memory space used by the index structure, we do

not dynamically maintain approximate value tables betwaaty

pair of users. Instead, some lightweight index structudeejst in

the system, with space consumption linear to the numbeeofst
Given an update on some ligt; (or W;) on useru;, this data
structure is used to find out every usgrwith potentially affected
Top(k,i) or Top(k,l). To accomplish this, we first derive some
necessary condition on top-k exchange pairs, with the qurafe
Critical Item Set

DEFINITION 4. Given an item listW; of useru;, a subset of
itemsO’ C W, form a critical item set, ift’ (W;) — V(O') <
G(us, Top(k, i)).

In other words, an item s&b’ is critical to the wish listiV;, if
the rest of the items ifiV; is of total value no larger than the cur-
rent optimal gain of:;. In the following, we usdx; to denote the
critical item set ori¥; of w;. Note that Definition 4 only provides
an sufficient condition on critical item set. Given an itest iV;,
there can be hundreds of different combinations of itenisfgatg
the definition above. In Section 5.1, we will discuss more ow h
to construct a good critical item set according to some rioite

LEMMA 4. If Top(k,4) contains an exchange pair
E = (u;,w, Si,S1), Si contains at least one itet} in the critical
item setK; with respect tdv;.

PROOF Suppose that; does not contains any item ;. That
is, S; C W; — K;. Therefore,V(S;) < V(W;) — V(K;) <
G(ui, Top(k,1)). This contradicts the condition th&f is an top-k
exchange. Therefore§; contains at least one item in any critical
item set. [

Lemma 4 implies that the system needs to re-compute the T1U2
exchange betweem; andw; to updateT op(k, ), only if u; owns
at least one critical item of; andvice versa. This motivates our
index structure based on inverted lists on critical itemker€ are
two inverted lists on each item, i.€/L(I;) andUL(I;). CL(I;)
consists of a list of users wity in his crltlcal item set, an@’ L(1;)
includes all users wittd; in his unneeded item list.

Generally speaking, when there is an update (insertion ler de
tion) on W; of useru;, the system retrieves a group of candidate
users from the inverted lists and computes T1U2 exchange. Th
candidate set iéU,jewi UL(Ij)) N (U,keLi C’L(Ik)) . The de-
tailed description is given in Algorithm 4. By Lemma 4, thiga
rithm does not miss any necessary update on the top recommen-
dation lists. The major cost of the candidate selection &spn
merging the inverted lists on the users. To improve the efiicy of
the list merging, every inverted list is sorted on the idshef tisers.

In the rest of the section, we discuss details on the impl¢atiens
of some more efficient pruning strategies.

5.1 Critical Item Selection

In this part of the section, we dissolve the problem on the con
struction of optimal critical item selection according ttgérithm
4. Given the wishing item listV;, there are a large number of dif-
ferent ways to construct the critical item g6t. Generally speak-
ing, a good critical item set is supposed to reduce the nummber
candidate users tested in Algorithm 4. To accomplish thesfivgt
derive some cost model below.

SinceU L(I;) keeps the set of users owning the itéin their
unneeded item list. Basically, we assume thak(1;)| is relatively
small, compared to the total number of usgrs, i.e. |[UL(I;)| <
|U|. Moreover, we further assume thHat.(I;) for different items



Algorithm 4 General Top-K Update(W;,u;)

. Clear the left candidate user get/;

: for eachl; in the critical item set oiV; do
mergelU L(1;) into CU,

end for

. Clear the right candidate user g&t/,.

: for eachl; € L; do

mergeC L(I;) into CU-

. end for

: for eachu; € CU; N CU, do

10:  Compute T1U2 betweern andu;

11:  Updatel'op(k,:) andTop(k,1) accordingly

12: end for

©CONOUAWNR

are not strongly correlated. Namely, for any two distinetrisI;
andIy, [UL(I;) N UL(Ix)| < |UL(I;)|. With this assumption,
the number of candidate users to check, given the critieal et
K;, can be estimated bEIJ_EKi |[UL(I,)].

Based on the analysis above, a good critical item set is eéqual
the following combinatorial problem with linear constrain

Minimize : > |UL(L;)]
ek,

s.t. Z vj > V(Wi) — G(ui, Top(k,1))

IeK;

That is, for an uset/;, we select a sek’; C W;, to minimize
szeK |UL(I;)|, subject to the sufficient conditioEIjEK v; >
V(W;) — G(us, Top(k, 1)) in Definition 4.

Although this problem is an NP-Complete problem, a neairnugt
solution can be obtained by a simple greedy algorithm. Rallo
ing such construction method, the itemsTifi are sorted in de-
creasing order ob;/|UL(I;)|. Then the items are selected one
by one in this order, until the sum of the value exce®&d$V;) —
G, Top(k, i)).

Table 3 shows an example of system with 5 users. The value of
the items are; = 70, v2 = 40, v3 = 20,v4 = 35,v5 = 80, v =
10, and|UL(I1)| = 3,|[UL(I2)| = 1,|UL(I3)| = 2, |[UL(14)| =
1,|UL(I5)| = 2,|UL(Is)| = 3. u1 has 3 items in¥;, and the
critical item set is/; and/>, which has a total value dfl0 > v, +
V2 +v3—G(u1, TOp(k‘7 1)) = 70, and sum OUL(I1)+UL(.[2) =
4. Other eligible critical item sets includd, Is} and{I1, I, Is}.

By sorting the item on; /UL(I;), we pick up the items in order
{I2, I, Is}. The final critical item set ig; = {1, I=}.

5.2 Item Insertion

When an item insertion comes, the system retrieves all dateli
users with some pruning condition, and re-computes the TedJ2
change to update the top-k recommendations.

After a new item/; is inserted into the wish ligt/; of an usen;,
some new eligible exchange pairs are generated. If theraésva
eligible exchange between user andu;, u; must own this item
in its unneeded item lisk;. Otherwise, this exchange pair must be
tested before. Hence the candidate uselC§étis initialized with
the inverted lisU L(I;). Then for each usey; in CU, the system
examines ifu; owns a critical item ofy; or u; owns a critical item
of u;. If any of these two cases happens, Algorithm 3 is invoked to
find the optimal exchange pair betweenandu;.

We give an additional example of item insertion. In the examp
illustrated in Table 3, if one new iteh is inserted inta:z’s wish
list W5, the system first retrieves the users owniagn their un-

needed item lists. Such users includgandus. The system then
tests if these candidate users have at least one criticaldafe:s.
Sinceus does not contain any,’s critical items{Is }, andu2 does
not contain anyus’s critical items{l4, Is} in the unneeded item
list. Thereforeus fails the test andis will be further checked by
the 2-user item exchange algorithm.

5.3 Iltem Ddetion

When removing somé; from W;, the deletion operation can
be done in two steps. In the first step, the system deleteball t
current top-k exchanges containing the deleted item. Iis¢icend
step, some re-computation is run to find new top-k exchange pa
for users with insufficient exchange recommendations.

The first step in the deletion operation is implemented withe
inverted list structure, allowing the system to quicklydeeall top-

k exchange pairs with the deleted itdiin W;. Assume that the
users with deleted exchange pairs are all kept in a fixing lister
Algorithm 4 is then called, for each user in the list, to fixthk top-
k recommendation pairs. This implies that the deletion afpen is
expensive if many users are added into the fixing user list.

To optimize the system performance, we propose some opti-
mization technique possibly reducing the number of userthén
fixing user list after the deletion operation. The basic idéthe
optimization is maintaining top: exchange pairs for each user
u;, with some integex > k. It is straightforward to verify that
Top(k,1) is subset ofl'op(k, ). To utilize the expanded top ex-
change recommendation set, the system updatgéx, i) for each
insertion operation. On item deletion, if one of the exclepgir
E € Top(k,l) is removed due to the deletion &f € W;, the
exchange list will not be totally re-computed immediatéhstead,
the new T1U2 exchange betweenandu; is evaluated. If the new
optimal exchange on; andw,; remains inl'op(x, [), it is directly
inserted back int@ op(k, ). Otherwise, the counter decreases by
one fromk to x — 1. The complete re-computation @fop(, )
is delayed until the next insertion operation on listapfor there
is less thank exchange pairs left with the system. We can prove
that the all exchange pairs Top(k, i) must be exactly maintained
by the scheme. Although it incurs more cost on insertionsgbse
of the larger critical item set), this optimization greatigproves
the overall performance of the system by cutting unnecgssar
computation of top exchange pairs.

We give an additional example of item deletion. Assume that
k = 2 andx = 3. Atfirst, one usem; has 3 top exchanges:
Er = (u1,us, {1, I2},{Is}), B2 = (u1,us,{I1},{I4, 16} and
Es = (u1,u2,{Is},{Is}). If 1 is deleted fronl,, F- is removed
from the list, andk; become2. Suppose theis is deleted,Es is
also removed and; become 1. Then re-computing is triggered,
andk; is reset to 3, with the top results list re-computed.

6. EXPERIMENTS

In this section, we evaluate the algorithms we proposedrivipe
ous sections. We adapt the real life data from B2B online etark
as well as generating synthetic data based on some genetalsno

6.1 DataGeneration and Experiment Settings

6.1.1 Synthetic Dataset

The first step of synthetic data generation is creating icemtam-
ber of items. Each item is assigned with a value. Values ame ge
erated according to certain distributions, including engrial and
Zipf distributions. The parameters of all the distribusan investi-
gation are provided in Table 4. The maximum value and minimum
value are set at 10,000 and 10 respectively. When genertdiing



[ User| Wi | Li | G(ui, Top(k, 7)) | Critical ltem Set|
ul I1,[2, [3 I4,I5,I(5 60 Il,IQ
Uu2 I, Is I3, I5 50 Is
us 13,[5 111[2116 80 I5
Us I, 14 Is 0 I, 1s
us 141—[6 .[1,]3 10 .[4, —[6

Table 3: Example of critical item setsof 5 users

item values, the distributions are truncated to keep atlgsribe-
tween 10 and 10,000.

[ Distribution | Density Functionp(z) | Parameter |
Exponential e AT A=1
: T
Zipf % s=1,N=Vinax

Table 4: Parameters controlling thedistributionson values

In real system, users and their items are usually strongie€o
lated, because of the similar tastes and behaviors. Toreafita
diversity and clustering properties on the users and iterasetup
5 classes to model different types of users and their pojitielas.

Each user is randomly assigned to one of the classes witH equa

probability. One of the class is considered as “backgrouasist,
which contains all the items. Every item is also assignedn® o
of the other four classes with equal probability. There isipper
limit on the maximum number of items in each li$t Anitem list,
e.g. wish listiW; or unneeded lisL;, is full if the number of items
reaches the limitation. In our experiments, to test theadiktly of
the system, we try to keep the item list as full as possible.

After setting the parameters and assigning users and iteths t
classes, the synthetic data are generated with a sequeritegnof
updates. The generation of updates consists of two phakedir3t
phase is the warm-up phase. The objective of this phase i8 to fi
each user’s wish and unneeded lists, thereby with moretiassr
than deletions. After the lists are almost full, the simiolatstarts
the second phase. In the second phase, insertions anddsletke
place with identical frequency, leading to relatively s¢abystem
workload.

In the first phase, when generating a new update, our siranlati
randomly selects a user with equal probability. The gepethen
chooses one of the wish list or the unneeded list. If the tdigte
is not full, an insertion operation is taken. Otherwise,dbaerator
randomly deletes one of the item in the target list. Duringein
tion, the selection on the inserting item depends on thésusiaiss
as well as the items’ class. The generator picks up a random nu
ber to decide if the item is from the same class of the U$£rT (
probability), the “background"” clasg (7 probability) or the other
three classesl(7 probability, and1/21 for each class). It then
uniformly chooses an item from the specific class. Duringedel
tion, one item is chosen from the list with equal probahilifyhe
selection of the deleting item does not take class informnaito
account.

In the second phase, similar to the first phase, one itenrdist
the chosen user is selected with equal probability. If thecsed
item list is empty, an insertion to the item list is run. If them
list is neither full nor empty, the generator makes a randenhi
decision: it generates an insertion with probability Oréa deletion
with probability 0.4. The probabilities are able to keep lats
almost full in the second phase.

The number of updates generated in the first phagé is|U]|,
where|U| is the number of users an¥ is the maximal number of
items in any list. The number of updates generated in thenskco

phase is no less thah« N « |U|. The performance tends to turn
stable after a series of updates in the second phase.
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Figure 4. Average updateresponsetime over time

In Figure 4, we present the evolution of average update resspo
time during our simulation. In the first phase of the simwalafi
the response time increases quickly. After transiting eoscond
phase, the performance tends to be stable. All our expetahen
results are collected in the second phase of the simulation.

The Figure 5 illustrates the distribution of the item aftgresiod
of running and the system performance has been stabilized. T
amount of users in the system is 30,000 and the length of itis |
limited to 15. Figure 5(a) represents the distribution efritlength
of each user. As we can see in the figure, the majority of usess h
a near-full item list. More thag80% users’ item lists are of length
13, 14 or 15. Figure 5(b) illustrates the distribution orataalue
of each user’s item list. As shown in the figure, the total gaki
concentrated around 15k 20k. Figure 5(c) shows the distoibu
on the length of the item list intersections, which is the bemof
common items between two users. It can be seen that usertend
have very small number of intersections. In most of the gasiss
no more than 5 items. The same trend can be seen in Figure 5(d),
which plots the distribution of intersection value betwaesers.
Among all |U|? pairs of users, only a several hundred user pairs
share items with more than 20k total value.

Table 5 summarizes the parameters tested in our experiments
Their default values are in bold font.

[ Parameter | Varying Range |
Number of users 10k, 20k, 30k, 40k, 50k
B 0.7,0.75,0.8,0.85,0.9,0.95
Length of item list 10, 15, 20, 25, 30
K 15,25, 35,45, 55,65, 75
k 1,3,5,7,9,11

Number of items 300, 600, 900, 1200, 1500
€ 1-p

Table5: Varying parametersin synthetic data set

6.1.2 Real Dataset

It is difficult to find real exchanging data from large onlirene-
munities. To get a better understanding on our method wih re
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world applications, we crawl some transaction data fromyed®en,
which is a famous C2C online market system.

Our crawler records historical transactions with certaarg in
consecutive 90 days. Afterwards, all the users partigigdti these
transactions are crawled in the same manner.
crawled 34,191 users, 452,774 item records and 1,094, 5563-tr
action records. We associate a user’s wish (unneeded)itistal/
the item that he/she buys (sells).

As an online market is different from an exchanging market, w
pre-process the data in order to make it suitable to test yau s
tem. We find that there are large number of duplicated or highl
similar items. In order to reduce the duplication and insesthe
user item list overlapping, highly similar items are mergegkther.
Some items and users are discarded to make sure that evehagse
non-empty item list. After the pre-processing, the finalitedata
contains 2,458 users and 2,769 items.

In total we have
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Figure 6: Impact of varying item list length on running time

ratio. Also we use the brute force algorithm as straw-man. We
test both algorithms on exponential and Zipf distributibretailed

To test our system performance under various number of users density functions and parameters of them are as shown in 4.

we re-scale the data to generate data set of various sizealfolgp
the data, we randomly duplicate existing users until reagiihe
desired size. The duplicated user associates with the sanud s
items. To scale down the data, we randomly remove users.

We generate continuous updates according to the transacti®
have crawled. We associate an item with a user’s wish (urathed
list, if this user have bought (sold) this item. To genergteaie
operations, we randomly choose a user, an updating typer{ins
tion/deltetion), an item list (wish/unneeded) and an itexsoaiated
with this list.

The length of an item list at any moment is limited within 15.
A list with 15 items are considered as full. The reason to set a
fixed limitation is that our crawled transactions span 9Gsdd)ese
items are not listed at the same time. At any moment, only dlsma
number of items are listed. Therefore, we set this fixed &tionh
to control the number of items simultaneously listed in amifist.

Table 6 summarizes the parameters tested in our real daga-exp
iments. Their default values are in bold font.

| Parameter | Varying Range |
Number of userqy 0.5k, 1.5k, 2.5k, 3.5k, 4.5k
B 0.7,0.75,0.8,0.85, 0.9, 0.95
K 15, 25, 35, 45, 55, 65, 75
k 1,3,5,7,9,11
€ 1-p

Table 6: Varying parametersin real data set

6.2 Experimentson T1U2 Exchange

In Section 4 we propose Algorithm 3, which is an approxinmatio
algorithm for finding T2U1 exchange. In this section, we aaté
its performance, including the running time and the appnaxion
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Figure7: Impact of varying item list length on approximation

Figure 6 and 7 present the performance of both algorithmemund
different lengthes of item list. We fix both and1 — ¢ to 0.8, and
generate two item lists of equal length,14 N L; andL; N W;.
Figure 6 shows the running time of both algorithms. As theglo
imply, when the lengths of the item lists are less than 8, @ppr
mation scheme is not as good as brute-force algorithm, Becapr
proximation method spends too much time on index constracti
However, with the size of the item set grows larger, the mgni
time of brute force algorithm grows explosively, while thgpeox-
imate algorithm shows a good scalability. Figure 7 represtre
approximation ratio of the approximate T1U2 algorithm orivas
value distributions. The approximation ratio is definedtesro-
portion of the approximated result to the accurate resut, the
output of the brute force algorithm. The results show thateun
either value distribution, the approximation ratio is ncedler than
0.99.

Figure 8 discusses the effect of relaxation rati@n the run-
ning time of both algorithms, when the number of items aredfixe
at 10. We set for Algorithm 3 at1 — 5. The running time of
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Algorithm 3 increase with3, which well follows the complexity
analysis. On the other hand,does not affect the running time of
brute-force method. Figure 9 shows that the actual appratim
ratio in practice is much better than the theoretical egdtona

6.3 Top-K Monitoring on Synthetic Dataset

We compare our proposed algorithm with critical item pranin
referred to as ‘Critical’, with a basic algorithm, referredas ‘Ba-
sic’. The basic algorithmis similar to our proposed methofinds
the exchange candidates with the inverted list. Howevdnés not
apply critical item pruning strategy. After exchange caladies are
found, the algorithm simply find eligible exchange pairswesn
current user and each candidate using the T1U2 algorithm.

To verify the efficiency, we measure the response time. Qrdy t
experiment results on exponential distribution are sunmadr be-
cause there is no significant differences among results nauga
distributions. For each set of experiments, a query file isege
ated according to the rule we describe in Section 6.1. Theyque
file contains 10 to 30 million updates and is long enough toemak
sure that the system finally levels off. The average resptmse
is measured every 1,000 continuous operations. The aimraheu
periments is to test the impact of system parameters, thefitee
distributions and the user number.

As mentioned in Section 5.3, to optimize the performance, th
system initially computes the topresults instead of, wherex >
k. When one of the old top-exchanges is deleted, tepresults
are calculated instead of re-computing only fopesults. We first
test the impact of the number. The empirical result is also used
to justify our selection of the default value ferin Table 5.

The selection ok affects the system performance on two sides.
On the one hand, largedecreases the frequency of re-computing.
On the other hand, it increases the update cost. Figure ilo&)
trates the system response time when varyinghenk is set as de-
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Figure 10: Top-K monitoring resultson synthetic dataset

ferent values ofc. Figure 10(b) shows that the overall response
time slightly increases with the growth én However, this minor
increase makes no significant impact on the overall perfoocma
This implies that the extra overhead brought by increasirgnot

an important factor for our system. For basic algorithmcitrss the
list and finds the candidate user. Therefore, its running tilmes
not depend ork. For critical algorithm, although increasirigcan
result in a larger critical item set, the pruning result i$ signifi-
cantly increased. This suggests that our pruning methdteistive

in reducing the candidate set size.

We next study the effect of relaxation faci®on the system per-
formance. We illustrate the response time under diffefefaictor,
as shown in Figure 10(c). The overall performance alwaydsol
on a certain level. This result implies that our system carkwo
well under different8 values. Response time of basic algorithm
at 8 = 0.95 slightly decline in both data sets, since fewer eligible
exchange can be found when the relaxation rate is higher.

In our experiments, each user’s item list is length fixed.htle
lenges the system performance when each user is allowestto li
more items. We hereby study the performance on differegthes
of item lists. As shown in Figure 10(d), when the item list\gso
larger, the response time grows linearly with When the item list
expands, items are more likely to appear in lists for diffieresers.
The system has to examine more users to update the exchange re
ommendations. In practice, users in online communities aa
have a long item list. Therefore, the current performanceusf
system is capable of handling the workload of general conityiun
systems.

Number of users in the system is another very important facto

fault value5. The result shows that the response time reduces whenwhich greatly impacts the system performance. We evallsge t

k increases. The optimal performance is achieved when35 for
both algorithms. Whenr keeps increasing, the system performance
levels off, because of the increasing cost of updates.

Then we study the effect df, i.e. the number of top exchange
recommendations. We record the system response time uifider d

response time under different number of users. The resplteis
sented in Figure 10(e). The result shows that the responee ti
linearly grows with the number of users. Despite the deatifthe
system throughput, the performance of our method is stikbant
even for the largest we have tested (more than 1,000 updates per
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Figure 11: Top-K Monitoring Resultson Real Life Dataset

second under 50,000 users).

According to our data generating method, when the number of
total items decreases, every item is shared by more users Th
brings extra overhead to the system. lItis reflected in otiofetbe
system performance with varying number of items. As shown in
Figure 10(f), the system performance is inversely proposi to
the number of items.

6.4 Top-K Monitoring on Real Dataset

Similarly to the experiments in previous subsection, we para
“Critical" against “Basic" on real dataset. Firstly, we dyuthe ef-
fect of k, which is the initial top results that the system computes.
In the testsk is set at 5. The result is illustrated in Figure 11(a).
As can be seen in the figure, response time keeps decreasing wi
k increases. For the Basic algorithm, the response time diigps
nificantly beforex = 45 and levels off after the point. The critical
pruning algorithm is not greatly affected by tkelts response time
decrease insignificantly with increases.

Secondly, we study the effect & which is the number of top
results requested by user. The result is illustrated ag&itiyb).

The result implies that our pruning strategy can well haridée
increasing number of. For both algorithms, the response time
linearly increases wittk. The critical algorithm increases slightly
slower than the basic algorithm. The overall efficiency shomat
our pruning strategy halves the response time. The imprexeia
better, because in a real life data set, item price disidhus more
skewed and user-item ownership are more clustered.

Thirdly, we study the effect ofi, which is the number of users
participating in the exchange. We test both algorithm undeipus
number of users. As our original (filtered) data set cont2id&8
users, we re-scale the data to generate differently size i
We down-scale the data set to generate- 500 andu = 1, 500
data sets. We up-scale the date to genarate2, 500, 3, 500 and
4,500 data sets. The result is shown in Figure 11(c).

The result shows that the critical algorithm has a high efficy
and nice scalability. It has an improvement up to near thirees.
When the user number increases, the response time of tatica
gorithm grows in a linear manner. Meanwhile, response tifne o
basic algorithm grows faster when user number exceed 27508.
is because that on the one hand, when we up-scale the dalta, eac
item is owned by more user, and the cost of searching forktop-
exchange becomes more expensive; on the other hand, eath del
ing effects more topk results, which result in a more frequent top-
k re-computing. As a result, the basic algorithm shows a super
linear increasing. Since the critical algorithm is les=etiéd by
re-computing frequency, it shows a linear growth in respdirae.

Lastly, we study the effect gf, which is the relaxation factor
and also the approximation factor in Algorithm 3. The result-
lustrated as Figure 11(b). The critical algorithm perforellwnder
all 8, while the response time of the basic algorithm keeps on in-
creasing with3. In a real-life data, user-item ownership are highly
clustered. Therefore, small user group often shares a lomgon

item list. In this case, the approximate T1U2 algorithm isiehed
more frequently than in our synthetic data set. As the apprax
tion algorithm has an time complexity related tb — 3) ", the
response time increase with

7. CONCLUSION

In this paper, we study the problem of top-k exchange pair-mon
itoring on large online community system. We propose a new ex
change model, namely Binary Value-based Exchange ModeE@)
which allows exchange transaction between users only when t
both have items the other side wants and the total valueseof th
items are of the same price. We present an efficient mechanism
to find the top-1 exchange pair between two users, and extend t
analysis to large system with arbitrarily many users. Esitenex-
periments on synthetic data sets show that our solutionigee\a
scalable and effective solution to the problem.
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