
Recommending XML Physical Designs for XML Databases

Iman Elghandour · Ashraf Aboulnaga · Daniel C. Zilio · Calisto Zuzarte

Abstract Database systems employ physical structures

such as indexes and materialized views to improve query
performance, potentially by orders of magnitude. It is

therefore important for a database administrator to

choose the appropriate configuration of these physical

structures for a given database. XML database systems

are increasingly being used to manage semi-structured
data, and XML support has been added to commercial

database systems. In this paper, we address the problem

of automatic physical design for XML databases, which

is the process of automatically selecting the best set of
physical structures for a database and a query work-

load. We focus on recommending two types of physi-

cal structures: XML indexes and relational materialized

views of XML data. We present a design advisor for rec-

ommending XML indexes, one for recommending ma-
terialized views, and an integrated design advisor that

recommends both indexes and materialized views. A

key characteristic of our advisors is that they are tightly

coupled with the query optimizer of the database sys-
tem, and they rely on the optimizer for enumerating

and evaluating physical designs. We have implemented

our advisors in a prototype version of IBM DB2 V9,

and we experimentally demonstrate the effectiveness of

their recommendations using this implementation.

Keywords Database physical design · XML database ·

Design advisor · XMLTable views · XML indexes

Iman Elghandour (B)
Alexandria University, E-mail: ielghand@alexu.edu.eg
(Work done while the author was at the University of Water-
loo)

Ashraf Aboulnaga
University of Waterloo, E-mail: ashraf@uwaterloo.ca

Daniel C. Zilio, Calisto Zuzarte
IBM Toronto Lab, E-mail: {zilio, calisto}@ca.ibm.com

1 Introduction

Recently, an increasing amount of data is exchanged,
processed and stored in XML format. In addition, XML

is now commonly used in many applications to repre-

sent and exchange semi-structured data. This has led

to an increased focus on XML data management. There
are three main approaches for storing and managing

XML data: (1) native XML databases, (2) shredding

XML data into relational databases, and (3) XML col-

umn type. In this paper, we focus on XML data that is

natively stored in a column of type XML in a table in
a relational database. This approach is now supported

by most commercial database systems [5, 30].

Database systems introduce several physical struc-

tures to improve the performance of query execution.

Examples of physical structures that relational database

systems support and XML database systems fully or

partially support are indexes, materialized views, and
partitioning. For XML databases, the performance im-

provements provided by these physical structures stem

primarily from: (1) direct access to parts of the data

in the XML documents without needing to scan them
(e.g., indexes), (2) grouping parts of the data into one

logical unit that can be scanned independently of other

such units (e.g., materialized views and partitioning),

and (3) rewriting the query for a smaller part of the

data (e.g., materialized views).

The various XML physical structures can poten-

tially improve the performance of XML database sys-

tems by orders of magnitude. Users of these systems
now face the problem of deciding on the best set of

physical structures to create for a given XML database

and query workload. Automatic physical database de-

sign has been studied extensively in the context of re-
lational databases, and most commercial database sys-

tems now include Design Advisors that automatically

recommend various physical structures [1, 7, 34, 36].

2 Iman Elghandour et al.

Candidates

for queryi

Input

- Query workload

- XML database

- System information

- Disk space constraint

Advisor

Output

Recommended

configuration

Basic set of

candidates

Candidate

enumeration

Expanded

set of

candidates

queryiRecommending

basic set of

candidates

Candidate

generalization/

merging

Estimated

cost for
queryi

Configuration

enumeration

Query Optimizer

- Candidate

configuration

- queryi Cost estimation

using DB

statistics

Evaluate

candidates

mode

Enumerate

candidates

mode

Fig. 1 General architecture of a physical design advisor.

However, automatic physical design for XML databases

has not been studied as extensively in the database lit-
erature.

In this paper, we study automating the physical de-

sign of XML databases and build a system to recom-
mend physical structures that are useful for a given

XML database and query workload. We study the auto-

matic recommendation of two physical structures: XML

indexes and XMLmaterialized views. A well-established
architecture for physical design recommendation has

been developed in the context of relational physical de-

sign advisors. A design advisor needs to address four

questions: (1) how to determine the candidate struc-

tures that would be useful for a query workload, (2)
how to expand the set of candidates with more general

candidates, (3) how to estimate the benefit of a physical

design configuration (i.e., a set of physical structures),

and (4) how to search all the possible configurations for
the best configuration. The recommendation process is

divided into several phases where each phase addresses

one of these questions. Figure 1 shows the general ar-

chitecture of relational database design advisors, which

we follow in our proposed XML design advisors. We
extend the query optimizer with operation modes that

allows us to: (1) recommend physical structures that

can be useful for a query and (2) estimate the cost of

a query while assuming the existence of some physical
structures.

XML databases have unique characteristics, and so

their physical structures are also different from the ones
that are defined for relational database systems. This

introduces unique challenges, such as identifying the

patterns occurring in an XML database that can be in-

dexed, finding general forms of the identified patterns,

and consequently, searching a large number of candi-

date patterns. These unique challenges make automatic

physical design for XML databases more difficult than

that for relational databases and lead to the details of
the physical design procedure being significantly dif-

ferent. Also, the physical structures for XML databases

are not yet well established, and so there is an opportu-

nity for research on automatic physical design to impact
the definition of the physical structures being recom-

mended. For example, a wide variety of XML indexes

have been explored in the literature [13, 28, 30]. On the

other hand, XML materialized views of various types

are still being investigated in research [2, 15, 18, 30]. In
this paper, we explore using the result of the XMLTable

functions [18, 30] as relational-structured materialized

views to speed up answering XQuery queries, and we

develop an advisor that recommends XMLTable views
for a given workload of XQuery queries.

Our focus in this paper is on developing techniques

and algorithms to automate the recommendation of
XML indexes and XMLTable materialized views for a

given XML database and XML query workload. We

present two end-to-end advisors: an XML Index Ad-

visor and an XMLTable View Advisor. We then incor-

porate these two advisors into one Integrated Index-
View Advisor that recommends both XML indexes and

XMLTable materialized views for an XML database.

An earlier version of the XML Index Advisor appeared

in [10] and was demonstrated in [9], and the client-side
XML Index Advisor application is available for down-

load from the IBM developerWorks web site. In this pa-

per, we present a new technique to deal with database

maintenance statements (update, delete, and insert) in

the input workload. An earlier version of the XMLTable
View Advisor appeared in [11]. We expand that work

by presenting the query optimizer architecture that can

rewrite XQuery queries as needed by the View Advisor,

and presenting the details of the query translation algo-
rithm. The Integrated Index-View Advisor is a new re-

search contribution beyond what appears in [9, 10, 11].

In the rest of the paper, we present our contribu-

tions, which can be summarized as follows: (1) the algo-
rithms needed for building an XML Index Advisor (Sec-

tion 3), (2) an XMLTable View Advisor (Section 4), (3)

a combination of our index and view advisors proposed

in Sections 3 and 4 to build an Integrated Index-View
Advisor (Section 5), and (4) an implementation of our

advisors on top of IBM DB2 V9 and an experimental

study that uses this implementation (Section 6).

Recommending XML Physical Designs for XML Databases 3

2 Background and Related Work

2.1 XML Physical Structures

Several types of physical structures can be used to im-
prove the performance of query execution. In this paper,

we focus on XML indexes and XMLTable views, which

we briefly describe in this section.

2.1.1 XML Indexes

XML query languages (for example, XQuery and

SQL/XML) use XPath path expressions to represent

elements to be retrieved from the data. The retrieval

of elements from the XML data can be helped by
the presence of an XML index, and there have been

many proposals for XML indexes over the past few

years [13, 28, 30]. XML indexes can be categorized into

structural indexes that speed up navigation through the
hierarchical structure of the XML data (e.g., [13]), and

value indexes that help in retrieving XML elements

based on some condition on the values they contain

(e.g., [28, 30]). A structural index can help in answering

an XPath query such as /Security/Symbol (find all se-
curity symbols), while a value index can help in answer-

ing an XPath query like /Security[Yield >= 4.5]

(find all securities with a yield greater than 4.5).1

Covering indexes (for example, DataGuide [13]) can

grow as large as the data that they index [20], so they
might not improve query execution time and are harder

to maintain compared to smaller ones. However, par-

tial indexes, which include only the XML elements that

are reachable via specific index patterns [5, 30, 32] can
improve the speed of index maintenance and lookups.

These index patterns are typically specified as linear

XPath expressions that do not include predicates. For

example, an index that includes only XML elements

that are reachable by the pattern /Security/* (i.e.,
immediate children of /Security) would be useful for

answering queries such as the example queries above,

but it would not be useful in answering queries on, say,

/Security/SecInfo//Sector.

2.1.2 XMLTable Views

On the physical design level, materialized views of XML

data can be in one of the following forms: (1) both the
view and query language are XQuery [2, 29]. In this

case, the main research issue is to check XQuery result

containment to decide whether a view can be used to

answer a query; (2) the view language is XPath and the

1 Throughout this paper, we use examples from the TPoX
benchmark [27].

SELECT u. col1, u.col2, ...

FROM tableName

Derived table column names

O/P derived table

FROM tableName,

XMLTABLE (‘$docRef/rowGeneratorQuery’

PASSING tableName.colName as “docRef”

COLUMNS

“col1” type1 PATH ‘path1’

col1 col2 …...

…… …... …...

…… …… …...

Row

generator

“col2” type2 PATH ‘path2’

.......

)as u
…... …... …...Navigated

columns

Fig. 2 XMLTable view example.

query language is XQuery [4, 35]. In this approach, the

XML views are defined using XPath path expressions
and are similar to the XML indexes described in Sec-

tion 2.1.1; and (3) the view language is a combination

of XPath and SQL, and the query language is XQuery.

This approach has some similarities to shredding the
XML data into relational tables [6, 33]. In this paper,

we adopt the third approach, which we can call selective

shredding, and we elaborate on it in Section 4.

Using relational materialized views for XML data

and queries provides a simple and effective way to im-

prove the performance of XML query workloads by

leveraging the existing rich and mature infrastructure
for these views built into many database systems. How-

ever, building relational views of XML data requires

a mechanism that maps between XML elements and

their corresponding column names in the relational

views. For example, in [15], the XML Wrapper of
IBM DB2 [19] is used to perform this mapping. The

XML Wrapper allows CREATE NICKNAME state-

ments that include nicknames for XPath expressions

in the XML document.

A new approach for creating relational views for

XML data is to use the XMLTable function [12, 18, 30].
XMLTable is an SQL table function that creates a vir-

tual derived relational table based on XML data. The

virtual table can then be queried using SQL or mate-

rialized as a relational view [12]. An example of using

the XMLTable function to create indexes is described
in [24]. The XMLTable function is executed on a ta-

ble with an XML-typed column. The XMLTable func-

tion allows us to include parts of the XML data that

is frequently accessed by queries in the workload in a
relational table format for faster retrieval. By doing

so, we selectively shred the XML data into relational

views. Figure 2 illustrates an example SQL query with

an XMLTable function. The main parts of the syntax

of the XMLTable function are as follows:

– A row generator XQuery string, which is an XQuery

(or XPath) expression. The XMLTable function it-
erates through the results of the XQuery (or XPath)

expression in the row generator and generates a tu-

ple in the derived table for every result.

4 Iman Elghandour et al.

– Column navigators are XPath navigation expres-

sions. Their execution results are used to populate

the columns of the derived table to be created by

the XMLTable function.

Using the XMLTable function to create materialized

relational views of the XML data allows us to bene-

fit from both the mature relational view matching [14]
and also XPath view matching [4, 35]. The XMLTable

is defined in the FROM clause of a SELECT state-

ment which allows two levels of matching of queries with

views. The query optimizer matches queries that con-
tain XMLTable functions with XMLTable views. Next,

XPath matching can be used for the XMLTable def-

initions of the query and view to find the necessary

compensation and so to rewrite the query to use the
contents of the view. A discussion of the possible tech-

niques and issues related to matching and rewriting

SQL/XML queries with XMLTable functions to use

XMLTable views is presented in [12]. That work focuses

on describing the matching and rewriting rules needed
by a query optimizer to use XMLTable views.

The XQuery Update Facility (XQUF), which is a

W3C Recommendation that provides a declarative ap-

proach for updating XML, has been shown to effectively
update XML data and XMLTable indexes [22, 24]. That

work proves the effectiveness of using XMLTable views

as physical structures for workloads that contain both

queries and database maintenance statements.

2.2 Related Work on Automatic Physical Design for

XML

Two works have attempted to tackle the index recom-

mendation problem for XML databases [17, 31]. They

both suffer from having rudimentary techniques for can-

didate generation, cost estimation, and configuration

enumeration. Furthermore, the index advisors proposed
in these works are independent of the database system

query optimizer, so there is no guarantee that the rec-

ommended indexes will be of use to the optimizer, and

no guarantee that the estimated benefits of candidate
index configurations are accurate.

In [31], a tool is proposed for selecting indexes for

an XML database system. The main focus of the work

is to find a good cost model for selecting the best set of
indexes for a query workload, making use of structural

information and data statistics. In our work, we adopt

a simple and powerful solution to the cost estimation

problem by leveraging the query optimizer cost model.

Another index recommender for XML is presented

in [16, 17]. This index recommender analyzes the work-

load periodically and creates or drops XML indexes on

the fly. As in [31], the cost model used is independent

of the query optimizer and hence likely to be inaccu-

rate. For configuration enumeration, [16] proposes us-

ing either a greedy search, which can be inaccurate, or

an exhaustive search, which is slow. The configuration
enumeration step in [16, 17] also ignores the penalty for

updates, deletes, and inserts.

In this paper, we also consider recommending rela-

tional materialized views for XML data. Relational and
XML data reside side by side in current database sys-

tems [5]. Query execution cost depends on the storage

mode of the data, and so there are situations where it

is efficient to use a relational representation of the data

and others where it is more efficient to use an XML rep-
resentation. The work in [21, 26] discusses the factors

affecting the choice of using a relational or XML rep-

resentation to store data and attempts to find a logical

design for a database given the characteristics of the
data to be stored in it.

Application access patterns of the data can also help

in choosing how to store this data. These alternative

access patterns can be exploited to add materialized

views to the database to enhance query execution per-
formance [14]. To incorporate both relational and XML

data models in the same database system, several hy-

brid XML-relational architectures are presented in [15].

In Section 4, we study building relational materialized
views as an alternative access pattern for XML data.

Using relational materialized views to answer

XQuery queries requires translating XQuery queries

on the XML data to SQL queries on the materialized

views. In the literature, translating XQuery to SQL has
traditionally taken place at the application level, where

the XQuery string gets translated into an SQL string

before it is sent to the database server [33]. In com-

parison, XQuery native compilation, described in [23]

takes place inside the database server. During XQuery
native compilation, an XQuery query is compiled into

the server internal data structures which are shared be-

tween XQuery and SQL queries.

The main focus in [23] is to rewrite XQuery queries
into SQL queries using the SQL/XML extensions pro-

vided by the Oracle DBMS. This rewriting is done dur-

ing query compilation to take advantage of the power-

ful capabilities of the full-fledged relational query opti-

mizer. The first phase of XQuery compilation is to parse
the query into the XQueryX [25] representation. Next,

static type checking, which is important for XQuery op-

timization, is performed. Finally, the XQuery query is

rewritten to an SQL/XML query. To rewrite XQuery to
SQL/XML, each XQuery expression is converted into

an SQL operator or operator tree or a sub-query block.

In some cases, when native compilation is not possi-

Recommending XML Physical Designs for XML Databases 5

ble (i.e., a mapping between XQuery and SQL/XML

is not available), a hybrid approach is taken, and a co-

processor is used to handle these parts of the XQuery

query. In Section 4, we take a similar but simpler ap-

proach for XQuery to SQL/XML translation. We limit
ourself to a subset of XQuery that can be mapped to

SQL/XML with XMLTable functions.

3 Recommending XML Indexes

Partial XML indexes are supported by commercial

database systems such as DB2 and Oracle [28, 30]. Re-

call that a partial index is an index on parts of an

XML document that match index patterns specified by

the user (Section 2.1.1). Partial XML indexing leads to
smaller indexes that include only the paths in a docu-

ment that are relevant to user queries. This makes index

maintenance on database updates more efficient and

significantly improves index lookup performance over
indexes that include all the paths in a document [3].

The large number of partial indexes that a user can

choose makes the decision of which ones to build more

difficult. In the rest of this section, we present an XML

Index Advisor that automatically recommends the best
set of partial XML index patterns for a given database

and query workload, while taking into account the cost

of updating the index on data modification.

3.1 Overview and Architecture

The architecture of the XML Index Advisor is the same

as the general architecture illustrated in Figure 1. The

high-level framework of the index recommendation pro-
cess is as follows. First, for every query in the workload,

we rely on the query optimizer to enumerate a set of

candidate indexes that would be useful for it. Next,

we expand the enumerated set of candidate indexes to

include more general indexes, each of which can poten-
tially benefit multiple queries from the current work-

load or from future, yet-unseen but related workloads.

Finally, we search the space of possible index configu-

rations to find the optimal configuration, which maxi-
mizes the performance benefit to the workload.

Much of the functionality of the advisor is imple-
mented in a client-side application. However, we use the

query optimizer for index recommendation by extend-

ing it with two new query optimizer modes: (1) Enumer-

ate XML Indexes, in which the optimizer enumerates
the indexes that can be of benefit to one input query,

hence allowing us to start with a useful basic set of can-

didate indexes and (2) Evaluate XML Indexes, in which

Q1: Return a security having a specified Symbol

("BCIIPRC").

for $sec in SECURITY('SDOC')/Security

where $sec/Symbol= "BCIIPRC"

return $sec

Fig. 3 Query Q1.

Q2: List securities in a particular sector ("Energy") given a

yield range (>4.5).

for $sec in SECURITY('SDOC')/Security[Yield>4.5]$ ()/ y[]

where $sec/SecInfo/*/Sector= "Energy"

return <Security>{$sec/Name}</Security>

Fig. 4 Query Q2.

the optimizer simulates an index configuration and es-

timates the cost of a query under this configuration.

These optimizer modes are the only server-side exten-

sions required for the XML Index Advisor. They allow
us to tightly couple the index recommendation process

with the query optimizer, and they eliminate the need

to replicate any functionality that is already available

in the optimizer. Moreover, the XML Index Advisor
client application is now useful for any database sys-

tem that supports XML indexes, and whose optimizer

is extended with our proposed modes.

In the new modes, the optimizer needs to work

with hypothetical indexes that do not exist but are still

needed to identify candidate indexes or evaluate their
cost. To enable this, we modify the query optimizer to

allow it to create virtual indexes that can then be used

during query optimization. These virtual indexes are

added to the database catalog and to all the internal
data structures of the optimizer, but they are not phys-

ically created on disk and no data is inserted into them,

and therefore, they cannot be used for query execution.

Virtual indexes are used in relational index advisors to

enable the optimizer to estimate the cost of candidate
index configurations [7, 34]. In our XML Index Advi-

sor, we use virtual indexes for cost estimation, but a

novel feature of our work is that we also use them for

enumerating candidate indexes for workload queries.

Next, we describe the details of the XML Index Ad-

visor phases for recommending partial XML indexes.
We use a workload consisting of the two queries Q1

and Q2 on the TPoX database, which are shown in

Figures 3 and 4, respectively, as a running example.

3.2 Basic Candidate Set

XQuery and SQL/XML are complex languages. In these

languages, XML patterns can appear in various parts of

a query, but indexes are not useful for some of the XML

6 Iman Elghandour et al.

C1 /Security/Symbol string
C2 /Security/SecInfo/*/Sector string
C3 /Security/Yield numerical
C4 /Security//* string
C5 /Security/* numerical

Table 1 Basic and general index candidates for Q1 and Q2.

patterns that appear in the query (e.g., patterns that

appear in the return clause [3]). In addition, the process
of deciding which indexes can benefit which patterns

in a query is dependent on the XML query optimizer

implementation. To obtain the basic candidate set of

indexes that are useful to a given query, we tightly cou-

ple the process of generating candidate indexes in the
XML Index Advisor with the process of index matching

in the optimizer. Index matching is a fundamental pro-

cess performed by query optimizers. In this process, the

optimizer decides which of the available indexes can be
used by the query being optimized, and how they can

be used (e.g., for which predicates in the query) [4, 35].

Coupling candidate enumeration with index match-

ing allows us to leverage the fairly elaborate query pars-
ing, index matching, type checking, and query rewriting

functionality of the query optimizer, without the need

to replicate this functionality. In addition, we can sup-

port any type checks or type casts that the optimizer
performs when using an index, and we can enumerate

indexes that are only exposed by query rewrites in the

optimizer. Moreover, we are assured that the candidate

indexes considered by the Index Advisor can actually

be matched and used by the optimizer.

To leverage the index matching capability of the

query optimizer for enumerating candidate XML in-

dexes, we modify the optimizer with a special Enumer-
ate XML Indexes query optimizer mode. In this mode,

we create a virtual universal index over the XML data,

which is a virtual index whose index pattern is //*.

This //* virtual index (virtually) indexes all elements

in the document and hence can be matched with any
XPath pattern in the query that can be answered using

an index. Next, the query optimizer optimizes the work-

load query with the //* virtual index in place. After the

index matching step of the optimizer, the optimizer re-
turns to the user all the index patterns in the query

that were matched with the //* virtual index.

The candidate index patterns enumerated by the

optimizer take predicates into account and include in-
dexes that are only exposed by query rewrites. For ex-

ample, C1, C2, and C3 in Table 1 are the patterns enu-

merated by the DB2 optimizer for Q1 and Q2.

3.3 Candidate Generalization

The XML Index Advisor optimizes each workload query

in Enumerate XML Indexes mode. The resulting can-

didate index patterns of all queries are considered as a
basic candidate set. Thus, the optimizer helps us iden-

tify index patterns specific to each query. However, it

is unable to identify index patterns that can benefit

multiple queries in the current workload and also fu-

ture queries with similar patterns. We assume that the
queries that we have not seen in the input workload and

would like to answer in the future have XPath expres-

sions that are slight variants of the XPath expressions

that appear in the queries of the input workload.

For example, our basic candidate set for

Q1 and Q2 includes: /Security/Symbol and

/Security/SecInfo/*/Sector. Therefore, the set
of candidates can be expanded to include the more

general pattern /Security//*. This new path expres-

sion covers the two original path expressions as well as

other path expressions that could potentially exist in

the data, such as /Security//Industry. Our Index
Advisor can now recommend the new general index

instead of the two original candidate indexes. This

new candidate index will generally have a size that

is greater than or equal to the total size of the two
original candidate indexes, since it potentially covers

more elements in the data than they do. However, it

has the advantage that it can answer more queries

than the two original indexes and so it can potentially

be useful for queries beyond the training workload.

The candidate generalization algorithm attempts to

find more generalized index patterns by iteratively ap-

plying several generalization rules to each pair of basic
candidate indexes and to the resulting generalized in-

dexes. The process continues until no new generalized

XPath expressions can be found. The rules consider

two XML index patterns concurrently and try to find
common path nodes (representing common subexpres-

sions) between these two patterns, which is captured in

a new generalized XPath expression. We add this newly

formed XPath expression to our set of candidate index

patterns. Before attempting to generalize two patterns
together, we check their compatibility under any other

constraints, such as data type and namespace.

We represent path expression patterns as linked lists
in which each node represents a path step. To generalize

a pair of XML patterns, we start at the head nodes of

the linked lists representing the path expressions and

perform a synchronized traversal of the two lists. We
examine each navigational step in the two patterns, and

if a match is found, we add a matching step in the

generated pattern. If an immediate match is not found,

Recommending XML Physical Designs for XML Databases 7

we skip steps looking for a match and this is reflected in

the generated pattern by adding * steps. We continue

this procedure until we reach the indexed nodes. The

details of the algorithm are presented in [8, 10].

For example, this matching process extends the can-
didates for Q1 and Q2 to include candidate C4 in Ta-

ble 1. Candidate C3 cannot be generalized with either

C1 or C2 because it is of a different data type. There-

fore, we propose a heuristic approach that generalizes
index patterns in the basic candidate set individually

by predicting the existence of other expressions similar

to a candidate. This heuristic technique replaces the

last non-* navigation step in the candidate path with

a * navigation step. For example, candidate C3 is gen-
eralized to C5 in Table 1 using the proposed heuristic.

3.4 Estimating the Benefit of XML Indexes

After the candidate enumeration and generalization
steps, we have in hand an expanded set of candidate

indexes. To find the best index configuration from these

candidates, the XML Index Advisor needs to be able to

estimate the benefit of an index or a set of indexes to a
given workload, which we describe in this section. We

also describe how we account for maintenance (update,

delete, and insert) statements in the workload when es-

timating this benefit.

Relational index advisors leverage the query opti-
mizer to estimate the benefit to a query workload of

having a particular index configuration [7, 34]. Simi-

larly, we employ a new query optimizer mode that we

call the Evaluate XML Indexes mode. This mode re-
lies on creating virtual indexes and estimating the cost

of workload queries with these virtual indexes in place.

However, we first need to collect statistics on the XML

data populated in the database (e.g., using the RUN-

STATS command in DB2). The optimizer in Evaluate
XML Indexes mode uses these data statistics to esti-

mate for the virtual indexes the index statistics that

are necessary for the optimizer cost model (e.g., the

number of leaf nodes in a B-tree). The details of the
index statistics that are needed depend on the imple-

mentation of the query optimizer. The optimizer can

then include the virtual indexes with other existing real

indexes when performing index matching to find the

possible indexes to be used in a query, and when de-
termining a query execution plan for this query. After

optimizing a query in Evaluate XML Indexes mode, the

optimizer returns the set of indexes that were used, plus

their index statistics and the new cost information of
the evaluated query. This information is used by our in-

dex advisor to determine the benefit of using an index

or a configuration consisting of multiple indexes.

3.4.1 Estimating the Benefit of an Index Configuration

In the XML Index Advisor client-side application, the

benefit of using an index is estimated as the reduction
in query execution cost when the index is created. If

the initial cost of query q is Cold (q) (i.e., the cost of the

query when any existing indexes are in place) and the

cost of the same query after creating index x is Cnew (q)

(i.e., the cost of the query when the index is added
to the existing configuration), the benefit of index x

to query q is calculated as Benefit(x; q) = Cold (q) −

Cnew (q). We use the Evaluate XML Indexes mode to

evaluate the cost of a query when an index is in place
without actually creating the index.

To evaluate the benefit of an index for a workload
of queries W , we generalize the above calculation to:

Benefit(x;W) =
∑

q∈W (Cold(q) − Cnew (q)). Further-

more, to calculate the benefit of an index configuration,

we create all the indexes in the configuration as vir-

tual indexes and then optimize all queries in the work-
load in Evaluate XML Indexes mode to estimate their

new costs. Thus, we have: Benefit(x1, x2, . . . , xn;W) =∑
q∈W (Cold (q)− Cnew (q)).

3.4.2 Estimating the Cost of Update, Delete, and

Insert Statements and the Benefit that they Derive

Our workloads may contain update, delete, and insert

(UDI) statements in addition to queries. Any index that

we recommend must be maintained for each of the UDI
statements in the workload. At the same time, update

and delete statements may benefit from an index that

helps them identify the data that needs to be updated

or deleted. Such benefit is estimated just like the ben-

efit of indexes for queries. In some database systems,
such as DB2, the optimizer cost estimates do not in-

clude the cost of updating indexes because updating

the indexes is an operation that has to be performed re-

gardless of the chosen query execution plan, so ignoring
the cost of this operation will not affect the plan chosen

by the query optimizer. Therefore, we develop special

techniques in our client-side application to estimate the

maintenance cost of indexes under UDI statements.

To estimate the maintenance cost for an index xi

due to a UDI statement s, we use the data statistics

to estimate the number of XML documents that have
changed because of this statement, docChanged(s), and

the total number of elements included in this index

numElement(xi). We make two simplifying assumption:

(1) the number of indexed XML elements from all doc-
uments is the same and (2) all the index entries cor-

responding to these XML elements will need to be up-

dated. Given the total number of XML documents in

8 Iman Elghandour et al.

the database numDocs, we can estimate the number

of XML elements that the statement will affect in the

index as follows:

elementsUpdated(xi, s) = numElements(xi)×

docsChanged(s)/numDocs

The maintenance cost mc of an index xi because

of a UDI statement s is calculated as a function of

elementsUpdated(xi, s) in a way that depends on how
the database system implements index updates. To ac-

count for the index maintenance cost in the benefit cal-

culation, we subtract from the calculated benefit the

maintenance cost (mc) of all indexes in the configura-
tion. Thus, for indexes x1, . . . , xn and workloadW that

contains queries q1, . . . , ql and maintenance statements

s1, . . . , sk:

BenefitUDI(x1, . . . , xn;W) =
∑

q∈W

(Cold (q)− Cnew (q)) +

∑

s∈W

((Cold (s)− Cnew (s)) −
∑n

i=1mc(xi, s))

3.4.3 Efficient Evaluation of Index Configurations

To evaluate the benefit of an index configuration, we

can simply estimate the benefit of the individual in-

dexes independently and add up these estimated ben-

efits. However, this method ignores the interaction be-

tween indexes. The benefit of an index will change de-
pending on what other indexes are available because the

query optimizer can use multiple indexes in its plans.

We can take index interaction into account by simply

evaluating the entire workload with all indexes in the
configuration created as virtual indexes. Since we eval-

uate the benefit of index configurations repeatedly dur-

ing our search for the optimal index configuration, we

have developed a more efficient approach that reduces

the number of calls to the optimizer while taking index
interaction into account. This approach is inspired by

the atomic configuration concept described in [7].

During the generation of candidate indexes, we keep

track of which workload statements produced each in-
dex x. These are the statements that can benefit from

x, and we call them the affected set of x. To eval-

uate the benefit of a configuration, we only need to

call the optimizer for the union of the affected sets

of its indexes. Furthermore, we divide a configura-
tion into smaller sub-configurations, where each sub-

configuration includes indexes that may interact with

each other, which are indexes that have overlapping

affected sets. We maintain a cache of previously eval-
uated sub-configurations and we only evaluate a sub-

configuration if it is not found in this cache. To create

the set of sub-configurations for a given configuration,

we start with a sub-configuration for each index, and we

iteratively merge the sub-configurations whose affected

sets overlap, until there can be no more merging.

For example, to evaluate the benefit of the index

configuration containing C1, C2 and C3 from Table 1,

we initially have each one of them in a separate sub-

configuration. Because C2 and C3 are enumerated from
the same query Q2, we merge their sub-configurations

into {C2, C3}. To evaluate the configuration {C1}, we

only need to optimize Q1 while C1 is created as virtual

index. Similarly, to evaluate the configuration {C2, C3}
we only need to optimize Q2 while C2 and C3 are cre-

ated as virtual indexes. The benefit of the configuration

{C1, C2, C3} will be the sum of the individual bene-

fits of {C1} and {C2, C3}. When evaluating a config-

uration of, say, {C1, C2, C5}, we split it into the two
sub-configurations, {C1} and {C2, C5}. Since {C1} was

evaluated in the previous step, we only need to evaluate

{C2, C5}.

3.5 Searching for the Optimal Configuration

3.5.1 Problem Definition

The XML Index Advisor needs to search the space of

possible index configurations consisting of indexes from
the candidate set including basic and generalized candi-

dates to find the index configuration with the maximum

benefit, subject to a constraint specified by the user

on the disk space available for the chosen index con-
figuration. This combinatorial search problem can be

modeled as a 0/1 knapsack problem [34], which is NP-

complete. The size of the knapsack is the disk space

budget specified by the user. Each candidate index,

which is an “item” that can be placed in the knapsack,
has a cost, which is its estimated size on disk, and a ben-

efit. Given that p is an index configuration in the set

of candidate configurations P , W is the workload, and

x is an index in p, the objective of the search problem
can be described as:

maximizep∈P {Benefit(W , p)}

such that
∑

x∈p

Size(x) ≤ DiskBudget

Modeling the index search as a 0/1 knapsack prob-
lem gives us a spectrum of solutions that ranges from

greedy approximation to dynamic programming. When

considering the right algorithm for the search problem,

we also need to take index interaction into account. The
simplest approach to solving the 0/1 knapsack problem

is to use a greedy search that ignores index interaction.

To take index interaction into account, we have added

Recommending XML Physical Designs for XML Databases 9

py pzpx
Most general

candidates

pl+3 pl+4pl+1 pl+2 pl+f

Generalized

candidates
pm+5 plpm+3 pm+4pm+1 pm+2

candidates

Basic

q q q q

p3 p4 p5 pm!1p1 p2 pm
Basic

candidates

Queriesq1 q2 q3 qn Queries

Fig. 5 Relationship between workload queries and candidate
XML patterns.

some heuristics to the greedy search to ensure that we

use as many indexes with high benefit as we can, and

that they are all actually used in optimizer plans. We
also propose a top down search that chooses as many

general indexes as it can fit into the disk budget. The

goals of the greedy search with heuristics and the top

down search are fundamentally different: The greedy
search with heuristics attempts to find the best possi-

ble set of indexes for the given workload, without any

consideration for the generality of these indexes, while

the top down search attempts to find configurations

that are as general as possible so that they can benefit
not only the given workload but also any similar future

workloads.

In our search algorithms, we model the relation-

ship between queries in the workload, the extracted

XML patterns, and the generalized candidates as di-

rected acyclic graph (DAG). Figure 5 presents an ex-
ample of such a DAG. For queries q1, q2, . . . qn we enu-

merate a basic set of candidates p1, p2, . . . pm as de-

scribed in Section 3.2. Each query and basic candidate

is represented as a node in the DAG. One basic can-

didate can be enumerated because of more than one
query, and one query can produce more than one can-

didate, so we associate with each candidate the set of

queries that produced it via a set of edges in the DAG.

We build the next levels in the DAG by generalizing
the basic candidates using the algorithm in Section 3.3,

and we continue until we reach the most general can-

didates as shown in the figure. For each new candidate

created during candidate generalization, we associate

with it the set of XML patterns that were the cause
of generating it through a set of edges in the DAG.

Hence, by following these edges, we will have for any

candidate index pattern a list of all candidates in the

subtree rooted at this pattern, which we call the cover-
age list. The leaves of the subtree are the queries that

can benefit from this candidate index pattern, which we

call the affected queries. The list of affected queries of a

generalized pattern is the concatenation of the lists of

affected queries of its children. For example, the cover-

age list of C4 in Table 1 is {C1, C2, C4}, and its list of

affected queries is {Q1, Q2}. Next, we present our two

search algorithms.

3.5.2 Greedy Search with Heuristics

The greedy approximation of the 0/1 knapsack prob-

lem was not effective for our XML Index Advisor. The

benefit of an index is highly influenced by the existence

of other indexes in the configuration that can be used

to answer the same query. Moreover, the greedy search
can select general indexes that can be used for path ex-

pressions already covered by other indexes in the con-

figuration. However, the query optimizer can use only

one of these indexes in its query execution plan. A pos-
sible solution to this problem is to compile all work-

load queries after the indexes in the configuration are

selected and then to eliminate indexes that are never

used. The problem with this solution is that we free up

extra disk space at the end of the index selection pro-
cess that we never use again for adding more indexes,

even though this space could be very useful. A similar

approach is used for searching relational indexes in [34].

In our proposed solution for searching through candi-
date XML indexes, we adopt a different approach.

To address the index redundancy problem described

above, we add one more objective to our search prob-
lem: maximizing the number of workload XPath ex-

pressions that use indexes in the selected configuration.

Maximizing the workload benefit remains the primary

objective of the greedy search algorithm that we use.
Heuristics are added to the greedy search to attempt to

enforce the new objective in a best effort manner.

Algorithm 1 outlines the search algorithm with the
added heuristic rules. The high-level outline of the al-

gorithm is as follows. First, we estimate the size of each

candidate index and the total benefit of this index for

the workload. We then sort the candidate indexes ac-
cording to their benefit/size ratio. Finally, we add can-

didates to the output configuration in sorted order of

benefit/size ratio if they agree with the heuristic rules

(which we state later in the section), starting with the

highest ratio, and we continue until the available disk
space budget is exhausted. We refer to the coverage of

a candidate index (cand) or a group of indexes (config)

as cand .coverage and config.coverage, respectively. We

also refer to the size of a candidate index (cand) or a
group of indexes (config) as cand .size and config.size,

respectively. We use the following functions to perform

the search and apply the heuristics:

10 Iman Elghandour et al.

Algorithm 1 heuristicSearch(candidates , diskSize)

1: sort candidates according to their
benefit(cand)/cand .size ratio

2: recommended ← ∅, recommended .size ← 0,
recommended .coverage ← ∅

3: while recommended .size < diskSize do
4: bestCand ← pick the next best cand in candidates

5: if recommended .coverage ∩ bestCand .coverage = φ
then

6: addCandIfSpaceAvail(bestCand ,recommended)
7: else if recommended .coverage ≤ best .coverage then
8: replaceCandIfSpaceAvail

(bestCand ,recommended,recommended)
9: else
10: overlapConfig ←

overlapCoverage(bestCand , recommended)
11: replaceCandIfSpaceAvail

(bestCand ,overlapConfig,recommended)
12: end if
13: end while
14: return recommended

– benefit(config) returns the estimated benefit of the
workload when this configuration of indexes is cre-

ated as described in Section 3.4.

– addCandIfSpaceAvail (cand , config) adds cand to

config if cand .size + config.size ≤ diskSize . If the

condition holds, addCandIfSpaceAvail also updates
the size and coverage of config.

– replaceCandIfSpaceAvail (cand , subConfig , config)

replaces the subConfig in config with cand if the

new configuration after performing the replace-
ment, newConfig , has a higher benefit than config

and the increase in size is below a threshold β.

This is the heuristic that we add to the greedy

search to deal with index interactions. The value β

specifies how much increase in size we are willing
to allow. We have found β = 10% to work well in

our experiments. If the condition holds and there is

enough disk space to do the replacement, size and

coverage of config are updated.
– overlapCoverage (cand , config) scans config and re-

turns the maximal set of candidates overlapConfig

that has the index coverage of cand or part of it.

3.5.3 Top Down Search

The greedy search with heuristics attempts to recom-

mend a configuration with the highest benefit that fits
the given workload. Because of that, it can be viewed as

over-fitting the given workload. If the workload changes

even slightly, the recommended configuration may not

be of use. This is acceptable if the DBA knows that
the workload is not likely to change. For example, this

might occur if the workload is all the queries in a par-

ticular application. However, another likely scenario is

that the DBA has assembled a representative training

workload, but the actual workload may be a variation

on this training workload. This is true for relational

data, but it is of added importance for XML, because

the rich structure of XML allows users to pose queries
that retrieve different paths of the data with slight vari-

ations. If this is the case, and the workload presented to

the Index Advisor is a representative of a larger class

of possible workloads, then we posit that the goal of
the Index Advisor should be to choose a set of indexes

that is as general as possible, while still benefiting the

workload queries. We have developed a top down search

algorithm to achieve this goal.

In the top down search, we use the DAG constructed
during candidate generalization (e.g., the DAG shown

in Figure 5). The roots of the DAG are the most gen-

eral indexes that can be obtained from the workload.

We start with these roots of the DAG as our current
configuration. Since general indexes are typically large

in size, this starting configuration is likely to exceed the

available disk space budget, but it likely has a higher

benefit compared to specific indexes. General indexes

can have zero or negative benefit for two reasons: (1)
high maintenance cost because of update, delete, and

insert statements in the workload, and (2) not being

used in optimizer plans. To handle this, we add a pre-

processing phase to remove any indexes with zero or
negative benefit from our search space. Next, we itera-

tively replace a general index from the current configu-

ration with its specific (and smaller) child indexes, and

we repeat this step until the configuration that we have

fits within the disk space budget.

To choose the general index to replace, we intro-

duce two metrics ∆B and ∆C. Assume that candi-

dates x1, . . . , xn are generalized to a candidate xgeneral.

There will be nodes in the DAG for each of these can-

didates, and xgeneral will be a parent of x1, . . . , xn. We
define ∆B and ∆C as follows:

∆B = IB(xgeneral)− IB(x1, . . . , xn)

∆C = Size(xgeneral)−Σ0≤i≤nSize(xi)

In the previous equation, we define IB(X), the improved

benefit of the set of indexes X , as the benefit of the

recommended index configuration built to this point

when X is added to it.

Since our goal is to obtain the maximum total bene-
fit for the workload by choosing the most general config-

uration that fits in the disk space budget, we iteratively

choose the general index with the smallest ∆B/∆C ra-

tio, and we replace it with its (more specific) children in
the DAG. That is, we replace general indexes whose ad-

ditional benefit per unit cost over their children is low-

est. In case of ties, we select the index with the largest

Recommending XML Physical Designs for XML Databases 11

Materialized

XMLTable views

y

Enumerate

XMLTable

Views

Translate XQuery

to SQL/XML

Query with

XMLTableX
Q
u
e
ry

Match query

with

XMLTable

views

Rewrite

query to use

materialized

XMLTable ri
tt
e
n

 q
u
e
ry

XQuery

Parsing

function calls
views

views

re
w

Query optimizer

Fig. 6 Rewriting XQuery queries to use XMLTable materi-
alized views.

∆C. If we run out of general candidates to replace and

do not yet meet the disk space budget, we use greedy

search. Note that in this case, we do not need to apply
our heuristics since none of the indexes we are searching

through is general.

4 Recommending XML Views

In this section, we focus on enumerating and recom-

mending XMLTable materialized views for a workload

of XQuery queries.

4.1 Overview of XMLTable View Recommendation

4.1.1 Query Optimizer Architecture for Rewriting

XQuery Queries to Use XMLTable Views

Our advisor recommends XMLTable materialized views

for improving the performance of XQuery queries. To

rewrite XQuery queries at run time to use the rec-

ommended XMLTable views, the query optimizer of a
database system using our approach needs to be ex-

tended with the ability to translate XQuery queries into

SQL/XML queries that use XMLTable functions. The

query optimizer rewriting XQuery queries to use ma-
terialized XMLTable views runs through the following

steps (Figure 6):

1. XQuery parsing. The XQuery query is parsed into

its XML representation (XQueryX [25]) to help the

query optimizer analyze the clauses of the query.

2. XMLTable view enumeration. We examine all
the clauses in the XQueryX representation of the

input query and enumerate the possible XMLTable

views that include the XPath expressions that are

referenced in the input query (Section 4.2).

3. Generating a SQL/XML query that uses the
enumerated views. A new SQL/XML query that

has the XMLTable views enumerated in the previous

step in its FROM clause as sub-queries is created

(Section 4.6).
4. Selecting the best materialized XMLTable

views that match the query. The optimizer

matches the translated SQL/XML query with all

Q3: For every customer whose age is greater than 50 and

has an ID greater than 9000, return her name and the

number of accounts she has.

f $ (" ")/ [d]for $cust in ("CUSTACC.CADOC")/Customer[@id > 9000]

let $accounts := count($cust/Accounts/Account)

where $cust/age > 50

return

<print>

<name>$cust/name</name>

<accounts_num>$accounts</accounts_num>

</ i t></print>

Fig. 7 Query Q3.

the XMLTable views materialized in the database

and applies a cost-based function to select the best

set of views to rewrite the query.
5. Rewriting the query to use the selected

views. Finally, the query optimizer rewrites the

query to use the set of matched XMLTable views.

4.1.2 XMLTable View Advisor Architecture

Our view advisor architecture follows the same gen-

eral architecture described in Section 1 (Figure 1). At a

high level, the goal of the XMLTable View Advisor is to

identify common access patterns in the input XQuery

workload and to extract the XML data accessed by
these patterns into XMLTable views. For example, if

the queries in the input workload frequently access the

value of an element in the XML data (an ID element for

instance), we extract this element as a separate column
in an XMLTable view.

The class of XQuery queries that our advisor sup-
ports includes queries with FOR, LET, WHERE, and

RETURN clauses. The RETURN clause can have ei-

ther a simple or a constructed expression. Multiple FOR

and LET clauses can occur in the query. Expressions

that appear in the FOR, LET, WHERE, and RETURN
clauses can have any number of predicates.

In the rest of this section, we describe the phases of
the view recommendation process in detail. We use Q3,

shown in Figure 7, as a running example.

4.2 Enumerating Candidate Views

XMLTable views are more complex physical structures

than XML indexes, and therefore, there is no simple
equivalent to the //* index, described in Section 3, that

can be used to enumerate candidate materialized views.

Because of that, we decided to develop a process for

enumerating candidate XMLTable materialized views
that does not rely on the query optimizer. We describe

the XQuery-to-SQL/XML translation algorithm that

we use to enumerate candidate views in this section. In

12 Iman Elghandour et al.

Algorithm 2 enumerateCandidates(xquery)

1: for clause ∈ xquery do
2: if clause is forClause then
3: break forClause into forVarName and forExpr

4: view ←
createViewFromExpr(forVarName, forExpr)

5: else if clause is letClause then
6: break letClause into letVarName and letExpr

7: view ← createViewFromExpr(letVarName, letExpr)
8: process any aggFn in letClause

9: else if clause is whereClause then
10: for comparisonExpr found in whereClause do
11: for pathExpr found in comparisonExpr do
12: find refView associated with varRef

13: add pathExpr to refView as a column navigator
14: end for
15: end for
16: else if clause is returnClause then
17: for pathExpr found in returnClause do
18: find refView associated with varRef

19: add pathExpr to refView as a column navigator
20: end for
21: end if
22: end for

Algorithm 3 createViewFromExpr(varName, expr)

1: create a new view view and associate it with the variable
name varName

2: break expr into pathExpr and predicateList

3: if pathExpr has a variable reference varRef then
4: find refView associated with varRef

5: view .rowGen ← refView .rowGen + pathExpr

6: add column “.” to refView and a column with back-
ward navigation path “refCol” to view

7: else
8: set the row generator of view to be pathExpr

9: end if
10: for p ∈ predicateList do
11: for pathExpr found in p do
12: add pathExpr to view as a column navigator
13: end for
14: end for

return view

Section 4.6, we revise this algorithm to enable translat-
ing XQuery queries into SQL/XMLTable queries that

use the enumerated materialized views. The class of

XQuery queries that our advisor support is described

in [8].

To enumerate candidate views for an XQuery query,

we parse the query and break it down into its FOR,

LET,WHERE, and RETURN clauses.We further break

each of these clauses into its components. The FOR and
LET clauses in an XQuery query are used to produce a

tuple stream in which each tuple consists of one or more

bound variables. This behavior resembles the row gen-

erator in the XMLTable function (recall Section 2.1.2).
Therefore, for every FOR or LET clause in the input

XQuery, we create a new candidate XMLTable view. We

describe next how we handle each clause in the candi-

V1.

select u.cx0, u.cx1, u.cx2, u.cx3 from CUSTACC, xmltable(

'$cadoc/Customer' passing CUSTACC.CADOC as "cadoc"

columns

cx0 double path '@id' ,

cx1 xml path '.' ,

cx2 double path 'age' ,cx2 double path age ,

cx3 varchar(100) path 'name') as u

Fig. 8 Final version of V1.

date enumeration process (Algorithm 2 and the helper

function described in Algorithm 3).

FOR Clause. We divide the FOR clause into a

variable, the path expression associated with the vari-
able (the binding sequence for that variable), and the

optional predicates (Algorithm 2, Line 3). A FOR clause

produces a tuple stream for every variable and iterates

over the binding sequence of that variable, which re-
sembles the functionality of the row generator of the

XMLTable function. Therefore, for every FOR clause:

(1) we create a new candidate materialized view and as-

sign its row generator to be the binding sequence in the

FOR clause (i.e., the path expression after removing
any predicate values from it, for example, /Customer

in the FOR clause of Q3), (2) we record the variable

name and the created view, and finally (3) for every

predicate expression appearing in the binding sequence
of the FOR clause, we add it as a column navigator path

expression to the view. For example, when we parse the

FOR clause of Q3, we create a view V1 (Figure 8) that

has the row generator /Customer and the column @id.

Algorithm 3 illustrates the procedure of creating a view
from the path expression that appears in a FOR clause.

LET Clause. Similar to the FOR clause, a LET

clause produces a tuple stream for every variable de-

clared in it. Unlike the FOR clause, a LET clause binds
each variable declared in it to the result of its associ-

ated expression without iteration and hence we need to

compensate for this behavior. First, we create a new

candidate XMLTable view with the binding expression

of the LET clause after removing any predicates from
it as its row generator. Next, to compensate for the

non-iterative behavior of the LET clause, we add col-

umn navigator with the "." expression to the generated

view to represent all the tuples generated by the row
generator of the view and then group all of these tuples

using a GROUP BY clause (Algorithm 2, Lines 6–8).

For a binding sequence that references another vari-

able (e.g., the expression $cust/Accounts/Account in

Q3), we look up the expression referenced by this vari-
able ($cust references /Customer in the FOR clause,

which is also associated with the already generated

view V1) and concatenate it with the rest of the ex-

Recommending XML Physical Designs for XML Databases 13

V2.

select count(u.cy0) as ACc1, u.cy1 from CUSTACC, xmltable(

'$cadoc/Customer/Accounts/Account'

passing CUSTACC.CADOC as "cadoc"

columns

cy0 xml path '.',

cy1 xml path 'parent::Accounts/parent::Customer') as ucy1 xml path parent::Accounts/parent::Customer) as u

group by cy1

Fig. 9 View V2 after parsing the LET clause in Q3.

pression to form the path expression that we use as
a row generator when creating the XMLTable view

(/Customer/Accounts/Account is used as the row gen-

erator for V2, the materialized view generated from

the LET clause of Q3 in this example). We then
add a column in each of the views: (1) a column

in the newly generated view (V2) to backward navi-

gate the row generator of the view that represents the

referenced variable in the binding sequence (the col-

umn parent::Accounts/parent::Customer in V2 ref-
erences /Customer in V1), and (2) a "." column in

the referenced view (V1) (Figure 8). These columns are

used for joining the two views in the translated query.

Additionally, a LET clause might have an optional ag-
gregation function that we handle by adding the aggre-

gation of the "." column to the SELECT clause of the

XMLTable view (count(u.cy0) in V2). The generated

view V2 is shown in Figure 9.

WHERE Clause. For every predicate appearing

in a WHERE clause, we extract the XPath expressions

appearing in this predicate. For each XPath expression,

we look up the view (refView) associated with the ref-
erenced variable (varRef) in this expression and add a

column to that view to correspond to this navigation

(Algorithm 2, Lines 10–15). For example, to account for

the predicate on age in Q3, we add a column navigator
in view V1 (Figure 8).

RETURN Clause. For all the XPath path expres-

sions that appear in the RETURN clause, we find all
the views that are associated with the reference vari-

ables that appear in these expressions and we then add

a column for each expression to the corresponding view

(Algorithm 2, Lines 17–20). For example, the expression
$accounts in the RETURN clause of Q3 references an

existing column in V2 and hence no change is needed to

the view. However, for the expression $cust/name, we

add the column name to V1. The final version of view

V1 is shown in Figure 8.

4.3 Generalizing the Set of Enumerated Views

Recall that the XML Index Advisor generalizes the in-

dex patterns to make them useful for queries not seen

V4.

select u.cx0, u.cx1 from CUSTACC, xmltable(

'$cadoc/Customer' passing CUSTACC.CADOC as "cadoc"

columns

cx0 double path '@id' ,

cx1 varchar(100) path 'occupation') as u

Fig. 10 View V4.

in the input workload that is used for recommenda-

tion. Similarly, creating XMLTable views that answer

multiple queries in the workload and potential unseen

queries can increase the usefulness of our recommenda-
tions. Since our proposed view definition involves both

XPath expressions and SQL query definitions, general-

ization can benefit from the index generalization tech-

niques proposed in Section 3 and the query merging

techniques proposed in [36]. We describe the forms of
query generalization that we use in our View Advisor

in this section. The XMLTable View Advisor applies

these generalization rules to the basic set of candidate

views to generate an expanded set of candidate views.

4.3.1 Generalizing Column Navigators to Include

Subtrees

Most of the XMLTable views that are generated in
the candidate enumeration phase are a normalization

(flattening) of values that are accessed in the workload

queries. An alternative approach is to recommend views

that store sub-trees of the data as XML columns. For

example, we can generalize V1 (Figure 8) into V3 that
has /Customer as a row generator and "." as the only

column navigator. The "." column navigator means

that all the subtrees reachable by the row generator are

stored in the materialized view. This approach is useful
when the query requires reconstructing the XML tree.

4.3.2 Merging Views

A common generalization approach used in relational
advisors is view merging [36]. For XMLTable views, we

merge views that have the same row generator to pro-

duce a new view that has as its column navigators the

set of column navigators that appear in the merged

views after removing duplicates. The goal of this ap-
proach is to decrease the disk space required without

affecting performance by combining views. This ap-

proach is a special case of the approach discussed in

Section 4.3.1, since we keep the normalization state (flat
or nested) of the column navigator. For example, view

V5 (Figure 11) is a merging of V1 (Figure 8) and V4

(Figure 10).

14 Iman Elghandour et al.

V5.

select u.cx0, u.cx1, u.cx2, u.cx3 , u.cx4 from CUSTACC, xmltable(

'$cadoc/Customer' passing CUSTACC.CADOC as "cadoc"

columns

cx0 double path '@id' ,

cx1 xml path '.' ,

cx2 double path 'age'cx2 double path age ,

cx3 varchar(100) path 'name',

cx4 varchar(100) path 'occupation') as u

Fig. 11 Generalized view V5.

4.4 Relational Indexes on XMLTable Views

One approach to make XMLTable views more useful

is to build relational indexes on their columns. This

is possible since the XMLTable views are regular re-
lational tables with indexable columns that happen to

originate from XML data. There can be many possi-

ble indexes that can be built on the columns of an

XMLTable view to help the view perform better. In

this paper, we use a heuristic approach to select only
one index for each view. The chosen index has all the

columns of the view that appear in a predicate in the

XQuery that caused this view to be recommended. This

guarantees that these columns have relational values
that are used for lookup in the query. The index fol-

lows the same order of the columns in the view. For

example, the index that we build for view V1 is in-

dex I1 (create index I1 on V1(cx0, cx2)). For ev-

ery candidate view, we add to the search space another
alternative physical structure that consists of the view

with a relational index on its columns.

4.5 Searching for the Optimal View Configuration

After applying the generalization rules on the basic can-

didate views generated from the input queries, we ob-

tain an expanded set of candidates. To choose some of
these enumerated XMLTable views (a view configura-

tion) to recommend for a workload, we search the space

of enumerated candidate views to find the best set of

views that fits in a given disk space budget. We use the
same search algorithms presented in Section 3.5. The

top down search algorithm described in Section 3.5.3

can be used without any changes for searching the

candidate XMLTable views. However, we made minor

changes to the greedy search with heuristics algorithm
described in Section 3.5.2.

XMLTable views can interact with each other in

ways that affect their total benefit for a query work-

load. The main types of interaction affecting the selec-
tion of views are: (1) views that can be used together

to rewrite a query and (2) views that are generated

by merging other views and therefore subsume them.

These interactions are similar to the ones encountered

when searching the space of XML indexes. We use the

search algorithm in Section 3.5.2 unmodified except for

the definition of candidate coverage. We define the view

coverage of a view as its view ID as well as the IDs of the
views that it subsumes (i.e., the views that it was gener-

ated from using the generalization rules, and the views

that have the same row generator and column naviga-

tors that were enumerated for other queries). The cov-
erage of a configuration of views is defined as the union

of the view coverage of its constituent views. For exam-

ple, if V5 is generated by merging V1 and V4, then the

coverage of V5 is the set {V1, V4, V5}.

4.6 Translating XQuery Queries into SQL Queries

that Use XMLTable Views

At run time, the query optimizer needs to translate

input XQuery queries to SQL queries with XMLTable
functions to be able to match these queries with the

XMLTable views. Translation of XQuery queries to SQL

queries with XMLTable functions during query compi-

lation is studied in [23]. We adopt a similar approach
that we describe in this section. The translation involves

using XMLTable views that are similar to the ones

being enumerated for the XQuery queries using Algo-

rithm 2 (Section 4.2). This ensures that the XMLTable

views in the translated XQuery queries will match the
recommended XMLTable views.

During the XQuery to SQL translation, we examine

the parsed XQuery, generate XMLTable views that en-

capsulate all referenced XPath expressions in the query,
and then construct an SQL query based on this infor-

mation. We add all the generated views to the FROM

clause of the SQL query. We then construct the SE-

LECT and WHERE clauses in the translated query

by referring to the columns of the views to reflect
how their associated expressions appear in the origi-

nal query. We also add joins between the views that

are used to rewrite the query when needed. These joins

are needed to link two FOR or LET clauses where one
references the other to make sure that the data refer-

enced by both clauses in any iteration is the same. For

example, the binding sequence of the LET clause in Q3

($cust/Accounts/Account) references the binding se-

quence of the FOR clause (/Customer). Therefore, we
add an equality predicate (i.e., a join) for the expres-

sions represented by $cust referenced in the FOR and

LET clauses to make sure that the XML data is the

same in any iteration (i.e., we are aggregating the ac-
counts of the same customer in any iteration).

Table 2 lists the lines that we add to Algo-

rithms 2 and 3 in order to get the algorithms for

Recommending XML Physical Designs for XML Databases 15

translateXQuery(xquery)
lineNo Added code
L0a selectElementsList ← φ
L0b fromViewsList ← φ
L0c wherePredicatesList ← φ
L4a add view to fromViewsList

L8a add view to fromViewsList

L14a add comparisonExpr to wherePredicatesList

L20a construct return value returnVal

L20b add returnVal to selectElementsList

L22a
generateQuery(selectElementsList ,
fromViewsList , wherePredicatesList)

translateXQueryAndCreateViewFromExpr(varName , expr)
lineNo Added code

L6a
construct predicate joinPred to join columns
“.” in refView and “refCol” in view

L6b add predicate joinPred to wherePredicatesList

L13a add predicate p to wherePredicatesList

Table 2 Extensions made to Algorithms 2 and 3 for XQuery
translation.

translating XQuery queries. The new versions of
the algorithms are translateXQuery(xquery) and

translateXQueryAndCreateViewFromExpr(varName,

expr). The main goal of these extensions is to build

the three lists selectElementsList , fromViewsList ,
and wherePredicatesList that we use to construct the

translated query. First, we modify Algorithm 2 by

inserting the code listed in the three rows L0a, L0b,

and L0c of the table before Line 1 of Algorithm 2 to

initialize the three lists. For every FOR or LET clause
in the query, we record the views that we create by

adding them to fromViewsList . Thus, we insert entries

L4a and L8a of the table after Lines 4 and 8 in Algo-

rithm 2, respectively. For every predicate, we encounter
during the parsing either in an expression appearing

in a FOR or LET clause or in a WHERE clause,

we add a reference to it in the wherePredicatesList

(Table entry L13a to be inserted after Line 13 in

Algorithm 3, and Table entry L14a to be inserted after
Line 14 in Algorithm 2). When a binding sequence

references a previously defined variable, we interpret

this occurrence as a join between the referenced view

and the new view. The columns needed for this join are
illustrated in entries L6a and L6b, which we insert after

Line 6 in Algorithm 3. Finally, we call the function

generateQuery to construct the translated query from

the three lists selectElementsList , fromViewsList , and

wherePredicatesList (We insert table entry L22a in
Algorithm 2). The generateQuery function uses a

template of an SQL query with SELECT, FROM, and

WHERE clauses to construct the translated query

as follows: (1) simple elements or XML constructs in
selectElementsList are added to the SELECT clause

of the query, (2) references to views in fromViewsList

are added to the FROM clause of the query, and (3)

Translated Query: SQ3.

select XMLElement(NAME "print" ,

XMLElement(NAME "name", Vv0.c3) ,()

XMLElement(NAME "accounts_num", Vv1.ACc1))

from

(select v0.c0, v0.c1, v0.c2, v0.c3

from CUSTACC xmltable(from CUSTACC, xmltable(

'$rowVar/Customer' passing CUSTACC as "rowVar"

columns

c0 double path '@id' ,

c1 xml path '.' ,

c2 double path 'age',

c3 varchar(100) path 'name') as v0) as Vv0,

(select count(v1 c0) as ACc1 v1 c1(select count(v1.c0) as ACc1 , v1.c1

from CUSTACC, xmltable(

'$rowVar/Customer/Accounts/Account'

passing CUSTACC as "rowVar"

columns

c0 xml path '.',

c1 xml path 'parent::Accounts/parent::Customer') as v1

group by v1.c1) as Vv1group by v1.c1) as Vv1

where (Vv0.c0 > 9000) and (Vv1.c1 = Vv0.c1) and (Vv0.c2 > 50)

Fig. 12 Translated query SQ3.

all predicates in wherePredicatesList are added to the

WHERE clause. If the return value is a simple XPath

expression, then the corresponding column name is
used, otherwise we use the XMLElement SQL function

to construct an XML fragment.

To illustrate our translation process, we show the

final translated query for Q3 (Figure 7) in Figure 12.
The two views V1 (Figure 8) and V2 (Figure 9) are

recommended for query Q3, so we construct the FROM

clause in the translated query as from V1, V2. Next,

we examine the return clause and construct the SE-

LECT clause of the rewritten query. Finally, we con-
struct the WHERE clause as a conjunction of all the

predicates that appear in the XQuery and those that

correspond to joins between views.

5 Integrated Recommendation of Indexes and

Materialized Views

In this section, we integrate the index and view advisors

described in Sections 3 and 4 into one Integrated Index-

View Advisor that recommends both XML indexes and

XMLTable views for a workload of XQuery queries. The
Integrated Index-View Advisor ensures that the recom-

mended configuration satisfies the given disk space con-

straint.

5.1 Motivation: The Need for an Integrated

Index-View Advisor

XMLTable materialized views are considered alterna-

tive relational access paths to the XML data in the

16 Iman Elghandour et al.

Q4: Return order IDs whose OrdStatus is equal to P.

for $ord in doc("ORDER.ODOC")

/Order[OrdStatus = "P"]

return $ord/@ID

Fig. 13 Query Q4.

V6: View on the ORDER table that contains the ID and

OrdStatus values for all the order documents stored in the

table.

select u.cx0, u.cx1

from ORDER, xmltable(

'$odoc/Order' passing ORDER.ODOC as "odoc"

columns

cx0 varchar(100) path '@ID',

cx1 varchar(100) path 'OrdStatus') as u

Fig. 14 View V6 that can be used to answer Q4.

RQ4: A rewritten version of query Q4 that uses view V6.

select V1.cx0

from V1

where V1.cx1 = "P"

Fig. 15 Rewritten query Q4 that uses view V6.

database. It has been shown in the literature that

XMLTable materialized views can reduce the execu-

tion time of queries [24] and also database maintenance
statements [22]. However, they can grow as large as

the data, and the query execution plans that use them

might not be better than the query execution plans

without them. In contrast, partial XML indexes are

usually smaller in size and can drastically reduce the
execution time of queries. In this section, we show that

XMLTable views are especially useful for certain types

of queries. We also show that XML indexes are not

useful all the time. Therefore, it is beneficial to include
both XML indexes and XMLTable views in one uni-

fied search space when recommending physical designs,

as our Integrated Index-View Advisor does. We study

the usefulness of XML indexes and XMLTable views

to query execution plans by comparing these different
plans. We highlight three usage patterns for indexes and

views: pre-navigation, joining tables, and aggregation.

Pre-navigation: Pre-navigation to the XML ele-
ments that are needed during query execution and stor-

ing them in a format that is easily accessible can save a

huge amount of query execution time. The XMLTable

function allows pre-navigation and stores the resulting

pre-navigated values in a relational table format. By
using XMLTable functions, we create new relational

views of some of the fragments of the XML data that

are accessed by the queries in the workload. There-

fore, we can now translate complex XQuery queries
into simple select statements. XML indexes are also

useful in navigating to the nodes (or their values) ref-

erenced in the query. To evaluate the benefit of pre-

navigation, we compare three optimizer query plan al-

ternatives for query Q4 (Figure 13): (1) the execution

plan when indexes are used, (2) the execution plan

when XMLTable views are used, and (3) the execution

plan when XMLTable views and relational indexes on
them are used. In these plans, we use the following ab-

breviations: (1) DFetch: refers to fetching a document

from an XML column, (2) XSCAN: refers to scanning

an XML document, which consequently means parsing
or navigating an XML document depending on how the

XML data are stored in the database, (3) TBFetch:

refers to fetching specific rows in the table, and (4) TB-

SCAN: refers to scanning an entire table to examine

its rows.
Figure 16 shows three possible query execution plans

for Q4.2 In a typical query execution plan when no

physical structures are used, all the documents in the

table are read and scanned to find the qualifying pred-
icate(s) and the return value(s). The total cost of this

plan equals the cost of navigating all documents in the

table. To reduce the execution cost, there are three al-

ternatives:

1. When we use an XML index (for example, an index

that includes the XML nodes that are reachable by

the XPath expression /Order/OrdStatus) to select

the XML subtrees rooted by nodes that satisfy the
predicate(s) in the query, we need to navigate to

these subtrees to find the return value(s). In this

execution plan, the execution cost is equal to the

sum of the index navigation cost and the navigation
cost of the selected documents (Figure 16(a)).

2. When we use an XMLTABLE view such as V6 (Fig-

ure 14), the execution plan for the rewritten query

that uses this view (RQ4 shown in Figure 15) in-

cludes scanning all the rows of the view to find
qualifying tuples. The cost of this execution plan

is equal to the cost of scanning the entire view (Fig-

ure 16(b)).

3. When we use an XMLTABLE view and a relational
index on the columns that represent all predicates

in the original XQuery (for example, an index on

the column cx1 in view V6), the cost of executing

the plan is equal to the sum of the index navigation

cost and the cost of fetching the qualified tuples
(Figure 16(c)).

Depending on the structure of the XML documents

and the selectivity of the predicates in the query, vari-
ous situations will lead to different possible plans hav-

ing the lowest cost. Therefore, we rely on estimated

2 We generated these query execution plans using DB2.
XQuery queries used as examples in this section are simple
queries, and most database systems would generate similar
execution plans for them.

Recommending XML Physical Designs for XML Databases 17

DFetch

TBFetch
XSCAN

/Order/@ID

XML Index

/Order[OrdStatus = “P”]

Table

Order

(a) XML indexes.

TBSCANTBSCAN

OrdStatus= “P”

OrderView

(b) XMLTABLE views.

R l ti l I d

TBFetch

Relational Index

OrdStatus = “P”
OrderView

(c) XMLTABLE views and relational in-
dexes on them.

Fig. 16 Query execution plans for query Q4.

Join

DFetchDFetch

TBFetch
XSCAN

/Order /Instrmt/@Sym

Table

Security

XSCAN

/Security/Symbol

XML Index

/Order[@ID="109505“]

Table

Order

yy y y

/Order[@ID= 109505] Order

(a) XML indexes.

Join

TBSCAN

ID , InstrmtSym

TBSCAN

Symbol

OrderViewSecurityView

(b) XMLTABLE views.

Fig. 17 Query execution plans for query Q5.

Q5: Return current open price of a particular order.

for $ord in doc("ORDER.ODOC")/Order[@ID="109505"]

for $sec in doc("SECURITY.SDOC")

/Security[Symbol=$ord/Instrmt/@Sym]

return <ret> {...} <ret>

Fig. 18 Query Q5.

costs to decide which of the physical structures can best
benefit a specific workload of queries and XML data.

Joining Tables: Joining tables is a common and
important operation in XQuery queries. The execution

cost of XQuery queries with table joins can be reduced

by pre-navigating the values to be joined, storing them

in relational tables, and then joining these relational
tables. For example, we show in Figure 17 the exe-

cution plans for Query Q5 (Figure 18), which has a

join between tables ORDER and SECURITY. Figures 17(a)

and 17(b) show the execution plans for query Q5 us-

ing XML indexes and XMLTABLE views, respectively.
The number of elements in the join operator’s two in-

puts is the same in both execution plans. The total

execution cost can be lower in the execution plan with

XMLTABLE views because of the following: (1) the re-
lational optimizer can use a larger variety of join meth-

ods, hash joins for example and (2) the table scan of the

XMLTable materialized view is cheaper than scanning a

table with XML documents stored in one of its columns.
In the latter case, it is necessary to parse and navigate

the XML documents during the scan. To demonstrate

this, we executed Q5 after rewriting it to use XML in-

dexes and XMLTable materialized views as illustrated

in the execution plans shown in Figure 17. The execu-
tion time of Q5 when rewritten to use XMLTable views

was 17 times faster than its execution time when rewrit-

ten to use XML indexes.

Aggregation: Another type of queries that can
benefit from using XMLTable views are queries with

grouping and aggregation functions. In addition to

the benefit of pre-navigation, pre-grouping and/or pre-

aggregating the data in an XMLTable view reduces
query execution time. This can be done only with views

and not with indexes.

Having qualitatively described and contrasted the

benefit of XML indexes and XMLTable views, we now

compare the execution time of queries when creating
the recommendations of the XML Index Advisor and

the XMLTable View Advisor for a large space budget

(2 GB). The setup for this experiment is described in

Section 6.1. Figure 19 shows the estimated execution
times of queries in the TPoX workload for the follow-

ing three cases: (1) no physical structures are used, (2)

XML indexes recommended by the XML Index Advisor

18 Iman Elghandour et al.

1 E 02

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

e
cu
ti
o
n

 T
im

e
 (
O
p
ti
m
iz
e
r
U
n
it
s) None

Index Advisor

View Advisor

1.E+00

1.E+01

1.E+02

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

E
st
im

a
te
d

 E
x

Workload Queries

Fig. 19 Estimated execution time per query for advisor rec-
ommendations.

are created, and (3) XMLTABLE views recommended
by the XMLTable View Advisor are created. In each

case, the configuration recommended by the advisor is

created, and then, the optimizer is invoked in a spe-

cial mode to estimate the execution time of the queries

in the workload. We note that we could not use views
with four TPoX queries, Q3-Q6 (see Section 6 for de-

tails). We observe that the execution times of four out

of the remaining six queries of the TPoX workload when

rewritten to use XMLTable views are less than the ex-
ecution times of these queries when rewritten to use

XML indexes. However, the benefit/size ratios of the

XMLTable views used in rewriting these queries are less

than the benefit/size ratios of indexes used for rewrit-

ing the same queries because views usually have a larger
size compared to indexes. We also note that the execu-

tion times of queries Q7-Q9, which extract data from

the three different tables of the TPoX database, can

be reduced by half through the use of XMLTable views
instead of XML indexes.

From the above comparison, we conclude that both

XML indexes and XMLTable views are useful for dif-
ferent queries. It would be difficult to inspect each

query to decide whether to recommend XML indexes or

XMLTable views for it. Furthermore, some queries can

benefit from both indexes and views, and our rewrit-
ing algorithms restrict us to using one type of physi-

cal structure for each query. More complications arise

when searching the space of candidate XML indexes

and XMLTable views due to considering relational in-

dexes on XMLTable views. Therefore, it is beneficial to
consider XML indexes and XMLTable views together

as one search space when recommending a physical

design for an XML workload. In the rest of this sec-

tion, we present an Integrated Index-View Advisor that
recommends the best configuration of XML indexes

and XMLTable views for a given XML database and

XQuery workload.

Candidate indexes

enumeration using

//* virtual indexes

Enumerate

Indexes

Mode

Recommending

basic set of

candidate

inde es

Input

•XML database

•System

xqueryi

Candidate

i d f
// virtual indexes Mode

Creating virtual

indexes for

configuration
Evaluate

I d

indexes

Generalization

Recommending

•XQuery

workload

•Disk space

System

information
indexes for

queryi

Candidate

i d
configuration

Cost estimation

using DB statistics

Indexes

mode
basic set of

candidate

XMLTable views

p

constraint
xqueryi

Estimated cost

for xqueryi

indexEvaluate

benefit of

candidate

indexes
Candidate

XMLTable views

enumeration

Enumerate

XT views

mode

Generalization

Evaluate

benefit of

for xqueryi

xqueryi

Candidate XT

views for xqueryi

indexes

Creating virtual

XMLTable Views

for configuration

E l

candidate

XMLTable views

Pool of

i

Candidate

XT view

Cost estimation

XQuery translator

to SQL

Evaluate

XT Views

modeConfiguration

enumeration

Candidates xqueryi

Estimated

Integrated

Advisor

application

(Client!side)

Output

Recommended configuration of

XML indexes and XMLTable views

using DB statistics
enumeration Estimated

cost for

xqueryi

(Client side)

Query Optimizer

(Server!side)

Fig. 20 The Integrated Index-View Advisor architecture.

5.2 Design of the Integrated Index-View Advisor

Figure 20 shows the architecture of our integrated ad-
visor. Since the candidate enumeration processes for

XML indexes and XMLTable materialized views are dif-

ferent, we enumerate and generalize candidates of each

type separately using the candidate enumeration and
generalization algorithms described in Sections 3 and 4.

This results in candidates of three types: XML indexes,

XMLTable materialized views, and XMLTable materi-

alized views with relational indexes on them. We com-

bine all these candidates into one pool of candidates,
and we search for the best configuration among all these

candidates. The search algorithm is different from the

search algorithms in Sections 3 and 4 because the space

of candidates contains different types of physical struc-
tures, which introduces new types of interactions. In

the next section, we generalize the search algorithms

described in Sections 3 and 4 to an algorithm that con-

siders different types of interactions between different

physical structures.

5.3 Searching Indexes and Views Together

The search algorithms that we have proposed in Sec-

tions 3 and 4 take into account two types of interac-

tions between candidates: (1) interaction between can-

didates that can be used to rewrite the same query and

(2) candidates where one is a general form of the other.
While the former type of interaction affects the benefit

of candidates due to the existence of other candidates,

the latter type of interaction poses a restriction that at

most one candidate is to be chosen. When searching the
combined space of XML indexes and XMLTable views,

we also consider that a query can either be rewritten

to use XML indexes or XMLTable views, but not both,

Recommending XML Physical Designs for XML Databases 19

Algorithm 4 integratedSearch(candidates , diskSize)

1: sort candidates according to their benefit/size ratio
2: recommended ← ∅, recommended .size ← 0,

recommended .coverage ← ∅
3: while recommended .size < diskSize do
4: bestCand ← pick the next best cand in candidates

5: if recommended .coverage ∩ bestCand .coverage = ∅
then

6: addCandIfSpaceAvail(bestCand ,recommended)
7: else if recommended .coverage ∩ bestCand .coverage

6= ∅ then
8: overlapConfig ←

overlapQCoverage(bestCand , recommended)
9: if bestCand is XINDEX then
10: replaceConfig ← {cand | cand ∈ overlapConfig

and (isGeneral(bestCand , cand) or cand is
XVIEW or cand is XVIEW RINDEX)}

11: else if bestCand is XVIEW then
12: replaceConfig ← {cand | cand ∈ overlapConfig

and (isGeneral(bestCand , cand) or cand is
XINDEX or (cand is XVIEW RINDEX and
(isGeneral(bestCand , cand .view) or bestCand =
cand .view)))}

13: else if bestCand is XVIEW RINDEX then
14: replaceConfig ← {cand | cand ∈ overlapConfig

and (isGeneral(bestCand , cand) or cand

is XINDEX or (cand is XVIEW

and (isGeneral(bestCand .view , cand) or
bestCand .view = cand)))}

15: end if
16: if replaceConfig = ∅ then
17: addCandIfSpaceAvail(bestCand , recommended)
18: else
19: replaceCandIfSpaceAvail(bestCand ,

replaceConfig, recommended)
20: end if
21: end if
22: end while

because of their different rewriting algorithms. The no-

tion of candidate coverage is not valid any more, as

there is no clear relation between the XML indexes and
the XMLTable views that can be used for the same

query, and we also want to consider using either type

of structure for each query. We choose to define the cov-

erage in the integrated search algorithm based on query

coverage, and we introduce new rules to handle special
cases.

The high-level outline of the search algorithm is

similar to the algorithm we use to search the space

of indexes (Section 3.5.2) and the algorithm we use to

search the space of views (Section 4.5), with different
rules for the various types of candidates. Algorithm 4

presents the integrated search algorithm. The first step

of the search algorithm is to sort all of the physi-

cal structures according to their benefit/size ratio. We
then iteratively consider candidate physical structures:

XML indexes (XINDEX), XMLTable views (XVIEW),

and XMLTable views with relational indexes on them

(XVIEW RINDEX) and try to add them to the set of

recommended structures (recommended). In every iter-

ation, if the recommended set of candidates is empty or

the candidate that we are considering in this iteration

(bestCand) adds new coverage (i.e., it helps a query in
the workload that is not yet helped by any of the struc-

tures already selected by the advisor), we add bestCand

to our set of recommended physical structures if enough

disk space is available. Otherwise, if there is overlap be-
tween the queries that are already covered by physical

structures in the recommended configuration and the

coverage of bestCand , we apply the heuristic rules that

we describe next to decide whether to add bestCand

to our set of recommended physical structures or not.
First, we use the helper function overlapQCoverage to

find the set of physical structures in the recommended

configuration that help some or all of the queries that

are covered by bestCand . We call this set of candidates
the overlapConfig . We then apply the following rules

depending on the type of bestCand :

1. bestCand is an XML index:We build an alternate

configuration (replaceConfig) consisting of the set
of physical structures {cand} that belong to the set

overlapConfig and that satisfy one of the following

conditions:

(a) cand is an XML index, and bestCand is a general
form of it. In this case, bestCand can replace

cand in its query execution plans.

(b) cand is an XMLTable view or XMLTable view

with a relational index on it. In this case, choos-

ing an XMLTable view to answer a query in the
workload means that we cannot use XML in-

dexes for rewriting it, because the query rewrit-

ing algorithm can use either XML indexes or

XMLTable views to rewrite a given query, but
not both.

2. bestCand is an XMLTable view: We build an al-

ternate configuration (replaceConfig) consisting of

the set of physical structures {cand} that belong
to the set overlapConfig and that satisfy one of the

following conditions:

(a) cand is an XMLTable view, and bestCand is a

general form of it. In this case, bestCand can

replace cand in its query execution plans.
(b) cand is an XML index. Hence, we either choose

the XML index that is already selected (cand)

or the new XMLTable view that we are currently

considering (bestCand).
(c) cand is an XMLTable view with a relational in-

dex on it. Whether bestCand is the same as

cand .view or is a general form of it, we add cand

to replaceConfig .

20 Iman Elghandour et al.

3. bestCand is an XMLTable view with a rela-

tional index on it: We build an alternate con-

figuration (replaceConfig) consisting of the set of

physical structures {cand} that belong to the set

overlapConfig and that satisfy one of the following
conditions:

(a) cand is an XMLTable view with a relational in-
dex on it, and bestCand .view is a general form

of cand .view . In this case, bestCand can replace

cand in its query execution plans.

(b) cand is an XML index. Hence, we either choose
the XML index that is already selected (cand)

or the new XMLTable view with a relational

index on it that we are currently considering

(bestCand).

(c) cand is an XMLTable view. Whether
bestCand .view is the same as cand or is a

general form of it, we add cand to replaceConfig .

The next step in the algorithm is to check the al-

ternate configuration replaceConfig . If it is empty, this

means that bestCand can be used together with al-

ready selected physical structures to answer queries in
the workload and that we can safely add bestCand to

the recommended configuration if there is enough disk

space. Otherwise, we check the following two configu-

rations: (1) bestCand ∪ (recommended − replaceConfig):

the configuration that includes bestCand in addition
to the structures that we have already selected after

removing the ones in replaceConfig from it, and (2)

recommended . If the new configuration (bestCand ∪

(recommended − replaceConfig)) has a higher benefit
and its size does not exceed the disk space constraint,

we make it the recommended configuration.

In Algorithm 4, we use the following helper func-

tions:

– isGeneral (cand1 , cand2): returns true if cand1 is

of the same type as cand2 and is a general form
of cand2 . If cand1 and cand2 are XMLTable

views with relational indexes on them, we compare

cand1 .view and cand2 .view .

– addCandIfSpaceAvail (cand ,config): adds the candi-
date physical structure cand to the configuration of

physical structures config if the size of the new con-

figuration is within the disk space constraint.

– replaceCandIfSpaceAvail (cand ,replaceConfig ,config):

replaces the set of structures in replaceConfig , which
is a subset of the configuration config, with the

candidate structure cand if the new configuration

has a higher benefit than the old configuration, and

the size of the new configuration does not exceed
the disk space constraint. The new configuration is:

cand ∪ (config − replaceConfig).

6 Experimental Evaluation

6.1 Experimental Setup

We conducted our experiments on a Dell PowerEdge
2850 server with two Intel Xeon 2.8 GHz CPUs (with

hyperthreading) and 4 GB of memory running SuSE

Linux 10. The database is stored on a 146 GB 10 K

RPM SCSI drive. We implemented our advisors in a
prototype version of IBM DB2 V9.7, which we use for

our experimental evaluation.

We use the TPoX [27] benchmark in our experi-

ments. TPoX is an XML benchmark based on a finan-

cial application. We run the experiments on two TPoX
data sets generated using scale factors of 1 and 10 GB.

We present experiments run on the 10 GB database

unless otherwise stated. We evaluate our XML Index

Advisor on the standard queries that are part of the
benchmark specification, 11 XQuery queries. To illus-

trate the effectiveness of our generalization algorithm,

we also use synthetic queries on the TPoX data in Sec-

tion 6.2.2.

Our metric for evaluating the recommendations of
the XML advisors is estimated speedup: The estimated

execution time by the query optimizer of the workload

with no XML physical structures divided by the esti-

mated execution time of the workload with the configu-
ration of physical structures recommended by the XML

advisors. In Sections 6.3 and 6.4, we report the esti-

mated query execution time in optimizer units (called

timerons in DB2). Optimizer units give a better presen-

tation of the differences between the advisor recommen-
dations in these sections. We first present an evaluation

of the XML Index Advisor, then the XML View Ad-

visor, and finally the Integrated Index-View Advisor.

More experimental results can be found in [8].

6.2 Effectiveness of the XML Index Advisor

In this section, we illustrate that our XML Index Advi-

sor makes good index recommendations that effectively
use the available disk space budget and that are useful

beyond the training workload.

6.2.1 Effectiveness of the Advisor Recommendations

We have implemented four different combinatorial

search strategies in our Index Advisor: (1) greedy search

(without heuristics), (2) greedy search with heuristics,

(3) top down, and (5) dynamic programming. With the
exception of greedy search and dynamic programming,

which are standard combinatorial search techniques,

these strategies are described in Section 3.5. In our first

Recommending XML Physical Designs for XML Databases 21

0

1

2

3

4

5

6

7

0 200 400 600 800 1000 1200 1400

E
st

im
a

te
d

 W
o

rk
lo

a
d

 S
p

e
e

d
u

p

Disk Space Constraint (MB)

Top Down

Heuristics

Greedy

Dynamic

All Index

Fig. 21 Estimated workload speedup with index recommen-
dations.

experiment, we compare the index recommendations of

these four strategies. In this experiment, we only vary

the search algorithm used by the XML Index Advisor,

all the algorithms used for the other recommendation

phases are the same. In our implementation, we allow
the user to input a hint to the advisor to replace XML

patterns that contain //*, which might be undesired

patterns, with their children during the search for the

best configuration.

Figure 21 shows the estimated speedup for the

search strategies when varying disk space budgets. The
workload that we use for this experiment consists of

the 11 queries of the TPoX benchmark and one more

query. The added query is similar to one of the TPoX

queries that joins customers and orders after varying

the XPath expressions in its predicates to allow more
general indexes to be generated. The best speedup that

can be achieved in this experiment is 5.7. This speedup

is achieved by the All Index configuration shown in the

figure, which has an index for every indexable XPath
expression in the query workload. The size of this con-

figuration is 880 MB. In this experiment, we use the

benchmark queries for recommending the indexes and

also for evaluating the recommendations. Every run,

we create the recommended configuration of indexes as
virtual indexes. We then use the explain mode of the

optimizer to estimate the execution time of the queries

of the workload with these indexes in place.

Figure 21 shows that our XML Index Advisor is able

to recommend indexes that speed up workload execu-

tion for the TPoX workload at all disk space budgets.

As expected, speedup increases as we increase the avail-
able disk space budget, until it reaches the best possible

speedup of the All Index configuration. Greedy search

requires significantly more disk space than the All Index

configuration to match its performance. The reason is
that greedy search often chooses multiple indexes that

answer the same query, thereby wasting some of the

available disk space budget without gaining any benefit.

12

14

c)

Top Down

Heuristics

Greedy

8

10

ti
m
e

 (
se
c y

Dynamic

4

6

8

v
is
o
r
R
u
n

2

4

A
d
v

0

0 200 400 600 800 1000 1200 1400

Disk Space Constraint (MB)p ()

Fig. 22 Index Advisor run time with different search strate-
gies.

The heuristics we use with greedy search are designed
to avoid such errors, and their effectiveness can be seen

from the figure. The top down, greedy with heuristics,

and dynamic programming search algorithms result in

similar speedups except for small variations that are

due to selecting different indexes with similar benefits.
However, these algorithms take different times to find

the recommended configuration as we show next.

Figure 22 shows the run time of the Index Advisor

with different search strategies for various disk space

budgets. Top down search takes up to 2 times longer

than greedy search with heuristics. However, the run

time of top down search improves as the available disk
space increases because it needs to explore fewer nodes

in the DAG of candidate indexes before arriving at a

configuration that fits within the disk space budget.

The run time of greedy search is lower than all the
other search algorithms and is not affected by changing

the disk budget because it checks every candidate in-

dex at most once. Adding heuristic rules to the greedy

search does not have a significant effect on the run time

of the advisor. The run time of dynamic programming
increases exponentially with increasing the disk space

budget. Thus, we can see that the recommendations of

the dynamic programming search algorithm, which are

sometimes better than the recommendations of other
approximate search algorithms, come at a significantly

high cost.

6.2.2 Recommending Generalized Indexes

In this section, we demonstrate that our Index Advisor

can recommend indexes that are more general than the
candidates generated from the workload, and that these

indexes can benefit future queries different from those

in the training workload. This is a key feature of our

Index Advisor.

The first question we address is how many general-

ized indexes can potentially be found in a workload. In

22 Iman Elghandour et al.

10

12

d
u
p

Top Down

Heuristics

8

lo
a
d

 S
p
e
e

4

6

te
d

 W
o
rk
l

2

E
st
im

a

0

0 5 10 15 20

Training Workload Size (Queries)

Fig. 23 Index Advisor generalization to unseen queries.

the TPoX workload that we used in the previous exper-

iment, we were able to increase the number of candidate

indexes by 30 % through candidate generalization.

To show the effect of recommending general indexes

on the speedup of various workloads, we perform an ex-
periment where the training workload used by the In-

dex Advisor for recommending indexes is different from

the test workload used to evaluate the recommended

configuration. We used a workload of 20 queries, the

11 TPoX queries followed by 9 synthetic queries to in-
crease workload diversity. The synthetic queries where

generated by using three of the TPoX queries as tem-

plates. These query templates represent different return

value complexities and touch the three XML tables in
the TPoX database. In the synthetic queries, we used

random XPath path expressions that occur in the data

to replace the XPath expressions in the original queries.

We train (i.e., recommend configurations) based on n

queries, and we test based on the entire workload, and
we vary n from 1 to the number of queries (20). Fig-

ure 23 shows the estimated speedup on the test work-

load as we vary the training workload size with a disk

space budget of 20 GB (effectively an unbounded disk
space budget). A training workload with size n is the

same as the training workload with size n − 1 after

adding one additional query to it. The figures show the

speedup for top down search and greedy search with

heuristics. The figures show that as the advisor sees
more and more of the test workload, it can recommend

a configuration of indexes that can be useful to unseen

queries. The figures also show that top down search is

quite effective at using the available disk space to gen-
eralize from the queries seen in the training workload to

the unseen queries in the test workload, whereas greedy

search with heuristics is unable to perform such gener-

alization.

Figures 23 shows the results of the experiment when
we added TPoX queries to the training workload in one

order. To confirm that the conclusions are not affected

by the order of the queries, we repeated the above ex-

400

450

500

n
 T
im

e

it
s)

Consider UDI (Queries + Insert)

Consider UDI (Queries)

Consider UDI (Insert)

300

350

400

d
 E
x
e
cu
ti
o

im
iz
e
r
U
n
i ()

Ignore UDI

150

200

250

d
 W

o
rk
lo
a
d

o
n
s
o
f
O
p
t

50

100

50

E
st
im

a
te
d

(M
il
li
o

0

0% 2% 4% 6% 8% 10%

Insertions as a Percentage of Table Size

Fig. 24 Effect of updates on index recommendations. Disk
budget = 100MB.

periment for different query orders and found that the

conclusions hold for all query orders that we tried.

6.2.3 Evaluating Candidate Configurations

The quality of the configurations recommended by the

XML Index Advisor depends on the accuracy of esti-

mating the benefit of candidate index configurations
in the Evaluate XML Indexes optimizer mode and the

penalty of UDI statements.

The key statistic used by Evaluate XML Indexes

mode is the size of a virtual index. We have found that

for the TPoX workload, the median relative estimation

error for this statistic is 6 and 12 % for the 10 and 1
GB data, respectively . Notably, we are able to esti-

mate the size of large indexes, which have the most im-

pact on performance, with a very small error. For exam-

ple, the largest candidate indexes for TPoX are indexes
on /FIXML/Order/OrdQty/@* and /FIXML/Order//@*,

and we are able to estimate their size with 3.7 and 5.5 %

error, respectively.

Figure 24 illustrates the effect of estimating the

penalty of updating candidate index configurations in

response to UDI statements. We add to the TPoX work-
load a varying number of UDI statements that insert

documents into one of the tables (the ORDER table), and

we use the Index Advisor to recommend a configuration

with a 20 GB disk space budget. The figure shows the
estimated execution time as we vary the number of UDI

statements. The figure shows the case where the Index

Advisor ignores UDI statements while recommending

an index configuration, and for the case where it takes

UDI statements into account. The figure also shows the
cost of the queries and insert statements individually for

the latter case. As the number of UDI statements in-

creases, workload execution time increases in all cases,

but the advisor that takes into account UDI statements
is able to reduce the increase in execution time by drop-

ping indexes when the penalty for updating them ex-

ceeds their benefit (which happens when insertions are

Recommending XML Physical Designs for XML Databases 23

1.E+03

1.E+04

1.E+05

1.E+06

1.E+07

1.E+08
e
cu
ti
o
n

 T
im

e
 (
O
p
ti
m
iz
e
r
U
n
it
s) 0 MB

10 MB

50 MB

100 MB

200 MB

1.E+00

1.E+01

1.E+02

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

E
st
im

a
te
d

 E
xe

Workload Queries

Fig. 25 Estimated query execution times for the recom-
mended XMLTable views.

around 3 % of the table size). Thus, the Index Advisor

can effectively estimate the benefit of indexes even in

the presence of updates.

6.3 Effectiveness of the XMLTable View Advisor

In this section, we present an evaluation of the

XMLTable View Advisor. We also show the effective-

ness of the two approaches that we use to expand the
views search space: (1) merging XMLTable views and

(2) creating relational indexes on XMLTable views. In

this section and the next, we use the TPoX data with

scale factor 1 GB.

Figure 25 shows the estimated execution time of
each query for a configuration with no views and the

recommended view configurations with different disk

space budgets. The maximum estimated speedup that

can be achieved, when we create all the recommended
views for the TPoX workload (total size 115 MB), is

only 1.6 because some queries in the workload (Q3–Q6)

did not benefit from the views. Queries Q1, Q2, Q7, Q8,

Q9, and Q10, which range from simple navigation to

join queries, benefit from the recommended XMLTable
views. Even for a configuration size as small as 10MB,

the average speedup for these queries that benefit from

views is 134. This shows that XMLTable views can be

useful for many query types, and that our XMLTable
View Advisor is quite effective at recommending these

views.

6.3.1 Recommending Merged XMLTable Views

To evaluate the performance of generalized views, we

compare two configurations: (1) Basic, which contains

all the views enumerated for the queries in the work-

load, and (2) Generalized , which contains a new set of
generalized views generated by merging views in the

first configuration using the generalization rules pre-

sented in Section 4.3.2. In this experiment, we only use

Configuration Size (MB) Speedup Benefit/size ratio
Basic 58.2 354.6 5.3
Generalized 48.8 198.0 6.3

Table 3 Effect of merging views on performance.

the queries that can be helped by at least one view from

one of the two configurations (i.e., queries Q3-Q6 in Fig-

ure 25 are omitted). We measured the actual execution
time of all queries in the workload after materializing

each configuration, and we report results based on these

measurements in Table 33.

Table 3 shows that 16% of the total size of the con-
figuration is saved by merging views. The measured

speedup with the generalized configuration is lower than

the speedup with the basic configuration. However, the

benefit/size ratio achieved is higher for the generalized

configuration. From this we conclude that using gener-
alized views reduces the execution cost of queries, but

the benefit is lower than using basic views that only

contain data referenced by the queries. However, if we

also consider the reduction in disk size needed to create
the generalized configuration, the merged views are a

more efficient alternative.

6.3.2 Recommending XMLTable Views with Relational

Indexes

In this section, we investigate the benefit of building

relational indexes on XMLTable views. For this experi-

ment, we let the advisor choose a configuration consist-

ing only of XMLTable views (with no relational indexes

on them) in one case. In the other case, we let the advi-
sor choose a configuration from a set of candidates con-

sisting of XMLTable views and XMLTable views with

relational indexes on them. The disk space budget was

2 GB in both cases (effectively unbounded). Figure 26
shows actual execution time in both these cases, and

when there are no views. We omit the queries that

do not benefit from XMLTable views from the figure.

In all the shown queries, using relational indexes over

the XMLTable views reduces the execution time of the
queries in the workload. The speedup achieved due to

using relational indexes (compared to using views with

no indexes) ranges from 1.5 to 32.5 per query. This

demonstrates the effectiveness of our approach for rec-
ommending relational indexes on the XMLTable views.

3 More results based on actual execution time can be found
in [8, 10, 11].

24 Iman Elghandour et al.

10000

1000

10000

(s
e
c)

None

XViews

XViews + RIndexes

10

100

1000

10000

io
n

 T
im

e
 (
se
c)

None

XViews

XViews + RIndexes

0.1

1

10

100

1000

10000

u
a
l
E
x
e
cu
ti
o
n

 T
im

e
 (
se
c)

None

XViews

XViews + RIndexes

0 001

0.01

0.1

1

10

100

1000

10000

A
ct
u
a
l
E
x
e
cu
ti
o
n

 T
im

e
 (
se
c)

None

XViews

XViews + RIndexes

0.001

0.01

0.1

1

10

100

1000

10000

Q1 Q2 Q7 Q8 Q9 Q10

A
ct
u
a
l
E
x
e
cu
ti
o
n

 T
im

e
 (
se
c)

Workload Queries

None

XViews

XViews + RIndexes

0.001

0.01

0.1

1

10

100

1000

10000

Q1 Q2 Q7 Q8 Q9 Q10

A
ct
u
a
l
E
x
e
cu
ti
o
n

 T
im

e
 (
se
c)

Workload Queries

None

XViews

XViews + RIndexes

0.001

0.01

0.1

1

10

100

1000

10000

Q1 Q2 Q7 Q8 Q9 Q10

A
ct
u
a
l
E
x
e
cu
ti
o
n

 T
im

e
 (
se
c)

Workload Queries

None

XViews

XViews + RIndexes

Fig. 26 Actual query execution times for the recommended
XMLTable views and XMLTable views with relational indexes
on them.

6.4 Effectiveness of the Integrated Index-View Advisor

In this experiment, we compare the recommendations of
the XML Index Advisor, the XMLTable View Advisor,

and the Integrated Index-View Advisor. Figure 27 is an

updated version of Figure 19 (shown in Section 5) after

adding one more column to represent the estimated ex-
ecution times of the queries in the workload when the

recommendations of the Integrated Index-View Advisor

are materialized in the database. We observe that the

Integrated Index-View Advisor always chooses XML in-

dexes for all queries in this experiment even though in-
dexes might have lower benefit than the candidate views

for the same query. This could be due to one of the fol-

lowing reasons: (1) indexes have much smaller sizes and

hence their benefit/size ratio are higher or (2) an index
can be useful to other queries in the workload while

the materialized view is only useful to one query, so

the benefit of the index to the entire workload is higher

than the benefit of the materialized views recommended

for each of the queries helped by this index. For exam-
ple, for query Q1 in the TPoX workload, the Integrated

Index-View Advisor recommends an XML index for it

although selecting an XMLTable view is expected to re-

sult in a lower execution time. This can be explained as
follows: Query Q1 benefits from building an XML index

I1, which is also useful for queries Q4 and Q5. Query Q1

also benefits from building an XMLTable view V1. The

estimated benefit of the XML index I1 when calculated

for the entire workload is higher than the estimated
benefit of the XMLTable view V1. Hence, the candi-

date XML index is chosen by the search algorithm.

To eliminate the effect of this type of interaction,

we compare the recommendations of the three advisors

when the input workload is composed of queries Q1 and

Q7–Q10. The results are shown in Figure 28. In this fig-
ure, we can see that the advisor sometimes recommends

indexes and it sometimes recommends views. The Inte-

grated Index-View Advisor selects the candidate struc-

1.E+08)

1 E+06

1.E+07

m
iz
e
r
U
n
it
s) None

Index Advisor

View Advisor

Integrated Advisor

1.E+05

1.E+06

m
e

 (
O
p
ti
m

g

1.E+03

1.E+04

e
cu
ti
o
n

 T
im

1.E+01

1.E+02

m
a
te
d

 E
x
e

1.E+00

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

E
st
i

W kl d Q iWorkload Queries

Fig. 27 Estimated query execution times for advisor recom-
mendations. Disk budget = 400MB.

1.E+08)

1 E+06

1.E+07

iz
e
r
U
n
it
s) None

Index Advisor

View Advisor

Integrated Advisor

1.E+05

1.E+06

m
e

 (
O
p
ti
m

Integrated Advisor

1.E+03

1.E+04

e
cu
ti
o
n

 t
im

1.E+01

1.E+02

m
a
te
d

 E
x
e

1.E+00

Q1 Q7 Q8 Q9 Q10

E
st
i

Workload QueriesWorkload Queries

Fig. 28 Estimated query execution times for advisor recom-
mendations. Disk budget = 400MB.

tures that lower the execution time of individual queries

when these structures also lower the execution time of

the entire workload.

These experiments demonstrate that our Integrated

Index-View Advisor effectively recommends suitable

physical designs for XML workloads. This integrated

advisor puts together all the contributions of this pa-

per into one tool that can be used by DBAs of XML
databases.

7 Conclusion

We presented physical design tools that automatically

recommend XML indexes and XMLTable materialized

views for XML databases. We first described an XML

Index Advisor that recommends the best set of indexes

for a given XML database and query workload and that
is tightly coupled with the query optimizer, using the

optimizer for both enumerating and evaluating indexes.

We then described an XMLTable View Advisor that

recommends relational materialized views (XMLTable
views) for XQuery workloads. Finally, we analyzed the

different benefits that XML indexes and XMLTable

views can provide to various types of XQuery queries,

Recommending XML Physical Designs for XML Databases 25

and we concluded that both of them are useful and

that they benefit different queries with different de-

grees. We presented an Integrated Index-View Advisor

that searches for the best physical design for a workload

in a pool of candidate physical structures that contains
XML indexes and XMLTable views. We have imple-

mented our proposed advisors in a prototype version

of IBM DB2. Our experiments with this implementa-

tion show that our advisors can effectively recommend
physical designs that result in significant speedups for

workload queries.

Acknowledgements We would like to thank Kevin Beyer,
Andrey Balmin, and Fei Chiang for their contributions to the
earlier stage of this work [10]. This work was supported by
the IBM Center for Advanced Studies.

References

1. Agrawal, S., Chaudhuri, S., Kollár, L., Marathe, A.P.,
Narasayya, V.R., Syamala, M.: Database tuning advisor
for Microsoft SQL Server 2005. In: VLDB (2004)

2. Arion, A., Benzaken, V., Manolescu, I., Papakonstanti-
nou, Y.: Structured materialized views for XML queries.
In: VLDB (2007)

3. Balmin, A., Beyer, K.S., Özcan, F., Nicola, M.: On the
path to efficient XML queries. In: VLDB (2006)

4. Balmin, A., Özcan, F., Beyer, K., Cochrane, R.J., Pi-
rahesh, H.: A framework for using materialized XPath
views in XML query processing. In: VLDB (2004)

5. Beyer, K., et al.: DB2 goes hybrid: Integrating native
XML and XQuery with relational data and SQL. IBM
Systems Journal 45(2), 271–298 (2006)

6. Bohannon, P., Freire, J., Haritsa, J.R., Ramanath, M.:
LegoDB: Customizing relational storage for XML docu-
ments. In: VLDB (2002)

7. Chaudhuri, S., Narasayya, V.R.: An efficient cost-driven
index selection tool for Microsoft SQL Server. In: VLDB
(1997)

8. Elghandour, I.: Automatic physical design for xml
databases. Ph.D. thesis, University of Waterloo (2010)

9. Elghandour, I., Aboulnaga, A., Zilio, D.C., Chiang, F.,
Balmin, A., Beyer, K., Zuzarte, C.: An XML index advi-
sor for DB2 (demonstration). In: SIGMOD (2008)

10. Elghandour, I., Aboulnaga, A., Zilio, D.C., Chiang, F.,
Balmin, A., Beyer, K., Zuzarte, C.: XML index rec-
ommendation with tight optimizer coupling. In: ICDE
(2008)

11. Elghandour, I., Aboulnaga, A., Zilio, D.C., Zuzarte, C.:
Recommending XMLTable views for XQuery workloads.
In: XSym (2009)

12. Godfrey, P., Gryz, J., Hoppe, A., Ma, W., Zuzarte, C.:
Query rewrites with views for XML in DB2. In: ICDE
(2009)

13. Goldman, R., Widom, J.: Dataguides: Enabling
query formulation and optimization in semistructured
databases. In: VLDB (1997)

14. Halevy, A.Y.: Answering queries using views: A survey.
The VLDB Journal 10(4), 270–294 (2001)

15. Halverson, A., Josifovski, V., Lohman, G.M., Pirahesh,
H., Mörschel, M.: ROX: Relational over XML. In: VLDB
(2004)

16. Hammerschmidt, B.C., Kempa, M., Linnemann, V.: A
selective key-oriented XML index for the index selection
problem in XDBMS. In: DEXA (2004)

17. Hammerschmidt, B.C., Kempa, M., Linnemann, V.: Au-
tonomous index optimization in XML databases. In:
SMDB (2005)

18. IBM Corp.: IBM DB2 Database for Linux, UNIX, and
Windows Information Center (2006). Available at: http:
//publib.boulder.ibm.com/infocenter/db2luw/v9/

19. Josifovski, V., Massmann, S., Naumann, F.: Super-Fast
XML wrapper generation in DB2: A demonstration. In:
ICDE (2003)

20. Kaushik, R., Bohannon, P., Naughton, J.F., Korth, H.F.:
Covering indexes for branching path queries. In: SIG-
MOD (2002)

21. Lapis, G.: XML and relational storage – Are they mu-
tually exclusive? In: Proc. Conf. on XML, the Web and
beyond (XTech) (2005)

22. Liu, Z.H., Chang, H.J., Sthanikam, B.: Efficient support
of XQuery Update Facility in XML enabled RDBMS. In:
ICDE (2012)

23. Liu, Z.H., Krishnaprasad, M., Arora, V.: Native XQuery
processing in Oracle XMLDB. In: SIGMOD (2005)

24. Liu, Z.H., Krishnaprasad, M., Chang, H.J., Arora, V.:
XMLTable index an efficient way of indexing and query-
ing XML property data. In: ICDE (2007)

25. Melton, J., Muralidhar, S.: XML syntax for XQuery 1.0
(XQueryX). W3C Recommendation (2007). Available
at: http://www.w3.org/TR/xqueryx

26. Moro, M.M., Lim, L., Chang, Y.C.: Schema advisor for
hybrid relational-XML DBMS. In: SIGMOD (2007)

27. Nicola, M., Kogan, I., Schiefer, B.: An XML trans-
action processing benchmark. In: SIGMOD (2007).
Benchmark Available at: https://sourceforge.net/

projects/tpox/

28. Nicola, M., Van der Linden, B.: Native XML support in
DB2 Universal Database. In: VLDB (2005)

29. Onose, N., Deutsch, A., Papakonstantinou, Y., Curtmola,
E.: Rewriting nested XML queries using nested views. In:
SIGMOD (2006)

30. Oracle Corp.: Oracle Database 11g Release 1 XML DB
Developer’s Guide (2007). Available at: http://www.

oracle.com/pls/db111/homepage

31. Runapongsa, K., Patel, J.M., Bordawekar, R., Padman-
abhan, S.: XIST: An XML index selection tool. In: XSym
(2004)

32. Schmidt, K., Härder, T.: On the use of query-driven XML
auto-indexing. In: SMDB (2010)

33. Tatarinov, I., Viglas, S.D., Beyer, K., Shanmugasun-
daram, J., Shekita, E., Zhang, C.: Storing and querying
ordered XML using a relational database system. In:
SIGMOD (2002)

34. Valentin, G., Zuliani, M., Zilio, D.C., Lohman, G., Skel-
ley, A.: DB2 advisor: An optimizer smart enough to rec-
ommend its own indexes. In: ICDE (2000)

35. Xu, W., Özsoyoglu, Z.M.: Rewriting XPath queries using
materialized views. In: VLDB (2005)

36. Zilio, D.C., Rao, J., Lightstone, S., Lohman, G.M.,
Storm, A., Garcia-Arellano, C., Fadden, S.: DB2 design
advisor: Integrated automatic physical database design.
In: VLDB (2004)

