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Abstract. We present a new spatial index belonging to R-tree family. Since our 

new index comes out from the R+-tree and holds the concept of non-

overlapping nodes we call it R++-tree. The original R+-tree was designed for 

both point and spatial data. Using R+-tree for indexing spatial data is very 

inefficient. In our research we face the problem of indexing product catalogues 

data that can be represented as point data. Therefore we suggested the R++-tree 

for point data only. We present a dynamic index R++-tree as an improvement of 

R+-tree. In the tests we show that R++-tree offers even better search efficiency 

than R*-tree when highly redundant point data is considered. Moreover the 

construction time of R++-tree is much shorter than the construction time of R*-

tree. 
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1   Introduction 

Spatial indexes have been studied for about 30 years. R-trees and its derivatives [1, 2, 

3, 4] comprise the most common research branch and are also used in commercial 

databases. Our motivation for studying R-trees was driven by the need for efficient 

computation of top-k query in product catalogues. This article is not about top-k query 

searching nor top-k query evaluation, however it is worth to introduce them at least in 

a few words. 

Imagine we have a large set of apartments for sale and a customer who desires to 

find an apartment that fits his needs best. For simplification let us reduce customer’s 

criteria to the price and floor. Let the customer want an apartment cheaper than 75 

000 € preferably on the second, third or fourth floor. Our mathematical model of top-k 

query would describe such preferences by two functions mapping real values (price, 

floor number) into values within interval [0; 1] where value 0 indicates not acceptable 

attribute value and value 1 the most preferred one. These mapping functions are 

called fuzzy functions and values from [0; 1] are called fuzzy values. Figure 1 shows 

an example of fuzzy functions of price and floor modeling the preferences of our 

customer. 

For final comparison of any two apartments we use a combination function – 

weighted sum of fuzzy values, which gives us the overall value of an apartment. The 

higher is the overall value, the better apartment for the customer is. Let our customer 



insist on the low price twice as much as on the preferred floor. The combination 

function C computing the overall value of an apartment A would be: 

C(A) = 1 * ffloor(vfloor(A)) + 2 * fprice(vprice(A)) where vfloor(A) and vprice(A) represent the 

real values of floor and price of apartment A. Formal description of top-k search 

problem and top-k search algorithm can be found in [8]. More relevant comparison of 

top-k search performance over R-tree with other approaches can be found in [9]. 

 

Fig. 1. Customer’s preferences to the floor and price of an apartment modeled by fuzzy 

functions. 

It is common in product catalogues, that domains have few possible values of 

many attributes therefore the redundancy in data is high. Therefore our computational 

model usually contains top-k query over multidimensional index containing highly 

redundant point data. Our experiments show that in such scenario R
++

-tree provides 

the fastest computation time in comparison to both R-tree and R
*
-tree indexes. 

In our tests we compare R
++

-tree with other spatial indexes in top-k query, range 

query and kNN query search. R
++

-tree is an improved version of R
+
-tree [5]. First of 

all let us remind and conclude the crucial properties of R
+
-tree (properties written in 

italic are all speciality of R
+
-tree). 

R
+
-tree: 

- holds nesting condition (as well as R-tree and R*-tree); 

- is balanced (as well as R-tree and R*-tree); 

- is able to index both point and spatial data (as well as R-tree and R*-tree); 

- keeps all data entries in leafs (as well as R-tree and R*-tree); 

- each node takes one page of disk space (as well as R-tree and R*-tree) unless 

some overflow pages occur; 

- overflow pages may occur in both leaf and inner nodes; 

- has no overlaps of nodes at the same level; 

- leaf node has no guarantees about occupancy; 

- inner node is guaranteed to have at least 1 entry. 

The R
++

-tree differs from R
+
-tree in following properties: 

- it is able to index just point data; 

- overflow pages may occur only in leaf nodes; 

- each leaf node takes one page of disk space unless some overflow page 

occurs; 

- each inner node takes two disk pages. 



 

 

All search algorithms (e.g. kNN query, range query and top-k query) ideologically 

work in the same way for all R-trees including R
++

-tree. 

Section 2 summarizes the relevant parts of research papers mentioning R
+
-tree 

index. Section 3 describes details of R
++

-tree design and introduces an algorithm for 

dynamic insertion. Section 4 reveals conditions (circumstances or data properties) 

under which the R
++

-tree offers equal or better search performance than R*-tree. As 

the title suggests, R
++

-tree offers the best search performance for highly redundant 

point data. 

2 Related Work 

R-tree and R*-tree are the most common indexes from R-tree family. Many tests 

proved that R*-tree offers the best search performance in most cases. The only area 

where R*-tree falls behind others is the construction time, because the reinsertions 

take plenty of time. Special effort was invested to develop an R-tree-like index 

without overlaps of nodes – the R
+
-tree. Since this paper is all about our new structure 

based on R
+
-tree, we narrow down the related work survey just to two papers 

describing R
+
-tree quite thorough. The first one is the original paper, where R

+
-tree 

was introduced for the very first time by Timos Sellis et al. [5]. The second one is a 

paper where R
+
-tree and three other indexes (R-tree, K-D-B-tree, 2D-Isam) where 

described and compared in performance of searching and construction by Diane 

Greene [6]. 

The main idea of R
+
-tree presented in [5] is to avoid overlaps between nodes on the 

same level (strictly just from the structure definition). Condition of zero overlaps 

leads to several other problems we have to deal with, while executing the dynamic 

insertion process: (1) finding an appropriate leaf for insertion of a new object, (2) 

managing overlaps between objects, (3) splitting an overfilled node. Let us discuss 

each one separately. 

(1) The method for finding an appropriate leaf for adding a new object traverses 

the tree from the root to the leaf along one path. If necessary, the minimal bounding 

rectangles of nodes are enlarged. Imagine a situation depicted on Figure 2 on the left. 

No rectangle can be enlarged to cover new object unless an overlap arises. On the 

right there is an idea of R
+
-tree depicted – inner node A is completely covered by its 

child nodes B, C, D, E, F. Therefore the situation depicted on the left never arises and 

the method always finds an appropriate leaf without any enlargement of the node 

rectangle. At the beginning of R
+
-tree construction we have an empty leaf which is 

simultaneously the root where new objects are added. There is no bounding rectangle 

of the root stored anywhere. Paper [5] does not discuss explicitly how the bounding 

rectangles of two new child nodes are supposed to be created. We suppose the 

bounding rectangles of two new child nodes have to cover all the space where any 

new data object can appear. We can use some kind of infinite value for rectangle 

bounds or concrete values, if we know the data scope. 

(2) R
+
-tree is designed for spatial data where data rectangles can overlap. Since 

rectangles of nodes cannot overlap, R
+
-tree allows keeping one object concurrently in 

more leafs. Each involved leaf overlaps only with a part of data rectangle, but all 



involved leafs together cover the whole data rectangle. The paper [5] does not discuss 

a situation, in which there are more multiple overlaps of data rectangles than the leaf 

capacity is. We suppose that such situation can be handled by creating an overflow 

page. 

(3) Splitting an overfilled node is the most difficult problem. The rectangles of two 

new nodes cannot overlap with each other and they must cover the rectangle of the 

original overfilled node. The only solution is to find a cutting hyper-plane and 

separate child rectangles to the ones falling in front of the hyper-plane and the ones 

falling behind the hyper-plane. Some child rectangles cut by hyper-plane may occur 

that cannot be categorized so simply and they must be cut recursively. The 

distribution of child nodes between the two new nodes is the crucial part of splitting. 

The split algorithm described in [5] simply says “pick the next ff rectangles from the 

list of rectangles sorted on the input axis”. It offers no technique for searching for an 

optimal split, e.g. a split causing minimal amount of recursive cuts. Moreover such 

split may not always be found and different axes and numbers ff have to be tried. 

Therefore we were not able to implement R
+
-tree according to description in [5]. 

 

Fig. 2. On the left, no rectangle can be enlarged to cover a new object, unless an overlap with 

another one arises. On the right inner node A is completely covered by its child nodes B, C, D, 

E, F, so a new object is added to one of them, in this case to the node C. 

Paper [6] brings an analysis and comparison of four spatial access methods: R-tree, 

K-D-B-tree, R
+
-tree and 2D-Isam. There is an algorithm for dynamic insertion into 

R
+
-tree, but split node routine is completely different from the original one proposed 

in [5], probably because of the same reason why we could not implement it as well. 

However the split routine proposed in [6] contains a fail branch, exactly by the 

author’s words: “If still no split exists, R
+
-trees (without chaining) fail.” As the author 

says, the only way to avoid a fail is to create an overflow page. Using this algorithm 

an overflow pages can arise for leaf nodes as well as for inner nodes. Split node 

routine proposed in [6], contrary to the one in [5], is designed to minimize recursive 

node cuts propagated downwards. Formula, that chooses the split, takes the number of 

cut child nodes and balance of entries distribution into account. 



 

 

Both authors conclude that R
+
-tree is comparable to R-tree for small rectangles 

without overlaps or point data and it is very inefficient for large rectangles with many 

overlaps. In product catalogues, products with their attribute values can be 

represented as multidimensional points and we do not need to index spatial data. 

These are the main reasons why we restrict our R
++

-tree for point data use only. 

3 R
++

-Tree 

R-tree, R*-tree and R
+
-tree are designed to store each node on one disk page – each of 

them with the same fixed size. They all share the same node structure. Leaf entry for 

an object O is a tuple (p(O), oid(O)), where p(O) is the point of object O and oid(O) is 

an identifier of object O. In other words leaf entry of an object consists of a geometric 

representation of the object and a pointer to the object possibly residing in external 

database. Leaf of any of the three trees mentioned above keeps a limited amount of 

leaf entries. Depending on the implementation, the page keeping a leaf may not keep 

only the leaf entries, but also a pointer to the parent node and the number of entries 

present in the leaf. The situation with inner nodes is quite similar. Each inner node 

keeps a limited amount of inner entries, where each inner entry refers to one child 

node. Inner entry referring to a child node N is a tuple (mbr(N), nid(N)), where 

mbr(N) is the minimal bounding rectangle of node N (the geometric representation of 

node N) and nid(N) is an identifier of node N (the pointer to node N). Depending on 

the implementation, the page keeping an inner node may not keep only the inner 

entries, but also a pointer to the parent node and the number of entries present in the 

node. 

R-tree, R*-tree and R
+-

tree differ just in the way of construction. Search algorithms 

over R
+
-tree have to handle possible duplicates, since one object can be stored in 

several leafs. The R
++

-tree, introduced in this paper, is based on R
+
-tree, therefore R-

tree and R*-tree are left out from further discussion. A thorough description of the 

dynamic insertion of an object into R
++

-tree is offered below. Our java 

implementation of R
++

-tree can be found at http://ics.upjs.sk/~sumak/files/ rpptree.zip. 

3.1 Design of R
++

-tree 

Disadvantage of the original R
+
-tree is the fact that rectangles of child nodes are 

rarely minimal. Since rectangle of each node has to be completely covered by 

rectangles of its child nodes, it is impossible to store minimal bounding rectangles 

only. The use of minimal bounding rectangles causes troubles when adding new 

object, as depicted on Figure 2 on the left. On the other hand, larger bounding 

rectangles, as depicted on Figure 2 on the right, make the search less effective. We 

propose to keep two rectangles for each child node – the minimal one for searching 

and the larger one for inserting new objects, see Figure 3. This is the basic idea of 

R
++

-tree – to keep an additional rectangle for each child node, which would actually 

be the minimal bounding rectangle for related child node. In this paper we use the 

following notation: (1) br(N) represents a bounding rectangle of node N but not 

necessarily the minimal one; (2) mbr(N) represents the minimal bounding rectangle of 



node N; (3) p(O) is the point for object O. The inner node N of R
+
-tree with parent 

node P and child nodes M1,..., Mn is: (nid(P), n, ((br(M1), nid(M1)),..., (br(Mn), 

nid(Mn)))). The inner node N of R
++

-tree is: (nid(P), n, ((mbr(M1), nid(M1)),..., 

(mbr(Mn), nid(Mn))), (br(M1),..., br(Mn))). The leaf node with parent node P is the 

same for both R
+
-tree and R

++
-tree: (nid(P), n, ((p(O1), oid(O1)),..., (p(On), oid(On)))). 

Figure 3 shows the representation of inner nodes in the pages of size 4096 B. 

The structure of R
++

-tree inner node is designed to keep minimal bounded 

rectangles together with pointers to child nodes within inner entries. Bounded 

rectangles are in the second page in the separated list with the same order. Such 

representation has the following consequences. Each R
++

-tree inner node takes twice 

as much space as R
+
-tree inner node, but when searching, the second page does not 

have to be read. Since leaf nodes have the same structure in both R
+
-tree and R

++
-tree, 

searching through R
++

-tree requires reading just one page per node (as it is in R
+
-tree). 

 

Fig. 3. R++-tree inner node always takes two pages, even in the case of low occupancy, when all 

data would fit in one page. 

Using this approach, the capacity of R
++

-tree inner node is equal to the capacity of 

R
+
-tree inner node with the same page size. The additional information stored in 

second page has to be read only when adding a new object. Beside the structure of 

inner node, R
++

-tree has its own new algorithm for inserting an object. Basically the 

splitting method is the only new part. Let us remind that we consider point data only. 

Before describing the algorithm for object insertion itself, we summarize the facts and 

properties which hold for R
++

-tree: 

1. Leaf node has no occupancy guarantees. Inner node is guaranteed to have at 

least 1 entry and at least 2 entries if it is the root (node occupancy condition). 

2. Bounding rectangle of an inner node completely covers bounding rectangles 

of its child nodes. Minimal bounding rectangle of an inner node completely 

covers minimal bounding rectangles of its child nodes. Minimal bounding 

rectangle of a leaf completely covers points of its objects (nesting condition). 

3. Bounding rectangle of an inner node is completely covered by bounding 

rectangles of its child nodes (complete coverage condition). 



 

 

4. Bounding rectangle of a node completely covers the minimal bounding 

rectangle of the node (bounding rectangle vs. minimal bounding rectangle 

condition). 

5. There is no overlap between bounding rectangles of nodes on the same level 

(zero overlap condition). 

6. All leafs are on the same level (balance condition). 

3.2 Dynamic Insert 

Since all data entries reside in leafs, the first task of inserting a new object is to find 

an appropriate leaf. 

Input: node N, object O 

Output: leaf L 

leaf findLeaf(node N, object O) { 

  if N is an inner node { 

    Let M be such child node of N, that   

    point p(O) falls into rectangle br(M); 

    if p(O) does not fall into mbr(M) { 

      Enlarge mbr(M) to encompass p(O); 

    } 

    return findLeaf(M, O); 

  } 

  if N is a leaf { 

    return N; 

  } 

} 

If object O lies on the boundary of two rectangles, then arbitrary one is chosen. 

Such searching goes down the tree along one path and finds one leaf, in which the 

new object is going to be added. Eventually minimal bounding rectangles along the 

path are enlarged to encompass the point of a new object. Since complete coverage 

condition holds true, method findLeaf never fails in finding an appropriate child 

node. Since just the point data is considered, minimal bounding rectangles can be 

enlarged to cover the new point without violation of any condition. 

Input: leaf L, object O 

Output: - 

void insertIntoLeaf(leaf L, object O) { 

  Add new leaf entry (p(O), oid(O)) to L; 

  if L is overfilled {          //L must be split 

    for each dimension d { 

      for each entry (p(P), oid(P)) of L { 

        Let β be the hyper-plane containing point p(P) and is   

        orthogonal to axis of dimension d; 

        Compute the difference between number of objects lying  

        behind and in front of the hyper-plane β; 

      } 

    } 

    Pick the hyper-plane with minimal difference; 

    Move leaf entries of L lying behind the hyper-plane to new    



    leaf L’; 

    if L is the root { 

      Create new inner node N and make it the new root; 

      insertIntoInner(N, L); 

      insertIntoInner(N, L’); 

    } 

    if L is not the root { 

      Let N be the parent of L; 

      Update mbr(L) and br(L) in inner entry in N according to    

      remaining entries in L; 

      insertIntoInner(N, L’); 

    } 

  } 

} 

 

Fig. 4. R++-tree before and after split of leaf node A when adding new object 11. Bounded 

rectangles are drawn with the full line, the minimal bounded rectangles with the dashed line. 

The main issue of inserting process is the splitting of nodes. Splitting a leaf is very 

simple – the only measure is the balance between number of moved and remained 

entries. The only problem arises when all objects lie on the same point. In such 

situation the insert procedure creates an overflow page. In case of many duplicates a 

chain of overflow pages may occur. Solving such situation by creating a new 

neighbour leaf and random distribution of entries does not violate the zero overlap 

condition, because we use point data only. On the other hand it leads to insertion of a 

new entry into the parent node and possibly to increase of the tree height, which 

affects search efficiency negatively. 

Inserting an object into a leaf may cause an inserting a new entry into its parent 

inner node. Inserting an entry into an inner node is, if necessary, recursively 

propagated upwards in the same way. 

Input: inner node N, node L 

Output: - 

void insertIntoInner(N, L) { 

  Add new inner entry (mbr(L), nid(L)) and br(L) to node N; 

  if N is overfilled {                 //N must be split 



 

 

    for each dimension d { 

      for each entry (mbr(M), nid(M)) of N { 

        for both lower and upper bound of mbr(M) in        

        dimension d { 

          Let β be the hyper-plane containing the bound and  

          orthogonal to axis of dimension d; 

          Compute the number of rectangles being cut by the  

          hyper-plane β;  //measure 1 

          Compute the difference between number of rectangles  

          not cut by β lying behind and in front of the 

          hyper-plane β;  //measure 2 

        } 

      } 

    } 

    Pick the hyper-plane cutting minimal number 

    of rectangles;  //measure 1 

    Resolve ties by picking the one with  

    the best balancing;  //measure 2 

    Move inner entries (together with relevant additional  

    rectangles on second page) lying behind the hyper-plane to  

    the new inner node N’; 

    If there are some rectangles cut by chosen hyper-plane,  

    propagate cut downward up to leaf level; 

    if N is the root { 

      Create new inner node R and make it the new root; 

      insertIntoInner(R, N); 

      insertIntoInner(R, N’); 

    } 

    if N is not the root { 

      Let R be the parent of N; 

      Update mbr(N) and br(N) in R according to remaining  

      entries in N; 

      insertIntoInner(R, N’); 

    } 

  } 

} 

Splitting an inner node is more difficult than splitting a leaf. We evaluate two 

measures for each tangent hyper-plane to side of a hyper-rectangle of a child node. 

First of all we try to prevent cuts of child nodes, but it is not always possible to avoid 

them. Due to the zero overlap condition the cut has to be propagated downward. That 

may cause a non-optimal cutting of nodes on lower levels. That leads to nodes 

crumbling, which affects the searching efficiency negatively. Contrary to the leaf 

nodes, the cut of inner node is always guaranteed to be found and no overflow pages 

are necessary. To prove this claim, we have to prove, that each time an inner node is 

overfilled, there is a hyper-plane with at least one child rectangle lying behind and at 

least one child rectangle lying in front of this hyper-plane. Since splitting of an inner 

node always comes after a splitting of a child node, the overfilled inner node contains 

the original child and the new neighbour child created by the split. Due to this fact the 

hyper-plane used for splitting the child can be used for splitting its parent, because it 

is guaranteed that one part of the original child lies behind and the other one in front 

of the hyper-plane. 



3.3 Special Issues of Dynamic Insert 

There are two more issues not discussed explicitly in the pseudo-code of insertion 

process. The first one is how to determine boundaries of two nodes arisen from the 

root split. The second issue is about possibly empty leaf nodes. 

Let us look at the first issue. After splitting root node the minimal bounding 

rectangles of its child nodes are easy to compute. The minimal bounding rectangles 

cannot be used as bounding rectangles residing on the second page of node, unless 

they together completely cover all domain in each dimension. Since no enlargements 

of bounding rectangles are allowed in method findLeaf (note that only minimal 

bounding rectangles are enlarged if necessary) the root’s children have to completely 

cover the whole space, where data can appear. We can concrete values when we know 

the limits of data or we can use infinity values. 

 

Fig. 5. Leaf node D is to be cut by hyper-plane and its part above the hyper-plane is empty. 

The second issue not discussed explicitly, is empty nodes. Imagine a situation on 

Figure 5 (splitting of node G), where leaf D is forced to be cut by a hyper-plane and 

all of its data fall in front of the hyper-plane. The rest of the leaf D behind the hyper-

plane is empty and we cannot determine the minimal bounding rectangle of the new 

leaf. Since we cannot violate the complete coverage condition, we cannot leave out 

this node of the tree. We propose to keep this node with the information, that it is 

empty. Inner node is not designed to keep any information about number of entries 

residing in its child nodes. Therefore, we propose to use some kind of a null value for 

the minimal bounding rectangle to determine that related child node is empty. 

We leave out the description of search algorithms because all of them (for range 

queries, kNN queries, top-k queries and others) work exactly the same way they work 

in R-tree or R*-tree. The only important thing is to read just first pages of inner nodes 

to use minimal bounding rectangles. However, using bounding rectangles from the 

second page, i.e. not the minimal ones, does not cause an incorrect search 

computation, it simply leads to lower search performance comparable to original R
+
-

tree. 



 

 

4 Experiments 

Since the proposed R
++

-tree is designed for point data, we used several sets of 

synthetic point data and pseudo-real point data in the tests. We compared R
++

-tree 

with R-tree and R*-tree. The main measure was the search time efficiency of range 

query, kNN query and top-k query. We used 4 kB pages for all the tests because it is 

the size of allocation unit on disks. 

Comprehensive tests require extremely big effort due to many variables in tests 

that need to be fixed. Point data can vary in dimensionality, distribution, density and 

redundancy. Range queries can vary in the area of range, dimensionality and kNN 

queries can vary in the number k and location of reference point. Top-k queries can 

vary in number k, weights and fuzzy functions. 

In the tests we used the following data distributions: (a, b, c) – synthetic data, (d) – 

pseudo-real data. Distribution (a) consists of uniformly distributed random points 

within interval [0; 1] in each dimension and with precision of coordinates to fifteen 

decimal places. Distributions (b), (c) consist of uniformly distributed random points 

with integer coordinates within interval [0; 100], [0; 10] in each dimension 

respectively. Distribution (d) is based on real data set containing approximately 27 

000 flat or house advertisements in Slovakia having 6 attributes: price, area, floor, the 

highest floor of building, year of approbation and the number of rooms. Values in all 

6 attributes are numbers, so we can easily represent each flat by a point in 6-

dimensional space. Since the real data set was small, we generated bigger pseudo-real 

sets by generation of several similar objects for each one from the original set. This 

way we generated two sets, one with about 550 000 objects (the 20-multiple set) and 

one with about 2 700 000 objects (the 100-multiple set). 

4.1 Synthetic data 

Let us discuss the experiments over pure synthetic data (i.e. distributions a, b, c). For 

each distribution we generated 100 000 random points with dimensionality from 2 to 

10 dimensions, i.e. 27 sets of data altogether. For each set of data we built three types 

of trees (R-tree, R*-tree and R
++

-tree) i.e. 81 trees. We prepared 300 random queries 

for each data set and each query type. We generated ranges of 3 size types with 

uniformly random position for range queries. For each kNN query we generated 

reference point with uniformly random position and number k uniformly random from 

1 to 100. Similarly we generated random top-k queries containing random weights 

from 1 to 5, random numbers k from 1 to 100 and reasonable fuzzy functions. 

Distribution (a) has almost no redundancy and minimal bounding rectangles of 

R
++

-tree are almost the same size as the bounding rectangles. The result is that R
++

-

tree is very inefficient for all query types. However these data are quite different from 

real product catalogues data. We do not provide any results in this paper. 

Distribution (b) has many redundancies in low dimensional spaces and just a few 

redundancies in higher dimensional spaces. Search performance of R
++

-tree is 

comparable to R*-tree in all query types for low dimensional spaces. However, even 

for high dimensional spaces, R
++

-tree is almost always better than R-tree (Figures 6 

and 7).  



 

Fig. 6. Average search time (in milliseconds) per range query and kNN query over data with 

distribution (b). 

 

Fig. 7. Average search time (in milliseconds) per top-k query over data with distribution (b) 

and range query over data with distribution (c). 

 

Fig. 8. Average search time (in milliseconds) per kNN query and top-k query over data with 

distribution (c). 

Distribution (c) contains many redundancies in low dimensional spaces. In this 

case R
++

-tree is the best one. Even in higher dimensional spaces (from 5 to 10 



 

 

dimensions) R
++

-tree is comparable to R*-tree especially in time of range query 

search. We left out the R-tree of the charts on Figure 8 because its significantly worse 

results make the differences between R*-tree and R
++

-tree illegible. 

R
++

-tree is significantly more efficient than R*-tree in all queries up to 4 

dimensional space. In more dimensional spaces there are less redundancies and R*-

tree becomes again the most efficient one. 

4.2 Pseudo-real data 

As mentioned earlier we used two 6-dimensional sets of pseudo-real data: the 20-

multiple set (550 000 objects) and the 100-multiple set (2 700 000 objects). We 

compared the average time of top-k query search over R-tree, R*-tree and R
++

-tree. 

Each of the tests consists of the same set of 1100 random top-k queries, i.e. about 200 

random queries containing gradually 2, 3, 4, 5 and all 6 attributes. In other words not 

all queries contained all 6 attributes and not all n-attribute queries contained the same 

attributes. All queries for the 20-multiple set have number k = 25 and all queries for 

the 100-multiple set have number k = 50. 

 

Fig. 9. Time of top-25 query over 20-multiple and top-50 query over 100-multiple data set. 

As we can see on Figure 9, R
++

-tree offers better top-k search performance than 

R*-tree and much better top-k search performance than R-tree. We suppose it is the 

result of many redundancies in real data, caused especially by attributes: number of 

rooms, floor, highest floor of building, year of approbation, which have few possible 

values. 

Note that axis x contains the number of attributes used in top-k query, not the space 

dimensionality. We emphasize that all the trees contain full 6-dimensional data. On 

the charts we see another interesting property – top-k query performance seems to be 

invariant to the number of dimensions included in the query for all types of R-tree 

(including R
++

-tree). 

In our tests we compared R
++

-tree with R-tree and R*-tree as the most common 

indexes from R-tree family. We omitted the R
+
-tree (its implementation according to 

[6]) from the tests because we found it to be really inefficient. 



Conclusion 

We present a new R-tree like index – the R
++

-tree as an improvement of R
+
-tree. Even 

if R*-tree seems to be universal index and the best in search time in many cases, it 

falls behind in the efficiency of insertion process. We found out that R
++

-tree is 

significantly more efficient than R*-tree for range query, kNN query and top-k query, 

when point data with many redundancies is considered. Test results with synthetic 

data for distribution (c) show that R
++

-tree is the best up to 4 dimensions. The 

efficiency of R
++

-tree slightly decreases with growing dimensionality, because the 

number of redundancies decreases too. Tests over pseudo-real data also showed that 

R
++

-tree offers very good search performance for top-k query, which is the main 

motivation for our research. 

References 

1. Guttman, A.: A dynamic index structure for spatial searching. SIGMOD Conference. (1997) 

2. Theodoridis, Y., Sellis, T.: Optimization Issues in R-tree Construction. In Proceedings of the 

International Workshop on Geographic Information Systems. (1993) 

3. Brakatsoulas, S., Pfoser, D., Theodoridis, Y.: Revisiting R-tree Construction Principles. 

Proceedings of ADBIS the 6th East European Conference on Advances in Databases and 

Information. (2002) 149–162. 

4. Beckmann, N., Kriegel, H. P., Schneider, R., Seeger, B.: The R*-Tree: An efficient and 

Robust Access Method for Points and Rectangles. SIGMOD Conference. (1990) 322–331 

5. Sellis, T., Roussopoulos, N., Faloutsos, C.: The R+-Tree: A dynamic index for multi-

dimensional objects. In VLDB. (1987) 

6. Greene, D.: An Implementation and Performance Analysis of Spatial Data Access Methods. 

Proc. Fifth Int’l Conf. Data Eng. (1989) 606–615. 

7. Hjaltason, G. R., Samet, H.: Distance browsing in spatial databases. ACM Transactions on 

Database Systems. (1999) 265–318 

8. Šumák, M., Gurský, P.: Top-k search in product catalogues. Proceedings of DATESO. 

(2011) 1 – 12 

9. Šumák, M., Gurský, P.: Top-k search over grid file. Proceedings of DATESO. (2012) 115–

126 


