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ABSTRACT
Given a collection of objects that carry both spatial and textual in-
formation, a spatio-textual similarity join retrieves the pairs of ob-
jects that are spatially close and textually similar. As an example,
consider a social network with spatially and textually tagged per-
sons (i.e., their locations and profiles). A useful task (for friendship
recommendation) would be to find pairs of persons that are spatially
close and their profiles have a large overlap (i.e., they have common
interests). Another application is data de-duplication (e.g., finding
photographs which are spatially close to each other and high over-
lap in their descriptive tags). Despite the importance of this opera-
tion, there is very little previous work that studies its efficient eval-
uation and in fact under a different definition; only the best match
for each object is identified. In this paper, we combine ideas from
state-of-the-art spatial distance join and set similarity join methods
and propose efficient algorithms that take into account both spatial
and textual constraints. Besides, we propose a batch processing
technique which boosts the performance of our approaches. An ex-
perimental evaluation using real and synthetic datasets shows that
our optimized techniques are orders of magnitude faster than base-
line solutions.

1. INTRODUCTION
Databases are becoming increasingly complex over the years, as

entities can be easily ‘tagged’ with different types of auxiliary in-
formation, such as keywords and spatial locations. For example,
webpages contain keywords and they may also be associated to lo-
cations; photographs in photo-sharing services, such as Flickr, are
assigned descriptive tags and spatial locations; persons in social
networks and customer databases have profile entries (keywords)
and addresses. The enrichment of objects with multi-source de-
scriptive information allows for more complex queries and anal-
ysis tasks over the data. For example, Flickr offers an API, via
which users can search for photos by specifying keywords and a
spatial search range. Recently, there has been a growing interest by
research and industry to use space as another dimension for orga-
nizing and searching text and set-valued data.
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Figure 1: Example of a spatio-textual join

In line with this trend, we investigate the evaluation of spatio-
textual similarity join (ST-SJOIN) queries; given two collections
of objects R and S that carry both spatial and textual information,
the ST-SJOIN retrieves the subset J of R× S, such that for every
(r, s) ∈ J , r is spatially close to s, based on a distance threshold
(i.e., distl(r, s) ≤ ε, where distl denotes distance between loca-
tions), and the set similarity between r and s also exceeds a thresh-
old θ (i.e., simt(r, s) ≥ θ, where simt denotes textual similarity).
Figure 1 illustrates how the join can be used for social recommen-
dations; four men (r1 to r4) and four women (s1 and s4) are joined
based on their locations and interests (shown as keyword sets next
to the points). Assuming qualifying pairs should have Euclidean
distance distl at most ε = 0.3 and Jaccard similarity simt at least
θ = 0.5, the result of the join is {(r2, s2), (r2, s3)}.

Applications. ST-SJOIN finds application in a wide range of do-
mains, where spatial and textual information is available for a set
of entities. Below, we discuss some examples.
Personal databases. As illustrated in the above example, social
networking applications can use the join to identify pairs of peo-
ple who have similar profiles and they are in nearby locations. The
result can be used for social recommendations. The join can also
serve as a module for customer segmentation on a database of cus-
tomers; the objective is to find groups of people who live nearby
and have similar profiles, for directed marketing.
Redundant or dirty data. Data deduplication and cleaning is a
classic application of set-similarity joins [10, 16]; originally, in
this process, only the textual similarity of data is considered. The
spatio-textual similarity join can improve the effectiveness of de-
tecting near-identical entities. For example, consider a database of
spatially and textually tagged images (e.g., Flickr). Finding similar
image pairs based solely on their tag similarity may not be suffi-
cient, if the tags are not location dependent. Thus, an image tagged
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as ‘bridge’ is textually similar to other bridge photos around the
world, but can only be actually similar to photographs of the same
bridge (taken from nearby locations). A spatio-textual (self) join
can be used to identify pairs of images showing the same subject.
Databases with POIs. Applying an ST-SJOIN on a database with
points of interest (POIs) can also serve various applications. Pairs
of businesses with common themes (e.g., Chinese restaurants) lo-
cated near each other could collaborate in various ways (e.g., joint
advertisement and promotion, location-based market analysis, shar-
ing business processes or inventories). As another example, con-
sider a touristic application, which finds pairs of thematically sim-
ilar POIs (e.g., archaeological museums), closely located on a map
and jointly includes them in targeted tour recommendations.

Contribution. Recently, there has been a lot of work on spatio-
textual similarity queries [7, 12, 15, 20, 24]. The input of such
a query is a spatial location l and a set of terms K, and the ob-
jective is to find objects from a collection R, which are spatially
close to l and textually similar to K. In addition, spatial joins [5,
6, 9] and set similarity joins [2, 4, 10, 25, 27, 28] are well-studied
problems. However, to our knowledge, there is only one work ([3])
on spatio-textual similarity joins, where in fact the problem is de-
fined differently; given two datasets R and S, the best match in S
for each object in R is retrieved. This paper attempts to fill this gap
by studying efficient solutions for this interesting query operation.
Like previous work on set similarity joins, we mainly focus on the
self-join (i.e., R = S), which is the case for the most representa-
tive applications of this query operation. Still, our solutions easily
generalize to the general case, where R 6= S.

We explore techniques which consider both join thresholds si-
multaneously during search. In a nutshell, our methods exploit
spatial indexing and pruning techniques to reduce the space where
the (more expensive) textual similarity predicate needs to be veri-
fied; for the latter, they adapt the state-of-the-art algorithm for set-
similarity joins [28]. We investigate alternative approaches for spa-
tial pruning, based on a dynamic grid partitioning or a pre-existing
spatial index. Besides, we propose a batch processing technique
which dynamically partitons the objects into groups based on their
spatial locations and textual content and then performs the join at
the groups level. This technique greatly improves the performance
of all our methods; as we demonstrate, it is orthogonal to the spatial
join predicate, since it drastically reduces the cost of the state-of-
the-art set-similarity join algorithm [28]. We perform experiments
with large-scale real and synthetic datasets, showing that our pro-
posed techniques offer orders of magnitude performance improve-
ment compared to baseline solutions.
Outline. The rest of the paper is organized as follows. Section 2 re-
views related work. Section 3 formally defines the ST-SJOIN oper-
ation. Section 4 describes in detail the state-of-the-art set-similarity
join algorithm. Our methods and their group-level evaluation are
presented in Sections 5 and 6, respectively. Section 7 includes an
experimental evaluation and Section 8 concludes the paper.

2. RELATED WORK
Our work is related to spatial distance joins, set-similarity joins,

and spatio-textual search. Sections 2.1 to 2.3 summarize related
work done in these areas.

2.1 Spatial Distance Joins
The dominant indexing method for spatial data is the R-tree [17],

which indexes minimum bounding rectangles (MBRs) of spatial
objects hierarchically. Efficient algorithms for spatial intersection
joins [6] have been developed for data indexed by R-trees. The

ST-SJOIN extends the ε-distance join [9]. Given two spatial datasets
R and S, the ε-distance join finds the pairs (r, s) such that r ∈ R,
s ∈ S, and distl(r, s) ≤ ε. The ε-distance join can be processed
similarly to a spatial intersection join; the R-trees, which index R
and S, are concurrently traversed by recursively following pairs
of entries for which the MBRs have minimum distance at most ε.
Techniques for minimizing the distance computation cost between
objects and MBRs are proposed in [9]. We discuss details on pro-
cessing an ε-distance join using R-trees in Section 5.2, where we
combine this approach with a set-similarity join method.

2.2 Set Similarity Joins
Recently, the set-similarity join has attracted significant interest.

Given a collectionD of set-valued data, the problem is to find pairs
(x, y) of sets in D, such that simt(x, y) ≥ θ, where simt(·, ·)
is a similarity function and θ is a threshold. The main application
of set-similarity joins is near-duplicate object detection [14] (e.g.,
identify plagiarism, record linkage in data integration, duplicate
data cleansing, etc.). Set-similarity joins can also be used to fa-
cilitate string matching; [16] showed that the edit distance between
two strings can be bounded by set-similarity measures defined on
two sets of q-grams, which approximate the strings.

Computing set-similarity joins based on inverted files [31] was
first proposed in [25]: for each object x, the inverted lists that corre-
spond to x’s elements are scanned to accumulate the similarity be-
tween x and all other objects. Several optimizations over this base-
line approach are proposed, including scanning only a smaller sub-
set of x’s lists and performing a single pass over the data that con-
structs the inverted index and computes the join result at the same
time. Chaudhuri et al. [10] suggested an efficient filter-refinement
framework for set-similarity joins, based on the observation that
for two sets x, y to satisfy sim(x, y) ≥ t, a necessary condition is
that prefixes of x and y should have at least some minimum over-
lap. Arasu et al. [2] showed that this prefix-based filtering is just
one of the possible summary schemes that one could use as nec-
essary conditions and provided alternative schemes with theoreti-
cal bounds on their effectiveness. Bayardo et al., [4] proposed an
efficient framework for evaluating set-similarity joins, which mini-
mizes the necessary elements to add in the inverted file, during join
evaluation, based on pre-computed bounds on the element weights
in the sets and appropriate orderings for the domain of set elements
and the database D. This method is further optimized by Xiao et
al. [28], by enhancing prefix-filtering using positional information
of elements in the prefixes and partially-seen suffixes of the joined
objects. In Section 4, we describe the method of [28] in detail, be-
cause we use it as a module in our methods and we optimize it in
Section 6. The same authors later extended this technique to com-
pute top-k set-similarity joins, i.e., finding k (x, y) pairs in D with
the highest similarity [27].

2.3 Spatio-Textual Search
In the past decade, there has been increasing interest on extract-

ing spatial information from web pages such as addresses, phone
numbers, zip codes, and then assigning geographic tags to the pages,
a process known as geo-tagging [1, 13, 21]. Documents are given
a geographic footprint, i.e., a set of locations; the footprint is of-
ten approximated by an MBR. Geo-tagging facilitates multi-criteria
search, such as searching documents by textual content and spatial
location; this type of search has already been considered by com-
mercial search engines like Google Maps. SPIRIT [26] is a search
engine that supports spatio-textual selection queries; the user in-
puts a set of keywords and a set of spatial predicates and the engine
returns the documents, which contain the keywords and their spatial
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footprint satisfies the spatial predicates (e.g., “find all documents
about children hospitals within 10km from the city center”). Sev-
eral indexing approaches for the efficient support of spatio-textual
selections have been proposed [11, 18, 26, 30]. Some of these
methods propose extensions of the R-tree, which associate nodes
or entries of the tree with inverted files for the contents of the cor-
responding subtrees [18]; other approaches primarily index the data
using an inverted file and then spatially index each inverted list by
an R-tree [30] or a space-filling curve [11].

De Felipe et al. [15] extend the R-tree to support containment
nearest neighbor queries. Given a query location q, a set of key-
words K, and an integer k, the objective is to find the k nearest
objects to q which include all keywords in K. Each entry e of the
tree, apart from its MBR, stores a bitmap, which encodes the set of
keywords included in every document in the subtree indexed by e.
The algorithm of [19] is used to retrieve the nearest neighbors of
q incrementally; entries that violate the keyword containment con-
straint of the query are pruned during search. Cong et al. [12] and
Li et al. [20] independently proposed an IR-tree index, which pri-
marily indexes the data using an R-tree, but creates an inverted file
for each node of the tree. The inverted file of a leaf node indexes
all documents in the node, while in the inverted file of a non-leaf
node, each id corresponds to a child (i.e., subtree) of the non-leaf
node. The inverted list for a term, contains the children which in-
clude that term and the maximum weight of the term in any object
of the corresponding subtree. By extending the nearest neighbor
algorithm of [19], the IR-tree can be used to answer spatio-textual
proximity queries, where the user provides a location q and a set of
keywords K and asks for the best object on a map with respect to
both distance from q and similarity with K. An alternative, Spa-
tial Inverted Index for spatio-textual proximity queries was recently
proposed by [24]. This method generates one inverted list per term
and indexes each long inverted list using an aggregate R-tree [23];
given a query, the lists of the query terms are joined, by access-
ing from each tree the objects in increasing order of relevance and
merging them, until the k best objects are guaranteed to be found.
Several, more complex queries have also been defined and studied
in the context of spatio-textual search, like prestige-based spatio-
textual similarity [7] and finding spatially close groups of objects
that match the query keywords [8, 29].

To the best of our knowledge, spatio-textual similarity join has
been studied only in [3] as SpSJOIN. Compared to our work,
SpSJOIN significantly differs from ST-SJOIN. First, similarity
between two objects x and y is defined by one measure sim(x, y) =
simt(x,y)

1+distl(x,y)
that combines both the spatial distance distl(x, y) and

the textual similarity simt(x, y) of the objects. Second, SpSJOIN
is based on a different definition. For each object x it identifies
object y that maximizes sim(x, y), i.e, only the best match for
x, while ST-SJOIN retrieves all objects y with distl(x, y) ≤ ε,
simt(x, y) ≥ θ. Finally, due to its definition SpSJOIN may return
pairs that are of no use, e.g., two photographs from nearby loca-
tions that share only one common term on their long descriptions
and picture different items.

3. PROBLEM DEFINITION
We define a spatio-textual object x as a triplet (x.id, x.loc, x.text),

modeling the identity, the location, and the textual description of x,
respectively. The entry x.loc takes values from the two-dimensional
geographical space, while x.text is a set of terms drawn from a fi-
nite global dictionary T = {t1, t2, . . . , tn}. Each term t in x.text
could carry a weight (default weights are 1 for unweighted sets),
modeling the relevance of t to object x. For example, if x corre-

x1: {B,C}
x2: {E,F}
x3: {D,E, F}
x4: {A,B,E, F}
x5: {C,D,E, F}
x6: {C,D,E, F}
x7: {A,B,C,D, F}
x8: {A,B,D,E, F}
x9: {A,B,C,D,E}

Figure 2: A collection of spatio-textual objects

sponds to a text document, the weights of the terms in x.text could
be defined by tf-idf or language models [31]. Finally, we define the
size |x| of an object x as the number of terms in x.text.

For every pair of spatio-textual objects x and y, we define their
spatial distance, distl(x, y), with respect to x.loc and y.loc, and
their textual similarity, simt(x, y), as the set similarity between
sets x.text and y.text, quantified with measures as (weighted)
overlap, Jaccard or cosine similarity. The choice of the spatial dis-
tance and text similarity measures is highly dependent on the ap-
plication domain and it is out of the scope of this study. For the
rest of the paper, we assume that the spatial distance of objects x
and y is the Euclidean distance of their locations, distl(x, y) =
dist(x.loc, y.loc) and that their textual similarity equals the Jac-
card similarity simt(x, y) =

|x.text
⋂
y.text|

|x.text
⋃
y.text| .

1

Given a collection of spatio-textual objects R, the spatio-textual
similarity join (ST-SJOIN) identifies pairs of objects in R that are
both spatially close and textually similar. Formally, given a spa-
tial distance threshold ε and and a textual similarity threshold θ,
ST-SJOIN(R, ε, θ) retrieves all pairs (x, y) with x, y ∈ R, such
that distl(x, y) ≤ ε and simt(x, y) ≥ θ.

EXAMPLE 3.1. Consider the collection of spatio-textual objects
R = {x1, . . . , x9} in Figure 2. ST-SJOIN(R, 0.2, 0.7) retrieves
pairs (x6, x5), (x6, x3) and (x8, x4).

4. BACKGROUND ON SET SIMILARITY
JOINS

In this section, we describe in detail the state-of-the-art method
for computing textual similarity joins, since our approaches use this
method and its filtering mechanisms as modules. An efficient way
of computing textual similarity joins w.r.t. a threshold θ, is to use
inverted files [31]. An inverted file for a collection of objects R
is an index that associates each term t in the global dictionary T
to a postings list Lt of the objects x ∈ R that contain t. Assume
that such an index is available for R. To compute the join, for each
object x ∈ R, we first probe the postings list Lt of every term t ∈
x.text and accumulate the overlap of x with every involved object
y ∈ Lt in set Ox[y]. This way, we identify a set of candidate pairs
(x, y) for object x. We then fetch each y ∈ Ox withOx[y] > 0 and
compute simt(x, y); if simt(x, y) ≥ θ then pair (x, y) is added
to the join result. An optimization to this approach is to build the
inverted index incrementally, while processing the join. For each
object x and for each term t ∈ x.text, while scanning Lt to update
Ox, we add an entry for x toLt (to be used by objects following x).
This way, every x is only compared with the previously examined
objects and each (x, y) pair is considered only once.

1Our techniques can easily be adapted for other distance functions
and text similarity measures.

3



4.1 Prefix Filtering
The main problem of the aforementioned simple approach is that

the postings lists of the frequent terms can be very long, and there-
fore, a large number of candidate pairs are generated. Several stud-
ies proposed filters to reduce the number of candidate pairs. The
most effective technique is based on the prefix filtering principle
[4, 10]. We first canonicalize each object x: we order the terms
inside x.text according to a global ordering O, which brings the
most infrequent terms in x.text first. Then, we consider a prefix
ppref(x) of x.text, called probe prefix; the length `xp of ppref(x)
depends on |x| (i.e., the number of terms in x.text), the similarity
function, and the similarity threshold. In our setting, where Jac-
card similarity is considered, and assuming a threshold θ, we have
`xp = |x| − dθ · |x|e+1. According to the prefix filtering principle,
for two objects x and y to be similar, ppref(x) and ppref(y) must
share at least one common term. Thus, for each x, in order to obtain
the candidate pairs ofOx, we only need to scan and probe the terms
contained in ppref(x). This leads to a smaller number of total can-
didate pairs and significantly, reduces the cost of bookkeeping. For
example, consider the collection of objects in Figure 2 and a simi-
larity threshold θ = 0.7. In line with the prefix filtering principle,
the candidates set of x6 with ppref(x6) = {C,D} contains only
2 pairs: (x6, x3) and (x6, x5).

The ALL-PAIRS algorithm [4] builds upon the prefix filtering
principle, and in addition, it proposes a way to minimize the size of
the inverted index. Specifically, the algorithm examines the objects
of the collection in ascending order of their sizes. For each object x,
ALL-PAIRS probes the Lt postings list of every term t ∈ ppref(x).
Then, due to the order the objects are examined, it only needs to
index the terms contained in the so-called index prefix of x.text,
denoted by ipref(x), instead of ppref(x). To clarify this, con-
sider a similarity threshold θ = 0.8, and an object x of size |x| = 5
with ppref(x) = {A,B}. Now, assume another object y with
|y| = 5 that contains term B but not A in ppref(y). Although
we do not know the exact contents of the objects, we can deter-
mine their maximum possible overlap O(x, y) by adding the num-
ber of common terms in their prefixes and the minimum number
of unseen terms contained in their suffixes. Specifically, the pre-
fixes of the objects share term B. Further, in the best case the
suffix of x would entirely contain suffix of y (since |x| = |y|,
|suff(x)| = |suff(y)| = 3). Thus, the maximum possible over-
lap O(x, y) = 1 + min(|suff(x)|, |suff(y)|) = 4 and their
Jaccard similarity is at most O(x,y)

|x|+|y|−O(x,y)
= 0.67. This signi-

fies that (x, y) is not part of the join result, but most importantly
that we do not need to index term B for x. Finally, the length `xi of
ipref(x) also depends on the size |x| of the object x, the similarity
function, and the similarity threshold, and it has at most the length
of ppref(x); e.g., in our setting we have `xi = |x|−d 2θ

1+θ
·|x|e+1.

4.2 The PPJOIN Algorithm
The state-of-the-art algorithm for set similarity joins is PPJOIN

[28].2 PPJOIN extends ALL-PAIRS, introducing additionally a po-
sitional and a suffix filter. By positional information we refer to the
position of a term inside the x.text set of a canonicalized object x.
Given two objects x and y, the basic idea of the positional filter is to
compute an upper bound O of their overlap O(x, y), as described
in the previous paragraph. If O is lower than the minimum overlap
of x and y required by the similarity threshold θ, we can safely dis-
card pair (x, y). Finally, regarding the suffix filter, PPJOIN operates
in a divide-and-conquer manner over the suffixes of objects x and y

2For simplicity, PPJOIN denotes the ppjoin+ algorithm [28].

Algorithm 1: PPJOIN(R, θ)
input :R is a collection of objects sorted by the increasing order of their

sizes - each object is canonicalized by a global orderingO; a textual
similarity threshold θ

output : the set J of all object pairs (x, y), such that x, y ∈ R and
simt(x, y) ≥ θ

1 foreach term t ∈ T do
2 Lt ← ∅
3 foreach object x ∈ R do
4 `xp ← |x| − dθ · |x|e+ 1; // Probe prefix length

5 `xi ← |x| − d 2θ
θ+1 · |x|e+ 1; // Index prefix length

6 for posx = 1 to `xp do
7 t← term of x.text at position posx;
8 foreach entry 〈y, posy〉 ∈ Lt such that |y| ≥ θ · |x| do
9 if QualifyPositionalFilter(x, posx, y, posy) and

QualifySuffixFilter(x, posx, y, posy) then
10 Ox[y]← Ox[y] + 1; // Increase overlap

11 else
12 Ox[y]← −∞; // Prune pair

13 if posx ≤ `xi then
14 Lt ← Lt ∪ {〈x, posx〉}; // Build/extend index

15 Verify(x,Ox, J);

16 return J ;

to compute a lower bound H of their Hamming distance H(x, y).
If H is higher than the maximum Hamming distance required for
the pair to meet θ, we can safely discard (x, y).

Algorithm 1 illustrates the pseudocode of the PPJOIN algorithm.
PPJOIN takes as input a collection of canonicalized objects already
sorted in ascending order of their sizes, and a similarity threshold θ.
It then iterates through each object x (Lines 3–15). Since all filters
are necessary but not sufficient conditions for identifying similar
objects, processing an object x involves a filtering and a verifica-
tion phase. During the filtering phase (Lines 6–14), the algorithm
sequentially scans ppref(x), accesses the postings list Lt for each
term t in the prefix and defines candidate pairs (x, y) (Lines 8–12).
Then, PPJOIN filters the pairs using the size filter |y| ≥ θ · |x| pro-
posed in [2] (Line 8), and the positional and suffix filter in Line 9.
If a pair (x, y) qualifies all filters, its current overlap is increased
and accumulated in Ox[y] (Line 10). Further, in Lines 13–14, the
algorithm extents the Lt postings list of every term t in ipref(x).
Finally, during verification (Line 15), PPJOIN exploits the already
accumulated overlap Ox[y] for each candidate pair (x, y) to pro-
duce the final results J of the join.

5. SPATIO-TEXTUAL SIMILARITY JOINS
This section presents our methodology for spatio-textual similar-

ity joins which adopts and extends ideas proposed for textual simi-
larity joins. A straightforward way to apply the PPJOIN algorithm
for computing a ST-SJOIN is to immediately disregard each can-
didate y which disqualifies the distance constraint with the current
object x. This idea is employed by the PPJ algorithm presented in
Algorithm 2. Compared to PPJOIN, the PPJ algorithm includes an
additional filter in Line 8 to check the spatial distance between two
objects x and y. Note that the spatial distance filter is far cheaper
than positional and suffix filter, and this is why we apply it first.

EXAMPLE 5.1. We demonstrate PPJ for ST-SJOIN(R, 0.2, 0.7)
over the collection R in Figure 2. Table 1 reports all the iterations
performed by the algorithm during the filtering phase. For each
object x, we show which pairs (x, ·) are considered while prob-
ing the postings lists of the index, what PPJ does with each pair,
and finally, how the index is extended. The algorithm checks 13,
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Algorithm 2: PPJ(R, ε, θ)
input :R is a collection of spatio-textual objects sorted by the increasing

order of their sizes - each object is canonicalized by a global ordering
O; a spatial distance threshold ε; a textual similarity threshold θ

output : the set J of all object pairs (x, y), such that x, y ∈ R,
distl(x, y) ≤ ε and simt(x, y) ≥ θ

... // Lines 1-7 in Algorithm 1
8 foreach entry 〈y, posy〉 ∈ Lt such that distl(x, y) ≤ ε and |y| ≥ θ · |x|

do
... // Lines 9-16 in Algorithm 1

Table 1: Iterations performed during PPJ’s filtering phase for
computing ST-SJOIN(R, 0.2, 0.7) over collection R in Figure 2
(sf: suffix filter, ε: spatial filter)

object checking pair indexing
x1 LB = {〈x1, 1〉}
x2 LE = {〈x2, 1〉}
x3 LD = {〈x3, 1〉}
x4 (x4, x1) pruned, ε LA = {〈x4, 1〉}
x5 (x5, x3) pruned, ε LC = {〈x5, 1〉}
x6 Ox6 [x5] = 1 LC

⋃
= {〈x6, 1〉}

Ox6 [x3] = 1
x7 (x7, x4) pruned, ε LA

⋃
= {〈x7, 1〉}

(x7, x1) pruned, ε
x8 Ox8 [x4] = 1 LA

⋃
= {〈x8, 1〉}

(x8, x7) pruned, ε
(x8, x1) pruned, ε

x9 (x9, x4) pruned, ε LA
⋃

= {〈x9, 1〉}
(x9, x7) pruned, ε
(x9, x8) pruned, sf
(x9, x1) pruned, ε

not necessarily distinct, pairs, before proceeding to the verification
phase, identifying result pairs (x6, x5), (x6, x3), and (x8, x4).

In order to devise more efficient methods than PPJ, we need to
exploit the nature of ST-SJOIN. To identify, for every object x
in the dataset R, all qualifying (x, y) pairs efficiently, we should
exploit the spatial distance threshold ε to consider only objects y,
for which distl(x, y) ≤ ε. The major drawback of PPJ is that it
is unable to examine only these objects; i.e., for each term t con-
tained in the probe prefix of x.text, PPJ considers every object y
contained in the Lt postings list, no matter how far y is from x in
space. This shortcoming of PPJ signifies the necessity for a spatial
indexing method that would rapidly prune candidate pairs by their
spatial distance. This issue is investigated in Sections 5.1 and 5.2.

5.1 Dynamic Grid Partitioning
Given a query ST-SJOIN(R, ε, θ) on a data collection R, we

consider a dynamic grid partitioning GR of R’s two-dimensional
space. The extent of every square cell in the grid in each dimen-
sion equals the spatial distance threshold ε; hence, the grid is not
pre-computed, but dynamically determined by the query parame-
ters. Figure 3(a) illustrates how such a grid can be used. Assume
that a probing object x is contained in the grid cell with id 37. To
identify candidate (x, y) pairs, we only need to examine the objects
contained inside cell 37 itself and its eight adjacent gray cells. In
general, at most 9 cells are considered for each object x (e.g., only
6 cells may contain candidates for an object x in cell 2). Note that,
the adjacent cells contain a superset of the objects with distance at
most ε from x; thus, we still need to apply the spatial distance filter
for each candidate in these cells. In the example and our imple-
mentation, the cells are numbered row-wise from bottom to top.

We now propose two extensions to the PPJ algorithm that ex-
ploit this dynamic grid partitioning to speedup the computation of

(a) (b)

Figure 3: Employing dynamic grid partitioning: (a) PPJ-I de-
fines cell intervals, (b) PPJ-C identifies join cells

ST-SJOIN. Note that for the rest of the paper, we use quadru-
ple (x.id, x.loc, x.text, x.cid) to model a spatio-textual object x,
where x.cid is the (dynamically determined) cell-id containing x.loc.

5.1.1 The PPJ-I Algorithm
The PPJ-I algorithm extends PPJ as follows to exploit the dy-

namic grid partitioning.
• Before join evaluation, based on the given distance threshold ε,
PPJ-I defines a grid partitioning of the space. For every grid
cell c, PPJ-I identifies at most nine cells adjacent to c and then
determines at most three intervals of their ids (hence the ‘-I’
in the name of the algorithm). Intuitively, these intervals en-
code the spatial region around any object contained in cell c.
For instance, for cell 37 in Figure 3(a), PPJ-I defines intervals
[28, 30], [36, 38] and [44, 46], while for cell 2, only two inter-
vals, [1, 3] and [9, 11], are defined.
• PPJ-I retains the entries 〈y, posy〉 of every postings list in as-

cending order of y.cid. Note that this does not affect correctness
as the original PPJOIN algorithm does not impose any ordering
for the posting list contents.
• A lightweight cell-index on top of every postings list Lt is re-

tained. The cell-index contains an entry 〈cid, pcid〉 for each cell
(cid) which has objects in Lt. pcid is a pointer that provides di-
rect access to the first entry 〈y, posy〉 inLt that has y.cid = cid.
In the worst case, the size of the cell-index equals the number of
cells in the grid; in practice it is much smaller than the list itself.
• Consider a term t that is contained in the prefix of the prob-

ing object x. PPJ-I only accesses the entries 〈y, posy〉 ∈ Lt
such that y.cid falls inside one of the intervals defined for the
cell x.cid. Thus, PPJ-I first identifies the intervals correspond-
ing to x.cid and then for each interval i[cmin, cmax] it locates
the first posting 〈y, posy〉 in cmin using the cell-index on top
of Lt; Lt is sequentially scanned from this posting until an en-
try 〈y, posy〉 with y.cid > cmax is found. This approach is
reminiscent to spatial query evaluation for data indexed using
space-filling curves [22].

Algorithm 3 illustrates the pseudocode of PPJ-I. Since PPJ-I
extends PPJ (and PPJOIN), we only detail the changes over Algo-
rithm 1. Specifically, PPJ-I first constructs a dynamic grid par-
titioning GR for the input collection of spatio-textual objects R
(Lines 1–3); then, for every grid cell c, it defines its intervals and
stores them to a set I[c]. During the join, for each term t contained
in the probe prefix of current object x, the algorithm considers each
interval of the cell x.cid, accesses the postings list Lt using the
cell-index and proceeds similar to PPJ and PPJOIN with identify-
ing and verifying candidate pairs (x, y) (Lines 11–12).

EXAMPLE 5.2. We demonstrate PPJ-I using Example 5.1. First,
PPJ-I creates a grid partitioning (e.g., 25 cells for ε = 0.2 in Fig-
ure 4). Then, for each accessed object x its x.cid is dynamically
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Algorithm 3: PPJ-I(R, ε, θ)
input :R is a collection of spatio-textual objects sorted by the increasing

order of their sizes - each object is canonicalized by a global ordering
O; a spatial distance threshold ε; a textual similarity threshold θ

output : the set J of all object pairs (x, y), such that x, y ∈ R,
distl(x, y) ≤ ε and simt(x, y) ≥ θ

1 GR ← ConstructGridPartitioning(R, ε);
2 foreach cell c inGR do
3 I[c]← DefineCellIntervals(c,GR);

... // Lines 1-7 in Algorithm 1
11 foreach interval i[cmin, cmax] ∈ I[c] do
12 foreach entry 〈y, posy〉 ∈ Lt such that cmin ≤ y.cid ≤ cmax and

distl(x, y) ≤ ε and |y| ≥ θ · |x| do
... // Lines 9-14 in Algorithm 1

19 Verify(x,Ox, J)

20 return J ;

c2 = {x9}
c7 = {x4, x8}
c12 = {x2}
c15 = {x1}
c19 = {x5, x6}
c23 = {x7}
c25 = {x3}

Figure 4: Dynamic grid partition GR for the collection R in
Figure 2, with ε = 0.2

determined and for each term t ∈ x.text, the corresponding Lt is
searched with the help of the cell-index to find postings in neighbor-
ing cells; finally, x is inserted into Lt. During the filtering phase,
PPJ-I, with the help of the grid, considers only 6 out of the 13
pairs checked by PPJ in Table 1: (x5, x3), (x6, x3) for term D,
(x6, x5) for C and (x8, x4), (x9, x4) and (x9, x8) for term A. For
instance, when the current object is x8 (eighth iteration), PPJ-I
exploits the fact that x8 is contained in cell c7, which has cell in-
tervals [1, 3], [6, 8] and [11, 13]. Thus, for term A ∈ ppref(x8),
when LA = {〈x4, 1〉, 〈x7, 1〉} is probed, pair (x8, x7) is ignored
because x7.cid = 23 is not contained in any of the cell intervals.

5.1.2 The PPJ-C Algorithm
Both PPJ and PPJ-I algorithms examine the objects of a collec-

tion R in the increasing order of their sizes. In this section, we
investigate whether changing this order is possible and if such a
change will enhance the computation of ST-SJOIN. For this pur-
pose, we propose another extension to PPJ, termed PPJ-C. The
PPJ-C algorithm has the following key features:
• PPJ-C, similar to PPJ-I, defines a dynamic grid partitioning.

The objects of R are then examined in ascending order of their
cell-id; hence the ‘-C’ in the name of the algorithm. Thus, be-
fore commencing the join, PPJ-C orders the objects primarily by
cell-id and secondarily by size.
• For each cell c, PPJ-C identifies a set of cellsA[c], which contain

the objects y that would be joined with every of object x in c.
A[c] includes cell c itself, and all cells adjacent to c with smaller
ids than c. Thus, each pair of adjacent cells is considered only
once. For example, an object x in cell 37 of Figure 3(b) needs
to be joined only with the objects contained in the same cell and
in the adjacent gray cells, i.e., A[37] = {28, 29, 30, 36, 37}.
Objects belonging to adjacent cells after 37 (e.g., 38) will be
joined with x later (e.g., A[38] contains 37).

Algorithm 4: PPJ-C(R, ε, θ)
input :R is a collection of spatio-textual objects sorted by the increasing

order of their sizes - each object is canonicalized by a global ordering
O; a spatial distance threshold ε; a textual similarity threshold θ

output : the set J of all object pairs (x, y), such that x, y ∈ R,
distl(x, y) ≤ ε and simt(x, y) ≥ θ

1 GR ← ConstructGridPartitioning(R, ε);
2 foreach cell c inGR do
3 A[c]← IdentifyJoinCells(GR, c);
4 foreach cell c′ inA[c] do
5 J ← J ∪ PPJ(c, c′, ε, θ);

6 return J ;

• Unlike PPJ-I (and PPJ), PPJ-C builds an inverted index for ev-
ery grid cell c, instead of a single global index. Thus, for each
term t in the global dictionary there is a c.Lt postings list for
every cell c, provided that c contains at least one object x with
t ∈ ipref(x). This scheme results in an advantage over PPJ and
PPJ-I regarding the storage requirements, as PPJ-C discards a
cell c and its contents after all cells c′, for which A[c′] includes
c, are examined, while PPJ-I keeps all accessed data indexed
until the algorithm terminates.
• Consider the currently examined cell c. To compute ST-SJOIN,
PPJ-C suffices to perform a self join, for cell c, and at most four
non-self joins, i.e., c with every cell c′ ∈ A[c]. The self join
is evaluated by directly calling PPJ(c, ε, θ), which examines the
contained objects of c, in the increasing order of their sizes. For
a non-self join, [28] suggests merging the contents of the joined
sets, determining a global ordering, and then using PPJ again
(ignoring pairs that come from the same set). Instead, to join
two cells c and c′ in PPJ-C, we exploit the size-based ordering
of the contents of each cell, and adopt a merge-sort strategy that
identifies, at each iteration, the object x with the smallest size
between cells c and c′. If x ∈ c (x ∈ c′) then we probe the
inverted index of cell c′ (c) and insert x in the inverted index of
c (c′). We denote the extension to PPJ that operates on two cells
by PPJ(c, c′, ε, θ).

Algorithm 4 illustrates the pseudocode of the PPJ-C algorithm.
In Line 1, PPJ-C constructs a dynamic grid partition GR for the
input relation of spatio-textual objects R, similar to PPJ-I. The
objects are then ordered according to cell-id and size. Then, in
Lines 2–5 the algorithm iterates through the cells of the grid to
compute the join. For each cell c, it identifies theA[c] set. For every
cell c′ ∈ A[c], PPJ(c, c′, ε, θ) is invoked (this includes the self join
PPJ(c, ε, θ), since c ∈ A[c]). Note that the objects in each cell c are
accessed multiple times (once for every cell c′, such that c ∈ A[c′]).
Thus, PPJ-C buffers the contents of cells that will be needed in later
iterations. In practice, we combine the execution of the self join
with one the four non-self joins to speed up the ST-SJOIN; i.e.,
when joining the current cell c with the first c′ 6= c, c′ ∈ A[c], each
object x ∈ c is probed against the index of c (for the self join) and
the index of c′ (for the non-self join).

EXAMPLE 5.3. We demonstrate PPJ-C using Example 5.1. Ta-
ble 2 reports all the iterations performed by PPJ-C during the fil-
tering phase, showing the cell joins at each iteration, and for each
examined object x the pairs (x, ·) considered. The cell joins where
no action takes place are omitted. Note that the objects are exam-
ined in a different order, compared to PPJ and PPJ-I. In addition,
some objects are examined more than once (e.g., x9 for the self
join of c2 ./ c2 and the non-self join of c7 ./ c2); however, they are
probed against smaller lists. Although PPJ-C and PPJ-I check the
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Table 2: Iterations performed by PPJ-C during the filtering
phase for computing ST-SJOIN(R, 0.2, 0.7) over collection R
in Figure 2 (sf: suffix filter, ε: spatial filter)

cell join object checking pair indexing
c2 ./ c2 x9 c2.LA = {〈x9, 1〉}

c7 ./ c7, c2 x4 c7.LA = {〈x4, 1〉}
x8 Ox8 [x4] = 1 c7.LA

⋃
= {〈x8, 1〉}

x9 (x9, x4) pruned, ε
(x9, x8) pruned, sf

c12 ./ c12, c7 x2 c12.LE = {〈x2, 1〉}
c15 ./ c15 x1 c15.LB = {〈x1, 1〉}

c19 ./ c19, c15 x1

x5 c19.LC = {〈x5, 1〉}
x6 Ox6 [x5] = 1 c19.LC

⋃
= {〈x6, 1〉}

c23 ./ c23, c19 x5, x6

x7 c23.LA = {〈x7, 1〉}
c25 ./ c25, c19 x3 c25.LD

⋃
= {〈x3, 1〉}

x5 (x5, x3) pruned, ε
x6 Ox6 [x3] = 1

same number of object pairs (6 instead of 13 pairs checked by PPJ),
the maximum sizes of their indexes are 4 and 9 entries, respectively.

5.2 Using an R-tree and the PPJ-RAlgorithm
Finally, we investigate how a spatial access method can facil-

itate the efficient processing of an ST-SJOIN. We assume that
the objects are spatially indexed by an R-tree [17] TR and pro-
pose PPJ-R, a method which extends PPJ to apply on the spatial
index. The algorithm primarily operates as a spatial ε-distance join.
Specifically, it takes as input two nodes Nx and Ny of the R-tree
(in the first call, Nx = Ny is the root of the tree). If Nx and
Ny are non-leaf nodes, then PPJ-R identifies every pair of entries
(ex, ey) ∈ Nx × Ny , such that the minimum distance between
MBR(ex) and MBR(ey) is at most equal to the spatial distance
threshold ε of ST-SJOIN. These entries may lead to object pairs
that qualify the spatial constraint of the join, and therefore, the al-
gorithm runs recursively for the pair of nodes pointed by (ex, ey).
IfNx andNy are leaf nodes, PPJ-R applies PPJ to join them (ifNx
and Ny are the same, the operation is a self-PPJ).

The algorithm also employs all the optimization techniques pro-
posed for efficiently computing spatial ε-distance joins [6, 9]. Specif-
ically, in Lines 3–5, bothMBR(Nx) andMBR(Ny) are extended
by ε in all dimensions and directions (function Eε(·)), and their
intersection area A is computed. Every entry ex ∈ Nx (resp.
ey ∈ Ny) with MBR(ex) (resp. MBR(ey)) not intersecting A is
discarded. Then, in Lines 6–7, the remaining entries are sorted ac-
cording to their lower x-dimension bounds (entries in Ny are first
extended by ε), and finally, their intersection join, denoted by I ,
is computed using a plane-sweep based heuristic [6]; I contains
all pairs (ex, ey) such that ex ∈ Nx, ey ∈ Ny , and the distance
between them in each dimension is equal or less than ε.

Note that this method is very similar to PPJ-C, except that (i) the
spatial partitions that are joined are determined by the structure of
the R-tree and not by the dynamic grid partitioning (ii) the R-tree
is used to find the pairs of spatial partitions that should be joined
using PPJ. Thus, the extents of the leaf-based partitions are fixed
for any value of ε; they are governed by the data distribution and
the tree parameters (i.e., block size).3 In practice, this means that
PPJ-R is less flexible in determining the partitions, but it does not
have the overhead of dynamically defining the grid and determining
the cell-id for each object.

3Note here that we assume that the tree has been precomputed and
is being used by PPJ-R and not dynamically constructed based on
the join parameters.

Algorithm 5: PPJ-R(TR, Nx, Ny, ε, θ)
input : an R-tree TR indexing a collection of objectsR; two nodesNx and

Ny at the same level of TR; a spatial distance threshold ε; a textual
similarity threshold θ

output : the set J of all object pairs (x, y), such that x, y ∈ R,
distl(x, y) ≤ ε and simt(x, y) ≥ θ

1 ifNx andNy are leaf nodes then
2 J ← J ∪ PPJ(Nx, Ny, ε, θ);

3 A← MBR(Eε(Nx)) ∩ MBR(Eε(Ny)); // Space Restriction
4 Mx = {MBR(ex) | (ex ∈ Ny) ∧ (MBR(ex) ∩ A 6= ∅)};
5 My = {Eε(MBR(ey)) | (ey ∈ Ny) ∧ (MBR(ey) ∩ A 6= ∅)};
6 Sort(Mx); Sort(My);
7 I←PlaneSweepIntersectionTest(Mx,My); // Plane Sweep
8 foreach pair of entries (ex, ey) ∈ I such that distl(ex, ey) ≤ ε do
9 J ← J ∪ PPJ-R(TR, ex.ptr, ey.ptr, ε, θ); // Recursion

10 return J ;

Figure 5: R-tree TR for the collection R of Figure 2

Table 3: Iterations performed by PPJ-R during the filtering
phase for computing ST-SJOIN(R, 0.2, 0.7) over collection R
in Figure 2 (sf: suffix filter, ε: spatial filter)

node join object checking pair indexing
n1, n2 ./ n1, n2 x2 n2.LE = {〈x2, 1〉}

x4 n2.LA = {〈x4, 1〉}
x8 Ox8 [x4] = 1 n1.LA = {〈x8, 1〉}
x9 (x9, x4) pruned, ε n1.LA

⋃
= {〈x9, 1〉}

(x9, x8) pruned, sf
n3, n4 ./ n3, n4 drop n1, n2 index

x1 n3.LB = {〈x1, 1〉}
x3 n4.LD = {〈x3, 1〉}
x5 (x5, x3) pruned, ε n3.LD = {〈x5, 1〉}
x6 Ox6 [x5] = 1 n4.LC = {〈x6, 1〉}

Ox6 [x3] = 1
x7 n4.LA = {〈x7, 1〉}

EXAMPLE 5.4. Figure 5 shows an exemplary R-tree TR for the
collectionR of Figure 2 For ST-SJOIN(R, 0.2, 0.7), the pair (N1,
N2) is pruned because distl(N1, N2) > 0.2; thus, PPJ-R avoids
checking all combinations of objects (x, y), with x ∈ N1 and y ∈
N2. Table 3 reports all the iterations performed by the algorithm
during the filtering phase at level of leaf nodes. PPJ-R checks 6
pairs of objects similar to PPJ-I and PPJ-C.

6. GROUPING OBJECTS
In this section, we propose a novel way of exploiting the prefix

filtering principle that boosts the performance of both textual simi-
larity join and ST-SJOIN. We demonstrate the intuition behind our
technique with an example. Consider the collection of objects R in
Figure 2 and, for now, a textual similarity join query over R w.r.t.
a threshold θ = 0.7. Table 4 shows ppref(x) for every object x,
using the `xp = |x|−dθ · |x|e+1 formula. Observe that many of the
objects share a common probe prefix. As a result, when examining
for instance x4, x7, x8 and x9, any prefix-based algorithm, like [4,
10, 28], would probe postings lists LA and LB , and then, calculate
and accumulate the same overlap Ox for all these objects. To make
things worse, since ipref(x) ⊆ ppref(x), the algorithm would
index the same index prefix 4 times. On the other hand, assume
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Table 4: Probe prefixes for the spatio-textual objects in Figure 2
object x x.text ppref(x, ), θ = 0.7

x1 {B,C} {B}
x2 {E,F} {E}
x3 {D,E, F} {D}
x4 {A,B,E, F} {A,B}
x5 {C,D,E, F} {C,D}
x6 {C,D,E, F} {C,D}
x7 {A,B,C,D, F} {A,B}
x8 {A,B,D,E, F} {A,B}
x9 {A,B,C,D,E} {A,B}

that we first group together all objects that have the same probe
prefix, and next, we employ the same join algorithm over groups of
objects with the same prefixes. This approach would clearly avoid
the aforementioned overheads, and even more importantly would
enable us to massively prune objects. For instance, consider the
following two groups of objects, {x5, x6} and {x4, x7, x8, x9}.
Since the probe prefixes of these groups, {C,D} and {A,B}, re-
spectively, share no term, we can directly discard all possible pairs
of objects by checking once the group objects. In contrast, PPJOIN
would have to check 5 pairs: (x5, x4), (x6, x4), (x7, x5), (x8, x5)
and (x9, x5).

On the other hand, extending PPJOIN to incorporate this group-
ing technique exhibits two shortcomings. First, it imposes an ad-
ditional cost during the verification phase to unfold the objects for
each pair of groups that satisfies the overlap threshold and identify
the final results. Second, with respect to the actual objects of the
collection, the grouping-based PPJOIN may change the order of ex-
amination. In other words, examining group objects by their size is
not equivalent of examining the actual objects by their size, since
objects of different lengths can have identical prefixes (e.g., x4 and
x7 in our example). However, the correctness of PPJOIN relies on
accessing the objects by increasing size. To tackle this problem we
also consider the object sizes when defining the groups. Specifi-
cally, a group contains objects that (i) share a common probe pre-
fix and (ii) have equal size. With this change, if for two groups
|gx| > |gy| holds then it is guaranteed that for every pair of objects
x ∈ gx and y ∈ gy , |x| > |y| is also true, and therefore, PPJOIN
can correctly use ipref(gx) to index a group object gx.

The idea of grouping objects and then applying the join at the
groups level can be employed by all our ST-SJOIN methods (i.e.,
PPJ, PPJ-I, PPJ-C and PPJ-R) to speed them up. In the following,
we discuss the details of implementing it in each algorithm.

• PPJ considers exactly the same grouping of objects as PPJOIN
does for a textual similarity join (i.e., there is one group for each
distinct prefix and object size). In particular, before the execu-
tion of PPJ, the objects are ordered lexicographically and di-
vided into groups based on their equal size and their common
probe prefixes.
• PPJ-I/PPJ-C and PPJ-R are based on a spatial partitioning (i.e.,

grid-based or R-tree based). Grouping is applied independently
at each spatial partition (cell or leaf node); therefore, two objects
with the same prefix and size that belong to different spatial par-
titions are not grouped together. As a result, PPJ-I, PPJ-C and
PPJ-R create a larger number of groups compared to PPJ. For
example, in PPJ-I, the objects are ordered primarily by their cell
id, secondarily by the size, and finally by the lexicographical or-
der of their probe prefixes, and then they are divided into groups.
• To compute ST-SJOIN, PPJ, PPJ-I, PPJ-C and PPJ-R operate

similarly to the case without grouping. Thus, PPJ and PPJ-I ac-
cess the object groups by their size (length of their prefix) and
PPJ-C and PPJ-R perform self and non-self joins between grid

Table 5: Parameters of synthetic data generation
parameter values
|R| 30,000 100,000 500,000 1,000,000 3,000,000
|T | 5,000 10,000 50,000 100,000 500,000
SD uniform or clustered
ε 0.001 0.005 0.01 0.05 0.1
θ 0.5 0.6 0.7 0.8 0.9

cells and leaf nodes respectively. Probing and indexing are per-
formed at the groups level and thus, suffix filtering is of no use.
• Finally, during the verification phase, for each candidate pair of

groups (gx, gy), all pairs of objects (x, y) ∈ gx×gy are verified
by first checking whether distl(x, y) ≤ ε and, then whether
simt(x, y) ≥ θ.

PPJ applies grouping without considering the spatial locations
of objects; thus, it may create fewer groups and its filtering phase
could be cheaper compared to that of PPJ-I/PPJ-C and PPJ-R. On
the other hand, PPJ may bring in the same group objects that are
very far from each other. For instance, PPJ groups x7 together with
x8 and x9 although x7 is far from these objects. Thus, there may
be many faraway object pairs verified by PPJ. In contrast, PPJ-I,
PPJ-C and PPJ-R typically verify fewer object pairs than PPJ, as
group pairs whose prefixes qualify the overlap threshold are imme-
diately also checked against the spatial distance threshold, and may
be pruned without having to unfold their contained objects.

7. EXPERIMENTAL EVALUATION
In this section, we present an experimental evaluation of our

techniques for ST-SJOIN. Section 7.1 details the setup of our
analysis. Section 7.2 investigates the contribution of the grouping
technique. Section 7.3 demonstrates the need for approaches that
efficiently consider both the spatial and the textual dimension of the
problem, at the same time. Section 7.4 conducts an extensive per-
formance analysis of our proposed methods. Finally, Section 7.5
investigates the potential of employing a spatio-textual index.

7.1 Setup
Our experimental analysis involves both real and synthetic spatio-

textual collections. We use the following real data collections:
• FLICKR is a collection of photographs from Flickr for the city of

New York taken over a period of 2 years. It contains 1,505,243
objects with a dictionary of 726,958 terms. For each photograph
we used the union of its ’tags’ and ’title’ element of that image
as its textual description. The weighted average size of an object
is 10.5.
• POI-USCA and POI-AU are two collections of POIs and busi-

ness listings for the state of California, USA and Australia, re-
spectively, based on the SimpleGeo Places dataset4. For each
place, we extracted its location and the union of its ‘tag’ and ‘cat-
egory’, ‘subcategory’ elements as its textual description. POI-
USCA contains 1,511,837 objects with a dictionary of 16,048
terms, while POI-AU contains 696,212 objects and 2,633 terms.
The major difference between POI-USCA and POI-AU lies on
the distribution of their objects in the two dimensional space.
Due to the geography of Australia, the objects are extremely
clustered, while the largest part of the space (i.e., the Australian
desert) is empty. The weighted average size of an object is 4.4
for POI-USCA and 4.7 for POI-AU.

4https://simplegeo.com/products/places/
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(a) FLICKR (b) POI-USCA (c) POI-AU (d) clustered
ε = 0.005, θ = 0.9 ε = 0.005, θ = 0.9 ε = 0.05, θ = 0.7 default setup

Figure 6: Grouping versus Non-Grouping

We also generated synthetic datasets varying (i) the number |R|
of objects in a collection and (ii) the size |T | of the global dictio-
nary (see Table 5). To construct a collection, we fix one of the two
parameters to its default value, shown in bold, and vary the other.
Note that increasing |T | enables us to study cases of datasets with
dictionaries that are neither too large (e.g., as in FLICKR) nor too
small (e.g., as in POI-USCA and POI-AU), compared to the num-
ber of objects |R|. In addition, for each combination of |R| and |T |
values, we consider two possible spatial distributions of the objects
(parameter SD): uniform or clustered. To construct a uniform col-
lection, we generate locations uniformly in a [0, 1]2 space. For a
clustered collection, we first generate 10 uniformly distributed lo-
cations. Each of these locations acts as the center of a cluster. Then,
for every new object x we randomly select one of the centers, pc,
and determine the position of xw.r.t. pc, and thus, its location x.loc
in the space, following a Gaussian distribution with standard devi-
ation σ = 0.05. Further, to capture the properties of real-world
datasets, the textual description of an object is correlated to its spa-
tial location. Thus, if two objects x and y are closely located in
space then their textual descriptions share many terms. To achieve
this, after generating the locations for every object of the collec-
tion, we consider a subset Ts of the global dictionary T containing
0.005 ∗ |T | terms. Then, for each term t ∈ Ts, we randomly select
from 1 to 3 objects, termed seeds and denoted by S[t], and include
t in their textual description. After that, we sort all objects by their
minimum spatial distance to the seeds, and start defining their tex-
tual description. Every term t ∈ Ts is included in the k nearest
to its seeds objects, where k follows a zipfian distribution. The re-
maining |T\Ts| of the terms are assigned to objects randomly and
their frequencies follow a zipfian distribution.

For the join methods evaluated, we measure their response times
while varying the spatial distance threshold ε (relative to the side
of the minimum square that encloses all data) and the textual simi-
larity threshold θ. Table 5 shows the ranges of tested values for the
synthetic collections; for the real data collections, we vary ε from
0.001 to 0.05 and θ from 0.6 to 0.9. Note that the setup ε = 0.001
and θ = 0.9 (tight thresholds) models a de-duplication scenario
while looser values (e.g., ε = 0.05 and θ = 0.7) correspond to a
recommendation or collaboration scenario. For PPJ-R, we consider
a pre-constructed R-tree of page size 4KB, the construction time
of which is not considered in the runtime of this method. On the
other hand, the dynamic grid construction is included in the costs
of PPJ-I and PPJ-C. Note that both the collections and the indexing
structures used by the join methods are stored in main memory.

7.2 To Group or Not to Group
In the first experiment, we evaluate the effect of the grouping

optimization (see Section 6) on the runtime of our join methods.

For each of the PPJ, PPJ-R, PPJ-I and PPJ-C algorithms, we com-
pare a grouping-based version against a non-grouping version, us-
ing FLICKR, POI-USCA, POI-AU and a clustered synthetic col-
lection of spatio-textual objects. Figure 6 shows that the grouping-
based version of each algorithm exhibits similar performance to the
non-grouping version, in the worst case, but in the best case is sig-
nificantly faster. Specifically, on POI-USCA, POI-AU and the syn-
thetic collection, employing the grouping technique improves the
performance by a few times to an order of magnitude. On the other
hand, FLICKR does not favor grouping because for these data the
great majority of groups have a single element; thus, the overhead
of grouping balances its benefit. To justify this behaviour recall
that the textual description of the objects in FLICKR is drawn from
a large dictionary of approximately 700,000 terms. In practice,
this means that, excluding the actual duplicates, the number of ob-
jects that share a common probe prefix is small, and therefore, the
number of group records is close to the number of the initial objects
contained in FLICKR. In summary, the use of grouping in all meth-
ods is at least as efficient as not using grouping, thus for the rest of
our analysis, we always employ grouping in the tested methods.

Finally, we also studied the effect of grouping on a plain textual
similarity join. Table 6 reports the response time of the grouping-
based and the non-grouping versions of PPJOIN for FLICKR and
POI-USCA collections while varying the θ threshold. The results
show that our grouping optimization can boost the performance of
the state-of-the-art algorithm for textual similarity joins [28].

Table 6: Applying the grouping technique to PPJOIN for textual
similarity joins: response time (sec)

GROUPING NON-GROUPING
θ FLICKR POIS-USCA FLICKR POIS-USCA
0.6 67.24 570.97 72 1929.79
0.7 29.01 308.53 30.72 985.1
0.8 12.25 220.4 13.19 700.08
0.9 5.88 181.83 6.21 589.45

7.3 Comparison with Baseline Join Methods
We now compare our proposed ST-SJOIN methods against two

baseline methods that deal separately with each dimension of the
join: space and text. Specifically, the RT method indexes the ob-
jects of a collection using an R-tree. To evaluate ST-SJOIN, it per-
forms a spatial ε-distance join and for each qualifying pair (x, y) it
computes simt(x, y) and verifies whether simt(x, y) ≥ θ. On the
other hand, the PPJOIN method performs a textual similarity join as
described in Algorithm 1 with the difference that during the verifi-
cation phase it also checks whether distl(x, y) ≤ ε holds for each
candidate pair (x, y). Note that PPJ differs from PPJOIN in two
ways: (i) PPJ carries out the distl(x, y) ≤ ε check earlier, during
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Figure 7: Comparison with RT and PPJOIN baseline methods

the filtering phase and (ii) like all of our ST-SJOIN methods, PPJ
employs the grouping heuristic to improve search.

Figure 7 shows the response times of all methods for different
values of ε and θ. As we vary the ε/θ ratio from 0.001/0.6 to
0.05/0.9 for the real collections (from 0.001/0.5 to 0.1/0.9 for
synthetic data), the ST-SJOIN is progressively ‘transformed’ from
a spatial ε-distance join (i.e., ε is tight, θ is loose) to a textual sim-
ilarity join (i.e., ε is loose, θ is tight). As expected, the response
time of the RT method increases while the time for PPJOIN de-
creases. With the exception of FLICKR, we also notice that the
response time of the PPJ, PPJ-R, PPJ-I and PPJ-C algorithms also
increases as they all consider the spatial dimension of the problem,
in contrast to PPJOIN that takes into account ε only during the ver-
ification of pairs that pass the textual filter. To understand the case
of FLICKR, recall that the collection contains a similar number of
objects to POI-USCA but the dictionary of FLICKR is much larger
than that of POI-USCA. This implies that, for FLICKR, ε is much
less effective in pruning pairs compared to θ (if we put duplicates
aside, the expected overlap between the contents of two objects is
very low). An indicator for this issue is the difference in the trend
of the join results as ε increases and θ decreases. Different to other
datasets, for FLICKR, the number of results goes down due to θ
becoming more tight, which means that for this collection ε has
smaller effect in pruning compared to θ; i.e., ST-SJOIN is close
to a textual similarity join, and therefore, PPJ, PPJ-I and PPJ-C
exhibit similar behavior to PPJOIN.

The poor performance of PPJ-R in all real datasets is attributed
to the fact that due to the high spatial skew of these data, the R-tree
employed by PPJ-R creates a large number of leaf nodes with much
smaller extent compared to ε. This means that there is a huge num-
ber of leaf node pairs within distance ε, which have to be joined by
PPJ-R (compared to the pairs of cells joined by PPJ-C). In addi-
tion, the leaf nodes contain much fewer objects compared to a cell
of PPJ-I/PPJ-C, therefore the effect of grouping on PPJ-R is lim-
ited. We also experimented with R-trees of larger block size (e.g.,
16K) and confirmed that the performance of PPJ-R improves in this
case on the real data because leaf nodes become more populated
and have larger extents. However, in other settings (e.g., synthetic
data), PPJ-R becomes worse with the increase of the block size, as
the extents of leaf nodes become much larger than ε in this case. On
the other hand, PPJ-C always performs better than PPJ-R because
its space partitioning is parametric to ε.

Finally, we observe that our advanced methods PPJ-R, PPJ-I and
PPJ-C outperform both RT and PPJOIN in all cases, with the excep-
tion of ε = 0.001 and θ = 0.5 on the synthetic dataset. In this
case, RT is superior because: (i) the spatial threshold ε is very tight,
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Figure 8: Synthetic collections: varying the number of objects
|R|, with |T | = 50,000, ε = 0.01, θ = 0.7
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Figure 9: Synthetic collections: varying the size of dictionary
|T |, with |R| = 500,000, ε = 0.01, θ = 0.7

and the spatial distance join is effective, as data are less clustered
compared to the real datasets and (ii) θ is too loose for the textual
filters used by our methods to have an effect; we observed that the
number of pairs qualifying the spatial filter almost equals those that
qualify both filters.

7.4 Comparison of ST-SJOIN methods
In the previous section, we demonstrated the superiority of our

proposed methodology against baseline methods RT and PPJOIN.
In this section, we conduct an extensive experimental analysis to
identify the best technique among PPJ, PPJ-R, PPJ-I and PPJ-C.

Varying the number of objects |R|. Figure 8 illustrates the impact
of varying the size of a synthetic collection R, on the ST-SJOIN
computation. Naturally, when |R| increases all methods required
more time to compute the join. We note that PPJ-C exhibits the best
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Figure 10: Varying the spatial distance threshold ε
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Figure 11: Varying the textual similarity threshold θ

overall performance. On the other hand, as expected, the response
time of PPJ is always higher than the time of the other methods
since it does not employ any spatial indexing technique that would
exploit ε to prune candidate pairs.
Varying the size of the dictionary |T |. Figure 9 shows that all
methods are not affected significantly by the increase of |T | in the
synthetic data. The behavior of the methods is consistent with the
number of the join results (almost stable). Finally, similarly to the
case of varying |R|, PPJ-C has the best overall performance, and
PPJ is the least efficient method.
Varying the spatial distance threshold ε. According to Figure 10,
as ε increases, the join has more results and thus the response time
of all methods also increases. However, we notice that in case of
FLICKR, the time increase of PPJ, PPJ-I and PPJ-C is smaller
compared to the other collections. As mentioned before, ST-SJOIN
on FLICKR is very close to a textual similarity join; therefore, the
number of results exhibit only a small increase, compared to the
other cases, as the θ threshold is more important than ε. Thus, PPJ,
PPJ-I and PPJ-C that extend a textual similarity method (PPJOIN)
are not affected by ε. In contrast, PPJ-R slows down as ε increases.
Recall, from Section 7.3, that the extents of the R-tree leaf nodes
are very small and they are spatially skewed, therefore the pairs of
leaf nodes joined in PPJ-R increases significantly with ε. PPJ-C
is, in general, the best method, with either PPJ or PPJ-I having
comparable response times in some setups. An interesting obser-
vation is that while the less efficient method on the real collections
is PPJ-R, PPJ performs the worst on the synthetic data. The reason
behind this is that the synthetic data are less clustered compared
to the real data and, in addition, the spatial autocorrelation is also
lower in this case. In other words, the join is less close to a textual
similarity join in this case (this is also consistent with the results of

Figure 7). Thus, PPJ-R performs similarly to PPJ-C, as these two
methods define similar spatial partitions, while PPJ fails to exploit
ε to prune group pairs early. Finally, we also observe that for the
synthetic collection the response time of PPJ-I and PPJ-C drops as
ε is increased from 0.001 to 0.005, although the join contains more
results. This is because the cost of performing the dynamic grid
partitioning drops with ε and it constitutes an important factor in
this case, where the overall join cost is very low.
Varying the textual similarity threshold θ. Figure 11 shows that
when θ increases the response times of all methods decrease due
to the reduction of the join result. The phenomenon is less intense
in case of POI-USCA and POI-AU, where the decrease of the join
results is very small. Similar to the previous experiments, PPJ-C is
the most efficient method and PPJ-R and PPJ are the least efficient
methods for the real and the synthetic collections, respectively.

7.5 The IR-tree and the PPJ-IR Method
Finally, we investigate whether the recently proposed spatio-textual

IR-tree index [12] can facilitate the computation of a ST-SJOIN
(see Section 2.3 for a detailed description of this index). If the data
are indexed by an IR-tree, we can extend PPJ-R to a PPJ-IR algo-
rithm, as follows. For the currently examined pair of non-leaf nodes
(Nx, Ny), we merge the inverted files linked to them to compute
for each pair of entries (ex, ey) in Nx × Ny an upper bound of
the textual overlap between any pair of objects (x, y) indexed un-
der the corresponding pair of nodes (ex.ptr, ey.ptr). This bound
is used together with the spatial distance lower bound distl(ex, ey)
to prune pair (ex, ey) if either of these bounds does not meet the
respective join thresholds θ and ε. Therefore, PPJ-IR uses a textual
filter for non-leaf entries which cannot be employed by PPJ-R. Still,
PPJ-IR has the overhead of accessing and merging the inverted files
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Figure 12: Employing the IR-tree, comparison for ST-SJOIN

of non-leaf nodes and, in addition, the overlap bound cannot be
converted to a tight Jaccard similarity bound (as the sizes of x and
y can be large). In order to favor PPJ-IR, in our experiment we use
overlap instead of Jaccard similarity and compare PPJ-IR to PPJ-R
and PPJ-C on FLICKR and POI-USCA while varying the ratio ε/θ
of the thresholds (Figure 12). For POI-USCA we consider smaller
θ values compared to FLICKR, as the weighted average object size
is lower. Note that PPJ-IR fails to outperform PPJ-R, although it
may, in some cases, consider fewer entry pairs than PPJ-IR, due to
the use of the additional overlap filter. This happens because the
cost of processing a pair of internal nodesNx andNy on PPJ-IR is
much higher compared to PPJ-R, due to the accessing and merging
of the (potentially large) inverted files attached to the nodes. We
also experimented with the DIR-tree [12], a variant of the IR-tree,
but it performed even worse than the IR-tree.

8. CONCLUSIONS AND FUTURE WORK
In this paper, we identified and studied the spatio-textual simi-

larity join (ST-SJOIN), a query with a wide range of applications
(social recommendation, near-duplicate detection, etc.). We pro-
posed methods that combine ideas from state-of-the-art spatial and
textual join approaches; our best method (PPJ-C) dynamically par-
titions the space according to the spatial predicate of the join and
then confines the application of the textual predicate only to pairs
of adjacent grid cells. We proposed a grouping optimization tech-
nique which boosts the performance of all textual and spatio-textual
join methods. Finally, we conducted extensive experiments on real
and synthetic datasets to evaluate the performance of our methods.

Although our study was limited to specific measures for textual
similarity (i.e., Jaccard similarity and overlap), our methods can
easily be adapted to be used with other measures (see [28] on how
PPJOIN can be adapted for a variety of measures). In addition,
besides the fact that PPJ-C is the most efficient method, we note
that it can be easily applied in a parallel processing environment.
For example, after dynamic grid partitioning, each cell c is assigned
to a computer node v and v is given a copy of the objects contained
in c and all cells in A[c]; PPJ is then run at each node and there
is no need for communication among the nodes, since join results
are independent and there are no duplicates. In the future, we plan
to investigate the potential of such an implementation. In addition,
we plan to study the application and evaluation of alternative types
of spatio-textual joins (e.g., a set-containment join enriched with
spatial distance/containment constraints).
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