SimpleSQL : A Relational Layer for SimpleDB

André Calil, Ronaldo dos Santos Mello

Departamento de Informatica e Estatistica, Unidad® Federal de Santa Catarina, Floriandpo-
lis, Santa Catarina, Brazil.
{calil,ronaldo}@inf.ufsc.br

Abstract. This paper introduces SimpleSQL, a relational Hagyeer Amazon
SimpleDB, one of the most popular document-oriertledid databases. Sim-
pleSQL offers a SQL interface that abstracts argwkadge about data model-
ing, data persistence and data accessing at SifBpl€Bis paper presents the
architecture, data and operation mapping from aticglal database to Sim-
pleDB, as well as some experiments that evaluateyquezformance on access-
ing cloud data using SimpleSQL and using only SeB. Our contribution is
a solution for accessing SimpleDB through a relaidayer, being the basis for
a general approach to relational-to-(document) ctlonapping. The experi-
mental evaluation shows that our solution is pramgissince the over-head
with data accessing through SimpleSQL is not pritikiéh

Keywords: SimpleDB, SimpleSQL, NoSQL, relational-cloud magpioloud
database.

1 I ntroduction

The concept of software as a service has moving fo innovative paradigm to a
business model during the last years. While the ehofl licensed and maintained
soft-ware represents a high cost in terms of adgunisand maintenance to the organ-
izations, software maintained by the service prewidnd charged according to the
demand (pay as you go paradigm) [3], with contra&etsuring high availability and
privacy, has become more and more attractive [8].

On following this paradigm, data storage and daasmagement facilities have also
being offered on cloud computing platforms [15]isTparadigm changes the existing
database management system architectures to abksignsome distributed system
characteristics, like high availability and faultidrance. Besides, this tendency has
also raised new data models not compliant to tassatal relational model [1]. These
models are suitable to current Web applications @ogramming paradigms, which
manage a large amount of data and transactionsg meuch more text- or object-
oriented than record(relational)-oriented.

Examples of these new models are key-value catlestidocument-oriented or su-
per-column [16]. Cloud database systems based esetmodels are known as Not
only SQL (NoSQL). The main differential of thesestgms, if compared to relational

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

databases, is to relax the overhead with consigtelnecking to increase data availa-
bility in a distributed scenario [9].

As these database systems are not relational, ihae support to the SQL stand-
ard, what makes more difficult to migrate and tagtdapplications based on relation-
al data and relational accessing. In order to dhl this problematic, this paper pre-
sents a relational layer, called SimpleSQL, fore@sing SimpleDB [5], an Amazon’s
solution for data management on the cloud. We clkaspleDB because it is one of
the most famous databases based on the documenteatimodel. This model pro-
vides a simple but efficient access method to lalg@ sets. SimpleSQL, supports a
simplified version of ISO/IEC SQL that allows datpdate operations and some que-
ry capabilities. On using SimpleSQL, a client apgiion is isolated from SimpleDB
access methods as well as its data model, provalingditional relational interface to
data on the cloud.

Besides storage and operation transparency foratathe cloud, SimpleSQL sup-
ports queries with joins, which is not a native aaiity of the access methods for
NoSQL databases and is not specifically implemeateSimpleDB interface neither.
Our layer is able to decompose a query that corslsegeral tables through joins into
a set of queries over single tables, to fetch #ita that corresponds to each table from
the cloud, and to combine them in order to geneitsgeresult set. A set of experi-
ments shows that the overhead to process thisdinpiery, as well as other opera-
tions from SimpleSQL, is minimal. Details aboutsbeexperiments and the design of
the layer are given in the next sections.

The rest of this paper is organized as followstiS8e@ presents SimpleDB and its
data model. Section 3 presents SimpleSQL, its dpweént and architecture, fol-
lowed by the analysis of some experiments in SecfioSection 5 presents related
work and Section 6 is dedicated to the conclusion.

2 SimpleDB

Within the categories that describe NoSQL datahakesmost noticeable are key-
value data stores, that apply a dictionary stractarkeep values at user-defined keys,
and document oriented, that serializes objectsoasirdents and keeps indexes for
searching [9].

SimpleDB is an Amazon solution for data managenoenthe cloud that follows
the document-oriented model [9]. It is kept as wise, and data is automatically
replicated over data centers at the same geogragdien that the user selects during
setup.

SimpleDB data model is composed of domains, itesttsibutes and values, as
shown at Figure 1.

A B C D E F G H p=:
1 Attribute 1 _Attribute 2 Attribute 3 ... Attribute <n>
2 |ltem1 value Lalue value value value
3 Item2 value value value value value
4 Item3 value value value value value -
5 |.. value value value value value
6 Item <n> value value value value value
7
= -
4 4 » | Domain1 Domain 2 .../ Domain <n> 41 0

Fig. 1. SimpleDB data model [6]

A domain is composed by a name and a set of itBaxh item, in turn, has a set of
attributes that are key-value pairs. The domaitnésmain entity for replication and
performance issues. A user can have up to 250 dsmand each domain can grow
up to 10 Gb, what is enough for most of the appitice.

Data placement and sharing among domains is a akdatesign issue. However,
SimpleDB does not support queries that join datanfdifferent domains. In such a
case, join operations must be made by user applicaBecause of this, the strategy
for domain distribution must be chosen wisely. gthtost processing to distribute an
item may compromise the performance of every singkration.

Items are composed by a name and a collectiortrithuites. As with domains, the
name of an item must uniquely identify the entityie collection of attributes de-
scribes its item. An attribute can handle multipddues for a given key and there is
no requirement that all the objects of a given domaust have the same set of attrib-
utes. In fact, this flexibility follows the schenfizze feature of NoSQL databases.

For consistency, SimpleDB guarantee that any vajteration will update all the
copies of an item, but it does not ensures thatding operation will retrieve the last
version of a given item. Given the delay to updatehe copies of an item, a read
operation may fetch an older value of an attrij6le As an alternative, it is possible
to specify the desired consistency level for a irgadperation. The default value is
eventual consistency, which has the fastest respime.

The interface to access SimpleDB is an API developith REST web services
[11]. As it relays on HTTP requests, most of therent development frameworks are
able to access the system. All reading and writipgrations, and even the domain
administration tasks, are performed with HTTP mdthGET and POST, respective-
ly. SimpleDB is available only as a service, baiag licensed for local installations.

3 SimpleSQL

As one of the main cloud data management systempl8DB turns out as an op-
tion for fast setup and virtually no administratiefiort. However, the NoSQL para-
digm is an obstacle to applications already dewedowith relational databases. To
adapt a relational-based application to a cloutfgrim may incur in a large mainte-
nance effort. In order to alleviate a situatiorelikat, we propose an access layer that
makes the translation of SQL requests to the SIDBIAPI and returns data in a
relational format. It is called SimpleSQL. In tHisst version, our layer is able to

perform the four traditional manipulation operasotNSERT, UPDATE, DELETE
and SELECT. This section gives details about itefionality and implementation.

SimpleSQL is developed over the Microsoft .NET Fearark version 3.5, using
C# 3.0 as programming language. Figure 2 showsatfex architecture, which high-
lights the three steps of an SQL command proces&agh step will be detailed on
the following sections.

Access Command Processing and
@ interface decomposition return REST aml az.oelg“
Relational data

Fig. 2. SimpleSQL architecture

Table 3 presents the relationship between reldtimoael concepts and SimpleDB
data model. It summarizes the mapping strategy taddpy our approach in order to
provide a relational view of cloud data presenteSimpleDB.

Table 1. Relationship between relational model and Simpleigieh

Relational SimpleDB
Schema Domain
Table -
Table row Item
Attribute Attribute key
Value Attribute value
Primary key Item name

Although schema and domain can be said as equiy&@anpleSQL does not sup-
port the schema qualifier at a command. Moreowanehough SimpleDB data mod-
el does not have a concept for the table entitpp&SQL does record the table name
as an attribute, in order to keep the idea thatesm has a type.

3.1 Processing Requirements

In order to connect to SimpleDB and identify thardans, SimpleSQL must re-
ceive the following information from the user:

» Access Key: access key of the user to its SimpleDB accouhis Thformation can
be found when logged in at Amazon portal;

» Secret Access Key: secret access key, which is also found at Amaootal;

» Domains distribution: if the user has more than one domain, it musvigeoto
SimpleSQL a dictionary that uses the domain naniegsand the list of its tables
as value. If the user has only one domain, it magsphis single domain name in-
stead.

As a non-functional requirement, the running enwinent of SimpleSQL must
have access to Amazon website.

3.2 AccessInterface

The access interface of SimpleSQL is composed of methodsExecuteQuery,
that returns @ataTable object (a tabular structure), afotecuteNonQuery, that re-
turns a text (string). Both of them receive an S@mand as parameter.

As stated before, SimpleSQL supports the four tiatil manipulation operations.
However, as a scope restriction, each related corhas constraints for the sup-
ported syntax at this first version:

e SELECT: supports queries for a single table or idvables using INNER JOIN.
If a join is specified, all declared attributes inave the formatable.attribute;

« UPDATE: supports updates to multiple entities, kithout sub-queries. More
than one attribute can be updated, with more thenfitter. Updates without con-
ditions are not supported;

* INSERT: supports insert of a single entity per cand without sub-queries or
instructions like INSERT SELECT,;

« DELETE: supports deletion of multiple entities, kvitnultiple filters. Sub-queries
and deletes without conditions are not supported.

3.3 Command Decomposition

The first processing step is to decompose the S@phneand, converting it to the
domain used by SimpleDB. In order to support itheaommand has a regular ex-
pression that it was designed with two goals indnifi) to validate the command
syntax, and (ii) to extract its elements from tleencmand. Table 2 presents the com-
mands and their related regular expressions.

The elements extracted from the commands are the et construct the com-
mand itself. In instance, for a SELECT command, #&8QL would extract the ex-
pected attributes, target table, joins and th@kebnditions.

It is important to note at Table 2 the usage of edrmapture groups, denoted by
the syntax(?<group name>expression) . Capture group is a regular expres-
sion technique for searching and retrieve text euththe need for manually search
the expected patterns [12]. By using this techniqués possible to retrieve each
command element easily, like target table namepfiexpected attributes and filter-
ing criteria.

SimpleSQL works with and abstract class nar@ethmand, which is specialized
into the classemsert and the abstrac@onditionedCommand. ConditionedCommand
is inherited and implemented hipdate, Select andDelete. Figure 3 presents a short
class diagram for SimpleSQL solution domain.

Table 2. DML operations of SimpleSQL and its regular expies

Oper ation Regular expression

Ms*(?i:UPDATE)\s+(?<table>\S+\s+)(?i:SET)\s+(?<att
es>(\sM\SHs*)\=(\s*\S+\s*)(,(\s*\S+\s*)\=(\s*\S+\s
UPDATE | +(?<condition>((?i:where)|(?i:and)|(?i:0r))(\s+\Ww-+\
|<[>|<=|>=|<>|(?i:in)|(?i:not
in))((\s*\(?)(\s*\w+\s*)(,\s*\w+\s*)*(\s*) ?)))*$

ribut
))*)
$)(=

Ms*(?i:SELECT)\s+(?<attributes>(\S+\s*)(,\s*\w+\s*

join)\s+(?<toTable>\s*\S+\s*)\s+(?i:on)\s+(?<fromKe
SELECT | \s+\s*)\s*=\s*(?<toKey>\s*\S+\s*)\s+)*(?<condition>
where)|(?i:and)|(?i:0r))(\s+.+\s*)(=|<|>|<=|>=|<>|(
)|(?i:not

in))((\s*\(?)(\s*.+\s*)(,\s*.+\s*)*(\s*\) ?)))*$

+(?i:FROM)\s+(?<table>\s*\S+\s*)\s+(?<join>(?i:inne

yNs

y>\s*
((?i:

?iin

Insert
Class

Select ® Update ® Delete ®
Class Class Class
- ConditionedCommand - ConditionedCommand - ConditionedCommand

Fig. 3. Class diagram for SimpleSQL domain

= Command

Condition ®
Class

) I

@ @)
InnerJoin ®
Class

- @
EnumOperator ®
Enum

Classe<Condition andInnerJoin are used to represent, respectively, filterintggeri
ria (condition) and joins. The enumeratEmumOperator is used at the condition to
indicate which operator should be applied.

34 Processing and Return

Once identified a command and its components, S8QL translate it to a Sim-
pleDB REST method call. All the commands begin with identification of the tar-
get SimpleDB domain from the target table, extrddtem the command. DELETE
and UPDATE commands return the number of affectechs. INSERT returns the
result of the operation (success or fail) and SELE&urns the fetched data in a table
structure using .NET clag3ataTable.

INSERT

One table tuple corresponds to one item at SimplsEiiema. Thus, one INSERT
command generates one item. When starting this @mdnprocessing, SimpleSQL
checks if the number of columns is equal to the lmemof values.

Besides the given attributes, SimpleSQL will adw @ttribute to the item
with the formatSmpleSQL_TableName, in order to keep the same name of the target
table. The name of the item, that is a requireld f&@ SimpleDB model, is filled with
an instance of a global unique identifier (GUID»]1

UPDATE and DELETE

The filter list at the condition part of these coamds is extracted and processed
like a simple SELECT (a query without joins) toctetthe items to be updated or re-
moved.

In case of a DELETE, every retrieved item is rentbas an isolated operation. In
case of an UPDATE, the attributes to be updatedcematified as well as their new
values. For every retrieved item, if the item Haet tgiven attribute (as it is schema-
free, items of the same type may not have the sdiributes), its value is updated.

Both of these commands return the total of affedtds.

SELECT

When receiving a query command, SimpleSQL extrdmdist of expected attrib-
utes, the target table, joins and the filtershére are joins, SimpleSQL will split them
into single simple queries. It means that, using tdble.attribute notation, Sim-
pleSQL identifies the expected attributes and thedition of each joined table. After
retrieving the return of each single query, theii lve created d@ataTable with the
schema of the expected return, the list of retdeitems are joined using the foreign
keys of the relational schema and the return tebibe filled. It is recommended that
all tables joined in a query have at least one itimmg preventing SimpleSQL from
retrieving a big amount of data.

For each query sent to SimpleDB, SimpleSQL willeqgb at least one condition to
filter the SmpleSQL_TableName attribute, in order to avoid retrieving items dher
tables that could have attributes with the sameenam

When queries are processed at SimpleDB, the respisna collection oftem.
SimpleSQL iterates through all attributes of eviéeyn retrieved. The name of the at-
tribute is validated against the expected attribated added to the final list of the re-
turning attributes. The returnirigataTable is loaded with the values of the selected
attributes. On this way, each retrieviée represents a line at the returning table, and
its schema is made by the union of the expecteibats. If retrieved items do not
have the same schema, the respective cells beadlirat the returning table.

Another aspect of SimpleDB is that the responsangfquery is restricted to 1MB
size. This means that not all the resulting iterha guery will be sent on the first
response. The full result is split, and SimpleDBdseaNextToken value, so the user
can re-issue the query along with this token, tohféhe next part. SimpleSQL has a
recursive method that keeps requesting a query tietifull response has been col-
lected.

Next section describes an experiment that validatesevaluates the performance
of SimpleSQL.

4 Experimental Evaluation

We based our experiments on a relational data saafjut the entrance exams of
our University (UFSC - Universidade Federal de §abatarina). This sample con-
sists of six tables, representing the candidakest tourse choice, their exam results
and what event (specific exam) they were associateéfigure 4 presents the rela-
tional schema of the considered data sample, wdocints more than 500k tuples for
all tables.

The experiments have been processed in the folipamvironment:

 Dell Vostro 3550 notebook;

« Intel Core i5-2430M processor;

* 6GB DDR3 1066mHz RAM;

e 10Mbps ADSL?2 internet connection.

As for the SimpleDB settings, all data was stored single domain, located at the
USA East region. Data was loaded to SimpleDB asr @f the experiments, as
shown on the following sections.

We evaluate the performance of two operations: IRBEnd SELECT. The first
one was chosen in order to evaluate the processimg spent to load a large data
volume. We also chose SELECT operation in ordezv@luate the processing time
for a set of different queries in terms of compiexi

For each operation, we compare processing timegusia SimpleSQL layer as
well as the time spent using only SimpleDB .NET APhe results are detailed in the
next sections.

_] candidate v

nu_candidato INT
2 cd_evento INT j e
ru_m es2grau INT J nu_candidato INT
_pnnZgrouINY # nu_opcao VARCHAR(S)
i GIR] dassifiedCandidate ¥ & ci_opcao INT
fi_experiencia CHAR(1) cd_evento INT - H S et 1T
en_cidade VARCHAR(100) nu_candidato INT : = <
od_unifed VARGHAR(2) cd_categoria INT | v v
«d_indicador INT nu_opcao VARGHAR(2) | |]
cd_ocorrencia INT > cd_opcao INT : :
nu_dassificacaoGeral INT cd_periodo INT : |L o
> cd_estabelecimento INT nu_ordem INT | 1
fi_canhoto CHAR(1) Bf——— | > : :
nu_acertosTotd DOUBLE | | |
cd_raca INT : I : j ki
fi_correcaoRedacao CHAR(1) | | Course \/
» :] event v : cd_evento INT
v | cd_evento INT | cd_curso INT
| : dc_evento VARCHAR(50) | nm_curso VARCHAR(S0)
: | nu_mes INT : cd_area INT
: : nu_ano INT : nu_vagas INT
| ___ w7 qt_acertosNExig INT e ———— 1 nu_vagasOcupadas INT
: me_media DOUBLE cd_centro INT
+ nu_desvioPadrao DOUBLE y fi_opcao1a CHAR(1)

_ school v me_mediaAprov DOUBLE " nm_cursoAbrev VARGHAR (30)
cd_evento INT nu_desvioPadraoAprov DOUBLE nm_docAutorizacao VARCHAR(30)
cd_estabelecimento INT nu_inscritos INT dt_autorizacao VARCHAR(30)
nm_estabelecim ento VARGHAR(100) S4————————+- < nu_vagas INT H nu_inscritos INT
cd_rede INT dt_iniInscricao VARCHAR(30) nu_dassifOpcao2 INT
cd_municipio INT dt_fimInscricao VARCHAR(30) me_inscritos DOUBLE

> nu_isencoesRequeridas INT me_dassificados DOUBLE
nu_aprovados INT cd_demandaCurso INT
> >

Fig. 4. Relational schema used in the experiments

4.1 INSERT Operations

We ran the INSERT operations to load data into taiwes. Table 3 shows the pro-
cessing time for SimpleSQL and SimpleDB, as welltresaverage of tuples inserted
by minute.

Table 3. Results of INSERT operations

Table Mode #tuples Duration A"erage
(tuples/min)
. SimpleSQL 03:29:24 238.78
CEMETGIEE SimpleDB 50000 | 3.19:24 250.75
candidate SimpleSQL 100000 07:37:08 218.75
Choice SimpleDB 07:07:32 233.90

Table 3 shows an overhead for SimpleSQL, whichxjgeeted. However, the in-
creasing in processing time was less than 5% fur hnings, and the difference in
the average number of inserted tuples was almessdime. It reveals that the intro-
duction of the SimpleSQL layer does not compronggmpleDB performance and
scalability.

42 SELECT Operations

SimpleSQL has also been evaluated by running simpkries (SELECT com-
mands without joins, issued to a single table)yval as with one complex query with
three joins and four tables. Table 4 presentsithpls in SimpleSQL and SimpleDB
syntax, and the number of retrieved tuples, whidl& 5 presents the average pro-
cessing time of each query. We execute each ghesg times.

Table 4. Evaluation of simple queries

Query SimpleSQL SimpleDB # tuples
SELECT
SELECT nu_candidate, nu_candidate,
1 cd_race FROM candidate cd_race FROM do- 34678
WHERE en_city like mainl WHERE en_city
'ELORIAN%' like 'FLORIAN%'
SELECT

] nu_candidate,
5 SELECT nu_cand|d§te, cd._race FROM do- 58410
cd_race FROM candidate main1 WHERE

WHERE cd_gender = 'F' cd_gender = 'F'

SELECT * FROM do-

SELECT * FROM curse mainl WHERE cd_area
WHERE cd_area = 1 and ='1"and nm_curse
3 nm_curse like 'ENGE%' like 'ENGE%' and 58
and nu_places >= 100 nu_places >= '100'
AND nu_applicants > AND nu_applicants >
1000 '1000'

Table5. Average duration time for each query

Query SimpleSQL SimpleDB
1 00:02:22 00:01:34
2 00:03:09 00:02:33
3 00:00:03 00:00:02

Table 5 shows that the overhead of SimpleSQL inpaoieon to SimpleDB was
not superior to 40% for all queries. We considasthresults acceptable, given the

large volume of data to be accessed, speciallfCfdidate table, that holds around
160K tuples.

On considering complex queries, SimpleDB does aeehhe concept dfpe of
items (tables) and does not support the JOIN operBecause of this SimpleDB is
able to filter only the relevant data on each @rgble, being the application system
responsible to perform the joins.

On the other hand, SimpleSQL was designed to stigpamplex queries. The pro-
cessing steps it performs are the following:

o Split: the command is split into simple SELECTS, i.eELECTs without JOIN.
SimpleSQL identifies the expected attributes anad@@mns of each individual ta-
ble when performs the necessary splits;

» Access: each individual SELECT command is submitted tm@eDB;

« Transform: the resulting set of each individual commandransformed to the
relational schema as viewed by SimpleSQL;

< Join: the transformed tables are combined accordirthegoin conditions to gen-
erate the resulting table.

On this way, the access step is the only stepdhatailable at SimpleDB API. The
other steps are new features implemented at SirgiileS

Based on this, in order to compare the performaf@&mpleSQL and SimpleDB,
the time of each step has been gathered, and thkssastep is directly compared with
SimpleDB time. Table 6 shows the proposed complery the original query, as
processed by SimpleSQL and the decomposed qudrsate submitted to Sim-
pleDB.

Table 7 presents the average amount of time spezadh processing step, as exe-
cuted by SimpleSQL and SimpleDB. We also executethimes this query

Table 6. SELECT command in the original form and in Simple®Btax

SimpleSQL SimpleDB
SELECT nu_order FROM do-
SELECT classifiedCandi- mainl WHERE cd_event =
date.nu_order, candida- 25

te.en_city,
school.nm_school,
event.dc_event FROM candi-
date INNER JOIN school ON
candida-te.cd_school =
school.cd_school INNER JOIN
classifiedCandidate ON can-
didate.nu_candidate = clas-
sifiedCandi-
date.nu_candidate INNER
JOIN event ON classified-

SELECT en_city FROM do-
mainl WHERE cd_event =
l25!

SELECT nm_school FROM do-
mainl WHERE cd_event =
l25!

SELECT dc_event FROM do-
mainl WHERE cd event =

Candidate.cd_event = ‘25’
event.cd_event WHERE
event.cd_event = 25 AND
school.cd_event = 25 AND
classifiedCandi-
date.cd_event = 25 AND can-
didate.cd evente = 25

According to Table 7, we note thAtcess step is the most expansive step, and has
more overhead for SimpleSQL because each simpley qugst be separately submit-
ted. However, the steps that are only performe&inypleSQL are fast, as expected,
and the sum of their processing times does notcovee the access time.

Table 7. Average duration time for each processing stephiercomplex query

Step SimpleSQL SimpleDB
Split 00:00:03
Access 00:18:17 00:18:05
Transform 00:02:23
Join 00:04:08

5 Conclusion

The availability of database management systens ssvice brings many bene-
fits, like costs reduction and less concerns alathbase administration. However,
most of cur-rent data-centered applications usstioglal databases, being necessary
to provide a bridge between traditional relatiodata access to data stored in the
cloud, which adopts different data models.

We contribute with this problematic by proposingnBieSQL, a specific solution
for mapping a relational schema and some relatiopatations to SimpleDB, a doc-
ument-oriented database. Despite of the focus gpeaific cloud database, we argue
that our solution is a basis for a general mapgipgroach between these two data
models, which is one of our future studies. Thentibn is to provide a standard ac-
cess interface and data representation, allowingp®iSQL to support other NoSQL
databases, and providing freedom of choice to siee.u

As shown in Section 4, an experimental evaluatioows that SimpleSQL adds a
small processing overhead if compared to pure SDBlrequests, but this overhead
does not represent an obstacle to its adoption.irfsert operations, the processing
time over the relational layer was less than 5%.d/ople queries, could be observed
an increase of at most 40% to the total time, wisatxpected, given that SimpleSQL
must process the data retrieved from the cloudcamdert them to a relational sche-
ma. These results indicate that the use of SimpleS8Qnot prohibitive in terms of
performance. A higher overhead was perceived tonaptex query test, which indi-
cate that the execution of the extra SimpleSQL rbasbptimized, despite of the fact

that the sum of these extra overhead was lowertti@time spent by SimpleSQL to
access data through SimpleDB.

There are some works regarding the dispositionrefational at a distributed envi-
ronment [17][18][19]. However, as far as we coutéigh, there are no other papers
proposing a relational interface to a non-relatio@abase system, such as Sim-
pleSQL. We novel not only to provide insert and rgueelational operations over
SimpleDB, but also to support data joins.

We also intend to design and execute other expatdnegith data sets of different
sizes in order to evaluate, in a fine-grained wag, SimpleSQL performance. An
extension to give a wider support to SQL standgndas is of our interest too.

References

1. Abadi, D. J.: Data management in the cloud: Linota and op-portunities. IEEE
Data Eng. Bull., 32:3-12 (2009).

2. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D. Rasin, A., and Silberschatz,
A.: Hadoopdb: An architectural hybrid of mapredaral dbms technologies for
analytical workloads. PVLDB, 2(1):922-933 (2009).

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A. Xatz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, |., Zaha¥a, Above the Clouds: A Berke-
ley View of Cloud Computing. UC Berkeley Reliablal@ptive Distributed Sys-
tems Laboratory (2009).

4. Perguntas frequentes sobre o] Amazon SimpleDB,
http://aws.amazon.com/pt/simpledb/faqgs/

5. Amazon SimpleDBhttp://aws.amazon.com/simpledb/

6. Amazon SimpleDB, Getting Start Guide,
http://docs.amazonwebservices.com/AmazonSimple DB ettingStartedGuide/Welco
me.html?r=1

7. Amazon Web Services .NET SDHKitp://aws.amazon.com/pt/sdkfornet/
8.Buyya, R., Yeo, C. S., Venugopal, S., Brobergadd Brandic, I.: Cloud compu-
ting and emerging it platforms: Vision, hype, aedlity for delivering computing
as the 5th utility. Future Gener. Comput. Syst(62599-616 (2009).
9. Cattell, R.: Scalable SQL and NoSQL Data StoreGMBDD (2010).
10.G. Coulouris, J. Dollimore, T. Kindberg: Distribdt&ys-tems: Concepts and De-
sign, 52 edition. Addison-Wesley, (2011).
11.Fielding, R. T.: Architectural Styles and the Desigf Network-based Software
Architectures. University of California (2000).
12.Friedl, J. E. F.: Mastering Regular Expressiongdifion. O'Reilly (2002).
13.Gilbert, S., Lynch, N.: Brewer’s conjecture and feasibility of consistent, avail-
able, and partition-tolerant web services. ACM S{3ANews 33 (2002).
14. Pritchett, D.: BASE, an ACID alternative. ACM Que{2©08).
15. MSDN Library, Guid Structure, http://msdn.microsoft.com/en-
us/library/system.guid%28v=vs.90%29.aspx

16.Sousa, F. R. C., Moreira, L. O., de Macédo, J. AJ&vam, C. M.: Gerenciamen-
to de Dados em Nuvem: Conceitos, Sistemas e Dss&im Topicos em siste-
mas colaborativos, interativos, multimidia, web andbs de dados. Sociedade
Brasileira de Computacéo (2010).
17.Carlo Curino, Evan P. C. Jones, Raluca A. Popan&sh Malviya, Eugene Wu,
Samuel Madden, Hari Balakrishnan, Nickolai ZeldbviRelational Cloud: a Da-
tabase Service for the cloud. CIDR 2011:235-240Q120
18.Campbell, D. G., Kakivaya, G., Ellis, N: Extremeafrwith Full SQL Language
Support in Microsoft SQL Azure.
19. Amazon Relational Database Servictyp://aws.amazon.com/pt/rds/

