
adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

SimpleSQL: A Relational Layer for SimpleDB

André Calil, Ronaldo dos Santos Mello

Departamento de Informática e Estatística, Universidade Federal de Santa Catarina, Florianópo-
lis, Santa Catarina, Brazil.

{calil,ronaldo}@inf.ufsc.br

Abstract. This paper introduces SimpleSQL, a relational layer over Amazon
SimpleDB, one of the most popular document-oriented cloud databases. Sim-
pleSQL offers a SQL interface that abstracts any knowledge about data model-
ing, data persistence and data accessing at SimpleDB. This paper presents the
architecture, data and operation mapping from a relational database to Sim-
pleDB, as well as some experiments that evaluate query performance on access-
ing cloud data using SimpleSQL and using only SimpleDB. Our contribution is
a solution for accessing SimpleDB through a relational layer, being the basis for
a general approach to relational-to-(document) cloud mapping. The experi-
mental evaluation shows that our solution is promising, since the over-head
with data accessing through SimpleSQL is not prohibitive.

Keywords: SimpleDB, SimpleSQL, NoSQL, relational-cloud mapping, cloud
database.

1 Introduction

The concept of software as a service has moving from an innovative paradigm to a
business model during the last years. While the model of licensed and maintained
soft-ware represents a high cost in terms of acquisition and maintenance to the organ-
izations, software maintained by the service provider and charged according to the
demand (pay as you go paradigm) [3], with contracts ensuring high availability and
privacy, has become more and more attractive [8].

On following this paradigm, data storage and data management facilities have also
being offered on cloud computing platforms [15]. This paradigm changes the existing
database management system architectures to assign them some distributed system
characteristics, like high availability and fault tolerance. Besides, this tendency has
also raised new data models not compliant to the classical relational model [1]. These
models are suitable to current Web applications and programming paradigms, which
manage a large amount of data and transactions, being much more text- or object-
oriented than record(relational)-oriented.

Examples of these new models are key-value collections, document-oriented or su-
per-column [16]. Cloud database systems based on these models are known as Not
only SQL (NoSQL). The main differential of these systems, if compared to relational

databases, is to relax the overhead with consistency checking to increase data availa-
bility in a distributed scenario [9].

As these database systems are not relational, there is no support to the SQL stand-
ard, what makes more difficult to migrate and to adapt applications based on relation-
al data and relational accessing. In order to deal with this problematic, this paper pre-
sents a relational layer, called SimpleSQL, for accessing SimpleDB [5], an Amazon’s
solution for data management on the cloud. We chose SimpleDB because it is one of
the most famous databases based on the document-oriented model. This model pro-
vides a simple but efficient access method to large data sets. SimpleSQL, supports a
simplified version of ISO/IEC SQL that allows data update operations and some que-
ry capabilities. On using SimpleSQL, a client application is isolated from SimpleDB
access methods as well as its data model, providing a traditional relational interface to
data on the cloud.

Besides storage and operation transparency for data on the cloud, SimpleSQL sup-
ports queries with joins, which is not a native capability of the access methods for
NoSQL databases and is not specifically implemented at SimpleDB interface neither.
Our layer is able to decompose a query that combines several tables through joins into
a set of queries over single tables, to fetch the data that corresponds to each table from
the cloud, and to combine them in order to generate the result set. A set of experi-
ments shows that the overhead to process this kind of query, as well as other opera-
tions from SimpleSQL, is minimal. Details about these experiments and the design of
the layer are given in the next sections.

The rest of this paper is organized as follows. Section 2 presents SimpleDB and its
data model. Section 3 presents SimpleSQL, its development and architecture, fol-
lowed by the analysis of some experiments in Section 4. Section 5 presents related
work and Section 6 is dedicated to the conclusion.

2 SimpleDB

Within the categories that describe NoSQL databases, the most noticeable are key-
value data stores, that apply a dictionary structure to keep values at user-defined keys,
and document oriented, that serializes objects as documents and keeps indexes for
searching [9].

SimpleDB is an Amazon solution for data management on the cloud that follows
the document-oriented model [9]. It is kept as a service, and data is automatically
replicated over data centers at the same geographic region that the user selects during
setup.

SimpleDB data model is composed of domains, items, attributes and values, as
shown at Figure 1.

Fig. 1. SimpleDB data model [6]

A domain is composed by a name and a set of items. Each item, in turn, has a set of
attributes that are key-value pairs. The domain is the main entity for replication and
performance issues. A user can have up to 250 domains, and each domain can grow
up to 10 Gb, what is enough for most of the applications.

Data placement and sharing among domains is a database design issue. However,
SimpleDB does not support queries that join data from different domains. In such a
case, join operations must be made by user application. Because of this, the strategy
for domain distribution must be chosen wisely. A high cost processing to distribute an
item may compromise the performance of every single operation.

Items are composed by a name and a collection of attributes. As with domains, the
name of an item must uniquely identify the entity. The collection of attributes de-
scribes its item. An attribute can handle multiple values for a given key and there is
no requirement that all the objects of a given domain must have the same set of attrib-
utes. In fact, this flexibility follows the schema-free feature of NoSQL databases.

For consistency, SimpleDB guarantee that any write operation will update all the
copies of an item, but it does not ensures that a reading operation will retrieve the last
version of a given item. Given the delay to update all the copies of an item, a read
operation may fetch an older value of an attribute [5]. As an alternative, it is possible
to specify the desired consistency level for a reading operation. The default value is
eventual consistency, which has the fastest response time.

The interface to access SimpleDB is an API developed with REST web services
[11]. As it relays on HTTP requests, most of the current development frameworks are
able to access the system. All reading and writing operations, and even the domain
administration tasks, are performed with HTTP methods GET and POST, respective-
ly. SimpleDB is available only as a service, being not licensed for local installations.

3 SimpleSQL

As one of the main cloud data management system, SimpleDB turns out as an op-
tion for fast setup and virtually no administration effort. However, the NoSQL para-
digm is an obstacle to applications already developed with relational databases. To
adapt a relational-based application to a cloud platform may incur in a large mainte-
nance effort. In order to alleviate a situation like that, we propose an access layer that
makes the translation of SQL requests to the SimpleDB API and returns data in a
relational format. It is called SimpleSQL. In this first version, our layer is able to

perform the four traditional manipulation operations: INSERT, UPDATE, DELETE
and SELECT. This section gives details about its functionality and implementation.

SimpleSQL is developed over the Microsoft .NET Framework version 3.5, using
C# 3.0 as programming language. Figure 2 shows the layer architecture, which high-
lights the three steps of an SQL command processing. Each step will be detailed on
the following sections.

Fig. 2. SimpleSQL architecture

Table 3 presents the relationship between relational model concepts and SimpleDB
data model. It summarizes the mapping strategy adopted by our approach in order to
provide a relational view of cloud data presented at SimpleDB.

Table 1. Relationship between relational model and SimpleDB model

Relational SimpleDB
Schema Domain
Table -

Table row Item
Attribute Attribute key

Value Attribute value
Primary key Item name

Although schema and domain can be said as equivalent, SimpleSQL does not sup-

port the schema qualifier at a command. Moreover, even though SimpleDB data mod-
el does not have a concept for the table entity, SimpleSQL does record the table name
as an attribute, in order to keep the idea that an item has a type.

3.1 Processing Requirements

In order to connect to SimpleDB and identify the domains, SimpleSQL must re-
ceive the following information from the user:

• Access Key: access key of the user to its SimpleDB account. This information can
be found when logged in at Amazon portal;

• Secret Access Key: secret access key, which is also found at Amazon portal;
• Domains distribution: if the user has more than one domain, it must provide to

SimpleSQL a dictionary that uses the domain name as key and the list of its tables
as value. If the user has only one domain, it may pass this single domain name in-
stead.

As a non-functional requirement, the running environment of SimpleSQL must
have access to Amazon website.

3.2 Access Interface

The access interface of SimpleSQL is composed of two methods: ExecuteQuery,
that returns a DataTable object (a tabular structure), and ExecuteNonQuery, that re-
turns a text (string). Both of them receive an SQL command as parameter.

As stated before, SimpleSQL supports the four traditional manipulation operations.
However, as a scope restriction, each related command has constraints for the sup-
ported syntax at this first version:

• SELECT: supports queries for a single table or several tables using INNER JOIN.
If a join is specified, all declared attributes must have the format table.attribute;

• UPDATE: supports updates to multiple entities, but without sub-queries. More
than one attribute can be updated, with more than one filter. Updates without con-
ditions are not supported;

• INSERT: supports insert of a single entity per command, without sub-queries or
instructions like INSERT SELECT;

• DELETE: supports deletion of multiple entities, with multiple filters. Sub-queries
and deletes without conditions are not supported.

3.3 Command Decomposition

The first processing step is to decompose the SQL command, converting it to the
domain used by SimpleDB. In order to support it, each command has a regular ex-
pression that it was designed with two goals in mind: (i) to validate the command
syntax, and (ii) to extract its elements from the command. Table 2 presents the com-
mands and their related regular expressions.

The elements extracted from the commands are the parts that construct the com-
mand itself. In instance, for a SELECT command, SimpleSQL would extract the ex-
pected attributes, target table, joins and the set of conditions.

It is important to note at Table 2 the usage of named capture groups, denoted by
the syntax (?<group name>expression) . Capture group is a regular expres-
sion technique for searching and retrieve text without the need for manually search
the expected patterns [12]. By using this technique, it is possible to retrieve each
command element easily, like target table name, list of expected attributes and filter-
ing criteria.

SimpleSQL works with and abstract class named Command, which is specialized
into the classes Insert and the abstract ConditionedCommand. ConditionedCommand
is inherited and implemented by Update, Select and Delete. Figure 3 presents a short
class diagram for SimpleSQL solution domain.

Table 2. DML operations of SimpleSQL and its regular expression

Operation Regular expression

INSERT

^(?:\s*(?i:INSERT

INTO)\s+)(?<table>[^\(]+)(?:\(\s*)(?<attributes>(?: \w+\s

)(?:\,\s\w+\s*)*)(?:\)\s+)(?:(?i:VALUES)\s+\(\s*) (?<va

lues>(?:[^\,]+|[^\)])+\s*(?:\,\s*[^\)])*)(?:\))$

UPDATE

^\s*(?i:UPDATE)\s+(?<table>\S+\s+)(?i:SET)\s+(?<att ribut

es>(\s*\S+\s*)\=(\s*\S+\s*)(,(\s*\S+\s*)\=(\s*\S+\s *))*)

+(?<condition>((?i:where)|(?i:and)|(?i:or))(\s+\w+\ s*)(=

|<|>|<=|>=|<>|(?i:in)|(?i:not

in))((\s*\(?)(\s*\w+\s*)(,\s*\w+\s*)*(\s*\)?)))*$

DELETE

^(?:\s*(?i:DELETE

FROM)\s+)(?<table>\S+\s+)(?<condition>(?:(?i:where) |(?i:

and)|(?i:or))(?:\s+.+\s*)(?:=|<|>|<=|>=|<>|(?i:in)| (?i:n

ot

in))(?:(?:\s*\(?)(?:\s*.+\s*)(?:,\s*.+\s*)*(?:\s*\) ?)))*

$

SELECT

^\s*(?i:SELECT)\s+(?<attributes>(\S+\s*)(,\s*\w+\s*)*)\s

+(?i:FROM)\s+(?<table>\s*\S+\s*)\s+(?<join>(?i:inne r

join)\s+(?<toTable>\s*\S+\s*)\s+(?i:on)\s+(?<fromKe y>\s*

\S+\s*)\s*=\s*(?<toKey>\s*\S+\s*)\s+)*(?<condition> ((?i:

where)|(?i:and)|(?i:or))(\s+.+\s*)(=|<|>|<=|>=|<>|(?i:in

)|(?i:not

in))((\s*\(?)(\s*.+\s*)(,\s*.+\s*)*(\s*\)?)))*$

Fig. 3. Class diagram for SimpleSQL domain

Classes Condition and InnerJoin are used to represent, respectively, filtering crite-
ria (condition) and joins. The enumerator EnumOperator is used at the condition to
indicate which operator should be applied.

3.4 Processing and Return

Once identified a command and its components, SimpleSQL translate it to a Sim-
pleDB REST method call. All the commands begin with the identification of the tar-
get SimpleDB domain from the target table, extracted from the command. DELETE
and UPDATE commands return the number of affected items. INSERT returns the
result of the operation (success or fail) and SELECT returns the fetched data in a table
structure using .NET class DataTable.

INSERT
One table tuple corresponds to one item at SimpleDB schema. Thus, one INSERT

command generates one item. When starting this command processing, SimpleSQL
checks if the number of columns is equal to the number of values.

 Besides the given attributes, SimpleSQL will add one attribute to the item
with the format SimpleSQL_TableName, in order to keep the same name of the target
table. The name of the item, that is a required field at SimpleDB model, is filled with
an instance of a global unique identifier (GUID) [15].

UPDATE and DELETE
The filter list at the condition part of these commands is extracted and processed

like a simple SELECT (a query without joins) to fetch the items to be updated or re-
moved.

In case of a DELETE, every retrieved item is removed as an isolated operation. In
case of an UPDATE, the attributes to be updated are identified as well as their new
values. For every retrieved item, if the item has that given attribute (as it is schema-
free, items of the same type may not have the same attributes), its value is updated.

Both of these commands return the total of affected items.

SELECT
When receiving a query command, SimpleSQL extracts the list of expected attrib-

utes, the target table, joins and the filters. If there are joins, SimpleSQL will split them
into single simple queries. It means that, using the table.attribute notation, Sim-
pleSQL identifies the expected attributes and the condition of each joined table. After
retrieving the return of each single query, there will be created a DataTable with the
schema of the expected return, the list of retrieved items are joined using the foreign
keys of the relational schema and the return table is be filled. It is recommended that
all tables joined in a query have at least one condition, preventing SimpleSQL from
retrieving a big amount of data.

For each query sent to SimpleDB, SimpleSQL will append at least one condition to
filter the SimpleSQL_TableName attribute, in order to avoid retrieving items of other
tables that could have attributes with the same name.

When queries are processed at SimpleDB, the response is a collection of Item.
SimpleSQL iterates through all attributes of every item retrieved. The name of the at-
tribute is validated against the expected attributes and added to the final list of the re-
turning attributes. The returning DataTable is loaded with the values of the selected
attributes. On this way, each retrieved Item represents a line at the returning table, and
its schema is made by the union of the expected attributes. If retrieved items do not
have the same schema, the respective cells become null at the returning table.

Another aspect of SimpleDB is that the response of any query is restricted to 1MB
size. This means that not all the resulting items of a query will be sent on the first
response. The full result is split, and SimpleDB sends a NextToken value, so the user
can re-issue the query along with this token, to fetch the next part. SimpleSQL has a
recursive method that keeps requesting a query until the full response has been col-
lected.

Next section describes an experiment that validates and evaluates the performance
of SimpleSQL.

4 Experimental Evaluation

We based our experiments on a relational data sample about the entrance exams of
our University (UFSC - Universidade Federal de Santa Catarina). This sample con-
sists of six tables, representing the candidates, their course choice, their exam results
and what event (specific exam) they were associated to. Figure 4 presents the rela-
tional schema of the considered data sample, which counts more than 500k tuples for
all tables.

The experiments have been processed in the following environment:

• Dell Vostro 3550 notebook;
• Intel Core i5-2430M processor;
• 6GB DDR3 1066mHz RAM;
• 10Mbps ADSL2 internet connection.

As for the SimpleDB settings, all data was stored at a single domain, located at the
USA East region. Data was loaded to SimpleDB as a part of the experiments, as
shown on the following sections.

We evaluate the performance of two operations: INSERT and SELECT. The first
one was chosen in order to evaluate the processing time spent to load a large data
volume. We also chose SELECT operation in order to evaluate the processing time
for a set of different queries in terms of complexity.

For each operation, we compare processing time using the SimpleSQL layer as
well as the time spent using only SimpleDB .NET API. The results are detailed in the
next sections.

Fig. 4. Relational schema used in the experiments

4.1 INSERT Operations

We ran the INSERT operations to load data into two tables. Table 3 shows the pro-
cessing time for SimpleSQL and SimpleDB, as well as the average of tuples inserted
by minute.

Table 3. Results of INSERT operations

Table Mode # tuples Duration
Average

(tuples/min)

candidate
SimpleSQL

50000
03:29:24 238.78

SimpleDB 03:19:24 250.75
candidate
Choice

SimpleSQL
100000

07:37:08 218.75
SimpleDB 07:07:32 233.90

Table 3 shows an overhead for SimpleSQL, which is expected. However, the in-
creasing in processing time was less than 5% for both runnings, and the difference in
the average number of inserted tuples was almost the same. It reveals that the intro-
duction of the SimpleSQL layer does not compromise SimpleDB performance and
scalability.

4.2 SELECT Operations

SimpleSQL has also been evaluated by running simple queries (SELECT com-
mands without joins, issued to a single table), as well as with one complex query with
three joins and four tables. Table 4 presents the simple in SimpleSQL and SimpleDB
syntax, and the number of retrieved tuples, while Table 5 presents the average pro-
cessing time of each query. We execute each query three times.

Table 4. Evaluation of simple queries

Query SimpleSQL SimpleDB # tuples

1
SELECT nu_candidate,

cd_race FROM candidate

WHERE en_city like

'FLORIAN%'

SELECT

nu_candidate,

cd_race FROM do-

main1 WHERE en_city

like 'FLORIAN%'

34678

2
SELECT nu_candidate,

cd_race FROM candidate

WHERE cd_gender = 'F'

SELECT

nu_candidate,

cd_race FROM do-

main1 WHERE

cd_gender = 'F'

58410

3

SELECT * FROM curse

WHERE cd_area = 1 and

nm_curse like 'ENGE%'

and nu_places >= 100

AND nu_applicants >

1000

SELECT * FROM do-

main1 WHERE cd_area

= '1' and nm_curse

like 'ENGE%' and

nu_places >= '100'

AND nu_applicants >

'1000'

58

Table 5. Average duration time for each query

Query SimpleSQL SimpleDB
1 00:02:22 00:01:34
2 00:03:09 00:02:33
3 00:00:03 00:00:02

Table 5 shows that the overhead of SimpleSQL in comparison to SimpleDB was

not superior to 40% for all queries. We consider these results acceptable, given the

large volume of data to be accessed, specially for Candidate table, that holds around
160K tuples.

On considering complex queries, SimpleDB does not have the concept of type of

items (tables) and does not support the JOIN operator. Because of this SimpleDB is
able to filter only the relevant data on each single table, being the application system
responsible to perform the joins.

On the other hand, SimpleSQL was designed to support complex queries. The pro-
cessing steps it performs are the following:

• Split: the command is split into simple SELECTs, i.e., SELECTs without JOIN.
SimpleSQL identifies the expected attributes and conditions of each individual ta-
ble when performs the necessary splits;

• Access: each individual SELECT command is submitted to SimpleDB;
• Transform: the resulting set of each individual command is transformed to the

relational schema as viewed by SimpleSQL;
• Join: the transformed tables are combined according to the join conditions to gen-

erate the resulting table.

On this way, the access step is the only step that is available at SimpleDB API. The
other steps are new features implemented at SimpleSQL.

Based on this, in order to compare the performance of SimpleSQL and SimpleDB,
the time of each step has been gathered, and the access step is directly compared with
SimpleDB time. Table 6 shows the proposed complex query: the original query, as
processed by SimpleSQL and the decomposed queries that are submitted to Sim-
pleDB.

Table 7 presents the average amount of time spent in each processing step, as exe-
cuted by SimpleSQL and SimpleDB. We also execute three times this query

Table 6. SELECT command in the original form and in SimpleDB syntax

SimpleSQL SimpleDB

SELECT classifiedCandi-
date.nu_order, candida-
te.en_city,
school.nm_school,
event.dc_event FROM candi-
date INNER JOIN school ON
candida-te.cd_school =
school.cd_school INNER JOIN
classifiedCandidate ON can-
didate.nu_candidate = clas-
sifiedCandi-
date.nu_candidate INNER
JOIN event ON classified-

SELECT nu_order FROM do-
main1 WHERE cd_event =
‘25’

SELECT en_city FROM do-
main1 WHERE cd_event =
‘25’

SELECT nm_school FROM do-
main1 WHERE cd_event =
‘25’

SELECT dc_event FROM do-
main1 WHERE cd_event =

Candidate.cd_event =
event.cd_event WHERE
event.cd_event = 25 AND
school.cd_event = 25 AND
classifiedCandi-
date.cd_event = 25 AND can-
didate.cd_evente = 25

‘25’

According to Table 7, we note that Access step is the most expansive step, and has

more overhead for SimpleSQL because each simple query must be separately submit-
ted. However, the steps that are only performed by SimpleSQL are fast, as expected,
and the sum of their processing times does not overcome the access time.

Table 7. Average duration time for each processing step for the complex query

Step SimpleSQL SimpleDB
Split 00:00:03

Access 00:18:17 00:18:05
Transform 00:02:23

Join 00:04:08

5 Conclusion

The availability of database management systems as a service brings many bene-
fits, like costs reduction and less concerns about database administration. However,
most of cur-rent data-centered applications use relational databases, being necessary
to provide a bridge between traditional relational data access to data stored in the
cloud, which adopts different data models.

We contribute with this problematic by proposing SimpleSQL, a specific solution
for mapping a relational schema and some relational operations to SimpleDB, a doc-
ument-oriented database. Despite of the focus on a specific cloud database, we argue
that our solution is a basis for a general mapping approach between these two data
models, which is one of our future studies. The intention is to provide a standard ac-
cess interface and data representation, allowing SimpleSQL to support other NoSQL
databases, and providing freedom of choice to the user.

As shown in Section 4, an experimental evaluation shows that SimpleSQL adds a
small processing overhead if compared to pure SimpleDB requests, but this overhead
does not represent an obstacle to its adoption. For insert operations, the processing
time over the relational layer was less than 5%. For simple queries, could be observed
an increase of at most 40% to the total time, which is expected, given that SimpleSQL
must process the data retrieved from the cloud and convert them to a relational sche-
ma. These results indicate that the use of SimpleSQL is not prohibitive in terms of
performance. A higher overhead was perceived to a complex query test, which indi-
cate that the execution of the extra SimpleSQL must be optimized, despite of the fact

that the sum of these extra overhead was lower than the time spent by SimpleSQL to
access data through SimpleDB.

There are some works regarding the disposition of a relational at a distributed envi-
ronment [17][18][19]. However, as far as we could search, there are no other papers
proposing a relational interface to a non-relational database system, such as Sim-
pleSQL. We novel not only to provide insert and query relational operations over
SimpleDB, but also to support data joins.

We also intend to design and execute other experiments with data sets of different
sizes in order to evaluate, in a fine-grained way, the SimpleSQL performance. An
extension to give a wider support to SQL standard syntax is of our interest too.

References

1. Abadi, D. J.: Data management in the cloud: Limitations and op-portunities. IEEE
Data Eng. Bull., 32:3-12 (2009).

2. Abouzeid, A., Bajda-Pawlikowski, K., Abadi, D. J., Rasin, A., and Silberschatz,
A.: Hadoopdb: An architectural hybrid of mapreduce and dbms technologies for
analytical workloads. PVLDB, 2(1):922-933 (2009).

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., Lee,
G., Patterson, D., Rabkin, A., Stoica, I., Zaharia, M.: Above the Clouds: A Berke-
ley View of Cloud Computing. UC Berkeley Reliable Adaptive Distributed Sys-
tems Laboratory (2009).

4. Perguntas frequentes sobre o Amazon SimpleDB,
http://aws.amazon.com/pt/simpledb/faqs/

5. Amazon SimpleDB, http://aws.amazon.com/simpledb/
6. Amazon SimpleDB, Getting Start Guide,

http://docs.amazonwebservices.com/AmazonSimpleDB/latest/GettingStartedGuide/Welco
me.html?r=1

7. Amazon Web Services .NET SDK, http://aws.amazon.com/pt/sdkfornet/
8. Buyya, R., Yeo, C. S., Venugopal, S., Broberg, J., and Brandic, I.: Cloud compu-

ting and emerging it platforms: Vision, hype, and reality for delivering computing
as the 5th utility. Future Gener. Comput. Syst., 25(6):599–616 (2009).

9. Cattell, R.: Scalable SQL and NoSQL Data Stores. SIGMOD (2010).
10. G. Coulouris, J. Dollimore, T. Kindberg: Distributed Sys-tems: Concepts and De-

sign, 5ª edition. Addison-Wesley, (2011).
11. Fielding, R. T.: Architectural Styles and the Design of Network-based Software

Architectures. University of California (2000).
12. Friedl, J. E. F.: Mastering Regular Expressions, 2ª edition. O’Reilly (2002).
13. Gilbert, S., Lynch, N.: Brewer’s conjecture and the feasibility of consistent, avail-

able, and partition-tolerant web services. ACM SIGACT News 33 (2002).
14. Pritchett, D.: BASE, an ACID alternative. ACM Queue (2008).
15. MSDN Library, Guid Structure, http://msdn.microsoft.com/en-

us/library/system.guid%28v=vs.90%29.aspx

16. Sousa, F. R. C., Moreira, L. O., de Macêdo, J. A. F., Javam, C. M.: Gerenciamen-
to de Dados em Nuvem: Conceitos, Sistemas e Desafios. Em Tópicos em siste-
mas colaborativos, interativos, multimídia, web e bancos de dados. Sociedade
Brasileira de Computação (2010).

17. Carlo Curino, Evan P. C. Jones, Raluca A. Popa, Nirmesh Malviya, Eugene Wu,
Samuel Madden, Hari Balakrishnan, Nickolai Zeldovich: Relational Cloud: a Da-
tabase Service for the cloud. CIDR 2011:235-240 (2011).

18. Campbell, D. G., Kakivaya, G., Ellis, N: Extreme Scale with Full SQL Language
Support in Microsoft SQL Azure.

19. Amazon Relational Database Service, http://aws.amazon.com/pt/rds/.

