Introduction to computability

Pierre Wolper
Email: Pierre.Wolper@ulg.ac.be
URL: http: //www.montefiore.ulg.ac.be/~pw/
http: //www.montefiore.ulg.ac.be/
~pw/cours/calc.html

References
Pierre Wolper, Introduction à la calculabilité - 3ième édition, Dunod, 2006.
Michael Sipser, Introduction to the Theory of Computation, Second Edition, Course
Technology, 2005

Chapter 1

Introduction

1.1 Motivation

- To understand the limits of computer science.
- To distinguish problems that are solvable by algorithms from those that are not.
- To obtain results that are independent of the technology used to build computers.

1.2 Problems and Languages

- Which problems can be solved by a program executed by a computer?

We need to be more precise about:

- the concept of problem,
- the concept of program executed by a computer.

The concept of problem

Problem: generic question.

Examples :

- to sort an array of numbers;
- to decide if a program written in C stops for all possible input values; (halting problem) ;
- to decide if an equation with integer coefficients has integer solutions (Hilbert's 10th problem).

The concept of program

Effective procedure: program that can be executed by a computer.

Examples :

- Effective procedure : program written in JAVA ;
- Not an effective procedure: "to solve the halting problem, one must just check that the program has no infinite loops or recursive call sequences."

The halting problem

recursive function threen (n : integer):integer; begin
if $(n=1)$ then 1
else if even (n) then threen $(n \div 2)$
else threen $(3 \times n+1)$;
end;

1.3 Formalizing problems

How could one represent problem instances?

Alphabets and words

Alphabet : finite set of symbols.

Examples

- $\{a, b, c\}$
- $\{\alpha, \beta, \gamma\}$
- $\{1,2,3\}$
- $\{\boldsymbol{\phi}, \diamond, \diamond\}$

Word on an alphabet : finite sequence of elements of the alphabet.

Examples

- a, abs, zt, bbbssnbnzzyyyyddtrra, grosseguindaille are words on the alphabet $\{a, \ldots, z\}$.
- $4 \boldsymbol{4} 3 \diamond 5 \bigcirc 2 \boldsymbol{\uparrow}, 12765, \boldsymbol{\infty} \Omega$ are words on the alphabet $\{0, \ldots, 8, \boldsymbol{\infty}, \diamond, \diamond, \boldsymbol{\uparrow}\}$.

Empty word: represented by e, ε, or λ.

Length of a word $w:|w|$
$w=a a a b b a a a a b b$
$w(1)=a, w(2)=a, \ldots, w(11)=b$

Representing problems

Encoding a problem

Let us consider a binary problem whose instances are encoded by words defined over an alphabet Σ. The set of all words defined on Σ can be partitioned in 3 subsets:

- positive instances: the answer is yes ;
- negative instances: the answer is no;
- words that do not represent an instance of the problem.

Alternatively:

- the words encoding instances of the problem for which the answer is yes, the positive instances;
- the words that do not encode and instance of the problem, or that encode an instance for which the answer is no, the negative instances.

Languages

Language: set of words defined over the same alphabet.

Examples

- $\{a a b, a a a a, \varepsilon, a, b, a b a b a b a b a b b b b b b b b b b b b\},\{\varepsilon, a a a a a a a, a, b b b b b b\}$ and \emptyset (the empty set) are languages over the alphabet $\{a, b\}$.
- for the alphabet $\{0,1\}$,
$\{0,1,00,01,10,11,000,001,010,011,100$, $101,110,111, \ldots\}$ is the language containing all words.
- language $\emptyset \neq$ language $\{\varepsilon\}$.
- the set of words encoding C programs that always stop.

1.4 Describing languages

Operations on languages

Let L_{1} and L_{2} be languages.

- $L_{1} \cup L_{2}=\left\{w \mid w \in L_{1}\right.$ or $\left.w \in L_{2}\right\}$;
- $L_{1} \cdot L_{2}=\left\{w \mid w=x y, x \in L_{1}\right.$ and $\left.y \in L_{2}\right\} ;$
- $L_{1}^{*}=\left\{w \mid \exists k \geq 0\right.$ and $w_{1}, \ldots, w_{k} \in L_{1}$ such that $\left.w=w_{1} w_{2} \ldots w_{k}\right\}$;
- $\overline{L_{1}}=\left\{w \mid w \notin L_{1}\right\}$.

Regular Languages

The set \mathcal{R} of regular languages over an alphabet Σ is the smallest set of languages such that:

1. $\emptyset \in \mathcal{R}$ and $\{\varepsilon\} \in \mathcal{R}$,
2. $\{a\} \in \mathcal{R}$ for all $a \in \Sigma$, and
3. if $A, B \in \mathcal{R}$, then $A \cup B, A \cdot B$ and $A^{*} \in \mathcal{R}$.

Regular expressions

A notation for representing regular languages.

1. \emptyset, ε and the elements of Σ are regular expressions;
2. If α and β are regular expressions, then ($\alpha \beta$), $(\alpha \cup \beta)$, (α)* are regular expressions.

The set of regular expressions is a language over the alphabet $\Sigma^{\prime}=\Sigma \cup\{),(, \emptyset, \cup, *, \varepsilon\}$.

The language represented by a regular expression

1. $L(\emptyset)=\emptyset, L(\varepsilon)=\{\varepsilon\}$,
2. $L(a)=\{a\}$ for each $a \in \Sigma$,
3. $L((\alpha \cup \beta))=L(\alpha) \cup L(\beta)$,
4. $L((\alpha \beta))=L(\alpha) \cdot L(\beta)$,
5. $L((\alpha) *)=L(\alpha)^{*}$.

Theorem

A language is regular
if and only if
it can be represented by a regular expression.

Regulars languages : examples

- The set of all words over $\Sigma=\left\{a_{1}, \ldots, a_{n}\right\}$ is represented by $\left(a_{1} \cup \ldots \cup a_{n}\right)^{*}\left(\right.$ or $\left.\Sigma^{*}\right)$.
- The set of all nonempty words over $\Sigma=\left\{a_{1}, \ldots, a_{n}\right\}$ is represented by $\left(a_{1} \cup \ldots \cup a_{n}\right)\left(a_{1} \cup \ldots \cup a_{n}\right)^{*}\left(\right.$ or $\Sigma \Sigma^{*}$, or $\left.\Sigma^{+}\right)$.
- the expression $(a \cup b)^{*} a(a \cup b)^{*}$ represents the language containing all words over the alphabet $\{a, b\}$ that contain at least one "a".

Regulars languages : more examples

$$
\left(a^{*} b\right)^{*} \cup\left(b^{*} a\right)^{*}=(a \cup b)^{*}
$$

Proof

- $\left(a^{*} b\right)^{*} \cup\left(b^{*} a\right)^{*} \subset(a \cup b)^{*}$ since $(a \cup b)^{*}$ represents the set of all words built from the characters "a" and "b".
- Let us consider an arbitrary word

$$
w=w_{1} w_{2} \ldots w_{n} \in(a \cup b)^{*}
$$

One can distinguish 4 cases ...

1. $w=a^{n}$ and thus $w \subset(\varepsilon a)^{*} \subset\left(b^{*} a\right)^{*}$;
2. $w=b^{n}$ and thus $w \subset(\varepsilon b)^{*} \subset\left(a^{*} b\right)^{*}$;
3. w contains both a 's and b 's and ends with a b

$$
\begin{aligned}
& \quad w=\underbrace{a \ldots a b}_{a^{*} b} \underbrace{\ldots b}_{\left(a^{*} b\right)^{*}} \underbrace{a \ldots a b}_{a^{*} b} \underbrace{\ldots b}_{\left(a^{*} b\right)^{*}} \\
& \Rightarrow w \in\left(a^{*} b\right)^{*} \cup\left(b^{*} a\right)^{*} ;
\end{aligned}
$$

4. w contains both a 's and b 's and ends with an $a \Rightarrow$ similar decomposition.

1.5 Languages that are not regular

Fact

There are not enough regular expressions to represent all languages!

Definition

Cardinality of a set...

Example

The sets $\{0,1,2,3\},\{a, b, c, d\},\{\boldsymbol{\phi}, \diamond, \ominus, \boldsymbol{\wedge}\}$ all have the same size. There exists a one-one correspondence (bijection) between them, for example $\{(0, \boldsymbol{\infty}),(1, \diamond),(2, \diamond),(3, \boldsymbol{\infty})\}$.

Denumerable (countably infinite) sets

Definition

An infinite set is denumerable if there exists a bijection between this set and the set natural numbers.

Remark

Finite sets are all countable in the usual sense, but in mathematics countable is sometimes used to mean precisely countably infinite.

Denumerable sets: examples

1. The set of even numbers is denumerable:

$$
\{(0,0),(2,1),(4,2),(6,3), \ldots\}
$$

2. The set of words over the alphabet $\{a, b\}$ is denumerable : $\{(\varepsilon, 0),(a, 1),(b, 2),(a a, 3),(a b, 4),(b a, 5)$, $(b b, 6),(a a a, 7) \ldots\}$.
3. The set of rational numbers is denumerable: $\{(0 / 1,0),(1 / 1,1),(1 / 2,2),(2 / 1,3),(1 / 3,4)$, $(3 / 1,5), \ldots\}$.
4. The set of regular expressions is denumerable.

The diagonal argument

Theorem

The set of subsets of a denumerable set is not denumerable.

Proof

	a_{0}	a_{1}	a_{2}	a_{3}	a_{4}	\cdots
s_{0}	\times	\times		\times		
s_{1}	\times	\square		\times		
s_{2}		\times	\times		\times	
s_{3}	\times		\times	\square		
s_{4}		\times		\times	\square	
\vdots						
	$D=\left\{a_{i} \mid a_{i} \notin s_{i}\right\}$					

Conclusion

- The set of languages is not denumerable.
- The set of regular languages is denumerable.
- Thus there are (many) more languages than regular languages

1.6 To follow ...

- The notion of effective procedure (automata).
- Problems that cannot be solved by algorithms.
- Problems that cannot be solved efficiently.

