Chapter 4 Pushdown automata and context-free languages

Introduction

- The language $a^n b^n$ cannot be accepted by a finite automaton
- On the other hand, $L_k = \{a^n b^n \mid n \leq k\}$ is accepted for any given n.
- Finite memory, infinite memory, extendable memory.
- Pushdown (stack) automata: LIFO memory.

4.1 Pushdown automata

- Input tape and read head,
- finite set of states, among which an initial state and a set of accepting states,
- a transition relation,
- an unbounded pushdown stack.

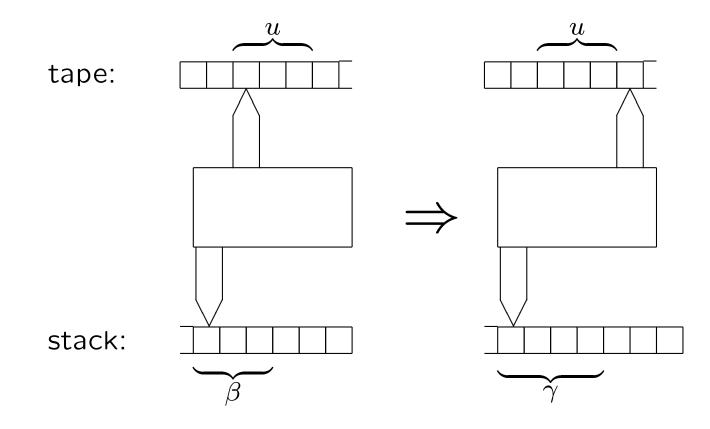
Formalization

7-tuple $M = (Q, \Sigma, \Gamma, \Delta, Z, s, F)$, where

- Q is a finite set of states,
- Σ is the input alphabet,
- Γ is the *stack alphabet*,
- $Z \in \Gamma$ is the *initial stack symbol*,
- $s \in Q$ is the initial state,
- $F \subseteq Q$ is the set of accepting states,
- $\Delta \subset ((Q \times \Sigma^* \times \Gamma^*) \times (Q \times \Gamma^*))$ is the transition relation.

Transitions

 $((p, u, \beta), (q, \gamma)) \in \Delta$



Executions

The configuration (q', w', α') is *derivable in one step* from the configuration (q, w, α) by the machine M (notation $(q, w, \alpha) \vdash_M (q', w', \alpha')$) if

- w = uw' (the word w starts with the prefix $u \in \Sigma^*$),
- $\alpha = \beta \delta$ (before the transition, the top of the stack read from left to right contains $\beta \in \Gamma^*$),
- $\alpha' = \gamma \delta$ (after the transition, the part β of the stack has been replaced by γ , the first symbol of γ is now the top of the stack),
- $((q, u, \beta), (q', \gamma)) \in \Delta$.

A configuration C' is *derivable in several steps* from the configuration C by the machine M (notation $C \vdash_M^* C'$) if there exist $k \ge 0$ and intermediate configurations $C_0, C_1, C_2, \ldots, C_k$ such that

- $C = C_0$,
- $C' = C_k$,
- $C_i \vdash_M C_{i+1}$ pour $0 \le i < k$.

An *execution of a pushdown automaton* on a word w is a sequence of configurations

$$(s, w, Z) \vdash (q_1, w_1, \alpha_1) \vdash \cdots \vdash (q_n, \varepsilon, \gamma)$$

where s is the initial state, Z is the initial stack symbol, and ε represents the empty word.

A word w is accepted by a pushdown automaton $M = (Q, \Sigma, \Gamma, \Delta, Z, s, F)$ if

$$(s,w,Z) \vdash^*_M (p,\varepsilon,\gamma), \text{with } p \in F.$$

Examples

 $\{a^n b^n \mid n \ge 0\}$

- $Q = \{s, p, q\}$,
- $\Sigma = \{a, b\}$,
- $\Gamma = \{A\},$
- $F = \{q\}$ and Δ contains the transitions

$$egin{aligned} &(s,a,arepsilon) o (s,A) \ &(s,arepsilon,Z) o (q,arepsilon) \ &(s,b,A) o (p,arepsilon) \ &(p,b,A) o (p,arepsilon) \ &(p,arepsilon,Z) o (q,arepsilon) \end{aligned}$$

The automaton $M = (Q, \Sigma, \Gamma, \Delta, Z, s, F)$ described below accepts the language

$$\{ww^R\}$$

- $Q = \{s, p, q\}$,
- $\Sigma = \{a, b\}$,
- $\Gamma = \{A, B\}$,
- $F = \{q\}$ and Δ contains the transitions

$$(s, a, \varepsilon)
ightarrow (s, A)$$

 $(s, b, \varepsilon)
ightarrow (s, B)$
 $(s, \varepsilon, \varepsilon)
ightarrow (p, \varepsilon)$
 $(p, a, A)
ightarrow (p, \varepsilon)$
 $(p, b, B)
ightarrow (p, \varepsilon)$
 $(p, \varepsilon, Z)
ightarrow (q, \varepsilon)$

Context-free languages

Definition:

A language is context-free if there exists a context-free grammar that can generate it.

Examples

The language $a^n b^n$, $n \ge 0$, is generated by the grammar whose rules are

1. $S \rightarrow aSb$

2. $S \rightarrow \varepsilon$.

The language containing all words of the form ww^R is generated by the grammar whose productions are

- 1. $S \rightarrow aSa$
- 2. $S \rightarrow bSb$
- 3. $S \rightarrow \varepsilon$.

The language generated by the grammar whose productions are

- 1. $S \rightarrow \varepsilon$
- 2. $S \rightarrow aB$
- 3. $S \rightarrow bA$
- 4. $A \rightarrow aS$
- 5. $A \rightarrow bAA$
- 6. $B \rightarrow bS$
- 7. $B \rightarrow aBB$

is the language of the words that contain the same number of a's and b's in any order

Relation with pushdown automata

Theorem

A language is context-free if and only if it is accepted by a pushdown automaton.

Properties of context-free languages

Let L_1 and L_2 be two context-free languages.

- The language $L_1 \cup L_2$ is context-free.
- The language $L_1 \cdot L_2$ is context-free.
- L_1^* is context-free.
- $L_1 \cap L_2$ and $\overline{L_1}$ are not necessarily context-free!
- If L_R is a regular language and if the language L_2 is context-free, then $L_R \cap L_2$ is context-free.

Let $M_R = (Q_R, \Sigma_R, \delta_R, s_R, F_R)$ be a deterministic finite automaton accepting L_R and let $M_2 = (Q_2, \Sigma_2, \Gamma_2, \Delta_2, Z_2, s_2, F_2)$ be a pushdown automaton accepting the language L_2 . The language $L_R \cap L_2$ is accepted by the pushdown automaton $M = (Q, \Sigma, \Gamma, \Delta, Z, s, F)$ for which

- $Q = Q_R \times Q_2$,
- $\Sigma = \Sigma_R \cup \Sigma_2$,
- $\Gamma = \Gamma_2$,
- $Z = Z_2$,
- $s = (s_R, s_2)$,
- $F = (F_R \times F_2),$

• (((q_R, q_2), u, β), ((p_R, p_2), γ)) $\in \Delta$ if and only if

 $(q_R, u) \vdash_{M_R}^* (p_R, \varepsilon)$ (the automaton M_R can move from the state q_R to the state p_R , while reading the word u, this move being done in one or several steps) and

 $((q_2, u, \beta), (p_2, \gamma)) \in \Delta_2$ (The pushdown automaton can move from the state q_2 to the state p_2 reading the word u and replacing β by γ on the stack).

4.3 Beyond context-free languages

- There exist languages that are not context-free (for cardinality reasons).
- We would like to show that some specific languages are not context-free.
- For this, we are going to prove a form of pumping lemma.
- This requires a more abstract notion of derivation.

Example

- 1. $S \rightarrow SS$
- 2. $S \rightarrow aSa$
- 3. $S \rightarrow bSb$
- 4. $S \rightarrow \varepsilon$

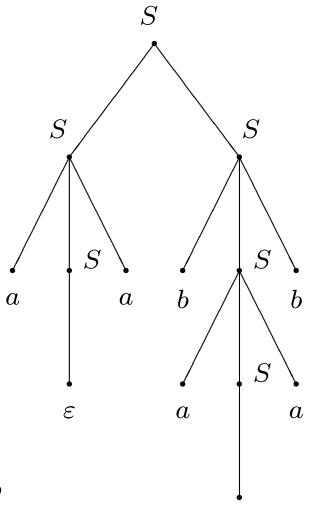
Generation of *aabaab*:

$$S \Rightarrow SS \Rightarrow aSaS \Rightarrow aaS$$
$$\Rightarrow aabSb \Rightarrow aabaSab \Rightarrow aabaab$$
$$S \Rightarrow SS \Rightarrow SbSb \Rightarrow SbaSab$$
$$\Rightarrow Sbaab \Rightarrow aSabaab \Rightarrow aabaab$$

and 8 other ways.

We need a representation of derivations that abstract from the order in which production rules are applied.

The notion of parse tree



Parse tree for *aabaab*

Definition

A parse tree for a context-free grammar $G = (V, \Sigma, R, S)$ is a tree whose nodes are labeled by elements of $V \cup \varepsilon$ and that satisfies the following conditions.

- The root is labeled by the start symbol S.
- Each interior node is labeled by a non-terminal.
- Each leaf is labeled by a terminal symbol or by ε .

For each interior node, if its label is the non-terminal A and if its direct successors are the nodes n₁, n₂, ..., n_k whose labels are respectively X₁, X₂, ..., X_k, then

$$A \to X_1 X_2 \dots X_k$$

must be a production of G.

• If a node is labeled by ε , then this node must be the only successor of its immediate predecessor (this last constraints aims only at preventing the introduction of unnecessary copied of ε in the parse tree).

Generated word

The word generated by a parse tree is the one obtained by concatenating its leaves from left to right

Theorem

Given a context-free grammar G, a word w is generated by G ($S \stackrel{*}{\Rightarrow}_{G} w$) if and only if there exists a parse tree for the grammar G that generates w.

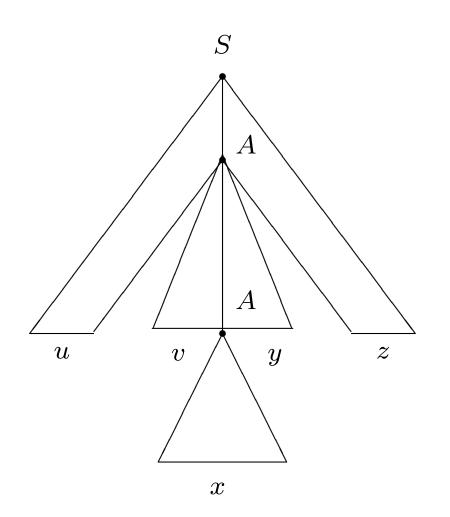
The pumping lemma

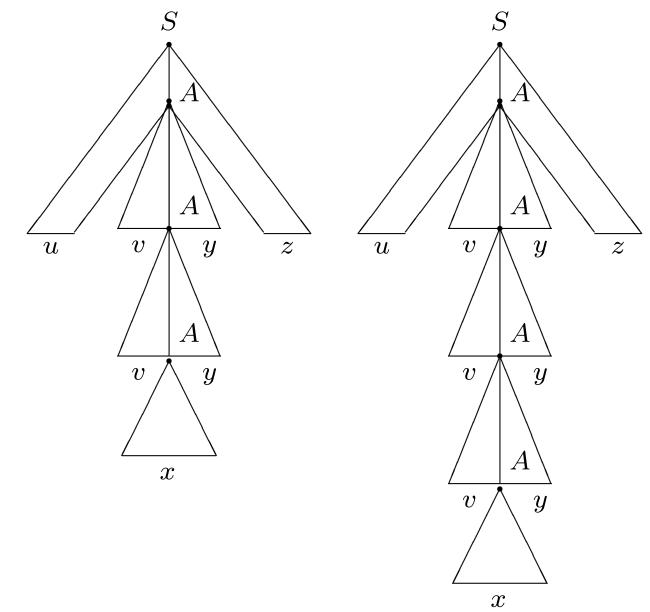
Lemma

Let L be a context-free language. Then there exists, a constant K such that for any word $w \in L$ satisfying $|w| \geq K$ can be written w = uvxyz with v or $y \neq \varepsilon$, $|vxy| \leq K$ and $uv^n xy^n z \in L$ for all n > 0.

Proof

A parse tree for G generating a sufficiently long word must contain a path on which the same non-terminal appears at least twice.





Choice of K

- $p = max\{|\alpha|, A \to \alpha \in R\}$
- The maximal length of a word generated by a tree of depth i is p^{i} .
- We choose $K = p^{m+1}$ where $m = |\{V \Sigma\}|$.
- Thus $|w| > p^m$ and the parse tree contains paths of length $\ge m + 1$ that must include the same non terminal at least twice.
- Going back up one of these paths, a given non terminal will be seen for the second time after having followed at m + 1 arcs. Thus one can choose vxy of length at most $p^{m+1} = K$.
- Note: v and y cannot both be the empty word for all paths of length greater than m + 1. Indeed, if this was the case, the generated word would be of length less than p^{m+1} .

Applications of the pumping lemma

 $L = \{a^n b^n c^n\}$ is not context-free.

Proof

There is no decomposition of $a^n b^n c^n$ in 5 parts u, v, x, y and z (v or y nonempty) such that, for all j > 0, $uv^j xy^j z \in L$. Thus the pumping lemma is not satisfied and the language cannot be context-free.

- v and y consist of the repetition of a unique letter. Impossible
- v and y include different letters. Impossible.

- 1. There exist two context-free languages L_1 and L_2 such that $L_1 \cap L_2$ is not context-free :
 - $L_1 = \{a^n b^n c^m\}$ is context-free,
 - $L_2 = \{a^m b^n c^n\}$ is context-free, but
 - $L_1 \cap L_2 = \{a^n b^n c^n\}$ is not context-free !
- 2. The complement of a context-free language is not necessarily context-free. Indeed, the union of context-free languages is always a context-free language. Thus, if the complement was context-free, so would be intersection:

$$L_1 \cap L_2 = \overline{\overline{L}_1 \cup \overline{L}_2}.$$

Algorithms for context-free languages

Let L be a context-free language (defined by a grammar or a pushdown automaton).

- 1. Given a word w, there exists an algorithm for checking whether $w \in L$.
- 2. There exists an algorithm for checking if $L = \emptyset$.
- 3. There is no algorithm for checking if $L = \Sigma^*$.
- 4. If L' is also a context-free language, there is no algorithm that can check if $L \cap L' = \emptyset$.

Theorem

Given context-free grammar G, there exists an algorithm that decides if a word w belongs to L(G).

Proof

- Pushdown automaton? No, since these are nondeterministic and contain transitions on the empty word.
- Idea: bound the length of the executions. This will be done in the context of grammars (bound on the length of derivations).

Hypothesis: bounded derivations

To check if $w \in L(G)$:

- 1. One computes a bound k on the number of steps that are necessary to derive a word of length |w|.
- 2. One then explores systematically all derivations of length less than or equal to k. There is a finite number of such derivations.
- 3. If one of these derivations produces the word w, the word is in L(G). If not, the word cannot be produced by the grammar and is not in L(G).

Grammars with bounded derivations

Problem:

$$\begin{array}{c} A \to B \\ B \to A \end{array}$$

Solution: Grammar satisfying the following constraints

- 1. $A \rightarrow \sigma$ with σ terminal, or
- 2. $A \rightarrow v$ with $|v| \geq 2$.
- 3. Exception: $S \rightarrow \varepsilon$

Bound: $2 \times |w| - 1$

Obtaining a grammar with bounded derivations

1. Eliminate rules of the form $A \rightarrow \varepsilon$.

If $A \to \varepsilon$ and $B \to vAu$ one adds the rule $B \to vu$. The rule $A \to \varepsilon$ can then be eliminated.

If one eliminates the rule $S \to \varepsilon$, one introduces a new start symbol S' and the rules $S' \to \varepsilon$, as well as $S' \to \alpha$ for each production of the form $S \to \alpha$.

2. Eliminating rules of the form $A \rightarrow B$.

For each pair of non-terminals A and B one determines if $A \stackrel{*}{\Rightarrow} B$.

If the answer is positive, for each production of the form $B \to u$ $(u \notin V - \Sigma)$, one adds the production $A \to u$.

All productions of the form $A \rightarrow B$ can then be eliminated.

Theorem

Given a context-free grammar G, there exists an algorithm for checking if $L(G) = \emptyset$.

- Idea: search for a parse tree for G.
- One builds parse trees in order of increasing depth.
- The depth of the parse trees can be limited to $|V \Sigma|$.

Deterministic pushdown automata

Two transitions $((p_1, u_1, \beta_1), (q_1, \gamma_1))$ and $((p_2, u_2, \beta_2), (q_2, \gamma_2))$ are compatible if

1. $p_1 = p_2$,

- 2. u_1 and u_2 are compatible (which means that u_1 is a prefix of u_2 or that u_2 is a prefix of u_1),
- 3. β_1 and β_2 are compatible.

A pushdown automaton is deterministic if for every pair of compatible transitions, theses transitions are identical.

Deterministic context-free languages

Let L be a language defined over the alphabet Σ , the language L is deterministic context-free if and only if it is accepted by a deterministic pushdown automaton.

- Not all context-free languages are deterministic context-free.
- $L_1 = \{wcw^R \mid w \in \{a, b\}^*\}$ is deterministic context-free.
- $L_2 = \{ww^R \mid w \in \{a, b\}^*\}$ is context-free, but not deterministic context-free.

Properties of deterministic context-free languages

If L_1 and L_2 are deterministic context-free languages,

- $\Sigma^* L_1$ is also deterministic context-free.
- There exists context-free languages that are not deterministic context-free.
- The languages $L_1 \cup L_2$ and $L_1 \cap L_2$ are not necessarily deterministic context-free.

Applications of context-free languages

- Description and syntactic analysis of programming languages.
- Restriction to deterministic context-free languages.
- Restricted families of grammars:LR.