Chapter 5 Turing Machines

5.1 Introduction

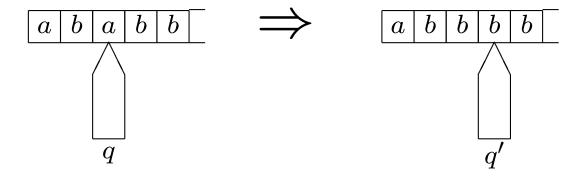
- The language $a^nb^nc^n$ cannot be accepted by a pushdown automaton.
- Machines with an infinite memory, which is not restricted to LIFO access.
- Model of the concept of effective procedure.
- Justification : extensions are not more powerful; other formalizations are equivalent.

5.2 Definition

- Infinite memory viewed as a tape divided into cells that can hold one character of a tape alphabet.
- Read head.
- Finite set of states, accepting states.
- transition function that, for each state and tape symbol pair gives
 - the next state,
 - a character to be written on the tape,
 - the direction (left or right) in which the read head moves by one cell.

Execution

- Initially, the input word is on the tape, the rest of the tape is filled with "blank" symbols, the read head is on the leftmost cell of the tape.
- At each step, the machine
 - reads the symbol from the cell that is under the read head,
 - replaces this symbol as specified by the transition function,
 - moves the read head one cell to the left or to the right, as specified by the transition function.
 - changes state as described by the transition function,
- the input word is accepted as soon as an accepting state is reached.



Formalization

7-tuple $M = (Q, \Gamma, \Sigma, \delta, s, B, F)$, where:

- Q is a finite set of states,
- Γ is the tape alphabet,
- $\Sigma \subseteq \Gamma$ is the input alphabet,
- $s \in Q$ is the initial state,
- \bullet $F \subseteq Q$ is the set of accepting states,
- $B \in \Gamma \Sigma$ is the "blank symbol" (#),
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the transition function.

Configuration

The required information is:

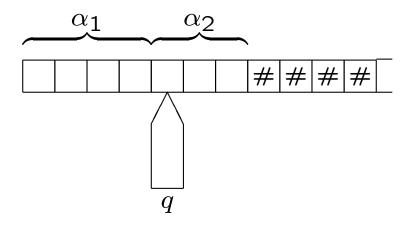
- 1. The state,
- 2. the tape content,
- 3. the position of the read head.

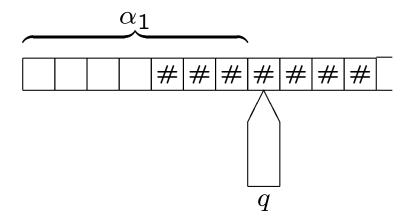
Representation: 3-tuple containing

- 1. the state of the machine,
- 2. the word found on the tape up to the read head,
- 3. the word found on the tape from the read head on.

Formally, a configuration is an element of $Q \times \Gamma^* \times (\varepsilon \cup \Gamma^*(\Gamma - \{B\}))$.

Configurations (q, α_1, α_2) and $(q, \alpha_1, \varepsilon)$.





Derivation

Configuration (q, α_1, α_2) written as $(q, \alpha_1, b\alpha_2')$ with b = # if $\alpha_2 = \varepsilon$.

• If $\delta(q,b)=(q',b',R)$ we have

$$(q, \alpha_1, b\alpha_2') \vdash_M (q', \alpha_1b', \alpha_2').$$

• If $\delta(q,b)=(q',b',L)$ and if $\alpha_1\neq \varepsilon$ and is thus of the form $\alpha_1'a$ we have $(q,\alpha_1'a,b\alpha_2')\vdash_M (q',\alpha_1',ab'\alpha_2').$

Derivation

A configuration C' is derivable in several steps from the configuration C by the machine M $(C \vdash_M^* C')$ if there exists $k \geq 0$ and intermediate configurations $C_0, C_1, C_2, \ldots, C_k$ such that

•
$$C = C_0$$
,

$$\bullet$$
 $C' = C_k$,

• $C_i \vdash_M C_{i+1}$ for $0 \le i < k$.

The language L(M) accepted by the Turing machine is the set of words w such that

$$(s, \varepsilon, w) \vdash_M^* (p, \alpha_1, \alpha_2)$$
, with $p \in F$.

Example

Turing machine $M = (Q, \Gamma, \Sigma, \delta, s, B, F)$ with

•
$$Q = \{q_0, q_1, q_2, q_3, q_4\},$$

•
$$\Gamma = \{a, b, X, Y, \#\}$$
,

$$\bullet \ \Sigma = \{a, b\},\$$

- $s = q_0$,
- B = #,
- ullet δ given by

	a	b	X	Y	#
q_0	(q_1, X, R)	_	_	(q_3, Y, R)	_
$ q_1 $	(q_1, a, R)	(q_2, Y, L)	_	(q_1, Y, R)	_
q_2	(q_2, a, L)	_	(q_0, X, R)	(q_2, Y, L)	_
q_3	_	_	_	(q_3, Y, R)	$(q_4, \#, R)$
q_4	_	_	_	_	_

M accepts a^nb^n . For example, its execution on aaabbb is

	i i
$(q_0, \varepsilon, aaabbb)$	$(q_1, XXXYY, b)$
$(q_1, X, aabbb)$	$(q_2, XXXY, YY)$
$(q_1, Xa, abbb)$	(q_2, XXX, YYY)
(q_1, Xaa, bbb)	$(q_2, XX, XYYY)$
$(q_2, Xa, aYbb)$	(q_0, XXX, YYY)
$(q_2, X, aaYbb)$	$(q_3, XXXY, YY)$
$(q_2, \varepsilon, XaaYbb)$	$(q_3, XXXYY, Y)$
$(q_0, X, aaYbb)$	$(q_3, XXXYYY, \varepsilon)$
$(q_1, XX, aYbb)$	$(q_4, XXXYYY\#, \varepsilon)$

Accepted language Decided language

Turing machine = effective procedure ? Not always. The following situation are possible.

- 1. The sequence of configurations contains an accepting state.
- 2. The sequence of configurations ends because either
 - the transition function is not defined, or
 - it requires a left move from the first cell on the tape.
- 3. The sequence of configurations never goes through an accepting state and is infinite.

In the first two cases, we have an effective procedure, in the third not.

The $\it execution$ of a Turing machine on a word $\it w$ is the maximal sequence of configurations

$$(s, \varepsilon, w) \vdash_M C_1 \vdash_M C_2 \vdash_M \cdots \vdash_M C_k \vdash_M \ldots$$

i.e., the sequence of configuration that either

- is infinite,
- ends in a configuration in which the state is accepting, or
- ends in a configuration from which no other configuration is derivable.

Decided language: A language L is decided by a Turing machine M if

- M accepts L,
- M has no infinite executions.

Decided Language

Deterministic Automata!

- Deterministic finite automata: the accepted and decided languages are the same.
- Nondeterministic finite automata: meaningless.
- Nondeterministic pushdown automata: meaningless, but the context-free languages can be decided by a Turing machine.
- Deterministic pushdown automata : the accepted language is decided, except if infinite executions exist (loops with only ε transitions).

Other definitions of Turing machines

- Single stop state and a transition function that is defined everywhere.
 In the stop state; the result is placed on the tape: tape: "accepts"
 or "does not accept" (0).
- 2. Two stop states: q_Y and q_N , and a transition function that is defined everywhere.

Recursive and recursively enumerable languages

A language is *recursive* if it is decided by a Turing machine.

A language is recursively enumerable if it is accepted by a Turing machine.

The Turing-Church thesis

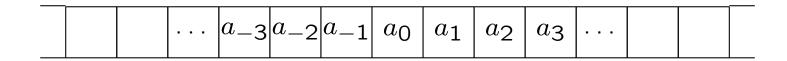
The languages that can be recognized by an effective procedure are those that are decided by a Turing machine.

Justification.

- 1. If a language is decided by a Turing machine, it is computable: clear.
- 2. If a language is computable, it is decided by a Turing machine:
 - Extensions of Turing machines and other machines.
 - Other models.

Extensions of Turing machines

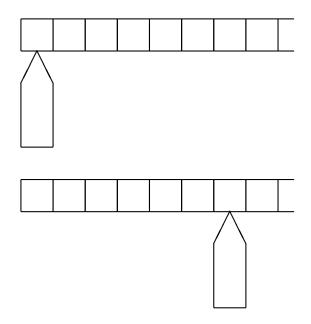
Tape that is infinite in both directions



a_0	a_1	a_2	a_3		
\$	a_{-1}	a_{-2}	a_{-3}		

Multiple tapes

Several tapes and read heads:

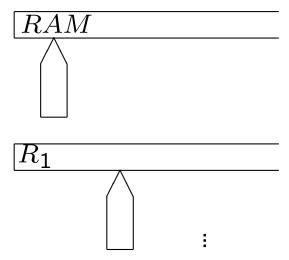


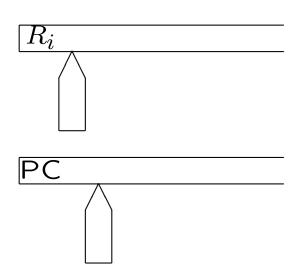
Simulation (2 tapes) : alphabet = 4-tuple

- Two elements represent the content of the tapes,
- Two elements represent the position of the read heads.

Machines with RAM

One tape for the memory, one for each register.





Simulation: $\# \mid 0 \mid * \mid v_0 \mid \# \mid 1 \mid * \mid v_1 \mid \# \mid ... \mid \# \mid a \mid d \mid d \mid i \mid * \mid v_i \mid \# \mid$

Nondeterministic Turing machines

Transition relation:

$$\Delta: (Q \times \Gamma) \times (Q \times \Gamma \times \{L, R\})$$

The execution is no longer unique.

Eliminating non-determinism

Theorem

Any language that is accepted by a nondeterministic Turing machine is also accepted by a deterministic Turing machine.

Proof

Simulate the executions in increasing-length order.

$$r = \max_{q \in Q, a \in \Gamma} |\{((q, a), (q', x, X)) \in \Delta\}|.$$

Three tape machine:

- 1. The first tape holds the input word and is not modified.
- 2. The second tape will hold sequences of numbers less than r.
- 3. The third tape is used by the deterministic machine to simulate the nondeterministic one.

The deterministic machine proceeds as follows.

- 1. On the second tape it generates all finite sequences of numbers less than r. These sequences are generated in increasing length order.
- 2. For each of these sequences, it simulates the nondeterministic machine, the choice being made according to the sequence of numbers.
- 3. It stops as soon as the simulation of an execution reaches an accepting state.

Universal Turing machines

A Turing machine that can simulate any Turing machine.

- \bullet Turing machine M.
- ullet Data for M: M' and a word w.
- M simulates the execution of M' on w.

Turing machine computable functions

A Turing machine computes a function $f: \Sigma^* \to \Sigma^*$ if, for any input word w, it always stops in a configuration where f(w) is on the tape.

The functions that are computable by an effective procedure are those that are computable by a Turing machine