
Chapter 6

Recursive functions

165

6.1 Introduction

• Other formalization of the concept of effective procedure: computable

functions over the natural numbers.

• Computable functions?

– Basic functions.

– Function composition.

– Recursion mechanism.

166

6.2 Primitive recursive functions

Functions in the set {Nk → N | k ≥ 0}.

1. Basic primitive recursive functions.

1. 0()

2. πki (n1, . . . , nk)

3. σ(n)

167

2. Function composition.

• Let g be a function with ` arguments,

• h1, . . . , h` functions with k arguments.

• f(n) = g(h1(n), . . . , h`(n)) is the composition of g and of the functions

hi.

168

3. Primitive recursion.

• Let g be a function with k arguments and h a function with k + 2

arguments.

•

f(n,0) = g(n)
f(n,m+ 1) = h(n,m, f(n,m))

is the function defined from g and h by primitive recursion.

• Remark: f is computable if g and h are computable.

169

Definition

The Primitive recursive functions are :

• the basic primitive recursive functions ;

• all functions that can be obtained from the basic primitive recursive

functions by using composition and primitive recursion any number of

times.

170

Examples

Constant functions :

j() =

j︷ ︸︸ ︷
σ(σ(. . . σ(0())))

Addition function:

plus(n1,0) = π1
1(n1)

plus(n1, n2 + 1) = σ(π3
3(n1, n2, plus(n1, n2)))

Simplified notation :

plus(n1,0) = n1
plus(n1, n2 + 1) = σ(plus(n1, n2))

171

Evaluation of plus(4,7) :

plus(7,4) = plus(7,3 + 1)
= σ(plus(7,3))
= σ(σ(plus(7,2)))
= σ(σ(σ(plus(7,1))))
= σ(σ(σ(σ(plus(7,0)))))
= σ(σ(σ(σ(7))))
= 11

Product function :

n× 0 = 0
n× (m+ 1) = n+ (n×m)

172

Power function:

n0 = 1
nm+1 = n× nm

Double power :

n ↑↑ 0 = 1
n ↑↑ m+ 1 = nn↑↑m

n ↑↑ m = nn
n·
··
·n

}m

173

Triple power:

n ↑↑↑ 0 = 1
n ↑↑↑ m+ 1 = n ↑↑ (n ↑↑↑ m)

k-power :

n ↑k 0 = 1
n ↑k m+ 1 = n ↑k−1 (n ↑k m).

If k is an argument:

f(k + 1, n,m+ 1) = f(k, n, f(k + 1, n,m)).

Ackermann’s function:

Ack(0,m) = m+ 1
Ack(k + 1,0) = Ack(k,1)
Ack(k + 1,m+ 1) = Ack(k,Ack(k + 1,m))

174

Factorial function:

0! = 1
(n+ 1)! = (n+ 1).n!

Predecessor function:

pred(0) = 0
pred(m+ 1) = m

Difference function:

n · 0 = n
n · (m+ 1) = pred(n ·m)

175

Sign function:

sg(0) = 0
sg(m+ 1) = 1

Bounded product:

f(n,m) =
m∏
i=0

g(n, i)

f(n,0) = g(n,0)
f(n,m+ 1) = f(n,m)× g(n,m+ 1)

176

6.3 Primitive recursive predicates

A predicate P with k arguments is a subset of Nk (the elements of Nk for

which P is true).

The characteristic function of a predicate P ⊆ Nk is the function

f : Nk → {0,1}such that

f(n) =

{
0 si n 6∈ P
1 si n ∈ P

A predicate is primitive recursive if its characteristic function is primitive

recursive.

177

Examples

Zero predicate :

zerop(0) = 1
zerop(n+ 1) = 0

< predicate :

less(n,m) = sg(m · n)

Boolean predicates :

and(g1(n), g2(n)) = g1(n)× g2(n)
or(g1(n), g2(n)) = sg(g1(n) + g2(n))
not(g1(n)) = 1 · g1(n)

= predicate :

equal(n,m) = 1 · (sg(m · n) + sg(n ·m))

178

Bounded quantification :

∀i ≤ m p(n, i)

is true if p(n, i) is true for all i ≤ m.

∃i ≤ m p(n, i)

is true if p(n, i) is true for at least one i ≤ m.

∀i ≤ mp(n, i) :
m∏
i=0

p(n, i)

∃i ≤ mp(n, i) :

1 ·
m∏
i=0

(1 · p(n, i)).

179

Definition by case :

f(n) =

g1(n) if p1(n)
...
g`(n) if p`(n)

f(n) = g1(n)× p1(n) + . . .+ g`(n)× p`(n).

Bounded minimization :

µi ≤ m q(n, i) ={
the smallest i ≤ m such that q(n, i) = 1,
0 if there is no such i

µi ≤ 0 q(n, i) = 0
µi ≤ m+ 1 q(n, i) =

0 if ¬∃i ≤ m+ 1 q(n, i)
µi ≤ m q(n, i) if ∃i ≤ m q(n, i)
m+ 1 if q(n,m+ 1)

and ¬∃i ≤ m q(n, i)

180

6.4 Beyond primitive recursive functions

Theorem

There exist computable functions that are not primitive recursive.

A 0 1 2 . . . j . . .
f0 f0(0) f0(1) f0(2) . . . f0(j) . . .
f1 f1(0) f1(1) f1(2) . . . f1(j) . . .
f2 f2(0) f2(1) f2(2) . . . f2(j) . . .
...
fi fi(0) fi(1) fi(2) . . . fi(j) . . .
...

g(n) = fn(n) + 1 = A[n, n] + 1.

is not primitive recursive, but is computable.

181

6.4 The µ-recursive functions

Unbounded minimization :

µi q(n, i) =

{
the smallest i such that q(n, i) = 1
0 if such an i does not exist

A predicate q(n, i) is said to be safe if

∀n ∃i q(n, i) = 1.

The µ-recursive functions and predicates are those obtained from the

basic primitive recursive functions by :

• composition, primitive recursion, and

• unbounded minimization of safe predicates.

182

µ-recursive functions and

computable functions

Numbers and character strings :

Lemma

There exists an effective representation of numbers by character strings.

Lemma

There exists an effective representation of character strings by natural

numbers.

Alphabet Σ of size k. Each symbol of Σ is represented by an integer

between 0 and k − 1. The representation of a string w = w0 . . . wl is thus:

gd(w) =
l∑

i=0

kl−igd(wi)

183

Example : Σ = {abcdefghij}.

gd(a) = 0
gd(b) = 1

...
gd(i) = 8
gd(j) = 9

gd(aabaafgj) = 00100569.

This encoding is ambiguous :

gd(aaabaafgj) = 000100569 =
00100569 = gd(aabaafgj)

Solution: use an alphabet of size k + 1 and do not encode any symbol by
0.

gd(w) =
l∑

i=0

(k + 1)l−igd(wi).

184

From µ-recursive functions

To Turing machines

Theorem

Every µ-recursive function is computable by a Turing machine..

1. The basic primitive recursive functions are Turing machine

computable;

2. Composition, primitive recursion and bounded minimization applied to

Turing computable functions yield Turing computable functions.

185

From Turing machines to

µ-recursive functions

Theorem

Every Turing computable functions is µ-recursive.

Let M be a Turing machine. One proves that there exists a µ-recursive

function fM such that

fM(w) = gd−1(f(gd(w))).

Useful predicates :

1. init(x) initial configuration of M .

2. next config(x)

186

3.

config(x, n)

config(x,0) = x
config(x, n+ 1) =
next config(config(x, n))

4. stop(x) =

{
1 if x final
0 if not

5. output(x)

We then have :

f(x) = output(config(init(x), nb of steps(x)))

where

nb of steps(x) = µi stop(config(init(x), i)).

187

Partial functions

A partial function f : Σ∗ → Σ∗ is computed by a Turing machine M if,

• for every input word w for which f is defined, M stops in a

configuration in which f(w) is on the tape,

• for every input word w for which f is not defined, M does not stop or

stops indicating that the function is not defined by writing a special

value on the tape.

188

A partial function f : N → N is µ-recursive if it can be defined from basic

primitive recursive functions by

• composition,

• primitive recursion,

• unbounded minimization.

Unbounded minimization can be applied to unsafe predicates. The

function µi p(n, i) is undefined when there is no i such that p(n, i) = 1.

Theorem

A partial function is µ-recursive if and only if it is Turing computable.

189

