Chapter 6
Recursive functions

165



6.1 Introduction

e Other formalization of the concept of effective procedure: computable
functions over the natural numbers.

e Computable functions?
— Basic functions.
— Function composition.

— Recursion mechanism.

166



6.2 Primitive recursive functions
Functions in the set {N* — N | k> 0}.

1. Basic primitive recursive functions.
1. 00
2. Wf(nl, )

3. o(n)

167



2. Function composition.

e Let g be a function with ¢ arguments,

e hi,...,hy functions with k arguments.

o f(m) =g(hi1(m),...,hp(m)) is the composition of g and of the functions
h;.

168



3. Primitive recursion.

e Let g be a function with k£ arguments and A a function with k + 2
arguments.

f(m,0) g(m)
f(m,m+1) h(m, m, f(m, m))

is the function defined from g and h by primitive recursion.

e Remark: f is computable if g and h are computable.

169



Definition
The Primitive recursive functions are :

e the basic primitive recursive functions ;

e all functions that can be obtained from the basic primitive recursive
functions by using composition and primitive recursion any number of
times.

170



Examples

Constant functions :

J

7\

iO = a(e(...a(00)))

Addition function:

plus(nq,0)
plus(ny,no + 1)

w1 (n1)
J(Wg(nla na, pZUS(’I’L]_, 7’L2)))

Simplified notation :

plus(nqy,0)
plus(ny,no + 1)

n1
o(plus(ni,n2))

171



Evaluation of plus(4,7) :

plus(7,4) plus(7,3+ 1)
o(plus(7,3))
o(o(plus(7,2)))
o(o(o(plus(7,1))))
o(o(a(o(plus(7,0)))))
o(o(a(a(7))))

11

Product function :

n X 0

nx(m-41)

n—+ (n x m)

172



Power function:

n0 = 1
nmtl —= pxnm
Double power :
n 1T 0 = 1
nTTm+1 = pnlTm

niTm= nnn.- }’m

173



Triple power:

n 1170 = 1

R m+1 = 01l (111 m)
k-power :

n 1k 0 = 1

nt*m4+1 = ntF~1 (n1Em).

If £ is an argument:

f(k+1,n,m+1)

f(k,n, f(k+4+1,n,m)).

Ackermann’s function:
Ack(0,m)

Ack(k 4+ 1,0)
Ack(E+1,m+ 1)

m-+ 1
Ack(k,1)
Ack(k, Ack(k+ 1,m))

174



Factorial function:

0! = 1
(n+ 1) = (n4+1).n!
Predecessor function:
pred(0) =0
pred(m +1) = m
Difference function:
n—0 = n
n~-(m+1) = pred(n-m)

175



Sign function:

sg(0)
sg(m+ 1)

Il
[

Bounded product:

Fmm) = ] 9(n.d)
1=0

g(m,0)
f(m,m) x g(m,m+ 1)

f(m,0)
f(m,m+41)

176



6.3 Primitive recursive predicates

A predicate P with k arguments is a subset of N¥ (the elements of Nk for
which P is true).

The characteristic function of a predicate P C NF¥ is the function
f: N¥ — {0,1}such that

O singP

1 sineP

f(m) = {

A predicate is primitive recursive if its characteristic function is primitive
recursive.

177



Examples

Zero predicate :

zerop(0) =1
zerop(n+1) = O
< predicate :
less(n,m) = sg(m-n)

Boolean predicates :

and(g1(m), g2(7)) g1(m) x go(m)

or(g1 (@), g2()) = s9(g1() + g2())
not(g1(m)) = 1-g1(n)

= predicate :
equal(n,m) = 1-(sg(m-n) 4+ sg(n-m))

178



Bounded quantification :

Vi < m p(m,1)

is true if p(m,1) is true for all i < m.

Ji < m p(m,1)

is true if p(m,1) is true for at least one i < m.

Vi < mp(m, i)

I p(7, %)
i—0

i < mp(m,1) :

1- ﬁ (1-p(m,i)).
1=0

179



Definition by case :

g1(m) if p1(M)
f(m) =1 :
ge(m) if pp(m)

fm) =g1(m) x p1(M) + ... + go(M) X py(M).

Bounded minimization :

pi <m q(m,i) =
the smallest i < m such that ¢q(m,7) = 1,
O if there is no such 2

pi <0 q(m,i) = O
pi <m—+1 q(m,i) =
e if =3t <m+1 g(n,1)
pi <m q(m,q) if 35 <m q(7m,1)
m+ 1 if g(m,m -+ 1)
\ and =3 < m q(m,1)

180



6.4 Beyond primitive recursive functions

T heorem
There exist computable functions that are not primitive recursive.

A 0 1 2

o
fo | fo(0) fo(1l) fo(2) ... fo(4)
fil f10) f1(1) f12) ... fi1(5)
fo f2§0) f2§1) f2§2) . fé(j)
fz fi(:o) fq;(:l) fi(:Q) . fi(:j)

g(n) = fa(n) +1 = Aln,n] + 1.

IS not primitive recursive, but is computable.

181



6.4 The pu-recursive functions
Unbounded minimization :

i q(m. 1) = the smallest ¢ such that ¢q(m,i) =1
HEAYHT) =9 0 if such an i does not exist

A predicate ¢q(m,1) is said to be safe if

v 3i q(m,i) = 1.

The u-recursive functions and predicates are those obtained from the
basic primitive recursive functions by :

e composition, primitive recursion, and

e Uunbounded minimization of safe predicates.

182



u-recursive functions and
computable functions

Numbers and character strings

Lemma
T here exists an effective representation of numbers by character strings.

Lemma
T here exists an effective representation of character strings by natural

numbers.

Alphabet > of size k. Each symbol of > is represented by an integer
between O and k — 1. The representation of a string w = wqg...w; is thus:

[

gd(w) = 3 k' gd(w;)
1=0

183



Example : X = {abcdefghij}.

gd(a) = O
gd(b) = 1
gd(i) = 8
gd(j) = 9

gd(aabaafgj) = 00100569.

This encoding is ambiguous

gd(aaabaafgj) = 000100569 =
00100569 = gd(aabaafgj)

Solution: use an alphabet of size £k + 1 and do not encode any symbol by
0.

l .
gd(w) = 3 (k+ 1) "gd(w;).
i—0

184



From p-recursive functions
To Turing machines

T heorem
Every p-recursive function is computable by a Turing machine..

1. The basic primitive recursive functions are Turing machine
computable;

2. Composition, primitive recursion and bounded minimization applied to
Turing computable functions yield Turing computable functions.

185



From Turing machines to
u-recursive functions

Theorem
Every Turing computable functions is u-recursive.

Let M be a Turing machine. One proves that there exists a u-recursive
function f,; such that

Fu(w) = gd= (£ (gd(w))).

Useful predicates :

1. nit(x) initial configuration of M.

2. next_config(x)

186



config(x,0) = x
config(x,n) { config(x,n+ 1) =
next_config(config(x,n))

1 if = final
4. stop() :{ 0 if not

5. output(x)

We then have :
f(x) = output(config(init(x), nb_of _steps(x)))
where

nb_of _steps(x) = pi stop(config(init(x),7)).

187



Partial functions

A partial function f :3X* — >* is computed by a Turing machine M if,

e for every input word w for which f is defined, M stops in a
configuration in which f(w) is on the tape,

e for every input word w for which f is not defined, M does not stop or
stops indicating that the function is not defined by writing a special
value on the tape.

188



A partial function f : N — N is u-recursive if it can be defined from basic
primitive recursive functions by

e composition,
e primitive recursion,
e unbounded minimization.

Unbounded minimization can be applied to unsafe predicates. The
function ui p(m, i) is undefined when there is no 7 such that p(m,7) = 1.

T heorem
A partial function is p-recursive if and only if it is Turing computable.

189



