Chapter 6

Recursive functions

6.1 Introduction

- Other formalization of the concept of effective procedure: computable functions over the natural numbers.
- Computable functions?
- Basic functions.
- Function composition.
- Recursion mechanism.

6.2 Primitive recursive functions

Functions in the set $\left\{N^{k} \rightarrow N \mid k \geq 0\right\}$.

1. Basic primitive recursive functions.
2. 0()
3. $\pi_{i}^{k}\left(n_{1}, \ldots, n_{k}\right)$
4. $\sigma(n)$
5. Function composition.

- Let g be a function with ℓ arguments,
- h_{1}, \ldots, h_{ℓ} functions with k arguments.
- $f(\bar{n})=g\left(h_{1}(\bar{n}), \ldots, h_{\ell}(\bar{n})\right)$ is the composition of g and of the functions h_{i}.

3. Primitive recursion.

- Let g be a function with k arguments and h a function with $k+2$ arguments.

$$
\begin{array}{ll}
f(\bar{n}, 0) & =g(\bar{n}) \\
f(\bar{n}, m+1) & =h(\bar{n}, m, f(\bar{n}, m))
\end{array}
$$

is the function defined from g and h by primitive recursion.

- Remark: f is computable if g and h are computable.

Definition

The Primitive recursive functions are :

- the basic primitive recursive functions ;
- all functions that can be obtained from the basic primitive recursive functions by using composition and primitive recursion any number of times.

Examples

Constant functions:

$$
\mathbf{j}()=\overbrace{\sigma(\sigma(\ldots \sigma(0())))}^{j} 0
$$

Addition function:

$$
\begin{array}{ll}
\text { plus }\left(n_{1}, 0\right) & =\pi_{1}^{1}\left(n_{1}\right) \\
\text { plus }\left(n_{1}, n_{2}+1\right) & =\sigma\left(\pi_{3}^{3}\left(n_{1}, n_{2}, \operatorname{plus}\left(n_{1}, n_{2}\right)\right)\right)
\end{array}
$$

Simplified notation :

$$
\begin{array}{ll}
\operatorname{plus}\left(n_{1}, 0\right) & =n_{1} \\
\operatorname{plus}\left(n_{1}, n_{2}+1\right) & =\sigma\left(\operatorname{plus}\left(n_{1}, n_{2}\right)\right)
\end{array}
$$

Evaluation of plus $(4,7)$:

$$
\begin{aligned}
\operatorname{plus}(7,4) & =\operatorname{plus}(7,3+1) \\
& =\sigma(p l u s(7,3)) \\
& =\sigma(\sigma(p l u s(7,2))) \\
& =\sigma(\sigma(\sigma(p l u s(7,1)))) \\
& =\sigma(\sigma(\sigma(\sigma(p l u s(7,0))))) \\
& =\sigma(\sigma(\sigma(\sigma(7)))) \\
& =11
\end{aligned}
$$

Product function :

$$
\begin{array}{ll}
n \times 0 & =0 \\
n \times(m+1) & =n+(n \times m)
\end{array}
$$

Power function:

$$
\begin{aligned}
& n^{0}=1 \\
& n^{m+1}=n \times n^{m}
\end{aligned}
$$

Double power :

$$
\begin{aligned}
& n \uparrow \uparrow 0=1 \\
& n \uparrow \uparrow m+1=n^{n \uparrow \uparrow m} \\
& \\
& \left.n \uparrow \uparrow m=n^{n^{n \cdot}} \quad\right\} m
\end{aligned}
$$

Triple power:

$$
\begin{array}{ll}
n \uparrow \uparrow \uparrow 0 & =1 \\
n \uparrow \uparrow \uparrow m+1 & =n \uparrow \uparrow(n \uparrow \uparrow \uparrow m)
\end{array}
$$

k-power :

$$
\begin{array}{ll}
n \uparrow^{k} 0 & =1 \\
n \uparrow^{k} m+1 & =n \uparrow^{k-1}\left(n \uparrow^{k} m\right)
\end{array}
$$

If k is an argument:

$$
f(k+1, n, m+1)=f(k, n, f(k+1, n, m))
$$

Ackermann's function:

$$
\begin{array}{ll}
\operatorname{Ack}(0, m) & =m+1 \\
\operatorname{Ack}(k+1,0) & =\operatorname{Ack}(k, 1) \\
\operatorname{Ack}(k+1, m+1) & =\operatorname{Ack}(k, \operatorname{Ack}(k+1, m))
\end{array}
$$

Factorial function:

$$
\begin{array}{ll}
0! & =1 \\
(n+1)! & =(n+1) \cdot n!
\end{array}
$$

Predecessor function:

$$
\begin{array}{lll}
\operatorname{pred}(0) & =0 \\
\operatorname{pred}(m+1) & =m
\end{array}
$$

Difference function:

$$
\begin{array}{ll}
n \dot{-} 0 & =n \\
n \dot{-}(m+1) & =\operatorname{pred}(n \dot{-} m)
\end{array}
$$

Sign function:

$$
\begin{array}{ll}
s g(0) & =0 \\
s g(m+1) & =1
\end{array}
$$

Bounded product:

$$
\begin{gathered}
f(\bar{n}, m)=\prod_{i=0}^{m} g(\bar{n}, i) \\
\begin{array}{l}
f(\bar{n}, 0) \\
f(\bar{n}, m+1)=
\end{array}=g(\bar{n}, 0) \\
=f(\bar{n}, m) \times g(\bar{n}, m+1)
\end{gathered}
$$

6.3 Primitive recursive predicates

A predicate P with k arguments is a subset of N^{k} (the elements of N^{k} for which P is true).

The characteristic function of a predicate $P \subseteq N^{k}$ is the function $f: N^{k} \rightarrow\{0,1\}$ such that

$$
f(\bar{n})= \begin{cases}0 & \text { si } \bar{n} \notin P \\ 1 & \text { si } \bar{n} \in P\end{cases}
$$

A predicate is primitive recursive if its characteristic function is primitive recursive.

Examples

Zero predicate :

$$
\begin{array}{lll}
z \operatorname{erop}(0) & =1 \\
z \operatorname{erop}(n+1) & =0
\end{array}
$$

$<$ predicate :

$$
\operatorname{less}(n, m)=s g(m \dot{-} n)
$$

Boolean predicates:

$$
\begin{array}{ll}
\operatorname{and}\left(g_{1}(\bar{n}), g_{2}(\bar{n})\right) & =g_{1}(\bar{n}) \times g_{2}(\bar{n}) \\
\operatorname{or}\left(g_{1}(\bar{n}), g_{2}(\bar{n})\right) & =\operatorname{sg}\left(g_{1}(\bar{n})+g_{2}(\bar{n})\right) \\
\operatorname{not}\left(g_{1}(\bar{n})\right) & =1 \dot{-} g_{1}(\bar{n})
\end{array}
$$

$=$ predicate :

$$
\operatorname{equal}(n, m)=1 \dot{-}(s g(m \dot{-} n)+s g(n \dot{-} m))
$$

Bounded quantification :

$$
\forall i \leq m p(\bar{n}, i)
$$

is true if $p(\bar{n}, i)$ is true for all $i \leq m$.

$$
\exists i \leq m p(\bar{n}, i)
$$

is true if $p(\bar{n}, i)$ is true for at least one $i \leq m$.
$\forall i \leq m p(\bar{n}, i):$

$$
\prod_{i=0}^{m} p(\bar{n}, i)
$$

$\exists i \leq m p(\bar{n}, i):$

$$
1-\prod_{i=0}^{m}(1-p(\bar{n}, i))
$$

Definition by case :

$$
\begin{gathered}
f(\bar{n})= \begin{cases}g_{1}(\bar{n}) & \text { if } p_{1}(\bar{n}) \\
\vdots & \\
g_{\ell}(\bar{n}) & \text { if } p_{\ell}(\bar{n})\end{cases} \\
f(\bar{n})=g_{1}(\bar{n}) \times p_{1}(\bar{n})+\ldots+g_{\ell}(\bar{n}) \times p_{\ell}(\bar{n}) .
\end{gathered}
$$

Bounded minimization :
$\mu i \leq m q(\bar{n}, i)=$
$\left\{\begin{array}{l}\text { the smallest } i \leq m \text { such that } q(\bar{n}, i)=1, \\ 0 \text { if there is no such } i\end{array}\right.$

\[

\]

6.4 Beyond primitive recursive functions

Theorem

There exist computable functions that are not primitive recursive.

A	0	1	2	\ldots	j	\ldots
f_{0}	$f_{0}(0)$	$f_{0}(1)$	$f_{0}(2)$	\cdots	$f_{0}(j)$	\cdots
f_{1}	$f_{1}(0)$	$f_{1}(1)$	$f_{1}(2)$	\cdots	$f_{1}(j)$	\cdots
f_{2}	$f_{2}(0)$	$f_{2}(1)$	$f_{2}(2)$	\cdots	$f_{2}(j)$	\cdots
\vdots	\vdots	\vdots	\vdots	\ddots	\vdots	
f_{i}	$f_{i}(0)$	$f_{i}(1)$	$f_{i}(2)$	\cdots	$f_{i}(j)$	\cdots
\vdots	\vdots	\vdots	\vdots		\vdots	\ddots

is not primitive recursive, but is computable.

6.4 The μ-recursive functions

Unbounded minimization:

$$
\mu i q(\bar{n}, i)=\left\{\begin{array}{l}
\text { the smallest } i \text { such that } q(\bar{n}, i)=1 \\
0 \text { if such an } i \text { does not exist }
\end{array}\right.
$$

A predicate $q(\bar{n}, i)$ is said to be safe if

$$
\forall \bar{n} \exists i q(\bar{n}, i)=1
$$

The μ-recursive functions and predicates are those obtained from the basic primitive recursive functions by :

- composition, primitive recursion, and
- unbounded minimization of safe predicates.

μ-recursive functions and computable functions

Numbers and character strings:

Lemma

There exists an effective representation of numbers by character strings.

Lemma

There exists an effective representation of character strings by natural numbers.

Alphabet Σ of size k. Each symbol of Σ is represented by an integer between 0 and $k-1$. The representation of a string $w=w_{0} \ldots w_{l}$ is thus:

$$
g d(w)=\sum_{i=0}^{l} k^{l-i} g d\left(w_{i}\right)
$$

Example : $\Sigma=\{a b c d e f g h i j\}$.

$$
\begin{aligned}
g d(a) & =0 \\
g d(b) & =1 \\
& \vdots \\
g d(i) & =8 \\
g d(j) & =9
\end{aligned}
$$

$$
g d(a a b a a f g j)=00100569
$$

This encoding is ambiguous:

$$
\begin{aligned}
& g d(a a a b a a f g j)=000100569= \\
& 00100569=g d(a a b a a f g j)
\end{aligned}
$$

Solution: use an alphabet of size $k+1$ and do not encode any symbol by 0 .

$$
g d(w)=\sum_{i=0}^{l}(k+1)^{l-i} g d\left(w_{i}\right)
$$

From μ-recursive functions
 To Turing machines

Theorem

Every μ-recursive function is computable by a Turing machine..

1. The basic primitive recursive functions are Turing machine computable;
2. Composition, primitive recursion and bounded minimization applied to Turing computable functions yield Turing computable functions.

From Turing machines to μ-recursive functions

Theorem

Every Turing computable functions is μ-recursive.

Let M be a Turing machine. One proves that there exists a μ-recursive function f_{M} such that

$$
f_{M}(w)=g d^{-1}(f(g d(w)))
$$

Useful predicates:

1. $\operatorname{init}(x)$ initial configuration of M.
2. next_config (x)
3.

$$
\operatorname{config}(x, n)\left\{\begin{array}{l}
\operatorname{config}(x, 0)=x \\
\operatorname{config}(x, n+1)= \\
\text { next_config }(\operatorname{config}(x, n))
\end{array}\right.
$$

4. $\operatorname{stop}(x)= \begin{cases}1 & \text { if } x \text { final } \\ 0 & \text { if not }\end{cases}$
5. output (x)

We then have :

$$
f(x)=\text { output }\left(\text { config }\left(\text { init }(x), n b _o f _ \text {steps }(x)\right)\right)
$$

where

$$
n b _o f _\operatorname{steps}(x)=\mu i \operatorname{stop}(\operatorname{config}(\operatorname{init}(x), i)) .
$$

Partial functions

A partial function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ is computed by a Turing machine M if,

- for every input word w for which f is defined, M stops in a configuration in which $f(w)$ is on the tape,
- for every input word w for which f is not defined, M does not stop or stops indicating that the function is not defined by writing a special value on the tape.

A partial function $f: N \rightarrow N$ is μ-recursive if it can be defined from basic primitive recursive functions by

- composition,
- primitive recursion,
- unbounded minimization.

Unbounded minimization can be applied to unsafe predicates. The function $\mu i p(\bar{n}, i)$ is undefined when there is no i such that $p(\bar{n}, i)=1$.

Theorem

A partial function is μ-recursive if and only if it is Turing computable.

