Database Theory VU 181.140, SS 2011

5. Complexity of Query Evaluation

Reinhard Pichler

Institut für Informationssysteme Arbeitsbereich DBAI Technische Universität Wien

3 May, 2011

Outline

5. Complexity of Query Evaluation

- 5.1 Measures of Complexity
- 5.2 Complexity of First-order Queries
- 5.3 Complexity of Conjunctive Queries
- 5.4 Complexity of Datalog

Beyond Traktenbrot's Theorem

- By Traktenbrot's Theorem, it is undecidable to check whether a given first-order query Q produces some output over some database.
- What happens if *D* is actually given as input?

The following are natural (decision) problems in this context:

QUERY-OUTPUT-TUPLE (QOT)

INSTANCE: A database D, a query Q, a tuple \vec{c} of values. QUESTION: Is it true that $\vec{c} \in Q(D)$?

BOOLEAN-QUERY-EVALUATION (BQE)

INSTANCE: A database D, a Boolean query Q. QUESTION: Does Q evaluate to **true** in D?

NOTE: we often view Boolean domain calculus queries $\{\langle \rangle | \phi \}$ simply as closed formulae ϕ .

QUERY-NON-EMPTINESS (QNE)

INSTANCE: A database D, a query Q. QUESTION: Does query Q yield a non-empty result over the DB D, i.e. $Q(D) \neq \emptyset$?

QOT vs. BQE vs. QNE

We concentrate next on the complexity of **BQE**.

Not a limitation: in our setting **QOT** and **QNE** are essentially the same problems as **BQE**:

From **QOT** to **BQE**

Assume a database D, a domain calculus query $Q = \{\vec{x} \mid \phi(\vec{x})\}$, and a value tuple $\vec{c} = \langle c_1, \ldots, c_n \rangle$. Then $\vec{c} \in Q(D)$ iff Q' evaluates to **true** in D, where

$$ec{x}=\langle x_1,\ldots,x_n
angle,\,\, ext{and}$$
 $Q'=\existsec{x}.(\phi(ec{x})\wedge x_1=c_1\ldots\wedge x_n=c_n)$

From **QNE** to **BQE**

Assume a database D, a domain calculus query $Q = \{\vec{x} \mid \phi(x)\}$. Then $Q(D) \neq \emptyset$ iff $\exists \vec{x}. \phi(\vec{x})$ evaluates to **true** in D.

From **BQE** to **QNE** and **QOT** \rightsquigarrow trivial.

Complexity Measures for **BQE**

Combined complexity

The complexity of **BQE** without any assumptions about the input query Q and database D is called the combined complexity of **BQE**.

Further measures are obtained by restricting the input:

Data and query complexity

Data complexity of **BQE** refers to the following decision problem: Let Q be some *fixed* Boolean query. INSTANCE: An input database D. QUESTION: Does Q evaluate to **true** in D?

Query complexity of **BQE** refers to the following decision problem: Let D be some *fixed* input database. INSTANCE: A Boolean query Q. QUESTION: Does Q evaluate to **true** in D?

Relevant Complexity Classes

We recall the inclusions between some fundamental complexity classes:

 $\mathsf{L}\subseteq\mathsf{P}\subseteq\mathsf{NP}\subseteq\mathsf{PSPACE}\subseteq\mathsf{EXPTIME}$

L is the class of all problems solvable in logarithmic space,

- P —,,— in polynomial time,
- NP _________ in nondeterministic polynomial time,
- PSPACE —,,— in polynomial space,
- EXPTIME —,,— in exponential time.

Complexity of First-order Queries

Theorem (A)

The query complexity and the combined complexity of domain calculus queries is PSPACE-complete (even if we disallow negation and equality atoms). The data complexity is in L (actually, even in a much lower class).

To prove the theorem, we proceed in steps as follows:

- **1** We provide an algorithm for query evaluation:
 - it shows PSPACE membership for combined complexity (and thus for query complexity as well), and
 - L membership w.r.t. data complexity,
- 2 We show PSPACE-hardness of query complexity (clearly, the lower bound applies for combined complexity as well).

An algorithm for query evaluation

- We consider an arbitrary FO formula ψ and a database D.
- W.I.o.g., the formula is of the form

$$\psi = \exists x_1 \forall y_1 \ldots \exists x_n \forall y_n \varphi(x_1, y_1, \ldots, x_n, y_n).$$

- Let the active domain *dom* of *D* be $dom = \{a_1, \ldots, a_m\}$.
- For the evaluation of the formula, we design two procedures evaluate_∃ and evaluate_∀, which call each other recursively.
- The algorithm uses global variables n and $X = \{x_1, y_1, \ldots, x_n, y_n\}$.

```
GLOBAL x_1, y_1, ..., x_n, y_n
Boolean evaluate<sub>\exists</sub>(Integer i)
    for x_i from a_1 to a_m do
        if evaluate_{\forall}(i) = true then return true
    endfor
    return false.
Boolean evaluate \forall (Integer i)
    for y_i from a_1 to a_m do
        if i = n then
            if \varphi evaluates to false under the
                  current values of x_1, y_1, \ldots, x_n, y_n then return false
            endif
        else
            if evaluate_{\exists}(i+1) = false then return false
        endif
    endfor
    return true.
```

By construction: ψ is **true** in *D* iff *evaluate*_{\exists}(1) = **true**.

Let's analyze the space usage of our algorithm. We have to store:

- **1** The input database D and the formula ψ :
 - do not contribute to the space requirements.
- 2 The global variables $X = \{x_1, y_1, \dots, x_n, y_n\}$.
 - Each variable requires $\mathcal{O}(\log m)$ bits of space. Thus X needs $\mathcal{O}(n \log m)$ bits. Note that X requires logarithmic space if ψ is fixed.
- 3 A call stack $S = \langle S_1, \ldots, S_k \rangle$, where $k \leq 2n$ and each S_j stores a state in which a subroutine is called. Clearly, for both subroutines a state S_j only needs to store the value of i and the return position in the subroutine.
 - Storing a value i ∈ {1,..., 2n} requires logarithmic space in the size of ψ (i.e. O(log n)), but only constant space if ψ is fixed. (The return position requires constant space in both cases.)
 - Hence S needs $\mathcal{O}(n \log n)$ bits of storage, which is constant if ψ is fixed.
- 4 Space for evaluating φ in an assignment
 - requires a transversal of the parse tree of ψ : space $\mathcal{O}(\log ||\psi||)$ suffices.

Overall we need $\mathcal{O}(n \log m + n \log n + \log ||\psi||)$ bits of storage.

 $\mathcal{O}(n \log m + n \log n + \log ||\psi||)$ means that we only need polynomial space in the combined size of D and ψ .

Proposition

BQE \in PSPACE *w.r.t. combined complexity. This also implies* **BQE** \in PSPACE *w.r.t. query complexity.*

If ψ is fixed, then the space required is $\mathcal{O}(\log m)$, i.e. logarithmic in data.

Proposition

BQE \in L w.r.t. data complexity.

NOTE: Note that $L \subseteq P$. In fact, one can show completeness of **BQE** w.r.t. data complexity for a much lower circuit class $AC_0 \subseteq L$.

The PSPACE lower bound

To prove the PSPACE-hardness result, we first recall quantified Boolean formulae:

QSAT (QBF)

INSTANCE: An expression $\exists x_1 \forall x_2 \exists x_3 \cdots Q x_n \phi$, where Q is either \forall or \exists and ϕ is a Boolean formula in CNF with variables from $\{x_1, x_2, x_3, \dots, x_n\}$.

QUESTION: Is there a truth value for the variable x_1 such that for both truth values of x_2 there is a truth value for x_3 and so on up to x_n , such that ϕ is satisfied by the overall truth assignment?

Theorem

QSAT is PSPACE-complete.

Remark. A detailed proof is given in the Komplexitätstheorie lecture.

Proof of the PSPACE-Hardness of BQE

The PSPACE-hardness result for Theorem (A) can be shown by a reduction from the QSAT-problem. Let ψ be an arbitrary QBF with

$$\psi = \exists x_1 \forall x_2 \dots Q x_n \alpha(x_1, \dots, x_n)$$

where Q is either \forall or \exists and α is a quantifier-free Boolean formula with variables in $\{x_1, \ldots, x_n\}$.

We first define the (fixed) input database D over the predicate symbols $\mathcal{L} = \{\text{istrue}, \text{isequal}, \text{not}, \text{or}, \text{and}\}$ with the obvious meaning:

 $D = \{ istrue(1), isequal(0,0), isequal(1,1), not(1,0), not(0,1), \\ or(1,1,1), or(1,0,1), or(0,1,1), or(0,0,0), \\ and(1,1,1), and(1,0,0), and(0,1,0), and(0,0,0) \}$

Proof of the PSPACE-Hardness (continued)

For each sub-formula β of α , we define a quantifier-free, first-order formula $T_{\beta}(z_1, \ldots, z_n, x)$ with the following intended meaning: if the variables x_i have the truth value z_i , then the formula $\beta(x_1, \ldots, x_n)$ evaluates to the truth value x.

The formulae $T_{\beta}(z_1, \ldots, z_n, x)$ can be defined inductively w.r.t. the structure of α as follows:

Case
$$\beta =$$

 $x_i \text{ (with } 1 \leq i \leq n \text{):} \quad T_{\beta}(\bar{z}, x) \equiv \text{isequal}(z_i, x)$
 $\neg \beta': \quad T_{\beta}(\bar{z}, x) \equiv \exists t_1 T_{\beta'}(\bar{z}, t_1) \land \text{not}(t_1, x)$
 $\beta_1 \land \beta_2: \quad T_{\beta}(\bar{z}, x) \equiv \exists t_1, t_2 \ T_{\beta_1}(\bar{z}, t_1) \land T_{\beta_2}(\bar{z}, t_2) \land \text{and}(t_1, t_2, x)$
 $\beta_1 \lor \beta_2: \quad T_{\beta}(\bar{z}, x) \equiv \exists t_1, t_2 \ T_{\beta_1}(\bar{z}, t_1) \land T_{\beta_2}(\bar{z}, t_2) \land \text{or}(t_1, t_2, x)$

Proof of the PSPACE-Hardness (continued)

The first-order query ϕ is then defined as follows:

 $\phi \equiv \exists x \exists z_1 \forall z_2 \dots Q z_n \ T_{\alpha}(\bar{z}, x) \land \mathsf{istrue}(x)$

where Q is either \forall or \exists (as in the formula ψ).

We claim that this problem reduction is correct, i.e.: The QBF $\psi = \exists x_1 \forall x_2 \dots Q x_n \alpha(x_1, \dots, x_n)$ is **true** \Leftrightarrow the first-order query $\phi \equiv \exists x \exists z_1 \forall z_2 \dots Q z_n \ T_{\alpha}(\bar{z}, x) \land \text{istrue}(x)$ evaluates to **true** over the database *D*.

The proof is straightforward. It suffices to show by induction on the structure of α that the formulae $T_{\beta}(z_1, \ldots, z_n, x)$ indeed have the intended meaning.

Complexity of Conjunctive Queries

Recall that conjunctive queries (CQs) are a special case of first-order queries whose only connective is \land and whose only quantifier is \exists (i.e., \lor , \neg and \forall are excluded).

E.g.:
$$Q = \{ \langle x \rangle \mid \exists y, z.R(x, y) \land R(y, z) \land P(z, x) \}$$

Theorem (B)

The query complexity and the combined complexity of **BQE** for conjunctive queries is NP-complete.

Proof

NP-Membership (of the combined complexity). For each variable u of the query, we guess a domain element to which u is instantiated. Then we check whether all the resulting ground atoms in the query body exist in D. This check is obviously feasible in polynomial time.

Proof (continued)

Hardness (of the query complexity). We reduce the NP-complete 3-SAT problem to our problem. For this purpose, we consider the following input database (over a ternary relation symbol c and a binary relation symbol v) as fixed:

$$D = \{ c(1,1,1), c(1,1,0), c(1,0,1), c(1,0,0), \\ c(0,1,1), c(0,1,0), c(0,0,1), v(1,0), v(0,1) \}$$

Now let an arbitrary instance of the 3-SAT problem be given through the 3-CNF formula $\Phi = \bigwedge_{i=1}^{n} I_{i1} \vee I_{i2} \vee I_{i3}$ over the propositional variables x_1, \ldots, x_k . Then we define a conjunctive query Q as follows:

 $(\exists x_1, \ldots, x_k) c(l_{11}^*, l_{12}^*, l_{13}^*) \land \ldots \land c(l_{n1}^*, l_{n2}^*, l_{n3}^*) \land v(x_1, \bar{x}_1) \land \cdots \land v(x_k, \bar{x}_k)$

where $l^* = x$ if l = x, and $l^* = \bar{x}$ if $l = \neg x$. Moreover, $\bar{x}_1, \ldots, \bar{x}_k$ are fresh first-order variables. By slight abuse of notation, we thus use x_i to denote either a propositional atom (in Φ) or a first-order variable (in Q). It is straightforward to verify that the 3-CNF formula Φ is satisfiable \Leftrightarrow Q evaluates to **true** in D.

Complexity of Datalog

Theorem (C)

Query evaluation in Datalog has the following complexity:

- P-complete w.r.t. data complexity, and
- **EXPTIME**-complete w.r.t combined and query complexity.

To prove the theorem, we first concentrate on ground Datalog programs:

- A program is ground if it has no variables.
- Such programs are also known as propositional logic programs.
- Note that a ground atom R(tim, bob) can be seen as a propositional variable R_{tim,bob}.

Ground Datalog

Theorem

Query evaluation for ground Datalog programs is P*-complete w.r.t. combined complexity.*

Proof: (Membership)

- Recall that the semantics of a given program P can be defined as the least fixed-point of the immediate consequence operator T_P
- This least fixpoint $T_P^{\omega}(DB)$ can be computed in polynomial time even if the "naive" evaluation algorithm is applied.
- The number of iterations (i.e. applications of T_P) is bounded by the number of rules plus 1.
- Each iteration step is clearly feasible in polynomial time.

P-hardness of Ground Datalog

Proof: (Hardness)

- By encoding of a TM. Assume $M = (K, \Sigma, \delta, q_{start})$, an input string I and a number of steps N, where N is a polynomial of |I|.
- We construct in logspace a program P(M, N), a database DB(I, N)and an atom A such that

 $A \in T^{\omega}_{P(M,N)}(DB(I,N))$ iff M accepts I in N steps.

Recall that the transition function δ of M with a single tape can be represented by a table whose rows are tuples t = (q₁, σ₁, q₂, σ₂, d). Such a tuple t expresses the following if-then-rule:

if at some time instant τ the machine is in state q_1 , the cursor points to cell number π , and this cell contains symbol σ_1 then at instant $\tau + 1$ the machine is in state q_2 , cell number π contains symbol σ_2 , and the cursor points to cell number $\pi + d$.

P-hardness of Ground Datalog: the Atoms

```
The propositional atoms in P(M, N).
(there are many, but only polynomially many...)
```

```
symbol<sub>\alpha</sub>[\tau, \pi] for 0 \le \tau \le N, 0 \le \pi \le N and \alpha \in \Sigma. Intuitive meaning:
at instant \tau of the computation, cell number \pi contains
symbol \alpha.
```

- cursor[τ, π] for $0 \le \tau \le N$ and $0 \le \pi \le N$. Intuitive meaning: at instant τ , the cursor points to cell number π .
 - state_q[τ] for $0 \le \tau \le N$ and $q \in K$. Intuitive meaning: at instant τ , the machine M is in state q.

accept Intuitive meaning: M has reached state q_{yes} .

P-hardness of Ground Datalog: the Database

The construction of the database DB(I, N): $symbol_{\triangleright}[0, 0],$ $symbol_{\sigma}[0, \pi],$ for $0 < \pi \le |I|$, where $I_{\pi} = \sigma$ $symbol_{\sqcup}[0, \pi],$ for $|I| \le \pi \le N$ cursor[0, 0], $state_{q_{start}}[0].$

P-hardness of Ground Datalog: the Rules

• transition rules: for each entry $\langle q_1, \sigma_1, q_2, \sigma_2, d \rangle$, $0 \le \tau < N$, $0 \le \pi < N$, and $0 \le \pi + d$.

$$\begin{array}{rcl} symbol_{\sigma_{2}}[\tau+1,\pi] & \leftarrow & state_{q_{1}}[\tau], symbol_{\sigma_{1}}[\tau,\pi], cursor[\tau,\pi] \\ cursor[\tau+1,\pi+d] & \leftarrow & state_{q_{1}}[\tau], symbol_{\sigma_{1}}[\tau,\pi], cursor[\tau,\pi] \\ & state_{q_{2}}[\tau+1] & \leftarrow & state_{q_{1}}[\tau], symbol_{\sigma_{1}}[\tau,\pi], cursor[\tau,\pi] \end{array}$$

• inertia rules: where $0 \le \tau < N$, $0 \le \pi < \pi' \le N$

$$\begin{array}{rcl} \textit{symbol}_{\sigma_1}[\tau+1,\pi] & \leftarrow & \textit{symbol}_{\sigma_1}[\tau,\pi],\textit{cursor}[\tau,\pi'] \\ \textit{symbol}_{\sigma_1}[\tau+1,\pi'] & \leftarrow & \textit{symbol}_{\sigma_1}[\tau,\pi'],\textit{cursor}[\tau,\pi] \end{array}$$

• accept rules: for $0 \le \tau \le N$

accept
$$\leftarrow$$
 state_{qves}[τ]

P-hardness of Ground Datalog

- The encoding precisely simulates the behaviour of M on input I up to N steps. (This can be formally shown by induction on the time steps.)
- $accept \in T^{\omega}_{P(M,N)}(DB(I,N))$ iff M accepts I in N steps.
- The construction is feasible in logarithmic space.
- Note that each rule in P(M, N) has at most 4 atoms. In fact, P-hardness applies already for programs with at most 3 atoms in the rules:
 - Simply replace each A ← B, C, D in P(M, N) by A ← B, E and E ← C, D, where E is a fresh atom.

Data Complexity of Datalog

Proposition

Query evaluation in Datalog is P*-complete w.r.t. data complexity.*

Proof: (Membership)

Effective reduction to reasoning over ground Datalog programs is possible. Given a program P, a database DB, and atom A:

Generate P' = ground(P, DB), i.e. the set all ground instances of rules in P:

$$ground(P, DB) = \bigcup_{r \in P} Ground(r; P, DB)$$

NB: more details on Ground(r; P, DB) in Lecture 2.

• Decide whether $A \in T^{\omega}_{P'}(DB)$.

Grounding Complexity

Given a program P and a database DB, the number of rules in ground(P, DB) is bounded by

 $|P| * #consts(P, DB)^{vmax}$

- *vmax* is the maximum number of different variables in any rule $r \in P$
- #consts(P, DB) is the number of constants occurring in P and DB.
- ground(P, DB) is polynomial in the size of DB.
- Hence, the complexity of propositional logic programming is an upper bound for the data complexity.
- Note that ground(P, DB) can be exponential in the size of P.

Data Complexity of Datalog: P-hardness

Proof: Hardness

The P-hardness can be shown by writing a simple Datalog *meta-interpreter* for ground programs with at most 3 atoms per rule:

- Represent rules $A_0 \leftarrow A_1, \ldots, A_i$ of such a program P, where $0 \le i \le 2$, using database facts $\langle A_0, \ldots, A_i \rangle$ in an (i + 1)-ary relation R_i on the propositional atoms.
- Then, the program P which is stored this way in a database $DB_{MI}(P)$ can be evaluated by a fixed Datalog program P_{MI} which contains for each relation R_i , $0 \le i \le k$, a rule

 $T(X_0) \leftarrow T(X_1), \ldots, T(X_i), R_i(X_0, \ldots, X_i).$

• T(x) intuitively means that atom x is true. Then,

 $A \in T^{\omega}_{P}(DB)$ iff $T(A) \in T^{\omega}_{P_{MI}}(DB_{MI}(P))$

P-hardness of the data complexity of Datalog is then immediately obtained.

Combined and Query Complexity of Datalog

Proposition

Datalog is EXPTIME-complete w.r.t. query and combined complexity.

Proof

(Membership) Grounding P using DB leads to a propositional program ground(P, DB) whose size is exponential in the size of P and DB. Hence, the query and the combined complexity is in EXPTIME.

(Hardness) We show hardness for query complexity only. Goal: adapt our previous encoding of TM M and input I to obtain a program $P_{dat}(M, I, N)$ and a fixed database DB_{dat} to decide acceptance of M on I within $N = 2^m$ steps, where $m = n^k (n = |I|)$ is a polynomial.

Note: We are not allowed to generate an exponentially large program by using exponentially many propositional atoms (the reduction would not be polynomial!).

More details next...

Query Complexity of Datalog: EXPTIME-hardness

Ideas for lifting P(M, N) and DB(I, N) to $P_{dat}(M, I, N)$ and DB_{dat} :

- use the predicates symbol_{\(\sigma\)} (X, Y), cursor(X, Y) and state_{\(\sigma\)} (X) instead of the propositional letters symbol_{\(\sigma\)} [X, Y], cursor[X, Y] and state_{\(\sigma\)} [X] respectively.
- W.I.o.g., let N be of the form $N = 2^m 1$ for some integer $m \ge 1$. The time points τ and tape positions π from 0 to N are encoded in binary, i.e. by *m*-ary tuples $t_{\tau} = \langle c_1, \ldots, c_m \rangle$, $c_i \in \{0, 1\}$, $i = 1, \ldots, m$, such that $0 = \langle 0, \ldots, 0 \rangle$, $1 = \langle 0, \ldots, 1 \rangle$, $N = \langle 1, \ldots, 1 \rangle$.
- The functions $\tau + 1$ and $\pi + d$ are realized by means of the successor $Succ^m$ from a linear order \leq^m on $\{0,1\}^m$.

Query Complexity of Datalog: EXPTIME-hardness

The predicates $Succ^m$, $First^m$, and $Last^m$ are provided.

• The database facts $symbol_{\sigma}[0,\pi]$ are readily translated into the Datalog rules

$$symbol_{\sigma}(\mathbf{X}, \mathbf{t}) \leftarrow \textit{First}^{m}(\mathbf{X}),$$

where **t** represents the position π ,

- Similarly for the facts cursor[0, 0] and $state_{s_0}[0]$.
- Database facts symbol₁[0, π], where $|I| \le \pi \le N$, are translated to the rule

$$symbol_{l}(\mathbf{X},\mathbf{Y}) \leftarrow First^{m}(\mathbf{X}), \leq^{m}(\mathbf{t},\mathbf{Y})$$

where **t** represents the number |I|.

Query Complexity of Datalog: EXPTIME-hardness

Transition and inertia rules: for realizing τ + 1 and π + d, use in the body atoms Succ^m(X, X'). For example, the clause

 $symbol_{\sigma_2}[\tau + 1, \pi] \leftarrow state_{q_1}[\tau], symbol_{\sigma_1}[\tau, \pi], cursor[\tau, \pi]$

is translated into

 $symbol_{\sigma_2}(X', Y) \leftarrow state_{q_1}(X), symbol_{\sigma_1}(X, Y), cursor(X, Y), Succ^m(X, X').$

■ The translation of the accept rules is straightforward.

Defining $Succ^{m}(\mathbf{X}, \mathbf{X}')$ and \leq^{m}

- The ground facts Succ¹(0,1), First¹(0), and Last¹(1) are provided in DB_{dat}.
- For an inductive definition, suppose Succⁱ(X, Y), Firstⁱ(X), and Lastⁱ(X) tell the successor, the first, and the last element from a linear order ≤ⁱ on {0,1}ⁱ, where X and Y have arity i. Then, use rules

$$\begin{array}{rcl} \textit{Succ}^{i+1}(Z,\textbf{X},Z,\textbf{Y}) &\leftarrow \textit{Succ}^{i}(\textbf{X},\textbf{Y}) \\ \textit{Succ}^{i+1}(Z,\textbf{X},Z',\textbf{Y}) &\leftarrow \textit{Succ}^{1}(Z,Z'),\textit{Last}^{i}(\textbf{X}),\textit{First}^{i}(\textbf{Y}) \\ \textit{First}^{i+1}(Z,\textbf{X}) &\leftarrow \textit{First}^{1}(Z),\textit{First}^{i}(\textbf{X}) \\ \textit{Last}^{i+1}(Z,\textbf{X}) &\leftarrow \textit{Last}^{1}(Z),\textit{Last}^{i}(\textbf{X}) \end{array}$$

Defining $Succ^{m}(\mathbf{X}, \mathbf{X}')$ and \leq^{m}

- The ground facts $Succ^{1}(0,1)$, $First^{1}(0)$, and $Last^{1}(1)$ are provided in DB_{dat} .
- For an inductive definition, suppose Succⁱ(X, Y), Firstⁱ(X), and Lastⁱ(X) tell the successor, the first, and the last element from a linear order ≤ⁱ on {0,1}ⁱ, where X and Y have arity i. Then, use rules

$$\begin{array}{rcl} Succ^{i+1}(0,\mathbf{X},0,\mathbf{Y}) &\leftarrow & Succ^{i}(\mathbf{X},\mathbf{Y}) \\ Succ^{i+1}(1,\mathbf{X},1,\mathbf{Y}) &\leftarrow & Succ^{i}(\mathbf{X},\mathbf{Y}) \\ Succ^{i+1}(0,\mathbf{X},1,\mathbf{Y}) &\leftarrow & Last^{i}(\mathbf{X}), First^{i}(\mathbf{Y}) \\ & First^{i+1}(0,\mathbf{X}) &\leftarrow & First^{i}(\mathbf{X}) \\ & Last^{i+1}(1,\mathbf{X}) &\leftarrow & Last^{i}(\mathbf{X}) \end{array}$$

Defining $Succ^{m}(\mathbf{X}, \mathbf{X}')$ and \leq^{m}

- The ground facts Succ¹(0,1), First¹(0), and Last¹(1) are provided in DB_{dat}.
- For an inductive definition, suppose Succⁱ(X, Y), Firstⁱ(X), and Lastⁱ(X) tell the successor, the first, and the last element from a linear order ≤ⁱ on {0,1}ⁱ, where X and Y have arity i. Then, use rules

$$\begin{array}{rcl} Succ^{i+1}(0,\mathbf{X},0,\mathbf{Y}) &\leftarrow & Succ^{i}(\mathbf{X},\mathbf{Y}) \\ Succ^{i+1}(1,\mathbf{X},1,\mathbf{Y}) &\leftarrow & Succ^{i}(\mathbf{X},\mathbf{Y}) \\ Succ^{i+1}(0,\mathbf{X},1,\mathbf{Y}) &\leftarrow & Last^{i}(\mathbf{X}), First^{i}(\mathbf{Y}) \\ & First^{i+1}(0,\mathbf{X}) &\leftarrow & First^{i}(\mathbf{X}) \\ & Last^{i+1}(1,\mathbf{X}) &\leftarrow & Last^{i}(\mathbf{X}) \end{array}$$

• The order \leq^m is easily defined from $Succ^m$ by two clauses

$$\begin{array}{lll} \leq^{m}(\mathbf{X},\mathbf{X}) & \leftarrow \\ \leq^{m}(\mathbf{X},\mathbf{Y}) & \leftarrow & \textit{Succ}^{m}(\mathbf{X},\mathbf{Z}), \ \leq^{m}(\mathbf{Z},\mathbf{Y}) \end{array}$$

Combined and Query Complexity of Datalog: Conclusion

- Let L be an arbitrary language in EXPTIME, i.e., there exists a Turing machine M deciding L in exponential time. Then there is a constant k such that M accepts/rejects every input I within 2^{|I|^k} steps.
- The program P_{dat}(M, I, |I|^k) is constructible from M and I in polynomial time (in fact, careful analysis shows feasibility in logarithmic space).
- accept is in the answer of $P_{dat}(M, I, |I|^k)$ evaluated over $DB_{dat} \Leftrightarrow M$ accepts input I within N steps.
- Thus the EXPTIME-hardness follows.

Complexity of Datalog with Stratified Negation

Theorem

Reasoning in stratified ground Datalog programs with negation is P-complete. Stratified Datalog with negation is

- P-complete w.r.t. data complexity, and
- **EXPTIME**-complete w.r.t combined and query complexity.
- A ground stratified program P can be partitioned into disjoint sets S_1, \ldots, S_n s.t. the semantics of P is computed by successively computing in polynomial time the fixed-points of the immediate consequence operators T_{S_1}, \ldots, T_{S_n} .
- As with plain Datalog, for programs with variables, the grounding step causes an exponential blow-up.

Learning Objectives

- The **BQE**, **QOT** and **QNE** problems
- The notions of combined, data and query complexity
- The complexity of first-order queries
- The complexity of conjunctive queries
- The complexity of plain and stratified Datalog