Database Theory
 VU 181.140, SS 2011

7. Ehrenfeucht-Fraïssé Games

Reinhard Pichler

Institut für Informationssysteme
Arbeitsbereich DBAI
Technische Universität Wien
24 May, 2011
喊 dbai

Outline

7. Ehrenfeucht-Fraïssé Games
7.1 Motivation
7.2 Rules of the EF game
7.3 Examples
7.4 EF Theorem
7.5 Inexpressibility proofs

Slides by Christoph Koch, with kind permission

Motivation

■ Goal: Inexpressibility proofs for FO queries.

- A standard technique for inexpressibility proofs from logic (model theory): Compactness theorem.
- Discussed in logic lectures.
- Fails if we are only interested in finite structures (=databases).

The compactness theorem does not hold in the finite!
■ We need a different technique to prove that certain queries are not expressible in FO.

- EF games are such a technique.

Inexpressibility via Compactness Theorem

Theorem (Compactness)

Let Φ be an infinite set of FO sentences and suppose that every finite subset of Φ is satisfiable. Then also Φ is satisfiable.

Definition

Property CONNECTED: Does there exists a (finite) path between any two nodes u, v in a given (possibly infinite) graph?

Theorem

CONNECTED is not expressible in FO, i.e., there does not exist an FO sentence ψ, s.t. for every structure \mathcal{G} representing a graph, the following equivalence holds:

Graph \mathcal{G} is connected iff $\mathcal{G} \models \psi$.

Proof.

Assume to the contrary that there exists an FO-formula ψ which expresses CONNECTED. We derive a contradiction as follows.

1 Extend the vocabulary of graphs by two constants c_{1} and c_{2} and consider the set of formulae $\Phi=\{\psi\} \cup\left\{\phi_{n} \mid n \geq 1\right\}$ with

$$
\phi_{n}:=\neg \exists x_{1} \ldots \exists x_{n} x_{1}=c_{1} \wedge x_{n}=c_{2} \wedge \bigwedge_{1 \leq i \leq n-1} E\left(x_{i}, x_{i+1}\right) .
$$

("There does not exist a path of length $n-1$ between c_{1} and c_{2} ".)
2 Clearly, Φ is unsatisfiable.
3 Consider an arbitrary, finite subset Φ_{0} of Φ. There exists $n_{\max }$, s.t. $\phi_{m} \notin \Phi_{0}$ for all $m>n_{\text {max }}$.
$4 \Phi_{0}$ is satisfiable: a single path of length $n_{\max }+1$ satisfies Φ_{0}. Hence, also every finite subset $\Phi_{0} \subset \Phi$ is satisfiable.
5 By the Compactness Theorem, Φ is satisfiable, which contradicts the observation (2) above. Hence, ψ cannot exist.

Compactness over Finite Models

Question. Does the theorem also establish that connectedness of finite graphs is FO inexpressible? The answer is "no"!

Proposition

Compactness fails over finite models, i.e., there exists a set Φ of FO sentences with the following properties:

- every finite subset of Φ has a finite model and
- Φ has no finite model.

Proof.

Consider the set $\Phi=\left\{d_{n} \mid n \geq 2\right\}$ with $d_{n}:=\exists x_{1} \ldots \exists x_{n} \bigwedge_{i \neq j} x_{i} \neq x_{j}$, i.e., $d_{n} \Leftrightarrow$ there exist at least n pairwise distinct elements.

Clearly, every finite subset $\Phi_{0}=\left\{d_{i_{1}}, \ldots, d_{i_{k}}\right\}$ of Φ has a finite model: just take a set whose cardinality exceeds $\max \left(\left\{i_{1}, \ldots, i_{k}\right\}\right)$. However, Φ does not have a finite model.

Rules of the EF game

■ Two players: Spoiler S, Duplicator D.
■ "Game board": Two structures of the same schema.

- Players move alternatingly; Spoiler starts (like in chess).
- The number of moves k to be played is fixed in advance (differently from chess).

■ Tokens $S_{1}, \ldots, S_{k}, D_{1}, \ldots, D_{k}$.
■ In the i-th move, Spoiler first selects a structure and places token S_{i} on a domain element of that structure. Next, Duplicator places token D_{i} on an arbitrary domain element of the other structure. (That's one move, not two.)

■ Spoiler may choose its structure anew in each move. Duplicator always has to answer in the other structure.

- A token, once placed, cannot be (re)moved.
- The winning condition follows a bit later.

Notation from Finite Model Theory

■ \mathcal{A}, \mathcal{B} denote structures (=databases),

- $|\mathcal{A}|$ is the domain of a structure \mathcal{A},
- $E^{\mathcal{A}}$ is the relation E of a structure \mathcal{A}.

A game run with $k=3$

$$
\begin{array}{l|ll}
E^{\mathcal{A}} & & \\
\hline & a_{1} & a_{2} \\
& a_{2} & a_{1} \\
& \vdots & \vdots \\
& a_{4} & a_{3}
\end{array}
$$

$E^{\mathcal{B}}$		
	b_{1}	b_{2}
	b_{2}	b_{1}
	\vdots	\vdots
	b_{4}	b_{3}
	b_{1}	b_{4}
	b_{4}	b_{1}

A game run with $k=3$

$$
\begin{array}{l|ll}
E^{\mathcal{A}} & & \\
\hline & a_{1} & a_{2} \\
& a_{2} & a_{1} \\
& \vdots & \vdots \\
& a_{4} & a_{3}
\end{array}
$$

$\|\mathcal{A}\|$	
S_{1}	a_{1}
a_{2}	
	a_{3}
	a_{4}

A game run with $k=3$

$E^{\mathcal{A}}$		
	a_{1}	a_{2}
	a_{2}	a_{1}
	\vdots	\vdots
	a_{4}	a_{3}

A game run with $k=3$

$$
\begin{array}{l|ll}
E^{\mathcal{A}} & & \\
\hline & a_{1} & a_{2} \\
& a_{2} & a_{1} \\
& \vdots & \vdots \\
& a_{4} & a_{3}
\end{array}
$$

$\|\mathcal{A}\|$	
S_{1}	a_{1}
	a_{2}
	a_{3}
	a_{4}

A game run with $k=3$

$$
\begin{array}{l|ll}
E^{\mathcal{A}} & & \\
\hline & a_{1} & a_{2} \\
& a_{2} & a_{1} \\
& \vdots & \vdots \\
& a_{4} & a_{3}
\end{array}
$$

$\|\mathcal{A}\|$	
	a_{1}
S_{1}	a_{2}
D_{2}	a_{3}
	a_{4}

A game run with $k=3$

$$
\begin{array}{l|ll}
E^{\mathcal{A}} & & \\
\hline & a_{1} & a_{2} \\
& a_{2} & a_{1} \\
& \vdots & \vdots \\
& a_{4} & a_{3}
\end{array}
$$

A game run with $k=3$

$E^{\mathcal{A}}$		
	a_{1}	a_{2}
	a_{2}	a_{1}
	\vdots	\vdots
	a_{4}	a_{3}

$E^{\mathcal{B}}$		
	b_{1}	b_{2}
	b_{2}	b_{1}
	\vdots	\vdots
	b_{4}	b_{3}
	b_{1}	b_{4}
	b_{4}	b_{1}

$\|\mathcal{B}\|$	
$D_{3} D_{1}$	b_{1}
	b_{2}
S_{2}	b_{3}
	b_{4}

Partial isomorphisms

Definition

■ $\left.\mathcal{A}\right|_{S}$: Restriction of a structure \mathcal{A} to the subdomain $S \subseteq|\mathcal{A}|$. Same schema; for each relation $R^{\mathcal{A}}$:

$$
R^{\mathcal{A} \mid s}:=\left\{\left\langle a_{1}, \ldots, a_{k}\right\rangle \in R^{\mathcal{A}} \mid a_{1}, \ldots, a_{k} \in S\right\} .
$$

■ A partial function $\theta:|\mathcal{A}| \rightarrow|\mathcal{B}|$ is a partial isomorphism from \mathcal{A} to \mathcal{B} if and only if θ is an isomorphism from $\left.\mathcal{A}\right|_{\operatorname{dom}(\theta)}$ to $\left.\mathcal{B}\right|_{\operatorname{rng}(\theta)}$.

- This definition assumes that the schema of \mathcal{A} does not contain any constants but is purely relational.

Partial isomorphisms

Example

θ is a partial isomorphism.

Partial isomorphisms

The partial function $\theta:|\mathcal{A}| \rightarrow|\mathcal{B}|$ with

$$
\theta:\left\{\begin{array}{l}
a_{2} \mapsto b_{1} \\
a_{3} \mapsto b_{3} \\
a_{4} \mapsto b_{1}
\end{array}\right.
$$

is not a partial isomorphism: $\mathcal{A} \vDash a_{2} \neq a_{4}, \mathcal{B} \not \models \theta\left(a_{2}\right) \neq \theta\left(a_{4}\right)$.

Partial isomorphisms

The partial function $\theta:|\mathcal{A}| \rightarrow|\mathcal{B}|$ with

$$
\theta:\left\{\begin{array}{l}
a_{1} \mapsto b_{3} \\
a_{4} \mapsto b_{2} \\
a_{3} \mapsto b_{1}
\end{array}\right.
$$

is a partial isomorphism.

Partial isomorphisms

The partial function $\theta:|\mathcal{A}| \rightarrow|\mathcal{B}|$ with

$$
\theta:\left\{\begin{array}{l}
a_{1} \mapsto b_{3} \\
a_{4} \mapsto b_{1} \\
a_{3} \mapsto b_{2}
\end{array}\right.
$$

is not a partial isomorphism: $\mathcal{A} \vDash E\left(a_{1}, a_{3}\right), \mathcal{B} \not \models E\left(\theta\left(a_{1}\right), \theta\left(a_{3}\right)\right)$

Winning Condition

- Duplicator wins a run of the game if the mapping between elements of the two structures defined by the game run is a partial isomorphism.
- Otherwise, Spoiler wins.
- A player has a winning strategy for k moves if $s / h e$ can win the k-move game no matter how the other player plays.

■ Winning strategies can be fully described by finite game trees.

- There is always either a winning strategy for Spoiler or for Duplicator.
- Notation $\mathcal{A} \sim_{k} \mathcal{B}$: There is a winning strategy for Duplicator for k-move games.
 k-move games.

Game tree of depth 2

(Here, subtrees are used multiple times to save space - the game tree really is a tree, not a DAG.)

Game tree of depth 2; Spoiler has a winning strategy

1st winning strategy for Spoiler in two moves $\left(\mathcal{A} \not \varkappa_{2} \mathcal{B}\right)$

Game tree of depth 2; Spoiler has a winning strategy

$\|\mathcal{A}\|$				
	a_{1}			
a_{2}		\quad	$\|\mathcal{B}\|$	
:---	:---			

2nd winning strategy for Spoiler in two moves $\left(\mathcal{A} \not \varkappa_{2} \mathcal{B}\right)$

Game tree of depth 2; Spoiler has a winning strategy

$\|\mathcal{A}\|$					
	a_{1}				
a_{2}		\quad	$\|\mathcal{B}\|$		
:---	:---	:---			
		b_{1}			

3rd winning strategy for Spoiler in two moves $\left(\mathcal{A} \not \propto_{2} \mathcal{B}\right)$

Schema of a winning strategy for Spoiler

There is a possible move for S such that for all possible answer moves of D there is a possible move for S such that for all possible answer moves of D

Schema of a winning strategy for Duplicator

For all possible moves of S there is a possible answer move for D such that for all possible moves of S there is a possible answer move for D such that

Example 1: $\mathcal{A} \sim_{2} \mathcal{B}$ - Duplicator has a winning strategy

Example 2: $\mathcal{A} \varpi_{2} \mathcal{B}$ - Spoiler has a winning strategy

Example 3: $\mathcal{A} \propto_{3} \mathcal{B}$

Example 4: $\mathcal{A} \nsim 2^{\mathcal{B}}$

Example 4: an FO sentence to distinguish \mathcal{A} and \mathcal{B}

If $x_{1} \mapsto a_{1}$ in \mathcal{A} and $x_{1} \mapsto b_{1}$ in \mathcal{B} then there exists an x_{2} (that is, a_{4}) in \mathcal{A} such that $x_{1} \neq x_{2}$ and $\neg E\left(x_{1}, x_{2}\right)$. In \mathcal{B} this is not the case.

$$
\begin{aligned}
& \mathcal{B} \vDash \exists x_{1} \forall x_{2} x_{1}=x_{2} \vee E\left(x_{1}, x_{2}\right) \\
& \mathcal{A} \vDash \forall x_{1} \exists x_{2} x_{1} \neq x_{2} \wedge \neg E\left(x_{1}, x_{2}\right)
\end{aligned}
$$

Example 5: an FO sentence to distinguish \mathcal{A} and \mathcal{B}

Example 5: an FO sentence to distinguish \mathcal{A} and \mathcal{B}

Example 6: an FO sentence to distinguish \mathcal{A} and \mathcal{B}

$\phi=\exists x_{1} \exists x_{2}\left(\exists x_{3} x_{1} \neq x_{3} \wedge \neg E\left(x_{1}, x_{3}\right) \wedge x_{2} \neq x_{3}\right) \wedge x_{1} \neq x_{2} \wedge \neg E\left(x_{1}, x_{2}\right) \quad \mathcal{B} \vDash \phi, \mathcal{A} \not \models \phi$.

An FO sentence that distinguishes between \mathcal{A} and \mathcal{B}

- Input: a winning strategy for Spoiler.

■ We construct a sentence ϕ which is true on the structure on which Spoiler puts the first token (this structure is initially the "current structure") and is false on the other structure.

- Spoiler's choice of structure in move i decides the i-th quantifier:
- $\exists x_{i}$ if $i=1$ or if Spoiler chooses the same structure that she has chosen in move $i-1$ and
- $\neg \exists x_{i}$ if Spoiler does not choose the same structure as in the previous move. We switch the current structure.
- The alternative answers of Duplicator are combined using conjunctions.
- Each leaf of the strategy tree corresponds to a literal (=a possibly negated atomic formula) that is true on the current structure and false on the other structure. Such a literal exists because Spoiler wins on the leaf, i.e., a mapping is forced that is not a partial isomorphism.

Main theorem

Definition

We write $\mathcal{A} \equiv{ }_{k} \mathcal{B}$ for two structures \mathcal{A} and \mathcal{B} if and only if the following is true for all FO sentences ϕ of quantifier rank k :

$$
\mathcal{A} \vDash \phi \quad \Leftrightarrow \quad \mathcal{B} \vDash \phi .
$$

Theorem (Ehrenfeucht, Fraïssé)

Given two structures \mathcal{A} and \mathcal{B} and an integer k. Then the following statements are equivalent:
$1 \mathcal{A} \equiv{ }_{k} \mathcal{B}$, i.e., \mathcal{A} and \mathcal{B} cannot be distinguished by FO sentences of quantifier rank k.
$2 \mathcal{A} \sim_{k} \mathcal{B}$, i.e., Duplicator has a winning strategy for the k-move EF game.

Proof of the theorem of Ehrenfeucht and Fraïssé

Proof.

- We have provided a method for turning a winning strategy for Spoiler into an FO sentence that distinguishes \mathcal{A} and \mathcal{B}.
- From this it follows immediately that

$$
\mathcal{A} \nsim k \mathcal{B} \Rightarrow \mathcal{A} \not \equiv_{k} \mathcal{B}
$$

and thus

$$
\mathcal{A} \equiv_{k} \mathcal{B} \Rightarrow \mathcal{A} \sim_{k} \mathcal{B} .
$$

- We still have to prove the other direction $\left(\mathcal{A} \not \equiv_{k} \mathcal{B} \Rightarrow \mathcal{A} \propto_{k} \mathcal{B}\right)$.

■ Proof idea: we can construct a winning strategy for Spoiler for the k-move EF game from a formula ϕ of quantifier rank k with $\mathcal{A} \vDash \phi$ and $\mathcal{B} \vDash \neg \phi$.

Proof of the theorem of Ehrenfeucht and Fraïssé

Lemma (quantifier-free case)

Given a formula ϕ with $\operatorname{qr}(\phi)=0$ and $\operatorname{free}(\phi)=\left\{x_{1}, \ldots, x_{k}\right\}$. If $\mathcal{A} \vDash \phi\left[a_{i_{1}}, \ldots, a_{i_{k}}\right]$ and $\mathcal{B} \vDash(\neg \phi)\left[b_{j_{1}}, \ldots, b_{j_{k}}\right]$ then

$$
\left\{a_{i_{1}} \mapsto b_{j_{1}}, \ldots, a_{i_{k}} \mapsto b_{j_{k}}\right\}
$$

is not a partial isomorphism.

Proof.

W.I.o.g., only atomic formulae may occur in negated form. By induction:

- If ϕ is an atomic formula, then the lemma holds.

■ If $\phi=\psi_{1} \wedge \psi_{2}$ then $\neg \phi=\left(\neg \psi_{1}\right) \vee\left(\neg \psi_{2}\right)$; the lemma holds again.
■ If $\phi=\psi_{1} \vee \psi_{2}$ then $\neg \phi=\left(\neg \psi_{1}\right) \wedge\left(\neg \psi_{2}\right)$; as above.

Proof of the theorem of Ehrenfeucht and Fraïssé

Lemma

Given a formula ϕ with free $(\phi)=\left\{x_{1}, \ldots, x_{l}\right\}$. If $\mathcal{A} \vDash \phi\left[a_{i_{1}}, \ldots, a_{i}\right]$ and $\mathcal{B} \vDash(\neg \phi)\left[b_{j_{1}}, \ldots, b_{j_{1}}\right]$ then Spoiler can win each game run over $\operatorname{qr}(\phi)+1$ moves which starts with $a_{i_{1}} \mapsto b_{j_{1}}, \ldots, a_{i_{l}} \mapsto b_{j_{l}}$.

Proof.

By induction:
$\square \operatorname{qr}(\phi)=0$: see the lemma of the previous slide.
■ $\phi=\exists x_{I_{+1}} \psi$: There exists an element $a_{a_{i_{I+1}}}$ such that $\mathcal{A} \vDash \psi\left[a_{i_{1}}, \ldots, a_{i_{l+1}}\right]$ but for all $b_{j_{l+1}}, \mathcal{B} \vDash(\neg \psi)\left[b_{j_{1}}, \ldots, b_{j_{l+1}}\right]$. If the induction hypothesis holds for ψ then it also holds for ϕ.
■ $\phi=\forall x_{I+1} \psi$: This is analogous to the previous case if one considers $\neg \phi=\exists x_{I+1} \psi^{\prime}$ with $\psi^{\prime}=\neg \psi$ on \mathcal{B}.
■ $\phi=\left(\psi_{1} \wedge \psi_{2}\right)$ and $\phi=\left(\psi_{1} \vee \psi_{2}\right)$ work analogously.

Proof of the theorem of Ehrenfeucht and Fraïssé

From

Lemma

Given a formula ϕ with free $(\phi)=\left\{x_{1}, \ldots, x_{l}\right\}$. If $\mathcal{A} \vDash \phi\left[a_{i_{1}}, \ldots, a_{i}\right]$ and $\mathcal{B} \vDash(\neg \phi)\left[b_{j_{1}}, \ldots, b_{j_{1}}\right]$ then Spoiler can win each game run over $\operatorname{qr}(\phi)+1$ moves which starts with $a_{i_{1}} \mapsto b_{j_{1}}, \ldots, a_{i_{l}} \mapsto b_{j_{l}}$.
it immediately follows in the case $I=0$ that

Lemma

If $\mathcal{A} \not \equiv_{k} \mathcal{B}$ then $\mathcal{A} \varkappa_{k} \mathcal{B}$.

Construction: Winning strategy for Spoiler from sentence

$\mathcal{B} \vDash\left(\neg E\left(x_{1}, x_{2}\right)\right)\left[b_{4}, b_{1}\right] \mathcal{B} \vDash\left(\forall x_{2} \neg E\left(x_{1}, x_{2}\right)\right)\left[b_{4}\right]$

Inexpressibility proofs

- Expressibility of a query in FO means just that there is an FO formula equivalent to that query;
- if there is such a formula, it must have some quantifier rank.
- This follows immediately:

Theorem (Methodology theorem)

Given a Boolean query Q. There is no FO sentence that expresses Q if and only if there are, for each k, structures $\mathcal{A}_{k}, \mathcal{B}_{k}$ such that

- $\mathcal{A}_{k} \vDash Q$,
- $\mathcal{B}_{k} \not \models Q$ and
- $\mathcal{A}_{k} \sim_{k} \mathcal{B}_{k}$.

Thus, EF games provide a complete methodology for constructing inexpressibility proofs. To prove inexpressibility, we only have to

■ construct suitable structures \mathcal{A}_{k} and \mathcal{B}_{k} and
■ prove that $\mathcal{A}_{k} \sim_{k} \mathcal{B}_{k}$. (This is usually the difficult part.)

Example: Inexpressibility of the parity query

Definition (parity query)

Given a structure \mathcal{A} with empty schema (i.e., only $|\mathcal{A}|$ is given). Question: Does $|\mathcal{A}|$ have an even number of elements?

■ Construction of the structures \mathcal{A}_{n} and \mathcal{B}_{n} for arbitrary n :

$$
\left|\mathcal{A}_{n}\right|:=\left\{a_{1}, \ldots, a_{n}\right\} \quad\left|\mathcal{B}_{n}\right|:=\left\{b_{1}, \ldots, b_{n+1}\right\}
$$

Lemma

$\mathcal{A}_{n} \sim_{k} \mathcal{B}_{n}$ for all $k \leq n$.
(This is shown on the next slide.)
■ On the other hand, $\mathcal{A}_{n} \vDash$ Parity if and only if $\mathcal{B}_{n} \not \models$ Parity.

- It thus follows from the methodology theorem that parity is not expressible in FO.

Example: Inexpressibility of the parity query

Lemma

$\mathcal{A}_{n} \sim_{k} \mathcal{B}_{n}$ for all $k \leq n$.

Proof.

We construct a winning strategy for Duplicator. This time no strategy trees are explicitly shown, but a general construction is given.
We handle the case in which Spoiler plays on \mathcal{A}_{n}. The other direction is analogous. If $S_{i} \mapsto a$ then

- $D_{i} \mapsto b$ where b is a new element of $\left|\mathcal{B}_{n}\right|$ if a has not been played on yet ($=$ no token was put on it);
$■$ If, for some $j<i, S_{j} \mapsto a, D_{j} \mapsto b^{\prime}$ or $S_{j} \mapsto b^{\prime}, D_{j} \mapsto a$ was played then $D_{i} \mapsto b^{\prime}$.
Over k moves, we only construct partial isomorphisms in this way and obtain a winning strategy for Duplicator.

Eulerian graphs

Definition

Eulerian graph: a graph that has a Eulerian cycle, i.e., a round trip that visits each edge of the graph exactly once.

Theorem

The Boolean query "Eulerian Graph" is not expressible in FO.
Proof sketch: Graph \mathcal{A}_{k} :

Graph $\mathcal{B}_{k}:=\mathcal{A}_{k+1}$.
For all $k: \mathcal{A}_{k} \sim_{k} \mathcal{B}_{k}$. \mathcal{A}_{k} is Eulerian if and only if k is even, i.e., iff \mathcal{B}_{k} is not Eulerian.

Undirected Paths

$$
\begin{array}{crr}
L_{n} & a_{1}-a_{2}-a_{3}-\cdots-a_{i-1}-a_{i}-a_{i+1}-\cdots-a_{n} \\
L_{n}^{<a_{i}} & a_{1}-a_{2}-a_{3}-\cdots-a_{i-1} \\
L_{n}^{>a_{i}} & a_{i+1}-\cdots-a_{n}
\end{array}
$$

(Nodes a_{i-1}, a_{i+1} are labeled A_{i}, as adjacent to a_{i} in L_{n}).
Lemma (composition lemma for paths)
$L_{m} \sim_{k+1} L_{n}$ if and only if
(1) $\forall a \exists b \quad L_{m}^{<a} \sim_{k} L_{n}^{<b} \wedge L_{m}^{>a} \sim_{k} L_{n}^{>b}$ and
(2) $\forall b \exists a \quad L_{m}^{<a} \sim_{k} L_{n}^{<b} \wedge L_{m}^{>a} \sim_{k} L_{n}^{>b}$

Undirected Paths

Lemma (composition lemma for paths)

$\left.\begin{array}{l}\text { (1) } \forall a \exists b L_{m}^{<a} \sim_{k} L_{n}^{<b} \wedge L_{m}^{>a} \sim_{k} L_{n}^{>b} \\ \text { (2) } \forall b \exists a L_{m}^{<a} \sim_{k} L_{n}^{<b} \wedge L_{m}^{>a} \sim_{k} L_{n}^{>b}\end{array}\right\} \Leftrightarrow L_{m} \sim_{k+1} L_{n}$

Proof.

We define the winning strategy for $k+1$ moves as follows:

- W.I.o.g., Spoiler chooses node a of structure L_{m} in the first move.
- Because of (1), there is a b in L_{n} such that Duplicator wins in k moves on $L_{m}^{<a}, L_{n}^{<b}$ and on $L_{m}^{>a}, L_{n}^{>b}$.
- We can combine the two winning strategies into one combined strategy:
- If Spoiler chooses a node $\leq a$ in L_{m} in the i-th move, then Duplicator answers according to the winning strategy for $L_{m}^{<a}$ and $L_{n}^{<b}$, not counting the moves that were played in the other pair of structures.
- If Spoiler chooses a node $\geq a$, we answer analogously using Duplicator's winning strategy for $L_{m}^{>a}, L_{n}^{>b}$.

Undirected Paths

It follows:
Theorem
$L_{m} \sim_{k} L_{n}$ if and only if $m=n$ or $m, n \geq 2^{k}-1$.
So for $n<2^{k}-1, L_{n} \nsim k_{k} L_{n+1}$; for $n \geq 2^{k}-1, L_{n} \sim_{k} L_{n+1}$.
Example $\left(L_{8} \sim_{3} L_{9}\right)$

Cycles

\square (Isolated) directed cycles C_{n} : Graphs with nodes $\left\{v_{1}, \ldots, v_{n}\right\}$ and edges $\left\{\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right), \ldots,\left(v_{n-1}, v_{n}\right),\left(v_{n}, v_{1}\right)\right\}$.

- There is an analogous composition lemma for (directed or undirected) cycles.
- After the first move, there is one distinguished node in the cycle, the one with token S_{1} or D_{1} on it.
■ We can treat this cycle like a path obtained by cutting the cycle at the distinguished node.

■ Theorem. If $n \geq 2^{k}$, then $C_{n} \sim_{k} C_{n+1}$.

2-colorability

Definition

2-colorability: Given a graph, is there a function that maps each node to either "red" or "green" such that no two adjacent nodes have the same color?

Theorem

2-colorability is not expressible in FO.

Proof Sketch.

For each k,

- $\mathcal{A}_{k}: C_{2^{k}}$, the cycle of length 2^{k}.
- $\mathcal{B}_{k}: C_{2^{k}+1}$, the cycle of length $2^{k}+1$.
- $\mathcal{A}_{k} \sim_{k} \mathcal{B}_{k}$.
- However, a cycle C_{n} of length n is 2 -colorable iff n is even.

Inexpressibility follows from the EF methodology theorem.

Acyclicity

From now on, "very long/large" means simply 2^{k}.
Theorem
Acyclicity is not expressible in FO.

Proof Sketch.

- \mathcal{A}_{k} : a very long path.
- \mathcal{B}_{k} : a very long path plus (disconnected from it) a very large cycle.
- $\mathcal{A}_{k} \sim_{k} \mathcal{B}_{k}$.

Graph reachability

Theorem

Graph reachability from a to b is not expressible in FO.
a, b are constants or are given by an additional unary relation with two entries.

Proof Sketch.

- \mathcal{A}_{k} : a very large cycle in which the nodes a and b are maximally distant.
- \mathcal{B}_{k} : two very large cycles; a is a node of the first cycle and b a node of the second.
- $\mathcal{A}_{k} \sim_{k} \mathcal{B}_{k}$.

Remark. The same structures $\mathcal{A}_{k}, \mathcal{B}_{k}$ can be used to show that connectedness of a graph is not expressible in FO.

Learning Objectives

- Rules of EF game

■ Winning condition and winning strategies of EF games

- EF Theorem and its proof
- Algebraic viewpoint of winning strategies
- Inexpressibility proofs using the Methodology theorem

Literature

■ Phokion Kolaitis, "Combinatorial Games in Finite Model Theory": http://www.cse.ucsc.edu/~kolaitis/talks/essllif.ps (Slides 1-40)

■ Abiteboul, Hull, Vianu, "Foundations of Databases", Addison-Wesley 1994. Chapter 17.2.

■ Libkin, "Elements of Finite Model Theory", Springer 2004. Chapter 3.

■ Ebbinghaus, Flum, "Finite Model Theory", Springer 1999. Chapter 2.1-2.3.

