
Introduction to Cloud Blueprints 1

Introduction to Cloud Blueprints
Describing a Set of Related Cloud Resources

Jan. 30, 2013

Contents

Introduction ... 1

Uses of Blueprints ... 2
Concepts .. 3

Enterprise Manager Cloud Concepts .. 3
Oracle Cloud API ... 3
Oracle Cloud Resource Model .. 3
Cloud Resource Types and Attributes .. 3
Resource Containment ... 3

Blueprint Concepts .. 4
Input Parameters .. 4
Resource ... 4
Outputs ... 4
Intrinsic Functions ... 4
Named Literals .. 4
Dependencies ... 4

Deploying a Blueprint .. 5
Usage ... 5
Blueprint Deployment Processing ... 5

Blueprint Examples .. 9
Blueprint Structure and Basics .. 9

Simple Blueprint ... 9
Simple Resource: Database Service Instance ... 10
Intrinsic Functions ... 11
Simple Resource with Parameter ... 11
Data Section (Named Literals) .. 12

Putting It All Together – Multiple Interdependent Resources .. 13
Macro Section ... 15
Attributes of Created Resources (Dependencies) .. 15

Visual Depiction of Blueprint Processing .. 16
Closing ... 20
References ... 20

Introduction

This document introduces ‘cloud blueprints’ (more briefly, ‘blueprints’) for the Oracle Private
Cloud, both how to use them and how to create your own.

Introduction to Cloud Blueprints 2

Blueprints are used to describe a desired set of inter-related cloud resources. Like architectural
blueprints, they describe what you want including how they are configured to interact with each
other, but not how to build them. For instance, a blueprint doesn’t describe the order in which
to create the components. Rather, the blueprint orchestration logic figures that out based on
inter-resource dependencies.

As an example, suppose you want to create a set of interacting cloud resources such as a
WebLogic server instance, an application, and a database. To do so, you must first create the
database and WebLogic server instance, deploy the application, and create a JEE datasource
that is to be used by the WebLogic server to connect to the database.

You could perform all these operations manually, through the Enterprise Manager Cloud Self
Service Portal. You would request creation of the WLS server and database and wait for either
to complete. Periodically, you would check the status of the creation requests. Once the WLS
server is created, you could deploy the application. When both the WLS server and database
are created, you could create the JEE datasource.

Alternatively, you can use a blueprint that describes the four cloud resources to automate the
process. You request instantiation of the blueprint and provide any input parameter values
required by the blueprint. The blueprint initiates the creation of the resources and monitors the
creation process to ensure that the dependent resources are automatically created as soon as
the required resources are created.

The rest of this document introduces the blueprint concepts including how to deploy an existing
blueprint as well as how to write your own.

Also available is a user manual [BP_REF] that goes into much greater detail on blueprints.

Uses of Blueprints
A blueprint can be used to automate the creation of service instances. An EM_SSA_USER can
use blueprints for various reasons:

• To create an application composed of several service instances and related cloud
resources.

• To create such sets several times (possibly with small variations).
• To facilitate instance creation for other EM_SSA_USERS.
• To eliminate the manual interactive steps that would otherwise be needed to create the

set of instances
• You want a textual representation, e.g. to place it under version control or so that you

can give it to someone else in a form he can review and modify.

To summarize, blueprints allow you to automate the creation of a set of service instances.

For example, the Quality Assurance team in an enterprise needs to allocate and release
resources required to test a Web application. Instead of manually creating the service instances
using the Enterprise Manager Cloud Self Service application, a blueprint can be used to perform
this task. One person authors a blueprint so that all QA engineers can simply invoke the

Introduction to Cloud Blueprints 3

blueprint and enter a few input parameter values, after which the resources are created. Each
user can watch as the blueprint processor displays the status for creation of each resource.

Another example illustrates a blueprint’s use to address simplicity and consistency concerns. An
IT shop has a service template that accepts 8 input parameters. For a specific group of users, the
same set of values should be used for 6 of those 8 parameters. A simple blueprint accepts 2
parameters and uses the template to instantiate the instances with the other 6 parameters
consistently defined.

Concepts

Enterprise Manager Cloud Concepts
The concepts described in this section are Enterprise Manager cloud concepts. They are not
introduced as part of blueprints but are concepts used by blueprints. Since they form the basis
for blueprints, they are summarized below.

Oracle Cloud API
The Oracle Cloud API [CRMA] defines a RESTful programming interface to consumers of IaaS,
MWaaS, and DBaaS based on Oracle’s solution stack. It’s the Oracle Cloud API that the blueprint
processor uses to create cloud resources based on what’s specified by the blueprint.

Oracle Cloud Resource Model
The Oracle Cloud Resource Model [CRMA] details the types of resources one can manipulate via
the Oracle Cloud API and, for each type, both its attributes and the operations that can be
performed on instances of a resource type.

Cloud Resource Types and Attributes
The cloud resource model specifies a set of attributes that are common to all cloud resources,
such as uri (its URI) and resource_status (with values such as READY and CREATING). The model
also defines a set of cloud resource types and their attributes. Some resource types discussed
later in this document are:

 DbPlatformInstance: A database platform instance is created using a template. It has
attributes such as zone (location for DBaaS instance) and params,(to specify username
and password).

 JavaPlatformInstance: A JEE server instance is also created using a template. Similar to
DbPlatformInstance, a JavaPlatformInstance has attributes like zone. An example of a
MWaaS-specific attribute is application_instance_deployments , that identifies all
applications deployed to the instance.

 ApplicationInstanceDeployment: A resource type that represents an application
deployment to a JavaPlatformInstance.

 Datasource: A resource type that represents a datasource of a JavaPlatformInstance. It
is contained in a JavaPlatformInstance and refers to a DatabaseInstance.

Resource Containment
A cloud resource can contain other resources. For instance, a Datasource of a
JavaPlatformInstance is contained in the JavaPlatformInstance, and a template contains all
service instances that were created using that template.

Introduction to Cloud Blueprints 4

Every resource you create will be contained in a parent cloud resource. As part each resource
definition in your blueprints, you will identify the resource’s container.

Blueprint Concepts

A blueprint generally describes one or more cloud resources to be created.

A user deploys a blueprint to create the resources described by the blueprint, at which time he
provides any input parameter values used by the blueprint.

To create each resource, the blueprint specifies its attribute values, which may be hard-coded,
come from blueprint input parameters, or gleaned from other resources. In instantiating all the
resources, the blueprint system determines the resource dependencies and uses this to order
the resource creation and/or configuration required to properly create the instances described
by a blueprint.

Input Parameters
A blueprint can define input ‘parameters’. Each parameter definition specifies a name, datatype
and optional specifications such as default value. A user who deploys a blueprint must specify
the value for all parameters not having a default.

Resource
A blueprint ‘resource’ defines how to construct a cloud resource. It specifies a set of attributes
and the parent cloud resource that is to contain the newly created resource. Each resource in a
blueprint also has a name, which must be unique within a blueprint.

Outputs
If outputs are specified, the specified values are displayed when blueprint deployment
completes. Output parameters can be used to display information derived during deployment
such as to inform the end user of the URL of a JEE application deployment.

Intrinsic Functions
The blueprint language includes a set of predefined functions, illustrated below.

Named Literals
As a programming convenience, blueprints can include a Data section. This is commonly used to
specify symbolic names for literal values.

Dependencies
Blueprint deployment is done by creating resources in parallel when possible, but a resource
that depends on another resource can’t be created until the latter resource is created. Such
dependencies are often implicit, but blueprint processing identifies dependencies and
orchestrates the overall steps.

Introduction to Cloud Blueprints 5

Deploying a Blueprint

Usage

Prerequisites:

 You have the blueprint file

 You have installed the blueprint processor software

A blueprint file is a text file in which the author has used the blueprint language to describe
what is required. You deploy the blueprint by running the blueprint processor. For instance, on
Windows you would use a command as follows:

 bp_processor.py myfile.yml -u myname –c https://myhost/em/cloud

In this example, the -u option specifies the Enterprise Manager user id. If the password is not
specified here, you are prompted for it when you execute the blueprint file. The -c option is
used to specify the cloud URL. There are numerous other command line options. To view a
description of supported options, enter

 bp_processor.py myfile.yml -h

Blueprint Deployment Processing

When a blueprint is deployed, the runtime logic processes the input parameters and
orchestrates the creation of resources, doing so in parallel when possible. It also monitors
progress and keeps the user informed.

The output you see will depend on the blueprint and your environment. The example below
shows the use of a blueprint that deploys a Weblogic server, application, database, and JEE
Datasource. The output from running this blueprint should give you a sense for the blueprint
processing steps.

C:\Users\myname\Dropbox\Code\blueprints>bp_processor.py xyzApp.yml -c

https://... -g deployment_report

...

Cloud user id: ssa_user1

Password:

The command you entered above specifies the cloud URL (via the -c option) and a directory into
which to place the optional deployment report (the -g option). You then entered the credentials
as prompted to proceed.

Blueprint Processor - Invocation Summary

--

 Cloud URI: https://...

 User: ssa_user1

 Blueprint file: xyzApp.yml

 Timeout: 90 minutes, 0 seconds

 Refresh frequency: 15 seconds

Introduction to Cloud Blueprints 6

 Inputs:

 Pause points: (none)

 Debug logging: False

 Instance name: default_instance_name

 Graphical report dir: deployment_report

 Versions:

 Blueprint processor: 12.1.0.5, 10-Oct-2012

 Cloud protocol: 10001

14:24:59 INFO: Connecting to cloud: https://....

 (Most of the information in the invocation summary reflects default values used because you
didn’t specify the corresponding options.)

Because the blueprint defines input parameters, you are then prompted to provide values:

Input Parameter Value Entry

 Zone to use for db (Zone1):

 Password to use for db (welcome1):

In this example, you pressed Enter to accept the default value for zone, Zone1 and then entered
a password.

Once all the necessary information has been provided, the blueprint processor starts creating
the resources and monitoring the progress. This is depicted in a “vertical timeline” so you can
observe the progress. Each resource to be created is represented by a column. As the state
transitions for each resource occur, they are noted in the corresponding column of the vertical
timeline.

First, the list of all possible states, with their abbreviations, is printed. The states reflect the
processing phases and the outcome of each phase.

14:25:03 INFO:

14:25:03 INFO: Resource State Timeline

14:25:03 INFO: -----------------------

14:25:03 INFO: State Key:

14:25:03 INFO: e : Evaluating

14:25:03 INFO: ep: Evaluation pending. (See right side for pendee)

14:25:03 INFO: es: Evaluation succeeded, creation requested

14:25:03 INFO: EF: Evaluation failed

14:25:03 INFO: c : Creating

14:25:03 INFO: CF: Creation failed

14:25:03 INFO: CS: Creation succeeded. State = READY

14:25:03 INFO:

To process any resource definition, the first step is to evaluate the expressions of the definition
that describe the resource (State Key: e). In some cases, evaluation must be delayed (State Key:
ep). Once fully evaluated, a creation request is made (State Key: c) and the processing for that

Introduction to Cloud Blueprints 7

resource is successfully completed (State Key: CS).After the State Key is printed, the resource
creation timeline appears:

To process any resource definition, the first step is to evaluate the expressions of the definition
that describe the resource (Cloud state: e). In some cases, evaluation must be delayed (state
key: ep). Once fully evaluated, a creation request is made (state key: c). This make take some
time, but if all goes well the processing for that resource completes successfully (state key: CS).

After the State Key is printed, the resource creation timeline starts to appear:
14:25:03 INFO: MyApp

14:25:03 INFO: /

14:25:03 INFO: / MyDB

14:25:03 INFO: / /

14:25:03 INFO: / / MyDS

14:25:03 INFO: / / /

14:25:03 INFO: / / / MyWebServer

14:25:03 INFO: / / / /

14:25:03 INFO: ---------------------

14:25:03 INFO: | | | | e |

14:25:04 INFO: | | | | es |

14:25:10 INFO: | | | | c |

14:25:10 INFO: | | e | | . |

14:25:12 INFO: | | es | | . |

14:25:17 INFO: | | c | | . |

14:25:17 INFO: | | . | e | . |

14:25:17 INFO: | | . | ep | . | Awaiting creation of MyWebServer

14:25:17 INFO: | e | . | | . |

14:25:17 INFO: | ep | . | | . | Awaiting creation of MyWebServer

14:25:33 INFO: | | . | | . |

14:25:50 INFO: | | . | | . |

.....

14:41:18 INFO: | | . | | . |

14:41:33 INFO: | | . | | CS |

14:41:33 INFO: | | . | |====|

14:41:44 INFO: | | . | ep | | Awaiting creation of MyDB

14:41:57 INFO: | es | . | | |

14:42:00 INFO: | c | . | | |

14:42:17 INFO: | . | . | | |

....

14:44:44 INFO: | . | . | | |

14:45:16 INFO: | CS | . | | |

14:45:16 INFO: |====| . | | |

14:45:32 INFO: | | . | | |

14:45:47 INFO: | | . | | |

14:54:17 INFO: | | . | | |

14:54:17 INFO: | | CS | | |

14:54:17 INFO: | |====| | |

14:54:18 INFO: | | | es | |

14:54:19 INFO: | | | c | |

14:54:33 INFO: | | | CS | |

14:54:33 INFO: | | |====| |

14:54:33 INFO: ---------------------

14:54:33 INFO:

You can see that the timeline is vertical and the four resources are MyApp, MyDB, MyDS, and
MyWebServer.

Introduction to Cloud Blueprints 8

The MyWebServer resource definition is evaluated (state key: e) first. When this is successful,
the creation process begins (state key: c). Parallely, the MyDB resource is evaluated and the
creation process is initiated. Then the MyDS resource is evaluated and the blueprint processor
determines that the evaluation cannot be completed until the MyWebServer resource is
created. The same process is applicable to the MyApp resource. When the MyDB and
MyWebServer resources are successfully created (state key: CS), the creation process for MyApp
and MyDS resources can proceed.

Next, the Outputs section of our example blueprint is processed:

14:54:33 INFO: Output Processing

14:54:33 INFO: -----------------

14:54:33 INFO:

14:54:33 INFO: Output values specified: 1

14:54:49 INFO: Value of URL: {u'ms_1': u'http://...}

14:54:49 INFO:

In the example above, you can see that the blueprint specifies one output value named “URL”
and a value is represented with https://….

When all the resources have been successfully created, the blueprint processor summarizes the
results. This includes the processing summary for each requested resource as well as the timing
information for each resource and the overall run:

14:54:49 INFO: Blueprint Processing Summary

14:54:49 INFO: ----------------------------

14:54:49 INFO:

14:54:49 INFO: Resource State Summary:

14:54:49 INFO: MyWebServer: READY

14:54:49 INFO: URI: /em/cloud/jaas/javaplatforminstancerequest/163

14:54:49 INFO: Cloud resource state: READY

14:54:49 INFO: Timing info:

14:54:49 INFO: Creation start: 14:25:04

14:54:49 INFO: Creation end: 14:41:33

14:54:49 INFO: Duration: 16 minutes, 29.6 seconds

14:54:49 INFO: MyDB: READY

14:54:49 INFO: URI: /em/cloud/dbaas/dbplatforminstance/byrequest/164

14:54:49 INFO: Cloud resource state: READY

14:54:49 INFO: Timing info:

14:54:49 INFO: Creation start: 14:25:12

14:54:49 INFO: Creation end: 14:54:17

14:54:49 INFO: Duration: 29 minutes, 5.7 seconds

14:54:49 INFO: MyDS: READY

14:54:49 INFO: URI: /em/cloud/jaas/datasourcerequest/QA_app_DS@201

14:54:49 INFO: Cloud resource state: READY

14:54:49 INFO: Timing info:

14:54:49 INFO: Creation start: 14:54:18

14:54:49 INFO: Creation end: 14:54:33

14:54:49 INFO: Duration: 0 minutes, 15.3 seconds

14:54:49 INFO: MyApp: READY

14:54:49 INFO: URI:

/em/cloud/jaas/applicationinstancedeploymentrequest/myApp@181

14:54:49 INFO: Cloud resource state: READY

14:54:49 INFO: Timing info:

14:54:49 INFO: Creation start: 14:41:57

14:54:49 INFO: Creation end: 14:45:16

Introduction to Cloud Blueprints 9

14:54:49 INFO: Duration: 3 minutes, 18.9 seconds

14:54:49 INFO:

14:54:49 INFO: Timing Summary (seconds):

14:54:49 INFO: Client-side CPU time: 0 minutes, 6.474 seconds

14:54:49 INFO: Elapsed time:

14:54:49 INFO: Processing time: 29 minutes, 58.0 seconds

14:54:49 INFO: Paused time: 0 minutes, 1.9 seconds

14:54:49 INFO: Total elapsed time: 29 minutes, 59.9 seconds

14:54:49 INFO:

14:54:49 INFO: Graphical Report Generation

14:54:49 INFO: -------------------------------

14:54:49 INFO:

14:55:37 INFO: Graphical report generated: deployment_report/bp_report.html

C:\Users\myname\Dropbox\Code\blueprints>

Blueprint Examples
This section illustrates the use of the blueprint concepts and syntax by guiding the reader
through progressively more complex examples of blueprints. If you don’t plan to author any
blueprints, you may choose to skip this section.

Blueprint Structure and Basics
A cloud blueprint specifies a set of desired cloud resources and represents these resources via a
text file. Blueprints leverage a standard for easily readable data-structured text called YAML1.

Simple Blueprint

A blueprint is a document that you can think of as containing sections. The simplest useful
blueprint specifies only the ‘Resources’ section and a single resource. In this example, the
resource is a database defined by a template.

Resources:

 MyDB:

 Type: application/oracle.com.cloud.common.DbPlatformInstance+json

 Container: ... (refers to db template)

 Properties: ... (provides properties of db)

The above blueprint defines one blueprint resource named MyDB. The Type entry specifies the
media type for ‘database’ as defined by the Cloud Resource Model API. The Container entry
identifies the parent cloud resource to contain the newly created object. (Per [CRMA], all cloud
resources are created by adding them to existing containers.) Being a database service instance,
it will be created vua the database template used to create the service. How to specify the
container will be shown later, so we just use ellipses here. Similarly, the data required by that
template is specified in the Properties entry and shown later.

Now let’s add an ‘Inputs’ section…

Inputs:

1
 YAML is a standard notation, like XML and JSON. As with JSON, YAML is used to represent information

via lists, dictionaries, and nesting. These concepts are sufficient to capture all blueprint semantics.

Introduction to Cloud Blueprints 10

 DbZone:

 Type: String

 DefaultValue: Zone1

 Prompt: Zone to use for db

 DbPassword:

 Type: String

 DefaultValue: welcome1

 Prompt: Password to use for db

 Sensitive: True

Resources:

 MyDB:

 Container: ...

 Properties: ...

When the user requests deployment of this blueprint, he provides a value for the DbZone
parameter or takes the default specified by the blueprint (Zone1). After input processing, the
parameter values can be referenced from other parts of the blueprint, in particular to provide
attribute values needed to create resources. More on this later.

Simple Resource: Database Service Instance
In a blueprint, one uses blueprint resources to describe the cloud resources to create. For each
blueprint resource, the information required by the Cloud Resource Model is provided.

The following blueprint specifies a single resource to create a database service instance:
Resources:

 MyDB:

 Type: application/oracle.com.cloud.common.DbPlatformInstance+json

 Container: ...

 Properties:

 zone: ...

 name: jbName

 params:

 username: app_user

 password: change_me

Each resource definition in a blueprint specifies a name, a Container into which to add the
resource, and Properties used to specify the characteristics of what to create. In this case:

 The name of the blueprint resource definition is MyDB. The name is used in the scope
of a blueprint, e.g. to inform the user deploying a blueprint about progress for each
resource. In more complex cases, we’ll see that the name can be referenced elsewhere
within a blueprint.

 The Container entry specifies the URI of the container to which the new resource will be
added. To create a database service instance, we identify the service template that
corresponds to the kind of database we want. (We’ll see how to do that when we
introduce the topic of intrinsic functions.)

 The Properties entry specifies values needed to create the resource. In this case, the
model requires that we specify zone, name, and params properties. These specify the
zone in which the instance is to be created, its name, and a list of name/value pairs
required by the selected template.

Introduction to Cloud Blueprints 11

Intrinsic Functions

To operate on data, blueprints support the use of intrinsic functions. All function names begin
with “f_” and are invoked with a list of arguments.

Continuing the above example, we use two intrinsic functions, to return the URI of the desired
container and the desired zone.

Resources:

 MyDB:

 Type: application/oracle.com.cloud.common.DbPlatformInstance+json

 Container:

 f_getTemplateURI:

 - Small Database Service Template_automation_VIMAL_si

 - dbaas

 Properties:

 zone:

 f_getZoneURI: ...

 name: jbName

 params:

 username: app_user

 password: ...

As you can see, the f_getTemplateURI function takes 2 arguments, the name of the template
and its service type. The current supported service types are: dbaas, jaas, and iaas (Database-,
Java-, and Infrastructure-as-a-Service). The f_getZoneURI is analogous to f_getTemplateURI but
for zones.

Other intrinsic functions will be introduced below. The full set of functions is described in
[BP_REF].

Simple Resource with Parameter
To the above example blueprint, we now add the use of 2 parameters. By doing so, the user
who deploys the blueprint, can specify which zone and password to use.

Inputs:

 DbZone:

 Type: String

 DefaultValue: Zone1

 Prompt: Zone to use for db

 DbPassword:

 Type: String

 DefaultValue: welcome1

 Prompt: Password to use for db

 Sensitive: True

Resources:

 MyDB:

 Type: application/oracle.com.cloud.common.DbPlatformInstance+json

 Container:

 f_getTemplateURI:

 - Simple DB Template

 - dbaas

 Properties:

 zone:

 f_getZoneURI:

 - f_path:

Introduction to Cloud Blueprints 12

 - "Inputs.DbZone.Value"

 - dbaas

 params:

 username: app_user

 password:

 f_path:

 - 'Inputs.Password.Value'

The Inputs section defines the two input parameters and the values of the parameters are
accessed via the ‘f_path’ intrinsic function.

The ‘f_path’ function is used to evaluate path expressions to access any data in your blueprint as
well as any cloud resource data to which you have access. In our example, the path expression
just uses the dot operator to access nested attributes, i.e. first access the Inputs attribute (i.e.
the Inputs section) of the blueprint and within that, the UserId attribute, and within that the
Value attribute.

Data Section (Named Literals)

Suppose your blueprint creates several databases and suppose that you don’t want to prompt
the user for user and password. Furthermore, you want to code your blueprint so that it’s easy
to change the password later.

In a procedural language, you’d use a named literal in order to document the intent and so that
you can change it once at the top of your code. Within a blueprint, you do this by using the Data
section.

Data:

 QADBCreds:

 user: sysman

 password: sysman

Resources:

 MyDB1:

 Type: application/oracle.com.cloud.common.DbPlatformInstance+json

 Container:

 f_getTemplateURI:

 - Small Database Service Template_automation_VIMAL_si

 - dbaas

 Properties:

 zone:

 f_getZoneURI:

 - f_path:

 - "Inputs.DbZone.Value"

 - dbaas

 params:

 username:

 f_path:

 - “Data.QADBCreds.user”

 password:

 f_path:

 - “Data.QADBCreds.password”

 name: jbName

 MyDB2:

 Container:

Introduction to Cloud Blueprints 13

 ...

In the above case, you can see that the Data section takes a YAML structure, which can be
traversed via the ‘path’ function, in the same way shown for Inputs earlier.

Putting It All Together – Multiple Interdependent Resources
In this more elaborate example, we show how one might create a database and an application
that uses it. To do so, the blueprint specifies 4 cloud resources:

 Database service instance

 Java service instance

 Datasource of the Java service instance

 Application of the Java service instance

New constructs are in bold, explained below.

Inputs:

 DbZone:

 Type: String

 DefaultValue: Zone1

 Prompt: Zone to use for db

 DbPassword:

 Type: String

 DefaultValue: welcome1

 Prompt: Password to use for db

 Sensitive: True

Macros:

 # Return a name with unique (date-time) suffix

 # The one argument is a 'name' string

 f_myDescriptiveName:

 - 1

 - f_concat:

 - arg_1

 - '_'

 - f_path:

 - 'Info.time_suffix'

Resources:

 MyDB:

 Type: application/oracle.com.cloud.common.DbPlatformInstance+json

 Container:

 f_getTemplateURI:

 - Small Database Service Template_automation_VIMAL_si

 - dbaas

 Properties:

 zone:

 f_getZoneURI:

 - f_path:

 - "Inputs.DbZone.Value"

 - dbaas

 params:

 username: app_user

 password:

 f_path:

 - "Inputs.DbPassword.Value"

 name: jbName

Introduction to Cloud Blueprints 14

 MyWebServer:

 Container:

 f_getTemplateURI:

 - PS4_LowHeapTemplate

 - jaas

 Properties:

 name:

 f_myDescriptiveName:

 - jb_pf

 zone:

 f_getZoneURI:

 - Zone1

 - jaas

 MyDS:

 Type: application/oracle.com.cloud.jaas.DataSource

 Container:

 f_getResourceURI:

 - MyWebServer

 Properties:

 name: QA_app_DS

 jndi_name:

 - jndi_1

 - jndi_2

 jdbc_driver: oracle.jdbc.OracleDriver

 database_type: Oracle

 database_connect_string:

 f_concat:

 - 'jdbc:oracle:thin:@'

 - f_getResourceAttr:

 - MyDB

 - connect_string

 username: app_user

 password:

 f_path:

 - "Inputs.DbPassword.Value"

 MyApp:

 Type: application/oracle.com.cloud.jaas.ApplicationInstanceDeployment

 Container:

 f_getResourceURI:

 - MyWebServer

 Properties:

 application_instance_component:

 f_getAppCompURI:

 - jbcomponent

 - SSA_USER1

 -

 name: myApp

Outputs:

 URL:

 Description: URL of the deployed app

 Value:

 f_getResourceAttr:

 - MyApp

 - http_application_invocation_url

Introduction to Cloud Blueprints 15

Macro Section
If you have a sequence of constructs that you tend to repeat, you can use macro expansion to
improve the readability of your blueprint. Macros also enable you to encapsulate logic e.g. so
that you can need only modify the logic in one place to affect all code that refers to it.

Our example blueprint defines a macro named f_myDescriptiveName. It takes one string
parameter and appends “_” as well as a string representation of the current time.

Attributes of Created Resources (Dependencies)
The key new feature introduced by this example is the ability to refer to attributes of created
resources. For instance, the Cloud Resource Model for Datasource defines a
database_connect_string attribute whose value is required to create a Datasource. The
contents of the string won’t be available until after the database is created, so it’s clearly not
something the blueprint author can know in advance. Instead, he uses an intrinsic function to
refer to the needed property of the newly created database. (Each DatabasePlatformInstance
exposes a ‘connect_string’ property.)

To do this, the Datasource specifies the value of JDBCConnectString via the ‘f_getResourceAttr’
intrinsic function:
 MyDS:

 ...

 Properties:

 ...

 database_connect_string:

 f_concat:

 - 'jdbc:oracle:thin:@'

 - f_getResourceAttr:

 - MyDB

 - connect_string

 ...

In this case, the f_getResourceAttr function waits for the MyDB resource to be created and then
returns the value of its connect_string property.2

Similarly, the creation of a Datasource is done by adding it to the JavaPlatformInstance that is
created first, so we need to refer to the JavaPlatformInstance’s URI.
 MyDS:

 ...

 Container:

 f_getResourceURI:

 - MyWebServer

In this case, the f_getResourceURI function waits for the MyWebServer resource to be created
and then returns its URI. (In addition to adding a Datasource to MyWebServer, we also must
add an ApplicationInstanceDeployment, so the same approach is used for both.)

More generally, blueprint resources can refer to other resources and blueprint orchestration
accounts for such dependencies, creating resources in parallel when possible.

2
 You might think that f_path could be used to achieve the same effect, but only f_getResourceAttr knows

to wait for the resource creation to succeed and its state be READY before attempting to get its attribute.

Introduction to Cloud Blueprints 16

Visual Depiction of Blueprint Processing

The blueprint processor can also generate an HTML report that includes a graphical
representation of the blueprint. This may be used to help understand the overall structure of
the blueprint and the relationship of blueprint entities. In addition, the report can include the
results of deploying the blueprint.

The following example report is for the example blueprint described in Processing a Blueprint.

The first part of the report summarizes the run:

Next is the graphical depiction, in which two types of arcs are used. One depicts containment,
e.g. containment of a datasource within a Weblogic server. The other depicts how data is used
across the elements of a blueprint. If blueprint deployment is successful, the status of all
resources will be Ready (green) and you can click on a resource, which links to another report
section where you can view the values of its attributes at the time of creation

Introduction to Cloud Blueprints 17

This is followed by a legend to explain the graphical conventions:

Introduction to Cloud Blueprints 18

Finally, each created resource is summarized. (Clicking on a resource definition in the graphical
depiction takes you directly to the resource summary for the selected resource.)

Introduction to Cloud Blueprints 19

Introduction to Cloud Blueprints 20

Closing

This ends the introduction to cloud blueprints. Many features are only described in [BP_REF]
including:

 Blueprint macros

 Path expressions for browsing the Cloud and blueprint

 Setting breakpoints and debugging blueprints

 Hints, tips, and frequently asked questions.

References

Introduction to Cloud Blueprints 21

[BP_REF] Reference Manual - Cloud Blueprints and Blueprint Processor, included in the same
directory in which this document was installed.

[CRMA] Oracle Cloud Resource Model API; The Cloud Resource Model API is described in Oracle®
Enterprise Manager Cloud Administration Guide, 12.1.0.5, Part VII, Using the Cloud APIs

 [JSON] Introducing JSON, http://www.json.org/

[YAML] http://yaml.org/

http://www.json.org/
http://yaml.org/

