PostgreSQL Architecture

Ágnes Kovács Budapest, 2015-01-20

Agenda

- Introduction
- Overview of architecture
- Process structure
- Shared memory
- Concurrency handling
- The Optimizer

Introduction

What is PostgreSQL?

- open source
- object-relational database system
- runs on Linux, UNIX (AIX, BSD, HP-UX, SGI IRIX, Mac OS X, Solaris, Tru64), and Windows
- ACID compliant
- supported data types: INTEGER, NUMERIC, BOOLEAN, CHAR, VARCHAR, DATE, INTERVAL, TIMESTAMP and binary large objects
- native programming interfaces for C/C++, Java, .Net, Perl, Python, Ruby, Tcl, ODBC

PostgreSQL in numbers

Limit	Value
Maximum Database Size	Unlimited
Maximum Table Size	32 TB
Maximum Row Size	1.6 TB
Maximum Field Size	1 GB
Maximum Rows per Table	Unlimited
Maximum Columns per Table	250 - 1600 depending on column types
Maximum Indexes per Table	Unlimited

What PostgreSQL can do?

- Multi-Version Concurrency Control (MVCC)
- Point in time recovery
- Tablespaces
- Asynchronous replication
- Nested transactions (savepoints)
- Online/hot backups
- Query planner/optimizer
- Write Ahead Logging
- International character sets, multibyte character encodings, Unicode, and it is localeaware for sorting, case-sensitivity, and formatting

Overview of architecture

PostgreSQL 9.0 Architecture

Raghavendra www.raghavt.blogspot.com ragavendra.dba@gmail.com

Database file layout

- PGDATA base directory for the Database Server: traditionally it contains configuration and data files + data directory
- example location: /var/lib/pgsql/data
- Multiple clusters, managed by different server instances, can exist on the same machine
- configuration files and pid file location can be configured any where, it can reside under PGDATA also

Subdirectories within PGDATA

Item	Description		
PG_VERSION	A file containing the major version number of PostgreSQL		
base	Subdirectory containing per-database subdirectories		
global	Subdirectory containing cluster-wide tables, such as pg_database		
pg_clog	Subdirectory containing transaction commit status data		
pg_dynshmem	Subdirectory containing files used by the dynamic shared memory subsystem		
pg_logical	Subdirectory containing status data for logical decoding		
pg_multixact	Subdirectory containing multitransaction status data (used for shared row locks)		
pg_notify	Subdirectory containing LISTEN/NOTIFY status data		
pg_repIsIot	Subdirectory containing replication slot data		
pg_serial	Subdirectory containing information about committed serializable transactions		
pg_snapshots	Subdirectory containing exported snapshots		
pg_stat	Subdirectory containing permanent files for the statistics subsystem		
pg_stat_tmp	Subdirectory containing temporary files for the statistics subsystem		
pg_subtrans	Subdirectory containing subtransaction status data		
pg_tblspc	Subdirectory containing symbolic links to tablespaces		
pg_twophase	Subdirectory containing state files for prepared transactions		
pg_xlog	Subdirectory containing WAL (Write Ahead Log) files		

The /base subdirectory

- contains the user database files
- subdirectory names are the database OIDs

File System /data/base/db

Inside PostgreSQL Shared Memory

Data Pages

- pages are located under the database subdirectories
- page default size: 8k
 - additional sizes:4k and 16k but needs compilation of postgresql
- for general purpose 8k is best practice

Important user accessible files

- PGVERSION: major version number of installation
- postgresql.conf: main configuration file for PostgreSQL installation
- pg_hba.conf: configures the client authentication method
- pg_ident.conf: configures OS and PostgreSQL authentication name mapping
- postmaster.opts: default command line options for the postmaster
- postmaster.pid: PID of the postmaster and identification the main directory

Write Ahead Logs I.

- located under /pg_xlog
- REDO logs of PostgreSQL database Server
- per default it is used during crash recovery
- related main parameters are
 - wal_level
 - archive_mode, archive_command

Write Ahead Logs II.

- *wal_level*: defines what to log into the WAL files
 - minimal (default): transaction logging is skiped for bulk operations like CREATE TABLE AS, CREATE INDEX, CLUSTER, COPY etc.
 - enough to recover after a crash or immediate shutdown
 - archive: needed for archiving WAL files
 - hot_standby: enable to open standby read only
 - logical: supports logical decoding
- archive_mode: default is false, if true WAL files are archived with the command given at archive_command

Process structure

PostgreSQL 9.0 Architecture

Raghavendra www.raghavt.blogspot.com ragavendra.dba@gmail.com

Postmaster

main PostgreSQL program

postgres@agideb:~\$ pg_ctl status
pg_ctl: server is running (PID: 2971)
/usr/lib/postgresql/9.1/bin/postgres "-D"
"/var/lib/postgresql/9.1/main" "-c"
"config_file=/etc/postgresql/9.1/main/postgresql.conf"

- postmaster is listening and if user connection comes in it forks postgres server processes
- postgres server process is the copy of postmaster

Shared Memory Creation

Additional important background processes I.

- Statistics Collector
- Background Writer
 - writes dirty pages to disk
 - runs repeatedly (time is defined by multiple parameters and actual statistics)
- WAL Writer

Additional important background

processes II.

Auto Vacuum daemon

- optional but highly recommended
- automates VACUUM and ANALYZE commands
- multiple processes:
 - a. auto vacuum launcher: persistent
 - b. auto vacuum workers: started by launcher for all databases
- What is VACUUM?
 - recover or reuse disk space occupied by deleted or updated rows
 - update data statistics
 - update visibility maps speeds up index only scans
 - protects against transactional ID Wraparound

Shared Memory

Why do we need shared memory in PostgreSQL?

- to mainly enable communication between postmaster and postgres server processes
 - child processes cannot propagate information
 - shared memory is available to share the same information to all processes
- to cache pages

Other Shared Memory Structures

Semaphores

Inside PostgreSQL Shared Memory

23

Structure of a block tuple

Inside PostgreSQL Shared Memory 13/30

Structure of a single file system tuple

Inside PostgreSQL Shared Memory 14/30

Handling concurrency

Multi-Version Concurrency Control (MVCC)

- Readers do not block writers, writers do not block readers
- PostgreSQL guarentees this even with the strictest isolation level

Standard SQL Transaction Isolation Levels available in PostgreSQL

Isolation Level	Dirty Read	Nonrepeatable Read	Phantom Read
Read uncommitted	Possible	Possible	Possible
Read committed	Not possible	Possible	Possible
Repeatable read	Not possible	Not possible	Possible
Serializable	Not possible	Not possible	Not possible

The Optimizer

Postgres Query Execution

Explaining the Postgres Query Optimizer 2/56

Decisions taken by the optimizer

- Scan Method
 - Sequential Scan
 - Bitmap Index Scan
 - Index Scan
- Join Method
 - Nested Loop
 - Hash Join
 - Merge Join
- Join Order

Optimizer statistics

- distribution of data:
 - 100 most common values
 - histograms with 100 buckets
 - granularity can be changed to have more data to calculate distribution
 - ALTER TABLE
- statistic collection cannot be turned off
- statistics cannot be backed up individually for an object

Sources

- <u>http://momjian.us/main/presentations/overview.html</u>
- http://www.postgresql.org/
- <u>http://raghavt.blogspot.hu/2011/04/postgresql-90-architecture.html</u>