
Chapter 2
Rule Learning in a Nutshell

This chapter gives a brief overview of inductive rule learning and may therefore
serve as a guide through the rest of the book. Later chapters will expand upon
the material presented here and discuss advanced approaches, whereas this chapter
only presents the core concepts. The chapter describes search heuristics and rule
quality criteria, the basic covering algorithm, illustrates classification rule learning
on simple propositional learning problems, shows how to use the learned rules
for classifying new instances, and introduces the basic evaluation criteria and
methodology for rule-set evaluation.

After defining the learning task in Sect. 2.1, we start with discussing data
(Sect. 2.2) and rule representation (Sect. 2.3) for the standard propositional rule
learning framework, in which training examples are represented in a single table,
and the outputs are if–then rules. Section 2.4 outlines the rule construction process,
followed by a more detailed description of its parts: the induction of individual
rules is presented as a search problem in Sect. 2.5, and the learning of rule sets
in Sect. 2.6. One of the classical rule learning algorithms, CN2, is described in
more detail in Sect. 2.7. Section 2.8 shows how to use the induced rule sets for the
classification of new instances, and the subsequent Sect. 2.9 discusses evaluation of
the classification quality of the induced rule sets and presents cross-validation as
a means for evaluating the predictive accuracy of rules. Finally, Sect. 2.10 gives a
brief historical account of some influential rule learning systems.

�This chapter is partly based on (Flach & Lavrač, 2003).

J. Fürnkranz et al., Foundations of Rule Learning, Cognitive Technologies,
DOI 10.1007/978-3-540-75197-7 2, © Springer-Verlag Berlin Heidelberg 2012

19

20 2 Rule Learning in a Nutshell

Given:

– a data description language, defining the form of data,
– a hypothesis description language, defining the form of rules,
– a coverage function Covered(r, e), defining whether rule r covers ex-

ample e,
– a class attribute C, and
– a set of training examples E , instances for which the class labels are

known, described in the data description language.

Find:
a hypothesis in the form of a rule set R formulated in the hypothesis de-
scription language which is

– complete, i.e., it covers all the examples, and
– consistent, i.e., it predicts the correct class for all the examples.

Fig. 2.1 Definition of the classification rule learning task

2.1 Problem Definition

Informally, we can define the problem of learning classification rules as follows:

Given a set of training examples, find a set of classification rules that can be used for
prediction or classification of new instances.

Note that we distinguish between the terms examples and instances. Both are usually
described by attribute values. Examples refer to instances labeled by a class label,
whereas instances themselves bear no class label. An instance is covered by a rule
if its description satisfies the rule conditions, and it is not covered if its description
does not satisfy the rule conditions. An example is correctly covered by the rule
if it is covered and the class of the rule equals the class label of the example, or
incorrectly covered if its description satisfies the rule conditions, but the class label
of the rule is not equal to the class label of the example.

The above informal definition leaves out several details. A more formal definition
is shown in Fig. 2.1. It includes important additional preliminaries for the learning
task, such as the representation formalism used for describing the data (data
description language) and for describing the induced set of rules (hypothesis
description language). We use the term hypothesis to denote the output of learning
because of the hypothetical nature of induction, which can never guarantee that the
output of inductive learning will not be falsified by new evidence presented to the
learner. However, we will also often use the terms model or theory as synonyms
for hypothesis. Finally, we also need a coverage function, which connects the
hypothesis description with the data description. The restrictions imposed by the
languages defining the format and scope of data and knowledge representation are
also referred to as the language bias of the learning problem.

Note that the definition of the classification rule learning task of Fig. 2.1 describes
an idealistic scenario with no errors in the data where a complete and consistent

2.1 Problem Definition 21

Given:

– a data description language, imposing a bias on the form of data,
– a target concept, typically denoted with ⊕,
– a hypothesis description language, imposing a bias on the form of rules,
– a coverage function Covered(r, e) defining whether rule r covers exam-

ple e,
– a set of positive examples P , instances for which it is known that they

belong to the target concept
– a set of negative examples N , instances for which it is known that they

do not belong to the target concept

Find:
a hypothesis as a set of rules R described in the hypothesis description
language, providing the definition of the target concept which is

– complete, i.e., it covers all examples that belong to the concept, and
– consistent, i.e., it does not cover any example that does not belong to

the concept.

Fig. 2.2 Definition of the concept learning task

hypothesis can be induced. However, in realistic situations, completeness and
consistency have to be replaced with less strict criteria for measuring the quality
of the induced rule set.

Propositional rules. This chapter focuses on propositional rule induction or
attribute-value rule learning. Representatives of this class of learners are CN2
(Clark & Boswell, 1991; Clark & Niblett, 1989) and RIPPER (Cohen, 1995). An
example of rule learning from the statistics literature is PRIM (Friedman & Fisher,
1999). In this language, a classification rule is an expression of the form:

IF Conditions THEN c

where c is the class label, and the Conditions are a conjunction of simple logical
tests describing the properties of instances that have to be satisfied for the rule to
‘fire’. Thus, a rule essentially corresponds to an implication Conditions ! c in
propositional logic, which we will typically write in the opposite direction of the
implication sign (c Conditions).

Concept learning. Most rule learning algorithms assume a concept learning task,
a special case of the classification learning problem, shown in Fig. 2.2. Here the
task is to learn a set of rules that describe a single target class c (often denoted
as ˚), also called the target concept. As training information, we are given a set
of positive examples, for which we know that they belong to the target concept,
and a set of negative examples, for which we know that they do not belong to the
concept. In this case, it is typically sufficient to learn a theory for the target class
only. All instances that are not covered by any of the learned rules will be classified
as negative. Thus, a complete hypothesis is one that covers all positive examples, and

22 2 Rule Learning in a Nutshell

R: complete, consistent

P

N

+

+

+

+

+ +

− − −

+

−

R: incomplete, consistent

P

N

+

+

+

+

+ +

− − −

+

−

R: complete, inconsistent

P

N

+

+

+

+

+ +

+

− − −
−

R: incomplete, inconsistent

P

N

+

+

+

+

+ +

− − −

+

−

Covered(R, E) Covered(R, E)

Covered(R, E) Covered(R, E)

Fig. 2.3 Completeness and consistency of a hypothesis (rule set R)

a consistent hypothesis is one that covers no negative examples. Figure 2.3 shows a
schematic depiction of (in-)complete and (in-)consistent hypotheses.

Given this concept learning perspective, iterative application of single concept
learning tasks allows us to deal with general multiclass classification problems.
Suppose that training instances are labeled with three class labels: c1, c2, and c3.
The above definition of the learning task can be applied if we form three different
learning tasks. In the first task, instances labeled with class c1 are treated as the
positive examples, and instances labeled c2 and c3 are the negative examples. In the
next run, class c2 will be considered as the positive class, and finally, in the third run,
rules for class c3 will be learned. Due to this simple transformation of a multiclass
learning problem into a number of concept learning tasks, concept learning is a
central topic of inductive rule learning. This type of transformation of multiclass
problems to two-class concept learning problems is also known as one-against-all
class binarization. Alternative ways for handling multiple classes are discussed in
Chap. 10.

Overfitting. Generally speaking, consistency and completeness—as required in the
task definition of Fig. 2.1—are very strict conditions. They are unrealistic in learning
from large, noisy datasets, which contain random errors in the data, either due to

2.2 Data Representation 23

incorrect class labels or errors in instance descriptions. Learning a complete and
consistent hypothesis is undesirable in the presence of noise, because the hypothesis
will try to explain the errors as well. This is known as overfitting the data.

It is also possible that the data description language or the hypothesis description
language are not expressive enough to allow a complete and consistent hypothesis,
in which case the target class needs to be approximated. Another complication is
caused by target classes that are not strictly disjoint. To deal with these cases, the
consistency and completeness requirements need to be relaxed and replaced with
some other evaluation criteria, such as sufficient coverage of positive examples,
high predictive accuracy of the hypothesis or its significance above the requested,
predefined threshold. These measures can be used both as heuristics to guide rule
construction and as measures to evaluate the quality of induced hypotheses. Some
of these measures and related issues will be discussed in more detail in Sect. 2.7
and, subsequently, in Chaps. 7 and 9.

Background knowledge. The above definition of the learning task assumes that
the learner has no prior knowledge about the problem and that it learns exclusively
from training examples. However, difficult learning problems typically require a
substantial body of prior knowledge. We refer to declarative prior knowledge as
background knowledge. Using background knowledge, the learner may express
the induced hypotheses in a more natural and concise manner. In this chapter
we mostly disregard background knowledge, except in the process of constructing
features (attribute values) used as ingredients in forming rule conditions. However,
background knowledge plays a crucial role in relational rule learning, addressed in
Chap. 5.

2.2 Data Representation

In classification tasks as defined in Fig. 2.1, the input to a classification rule learner
consists of a set of training examples, i.e., instances with known class labels.
Typically, these instances are described in a so-called attribute-value representation:
An instance description has the form .v1;j ; : : : ; vn;j /, where each vi;j is the value
of attribute Ai , i 2 f1; : : : ; Ag. An attribute can either have a finite set of values
(discrete) or take real numbers as values (continuous or numerical). An example ej

is a vector of attribute values labeled by a class label ej D .v1;j ; : : : ; vn;j ; cj /, where
each vi;j is a value of attribute Ai , and cj 2 fc1; : : : ; cC g is one of the C possible
values of class attribute C. The class attribute is also often called the target attribute.
A dataset is a set of examples. We will normally organize a dataset in tabular form,
with columns for the attributes and rows or tuples for the examples.

As an example, consider the dataset in Table 2.1.1 Like the dataset of Table 1.1, it
characterizes a number of individuals by four attributes: EducationMaritalStatus,

1The dataset is adapted from the well-known contact lenses dataset (Cendrowska, 1987; Witten &
Frank, 2005).

24 2 Rule Learning in a Nutshell

Table 2.1 A sample three-class dataset

Marital Has
No. Education status Sex children Car

1 Primary Married Female No Mini
2 Primary Married Male No Sports
3 Primary Married Female Yes Mini
4 Primary Married Male Yes Family
5 Primary Single Female No Mini
6 Primary Single Male No Sports
7 Secondary Married Female No Mini
8 Secondary Married Male No Sports
9 Secondary Married Male Yes Family

10 Secondary Single Female No Mini
11 Secondary Single Female Yes Mini
12 Secondary Single Male Yes Mini
13 University Married Male No Mini
14 University Married Female Yes Mini
15 University Single Female No Mini
16 University Single Male No Sports
17 University Single Female Yes Mini
18 University Single Male Yes Mini

Sex, and HasChildren. However, the target value is now not a binary decision
(whether a certain issue is approved or not), but a three-valued attribute, which
encodes what car the person is driving. For ease of reference, we have numbered
the examples from 1 to 18.

The reader may notice that the set of examples is incomplete in the sense that
not all possible combinations of attribute values are present. This situation is typical
for real-world applications where the training set consists only of a small fraction
of all possible examples. The task of a rule learner is to learn a rule set that serves a
twofold purpose:

1. The learned rule set should help to uncover the hidden relationship between the
input attributes and the class value, and

2. it should generalize this relationship to new, previously unseen examples.

Table 2.2 shows the remaining six examples in this domain, for which we do
not know their classification during training, indicated by question marks in the last
column. However, the class labels can, in principle, be determined, and their values
are shown in square brackets. If these classifications are known, such a dataset is
also known as a test set, if its purpose is to evaluate the predictive quality of the
learned theory, or a validation set, if its purpose is to provide an internal evaluation
that the learning algorithm may use to improve its performance.

In the following, we will use the examples from Table 2.1 as the training set, and
the examples of Table 2.2 as the test set of a rule learning algorithm.

2.3 Rule Representation 25

Table 2.2 A test set for the database of Table 2.1

Marital Has
No. Education status Sex children Car

19 Primary Single Female Yes ? [mini]
20 Primary Single Male Yes ? [family]
21 Secondary Married Female Yes ? [mini]
22 Secondary Single Male No ? [sports]
23 University Married Male Yes ? [family]
24 University Married Female No ? [mini]

2.3 Rule Representation

Given a set of preclassified objects (called examples), usually described by attribute
values, a rule learning system constructs one or more rules of the form:

IF f1 AND f2 AND : : :AND fL THEN Class D ci

The condition part of the rule is a logical conjunction of features (also called
conditions), where a feature fk is a test that checks whether the example to classify
has the specified property or not. The number L of such features (or conditions) is
called the rule length.

In the attribute-value framework that we sketched in the previous section,
features fk typically have the form Ai D vi;j for discrete attributes, and Ai < v
or Ai � v for continuous attributes (here, v is a threshold value that does not need
to correspond to a value of the attribute observed in examples). The conclusion of
the rule contains a class value ci . In essence, this means that for all examples that
satisfy the body of the rule, the rule predicts the class value ci .

The condition part of a rule r is also known as the antecedent or the body (B) of
the rule, and the conclusion is also known as the consequent or the head (H) of the
rule. The terms ‘head’ and ‘body’ have their origins in common notation in clausal
logic, where an implication is denoted as B ! H, or equivalently, H B, of the
form

ci f1 ^ f2 ^ : : : ^ fL

We will also frequently use this formal syntax, as well as the equivalent Prolog-like
syntax

ci :- f1, f2, ..., fL.

In logical terminology, the body consists of a conjunction of literals, and the head
is a single literal. Such rules are also known as determinate clauses. General clause
may have a disjunction of literals in the head. More on the logical foundations can
be found in Chap. 5.

26 2 Rule Learning in a Nutshell

An example set of rules that could have been induced in our sample domain is
shown in Fig. 2.4a. The numbers between square brackets indicate the number of
covered examples from each class. All the rules, except for the second, cover only
examples from a single class, i.e., these rules are consistent. On the other hand,
the second rule is inconsistent because it misclassifies one training example (#13).
Note that the fourth and fifth rule would each misclassify one example from the test
set (#20 and #23), but this is not known to the learner. The first rule is complete
with regard to the class family (covers all the examples of this class), the second
is complete with regard to the class sports. Again, this only refers to the training
examples that are known to the learner, the first rule would not be complete for class
family with respect to the entire domain because it does not cover example #20 of
the test set.

Collectively, the rules classify all the training examples, i.e., the learned theory is
complete for the given training set (and, in fact, for the entire domain). The theory
is not consistent, because it misclassifies one training example. However, we will
see later that this is not necessarily bad due to a phenomenon called overfitting
(cf. Sect. 2.7).

Also note that the counts for the class mini add up to 16 examples, while
there are only 12 examples from this class. Thus, some examples must be covered
by more than one rule. This is possible, because the rules are overlapping. For
example, example 13 is covered by the second and by the fifth rule. As both rules
make contradicting predictions, there must be a procedure for determining the final
prediction (cf. Sect. 2.8).

This is not the case for the decision list, shown in Fig. 2.4b. Here the rules are
tried from top to bottom, and the first rule that fires is used to assign the class label
to the instance to be classified. Thus, the class counts of each rule only show the
examples that are not covered by previous rules. Moreover, the rule set ends in
a default rule that will be used for class assignment when none of the previous
rules fire.

The numbers that show the class distribution of the examples covered by a rule
are not necessary. If desired, we can simply ignore them and interpret the rule
categorically. However, the rules also give an indication about the reliability of a
rule. Generally speaking, the more biased the distribution is towards a single class,
and the more examples are covered by the rule, the more reliable is the rule. For
example, intuitively the third rule in Fig. 2.4a is more reliable than the second rule,
because it covers more examples, and it also covers only examples of a single class.
Rules one, four, and five are also consistent, but they cover fewer examples. Indeed,
it turns out that rules four and five misclassify examples in the test set. This intuitive
understanding of rule reliability will be formalized in Sect. 2.5.3, where it is used
for choosing among a set of candidate rules.

2.3 Rule Representation 27

(a)

(b)

Fig. 2.4 Different types of rule-based theories induced from the car dataset. (a) Rule set.
(b) Decision list

28 2 Rule Learning in a Nutshell

2.4 Rule Learning Process

Using a training set like the one of Table 2.1, the rule learning process is performed
on three levels:

Feature construction. In this phase the object descriptions in the training data
are turned into sets of binary features. For attribute-value data, we have already
seen that features typically have the form Ai D vi;j for a discrete attribute Ai ,
or Ai < v or Ai � v if Ai is a numerical attribute. For different types of object
representations (e.g., multirelational data, textual data, multimedia data, etc.),
more sophisticated feature construction techniques can be used. Features and
feature construction are the topic of Chap. 4.

Rule construction. Once the feature set is fixed, individual rules can be con-
structed, each covering a part of the example space. Typically, this is done by
fixing the head of the rule to a single class value C D cj , and heuristically
searching for the conjunction of features that is most predictive for this class. In
this way the classification task is converted into a concept learning task in which
examples of class ci are positive and other examples are negative.

Hypothesis construction. A hypothesis consists of a set of rules. In propositional
rule learning, hypothesis construction can be simplified by learning individual
rules sequentially, for instance, by employing the covering algorithm, which will
be described in Sect. 2.6. Using this algorithm, we can form either unordered
rule sets or ordered rule sets (also known as decision lists). In first-order rule
learning, the situation is more complex if recursion is employed, in which case
rules cannot be learned independently. We will discuss this in Chap. 5.

Figure 2.5 illustrates a typical rule learning process, using several subroutines
that we will detail further below. At the upper level, we have a multiclass classi-
fication problem which is transformed into a series of concept learning tasks. For
each concept learning task there is a training set consisting of positive and negative
examples of the target concept. For example, for learning the concept family,
the dataset of Table 2.1 will be transformed into a set consisting of two positive
examples (#4 and #9) and 16 negative examples (all others). Similar transformations
are then made for the concepts sports (4 positive and 12 negative examples) and
mini (12 positive and 6 negative examples).

The set of relevant features for each concept learning task can be constructed
with the FEATURECONSTRUCTION algorithm, which will be discussed in more
detail in Chap. 4. The LEARNONERULE algorithm uses these features to construct
a rule body for the given target class. By iterative application of this algorithm the
complete rule set can be obtained. In each iteration of the LEARNSETOFRULES

algorithm, the set of examples is reduced by eliminating the examples covered in
the previous iteration. When all positive examples have been covered, or some other
stopping criterion is satisfied, the concept learning task is completed. The set of
rules describing the target class is returned to the LEARNRULEBASE algorithm and
included into the set of rules for classification.

2.5 Learning a Single Rule 29

Fig. 2.5 Rule learning process

In the following sections, we will take a closer look at the key subroutines of
this process, learning a single rule from data, and assembling multiple rules to a
hypothesis in the form of a rule-based theory.

2.5 Learning a Single Rule

Learning of individual rules can be regarded as a search problem (Mitchell, 1982).
To formulate the problem in this way, we have to define

– An appropriate search space
– A search strategy for searching through this space

30 2 Rule Learning in a Nutshell

Fig. 2.6 The upper rule is more general than the lower rule

– A quality function that evaluates the rules in order to determine whether a
candidate rule is a solution or how close it is to a solution.

We will briefly address these elements in the following sections.

2.5.1 Search Space

The search space of possible solutions is determined by the hypothesis language. In
propositional rule learning, this is the space of all rules of the form c B, with c

being one of the classes, and B being a conjunction of features as described above
(Sect. 2.3).

Generality relation. Enumerating the whole space of possible rules is often
infeasible, even in the simple case of propositional rules over attribute-value data.
It is therefore a good idea to structure the search space in order to search the space
systematically, and to enable pruning of some parts of the search space. Nearly all
symbolic inductive learning techniques structure the search by means of the dual
notions of generalization and specialization (Mitchell, 1997).

Generality is most easily defined in terms of coverage. Let COVERED.r; E/ stand
for the subset of examples in E which are covered by rule r.

Definition 2.5.1 (Generality). A rule r is said to be more general than rule r0,
denoted as r0 � r, iff

– Both r and r0 have the same consequent, and
– COVERED.r0; E/ � COVERED.r; E/.

We also say that r0 is more specific than r.

As an illustration, consider the two rules shown in Fig. 2.6.
The second rule has more features in its body and thus imposes more constraints
on the examples it covers than the first. Thus, it will cover fewer examples and is
therefore more specific than the first. In terms of coverage, the first rule covers four
instances of Table 2.1 (examples 4, 9, 12, and 18), whereas the second rule covers

2.5 Learning a Single Rule 31

only two of them (4 and 9). Consequently, the first rule is more general than the
second rule.

In case of continuous attributes, conditions involving inequalities are compared
in the obvious way: e.g., a condition like Age < 25 is more general than Age <
20. On the other hand, condition Age = 22 would be less general than the first,
but is incomparable to the second because it is neither a subset nor a superset of this
rule.

The above definition of generality is sometimes called semantic generality
because it is concerned with the semantics of the rules reflected in the examples
they cover. However, computing this generality relation requires us to evaluate
rules against a given dataset, which is costly. For learning conjunctive rules, a
simple syntactic criterion can be used instead: given the same rule consequent,
rule r is more general than rule r0 if the antecedent of r0 imposes at least the same
constraints as the antecedent of r, i.e., when CONDITIONS.r/ � CONDITIONS.r0/.
For example, in Fig. 2.6, the lower rule is also a syntactic specialization of the upper
rule, because the latter can be transformed into the former by deleting the condition
MaritalStatus = married.

It is easy to see that syntactic generality defines a sufficient, but not necessary
condition for semantic generality. For example, specialization could also operate
over different attribute values (e.g., Vienna � Austria � Europe) or over
different attributes (e.g., Pregnancy = yes � Sex = female).

Structuring the search space. The generality relation can be used to structure the
hypothesis space by ordering rules according to this relation. It is easily seen that
the relation of generality between rules is reflexive, antisymmetric, and transitive,
hence a partial order.

The search space has a unique most general rule, the universal rule r>, which
has the body true and thus covers all examples, and a unique most specific rule, the
empty rule r?, which has the body false and thus covers no examples. All other
rules are more specific than the universal rule and more general than the empty
rule. Thus, the universal rule is also called the top rule, and the empty rule is also
called the bottom rule of the hypothesis space, which is indicated by the symbols>
and?. However, the term bottom rule is also often used to refer to the most specific
rule re that covers a given example e. Such a bottom rule typically consists of a
conjunction of all features that are true for this particular example. We will use the
terms universal rule and empty rule for the unique most general and most specific
rules in the hypothesis space, and reserve the term bottom rule for the most specific
rule relative to a given example.

The syntactic generality relation can be used to define a so-called refinement
operator that allows navigation in this ordered space. A rule can be specialized
by conjunctively adding a condition to the rule, or it can be generalized by
deleting one of its conditions. Figure 2.7 shows the space of all generalizations
of the conjunction MaritalStatus = married, HasChildren=yes,
Sex=male. This rule could be reached by six different paths that start from the
universal rule at the top. Each step on this path consists of refining the rule in the

32 2 Rule Learning in a Nutshell

F
ig

.2
.7

A
ll

ge
ne

ra
li

za
ti

on
s

of
M
a
r
i
t
a
l
S
t
a
t
u
s
=
m
a
r
r
i
e
d
,

H
a
s
C
h
i
l
d
r
e
n
=
y
e
s
,

S
e
x
=
m
a
l
e

,s
ho

w
n

as
a

ge
ne

ra
li

za
ti

on
hi

er
ar

ch
y

2.5 Learning a Single Rule 33

current node by adding a condition, resulting in a more specific rule that covers
fewer examples. Thus, since a more specific rule will cover (the same or) a subset
of the already covered examples, making a rule more specific (or specializing it)
is a way to obtain consistent (pure) rules which cover only examples of the target
class. In this case, each path successively removes examples of all classes other than
family, eventually resulting in a rule that covers all examples of this class and no
examples from other classes.

Note, however, that Fig. 2.7 only shows a small snapshot of the actual search
space. In principle, the universal rule could be refined into nine rules with a single
condition (one for each possible value of each of the four attributes), which in turn
can be refined into 30 rules with 2 conditions, 44 rules with 3 conditions, and 24

rules with 4 conditions before we arrive at the empty rule. Thus, the total search
space has 1C 9C 30C 44C 24C 1 D 109 rules. The number of paths through this
graph is 24 � 4Š D 576.

Thus it is important to avoid searching unpromising branches and to avoid
searching parts of the graph multiple times. By exploiting the monotonicity of the
generality relation, the partially ordered search space can be searched efficiently
because

– When generalizing rule r0 to r all training examples covered by r0 will also be
covered by r,

– When specializing rule r to r0 all training examples not covered by r will also not
be covered by r0.

Both properties can be used to prune large parts of the search space of rules. The
second property is often used in conjunction with positive examples. If a rule does
not cover a positive example, all specializations of that rule can be pruned, as
they also cannot cover the example. Similarly, the first property is often used with
negative examples: if a rule covers a negative example, all its generalizations can be
pruned since they will cover that negative example as well.

Searching through such a refinement graph, i.e., a graph which has rules as its
nodes and applications of a refinement operator as edges, can be seen as a balancing
act between rule coverage (the proportion of examples covered by a rule) and rule
precision (the proportion of examples correctly classified by a rule). We will address
the issue of rule quality evaluation in Sect. 2.5.3.

2.5.2 Search Strategy

For learning a single rule, most learners use one of the following search strategies.

– General-to-specific or top-down learners start from the most general rule and
repeatedly specialize it as long as the found rules still cover negative examples.
Specialization stops when a rule is consistent. During the search, general-to-
specific learners ensure that the rules considered cover at least one positive
example.

34 2 Rule Learning in a Nutshell

function LearnOneRule(ci,Pi,Ni)

Input:
ci: a class value
Pi: a set of positive examples for class ci

Ni: a set of negative examples for class ci

F : a set of features

Algorithm:
r := (ci ← B), where B ← ∅
repeat

build refinements ρ(r) ← {r | r = (ci ← B ∧ f)} for all f ∈ F
evaluate all r ∈ ρ(r) according to a quality criterion
r := the best refinement r in ρ(r)

until r satisfies a quality threshold
or covers no examples from Ni

Output:
learned rule r

Fig. 2.8 A general-to-specific hill-climbing algorithm for single rule learning

– Specific-to-general or bottom-up learners start from a most specific rule (either
the empty rule or a bottom rule for a given example), and then generalize the rule
until it cannot further be generalized without covering negative examples.

The first approach generates rules from the top of the generality ordering
downwards, whereas the second proceeds from the bottom of the generality ordering
upwards. Typically, top-down search will find more general rules than bottom-up
search, and is thus less cautious and makes larger inductive leaps. General-to-
specific search is very well suited for learning in the presence of noise because
it can easily be guided by heuristics.

Specific-to-general search strategies, on the other hand, seem better suited for
situations where fewer examples are available and for interactive and incremental
processing. These learners are, however, quite susceptible to noise in the data,
and cannot be used for hill-climbing searches, such as a bottom-up version of
the LEARNONERULE algorithm introduced below. Bottom-up algorithms must
therefore be combined with more elaborate refinement operators. Even though
bottom-up learners enjoyed some popularity in inductive logic programming, most
practical systems nowadays use a top-down strategy.

Using a refinement operator, it is easy to define a simple general-to-specific
search algorithm for learning individual rules. A possible implementation of this
algorithm, called LEARNONERULE, is sketched in Fig. 2.8. The algorithm repeat-
edly refines the current best rule, and selects the best of all computed refinements
according to some quality criterion. This amounts to a top-down hill-climbing2

2If the term ‘top-down hill-climbing’ sounds contradictory: hill-climbing refers to the process of
greedily moving towards a (local) optimum of the evaluation function, whereas top-down refers to
the fact that the search space is searched by successively specializing the candidate rules, thereby
moving downwards in the generalization hierarchy induced by the rules.

2.5 Learning a Single Rule 35

search strategy. LEARNONERULE is, essentially, equivalent to the algorithm used
in the PRISM learning system (Cendrowska, 1987). It is straightforward to modify
the algorithm to return not only one but a beam of the b best rules, using the so-
called beam search strategy.3 This strategy is, for example, used in the CN2 learning
algorithm.

The LEARNONERULE algorithm contains several heuristic choices. For example,
it uses a heuristic quality function for selecting the best refinement, and it stops rule
refinement either when a stopping criterion is satisfied or when no further refinement
is possible. We will briefly discuss these options in the next section, but refer to
Chaps. 7 and 9 for more details.

2.5.3 Evaluating the Quality of Rules

A key issue in the LEARNONERULE algorithm of Fig. 2.8 is how to evaluate
and compare different rules, so that the search can be focused on finding the
best possible rule refinement. Numerous measures are used for rule evaluation
in machine learning and data mining. In classification rule induction, frequently
used measures include precision, information gain, correlation, the m-estimate,
the Laplace estimate, and others. In this section, we focus on the basic principle
underlying these measures, namely a simultaneous optimization of consistency and
coverage, and present a few simple measures. Two more measures will be presented
in Sect. 2.7, but a detailed discussion of rule learning heuristics will follow in
Chap. 7.

Terminological and notational conventions. In concept learning, examples are
either positive or negative examples of a given target class ˚, and they are covered
(predicted positive) or not covered (predicted negative) by a rule r or set of rules
R. Positive examples correctly predicted to be positive are called true positives,
correctly predicted negative examples are called true negatives, positives incorrectly
predicted as negative are called false negatives, and negatives predicted as positive
are called false positives. This situation can be plotted in the form of a 2 � 2 table,
as shown in Table 2.3.

In the following, we will briefly introduce some of our notational conventions. A
summary can be found in Table I in a separate section in the frontmatter (pp. xi–xiii).
We will use the letters E , P , and N to refer to all examples, the positive examples,
and the negative examples, respectively. Calligraphic font is used for denoting sets,
and the corresponding uppercase letters E , P , and N are used for denoting the sizes
of these sets. Table 2.3 thus shows the four possible subsets into which the example
set E can be divided, depending on whether the example is positive or negative, and

3Beam search is a heuristic search algorithm that explores a graph by expanding just a limited set
of the most promising nodes (cf. also Sect. 6.3.1).

36 2 Rule Learning in a Nutshell

Table 2.3 Confusion matrix depicting the notation for sets of cov-
ered and uncovered positive and negative examples (in calligraphic
font) and their respective absolute numbers (in parantheses)

whether it is covered or not covered by rule r. Coverage is denoted by adding a hat
(ˆ) on top of a letter; noncoverage is denoted by a bar (N).
Goals of rule learning heuristics. The goal of a rule learning algorithm is to find
a simple set of rules that explains the training data and generalizes well to unseen
data. This means that individual rules have to simultaneously optimize two criteria:

– Coverage: the number of positive examples that are covered by the rule (OP)
should be maximized, and

– Consistency: the number of negative examples that are covered by the rule (ON)
should be minimized.

Thus, we have a multi-objective optimization problem, namely to simultaneously
maximize OP and minimize ON . Equivalently, one can minimize NP D P � OP and
maximize NN D N � ON . Thus, the quality of a rule can be characterized by
four of the entries in the confusion matrix. As P and N are constant for a given
dataset, the heuristics effectively only differ in the way they trade off completeness
(maximizing OP) and consistency (minimizing ON). Thus they may be viewed as
functions H. OP ; ON /.

What follows is a very short selection of rule quality measures. All of them are
applicable for a single rule r but, in principle, they can also be used for evaluating
a set of rules constructed for the positive class (an example is covered by a rule
set if it is covered by at least one rule from the set). The presented selection does
not aim for completeness or quality, but is meant to illustrate the main problems
and principles. An exhaustive survey and analysis of rule evaluation measures is
presented in Chap. 7.

Selected rule learning heuristics. As discussed above, the two key values that
characterize the quality of a rule are OP , the number of covered positive examples,
and ON , the number of covered negative examples. Optimizing each one individually
is insufficient, as it will either neglect consistency or completeness.

2.5 Learning a Single Rule 37

A simple way to trade these values off is to form a linear combination, in the
simplest case

CovDiff.r/ D OP � ON
which gives equal weight to both components. One can also normalize the two
components and use the difference between the true positive rate (O�) and the false
positive rate (O�).

RateDiff.r/ D
OP

P
�
ON

N
D O� � O�

Instead of taking the difference, one can also compute the relative frequency of
positive examples in all the covered examples:

Precision.r/ D
OP

OP C ON D
OP
OE

Essentially, this measure estimates the probability Pr.˚jB/ that an example that is
covered by (the body of) a rule r is positive. This measure is known under several
names, including precision, confidence, and rule accuracy. We will stick with the
first term.

These are only three simple examples that are meant to illustrate how a trade-
off between consistency and coverage is achieved. They are not among the best-
performing heuristics. Later in this chapter (in Sect. 2.7.2), we will introduce two
more heuristics that are commonly used to fight overfitting.

2.5.4 Example

We will now look at a concrete example of a rule learning algorithm at work. We
again use the car database from Table 2.1, and, for the moment, rule precision as
a measure of rule quality. Consider calling LEARNONERULE to learn the first rule
for the class Car = family. The rule is initialized with an empty body, so that it
classifies all examples into class family.

This rule covers all four examples of class sports, all two examples of class
family, and all 12 examples of class mini. Given 2 true positives and 16 false
positives, it has precision 2

18
D 0:11.

In the next run of the repeat loop, the algorithm of Fig. 2.8 will need to
select the most promising refinement by conjunctively adding the best feature to

38 2 Rule Learning in a Nutshell

the currently empty rule body. In this case there are as many refinements as there
are values for all attributes; there are 3C 2C 2C 2 D 9 possible refinements in the
car domain. Shown below are the two possible refinements that concern the attribute
HasChildren:

Clearly the second refinement is better than the first for predicting the class
family. Its precision is estimated at 2

8
D 0:25. As it turns out, this rule is the best

one in this iteration, and we proceed to refine it further.
Table 2.4 presents all seven possible refinements in the second iteration. Next

to Precision, heuristic values for CovDiff , RateDiff , and Laplace are presented.4

In bold are the best refinements for each evaluation measure. It can be noticed
that for CovDiff , Precision, and Laplace there are three best solutions, while for
RateDiff there are only two. Selecting at random among optimal solutions and
using, for example, Precision, it can happen that we select the first refinement
HasChildren = yes AND Education = primary, which is not an ideal
solution according to RateDiff . The example demonstrates a common fact that
different heuristics may result in different refinement selections and consequently
also in different final solutions.

This is confirmed by the third iteration. If refinement HasChildren = yes
AND Education = primary is used, then the final solution is:

This rule covers one example of class family and no examples of other
classes. In contrast to that, if we start with HasChildren = yes AND
MaritalStatus = married then all heuristics will successfully find the
optimal solution:

4 Laplace will be defined in Sect. 2.7.

2.5 Learning a Single Rule 39

T
ab

le
2.

4
A

ll
po

ss
ib

le
re

fin
em

en
ts

of
th

e
ru

le
I
F

H
a
s
C
h
i
l
d
r
e
n

=
y
e
s

T
H
E
N

C
a
r

=
f
a
m
i
l
y

in
th

e
se

co
nd

it
er

at
io

n
st

ep
of

L
E

A
R

N
O

N
E

R
U

L
E

.
Sh

ow
n

is
th

e
fe

at
ur

e
th

at
is

ad
de

d
to

th
e

ru
le

,t
he

nu
m

be
r

of
co

ve
re

d
ex

am
pl

es
of

ea
ch

of
th

e
th

re
e

cl
as

se
s,

an
d

th
e

ev
al

ua
ti

on
of

fo
ur

di
ff

er
en

t
he

ur
is

ti
cs

C
ov

er
ed

ex
am

pl
es

of
cl

as
s

H
eu

ri
st

ic
ev

al
ua

ti
on

A
dd

ed
fe

at
ur

e
S

po
rt

s
M

in
i

Fa
m

ily
C

ov
D

if
f

R
at

eD
if

f
P

re
ci

si
on

L
ap

la
ce

E
d
u
c
a
t
i
o
n

=
p
r
i
m
a
r
y

0
1

1
0

0.
43

7
0.

5
0.

5

E
d
u
c
a
t
i
o
n

=
s
e
c
o
n
d
a
r
y

0
2

1
�1

0.
37

5
0.

33
3

0.
4

E
d
u
c
a
t
i
o
n

=
u
n
i
v
e
r
s
i
t
y

0
3

0
�3

�0
.1

87
0.

0
0.

2

M
a
r
i
t
a
l
S
t
a
t
u
s

=
m
a
r
r
i
e
d

0
2

2
0

0.
87

5
0.

5
0.

5

M
a
r
i
t
a
l
S
t
a
t
u
s

=
s
i
n
g
l
e

0
4

0
�4

�0
.2

5
0.

0
0.

16
7

S
e
x

=
m
a
l
e

0
2

2
0

0.
87

5
0.

5
0.

5

S
e
x

=
f
e
m
a
l
e

0
4

0
�4

�0
.2

5
0.

0
0.

16
7

40 2 Rule Learning in a Nutshell

2.6 Learning a Rule-Based Model

Real-world hypotheses can only rarely be formulated with a single rule. Thus, both
general-to-specific learners and specific-to-general learners repeat the procedure
of single rule learning on a reduced example set, if the constructed rule by itself
does not cover all positive examples. They use thus an iterative process to compute
disjunctive hypotheses consisting of more than one rule.

In this section, we briefly discuss methods that repeatedly call the LEARNONE

RULE algorithm to learn multiple rules and combine them into a rule set. We will
first discuss the covering algorithm, which forms the basis of most rule learning
algorithms, and then discuss how we can deal with multiclass problems.

2.6.1 The Covering Algorithm

The covering or separate-and-conquer strategy has its origins in the AQ family
of algorithms (Michalski, 1969). The term separate-and-conquer has been coined
by Pagallo and Haussler (1990) because of the way of developing a theory that
characterizes this learning strategy: learn a rule that covers a part of the given
training examples, remove the covered examples from the training set (the separate
part), and recursively learn another rule that covers some of the remaining examples
(the conquer part) until no examples remain. The terminological choice is a matter
of personal taste; both terms can be found in the literature.

The basic covering algorithm shown in Fig. 2.9 learns a set of rules Ri for a given
class ci . It starts to learn a rule by calling the LEARNONERULE algorithm. After the
found rule is added to the hypothesis, examples covered by that rule are deleted
from the current set of examples, so that they will not influence the generation of
subsequent rules. This is done via calls to COVERED.r; E/, which returns the subset
of examples in E that are covered by rule r. This cycle of adding rules and removing
covered examples is repeated until no more examples of the given class remain. In
this case, all examples of this class are covered by at least one rule. We will see later
(Sect. 2.7) that sometimes it may be advisable to leave some examples uncovered,
i.e., no more rules will be added as soon as some external stopping criterion is
satisfied.

2.6.2 Learning a Rule Base for Classification Problems

The basic LEARNSETOFRULES algorithm can only learn a rule set for a single
class. In a concept learning setting, this rule set can be used to predict whether
an example is a member of the class ci or not. However, many real-world problems
are multiclass, i.e., it is necessary to learn rules for more than one class.

2.6 Learning a Rule-Based Model 41

function LearnSetOfRules(ci,Pi,Ni)

Input:
ci: a class value
Pi: a set of positive examples for class ci

Ni: a set of negative examples for class ci, where Ni = E \ Pi

Algorithm:
Pcur

i := Pi, N cur
i := Ni

Ri := ∅
repeat

r := LearnOneRule(ci,Pcur
i ,N cur

i)
Ri := Ri ∪ {r}
Pcur

i := Pcur
i \ Covered(r, Pcur

i)
N cur

i := N cur
i \ Covered(r, N cur

i)
until Ri satisfies a quality threshold or Pcur

i is empty

Output:
Ri the rule set learned for class ci

Fig. 2.9 The covering algorithm for rule sets

function LearnRuleBase(E)

Input:
E set of training examples

Algorithm:
R := ∅
for each class ci, i = 1 to C do

Pi := {subset of examples in E with class label ci}
Ni := {subset of examples in E with other class labels}
Ri := LearnSetOfRules(ci,Pi,Ni)
R := R ∪ Ri

endfor
R := R ∪ {default rule (cmax ← true)}

where cmax is the majority class in E .

Output:
R the learned rule set

Fig. 2.10 Constructing a set of rules in a multiclass learning setting

A straightforward way to tackle such problems is to learn a rule base RD S
i Ri

that consists of a rule set Ri for each class. This can be learned with the
algorithm LEARNRULEBASE, shown in Fig. 2.10, which simply iterates calls to
LEARNSETOFRULES over all the C classes ci . In each iteration the current positive
class will be learned against the negatives provided by all other classes.

At the end, we need to learn a default rule, which simply predicts the majority
class in the data set. This rule is necessary in order to make sure that new examples
that may not be covered by any of the learned rules, can nevertheless be assigned a
class value.

42 2 Rule Learning in a Nutshell

This strategy of repeatedly learning one rule set for each class is also known
as the one-against-all learning strategy. We note in passing that other strategies are
possible. This, and several other learning strategies (including strategies for learning
decision lists) are the subject of Chap. 10.

2.7 Overfitting Avoidance

Most top-down rule learners can be fit into the high-level description provided in
the previous sections. For doing so, we need to configure the LEARNONERULE

algorithm of Fig. 2.8 with appropriate heuristics for

– Evaluating the quality of a single rule,
– Deciding when to stop refining a rule, and
– Deciding when to stop adding rules to a rule set for a given class.

So far, we have defined very simple rule evaluation criteria, and used consistency
and completeness as stopping criteria. However, these choices are appropriate only
in idealistic situations. For practical applications, one has to deal with the problem
of overfitting, which is a common phenomenon in data analysis (cf. also Sect. 2.1).
Essentially, the problem is that rule sets that exactly fit the training data often do not
generalize well to unseen data. In such cases, heuristics are needed to trade off the
quality of a rule or rule set with other factors, such as their complexity.

In the following, we will briefly discuss the choices that are made by the CN2
learning algorithm. More elaborate descriptions of rule evaluation criteria can be
found in Chap. 7, and stopping criteria are discussed in more detail in Chap. 9.

2.7.1 Rule Evaluation in CN2

Rules are evaluated on a training set of examples, but we are interested in estimates
of their performance on the whole example set. In particular for rules that cover
only a few examples, their evaluation values may not be representative for the
entire domain. For simplicity, we illustrate this problem by estimating the precision
heuristic, but in principle the argument applies to any function where a population
probability is to be estimated from sample frequencies.

A key problem with precision is that for very low numbers of ON and OP , this
measure is not very robust. If both OP and ON are low, one extra covered positive or
negative example may significantly change the evaluation value. Compare, e.g., two
rules r1 and r2, both covering no negative examples (ON1 D ON2 D 0), but the first
one covers 1 positive (OP1 D 1), and the second one covers 99 positive examples
(OP2 D 99). Both have a precision of 1:0. However, if it turns out that each rule
covers one additional negative example (ON1 D ON2 D 1), the evaluation of r1 drops
to 1

1C1
D 0:5, while the evaluation of r2 is still very high . 99

1C99
D 0:99/.

2.7 Overfitting Avoidance 43

The Laplace estimate addresses this problem by adding two ‘virtual’ covered
examples, one for each class, resulting in the formula

Laplace.r/ D
OP C 1

. OP C 1/C . ON C 1/
D
OP C 1

OE C 2

In the above example, the estimate for r1 would be 2
3
, rather than 1, which is much

closer to the value 1
2

that results from covering one additional negative example. The
estimate asymptotically approaches 1 if the number of true positives increases, but
with finite amounts of data the probability estimate will never be exactly 1 (or 0). In
fact, the Laplace correction of the relative frequency of covered positive examples
is an unbiased estimate for the probability Pr.˚jB/ of the positive class given
the body of the rule.5 Example calculations for the Laplace values can be seen in
Table 2.4.

2.7.2 Stopping Criteria in CN2

CN2 can use a significance measure to enforce the induction of reliable rules. If CN2
is used to induce sets of unordered rules, the rules are usually required to be highly
significant (at the 99 % level), and thus reliable, representing a regularity unlikely
to have occurred by chance. To test significance, CN2 uses the likelihood ratio
statistic (Clark & Niblett, 1989) that compares the class probability distributions
in the set of covered examples with the distribution over the training set, i.e., the
distribution of examples covered by the rule compared to the prior distribution of
examples in the training set. A rule is deemed reliable if these two distributions
are significantly different. For a two-class problem, rule significance is measured as
follows:

LRS.r/ D 2 �
0

@ OP � log2

OP
OP C ON

P
P CN

C ON � log2

ON
OP C ON
N

P CN

1

A

5If C > 2 classes are used, the relative frequencies for each class should be estimated with
OPi C1

PC
j D1

OPj CC
, where OPi is the number of examples of class i covered by the rule and C is the

number of classes. However, if we estimate the probability whether an example that is covered by
the body of a rule is also covered by its head or not, we have a binary distinction even in multiclass
problems.

44 2 Rule Learning in a Nutshell

For a multiclass problem, the value of the likelihood ratio statistic is computed
as follows6:

LRS.r/ D 2 �
XC

iD1
OPi log2

O�i

�i

where O�i D OPi

OE is the proportion of covered examples of class ci , and �i D Pi

E
is

the overall proportion of examples of class ci . This statistic is distributed as �2 with
C � 1 degrees of freedom. The rule is only considered significant if its likelihood
ratio is above a specified significance threshold.

2.8 Making a Prediction

After having learned a rule set, how do we use it for classifying new instances?
Classification with a decision list is quite straightforward. To classify a new instance,
the rules are tried in order. The first rule that covers the instance is used for
classification/prediction. If no induced rule fires, a default rule is invoked, which
typically predicts the majority class of uncovered training examples.

In the case of unordered rule sets, the situation is more complicated because all
the rules are tried and predictions of those that cover the example are collected. Two
problems have to be dealt with:

– Conflict resolution: multiple overlapping rules may make possibly conflicting
predictions for the same example

– Uncovered examples: no rule may cover the example.

As we have seen in the previous section, the second case is handled by adding a
default rule to the rule set.

The typical solution for the first problem is to use a voting mechanism to obtain
the final prediction. Conflicting decisions are resolved by taking into account the
number of examples of each class (from the training set) covered by each rule. CN2,
for example, sums up the class distributions attached to the rules to determine the
most probable class. For example, in the rule set of Fig. 2.4a, example 13 is covered
by rules nos. 2 and 5. If we sum up the class counts for each rule, we obtain 4
counts for sports, 3 counts for mini, and none for family. As a result, the
person would still be assigned to the sports car class. These counts can also be

6Clark and Niblett (1989, p. 269) define the likelihood ratio statistic in the form

LRS.r/ D 2 �PC
iD1

OPi � log2
OPi

E OPi
, where E OPi D �i � OE is the expected number of examples of class

ci that the rule would cover if the covered examples were distributed with the same relative class
frequencies as in the original dataset. A simple transformation gives our formulation with ratios of
observed relative frequencies and expected relative frequencies.

2.9 Estimating the Predictive Accuracy of Rules 45

used for probabilistic estimation (Džeroski, Cestnik, & Petrovski, 1993). In this
case, we would predict class sports with a probability of 4=7 and class mini
with a probability of 3=7. Class family would be ruled out.

As an alternative to standard CN2 classification, where the rule class distribution
is computed in terms of the numbers of examples covered, class distribution can
be given also in terms of probabilities (computed by the relative frequencies O�
of each class). In the above example, rule 2 predicts sports with a probability
of 4=5, and class mini with a probability of 1=5, whereas rule 5 predicts mini
with a probability of 1. Now the probabilities are averaged (instead of summing
the numbers of examples), resulting in the final probability distribution Œ0:4; 0; 0:6�,
and now the correct class mini is predicted. By using this voting scheme the
rules covering a small number of examples are not so heavily penalized (as is the
case in CN2) when classifying a new example. However, this may also become a
problem when some of the rules overfit the data. Thus, often a Laplace-correction
is used for estimating these probabilities from the data, as discussed in the previous
section.

One may also use different aggregations than averaging the class probability
distributions. RIPPER (Cohen, 1995), for example, resolves ties by using the rule
that has the largest (Laplace-corrected) probability estimate for its majority class.
Note that this approach is equivalent to converting the rule set into a decision list by
sorting its rules according to the above-mentioned probability estimates and using
the first one that fires.

In the literature on rule learning, we can find a number of more elaborate
approaches for handling conflicting predictions and for predictions in the case when
no rule covers an example. We will discuss a few of them in Sect. 10.2.

2.9 Estimating the Predictive Accuracy of Rules

Classification quality of the rule set is measured by the classification accuracy,
which is defined as the percentage of the total number of correctly classified
examples in all classes relative to the total number of tested examples. As a special
case, for a binary classification problem, rule set accuracy is computed as follows:

Accuracy.R/ D
OP C NN

P CN

Note that accuracy measures the classification accuracy of the whole rule set on
both positive and negative examples. It should not be confused with rule accuracy,
for which we use the term precision. The coverage difference measure CovDiff
(Sect. 2.5.3) is equivalent to evaluating the accuracy of a single rule, when we
consider that NN D N � ON , and that P and N are constant and can be omitted
when comparing the accuracy of different rules in the same domain.

46 2 Rule Learning in a Nutshell

Instead of accuracy, results are often presented with classification error, which
is simply

Error.R/ D 1 �Accuracy.R/ D
NP C ON

P CN

Obviously, both measures are equivalent, and the choice is a matter of personal taste.

2.9.1 Hold-Out Set Evaluation

It is not valid to estimate the predictive accuracy of a theory on the same dataset
that was used for learning. As an illustration, consider a rule learning algorithm that
simply constructs one rule for each positive training example by formulating the
body of the rule as a conjunction of all attribute values that appear in the definition
of the example, and classifying everything else as negative. Such a set of rules would
have 100 % accuracy7 if estimated on the training data, but in reality, this theory
would misclassify all examples that belong to the positive class except those that it
has already seen during training. Thus, no generalization takes place, and the rule is
worthless for practical purposes.

In order to solve this problem, predictive accuracy should be estimated on a
separate part of the data, a so-called test set, that was removed (held out) from
the training phase. Recall that Table 2.2 shows such a test set for the car domain in
Table 2.1. If we classify these examples with the decision list of Fig. 2.4a, example
20 will be misclassified as mini (by the default rule), while all other examples will
be classified correctly. Thus, the estimated predictive accuracy of this rule set would
be 5=6 � 83:3 %. On the training data, the decision list made only one mistake in 18
examples, resulting in an accuracy of 17=18� 94:4 %. Even though these measures
are computed from a very small data sample and are thus quite unreliable, the result
that the test accuracy is lower than the training accuracy is typical.

2.9.2 Cross-Validation

While hold-out set evaluation produces more accurate estimates for the predictive
accuracy, it also results in a waste of training data because only part of the available
data can be used for learning. It may also be quite unreliable if only a single, small
test set is used, as in the above example.

Cross-validation is a common method for solving this problem: while all of the
data are used for learning, the accuracy of the resulting theory is estimated by
performing k hold-out experiments as described above. For this purpose, the data is
divided into n parts. In each experiment, n�1 parts are combined into a training set,

7We assume that there are no contradictory examples in the training set, an assumption that does
not always hold in practice, but the basic argument remains the same.

2.9 Estimating the Predictive Accuracy of Rules 47

function CrossValidation(E ,k)

Input:
E set of training examples
k the number of folds

Algorithm:
randomly partition E into f disjoint folds Ej of approximately the same size
for j = 1 to f do

Etest := Ej

Etrain := E \ Etest

R := LearnRuleBase(Etrain)
vj := Evaluate(R, Etest)

endfor
v := 1

k
k
j=1 vj

Output:
v the estimated quality

Fig. 2.11 Estimation of the prediction quality of a rule set induced by LEARNRULEBASE via
cross-validation

Fig. 2.12 A visual representation of fourfold cross-validation, where predictive accuracy is
estimated as the average rule set accuracy of four hold-out experiments

and the remaining part is used for testing. A theory is then learned on the training set
and evaluated on the test set. This is repeated until each part (and thus each training
example) has been used for testing once. The final accuracy is then estimated as an
average of the accuracy estimates computed in each such hold-out experiment. The
cross-validation algorithm is shown in Fig. 2.11. Note that the procedure can be used
for estimating any aspect of the quality of the learned rules. It is thus shown with a
generic function EVALUATE, which can be instantiated with any common evaluation
measure, such as accuracy, recall and precision, area under the ROC curve, etc.

Figure 2.12 shows a schematic depiction of a fourfold cross-validation. In
practice, tenfold cross-validation is most commonly used. An interesting special
case is leave-one-out cross-validation, where in each iteration only a single example
is held out from training and subsequently used for testing. Because of the large
number of theories to be learned (one for each training example), this is only feasible
for small datasets.

48 2 Rule Learning in a Nutshell

2.9.3 Benchmark Datasets

Results on a single dataset are typically not very meaningful. Therefore, machine
learning techniques are often evaluated on a large set of benchmark datasets. There
are several collections of benchmark datasets available; the best-known is the UCI
machine learning repository (Frand & Asuncion, 2010).8

This approach has several advantages, including that tests on a large collection of
databases reduce the risk of getting spurious results, and that published results on
these datasets are, in principle, reproducible. Some researchers are even working on
experiment databases that collect experimental results on these benchmark datasets
for various algorithms under various experimental setups in order to increase the
repeatability and the reliability of reported results (Blockeel & Vanschoren, 2007).

On the other hand, this approach also has disadvantages. Most notably, it is
unclear how representative these datasets are for real-world applications because
many datasets have been donated because someone has (typically successfully)
presented them in a publication. Thus there is a certain danger that the collection
is biased against hard problems, and that algorithms that are overfitting the UCI
repository may actually not be applicable to real-world problems. Although there is
some evidence that these problems may be overestimated (Soares, 2003), the debate
is still going on. In any case, using these datasets is still common practice, and we
will also occasionally show results on some of these databases in this book.

2.10 A Brief History of Predictive Rule Learning Algorithms

In this section we give a historical account of some of the most influential covering
algorithms. Most of them are still in use and are regularly cited in the rule learning
literature.

2.10.1 AQ

AQ can be considered as the original covering algorithm. Its original version was
conceived by Ryszard Michalski in the 1960s (Michalski, 1969). Over the years,
numerous versions and variants of the algorithm appear in the literature (Bergadano,
Matwin, Michalski, & Zhang, 1992; Kaufman & Michalski, 2000; Michalski, 1980;
Michalski & Larson, 1978; Michalski, Mozetič, Hong, & Lavrač, 1986). A very
good summary of the early versions of AQ is given in (Clark & Niblett, 1987, 1989).

8At the time of this writing, the collection contains 177 datasets in a great variety of different
domains, including bioinformatics, medical applications, financial prognosis, game playing,
politics, and more.

2.10 A Brief History of Predictive Rule Learning Algorithms 49

The basic algorithm features many typical components of the covering algorithm,
but it also has a few interesting particularities. The algorithm uses a top-down
beam search for finding the best rule.9 However, contrary to most successors, AQ
does not search all possible refinements of a rule; it only considers refinements
that cover a particular example, the so-called seed example. In each step, it looks
for refinements (extensions in AQ) of rules that cover the seed example, but do
not cover a randomly chosen negative example. All possible refinements that meet
this constraint are evaluated with rule learning heuristics (in the simplest version it
was positive coverage p), and the best b rules are maintained in the current beam.
Refinements are iterated until one or more rules are found that cover only positive
examples, and the best rule among those is added to the current theory.

2.10.2 PRISM

PRISM (Cendrowska, 1987) was the first algorithm that used a conventional top-
down search without being constrained by a particular, randomly selected pair of
positive and negative examples. While this is less efficient than AQ’s method, it
results in a stable algorithm that does not depend on random choices. Cendrowska
(1987) also realized the main advantage of rule sets over decision trees, namely that
decision trees are constrained to find a theory with nonoverlapping rules, which can
be more complex than a corresponding theory with overlapping rules that could be
discovered by PRISM. Although the system has not received wide recognition in the
literature, mostly due to its inability to address the problem of noise handling, it can
be considered as an important step. A version of the algorithm, with all its practical
limitations, is implemented in the WEKA toolbox.

2.10.3 CN2

CN2 (Clark & Niblett, 1989), named after the initials of its inventors, tried to
combine ideas from AQ with the then-popular decision tree learning algorithm ID3
(Quinlan, 1983). The key observation was that learning a single rule corresponds to
learning a single branch in a decision tree. Thus, Clark and Niblett (1989) proposed
to evaluate each possible condition (the first version of CN2 used ID3’s information
gain) instead of focusing only on conditions that separate a randomly selected
pair of positive and negative examples. This is basically the same idea that was
also discovered independently in the PRISM learner. However, CN2’s contributions
extend much further. Most importantly, CN2 was the first rule learning system that
recognized the overfitting problem, and proposed first measures to counter it. First,

9The beam is called a star in AQ’s terminology, and the beam width is called the star size.

50 2 Rule Learning in a Nutshell

AQ could select a mislabeled negative example as a positive seed example, and
therefore be forced to learn a rule that covers this example. CN2’s batch selection
of conditions is less susceptible to this problem, as it is independent of random
selections of particular examples. Second, CN2 included a prepruning method based
on a statistical significance test. In particular, it filtered out all rules that were
insignificant according to the likelihood ratio statistics described in Sect. 9.2.4.
Finally, in a later version, Clark and Boswell (1991) also proposed the use of the
Laplace measure as an evaluation heuristic (cf. Sect. 7.3.6). Finally, following AQ’s
example, CN2 used a beam search, which is less likely to suffer from search myopia
than hill-climbing approaches.

Another innovation introduced by CN2 was the ability to handle multiple classes.
In the original version of the algorithm, Clark and Niblett (1989) proposed to handle
multiple classes just as in ID3, by using information gain as a search heuristic and by
picking the majority class among the examples that are covered by the final rule. In
effect, this approach learns a decision list, a concept that was previously introduced
by Rivest (1987). Clark and Boswell (1991) later suggested an alternative approach,
which treats each class as a separate concept, thereby using the examples of this
class as the positive examples and all other examples as the negative examples. The
main advantage of this approach is that it allows the search for a rule that targets one
particular class, instead of optimizing the distribution over all classes, as decision
tree algorithms have to do, and as the first version of CN2 did as well. This approach,
which they called unordered, as opposed to the ordered decision list approach, is
nowadays better known as one-against-all, and is still widely used (cf. Chap. 10).

Section 2.7 gave a detailed account of CN2 at work. The system found many
successors, including mFOIL (Džeroski & Bratko, 1992) and ICL (De Raedt &
Van Laer, 1995), which upgraded it to first-order logic, or BEXA (Theron & Cloete,
1996), which used a more expressive hypothesis language by including disjunctions
of attribute values in the search space.

2.10.4 FOIL

FOIL (First-Order Inductive Learner; Quinlan, 1990) was the first relational learning
algorithm that received attention beyond the field of relational data mining and
Inductive Logic Programming (ILP). It basically works like CN2 and PRISM

discussed above; it learns a concept with the covering loop and learns individual
concepts with a top-down refinement operator.

A minor difference between these algorithms and FOIL is that FOIL does not
evaluate the quality of a rule, but its information gain heuristic (cf. Sect. 7.5.3)
evaluates the improvement of a rule with respect to its predecessor. Thus, the quality
measure of the same rule may be different, depending on the order of the conditions
in the rule. For this reason, FOIL can only use hill-climbing search, and not a beam
search like CN2 does. Another minor difference is the Minimum Description Length
(MDL)-based stopping criterion that is employed by FOIL (cf. Sect. 9.3.4).

2.10 A Brief History of Predictive Rule Learning Algorithms 51

The main difference, however, is that FOIL allowed the use of first-order
background knowledge. Instead of only being able to use tests on single attributes,
FOIL could employ tests that compute relations between multiple attributes, and
could also introduce new variables in the body of a rule. Unlike most other ILP
algorithms, FOIL was not directly built on top of a Prolog-engine (although it could
be), but it implemented its own reasoning module in the form of a simple tuple
calculus. A tuple is a valid instantiation of all variables that are used in the body of
a rule. Adding a literal that introduces a new variable results in extending the set
of valid tuples with new variables. As a new variable can often be bound to more
than one value, one tuple can be extended to several tuples after a new variable is
introduced. Effectively, counting the covered tuples amounts to counting the number
of possible proofs for each (positive or negative) covered example. We provide a
more detailed description of the algorithm along with an example that illustrates the
operation with tuples in Sect. 6.5.1.

New variables may be used to formulate new conditions, i.e., adding a literal that
extends the current tuples may be a good idea, even if the literal on its own does not
help to discriminate between positive and negative examples, and would therefore
not receive a high evaluation by conventional evaluation measures. Quinlan (1991)
proposed a simple technique for addressing this problem: whenever the information
gain is below a certain percentage of the highest achievable gain, all so-called
determinate literals are added to the body of a rule. These are literals that add a
new variable, but have at most one binding for this variable, so that they will not
lead to an increase in the number of tuples (cf. also Sect. 5.5.5).

FOIL was very influential, and numerous successor algorithms built upon its
ideas (Quinlan & Cameron-Jones, 1995a). Its influence was not confined to ILP
itself, but also propositional variants of the algorithm were developed and used
(e.g., Mooney, 1995).

2.10.5 RIPPER

The main problem with all above-mentioned algorithms was overfitting. Even
algorithms that employed various techniques for overfitting avoidance turned out
to be ineffective. For example, Fürnkranz (1994a) showed that FOIL’s MDL-based
stopping criterion is not effective: in experiments in the king-rook-king chess
endgame domain, with a controlled level of noise in the training data, the size of the
theory learned by FOIL grows with the number of training examples. This means
that the algorithm overfits the noise in the training data. Similar experiments with
CN2 showed the same weakness.

RIPPER (Repeated Incremental Pruning to Produce Error Reduction; Cohen,
1995) was the first rule learning system that effectively countered the overfitting
problem. It is based on several previous works, most notably the incremental
reduced error pruning idea that we describe in detail in Sect. 9.4.1, and added
various ideas of its own (cf. also Sect. 9.4.3). Most notably, Cohen (1995) proposed

52 2 Rule Learning in a Nutshell

an interesting post-processing phase for optimizing a rule set in the context of other
rules. The key idea is to remove one rule out of a previously learned rule set and
try to relearn it not only in the context of previous rules (as would be the case in
the regular covering rule), but also in the context of subsequent rules. The resulting
algorithm, RIPPER, has been shown to be competitive with C4.5RULES (Quinlan,
1993) without losing I-REP’s efficiency (Cohen, 1995).

All in all, RIPPER provided a powerful rule learning system that was used in
several practical applications. In fact, RIPPER is still state of the art in inductive rule
learning. An efficient C implementation of the algorithm can be obtained from its
author, and an alternative implementation named JRIP can be found in the WEKA

data mining library (Witten & Frank, 2005). In several independent studies, RIPPER

and JRIP have proved to be among the most competitive rule learning algorithms
available today. Many authors have also tried to improve RIPPER. A particularly
interesting approach is the FURIA algorithm, which incorporates some ideas from
fuzzy rule induction into RIPPER (Hühn & Hüllermeier, 2009b).

2.10.6 PROGOL

PROGOL (Muggleton, 1995), another ILP system, was interesting for several
reasons. First, it adopted ideas of the AQ algorithm to inductive logic programming.
Like AQ, it selects a seed example and computes a minimal generalization of
the example with respect to the available background knowledge and a given
maximum inference depth. The resulting bottom rule is then in a similar way used
for constraining the search space for a subsequent top-down search for the best
generalization.

Second, unlike AQ, PROGOL does not use a heuristic search for the best
generalization of the seed example, but it uses a variant of best-first A� search in
order to find the best possible generalization of the given seed example. This proves
to be feasible because of the restrictions of the search space that are imposed by the
randomly selected seed example.

PROGOL proved very successful in various applications (Bratko & Muggleton,
1995), some of which were published in scientific journals of their respective appli-
cation areas (Cootes, Muggleton, & Sternberg, 2003; King et al., 2004; Sternberg
& Muggleton, 2003). An efficient implementation of the algorithm (Muggleton &
Firth, 2001) is available from http://wwwhomes.doc.ic.ac.uk/�shm/Software/.

2.10.7 ALEPH

To our knowledge, the most widely used ILP system is ALEPH (A Learning Engine
for Proposing Hypotheses). Unfortunately, there are no descriptions of this system in
the formal literature, and references have been restricted to an extensive user manual

http://wwwhomes.doc.ic.ac.uk/~shm/Software/

2.10 A Brief History of Predictive Rule Learning Algorithms 53

(Srinivasan, 1999). Some of ALEPH’s popularity seems to be due to two aspects:
that it is in just one physical file,10 and that it is written in Prolog. Except for that,
there is, in fact, one other aspect of the program that makes it different to almost
any other ILP system. ALEPH was conceived as a workbench for implementing and
testing—under one umbrella—concepts and procedures from a variety of different
ILP systems and papers. It is possibly the only ILP system that can construct rules,
trees, constraints and features; invent abnormality predicates; perform classification,
regression, clustering, and association-rule mining; allow changes in search strategy
(general-to-specific (top-down), specific-to-general (bottom-up), bidirectional, and
so on); search algorithm (hill-climbing, exhaustive search, stochastic search, etc.);
and evaluation functions. It even allows the user to specify their own search
procedure, proof strategies, and visualization of hypotheses.

Given this plethora of options, it is not surprising that each user has her own
preferred way to use this program, and we will not attempt to prescribe one over the
other. It would, however, be amiss if we did not mention two uses of ALEPH that
seem to be most popular in the ILP literature.

In the first, ALEPH is configured to identify a set of classification rules, using
a randomized version of the covering algorithm. Individual rules in the set are
identified using a general-to-specific, compression-based heuristic search guided by
most-specific bottom clauses. This is sufficiently similar to the procedure followed
by PROGOL (Muggleton, 1995) to be of interest to ILP practioners seeking a Prolog-
based approximation to that popular system.

Another interesting use of ALEPH is to identify Boolean features
(Joshi, Ramakrishnan, & Srinivasan, 2008; Ramakrishnan, Joshi, Balakrishnan,
& Srinivasan, 2008; Specia, Srinivasan, Joshi, Ramakrishnan, & das Graças
Volpe Nunes, 2009), that are subsequently used by a propositional learner to
construct models (in the cases cited, this learner was a support vector machine).
The key idea is to construct bottom clauses that cover individual examples, and to
use the resulting rules as features in a subsequent induction phase. The quality of
a rule or feature is defined via some syntactic and semantic constraints (such as
minimum recall and precision). In this way, ALEPH may also be viewed as a system
for first-order subgroup discovery (cf. Chap. 11).

This specific use of rules constructed by an ILP system as Boolean features
appears to have been demonstrated first in (Srinivasan & King, 1997). It has since
proved to be an extremely useful way to employ an ILP system (Kramer, Lavrač, &
Flach, 2001). The idea of constructing propositional representations from first-order
ones goes back at least to 1990, with the LINUS system (Lavrač & Džeroski, 1994a;
Lavrač, Džeroski, & Grobelnik, 1991), and perhaps even earlier to work in the mid-
1980s done by Michalski and coworkers. We will describe such approaches in more
detail in Chap. 5.

10http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

http://www.comlab.ox.ac.uk/oucl/research/areas/machlearn/Aleph/

54 2 Rule Learning in a Nutshell

2.10.8 OPUS

OPUS (Optimized Pruning for Unordered Search; Webb, 1995) was the first rule
learning system that demonstrated the feasibility of a full exhaustive search through
all possible rule bodies for finding a rule that maximizes a given quality criterion
(or heuristic function). The key idea is the use of ordered search that prevents a rule
being generated multiple times. This means that even though there are lŠ different
orders of the conditions of a rule of length l , only one of them can be taken by the
learner for finding this rule. In addition, OPUS uses several techniques that allow it
to prune significant parts of the search space, so that this search method becomes
feasible. Follow-up work (Webb, 2000; Webb & Zhang, 2005) has shown that this
technique is also an efficient alternative for association rule discovery, provided that
the database to mine fits into the memory of the learning system.

2.10.9 CBA

Exhaustive search is also used by association rule discovery algorithms like
APRIORI or its successors (cf. Sect. 6.3.2). The key difference is the search
technique employed. Contrary to OPUS, association rule learners typically employ
a memory-intensive level-wise breadth-first search. They return not a single
best rule, but all rules with a given minimum support and a given minimum
confidence.

In general, association rules can have arbitrary combinations of features in
the head of a rule. However, the head can also be constrained to hold only
features related to the class rule. In this case, an association rule algorithm can
be used to discover all classification rules with a given minimum support and
confidence. The learner’s task is then to combine a subset of these rules into a final
theory.

One of the first and best-known algorithms that employed this principle for
learning predictive rules is CBA (Liu, Hsu, & Ma, 1998; Liu, Ma, & Wong,
2000). In its simplest version, the algorithm selects the final rule sets by sorting
all classification rules according to confidence and incrementally adding rules
to the final set until all examples are covered or the quality of the rule set
decreases.

There is a variety of variations of this basic algorithm that have been discussed
in the literature (e.g., Bayardo Jr., 1997; Jovanoski & Lavrač, 2001; Li, Han, & Pei,
2001; Yin & Han, 2003). Mutter, Hall, and Frank (2004) performed an empirical
comparison between some of them. A good survey of pattern-based classification
algorithms can be found in (Bringmann, Nijssen, & Zimmermann, 2009).

2.11 Conclusion 55

2.11 Conclusion

This chapter provided a gentle introduction to rule learning, mainly focusing
on supervised learning of predictive rules. In this setting, the goal is to learn
understandable models for predictive induction. We have seen a broad overview
of the main components that are common to all rule learning algorithms, such as the
covering loop for learning rule sets or decision lists, the top-down search for single
rules, evaluation criteria for rules, and techniques for fighting overfitting. In the
following chapters, we will return to these issues and discuss them in more detail.

However, other techniques for generating rule sets are possible. For example,
rules can be generated from induced decision trees. As we have seen in Chap. 1,
nodes in a decision tree stand for attributes or conditions on attributes, arcs stand
for values of attributes or outcomes of those conditions, and leaves assign classes. A
decision list like the one in Fig. 2.4b can be seen as a right-branching decision tree.
Conversely, each path from the root to a leaf in a decision tree can be seen as a rule.

Standard algorithms for learning decision trees (such as C4.5) are quite similar
to the CN2 algorithm for learning decision lists in that the aim of extending a
decision tree with another split is to reduce the class impurity in the leaves (usually
measured by entropy). However, as discussed in Sect. 1.5, rule sets are often more
compact than decision trees. Consequently, a rule set can be considerably simplified
during the conversion of a decision tree to a set of rules (Quinlan, 1987a, 1993).
For example, Frank and Witten (1998) suggested the PART algorithm, which tries
to integrate this simplification into the tree induction process by focusing only on a
single branch of a tree.

	Chapter2 Rule Learning in a Nutshell
	2.1 Problem Definition
	2.2 Data Representation
	2.3 Rule Representation
	2.4 Rule Learning Process
	2.5 Learning a Single Rule
	2.5.1 Search Space
	2.5.2 Search Strategy
	2.5.3 Evaluating the Quality of Rules
	2.5.4 Example

	2.6 Learning a Rule-Based Model
	2.6.1 The Covering Algorithm
	2.6.2 Learning a Rule Base for Classification Problems

	2.7 Overfitting Avoidance
	2.7.1 Rule Evaluation in CN2
	2.7.2 Stopping Criteria in CN2

	2.8 Making a Prediction
	2.9 Estimating the Predictive Accuracy of Rules
	2.9.1 Hold-Out Set Evaluation
	2.9.2 Cross-Validation
	2.9.3 Benchmark Datasets

	2.10 A Brief History of Predictive Rule Learning Algorithms
	2.10.1 AQ
	2.10.2 PRISM
	2.10.3 CN2
	2.10.4 FOIL
	2.10.5 RIPPER
	2.10.6 PROGOL
	2.10.7 ALEPH
	2.10.8 OPUS
	2.10.9 CBA

	2.11 Conclusion

