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Outline

o Social networks
¢ Information diffusion and social effect maximization

¢ Submodular functions and their applications



Social Networks

SN bridges our daily life and the virtual web space!

2 N 1520 - EBHLE cio.: 165, com
=] >50 TB/day newsia > 100K éaa e
>100 Trillion pairs of nformaton

> | 00 PB/day >50K chains of logic

#x7x365 e
Innovation Business Intelligence
diffusion
Infor-
mation
Space — Information—=> user
Interaction mechanism
Social




Overview of Core
Research in Social
Networks




Core Research in Social Network
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Computational Foundations for
Social Networks




Computational Foundations

e Social Theories
¢ Social balance
¢ Social status
e Structural holes
¢ Two-step flow

¢ Algorithmic Foundations
o Network flow

¢ K-densest subgraph
¢ Set cover



Social Theories—Social Balance

Your friend’s friend is your friend, and your enemy’s enemy is also your friend.

(B) (©) (D)

Examples on Epinions, Slashdot, and MobileU
(1) The underlying networks are unbalanced;
(2) While the friendship networks are balanced.

.1

M Epinions
) [ Islashdot
0.8¢ [ IMobileU
0.6f
0.4
0.2¢
3 | -
relationships communication links

Jie Tang, Tiancheng Lou, and Jon Kleinberg. Inferring Social Ties across Heterogeneous Networks. In WSDM'2012. pp.
743-752.



Social Theories—Social status

Your boss’s boss is also your boss...

Observations: 99% of triads in the networks satisfy the social status theory
Examples: Enron, Coauthor, MobileD

0.8 ; —
011
101
0.6 1110 1 . .
100 Note: Given a triad (A,B,C), let us use 1 to
ooo denote the advisor-advisee relationship and 0

colleague relationship. Thus the number 011 to
denote A and B are colleagues, B is C’s advisor

4.

and A is C’s advisor.
0.2 I :
ﬂ____l N o[

Enron Coauthor MotlriIeD

0.

Jie Tang, Tiancheng Lou, and Jon Kleinberg. Inferring Social Ties across Heterogeneous Networks. In WSDM'2012. pp.
743-752.



Triadic Closure

Triad Significance Profile
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R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon. Network Motifs: Simple Building Blocks of Complex
Networks. Science, 2004



Social Theories—Structural holes

Community 2

— —

Community 1 / \
/
- /

across communities \ + /

Structural hole /

spanners

1% twitter users control
25% retweeting behaviors
between communities.

Structural hole users control the information flow between
different communities (Burt, 92; Podolny, 97; Ahuja, 00; Kleinberg, 08; Lou &

Tang, 13)

T. Lou and J. Tang. Mining Structural Hole Spanners Through Information Diffusion in Social Networks. In WWW'13. pp.

837-848.




Social Theories—Two-step-flow

L
Massenmedium
Lazarsfeld et al suggested that: o
"n: . . Opinion
ideas often flow from radio and print to / \ Leaders
the opinion leaders and from them to the
less active sections of the population.” QIQ g I'Q
4 )4 i Ordinary
Users
’ | .
lfrom OU to OU

i _fromOLtoOU|  Estimate OL and OU by PageRank

0.8 [CIfrom OU to OL .
lfrom OL to OL OL : Opinion leader;
0.61 |1 OU: Ordinary user.
0.4t 1 Observations: Opinion leaders are more
likely (+71%-84% higher than
0.2r 1 chance) to spread information to ordinary
| | users.
0 Enron Coauthor

Lazarsfeld et al. (1944). The people’s choice: How the voter makes up his mind in a presidential campaign.



Computational Foundations

¢ Social Theories
¢ Social balance
¢ Social status
¢ Structural holes
¢ Two-step flow

e Algorithmic Foundations
e Network flow

¢ K-densest subgraph

e Set cover



Algorithm — Network Flow

¢ Classical problems:

¢ Maximum flow / minimum cut
¢ Ford-Fulkerson algorithm
¢ Dinic algorithm

¢ Minimum cut between multiple sets of vertices
o NP hard when there are more than 2 sets

¢ Minimum cost flow;
¢ Circulation problem;

‘ LN




Algorithm — Network Flow (cont.)

¢ Ford-Fulkerson

¢ As long as there is an
augmenting path, send the
minimum of the residual
capacities on the path.

¢ A maximum flow is obtained
when no augmenting paths
left.

¢ Time complexity: O(VE"2)

FORD-FULKERSON(G, s, t)
1 for each edge (u, v) € E[G]
2 do flu, v] < 0
3 flv,u] < 0
4 while there exists a path p from s
to t in the residual network Gf
5 do cf(p) « min {cf(u, v) : (u, v) is in p}
6 for each edge (u, v) inp
7 do flu, v] « fu, v] + cf(p)
8 flv, u] « -f[u, v]




Algorithm — K-densest subgraph

¢ NP Problem

¢ Find the maximum density subgraph on exactly k vertices.
¢ Reduced from the clique problem

¢ Application

¢ Reduce the structural hole spanner detection problem to
proof its NP hardness.

¢ To find a subset of nodes, such that without them, the
connection between communities would be minimized.




Algorithm — K-densest subgraph (cont.)

¢ Alinear programming based solution

¢ Approximation ratio: O(nl/4+e) —
in e subgraph wi

the largest average

Find j which satisfy: degree in subgraph S, ,

sy o &IP3 (5)
LPyy.. s ievi(SNI()) 2 E{E B and : /

> d-LPg,1(5) ~ jof Pro kS-Local(S; 1, k).
~ 2p - max{k, 5|}

LPyy,; pyslievi(SNI(H))/|S N T(H)
contains an integer, perform & hair step:

mma 4.4 (or for ¢ = 1, choose any j; such
Update S by j’s neighbors.

= Let Si = Si—l M f{ji:l.
= Replace the LP solution {y;} with {y;,/y;, i€ V]

— (therwise, perform a backbone step:

Let Sy = ['(S:_1). Replace S, by

neighbors of S, ,

e Output the subgraph H; with the highest average degree.




Algorithm — Set Cover

¢ Another NP problem

¢ Given a set of elements (universe)
and a set S of n sets whose union
equals the universe;

¢ Find the smallest subset of S that
contains all elements in the universe;

¢ The decision version is NP-complete.

¢ Greedy

¢ Choose the set containing the most
uncovered elements;

¢ Approximation ratio: H(size(S)),

: : 1 1 1 |
where H(n) is the n-th harmonic H,=1+_-4+_-+---4+—

I
]
|

2 3 n “~k
number.
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Erd6s—Rényi Model

In the G(n, p) model, each edge is included in the graph with probability p
independent from every other edge.

Each random graph has
e Properties the probability
(1) Degree distribution-Poisson pm(l B p)(g)_m.

k
< k >

—-<k>

p(k) =

(2) Clustering coefficient ——— Small

P

(3) Average shortest path
In N
L ~
In <k >

Problem: In real social network, neighbors tend to be connected with each
other, thus the clustering coefficient should not be too small.

Erdds, P.; Rényi, A. (1959), “On Random Graphs.”.



Small-World Model

Regular Small-world Random

Mechanism

1.  Start from aregular
wired ring, where
each node is
connected with its K-
nearest neighbors

p=0 » p=1
Increasing randomness
2.  With probability p e Properties
rewire each edge. (1)  Degree distribution
0,k < K —> Not power law
p(k):J <d> <d>=K
: > = Kp
Problem: In real social k-t k=K
network, degree (2)  Clustering coefficient
distribution is power law. c 3(K -2)

T 4(K —1)+ 4Kp(p + 2)

(3) Average shortest path ] In NKp

sz

Watts, D. J.; Strogatz, S. H. (1998). "Collective dynamics of 'small-world' networks". Nature 393 (6684): 440—442.



Barabasi-Albert Model

Idea

- Growth

- Preferential attachment (rich-get-richer, the Matthew Effect)

Mechanism

1.  Start from a small connected graph with m, nodes

2.  Ateach time step, add one new node with m ( m £ m,) new edges; the probability
that the new node is connected to node i is p; = ki) S kj.

e Degree distribution
Scale-free

e Clustering coefficient

.- (Int)’

t
e Average longest shortest path

In N
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InIn N
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FIG. 1. The distribution function of connectivities for various large networks. (A) Actor col-
laboration graph with NV = 212, 250 vertices and average connectivity (k) = 28.78; (B) World wide
web, N = 325,729, (k} = 5.46 (6); (C) Powergrid data, N = 4,941, (k} = 2.67. The dashed lines

have slopes (A} Yactor = 2.3, (B) Ywww = 2.1 and (C) Ypower = 4.

Barabasi and Albert(1999). Emergence of scaling n complex networks.
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Community Detection

Node-Centric Community
Each node in a group satisfies certain
properties

Group-Centric Community
Consider the connections within a group
as a whole. The group has to satisfy
certain properties without zooming into
node-level

Network-Centric Community
Partition the whole network into several
disjoint sets

Hierarchy-Centric Community
Construct a hierarchical structure of
communities




Community Evolution

g ‘
t - t*"

merging

conlraction




Dunbar Number

@ Dunbar number:150. Dunbar's number is a suggested cognitive
limit to the number of people with whom one can maintain
stable social relationships

o

—Robin Dunbar, 2000

1500
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Social Action

¢ ..the object is to interpret the meaning of social action and
thereby give a causal explanation of the way in which the
action proceeds and the effects which it produces...

— Social Action Theory, by Max Weber, 1922

SOCIAL ACTION

Eadoee! by Googiied Seebans and Ko Thomekt




Social Action — User Characterization

¢ Betweenness

¢ A centrality measure of a vertex within a graph

#shortest paths #shortest paths
pass through v fromstot

Hue (from red=min to blue=max)
shows the node betweenness.



Social Action — user Characterization (cont.)

o Clustering Coefficient

¢ A measure of degree to which nodes in a graph tend to
cluster together.

¢ Global clustering coefficient

* o 3 x number of triangles B number of closed triplets

number of connected triples of vertices  number of connected triples of vertices

¢ A triangle consists of three closed triplets, and a closed triplet
consists of three nodes connected to each other.

e Local clustering coefficient

_ |{Ej‘;‘: TR - lﬂﬂ',ﬁjk - E}|

Ci kil — 1)




Social Action — user Characterization (cont.)

¢ Degree: the number of one vertex’s neighbors.

¢ Closeness: the shortest path between one vertex and

another vertex. Co(v) = Z 9—dg(v.t]

teV v



Social Action — User Characterization (cont.)

Ity

¢ Central

e
e

o
- F’.

[l

-
by 2
.-“ h.. Pl‘ ey

]

A

Examples of 471 Degres centrality, B) Closensess

centrality, ) Betweenness cemtrality, ) Eigenwector

centrality, E) Katz cemtrality and F) Alpha certrality of the

=ame graph.



Social Action — Game Theory

¢ Example: a game theory model.

¢ Strategy: whether to follow a user or not;

* Payott: = alie of a The density of v's ego
user net\évork
P=g, Y G- 3, g+ >, log,( > G
ve B(u) veL[n] ve B(u) welL(v)l F(u)
The frequency of The cost of following a
a user to follow user
someone

¢ The model has a pure strategy Nash Equilibrium



Social Action — Game Theory (cont.)

number of triads

o Results: three stage life cycle
¢ Stage 1: getting into a community
¢ Stage 2: becoming an elite
¢ Stage 3: bridging different communities (structural hole

spanners)
0.08 T T T s
N Fom 1 ‘
0.07- [ JForm2| o Z:Zgz;
I Form 3 251 | ==@mm stage 3
0.06 -
ol
0.05F+
0.04 - 15

0 | I\ | | N =]
i1 2 3 4 5 6 7 8 9 10 11 12
12 phases




Strong/Weak Ties

» Strong ties

o Frequent communication, but ties are redundant due to
high clustering

o Weak ties

¢ Reach far across network, but communication is
infrequent...

P . ) 'f'-l‘l.
- LY | \ ¢ # f
/o \I —_— \’-\_:-_._,_- g H | I'-,__:-}' Al M
Fy b H d B
.‘ ..IE -I f .'\ _."I
:. ":f h
! 1) ] Y P e

P& d 9 '
“a }
ks - [ absent tie /

weak tie —’f

strong tie —

“forbidden triad” :

strong ties are likely to “close” Weak ties act as local bridge



Social Ties

Inferring social ties

Reciprocity

Triadic Closure

Lady Gaga Shiteng Lady Gaga Shiteng

KDD 2010, PKDD 2011 (Best Paper Runnerup), WSDM 2012, ACM TKDD



Triadic Closure

Follower diffusion

A A A
8 --z-->C  Bo-ooo>C Bo—o--3C
A

B -—-—-—--
tl

Ls o s

12 triads

Followee diffusion

VAANRVANPAN

12 triads
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Disease-Propagation Models

¢ Classical disease-propagation models in epidemiology are
based upon the cycle of disease in a host.
e Susceptible
¢ Infected
¢ Recovered

o ...

¢ The transition rates from one cycle to another are expressed as
derivatives.

o Classical models:
¢ SIR
e SIS
¢ SIRS



SIR Model

¢ Created by Kermack and McKendrick in 1927.
¢ Considers three cycles of disease in a host:

" Susceptible J% - % -

¢ Transition rates:

dsS

o = —BS(H)I(1)
= BS(OI(t) — (1
dR

P — ’}’I(t)

S(t) : #susceptible people at time t;
I(t) : #infected people at time t;
R(t) : #recovered people at time t;
;f,f . a parameter for infectivity;

~ : a parameter for recovery.




SIS Model

e Designed for infections confer no long lasting
immunity (e.g., common cold)

e |ndividuals are considered become susceptible again
after infection:

[ Susceptible ]< >-

e Model:
19 Notice for both SIR and SIS, it holds:
— = — 35T +~I iS  dJ
L‘?I} E-I-E:U:?S{t}—l-f{t}:ﬂr
pr 381 —~1 ' '
B where N is the fixed total population.
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Social Influence Analysis




“Love Obama”

| hate Obama, the
worst president ever

| love Obama

Obama is
fantastic

Obama is
great!

He cannot be the
next president!



What is Social Influence?

¢ Social influence occurs when one's opinions,
emotions, or behaviors are affected by others,
intentionally or unintentionally.!]

¢ Informational social influence: to accept information from
another;

¢ Normative social influence: to conform to the positive
expectations of others.

[1] http://en.wikipedia.org/wiki/Social_influence



Three Degree of Influence

Six degree of separation!t!

Three degree of Influencel?

‘de Judicibus
P/n onal Network

You are able to influence up to >1,000,000 persons in
the world, according to the Dunbar’s number(3l,

[1] S. Milgram. The Small World Problem. Psychology Today, 1967, Vol. 2, 60—67

[2] J.H. Fowler and N.A. Christakis. The Dynamic Spread of Happiness in a Large Social Network: Longitudinal Analysis
Over 20 Years in the Framingham Heart Study. British Medical Journal 2008; 337: a2338

[3] R. Dunbar. Neocortex size as a constraint on

group size in primates. Human Evolution, 1992, 20: 469-493.




Challenges: WH?

Whether social influence exist?
How to measure influence?
How to model influence?

How influence can help real applications?



Preliminaries




Notations

Time t

@ é Node/user: v;

Time t-1, t-2...

5 ’ Attributes: x;

- location, gender, age, etc.
| 9i i Action/Status: y;
~ = ‘ - e.g., “Love Obama”

G =(V, E, X,Y)
Gt — the superscript t represents the time stamp

e 1 E' — represents a link/relationship from v; to v; at
time t



Homophily

¢ Homophily

¢ A user in the social network tends to be similar to their
connected neighbors.

¢ Originated from different mechanisms

¢ Social influence

« Indicates people tend to follow the behaviors of their friends

¢ Selection

¢ Indicates people tend to create relationships with other people who
are already similar to them

¢ Confounding variables

o Other unknown variables exist, which may cause friends to behave
similarly with one another.



Influence and Selectiont

E—
Similarity between user i and j at
p(qt = ]_l Qtl =0 <XF_1 )(t,'l> > e)/ time t-1 is larger than a threshold
: _ J ) (AL
Selection = t —
P(&; = 1. e, — O) There is a link between user i and j
at time t

¢ Denominator: the conditional probability that an unlinked pair will become linked
o Numerator: the same probability for unlinked pairs whose similarity exceeds the

threshold
p((xx}) > X)) € =16 =0)

Influence = p(<Xit,th>><X?_11th-l>|atj-l:O)

o Denominator: the probability that the similarity increase from time t-1 to time t
between two nodes that were not linked at time t-1

¢ Numerator: the same probability that became linked at time t

@ A Model is learned through matrix factorization/factor graph

[1] J. Scripps, P.-N. Tan, and A.-H. Esfahanian. Measuring the effects of preprocessing decisions and network forces in dynamic network
analysis. In KDD’09, pages 747-756, 2009.



Other Related Concepts

o Cosine similarity

» Correlation factors
¢ Hazard ratio

o t-test



Cosine Similarity

¢ A measure of similarity

o Use a vector to represent a sample (e.g., user)

X= (Xm0 X )

o To measure the similarity of two vectors x and vy,
employ cosine similarity:

SM(X,y) = 12
Y]



Correlation Factors

o Several correlation coefficients could be used to measure
correlation between two random variables x and y.

o Pearsons’ correlation

El(x- m)(y-[miy

S S
Y\ Standard

¢ It could be estimated by deviation

Foy= corr(X,y) =

X,

Z (Xi o X_)(y| o V)

r =

i=1

\/2 (X, = x)° Y (y,-¥)°

o Note that correlation does NOT imply causation



Hazard Ratio

¢ Hazard Ratio

o

Chance of an event occurring in the treatment group divided by its
chance in the control group

Example:
Chance of users to buy iPhone with >=1 iPhone user friend(s)

Chance of users to buy iPhone without any iPhone user friend

Measuring instantaneous chance by hazard rate h(t)

. observed events in intervallt, ¢ + At]/N(1)
h(t) = lim
At—0 At

The hazard ratio is the relationship between the instantaneous hazards in
two groups

Proportional hazards models (e.g. Cox-model) could be used to report
hazard ratio.



t-test

o A t-test usually used when the test statistic follows a Student’s t
distribution if the null hypothesis is supported.

o To testif the difference between two variables are significant
o Welch’s t-test

e Calculate t-value

Unbiased estimator
of sample variance

sample mean —)Iz— X_2
I =

St % n, nz\ #participants in the
control group

#participants in the
treatment group

e Find the p-value using a table of values from Student’s t-distribution

¢ If the p-value is below chosen threshold (e.g. 0.01) then the two
variables are viewed as significant different.



Data Sets




Ten Cases

Twitter-net 111,000 450,000 Follow
Weibo-Retweet 1,700,000 400,000,000 Retweet
Slashdot 93,133 964,562 Friend/Foe
Mobile (THU) 229 29,136 Happy/Unhappy
Gowalla 196,591 950,327 Check-in
ArnetMiner 1,300,000 23,003,231 Publish on a topic
Flickr 1,991,509 208,118,719 Join a group
PatentMiner 4,000,000 32,000,000 Patent on a topic
Citation 1,572,277 2,084,019 Cite a paper
Twitter-content 7,521 304,275 Tweet “Haiti Earthquake”

Most of the data sets will be publicly available for research.



Following Influence on Twitter

Case 1l

Time 2

Time 1

Lady Gaga

Lady Gaga

When you follow a user in a social

network, will the be-
havior influences your friends to

also follow her?



Case 2: Retweeting Influence

FrRAE Who will
weibo.com
follow to
retweet it?

When you (re)tweet
something

PPV I s gylhy

I\T_

I




Case 3: Commenting Influence

News: AlkveOoExikt INatrdl Private Data

Re:... @ + Friend
- - Foe

Slas/h.doi & /

Re:...

negsitive influence from foiends



Case 4: Emotion Influence

ToTEnE S
0
b anbajla x&ﬁi lq I] Satell:te\l )(ybnd : |
J VA% 3 =] RN
5 Shuaxq\uanbao K}éhul
Bairuyuan _
e
i Il
Location e “= | SMS & Calling
B~ iy
i y N ¢ Beijing Forestry |
- JG";z:: - ‘Zw University ~ & "4 N
i s \' e ‘l: _j_tq_fi_.x—';_ — oy FAI L) — T (T
& — Homy J =
N\ #Bdmm I L4
Xijiao Hotel kae
Pﬁ&ejﬁf = Dongyuan L REIBEM Beljing ¢ :
( ;Olbakan pid Dongshengxiang B2 e =
i ¥ap ‘Lt' S¥0adadmoate, 7 ﬁygimotbginz - Terms of Use
'h.-e Secment 0:00 z 00 I s :—4:00
Add | | Delete |

:0~7:50 Sleeping Noxmal

:23-12:16 Studying Normal

tbhe following questions!

From 14:35 To 20:39

14:35-20:39 Playing Good

Activities

1. Select the tizme range:

O Emotion?

2. What are you doing now?

O soriva © Wondersil
OFi o O normal
O studyine Ozaz

O terrible

O steepine
Oo‘.hu':(?lelst £i1l the following tatle)

[ Commit ] o cue I




Case 4: Emotion Influence (cont.)

Jennifer ‘w
\T\ Allen

DO
€ @

MoodCast

Social correlation g(.)

Temporal
correlation h(.)

Jennifer
yesterday

[ Jennifer
: tomorrow

Predict:

sSms

Can we predict users’
emotion?

» 2D



Case 5: Check-in Influence in Gowalla

Legend @ Alice @ Alice’s friend

o 1 4 o
O
®
O
1’ ®
S
Q O

O Other users

1’

If Alice’s friends check in
this location at time t

@
O
‘ @
1’ a @
OO
QD O

Will Alice also

check in nearby?



Understanding the
Emotional Impact in Social
Networks

[1]J. Jia, S. Wu, X. Wang, P. Hu, L. Cai, and J. Tang. Can We Understand van Gogh’s Mood? Learning to Infer Affects from Images in Social
Networks. In ACM Multimedia, pages 857-860, 2012.



The model of Viral Marketing

|dentify influential
customers

Convince them to
adopt the product -
Offer discount/free

samples

These customers
endorse the product
among their friends

66



Influence Maximization

¢ Influence maximization
¢ Minimize marketing cost and more generally to maximize profit.

e E.g., to get a small number of influential users to adopt a new product, and
subsequently trigger a large cascade of further adoptions.

Probability of
z/inﬂuence
0.8 C

[1] P. Domingos and M. Richardson. Mining the network value of customers. In Proceedings of the seventh ACM SIGKDD international conference
on Knowledge discovery and data mining (KDD’01), pages 57—66, 2001.



Problem Abstraction

o We associate each user with a status:

e Active or Inactive

¢ The status of the chosen set of users (seed nodes) to market
is viewed as active

¢ Other users are viewed as inactive
¢ Influence maximization

e Initially all users are considered inactive

¢ Then the chosen users are activated, who may further
influence their friends to be active as well



Diffusion Influence Model

o Linear Threshold Model
o Cascade Model



Linear Threshold Model

» General idea
o Whether a given node will be active can be based on an arbitrary
monotone function of its neighbors that are already active.
o Formalization
o f,: map subsets of v’s neighbors’ influence to real numbers in [0,1]
¢ 0,: athreshold for each node
¢ S: the set of neighbors of v that are active in step t-1
o Node v will turn active in step t if f,(S) >6,
o Specifically, in [kempe, 2003], f, is defined _,cg bv.u , Where
b, , can be seen as a fixed weight, satisfying

[1] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining (KDD’03), pages 137-146, 2003.



Linear Threshold Model: An example

5 6=0.1

15t try
0.74<0.8

2" try,
0.74+0.1>0.8



Independent Cascade model

Initially some nodes S are active
Each edge (v, w) has probability (weight) p,,

When node v becomes active:

“ It activates each out-neighbor w with prob. p,,,
Activations spread through the network
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Cascade Model

¢ Cascade model

¢ p,(u,S) : the success probability of user u activating user v

e User u tries to activate v and finally succeeds, where S is the set of V's
neighbors that have already attempted but failed to make v active

¢ Independent cascade model

¢ p(u,S)is a constant, meaning that whether v is to be active does not
depend on the order v's neighbors try to activate it.

¢ Key idea: Flip coins c in advance -> live edges
e F(A): People influenced under outcome c (set cover)
e F(A) =Sum _P(c) F(A) is submodular as well

[1] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining (KDD’03), pages 137-146, 2003.



Theoretical Analysis
o NP-hard (1
e Linear threshold model

e General cascade model

¢ Kempe Prove that approximation algorithms can guarantee that the
influence spread is within(1-1/e) of the optimal influence spread.

¢ Verify that the two models can outperform the traditional heuristics

¢ Recent research focuses on the efficiency improvement
e [2] accelerate the influence procedure by up to 700 times

o Itis still challenging to extend these methods to large data sets

[1] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data mining(KDD’03), pages 137-146, 2003.

[2]J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. Cost-effective outbreak detection in networks. In
Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD’07), pages 420-429, 2007.



Objective Function

» Objective function:

- T (S) = Expected #people influenced when targeting a
set of users S

» Define f (S) as a monotonic submodular function
f(SU{v}) = f(S) = f(Tu{v})— f(T)
f(Su{v}) = f(5)

where S C T,

[1] P. Domingos and M. Richardson. Mining the network value of customers. In Proceedings of the seventh ACM SIGKDD international conference

on Knowledge discovery and data mining (KDD’01), pages 57—-66, 2001.
[2] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining(KDD’03), pages 137-146, 2003.



Maximizing the Spread of Influence

¢ Solution
¢ Use a submodular function to approximate the influence function

e Then the problem can be transformed into finding a k-element set S for
which f (S) is maximized.

THEOREM 7.3 [19, 50] For a non-negative, monotone submodular function
f,let S be a set of size k obtained by selecting elements one at a time, each time
choosing an element that provides the largest marginal increase in the function
value. Let 8™ be a set that maximizes the value of f over all k-element sets.
Then f(S) =|(1 — 1/e)|- f(S*); in other words, S provides a (1 — 1/e)-
approximation. X

approximation ratio

[1] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD
international conference on Knowledge discovery and data mining (KDD’03), pages 137-146, 2003.



Performance Guarantee

Let 9, be the j-th node selected by the greedy algorithm

o Let GjZ{gl,...,gj} and 602@ " ThUS Ajék(Aj_Ajﬂ)
o Forvs,‘s‘:k and  j=01,..,k-1 k
A <(1—£\ A
F(S)<F(G,US|<F(G,)+kg k‘L k} ’
f Recall
greedy+ T 1 \l *
submodularity = SQF(S )
o let A =F(S')-F(G o Then D
. 5) ( ) . F(G)z(l——\F(S)
where ¢* is the optimal solution ‘ L eJ
¢ We have g, =A -4,
The solution obtained by Greedy is

better than 63% of the optimal solution




Algorithms

¢ General Greedy

¢ Low-distance Heuristic

¢ High-degree heuristic

¢ Degree Discount Heuristic



General Greedy

* Generalidea: In eachround,  Algorithm 1 GeneralGreedy(G, k)

the algorithm adds one vertex .7 - g — 0 and R = 20000
into the selected set S such 2: fori = 1to k do

that this vertex together with  3:  for each vertex v € V' \ S do
current set S maximizes the ;1 ;u = 0-1 o
: . or:=11o 0
influence spread. 6: sv +=i|RanCas(S U {v})]
7 or
. Sv — S'U/R
Any random diffusion 9: end for

process 10: S =SuU{arg maXUEV\S{SU}}
11: end for
12: output S.




Low-distance Heuristic

¢ Consider the nodes with the shortest paths to other
nodes as seed nodes
¢ Intuition

¢ Individuals are more likely to be influenced by those who
are closely related to them.



High-degree heuristic

o Choose the seed nodes according to their degree.

¢ Intuition

¢ The nodes with more neighbors would arguably tend to
impose more influence upon its direct neighbors.

¢ Know as “degree centrality”



Degree Discount Heuristicll]

o General i1dea: If u has been
selected as a seed, then when
considering selecting v as a

new seed based on Its degree,
we should not count the edge

v->U

o Specifically, for a node v with

d, neighbors of which t,are
selected as seeds, we should
discount v’s degree by

2tv +(dv'tv) 1:v P
where p=0.1.

Algorithm 4 DegreeDiscountlC(G, k)

1
2
3
4
5:
6:
7
8
9
0

10:
11:
12:
13:
14:
15:

© initialize S = ()
. for each vertex v do

compute its degree d,,
dd, = dy
initialize £, to 0

end for

 for: =1tok do

select u = arg max,{dd, | v € V' \ S}
S =SuU{u}
for each neighbor v of u andv € V' \ S do
ty, =1, +1
ddy = dy — 2ty — (dy — to)tp
end for
end for
output S

[1] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks. In KDD'09, pages 199-207, 2009.



Social Influence

Applications
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Application: Social Advertising!!!

¢ Conducted two very large field experiments that
identify the effect of social cues on consumer
responses to ads on Facebook

¢ Exp. 1: measure how responses increase as a function
of the number of cues.

o Exp. 2: examines the effect of augmenting traditional
ad units with a minimal social cue

¢ Result: Social influence causes significant increases in
ad performance

[1] E. Bakshy, D. Eckles, R. Yan, and |. Rosenn. Social influence in social advertising: evidence from field experiments. In
EC'12, pages 146-161, 2012.



Application: Opinion Leader!1!

o Propose viral marketing through frequent pattern mining.

¢ Assumption
e Users can see their friends actions.

¢ Basic formation of the problem
¢ Actions take place in different time steps, and the actions which come
up later could be influenced by the earlier taken actions.
¢ Approach

¢ Define leaders as people who can influence a sufficient number of
people in the network with their actions for a long enough period of
time.

¢ Finding leaders in a social network makes use of action logs.

[1] A. Goyal, F. Bonchi, and L. V. Lakshmanan. Discovering leaders from community actions. In CIKM’08, pages 499-508,
2008.



Application: Influential Blog Discovery!!!

¢ Influential Blog Discovery

¢ Inthe web 2.0 era, people spend a significant amount of time on user-
generated content web sites, like blog sites.

e Opinion leaders bring in new information, ideas, and opinions, and
disseminate them down to the masses.
o Four properties for each bloggers
¢ Recognition: A lot of inlinks to the article.

¢ Activity generation: A large number of comments indicates that the
blog is influential.

¢ Novelty: with less outgoing links.

¢ Eloquence: Longer articles tend to be more eloquent, and can thus be
more influential.

[1] N. Agarwal, H. Liu, L. Tang, and P. S. Yu. Identifying the influential bloggers in a community. In WSDM’08, pages 207—-
217, 2008.



Submodular functions
and their applications




Network Inference

lipstick on a pig our entire economy
is in danger
e to help me
effort to protect the american decent person and a person
. economy must not fail that you do not have to be
nunity scared of as president of

ilities

the united states

the most serious
financial crisis since
the great depression

this is something that all of us will
swallow hard and go forward with

fundamentals of i think when you s}

our economy are who is the real the wealth around
barack obama good for everybod
resident's ;
j%b hl) deal he's palling around i am not

with terrorists president

with more

than one . )

thing at hey can she is a diva

once i call you takes no adv
joe from anyone

29 9/5 9/12 9/19 9/26 10/3 10/1 0 10/17 10/24 ‘

How learn who influences whom?
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Summarizing Documents

How select representative sentences?
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MAP (Maximum A-Posteriori) inference

max p(x | z)
X

How find the MAP labeling in discrete graphical models
efficiently?

90



What’'s common?

¢ Formalization:

Optimize a set function F(S) under constraints

omodular, we can ...
¢ solve optimization problems with strong guarantees
¢ solve some learning problems
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Outline

¢ What is submodularity?

¢ Optimization

¢ Minimization

many new
results! ©

- Part |

¢ Maximization

¢ Learning

¢ Learning for Optimization: new settings

- Part |l
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Outline

Many new

¢ What is submodularity?
results! ©

¢ Optimization

¢ Minimization: new algorithms, constraints

- Part |

e Maximization: new algorithms (unconstrained)

¢ Learning

¢ Learning for Optimization: new settings

... and many new applications!

- Part |l
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submodularity.org
slides, links, references, workshops, ...
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Example: placing sensors

[,
ik

FE EEUCE
SrOEaGE ﬂ
LEC || Car D

)

Place sensors to monitor temperature
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Set functions

o finite ground set V = {1,2,...,n}
» set function F:2V 3R o « ?@f

o willassume F () =0 (wlog)

» assume black box that can evaluate F'(A)
forany ACV
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Example: placing sensors

Utility '(A) of having sensors at subset A of all locations

LA

e X,
2

A={1,2,3}: Very informative A={1,4,5}: Redundant info
High value F(A) Low value F(A)
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¢ Given set func

¢ Marginal gain:

Marginal gain
tion F:2"V =R

Ar(s|A) = F({s;UA) = F(4)

Nnew sensor S
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i

2

DD@)

Decreasing gains: submodularity

pIacement A = {1,2} placement B ={1,...,5}

small gain

+ ®s
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Equivalent characterizations

¢ Diminishing gains: forallA C B

® -

F(Aus)—F(A) > F(BUs)— F(B)

o Union-Intersection: forall A, B CV

F(A) + F(B) “ B) + F(AN B)
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Questions

How do | prove my problem is
submodular?

Why is submodularity useful?

101



place sensors\
in building

Example: Set cover

Possible ® 9
locations, 2

Node predicts
values of positions
with some radius

J

>

goal: cover floorplan with discs

v

ACV: F(A) =

“area covered by sensors placed at A”

Formally:
Finite set W] collection of n subsets S; C W

For A CV define F(A) = |U‘€A Si‘
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Set cover is submodular

oo ® 000 A={5s)
%0 o 6 o
o
. i
‘@ o
.
» \ F(A U {s}) - F(A)

>

° o e )

o
% ﬁﬂ;/ F(BU {s’}) - F(B)
| / ()

B = {S,5,,53,S4)

eco0o0s o000
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More complex model for sensing

Y,: temperature
at location s

X,: sensor value
at location s

X =Y + noise

Joint probability distribution
P(X(,-- X ,Yq,..Y,) =P(Yy,...Y,) P(Xy,..., X, | Yy, Y,)

H_j\ o
Y
Prior Likelihood
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Example: Sensor placement

Utility of having sensors at subset A of all locations

F(4) = H(Y) = H(Y | Xa)

. N,
Uncertainty Uncertainty
about temperature Y about temperature Y
before sensing after sensing
Bl

Ba

Xy

X

B
o .
‘ & 88 s

A={1,2,3}: High value F(A) A={1,4,5}: Low value F(A)
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Submodularity of Information Gain

Y, Yr Xq, ooy X, discrete RVs
F(A) = I(Y; XA) = H(Y)-H(Y | XA)

e F(A)is NOT always submodular

If X, are all conditionally independent givenY,
then F(A) is submodular! [Krause & Guestrin "05]

Proof:
“information never hurts”
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Example: costs

+ price of items

» COst:
6 time to reach shop / Market 3

breakfast??
\\P
ground set V/
tl
t2
Market 1 |-\\
=
!
! each item
® V) ¢
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Example: costs

a £5) C.OSt: Market 3
: time to shop
breakfast?? + price of items

F( ‘i QQ) = cost( T ) + cost(Q,g)

=t,+1 + t, +2

Market 1

= fishops + #items

submodular?
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Shared fixed costs

Gl
‘ Ab|A) =1+t3

marginal cost: #new shops + #new items

decreasing =2 cost is submodular!

 shops: shared fixed cost
e economies of scale
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Another example: Cut functions

-

(5£

N2
5as

"

~

J

20w Ol

Cut function is submodular!
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Why are cut functions submodular?

w S Fau(S)
AN B |{} ob

{a} W
{b} W
{a,b} 0

Submodularif w=>0!

Cut function in subgraph {i,j}
=» Submodular!
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Closedness properties

F,,...,F., submodular functions on V and A,,...,A_, >0
Then: F(A) = 2. A, F,(A) is submodular

Submodularity closed under nonnegative linear
combinations!

Extremely useful fact:

e Fy(A) submodular = >, P(0) Fy(A) submodular!
¢ Multicriterion optimization
¢ A basic proof technique! ©
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Other closedness properties

e Restriction: F(S) submodular on V, W subset of V

Then F’(S) = F(SNW) issubmodular
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Other closedness properties

@ Restriction: F(S) submodular on V, W subset of V

Then F’(S) = F(SNW) issubmodular

o Conditioning: F(S) submodular on V, W subset of V
Then F'(S)=F(SUW) issubmodular
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Other closedness properties

e Restriction: F(S) submodular on V, W subset of V

Then F’(S) = F(SNW) issubmodular

o Conditioning: F(S) submodular on V, W subset of V
Then F'(S)=F(SUW) issubmodular

o Reflection: F(S) submodular on V

Then F’(S) =F(V\S) is submodular
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Submodularity ...

discrete convexity ....

V'S

(\ ... Or concavity?
>
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Convex aspects

@ convex extension

¢ duality
¢ efficient minimization

f(x)

But this is only
half of the story...
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Concave aspects

¢ submodularity:

ACB, s¢ B:

F(AUus)— F(A) > F(BUs)— F(B)
» concavity:
a<b s>0:

fla+s) = fla)

F(A) “intuitively”
>

| A

W
=
S
_|_
2
|
=
=
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Submodularity and concavity

osuppose g:N—R and F(A)=g(A4])

F(A) submodular ifandonlyif ... g isconcave

g(|A])
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Maximum of submodular functions

o Fi(A), F5(A) submodular.  What about

F(A) =max{ F1(A),F3(A)} 2

F(A) = max(F;(A),F,(A))

max(F,,F,) not submodular in general!
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Minimum of submodular functions

Well, maybe F(A) = min(F,(A),F,(A)) instead?

Fi(A) | Fy(A)
g o o
{a} 1 0
{b} 0 1
{a,b} |1 1

F({b}) - F({})=0

<

F({a,b}) — Fxa})=1

min(F,F,) not submodular in general!
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Two faces of submodular functions

Convex aspects
=>» minimization!

Concave aspects
=>» maximization!
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What to do with submodular functions

>

Learning
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What to do with submodular functions

o

Learning

>

124

Minimization and maximization not the same??




Submodular minimization

-

clustering structured sparsity

min F(S) regularization
S G

//
-
L
2
s
2 =
- -

minimum cut

MAP inference
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Submodular minimization

min F'(.5)
SCV

=» submodularity and convexity
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Set functions and energy functions

any set function ... 1s a function on
with|V | = n binary vectors!
F:2V 5 R F:{0,1}" = R
A T = €4
)
O, L
(b) — 1| b
© o ¢
@ o] ¢

pseudo-boolean function
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Submodularity and convexity

extension
> f:0,1]" =R

VS

\_

; —F o0\ }" —
Lovasz extension ’ }

flz) = max -y

convex

Lovész, 1982/

¢ minimum of fis a minimum of F

¢ submodular minimization as convex minimization:
polynomial time! Grotschel, Lovasz, Schrijver 1981
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Submodularity and convexity

extension
F:{0,1}" 5 R > 01" >R
4 Lovasz extension )
f(x) = X/
conve

\_

Lovéasz, 15

@ minimum of fis a minimum of F

@ submodular minimization as convex minimization:
polynomial time!
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Pr={reR":2(A) < F(A) forall ACV}

The submodular polyhedron P;

Example: V = {a,b}

l\ A F(A)
p(A) =) ¢ |0
iCA {a} 1
{b} 2
Xy {a,b} |O
\ ST x({b}) < F({bY)
P
F A x{aby) < F{a,b})
2 1 0 1 S({a}
T~ x({a}) < F({a})
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Evaluating the Lovasz extension

Pr={reR":2(A) < F(A) forall ACV}

Linear maximization over P, y* .
X{b}
r) = max I - 2
flz) = max -y |/
Exponentially many constraints!!! ®
Computable in O(n log n) time © 2 0 f
[Edmonds ‘70] X{a}

greedy algorithm:

* sortx

* order defines sets S; = {1,...,i}
* yi = F(5;) — F(Si-1)

e Subgradient
* Separation oracle
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£(x)

Lovasz extension: example

0.8 :

1 F(a,b) | g}
‘ {b}
{a,b}

oo PO
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Submodular minimization

min F(A)

/ ALV

minimize convex
extension

¢ ellipsoid algorithm
[Grotschel et al. "81]
¢ subgradient method,
Smoothing [Stobbe & Krause “10]

¢ duality: minimum norm

point algorithm
[Fujishige & Isotani "11]

~~

combinatorial
algorithms

o Fulkerson prize
Ilwata, Fujishige, Fleischer ‘01 &
Schrijver 00

¢ state of the art:
O(n4T + n5IogM) [lwata ‘03]
O(n® + n°T) [Orlin *09]

T = time for evaluating F 133



The minimum-norm-point algorithm

Example: V = {a,b}

Lowd karizété)nsiolslem dual: minimum norm problem
U . .0 2
amimingf (z) + 3|z HuH
53[0, 2]
{ab} |0 Base polytope B-
u({a,b}y)=F({a,b}) ~ 4 x . .
> b} A*={i|u* (i) <0}
2
u* minimizes F:
[-1,1] 1 A* = arg min F'(A)
ACV
i) 1 0 1 > Fujishige ‘91, Fujishige & Isotani ‘11
X{a)
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The minimum-norm-point algorithm

u({a,b})=F({a,b})
e

u* 2

1

[_111]

1. find (u* = in 1 |lul’
nd (= argmpp 3l

2. A ={ilu() <0} '\

IR

—t

Xta)

can we solve this??
yes! ©
recall: can solve
linear optimization over P,

similar: optimization over B,
= can find u”
(Frank-Wolfe algorithm)

Fujishige ‘91, Fujishige & Isotani ‘11
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Empirical comparison

ST —— 7 | |
HYBRID - Y Cut functions
— [ SEMS e /" combinatorial
= foo0 - LEXZ o oorith 1 from DIMACS
< | = P dlgorithms Challenge
8 _8 100 | o E
5.0 S - el
~ @ 10 * ",,*’”' ':,"'. E
s|g | \
2| % .. :
Q| < 3 Minimum norm point-
C .
«w | < | algorithm
o | & 0.1 b __
(D) A
= |
8 0.01 : : : : '
\ 4 64 128 256 512 1024 >

Problem size (log-scale!)
Minimum norm point algorithm: usually orders of magnitude faster

[Fujishige & Isotani '11]
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Example: Sparsity

pixels

d

wideband
signal
samples

frequency

o
e R
24
> [ =

Many natural signals sparse in suitable basis.
Can exploit for learning/regularization/compressive sensing...

time

k<<d
large
wavelet
coefficients

k<d

large
Gabor (TF)
coefficients
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Example: MAP inference

max P(x|z) xexp(—F(x;2))
xc{0,1}n st

labels pixel

values o min  F(x;z)
xe{0,1}"
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Example: MAP inference

Recall: equivalence

:z:m:aégn fulg:ggry % bg)rgag(\f)e(cloE(X; Z))set function A

W Elewzny = FA) (@
1
0 (©)
0 @

b

c |if F'is submodular (atteactive ;iﬂiéhtjlalslﬂ@(éli)
d | MAP inference = submodula?(ﬁ{r(?irlr;"ization!
polynomial-time
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Special cases

Minimizing general submodular functions:

poly-time, but not very scalable

Special structure =» faster algorithms

¢ Symmetric functions

¢ Graph cuts

¢ Concave functions

¢ Sums of functions with bounded support

o ...
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Fast approximate minimization

¢ Not all submodular functions can be optimized as graph cuts

o Even if they can: possibly many extra nodes in the graph ®

Other options?
¢ minimum norm algorithm

¢ other special cases:
e.g. parametric maxflow

[Fujishige & Iwata '99]

Approximate! ©

Every submodular function
can be approximated by

a series of graph cut
functions

[Jegelka, Lin & Bilmes "11]

speech corpus selection [Lin&Bilmes "11]

10

10

time (s)

minimum norm point algorithm,+*
~0(n4) ’

iterative P
approximate algorithm ,+*

O(n?) \

’ .
,*  parametric maxflow

7

10 10
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Fast approximate minimization

¢ Not all submodular functions can be optimized as graph cuts

o Even if they can: possibly many extra nodes in the graph ®

Approximate! ©

decompose:
* represent as much as
possible exactly by a graph

* rest: approximate iteratively

by changing edge weights

solve a series of cut problems

4

10 [

10°

~~~

N

O
& 10 |
=

10

-2 R 7>

speech corpus selection [Lin&Bilmes "11]

7

minimum norm point algorithm ,»*
~ O(n4) ’

iterative .’

approximate algorithm ,+*
,»° parametric maxflow

O(n?) \ 1
s’ D

— ‘
10 10
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Other special cases

¢ Symmetric: F(S)=F(V\S)
e Queyranne’s algorithm: O(n3) [Queyranne, 1998]
» Concave of modular: Zgz( > w(s )
seS

[Stobbe & Krause 10, Kohli et al, '09]

¢ Sum of submodular functions, each bounded support

[Kolmogorov "12]
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Submodular minimization

Lea rni@

Online/
adaptive
optim.
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Submodular minimization

» unconstrained: min F(A) st. ACV
¢ nontrivial algorithms, special case:
. . balanced
polynomial time Ut
» constraints: e.g. min F'(A) s.t. |A| >k

¢ limited cases doable: o
odd/even cardinality, inclusion/exclusion of a set

General case: NP hard
* hard to approximate within polynomial factors!
e But: special cases often still work well

[Lower bounds: Goel et al.’09, Ilwata & Nagano 09, Jegelka & Bilmes "11]
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Constraints

minimum...

matching path spanning tree

F = ¢

ground set: edges in a graph

| .
g 2w = i F(S)
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Constrained optimization

matching path spanning tree
min F'(.5)
approximate optimization

s ~

convex relaxation minimize surrogate function

approximation bounds dependent on F:
polynomial — constant — FPTAS
O(n) (1+¢€)

[Goel et al.’09, Iwata & Nagano 09, Goemans et al. ‘09, Jegelka & Bilmes 11, lyer et al. ICML "13,

Kohli et al "13...] 147



Submodular min in practice

¢ Does a special algorithm apply?

¢ symmetric function? graph cut? .... approximately?

¢ Continuous methods: convexity

¢ minimum norm point algorithm

o Other techniques [not addressed here]

¢ LP, column generation, ...

o Combinatorial algorithms: relatively high complexity

¢ Constraints: hard

¢ majorize-minimize or relaxation
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Learning

Online/
adaptive
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Submodular maximization

-, P
S E 2

covering sensing

network inference

summarization

150



Two faces of submodular functions

Convex aspects
=>» minimization!

Concave aspects
=>» maximization!
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Submodular maximization

max F'(.5)
SCV

=» submodularity and concavity
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Concave aspects

¢ submodularity:
ACB, s¢ B:
F(Aus)—F(A) > F(BUs)— F(B)

@ concavity:
a<b s>0:

fla+s) = fla)

F(A) “intuitively”
>

| A

IV

f(b+s) = f(b)
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Online/
adaptive
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Optimization

Lea rni@

Online/
adaptive
optim.
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Maximizing submodular functions

maximum
o Suppose we want for submodular F
A" = arg max F(A)st. ACV
o Example: | |;°\|

e F(A) = U(A) — C(A) where U(A) is submodular utility,
and C(A) is supermodular cost function

¢ In general: NP hard. Moreover:

o If F(A) can take negative values:
As hard to approximate as maximum independent set
(i.e., NP hard to get O(n'¢) approximation)
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Exact maximization of SFs

¢ Mixed integer programming
¢ Series of mixed integer programs [Nemhauser et al ‘81]
¢ Constraint generation [Kawahara et al ‘09]

¢ Branch-and-bound
¢ ,Data-Correcting Algorithm“ [Goldengorin et al "99]

Useful for small/moderate problems

All algorithms worst-case exponential!
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Randclmized USM (Buchbinder et al ‘12)

{r Vv
Start with A={}, B=V
Fori=1ton
vy =max|( F(AU{s;}) — F(A),0
v_ =max| F(B\{s;}) — F(B),0
Pick U ~ Unif(|0, 1])

Ii U§1)_|_/(Q)+—|—U_)S€t A(—AU{SZ}
Else B <+ B\ {s;}

Return A (: B) 158



Maximizing positive submodular functions
[Feige, Mirrokni, Vondrak 09; Buchbinder, Feldman, Naor, Schwartz '12]

Theorem

Given a nonnegative submodular function F,

Randomizedusm returns set A such that

F(AR) 2 1/2 max, F(A)

e Cannot do better in general than 2 unless P = NP
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Unconstrained vs. constraint maximization

Given monotone utility F(A) and cost C(A), optimize:

Option 1: Option 2:
max F(A) — C(A) max F(A)
st. ACV s.t. C(A) < B
“Scalarization” “Constrained maximization”
Can get 1/2 What is possible?
approx...
if F(A)-C(A) =0
for all sets A

Positiveness is a
strong requirement ® 60
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Monotonicity
Placement A ={1,2} Placement B={1,...,5}

o kR 2 @ #
X, X,

F is monotonic: \V/A, S F(A U {S}) — F(A) > ()

. S——

Adding sensors can only help A ( S ‘ A) Z O



Cardinality constrained maximization

¢ Given: finite set V, monotone SF F

¢ Want;: such that
A" CY

A* = aremax F (A
NP-hard! |§L|£k ( ) e @
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Greedy algorithm

¢ Given: finite set V, monotone SF F

Want: such that
’ A* C VY
A" = argmax F(A) @ @
NP-hard! A<k | 4
Greedy algorithm: @
Start with
Fori=1tok _A — Q)

s* «— argmax F'(AU {s})
A— AU{s"}

How well can this simple heuristic do?
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Information gain

Performance of greedy

Optimal -~

Temperature data
from sensor network

1 2 3 4 5
Number of sensors placed

Greedy empirically close to optimal. Why?
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One reason submodularity is useful

Theorem [Nemhauser, Fisher & Wolsey '78]

For monotonic submodular functions,

Greedy algorithm gives constant factor approximation

F(Agreeq,) = (1-1/) F(A, )

greedy

~639%0

o Greedy algorithm gives near-optimal solution!

¢ In general, need to evaluate exponentially many sets to do better!
[Nemhauser & Wolsey '78]

¢ Also many special cases are hard (set cover, mutual information, ...)
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Scaling up the greedy algorithm [Minoux * 78]

In round i+1,
¢ have picked A, = {s,,...,S;}
e pick s,,, = argmax, F(A, U {s})-F(A,)
l.e., maximize “marginal benefit” ®(s | A))

®(s | Aj) = F(A; U {s})-F(A)

Key observation: Submodularity implies

®(s|A)Z2®(s | Aia)

d 'l

i<j => ®s|A)2®(s | A)

Marginal benefits can never increase!
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“Lazy” greedy algorithm [Minoux ’ 78]

Lazy greedy algorithm:

- First iteration as usual Benefit &(s | A)
- Keep an ordered list of marginal a -
!oenefits ®. from previous 8 .
iteration
- Re-evaluate &, only for top °
element d
- If ®, stays on top, use it, 6

otherwise re-sort

Note: Very easy to compute online bounds, lazy evaluations, etc.

[Leskovec, Krause et al. " 07]
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. . . , i
Empirical improvements [Leskovec, Krause et al’06
— L L L 400 T T T T T T 1

qL) 8 300_5 .z’* S .
= = i Exhaustive search ’."' V| S Exhaustive search
ol < | (All subsets) Bl S 300+ (All subsets)
@] = i e Dl 5
w| T 200! Naive 191 i
—— Q ! —_ wnl o Naive
. g ] greedy ? "~ €200 greedy 7
q) 4;0 i ,/’,"' GJ .ED
5| €100 =" Fast greedy’| 3| £ 1oo] :
— c | —| 3 Fast greedy
- 1
ve |,
L \ 4 ) S S S R T\' —
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 1
Number of sensors selected Number of blogs selected
Sensor placement Blog selection
30x speedup 700x speedup
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Document summarization [Lin & Bilmes ‘11]

¢ Which sentences should we select that best
summarize a document? 170



Marginal gain of a sentence

—_— C

¢ Many natural notions of ,,document coverage® are
submodular [Lin & Bilmes ‘11]
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Submodular Sensing Problems
[with Guestrin, Leskovec, Singh, Sukhatme, ...]

T i

Water distribution networks

Environmental monitoring [J WRPM ’08]

[UAI'O5, JAIR 08, ICRA “10]
oo ﬁ:: Machine Learning VESYV I OO

(Theory)

sisu
engadge?
Recommending blogs & news

Experiment des:oign [KDD ‘07, ’10]
[NIPS 10, ’11, PNAS’13]

L ] )
D dnmsnas
il

‘A Directory Of Wonderful Things L

Can all be reduced to monotonic submodular maximization
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More complex constraints

ssofar: A% = argmax F'(A)
A<k

¢ Can one handle more complex constraints?
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Example: Camera network

Ground set V ={14,1p,...,54,5p}
Configuration: S ={vt, ..., 0%}
Sensing quality model F:2V SR

Configuration is feasible if no camera is pointed in
two directions at once




Matroids

¢ Abstract notion of feasibility: independence
Sis independent if ...

|S| < k ... S contains at most one ... S contains no CyC|eS
element from each square

Uniform matroid Partition matroid Graphic matroid

 Sindependent = T CSalsoindependent
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Matroids

¢ Abstract notion of feasibility: independence
Sis independent if ...

o e e /
S e |oe]s. I><I

.. |S| £k ... S contains at most one ... S contains no cycles
element from each group

Uniform matroid Partition matroid Graphic matroid

 Sindependent = T CSalsoindependent
 Exchange property: S, U independent, |S| > |U|
=» some e € S can be added to U: [/ U eindependent

 All maximal independent sets have the same size
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Example: Camera network

Ground set V ={14,1p,...,54,5p}
Configuration: S ={vt, ..., 0%}
Sensing quality model F:2V SR

Configuration is feasible if no camera is pointed in
two directions at once

This is a partition matroid:
Pl — {1a71b}7"°7p5 — {5a75b}

Independence:
SNP| <1




Greedy algorithm for matroids:

¢ Given: finite set V

o Want: ”
C
A — such that

A* = argmax F(A)

A independent

Greedy algorithm:
Start with

While A=10 . :
ds: AU {s} indep. |
s* < argmax F(AU({s}]
s: AU{s} indep. TV -
A AULs") ..
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Maximization over matroids

Theorem [Nemhauser, Fisher & Wolsey '78]

For monotonic submodular functions,
Greedy algorithm gives constant factor approximation

F(Agreedy) 27 F(Aopt)

o Greedy gives 1/(p+1) over intersection of p matroids

¢ Can model matchings / rankings with p=2:
Each item can be assigned < 1 rank, each rank can take £ 1 item

o Can get also obtain (1-1/e) for arbitrary matroids [Vondrak et al ‘08]
using continuous greedy algorithm
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Maximization: More complex constraints

¢ Approximate submodular maximization possible
under a variety of constraints:

¢ (Multiple) matroid constraints Greedy
works well
¢ Knapsack (non-constant cost functions)
¢ Multiple matroid and knapsack constraints |
Nee

¢ Path constraints (Submodular orienteering) non-greedy

» Connectedness (Submodular Steiner) [ algorithms

¢ Robustness (minimax)

‘ LN ]

¢ Survey on , Submodular Function Maximization
[Krause & Golovin ‘12] on submodularity.org
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Key intuition for approx. maximization

For submod. functions,
local maxima
can‘t be too bad

¢ E.g., all local maxima under cardinality constraints
are within factor 2 of global maximum

¢ Key insight for more complex maximization
=>» Greedy, local search, simulated annealing
for (hnon-monotone, constrained, ...)
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Two-faces of submodular functions

Cuts, clustering,

. Coverage,
similarity

diversity

Convex aspects
=>» minimization!

summarization

MAP inference

Concave aspects
=>» maximization!

structured sparsity
regularization

sensing  1s2



== Unconstrained

Constrained

Maximization

NP-hard, but
well-approximable
(if nonnegative)

NP-hard but well-
approximable
,Greedy-(like)“ for
cardinality, matroid
constraints;

Non-greedy for more
complex (e.g.,
connectivity) constraints

Minimization
Polynomial time!
Generally inefficent
(n"6), but can exploit
special cases

(cuts; symmetry;
decomposable; ...)

NP-hard; hard to
approximate, still useful
algorithms
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What to do with submodular functions

Learnir@
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What to do with submodular functions

Y4

AN

~

-~
g

/-

Learnir@
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General Problem: Learning Set Functions

Base Set V . (

Set function F:2V R
@ @

Can we learn F from few measurements / data?

{(Ala F(Al))7 S (Ama F(Am))}
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“Regressing” submodular functions
[Balcan, Harvey STOC ‘11]

o Sample m sets A, ... A, from dist. D; see F(A,), ..., F(A)
¢ From this, want to generalize well
o| [is (a,g,6)-PMAC iff with prob. 1-6 it holds that

Parp [ﬁ(A) < F(A) < aF(A)| >1—¢

Theorem: cannot approximate better than
o = n?3 /log(n)
unless one looks at exponentially many samples A

But can efficiently obtain o = n”
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Approximating submodular functions
[Goemans, Harvey, Kleinberg, Mirrokni, * 08]

o Pick m sets, A, ... A, getto see F(A,), ..., F(A,,)
» From this, want to approximate ' by [ s.t.

F(A) < F(A) < aF(A) forall A

Theorem: Even if
¢ Fis monotonic
¢ we can pick A, adaptively,

cannot approximate better than oL = n”* / log(n)
unless one looks at exponentially many sets A,

But can efficiently obtain oo = n”* log(n)
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Other directions

¢ Game theory
¢ Equilibria in cooperative (supermodular) games / fair allocations
¢ Price of anarchy in non-cooperative games
¢ Incentive compatible submodular optimization

¢ Generalizations of submodular functions
¢ L#t-convex / discrete convex analysis
e XOS/Subadditive functions

e More optimization algorithms
¢ Robust submodular maximization

¢ Maximization and minimization under complex constraints
e Submodular-supermodular procedure / semigradient methods

o Structured prediction with submodular functions
189



Further resources

e submodularity.org
¢ Tutorial Slides
¢ Annotated bibliography
¢ Matlab Toolbox for Submodular Optimization
¢ Links to workshops and related meetings

e discml.cc
¢ NIPS Workshops on Discrete Optimization in Machine Learning
¢ Videos of invited talks on videolectures.net
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Conclusions

¢ Discrete optimization abundant in applications

¢ Fortunately, some of those have structure:

submodu

¢ Submodu
scalable a

arity
arity can be exploited to develop efficient,

gorithms with strong guarantees

¢ Can handle complex constraints

¢ Can learn

to optimize (online, adaptive, ...)
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16:00 — 17:40 Tuesday Session 3 — Park Il
Track: Cognitive capabilities of social networks
Session chair: Attila Kiss

16:00 Comparative study of Architecture for Twitter Analysis and a proposal for an
improved approach - B. Molnar, Z. Vincellér

16:20 Towards Modeling Fuzzy Propagation for Sentiment Analysis in Online Social
Networks: a Case study on TweetScope - D. N. Trung, J. J. Jung, L. A. Vu, A. Kiss

16:40 Five Ws, One H and Many Tweets - |. Szics, G. Gombos, A. Kiss

17:00 On a Keyword-Lifecycle Model for Real-time Event Detection in Social Network
Data - T. Matuszka, Z. Vincellér, S. Laki

17:20 Properties of the Most Influential Social Sensors - B. Késa, B. Pinczel, G. Racz, A.

Kiss

192



Our publications in 2014

A basic network analytic package for RapidMiner

By Balazs Kosa, Marton Balassi, Péter Englert, Gabor Racz, Zoltan

Pusztai, Attila Kiss; Eotvds Lorand University

Betweenness versus Linerank
By Balazs Kosa, Marton Balassi, Péter Englert, Attila Kiss

An Improved Community-based Greedy Algorithm for
Solving the Inuence Maximization Problem in Social
Networks

By Gabor Racz, Zoltan Pusztai, Balazs Kosa, Attila Kiss

Quantitative analysis of Bitcoin exchange rate and
transactional network properties
By Imre Sziics, Attila Kiss

Efficiency Issues of Computing Graph Properties of Social
Networks

By Balazs Kosa, Marton Balassi, Péter Englert, Attila Kiss

Community shells’ effect on the disintegration dynamic of
social networks
By Imre Sziics, Attila Kiss

M,/IL] rapidminer

RapidMiner World

The AlFData.Analytics Conference
For, All Enterprises

£
€,
ICCCl 2014

Lecture Notes i

Artificial Intellldﬁ'ﬁc‘e

ANNALES

UNIVERSITATIS SCIENTIARUM
BUDAPESTINENSIS
DE ROLANDO EOTVOS NOMINATAE
SECTIO COMPUTATORICA

6th International Conference on
Computational Collective Intelligence

Technologies and Applications
24th-26th September 2014, Seoul, Korea

on Applied Informatics
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