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Computational Foundations for 

Social Networks 
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Social Theories—Social Balance
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Examples on Epinions, Slashdot, and MobileU
(1) The underlying networks are unbalanced;
(2) While the friendship networks are balanced.

Jie Tang, Tiancheng Lou, and Jon Kleinberg. Inferring Social Ties across Heterogeneous Networks. In WSDM'2012. pp. 
743-752.

Your friend’s friend is your friend, and your enemy’s enemy is also your friend.



Social Theories—Social status

Observations:  99% of triads in the networks satisfy the social status theory
Examples: Enron, Coauthor, MobileD

Note: Given a triad (A,B,C), let us use 1 to 
denote the advisor-advisee relationship and 0 
colleague relationship. Thus the number 011 to 
denote A and B are colleagues, B is C’s advisor 
and A is C’s advisor.

Your boss’s boss is also your boss…

Jie Tang, Tiancheng Lou, and Jon Kleinberg. Inferring Social Ties across Heterogeneous Networks. In WSDM'2012. pp. 
743-752.



R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, U. Alon. Network Motifs: Simple Building Blocks of Complex 
Networks. Science, 2004

Triadic Closure



Social Theories—Structural holes
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Structural hole users control the information flow between 

different communities (Burt, 92; Podolny, 97; Ahuja, 00; Kleinberg, 08; Lou & 

Tang, 13)

Information diffusion 
across communities

Community 1

Community 2

Community 3Structural hole 

spanners

1% twitter users control 
25% retweeting behaviors 
between communities.

T. Lou and J. Tang. Mining Structural Hole Spanners Through Information Diffusion in Social Networks. In WWW'13. pp. 
837-848.



Social Theories—Two-step-flow

Estimate OL and OU by PageRank
OL : Opinion leader;     
OU : Ordinary user. 

Observations:  Opinion leaders are more 
likely (+71%-84% higher than
chance) to spread information to ordinary 
users.

Lazarsfeld et al suggested that:
"ideas often flow from radio and print to 
the opinion leaders and from them to the 
less active sections of the population." 

Lazarsfeld et al. (1944). The people’s choice: How the voter makes up his mind in a presidential campaign.
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Algorithm — Network Flow

Classical problems:

Maximum flow / minimum cut
Ford-Fulkerson algorithm

Dinic algorithm

Minimum cut between multiple sets of vertices
NP hard when there are more than 2 sets

Minimum cost flow;

Circulation problem;

…



Algorithm — Network Flow (cont.)

Ford-Fulkerson

As long as there is an 
augmenting path, send the 
minimum of the residual 
capacities on the path.

A maximum flow is obtained 
when no augmenting paths 
left.

Time complexity: O(VE^2)



Algorithm — K-densest subgraph

NP Problem

Find the maximum density subgraph on exactly k vertices.

Reduced from the clique problem

Application

Reduce the structural hole spanner detection problem to 
proof its NP hardness.

To find a subset of nodes, such that without them, the 
connection between communities would be minimized.



Algorithm — K-densest subgraph (cont.)

A linear programming based solution

Approximation ratio: 
Find the subgraph with 
the largest average 
degree in subgraph St-1

Replace St by 
neighbors of St-1

Find j which satisfy:

Update S by j’s neighbors.



Algorithm — Set Cover

Another NP problem

Given a set of elements (universe) 
and a set S of n sets whose union 
equals the universe;

Find the smallest subset of S that
contains all elements in the universe;

The decision version is NP-complete.

Greedy

Choose the set containing the most 
uncovered elements;

Approximation ratio: H(size(S)), 
where H(n) is the n-th harmonic 
number.



- Macro Level

- Meso Level

- Micro Level

Social Network Analysis



Erdős–Rényi Model
In the G(n, p) model, each edge is included in the graph with probability p 
independent from every other edge. 

• Properties

(1) Degree distribution-Poisson

(2) Clustering coefficient 

(3) Average shortest path
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Problem: In real social network, neighbors tend to be connected with each 
other, thus the clustering coefficient should not be too small.

Small 

Erdős, P.; Rényi, A. (1959), “On Random Graphs.”.

Each random graph has 
the probability



Small-World Model
Mechanism

1. Start from a regular 
wired ring, where 
each node is 
connected with its K-
nearest neighbors

2. With probability p  
rewire each edge.

• Properties

(1) Degree distribution

(2) Clustering coefficient 

(3) Average shortest path
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Problem: In real social 
network, degree 
distribution is power law.

Not power law

Source: Watts and Strogatz (1998). "Collective dynamics of 'small-world' networks”.Watts, D. J.; Strogatz, S. H. (1998). "Collective dynamics of 'small-world' networks". Nature 393 (6684): 440–442.



Barabási-Albert Model
Idea

- Growth

- Preferential attachment (rich-get-richer, the Matthew Effect)

Mechanism

1. Start from a small connected graph with m0 nodes

2. At each time step, add one new node with m ( m ≤ m0) new edges; the probability 
that the new node is connected to node i is pi = 

• Degree distribution

• Clustering coefficient

• Average longest shortest path
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Source: Barabasi and Albert(1999). Emergence of scaling n complex networks.Barabasi and Albert(1999). Emergence of scaling n complex networks.



Social Network Analysis

- Macro Level

- Meso Level

- Micro Level



Community Detection

Node-Centric Community
Each node in a group satisfies certain 
properties 

Group-Centric Community
Consider the connections within a group
as a whole. The group has to satisfy 
certain properties without zooming into 
node-level

Network-Centric Community
Partition the whole network into several 
disjoint sets

Hierarchy-Centric Community  
Construct a hierarchical structure of 
communities



Community Evolution



Dunbar Number

Dunbar number:150. Dunbar's number is a suggested cognitive 
limit to the number of people with whom one can maintain 
stable social relationships

—Robin Dunbar, 2000



Social Network Analysis

- Macro Level

- Meso Level

- Micro Level



Social Action

…the object is to interpret the meaning of social action and 
thereby give a causal explanation of the way in which the 
action proceeds and the effects which it produces...

— Social Action Theory, by Max Weber, 1922



Social Action — User Characterization

Betweenness

A centrality measure of a vertex within a graph

Hue (from red=min to blue=max) 
shows the node betweenness.

#shortest paths 

pass through v

#shortest paths 

from s to t



Social Action — User Characterization (cont.)

Clustering Coefficient

A measure of degree to which nodes in a graph tend to 
cluster together.

Global clustering coefficient

A triangle consists of three closed triplets, and a closed triplet 
consists of three nodes connected to each other. 

Local clustering coefficient



Social Action — User Characterization (cont.)

Degree: the number of one vertex’s neighbors.

Closeness: the shortest path between one vertex and 

another vertex. 



Social Action — User Characterization (cont.)

Centrality



Social Action — Game Theory

Example: a game theory model.

Strategy: whether to follow a user or not;

Payoff: 

The model has a pure strategy Nash Equilibrium 

The frequency of 

a user to follow 

someone

The value of a 

user

The cost of following a 

user

The density of v’s ego 

network



Social Action — Game Theory (cont.)

Results: three stage life cycle

Stage 1: getting into a community

Stage 2: becoming an elite

Stage 3: bridging different communities (structural hole 
spanners)
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Strong/Weak Ties

Strong ties

Frequent communication, but ties are redundant due to 

high clustering

Weak ties

Reach far across network, but communication is 

infrequent…

“forbidden triad”:

strong ties are likely to “close”
Weak ties act as local bridge



?
Family

Friend

KDD 2010, PKDD 2011 (Best Paper Runnerup), WSDM 2012, ACM TKDD

Lady GagaYou Lady GagaYou

?

Lady Gaga

You

Lady Gaga

You

?

Shiteng Shiteng

Inferring social ties

Reciprocity

Triadic Closure

Social Ties



Triadic Closure
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Information Diffusion



Disease-Propagation Models

Classical disease-propagation models in epidemiology are 
based upon the cycle of disease in a host.

Susceptible

Infected

Recovered

…

The transition rates from one cycle to another are expressed as 
derivatives.

Classical models:
SIR

SIS

SIRS

…



SIR Model

Created by Kermack and McKendrick in 1927.

Considers three cycles of disease in a host:

Transition rates:
S(t) : #susceptible people at time t;

I(t) : #infected people at time t;

R(t) : #recovered people at time t;

: a parameter for infectivity;

: a parameter for recovery.



• Designed for infections confer no long lasting 
immunity (e.g., common cold)

• Individuals are considered become susceptible again 
after infection:

• Model:

SIS Model

Notice for both SIR and SIS, it holds:

where N is the fixed total population.
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Social Influence Analysis



“Love Obama”

I love Obama

Obama is 
great!

Obama is 
fantastic

I hate Obama, the 
worst president ever

He cannot be the 
next president!

No Obama in 
2012!

Positive Negative



What is Social Influence?

Social influence occurs when one's opinions, 
emotions, or behaviors are affected by others, 
intentionally or unintentionally.[1]

Informational social influence: to accept information from 
another;

Normative social influence: to conform to the positive 
expectations of others. 

[1] http://en.wikipedia.org/wiki/Social_influence



Three Degree of Influence

Three degree of Influence[2]

[1] S. Milgram. The Small World Problem. Psychology Today, 1967, Vol. 2, 60–67

[2] J.H. Fowler and N.A. Christakis. The Dynamic Spread of Happiness in a Large Social Network: Longitudinal Analysis 
Over 20 Years in the Framingham Heart Study. British Medical Journal 2008; 337: a2338

[3] R. Dunbar. Neocortex size as a constraint on group size in primates. Human Evolution, 1992, 20: 469–493.

Six degree of separation[1]

You are able to influence up to >1,000,000 persons in 
the world, according to the Dunbar’s number[3].  



Challenges: WH3

1. Whether social influence exist?

2. How to measure influence?

3. How to model influence?

4. How influence can help real applications?



Preliminaries



Notations

G =(V, E, X, Y)

Attributes: xi

- location, gender, age, etc.

Action/Status: yi

- e.g., “Love Obama”

Gt — the superscript t represents the time stamp

Time t

Time t-1, t-2…

Node/user: vi

eij

t ÎEt — represents a link/relationship from vi to vj at 

time t



Homophily
Homophily

A user in the social network tends to be similar to their 
connected neighbors.

Originated from different mechanisms

Social influence
Indicates people tend to follow the behaviors of their friends

Selection
Indicates people tend to create relationships with other people who 
are already similar to them

Confounding variables
Other unknown variables exist, which may cause friends to behave 
similarly with one another.



Denominator: the conditional probability that an unlinked pair will become linked

Numerator: the same probability for unlinked pairs whose similarity exceeds the 
threshold

Denominator: the probability that the similarity increase from time t-1 to time t
between two nodes that were not linked at time t-1

Numerator: the same probability that became linked at time t 

A Model is learned through matrix factorization/factor graph

Selection =
p(eij

t = 1| eij

t-1 = 0, xi

t-1,x j

t-1 > e )

p(eij

t = 1| eij

t-1 = 0)

Influence and Selection[1]

[1] J. Scripps, P.-N. Tan, and A.-H. Esfahanian. Measuring the effects of preprocessing decisions and network forces in dynamic network 
analysis. In KDD’09, pages 747–756, 2009.

There is a link between user i and j

at time t

Similarity between user i and j at 

time t-1 is larger than a threshold 

Influence=
p( xi

t ,x j

t > xi

t-1,x j

t-1 | eij

t = 1,eij

t-1 = 0)

p( xi

t ,x j

t > xi

t-1,x j

t-1 | eij

t-1 = 0)



Other Related Concepts

Cosine similarity

Correlation factors

Hazard ratio

t-test



Cosine Similarity

A measure of similarity

Use a vector to represent a sample (e.g., user)

To measure the similarity of two vectors x and y, 
employ cosine similarity:

   
x = (x

1
,...,x

n
)

   

sim(x,y) =
x ×y

x y



Correlation Factors

Several correlation coefficients could be used to measure 
correlation between two random variables x and y.

Pearsons’ correlation

It could be estimated by 

Note that correlation does NOT imply causation
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Hazard Ratio

Hazard Ratio

Chance of an event occurring in the treatment group divided by its 
chance in the control group

Example: 

Chance of users to buy iPhone with >=1 iPhone user friend(s) 

Chance of users to buy iPhone without any iPhone user friend

Measuring instantaneous chance by hazard rate h(t)

The hazard ratio is the relationship between the instantaneous hazards in 
two groups

Proportional hazards models (e.g. Cox-model) could be used to report 
hazard ratio.



t-test
A t-test usually used when the test statistic follows a Student’s t
distribution if the null hypothesis is supported.

To test if the difference between two variables are significant

Welch’s t-test
Calculate t-value

Find the p-value using a table of values from Student’s t-distribution

If the p-value is below chosen threshold (e.g. 0.01) then the two 
variables are viewed as significant different.

1 2

1 2

2 2

1 2 1 2

1 2

,
x x

x x

x x s s
t s

s n n





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sample mean
Unbiased estimator 
of sample variance

#participants in the 
treatment group

#participants in the 
control group



Data Sets



Ten Cases
Network #Nodes #Edges Behavior

Twitter-net 111,000 450,000 Follow

Weibo-Retweet 1,700,000 400,000,000 Retweet

Slashdot 93,133 964,562 Friend/Foe

Mobile (THU) 229 29,136 Happy/Unhappy

Gowalla 196,591 950,327 Check-in

ArnetMiner 1,300,000 23,003,231 Publish on a topic

Flickr 1,991,509 208,118,719 Join a group

PatentMiner 4,000,000 32,000,000 Patent on a topic

Citation 1,572,277 2,084,019 Cite a paper

Twitter-content 7,521 304,275 Tweet “Haiti Earthquake”

Most of the data sets will be publicly available for research.



Case 1: Following Influence on Twitter

Peng

SenLei

Peng

SenLei

When you follow a user in a social 
network, will the be-

havior influences your friends to 
also follow her?

Time 1 Time 2

Lady Gaga Lady Gaga



Case 2: Retweeting Influence

Andy

Jon

Bob

Dan

When you (re)tweet
something

Who will 
follow to 

retweet it?



Case 3: Commenting Influence

+
-

+
-

-
-

+

Alan Cox Exists Intel.News:

Re:…

Re:…

Re:…
positive influence from friends

Governments Want Private Data

Did not 
comment

Re:…

Re:…

Re:…

negative influence from foes

Re:…

+ Friend
- Foe



Case 4: Emotion Influence



Case 4: Emotion Influence (cont.)

Jennifer

Happy

Happy

location

Neutral

Neutral

call

sms

Mike

Allen

MikeAllen

Jennifer today

Jennifer 

yesterday

?

Jennifer  

tomorrow

MoodCast

Predict

Attributes f(.)

Temporal 

correlation h(.)

Social correlation g(.)

Can we predict users’ 
emotion?



Case 5: Check-in Influence in Gowalla

1’

1’

1’

1’

Alice’s friend Other usersAliceLegend

If Alice’s friends check in 
this location at time t

Will Alice also 
check in nearby?



Understanding the 
Emotional Impact in Social 

Networks

[1] J. Jia, S. Wu, X. Wang, P. Hu, L. Cai, and J. Tang. Can We Understand van Gogh’s Mood? Learning to Infer Affects from Images in Social 
Networks. In ACM Multimedia, pages 857-860, 2012.



The model of Viral Marketing

66



Influence Maximization
Influence maximization

Minimize marketing cost and more generally to maximize profit.

E.g., to get a small number of influential users to adopt a new product, and 
subsequently trigger a large cascade of further adoptions.

0.6
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0.1

0.4
0.6 0.1

0.8

0.1

A
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C

D E F

Probability of 
influence

[1] P. Domingos and M. Richardson. Mining the network value of customers. In Proceedings of the seventh ACM SIGKDD international conference 
on Knowledge discovery and data mining (KDD’01), pages 57–66, 2001.



Problem Abstraction

We associate each user with a status: 

Active or Inactive
The status of the chosen set of users (seed nodes) to market 
is viewed as active

Other users are viewed as inactive

Influence maximization

Initially all users are considered inactive

Then the chosen users are activated, who may further 
influence their friends to be active as well



Diffusion Influence Model

Linear Threshold Model

Cascade Model



Linear Threshold Model

General idea

Whether a given node will be active can be based on an arbitrary 

monotone function of its neighbors that are already active.

Formalization

fv : map subsets of v’s neighbors’ influence to real numbers in [0,1]

θv : a threshold for each node

S: the set of neighbors of v that are active in step t-1 

Node v will turn active in step t if  fv(S) >θv

Specifically, in [Kempe, 2003], fv is defined as                      ,  where 

bv,u can be seen as a fixed weight, satisfying

[1] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD 
international conference on Knowledge discovery and data mining (KDD’03), pages 137–146, 2003.



Linear Threshold Model: An example
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0.05

q = 0.8

q = 0.5
q = 0.2

q = 0.5

q = 0.4

1st try
0.74<0.8

2nd try, 
0.74+0.1>0.8

1st try, 0.7>0.5

A

B

C



Independent Cascade model

72



Cascade Model

Cascade model

pv(u,S) : the success probability of user u activating user v
User u tries to activate v and finally succeeds, where S is the set of v’s 
neighbors that have already attempted but failed to make v active

Independent cascade model
pv(u,S) is a constant, meaning that whether v is to be active does not 
depend on the order v’s neighbors try to activate it.

Key idea: Flip coins c in advance -> live edges

Fc(A): People influenced under outcome c (set cover)

F(A) = Sum cP(c) Fc(A) is submodular as well

[1] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD 
international conference on Knowledge discovery and data mining (KDD’03), pages 137–146, 2003.



Theoretical Analysis

NP-hard [1]

Linear threshold model

General cascade model

Kempe Prove that approximation algorithms can guarantee that the 

influence spread is within(1-1/e) of the optimal influence spread.

Verify that the two models can outperform the traditional heuristics

Recent research focuses on the efficiency improvement
[2] accelerate the influence procedure by up to 700 times

It is still challenging to extend these methods to large data sets 

[1] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM 
SIGKDD international conference on Knowledge discovery and data mining(KDD’03), pages 137–146, 2003. 
[2] J. Leskovec, A. Krause, C. Guestrin, C. Faloutsos, J. VanBriesen, and N. Glance. Cost-effective outbreak detection in networks. In 
Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining (KDD’07), pages 420–429, 2007.



Objective Function

Objective function: 

- f (S) = Expected #people influenced when targeting a 

set of users S

Define f (S) as a monotonic submodular function

where 

[1] P. Domingos and M. Richardson. Mining the network value of customers. In Proceedings of the seventh ACM SIGKDD international conference 
on Knowledge discovery and data mining (KDD’01), pages 57–66, 2001.
[2] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD 
international conference on Knowledge discovery and data mining(KDD’03), pages 137–146, 2003. 



Maximizing the Spread of Influence

Solution
Use a submodular function to approximate the influence function

Then the problem can be transformed into finding a k-element set S for 
which f (S) is maximized.

[1] D. Kempe, J. Kleinberg, and E. Tardos. Maximizing the spread of influence through a social network. In Proceedings of the ninth ACM SIGKDD 
international conference on Knowledge discovery and data mining (KDD’03), pages 137–146, 2003.

approximation ratio



Performance Guarantee

Let                        and

For                 and 

Let 

where     is the optimal solution
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The solution obtained by Greedy is 
better than 63% of the optimal solution

Recall



Algorithms

General Greedy

Low-distance Heuristic

High-degree heuristic

Degree Discount Heuristic



General Greedy

General idea: In each round, 
the algorithm adds one vertex 
into the selected set S such 
that this vertex together with 
current set S maximizes the 
influence spread.

Any random diffusion 
process



Low-distance Heuristic

Consider the nodes with the shortest paths to other 
nodes as seed nodes

Intuition

Individuals are more likely to be influenced by those who 
are closely related to them.



High-degree heuristic

Choose the seed nodes according to their degree.

Intuition

The nodes with more neighbors would arguably tend to 
impose more influence upon its direct neighbors.

Know as “degree centrality”



Degree Discount Heuristic[1]

General idea: If u has been 

selected as a seed, then when 

considering selecting v as a 

new seed based on its degree, 

we should not count the edge 

v->u

Specifically, for a node v with 

dv neighbors of which tv are 

selected as seeds, we should 

discount v’s degree by 

2tv +(dv-tv) tv p 

where p=0.1.

[1] W. Chen, Y. Wang, and S. Yang. Efficient influence maximization in social networks. In KDD'09, pages 199-207, 2009.



Social Influence
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ce
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Measure

Models

1

2

3

Applications



Application: Social Advertising[1]

Conducted two very large field experiments that 
identify the effect of social cues on consumer 
responses to ads on Facebook

Exp. 1: measure how responses increase as a function 
of the number of cues.

Exp. 2: examines the effect of augmenting traditional 
ad units with a minimal social cue

Result: Social influence causes significant increases in 
ad performance

[1] E. Bakshy, D. Eckles, R. Yan, and I. Rosenn. Social influence in social advertising: evidence from field experiments. In 
EC'12, pages 146-161, 2012.



Application: Opinion Leader[1]

Propose viral marketing through frequent pattern mining.

Assumption
Users can see their friends actions.

Basic formation of the problem
Actions take place in different time steps, and the actions which come 
up later could be influenced by the earlier taken actions.

Approach
Define leaders as people who can influence a sufficient number of 
people in the network with their actions for a long enough period of 
time.

Finding leaders in a social network makes use of action logs.

[1] A. Goyal, F. Bonchi, and L. V. Lakshmanan. Discovering leaders from community actions. In CIKM’08, pages 499–508, 
2008.



Application: Influential Blog Discovery[1]

Influential Blog Discovery
In the web 2.0 era, people spend a significant amount of time on user-
generated content web sites, like blog sites.

Opinion leaders bring in new information, ideas, and opinions, and 
disseminate them down to the masses.

Four properties for each bloggers
Recognition: A lot of inlinks to the article.

Activity generation: A large number of comments indicates that the 
blog is influential. 

Novelty: with less outgoing links.

Eloquence: Longer articles tend to be more eloquent, and can thus be 
more influential.

[1] N. Agarwal, H. Liu, L. Tang, and P. S. Yu. Identifying the influential bloggers in a community. In WSDM’08, pages 207–
217, 2008.



Submodular functions
and their applications



Network Inference

How learn who influences whom?

88



Summarizing Documents

How select representative sentences?

89



MAP (Maximum A-Posteriori) inference

90

How find the MAP labeling in discrete graphical models 
efficiently?

Int J Comput Vis (2009) 82: 302–324 303

Fig. 1 Incorporating higher order potentials for object segmentation.

(a) An image from the MSRC-21 dataset. (b), (c) and (d) Unsuper-

vised image segmentation results generated by using different para-

meters values in the mean-shift segmentation algorithm (Comaniciu

and Meer 2002). (e) The object segmentation obtained using the unary

likelihood potentials from TextonBoost. (f) The result of performing

inference in the pairwise CRF defined in Sect. 2. (g) Our segmentation

result obtained by augmenting the pairwise CRF with higher order

potentials defined on the segments shown in (b), (c) and (d). (h) The

rough hand labelled segmentations provided in the MSRC data set. It

can be clearly seen that the use of higher order potentials results in a

significant improvement in the segmentation result. For instance, the

branches of the tree are much better segmented

sell et al. (2006) this is not always the case and segments ob-

tained using unsupervised segmentation methods are often

wrong. To overcome these problems (Hoiem et al. 2005b)

and (Russell et al. 2006) use multiple segmentations of the

image (instead of only one) in the hope that although most

segmentations are bad, some are correct and thus would

prove useful for their task. They merge these multiple super-

pixels using heuristic algorithms which lack any optimality

guarantees and thus may produce bad results. In this paper

we propose an algorithm that can compute the solution of

the labelling problem (using features based on image seg-

ments) in a principled manner. Our approach couples po-

tential functions defined on sets of pixels with conventional

unary and pairwise cues using higher order CRFs. We test

the performance of this method on the problem of object

segmentation and recognition. Our experiments show that

the results of our approach are significantly better than the

ones obtained using pairwise CRF models (see Fig. 1).

1.1 Object Segmentation and Recognition

Combined object segmentation and recognition is one of

the most challenging and fundamental problems in com-

puter vision. The last few years have seen the emergence

of object segmentation algorithms which integrate object

specific top-down information with image based low-level

features (Borenstein and Malik 2006; He et al. 2004;

Huang et al. 2004; Kumar et al. 2005; Levin and Weiss

2006). These methods have produced excellent results on

challenging data sets. However, they typically only deal

with one object at a time in the image independently and

do not provide a framework for understanding the whole

image. Further, their models become prohibitively large as

the number of classes increases. This prevents their appli-

cation to scenarios where segmentation and recognition of

many object classes is desired.

Shotton et al. (2006) recently proposed a method (Tex-

tonBoost) to overcome this problem. In contrast to using ex-

plicit models to encode object shape they used a boosted

combination of texton features which jointly modeled shape

and texture. They combine the result of textons with colour

and location based likelihood terms in a conditional random

field (CRF). Although their method produced good segmen-

tation and recognition results, the rough shape and texture

model caused it to fail at object boundaries. The problem

of extracting accurate boundaries of objects is considerably

more challenging. In what follows we show that incorpora-

tion of higher order potentials defined on superpixels dra-

matically improves the object segmentation result. In partic-

ular, it leads to segmentations with much better definition of

object boundaries as shown in Fig. 1.

1.2 Higher Order CRFs

Higher order random fields are not new to computer vision.

They have been long used to model image textures (Lan et
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What’s common?

Formalization:

Optimize a set function F(S)  under constraints

generally very hard

but: structure helps!     
… if F is submodular, we can …

solve optimization problems with strong guarantees

solve some learning problems

91



Outline

What is submodularity?

Optimization

Minimization

Maximization

Learning

Learning for Optimization: new settings

Part I

Part II

92

many new
results! 



Outline

What is submodularity?

Optimization

Minimization: new algorithms, constraints

Maximization: new algorithms (unconstrained)

Learning

Learning for Optimization: new settings

Part I

Part II

… and many new applications!

many new
results! 
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submodularity.org
slides, links, references, workshops, …



Example: placing sensors

Place sensors to monitor temperature

95



Set functions

finite ground set

set function  

will assume                           (w.l.o.g.)

assume black box that can evaluate
for any 

96



Utility            of having sensors at subset     of all locations

X1

X2

X3

A={1,2,3}: Very informative
High value F(A)

X4

X5
X1

A={1,4,5}: Redundant info
Low value F(A)

Example: placing sensors

97



Marginal gain

Given set function

Marginal gain:

98

X1
X2

Xs

new sensor s



B

Decreasing gains: submodularity

X1
X2

X3

X4
X5

placement B = ,1,…,5-

X1
X2

placement A = {1,2}

Adding s helps a lot! Adding s doesn’t help muchXs

new sensor s

A +      s+      s

Big gain small gain

99



Equivalent characterizations

Diminishing gains:  for all

Union-Intersection: for all 

A B+    s +    s

100



Questions

101

How do I prove my problem is
submodular?

Why is submodularity useful?



Example: Set cover

102

Node predicts
values of positions
with some radius

goal: cover floorplan with discsplace sensors
in building Possible

locations 

: 
“area covered by sensors placed at A”

Formally: 
Finite set     , collection of n subsets
For                 define



Set cover is submodular

103

S1 S2

S1 S2

S3

S4 S’

S’

A={s1,s2}

B = {s1,s2,s3,s4}

F(A U {s’}) – F(A)

F(B U {s’}) – F(B)

≥



104

More complex model for sensing

Joint probability distribution 

P(X1,…,Xn,Y1,…,Yn)  = P(Y1,…,Yn) P(X1,…,Xn | Y1,…,Yn)

Ys: temperature
at location s

Xs: sensor value
at location s

Xs = Ys + noise

Prior Likelihood

Y1 Y2 Y3

Y6

Y5
Y4

X1

X4

X3

X6
X5

X2



Example: Sensor placement

Utility of having sensors at subset A of all locations

105

X1

X2

X3

A={1,2,3}: High value F(A)

X4

X5
X1

A={1,4,5}: Low value F(A)

Uncertainty
about temperature Y
before sensing

Uncertainty
about temperature Y
after sensing



Submodularity of Information Gain

Y1,…,Ym, X1, …, Xn discrete RVs

F(A) = I(Y; XA) = H(Y)-H(Y | XA)

F(A) is  NOT always submodular

If Xi are all conditionally independent given Y,
then F(A) is submodular!         [Krause & Guestrin `05]

106

Y1

X1

Y2

X2

Y3

X4X3

Proof:
“information never hurts”



Example: costs

107

breakfast??

cost:
time to reach shop
+ price of items

t1
t2

t3

each item
1 $

Market 1 Market 2

Market 3

ground set    



Example: costs

108

breakfast??

cost:
time to shop
+ price of items

F(                   ) =  cost( ) + cost( ,        )

submodular?

= t1 + 1   + t2 + 2

=  #shops  +  #itemsMarket 1 Market 2

Market 3



Shared fixed costs

109

A

B

marginal cost:         #new shops  + #new items

• shops:     shared fixed cost
• economies of scale

decreasing   cost is submodular!



110

Another example: Cut functions

a c

db

e g

hf

V={a,b,c,d,e,f,g,h}
2

2

2

2

2 2

1

1

3

3

3

3

3 3

Cut function is submodular!



Why are cut functions submodular?

111

a b

S Fab(S)

{} 0

{a} w

{b} w

{a,b} 0

Submodular if

w

a c

db

e g

hf

2

2

2

2

2 2

1

1

3

3

3

3

3 3

Cut function in subgraph {i,j}
 Submodular!

w ≥ 0!



Closedness properties

F1,…,Fm submodular functions on V and 1,…,m > 0

Then: F(A) = i i Fi(A) is submodular

Submodularity closed under nonnegative linear 
combinations!

Extremely useful fact:

F(A) submodular  P() F(A) submodular!

Multicriterion optimization

A basic proof technique! 

112



Other closedness properties
Restriction: F(S) submodular on V, W subset of V

Then is submodular 

113

S
WV



Other closedness properties
Restriction: F(S) submodular on V, W subset of V

Then is submodular 

Conditioning: F(S) submodular on V, W subset of V

Then is submodular

114

S
WV



Other closedness properties
Restriction: F(S) submodular on V, W subset of V

Then is submodular 

Conditioning: F(S) submodular on V, W subset of V

Then is submodular

Reflection: F(S) submodular on V

Then is submodular

115

SV



Submodularity …

discrete convexity ….

… or concavity?

116



Convex aspects

convex extension

duality

efficient minimization

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(
x
)

But this is only 
half of the story…
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Concave aspects

submodularity:

concavity:
A +    s B +    s

|A|

F(A) “intuitively”

118



Submodularity and concavity

suppose                                and

submodular if and only if   … is concave

119



Maximum of submodular functions

submodular. What about

?

|A|

F2(A)

F1(A)

F(A) = max(F1(A),F2(A))

max(F1,F2) not submodular in general!
120



Minimum of submodular functions

Well, maybe F(A) = min(F1(A),F2(A)) instead?

121

F1(A) F2(A) F(A)

{} 0 0 0

{a} 1 0 0

{b} 0 1 0

{a,b} 1 1 1

F({b}) – F({})=0

F({a,b}) – F({a})=1

<

min(F1,F2) not submodular in general!



Two faces of submodular functions

122

Convex aspects
minimization!

Concave aspects
maximization!



What to do with submodular functions

123

Optimization

Minimization

Maximization

Learning

Online/
adaptive
optim.



What to do with submodular functions

124

Optimization

Minimization

Maximization

Minimization and maximization not the same?? 



Submodular minimization

structured sparsity
regularization

clustering

MAP inference

125

minimum cut

ts



Submodular minimization

 submodularity and convexity

126



Set functions and energy functions

any set function
with               .

… is a function on 
binary vectors!

a

b

d

c

A

1

1

0

0

a

b

c

d

127

pseudo-boolean function



Submodularity and convexity

minimum of f is a minimum of F

submodular minimization  as  convex minimization:
polynomial time! Grötschel, Lovász, Schrijver 1981

extension

convex

128

Lovász extension

Lovász, 1982



Submodularity and convexity

convex

129

Lovász extension

Lovász, 1982
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The submodular polyhedron PF

Example: V = {a,b}

x({a}) ≤ F({a})

x({b}) ≤ F({b})

x({a,b}) ≤ F({a,b})
PF

-1 x{a}

x{b}

0 1

1

2

-2

A F(A)
{} 0
{a} -1
{b} 2
{a,b} 0



Evaluating the Lovász extension

131

-1
x{a}

x{b}

0 1

1

2

-2

Linear maximization over PF

Exponentially many constraints!!! 

Computable in O(n log n) time 
*Edmonds ‘70+

y*

• Subgradient
• Separation oracle

x

greedy algorithm:
• sort x
• order defines sets
•



Lovász extension: example
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0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

1

x
a

x
b

f(
x
)

A F(A)
{} 0
{a} 1
{b} .8
{a,b} .2

F(a)
F(b)

F(a,b)

F({})



Submodular minimization

combinatorial 
algorithms

Fulkerson prize
Iwata, Fujishige, Fleischer ‘01 & 
Schrijver ’00

state of the art:
O(n4T + n5logM)      [Iwata ’03]

O(n6 + n5T) [Orlin ’09]

minimize convex 
extension

ellipsoid algorithm
[Grötschel et al. `81]

subgradient method,

smoothing [Stobbe & Krause `10]

duality: minimum norm 
point algorithm

[Fujishige & Isotani ’11]

T = time for evaluating F
133



-1
x{a}

x{b}

0 1

1

2

-2

regularized problemLovász extension

minimizes F:

Fujishige ‘91, Fujishige & Isotani ‘11 

[-1,1]

u({a,b})=F({a,b})

u*

Base polytope BF

Example: V = {a,b}

A F(A)
{} 0
{a} -1
{b} 2
{a,b} 0

The minimum-norm-point algorithm

dual: minimum norm problem

134



1. find

2.

can we solve this??
yes! 
recall: can solve 
linear optimization over PF

similar: optimization over BF

 can find 
(Frank-Wolfe algorithm)

The minimum-norm-point algorithm

-1
x{a}

x{b}

0 1

1

2

-2

[-1,1]

u({a,b})=F({a,b})

u*

Fujishige ‘91, Fujishige & Isotani ‘11
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Empirical comparison

Minimum norm point algorithm: usually orders of magnitude faster

Cut functions 
from DIMACS 
Challenge
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(l
o
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sc

al
e

!)

Problem size (log-scale!)
512 102425612864

Minimum norm point 
algorithm

[Fujishige & Isotani ’11]

combinatorial
algorithms



Example: Sparsity

pixels
large
wavelet
coefficients

wideband
signal
samples

large
Gabor (TF)
coefficients

time

fr
eq

u
en

cy

Many natural signals sparse in suitable basis.
Can exploit for learning/regularization/compressive sensing...
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x1 x 2 x 3 x 4
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Example: MAP inference

138

labels pixel 
values

label

pixel



Example: MAP inference
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Recall:  equivalence

a

b

d

c

A
1

1

0

0

a
b
c
d

function on binary vectors set function

if      is submodular (attractive potentials), then
MAP inference = submodular minimization!
polynomial-time

1

1 1

1 0 0

00

0000



Special cases

Minimizing general submodular functions:

poly-time, but not very scalable

Special structure  faster algorithms

Symmetric functions

Graph cuts

Concave functions

Sums of functions with bounded support

...

140



Not all submodular functions can be optimized as graph cuts

Even if they can: possibly many extra nodes in the graph 

Other options?

minimum norm algorithm

other special cases:
e.g. parametric maxflow

[Fujishige & Iwata`99]

Approximate! 
Every submodular function
can be approximated by
a series of graph cut 
functions [Jegelka, Lin & Bilmes `11]

Fast approximate minimization

141

speech corpus selection [Lin&Bilmes `11]



Not all submodular functions can be optimized as graph cuts

Even if they can: possibly many extra nodes in the graph 

Approximate! 

Fast approximate minimization

142

speech corpus selection [Lin&Bilmes `11]

decompose:
• represent as much as 

possible exactly by a graph
• rest: approximate iteratively

by changing edge weights

solve a series of cut problems



Symmetric:

Queyranne‘s algorithm: O(n3)  [Queyranne, 1998]

Concave of modular:

[Stobbe & Krause `10, Kohli et al, `09]

Sum of submodular functions, each bounded support

[Kolmogorov `12]

Other special cases
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Submodular minimization

144

Optimization

unconstrained

constrained



Submodular minimization

unconstrained:

nontrivial algorithms, 
polynomial time

constraints: e.g.

limited cases doable:
odd/even cardinality, inclusion/exclusion of a set

145

General case:  NP hard
• hard to approximate within polynomial factors!
• But: special cases often still work well

[Lower bounds: Goel et al.`09, Iwata & Nagano `09, Jegelka & Bilmes `11]

special case:
balanced
cut



Constraints

146

cut matching path spanning tree

ground set: edges in a graph

minimum…



Constrained optimization

147

cut matching path spanning tree

convex relaxation minimize surrogate function

[Goel et al.`09, Iwata & Nagano `09, Goemans et al. `09, Jegelka & Bilmes `11, Iyer et al. ICML `13, 
Kohli et al `13...]

approximate optimization

approximation bounds dependent on F:
polynomial   – constant   – FPTAS



Submodular min in practice

Does a special algorithm apply?

symmetric function?     graph cut?        …. approximately?

Continuous methods: convexity

minimum norm point algorithm

Other techniques   [not addressed here]

LP, column generation, …

Combinatorial algorithms: relatively high complexity

Constraints: hard

majorize-minimize or relaxation
148



Optimization
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Maximization



Submodular maximization

sensingcovering

summarization

150

network inference

.
.

.
.
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.. . . ..
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Two faces of submodular functions
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Convex aspects
minimization!

Concave aspects
maximization!



Submodular maximization

 submodularity and concavity

152



Concave aspects

submodularity:

concavity:

|A|

F(A) “intuitively”
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Optimization
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Maximization



Optimization
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unconstrained

constrained
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Maximizing submodular functions

Suppose we want for submodular F 

Example:

F(A) = U(A) – C(A) where U(A) is submodular utility, 
and C(A) is supermodular cost function

In general: NP hard. Moreover:

If F(A) can take negative values:
As hard to approximate as maximum independent set 
(i.e., NP hard to get O(n1-) approximation)

|A|

maximum



Exact maximization of SFs
Mixed integer programming

Series of mixed integer programs [Nemhauser et al ‘81+

Constraint generation [Kawahara et al ‘09+

Branch-and-bound

„Data-Correcting Algorithm“ *Goldengorin et al ’99]

157

All algorithms worst-case exponential!

Useful for small/moderate problems



Randomized USM (Buchbinder et al ‘12)

Start with A={}, B=V

For i=1 to n

Pick

If set

Else

Return   158

V{}

A B
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Maximizing positive submodular functions
[Feige, Mirrokni, Vondrak ’09; Buchbinder, Feldman, Naor, Schwartz ’12+

Cannot do better in general than ½ unless P = NP

Theorem

Given a nonnegative submodular function F, 
RandomizedUSM returns set AR such that 

F(AR) ≥ 1/2  maxA F(A)
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Unconstrained vs. constraint maximization

Given monotone utility F(A) and cost C(A), optimize:

Option 1: Option 2:

Can get 1/2  
approx…

if F(A)-C(A) ≥ 0 
for all sets A

What is possible?

Positiveness is a 
strong requirement 

“Scalarization” “Constrained maximization”



Optimization
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unconstrained

constrained



Monotonicity

X1
X2

X3

X4
X5

Placement B = ,1,…,5-

X1
X2

Placement A = {1,2}

F is monotonic:

Adding sensors can only help
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Cardinality constrained maximization
Given: finite set V, monotone SF F

Want:       such that

NP-hard!

X1

X5

X3

X2

X4



164

Greedy algorithm
Given: finite set V, monotone SF F

Want:       such that

NP-hard!

How well can this simple heuristic do?

Greedy algorithm:

Start with

For i = 1 to k

X1

X5

X3

X2

X4



Performance of greedy

Greedy empirically close to optimal. Why?
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Greedy

Optimal
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One reason submodularity is useful

Theorem [Nemhauser, Fisher & Wolsey ’78]

For monotonic submodular functions,
Greedy algorithm gives constant factor approximation

F(Agreedy) ≥ (1-1/e) F(Aopt)

Greedy algorithm gives near-optimal solution!

In general, need to evaluate exponentially many sets to do better!
[Nemhauser & Wolsey ’78]

Also many special cases are hard (set cover, mutual information, …)
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~63%
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Scaling up the greedy algorithm [Minoux ’78]

In round i+1, 
have picked Ai = {s1,…,si}

pick si+1 = argmaxs F(Ai U {s})-F(Ai)

I.e., maximize “marginal benefit” (s | Ai)

(s | Ai) = F(Ai U {s})-F(Ai)

Key observation: Submodularity implies 

i ≤ j => (s | Ai) ≥ (s | Aj)

Marginal benefits can never increase!

s

 (s | Ai)≥ (s | Ai+1)
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“Lazy” greedy algorithm [Minoux ’78]

Lazy greedy algorithm:

 First iteration as usual

 Keep an ordered list of marginal 
benefits i from previous 
iteration

 Re-evaluate i only for top 
element

 If i stays on top, use it,
otherwise re-sort

a

b

c

d

Benefit (s | A)

e

a

d

b

c

e

a

c

d

b

e

Note: Very easy to compute online bounds, lazy evaluations, etc.
[Leskovec, Krause et al. ’07]
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Sensor placement

Empirical improvements [Leskovec, Krause et al’06+

30x speedup 700x speedup



Document summarization [Lin & Bilmes ‘11+

Which sentences should we select that best
summarize a document? 170



Marginal gain of a sentence

Many natural notions of „document coverage“ are
submodular [Lin & Bilmes ‘11+
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Submodular Sensing Problems
[with Guestrin, Leskovec, Singh, Sukhatme, …+

Can all be reduced to monotonic submodular maximization

172

Experiment design 
*NIPS ‘10, ’11, PNAS’13+

Recommending blogs & news
*KDD ‘07, ’10]

Water distribution networks
[J WRPM ’08]Environmental monitoring

*UAI’05, JAIR ’08, ICRA ‘10+



More complex constraints

So far:

Can one handle more complex constraints?

173



Ground set

Configuration:

Sensing quality model

Configuration is feasible if no camera is pointed in 
two directions at once

17
4

Example: Camera network



Matroids

Abstract notion of feasibility: independence

175

S is independent if …

… |S| ≤ k

Uniform matroid

… S contains at most one 
element from each square

Partition matroid

… S contains no cycles

Graphic matroid

• S independent    T S also independent

• Exchange property:  S, U independent, |S| > |U|
 some             can be added to U:             independent

• All maximal independent sets have the same size



Matroids

Abstract notion of feasibility: independence

176

S is independent if …

… |S| ≤ k   

Uniform matroid

… S contains at most one 
element from each group

Partition matroid

… S contains no cycles

Graphic matroid

• S independent    T     S also independent

• Exchange property:  S, U independent, |S| > |U|
 some             can be added to U:             independent

• All maximal independent sets have the same size



Ground set

Configuration:

Sensing quality model

Configuration is feasible if no camera is pointed in 
two directions at once

This is a partition matroid:

Independence:

17
7

Example: Camera network
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Greedy algorithm for matroids:
Given: finite set V

Want:       

such that

Greedy algorithm:

Start with

While



Maximization over matroids

Theorem [Nemhauser, Fisher & Wolsey ’78]

For monotonic submodular functions,
Greedy algorithm gives constant factor approximation

F(Agreedy) ≥ ½  F(Aopt)

Greedy gives 1/(p+1) over intersection of p matroids
Can model matchings / rankings with p=2:
Each item can be assigned ≤ 1 rank, each rank can take ≤ 1 item

Can get also obtain (1-1/e) for arbitrary matroids [Vondrak et al ’08+
using continuous greedy algorithm

179



Maximization: More complex constraints
Approximate submodular maximization possible
under a variety of constraints:

(Multiple) matroid constraints

Knapsack (non-constant cost functions)

Multiple matroid and knapsack constraints

Path constraints (Submodular orienteering)

Connectedness (Submodular Steiner)

Robustness (minimax)

...

Survey on „Submodular Function Maximization“ 
[Krause & Golovin ‘12+ on submodularity.org

180

Greedy
works well

Need
non-greedy
algorithms



Key intuition for approx. maximization

E.g., all local maxima under cardinality constraints
are within factor 2 of global maximum

Key insight for more complex maximization
 Greedy, local search, simulated annealing

for (non-monotone, constrained, ...)
181

For submod. functions,
local maxima
can‘t be too bad



Two-faces of submodular functions

182

Convex aspects
minimization!

Concave aspects
maximization!

Cuts, clustering,
similarity

Coverage,
diversity

structured sparsity
regularization

MAP inference summarization

sensing



Summary Optimization

183

Maximization Minimization

Unconstrained NP-hard, but 
well-approximable
(if nonnegative)

Polynomial time!
Generally inefficent
(n^6), but can exploit
special cases
(cuts; symmetry; 
decomposable; ...)

Constrained NP-hard but well-
approximable
„Greedy-(like)“ for
cardinality, matroid
constraints;
Non-greedy for more
complex (e.g., 
connectivity) constraints

NP-hard; hard to
approximate, still useful
algorithms



What to do with submodular functions

184

Optimization

Minimization

Maximization

Learning

Online/
adaptive
optim.



What to do with submodular functions

185

Learning



General Problem: Learning Set Functions

Can we learn F from few measurements / data?

186

Base Set

Set function
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“Regressing” submodular functions
[Balcan, Harvey STOC ‘11]

Sample m sets A1 … Am, from dist. D; see F(A1), …, F(Am)

From this, want to generalize well 

is (α,ε,δ)-PMAC iff with prob. 1-δ it holds that

Theorem: cannot approximate better than

 = n1/3 / log(n)
unless one looks at exponentially many samples Ai

But can efficiently obtain  = n½
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Approximating submodular functions
[Goemans, Harvey, Kleinberg, Mirrokni, ’08]

Pick m sets, A1 … Am, get to see F(A1), …, F(Am)

From this, want to approximate      by      s.t.

for all A

Theorem: Even if 

F is monotonic

we can pick Ai adaptively, 

cannot approximate better than  = n½ / log(n)
unless one looks at exponentially many sets Ai

But can efficiently obtain  = n½ log(n)



Other directions
Game theory

Equilibria in cooperative (supermodular) games / fair allocations

Price of anarchy in non-cooperative games

Incentive compatible submodular optimization

Generalizations of submodular functions

L#-convex / discrete convex analysis

XOS/Subadditive functions

More optimization algorithms

Robust submodular maximization

Maximization and minimization under complex constraints

Submodular-supermodular procedure / semigradient methods

Structured prediction with submodular functions
189



Further resources
submodularity.org

Tutorial Slides

Annotated bibliography

Matlab Toolbox for Submodular Optimization

Links to workshops and related meetings

discml.cc

NIPS Workshops on Discrete Optimization in Machine Learning

Videos of invited talks on videolectures.net

190

...



Conclusions
Discrete optimization abundant in applications

Fortunately, some of those have structure: 
submodularity

Submodularity can be exploited to develop efficient, 
scalable algorithms with strong guarantees

Can handle complex constraints

Can learn to optimize (online, adaptive, …)
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16:00 – 17:40 Tuesday Session 3 – Park II 

Track: Cognitive capabilities of social networks

Session chair: Attila Kiss

16:00 Comparative study of Architecture for Twitter Analysis and a proposal for an 
improved approach - B. Molnár, Z. Vincellér 

16:20 Towards Modeling Fuzzy Propagation for Sentiment Analysis in Online Social
Networks: a Case study on TweetScope - D. N. Trung, J. J. Jung, L. A. Vu, A. Kiss 

16:40 Five Ws, One H and Many Tweets - I. Szücs, G. Gombos, A. Kiss 

17:00 On a Keyword-Lifecycle Model for Real-time Event Detection in Social Network 
Data - T. Matuszka, Z. Vincellér, S. Laki 

17:20 Properties of the Most Influential Social Sensors - B. Kósa, B. Pinczel, G.  Rácz, A. 
Kiss
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Our publications in 2014
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Betweenness versus Linerank
By Balázs Kósa, Márton Balassi, Péter Englert, Attila Kiss

An Improved Community-based Greedy Algorithm for 
Solving the Inuence Maximization Problem in Social 
Networks
By Gábor Rácz, Zoltán Pusztai, Balázs Kósa, Attila Kiss

Quantitative analysis of Bitcoin exchange rate and 
transactional network properties
By Imre Szücs, Attila Kiss

Efficiency Issues of Computing Graph Properties of Social
Networks
By Balázs Kósa, Márton Balassi, Péter Englert, Attila Kiss

Community shells’ effect on the disintegration dynamic of
social networks
By Imre Szücs, Attila Kiss
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