
Embedded SQL

Host Language
(record-oriented)

DBMS
(set-oriented)

1. Query

3. Process a tuple at
a time

4. Close Cursor

2. Evaluate query. Provide
cursor to query result.

1

JDBC

Java DataBase Connectivity
Standard to access databases using Java
Approach:
Create a connection to the database
Create a statement to be executed by the database
Set parameters of the statement (optional)
Execute the statement; return ResultSet (aka cursor)
Read tuples from ResultSet

JDBC is not restricted to SQL!

2

Create Connection to the DB

Connection conn = DriverManager.getConnection(
 urlDB, username, password)

• Need JDBC driver (provided by DBMS)
• urlDB: Identifies the database uniquely

• N.B. one server could provide multiple DBs.
• Username, Password: as usual
• Other settings provided by configuration

•e.g., buffer pool, app heap, TA level, ...
3

Output the names of all Profs

Statement s = conn.createStatement();
ResultSet r;

s.execute(„SELECT name FROM professor“);
r = s.getResultSet();
while (r.next()) {
 output(r.getString(1));
}
r.close();

4

Parameterized Queries

PreparedStatement s = conn.prepareStatement(
 „SELECT name FROM prof WHERE level = ?“);
ResultSet r;
...

s.setString(1, „AP“);
r = s.executeQuery();
while (r.next()) ...

5

Tipps and Tricks
Connection Pooling

Create several connections to the database
Grab an unused connection before accessing DB
Execute statement using that connection

Why? Do not block the database with heavy queries

Rule of thumb: 5 – 10 connections
(too many connections will hurt performance and avail.)

6

Tipps and Tricks
Cursor Caching

Use PreparedStatements!

Example:

 insert into professor(name, level) values(?,?)

Why? Avoid overhead (optimizer) for every call

Disadvantage? Optimizer has no statistics

7

JDBC Summary
Simple protocol to send messages to the database
Database is typically deployed as a server!

SQL Syntax not checked at compile time!!!
For Java, those are just strings

(Type) Safety of parameters checked at running time

All JDBC Statements raise SQLExceptions
Should be caught!

New Standard: SQLJ

8

SQL J
SQL embedded in Java
Use preprocessor at compile time for type safety,

SQL syntax
Annotate SQL statements with #sql
Iterator (Cursor) similar to JDBC

#sql iterator ProfIterator(String name, String level);
ProfIterator myProfs;
#sql myProfs = { SELECT name, level FROM Professor };
while (myProfs.next()) {
 System.out.println(myProfs.name() + myProfs.level());
}

9

Object-Relational Mapping
(e.g., Hibernate)
With JDBC and SQL-J, programmers wear two hats
Object-oriented programming with Java
Database programming with SQL
Two languages, two data models, two type systems, ...
Duplicate work for logging, caching, error handling, security

10

 Java/C# SQL Java/C#

Traditional Multi-tier Architecture

11

Outgoing message (XML/JSON)

REST communication
XML Java/C# XML

Java/C#,
JavaScript application logic

SQL database (queries, updates)

Incoming message (XML/JSON)

security, caching,
consistency,...

security, caching,
consistency,...

security, caching,
consistency,...

Problem: Every layer reinvents the wheel!!!
• security, caching, consistency, error handling, data model, ...
• huge overheads during development (technology jungle)
• huge overheads during deployment (configuration)
• huge overheads during operation (RPCs, duplicate work)

Object-Relational Mapping
(e.g., Hibernate)
With JDBC and SQL-J, programmers wear two hats
Object-oriented programming with Java
Database programming with SQL
Two languages, two data models, two type systems, ...
Duplicate work for logging, caching, error handling, security

Idea: Automate the database programming
DDL: generate „create table“ from XML, annotations
Queries: generate „select“ from getters and setters
Make everything look like Java

Idea applicable to relational and XML!
Please, do not use in project! We learn the bare bones here!!!

 12

13

XML Mapping to generic structures

<purchaseOrder>
<lineItem>
…..
</lineItem>
<lineItem>
…..
</lineItem>

</purchaseOrder>

<book>
 <author>…</author>
 <title>….</title>
 …..
</book>

Class DomNode{

public String getNodeName();
public String getNodeValue();
public void setNodeValue(nodeValue);
public short getNodeType();

}

Mappings

14

Mapping to non-generic structures

<purchaseOrder>
<lineItem>
…..
</lineItem>
<lineItem>
…..
</lineItem>

</purchaseOrder>

<book>
 <author>…</author>
 <title>….</title>
 …..
</book>

Class PurchaseOrder {

public List getLineItems();

……..
}

Mappings

Class Book {
 public List getAuthor();

public String getTitle();
……

}

Other Approaches
New programming languages
e.g., Ruby, XQuery, etc.
integrate app scripting and database programming
address additional impedance mismatch with Web

PL/SQL (stored procedures)
bring application logic to database: „;“, „while“, blocks, ...
rather than database logic to application
huge performance advantages

LINQ (language integrated queries)
provide a super-data model at application layer
(mother of all Hibernates)

15

	Embedded SQL
	JDBC
	Create Connection to the DB
	Output the names of all Profs
	Parameterized Queries
	Tipps and Tricks�Connection Pooling
	Tipps and Tricks �Cursor Caching
	JDBC Summary
	SQL J
	Object-Relational Mapping �(e.g., Hibernate)
	Traditional Multi-tier Architecture
	Object-Relational Mapping �(e.g., Hibernate)
	XML Mapping to generic structures
	Mapping to non-generic structures
	Other Approaches

