
Embedded SQL

Host Language
(record-oriented)

DBMS
(set-oriented)

1. Query

3. Process a tuple at
a time

4. Close Cursor

2. Evaluate query. Provide
cursor to query result.

1

JDBC

Java DataBase Connectivity
Standard to access databases using Java
Approach:
Create a connection to the database
Create a statement to be executed by the database
Set parameters of the statement (optional)
Execute the statement; return ResultSet (aka cursor)
Read tuples from ResultSet

JDBC is not restricted to SQL!

2

Create Connection to the DB

Connection conn = DriverManager.getConnection(
 urlDB, username, password)

• Need JDBC driver (provided by DBMS)
• urlDB: Identifies the database uniquely

• N.B. one server could provide multiple DBs.
• Username, Password: as usual
• Other settings provided by configuration

•e.g., buffer pool, app heap, TA level, ...
3

Output the names of all Profs

Statement s = conn.createStatement();
ResultSet r;

s.execute(„SELECT name FROM professor“);
r = s.getResultSet();
while (r.next()) {
 output(r.getString(1));
}
r.close();

4

Parameterized Queries

PreparedStatement s = conn.prepareStatement(
 „SELECT name FROM prof WHERE level = ?“);
ResultSet r;
...

s.setString(1, „AP“);
r = s.executeQuery();
while (r.next()) ...

5

Tipps and Tricks
Connection Pooling

Create several connections to the database
Grab an unused connection before accessing DB
Execute statement using that connection

Why? Do not block the database with heavy queries

Rule of thumb: 5 – 10 connections
(too many connections will hurt performance and avail.)

6

Tipps and Tricks
Cursor Caching

Use PreparedStatements!

Example:

 insert into professor(name, level) values(?,?)

Why? Avoid overhead (optimizer) for every call

Disadvantage? Optimizer has no statistics

7

JDBC Summary
Simple protocol to send messages to the database
Database is typically deployed as a server!

SQL Syntax not checked at compile time!!!
For Java, those are just strings

(Type) Safety of parameters checked at running time

All JDBC Statements raise SQLExceptions
Should be caught!

New Standard: SQLJ

8

SQL J
SQL embedded in Java
Use preprocessor at compile time for type safety,

SQL syntax
Annotate SQL statements with #sql
Iterator (Cursor) similar to JDBC

#sql iterator ProfIterator(String name, String level);
ProfIterator myProfs;
#sql myProfs = { SELECT name, level FROM Professor };
while (myProfs.next()) {
 System.out.println(myProfs.name() + myProfs.level());
}

9

Object-Relational Mapping
(e.g., Hibernate)
With JDBC and SQL-J, programmers wear two hats
Object-oriented programming with Java
Database programming with SQL
Two languages, two data models, two type systems, ...
Duplicate work for logging, caching, error handling, security

10

 Java/C#  SQL  Java/C#

Traditional Multi-tier Architecture

11

Outgoing message (XML/JSON)

REST communication
XML  Java/C#  XML

Java/C#,
JavaScript application logic

SQL database (queries, updates)

Incoming message (XML/JSON)

security, caching,
consistency,...

security, caching,
consistency,...

security, caching,
consistency,...

Problem: Every layer reinvents the wheel!!!
• security, caching, consistency, error handling, data model, ...
• huge overheads during development (technology jungle)
• huge overheads during deployment (configuration)
• huge overheads during operation (RPCs, duplicate work)

Object-Relational Mapping
(e.g., Hibernate)
With JDBC and SQL-J, programmers wear two hats
Object-oriented programming with Java
Database programming with SQL
Two languages, two data models, two type systems, ...
Duplicate work for logging, caching, error handling, security

Idea: Automate the database programming
DDL: generate „create table“ from XML, annotations
Queries: generate „select“ from getters and setters
Make everything look like Java

Idea applicable to relational and XML!
Please, do not use in project! We learn the bare bones here!!!

 12

13

XML Mapping to generic structures

<purchaseOrder>
<lineItem>
…..
</lineItem>
<lineItem>
…..
</lineItem>

</purchaseOrder>

<book>
 <author>…</author>
 <title>….</title>
 …..
</book>

Class DomNode{

public String getNodeName();
public String getNodeValue();
public void setNodeValue(nodeValue);
public short getNodeType();

}

Mappings

14

Mapping to non-generic structures

<purchaseOrder>
<lineItem>
…..
</lineItem>
<lineItem>
…..
</lineItem>

</purchaseOrder>

<book>
 <author>…</author>
 <title>….</title>
 …..
</book>

Class PurchaseOrder {

public List getLineItems();

……..
}

Mappings

Class Book {
 public List getAuthor();

public String getTitle();
……

}

Other Approaches
New programming languages
e.g., Ruby, XQuery, etc.
integrate app scripting and database programming
address additional impedance mismatch with Web

PL/SQL (stored procedures)
bring application logic to database: „;“, „while“, blocks, ...
rather than database logic to application
huge performance advantages

LINQ (language integrated queries)
provide a super-data model at application layer
(mother of all Hibernates)

15

	Embedded SQL
	JDBC
	Create Connection to the DB
	Output the names of all Profs
	Parameterized Queries
	Tipps and Tricks�Connection Pooling
	Tipps and Tricks �Cursor Caching
	JDBC Summary
	SQL J
	Object-Relational Mapping �(e.g., Hibernate)
	Traditional Multi-tier Architecture
	Object-Relational Mapping �(e.g., Hibernate)
	XML Mapping to generic structures
	Mapping to non-generic structures
	Other Approaches

