Relational Design Theory

- Assess the quality of a schema
 - redundancy
 - integrity constraints
 - Quality seal: normal forms (1-4, BCNF)
- Improve the quality of a schema
 synthesis algorithm
 decomposition algorithm
- Construct a (high-quality) schema
 - start with universal relation
 - apply synthesis or decomposition algorithms

What is wrong with redundancy?

- Waste of storage space
 - importance is diminishing as storage gets cheaper
 - (disk density will even increase in the future)
- Additional work to keep multiple copies of data consistent
 multiple updates in order to accomodate one event
- Additional code to keep multiple copies of data consistent
 Somebody needs to implement the logic

Bad Schemas

	ProfLecture								
PersNr	Name	Level	Room	Nr	Title	СР			
2125	Sokrates	FP	226	5041	Ethik	4			
2125	Sokrates	FP	226	5049	Mäeutik	2			
2125	Sokrates	FP	226	4052	Logik	4			
			•••	•••	••••				
2132	Popper	AP	52	5259	Der Wiener Kreis	2			
2137	Kant	FP	7	4630	Die 3 Kritiken	4			

• Update-Anomaly

• What happens when Sokrates moves to a different room?

Insert-Anomaly

• What happens if Roscoe is elected as a new professor?

Delete-Anomaly

• What happens if Popper does not teach this semester?

Multi-version Databases

Storage becomes cheaper -> never throw anything away

 It is more expensive to think about what to keep than simply to keep everything.

• Consequence 1: No delete

- Instead, set a status flag to "deleted"
- No delete anomalies (only wasted storage)
- Consequence 2: No update in place
 - Instead, create a new version of the tuple
 - No update anomalies (only wasted storage)
- Insert anomalies still exist, but not a big problem

• Result in multiple NULL values, but no inconsistencies

• NoSQL Movement: Denormalized data (XML is great!)

Functional Dependencies

• Schema: $\mathcal{R} = \{A:D_A, B:D_B, C:D_C, D:D_D\}$

Instance: R

• Let
$$\alpha \subseteq \mathcal{R}$$
, $\beta \subseteq \mathcal{R}$
• $\alpha \rightarrow \beta$ iff $\forall r, s \in R$: $r.\alpha = s.\alpha \Rightarrow r.\beta = s.\beta$
• (There is a function f: X $D_{\alpha} \rightarrow X D_{\beta}$)

R							
А	В	С	D				
a4	b2	c4	d3				
a1	b1	c1	d1				
a1	b1	c1	d2				
a2	b2	c3	d2				
a3	b2	c4	d3				

 $\{A\} \rightarrow \{B\}$ $\{C, D\} \rightarrow \{B\}$ Not: $\{B\} \rightarrow \{C\}$ Convention: $CD \rightarrow B$

Example

Family Tree							
Child	Father	Mother	Grandma	Grandpa			
Sofie	Alfons	Sabine	Lothar	Linde			
Sofie	Alfons	Sabine	Hubert	Lisa			
Niklas	Alfons	Sabine	Lothar	Linde			
Niklas	Alfons	Sabine	Hubert	Lisa			
	•••		Lothar	Martha			
•••		•••					

Example

Family Tree							
Child	Father	Father Mother		Grandpa			
Sofie	Alfons	Sabine	Lothar	Linde			
Sofie	Alfons	Sabine	Hubert	Lisa			
Niklas	Alfons	Sabine	Lothar	Linde			
Niklas	Alfons	Sabine	Hubert	Lisa			
			Lothar	Martha			
		•••		•••			

- Ohild → Father, Mother
- Child, Grandpa \rightarrow Grandma
- Child, Grandma \rightarrow Grandpa

Analogy to functions

- f1 : Child → Father
 - E.g., f1(Niklas) = Alfons
- f2: Child → Mother
 E.g., f2(Niklas) = Sabine
- f3: Child x Grandpa → Grandma
- FD: Child → Father, Mother
 - represents two functions (f1, f2)
 - Komma on right side indicates multiple functions
- FD: Child, Grandpa → Grandma
 - Komma on the left side indicates Cartesian product

Keys

- $\alpha \subseteq \mathcal{R}$ is a superkey iff • $\alpha \to \mathcal{R}$
- $\alpha \rightarrow \beta$ is minimal iff • $\forall A \in \alpha : \neg((\alpha - \{A\}) \rightarrow \beta)$
- Notation for minimal functional dependencies: $\alpha \rightarrow \beta$
- $\alpha \subseteq \mathcal{R}$ is a key (or candidate key) iff • $\alpha \rightarrow \mathcal{R}$

Determining Keys

Town							
Name	Canton	AreaCode	Population				
Buchs	AG	081	6500				
Buchs	SG	071	8000				
Zurich	ZH	044	300000				
Lausanne	VD	021	60000				
	•••	•••	•••				

Keys of Town

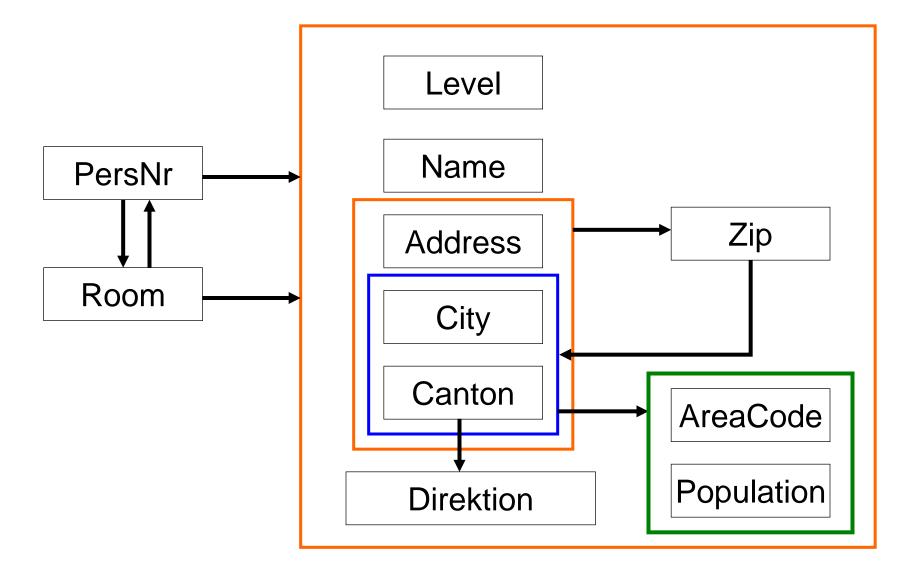
- {Name, Canton}
- {Name, AreaCode}

• N.B. Two small towns may have the same area code.

Determining Functional Dependencies

- Professor: {[PersNr, Name, Level, Room, City, Address, Zip, AreaCode, Canton, Population, Direktion]}
 - PersNr} → {PersNr, Name, Level, Room, City, Address, Zip, AreaCode, Canton, Population, Direktion}
 - {City, Canton} → {Population, AreaCode}
 - {Zip} \rightarrow {Canton, City, Population}
 - {Canton, City, Address} \rightarrow {Zip}
 - {Canton} \rightarrow {Direktion}
 - {Room} \rightarrow {PersNr}
- Additional functional dependencies (inferred):
 - {Room} → {PersNr, Name, Level, Room, City, Address, Zip, AreaCode, Canton, Population, Direktion}
 - $\{Zip\} \rightarrow \{Direktion\}$

Visualization of Funct. Dependencies



Armstrong Axioms: Inference of FDs

Reflexivity

• (
$$\beta \subseteq \alpha$$
) $\Rightarrow \alpha \rightarrow \beta$

• Special case: $\alpha \rightarrow \alpha$

Augmentation

•
$$\alpha \rightarrow \beta \Rightarrow \alpha \gamma \rightarrow \beta \gamma$$
.

• (Notation
$$\alpha \gamma := \alpha \cup \gamma$$
)

Transitivity

•
$$\alpha \rightarrow \beta \land \beta \rightarrow \gamma \Rightarrow \alpha \rightarrow \gamma$$
.

 These three axioms are complete. All possible other rules can be implied from these axioms.

Other rules

• Union of FDs: • $\alpha \rightarrow \beta \land \alpha \rightarrow \gamma \Rightarrow \alpha \rightarrow \beta \gamma$

• Decomposition: • $\alpha \rightarrow \beta \gamma \Rightarrow \alpha \rightarrow \beta \land \alpha \rightarrow \gamma$

• Pseudo transitivity:

$$\bullet \alpha \to \beta \land \gamma \beta \to \delta \Rightarrow \alpha \gamma \to \delta$$

Correctness of Union rule

- Premise: $\alpha \rightarrow \beta$ and $\alpha \rightarrow \gamma$
- Claim: $\alpha \rightarrow \beta \gamma$
- Proof:
 - 1. $\alpha \rightarrow \beta$

3. $\alpha \rightarrow \gamma$

- (Premise)
- 2. $\alpha \gamma \rightarrow \beta \gamma$ (Augmentation)
 - (Premise)
- 4. $\alpha \rightarrow \alpha \gamma$ (Augmentation)
- 5. $\alpha \rightarrow \beta \gamma$ (Transitivity of (4) and (2)) qed

Closure of Attributes

Input:

- F: a set of FDs
- α : a set of attributes
- Output: α + such that $\alpha \rightarrow \alpha$ +

• Exercise: Proof that Closure is deterministic and terminates.

Example: Closure of ZIP (Slide 8)

Minimal Basis

Fc is a minimal basis of F iff:

1. $Fc \equiv F$

• The closure of all attribute set is the same in Fc and F

2. All functional dependencies in Fc are minimal:

•
$$\forall A \in \alpha$$
: (Fc - $(\alpha \rightarrow \beta) \cup ((\alpha - \{A\}) \rightarrow \beta)) \neq Fc$

- $\forall B \in \beta$: (Fc $(\alpha \rightarrow \beta) \cup (\alpha \rightarrow (\beta \{B\}))) \not\models$ Fc
- 3. In Fc, there are no two functional dependencies with the same left side.
 - Can be achieved by applying the Union rule.

Computing the Minimum Basis

- 1. Reduction of left sides of FDs. Let $\alpha \rightarrow \beta \in F$, $A \in \alpha$: if $\beta \subseteq$ Closure(F, $\alpha - A$) then replace $\alpha \rightarrow \beta$ with ($\alpha - A$) $\rightarrow \beta$ in F
- 2. Reduction of right sides of FDs. Let $\alpha \rightarrow \beta \in F$, $B \in \beta$: if $B \in Closure(F - (\alpha \rightarrow \beta) \cup (\alpha \rightarrow (\beta - B)), \alpha)$ then replace $\alpha \rightarrow \beta$ with $\alpha \rightarrow (\beta - B)$ in F
- 1. Remove FDs: $\alpha \rightarrow \emptyset$ (clean-up of Step 2)
- 2. Apply Union rule to FDs with the same left side.

Determining Functional Dependencies

- Professor: {[PersNr, Name, Level, Room, City, Address, Zip, AreaCode, Canton, Population, Direktion]}
 - PersNr} → {PersNr, Name, Level, Room, City, Address, Zip, AreaCode, Canton, Population, Direktion}
 - {City, Canton} → {Population, AreaCode}
 - {Zip} \rightarrow {Canton, City, Population}
 - {Canton, City, Address} \rightarrow {Zip}
 - {Canton} \rightarrow {Direktion}
 - {Room} \rightarrow {PersNr}
- Additional functional dependencies (inferred):
 - {Room} → {PersNr, Name, Level, Room, City, Address, Zip, AreaCode, Canton, Population, Direktion}
 - $\{Zip\} \rightarrow \{Direktion\}$

Correctness of the Algorithm (Left Reduction)

• Premise: $\beta \subseteq$ Closure(F, α - A)

• Claim: Closure(F-{ $\alpha \rightarrow \beta$ } \cup { ($\alpha - A$) $\rightarrow \beta$ }, $\alpha - A$) \subseteq Closure(F, $\alpha - A$)

• Proof:

$$\begin{array}{l} \text{let } \gamma \in \text{Closure}(\mathsf{F} \cdot \{\alpha \to \beta\} \cup \{ (\alpha - \mathsf{A}) \to \beta \} , \ \alpha - \mathsf{A}) \\ \gamma \in \text{Closure}(\mathsf{F}, \ \alpha - \mathsf{A} \cup \ \beta) \\ \gamma \in \text{Closure}(\mathsf{F}, \ \alpha - \mathsf{A}) \end{array} \qquad \begin{array}{l} \text{(Apply FD } (\alpha - \mathsf{A}) \to \beta) \\ \text{(Premise) qed} \end{array}$$

Bad Schemas

	ProfLecture								
PersNr	Name	Level	Room	Nr	Title	СР			
2125	Sokrates	FP	226	5041	Ethik	4			
2125	Sokrates	FP	226	5049	Mäeutik	2			
2125	Sokrates	FP	226	4052	Logik	4			
			•••	•••	••••				
2132	Popper	AP	52	5259	Der Wiener Kreis	2			
2137	Kant	FP	7	4630	Die 3 Kritiken	4			

• Update-Anomaly

• What happens when Sokrates moves to a different room?

Insert-Anomaly

• What happens if Roscoe is elected as a new professor?

Delete-Anomaly

• What happens if Popper does not teach this semester?

Decomposition of Relations

- Bad relations combine several concepts
 - decompose them so that each concept in one relation
 - $\mathcal{R} \to \mathcal{R}_1, \dots, \mathcal{R}_n$
 - 1. Lossless Decomposition

 $\mathcal{R} = \mathcal{R}_1 \land \mathcal{R}_2 \land \dots \land \mathcal{R}_n$

- 2. Preservation of Dependencies
 - $FD(\mathcal{R}) + = (FD(\mathcal{R}_1) \cup ... \cup FD(\mathcal{R}_n)) +$

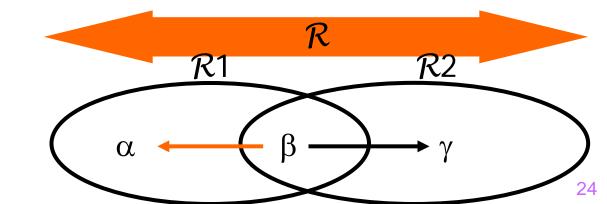
When is a decomposition lossless?

- Let $\mathcal{R} = \mathcal{R} \mathbf{1} \cup \mathcal{R} \mathbf{2}$ • R1 := $\Pi_{\mathcal{R} \mathbf{1}}$ (R)
 - R2 := Π_{R2} (R)

• Lemma: The decomposition is lossless if $(\mathcal{P}_1 \circ \mathcal{P}_2) \rightarrow \mathcal{P}_1$ or

- $(\mathcal{R}1 \cap \mathcal{R}2) \rightarrow \mathcal{R}1$ or • $(\mathcal{R}1 \circ \mathcal{R}2) \rightarrow \mathcal{R}2$
- $\bullet (\mathcal{R}1 \cap \mathcal{R}2) \rightarrow \mathcal{R}2$

• Exercise: Proof of this Lemma.



Example

Drinker							
Pub	Guest	Beer					
Kowalski	Kemper	Pils					
Kowalski	Eickler	Hefeweizen					
Innsteg	Kemper	Hefeweizen					

Lossy Decomposition

•		- Drinker		
	Pub	Guest	Beer	
	Kowalski	Kemper	Pils	
	Kowalski	Eickler	Hefeweizen	
	Innsteg	Kemper	Hefeweizen	
Π	Pub, Guest		П _{Guest} , Beei	
Vis	sitor		Dri	nks
Pub	Guest		Guest	Beer
Kowalski	Kemper		Kemper	Pils
Kowalski	Eickler		Eickler	Hefeweizen
Innsteg	Kemper		Kemper	Hefeweizen

			Drinker			
		Kneipe	Gast	Bier		
	ſ	Kowalski	Kemper	Pils		
		Kowalski	Eickler	Hefeweizen		
		Innsteg	Kemper	Hefeweizen		
Vi.	sito	r		Drii	nks	
Pub		Guest	Π	Guest	Beer	
Kowalski		Kemper		Kemper	Pils	<i>+</i>
Kowalski		Eickler		Eickler	Hefeweizen	
Innsteg		Kemper	A	Kemper	Hefeweizen	
			VisitorA Drir	IKS		
		Pub	Guest	Beer		
		Kowalski	Kemper	Pils		
		Kowalski	Kemper	Hefeweizen		
		Kowalski	Eickler	Hefeweizen		
		Innsteg	Kemper	Pils		
		Innsteg	Kemper	Hefeweizen		27

Comments on the Example

Drinker has one (non-trivial) functional dependency
 {Pub,Guest}→{Beer}

But none of the criteria of the Lemma hold

- {Guest} +> {Beer}
- {Guest} + {Pub}

 The problem is that Kemper likes different beer in different pubs.

Lossless Decomposition

		Parents		
	Father	Mother	Child	
	Johann	Martha	Else	
	Johann	Maria	Theo	
	Heinz	Martha	Cleo	
Π_{F}	ather, Child		П _{Mother} , Child	ł
Fai	ther		Moi	ther
Father	Child		Mother	Child
Johann	Else		Martha	Else
Johann	Theo	1	Maria	Theo
Heinz	Cleo]	Martha	Cleo

Comments on Example

- Parents: {[Father, Mother, Child]}
- Father: {[Father, Child]}
- Mother: {[Mother, Child]}

• Actually, both criteria of the lemma are met:

- {Child} → {Mother}
- {Child} → {Father}

• {Child} is a key of all three relations

• Wrt loss of info, it never hurts to decompose with a key

However, it is never beneficial either. Why?

Preservation of Dependencies

- Let \mathcal{R} be decomposed into $\mathcal{R}1, ..., \mathcal{R}n$ • $F_{\mathcal{R}} = (F_{\mathcal{R}1} \cup ... \cup F_{\mathcal{R}n})$
- ZipCodes: {[Street, City, Canton, Zip]}
- Functional dependencies in ZipCodes
 - $\{Zip\} \rightarrow \{City, Canton\}$
 - {Street, City, Canton} \rightarrow {Zip}
- What about this decomposition?
 - Streets: {[Zip, Street]}
 - Cities: {[Zip, City, Canton]}

• Is it lossless? Does it preserve functional depend.?

Decomposition of ZipCodes

	ZipCodes							
	City	Can	ton	ton Str		Zip	7	
	Buchs	AC	Ĵ	Goet	hestr.	503	3	
	Buchs	AC	Ĵ	Schil	lerstr.	503	4	
	Buchs	SC	3	Goet	hestr.	810	7	
Ι	T _{Zip,Street}			- Gity	,Canton,Zip			
	Streets				Cities			
Zip	Stree	et 👘	C	Sity	Cant	on	Zip	
8107	Goethe	str.	Bu	ichs	AG	, 1	5033	,)
5033	Goethe	str.	Bu	ichs	AG)	5034	•
5034	Schiller	str.	Bu	ichs	SG		8107	1

{Street, City, Canton} → {Zip} not checkable in decomp. schema
It is possible to insert inconsistent tuples

Violation of City,Canton,Street→Zip

	ZipCodes							
	City	Car	nton	St	reet	Zij	D	
	Buchs	A	G	Goe	thestr.	503	33	
	Buchs	А	G	Schi	llerstr.	503	34	
	Buchs	S	G	Goe	thestr.	810)7	
۲ ع				П _{City,Car}				
Zip	Street	t	С	ity	Cant	on	Zip	
8107	Goethes	tr.	Bu	chs	AG		5033	
5033	Goethes	tr.	Bu	chs	AG		5034	
5034	Schillers	tr.	Bu	chs	SG		8107	
8108	Goethes	tr.	Bu	chs	SG		8108	

Violation of City,Canton,Street→Zip

	ZipCodes							
	City Can		ton	on Stre		Zip		
	Buchs		AG		Goethestr.			
	Buchs	A	G	Schille	erstr.	5034		*
	Buchs	S	G	Goeth	estr.	8107		
	Buchs		SG		estr.	8108		
Â								
,	Streets		Cities					
Zip	Stre	et		City	Car	ntion	Zi	p
8107	Goethe	estr.	E	Buchs	A	G	503	33
5033	Goethe	Goethestr.		Buchs A		G	503	34
5034	Schille	Schillerstr.		Buchs	S	G	810)7
8108	Goethe	thestr.		Buchs	S	G	810)8 34

First Normal Form

• Only atomic domains (as in SQL 92)

Parents					
Father	Mother	Children			
Johann	Martha	{Else, Lucie}			
Johann	Maria	{Theo, Josef}			
Heinz	Martha	{Cleo}			

Parents					
Father	Mother	Child			
Johann	Martha	Else			
Johann	Martha	Lucie			
Johann	Maria	Theo			
Johann	Maria	Josef			
Heinz	Martha	Cleo			

VS.

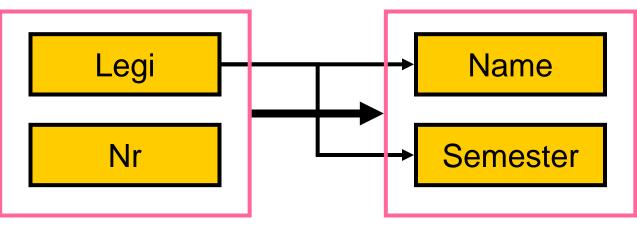
Second Normal Form

R is in 2NF iff every non-key attribute is minimally dependent on every key.

StundentAttends					
Legi	Nr	Name	Semester		
26120	5001	Fichte	10		
27550	5001	Schopenhauer	6		
27550	4052	Schopenhauer	6		
28106	5041	Carnap	3		
28106	5052	Carnap	3		
28106	5216	Carnap	3		
28106	5259	Carnap	3		
		•••			

StudentAttends is not in 2NF!!!
 {Legi} → {Name, Semester}

Second Normal Form



• Insert Anomaly: What about students who attend no lecture?

- Update Anomaly: Promotion of Carnab to the 4th semester.
- Delete Anomaly: Fichte drops his last course?

Solution: Decompose into two relations

- oattends: {[Legi, Nr]}
- Student: {[Legi, Name, Semester]}

 Student, attends are in 2NF. The decomposition is lossless and preserves dependencies.

2NF and ER Modelling

Violation of 2NF

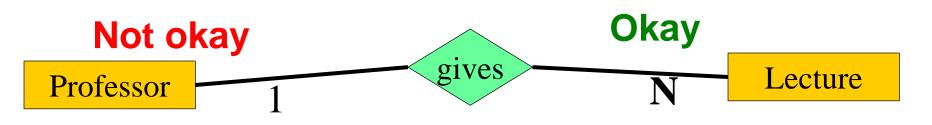
• mixing an entity with an N:M (or 1:N) relationship

• E.g., mixing Student (entity) with attends (N:M)

Solution

- Separate: entity and relationship
- i.e., implement entity and relationship in separate relations

• However, okay to mix entity and 1:1/N:1 relationship

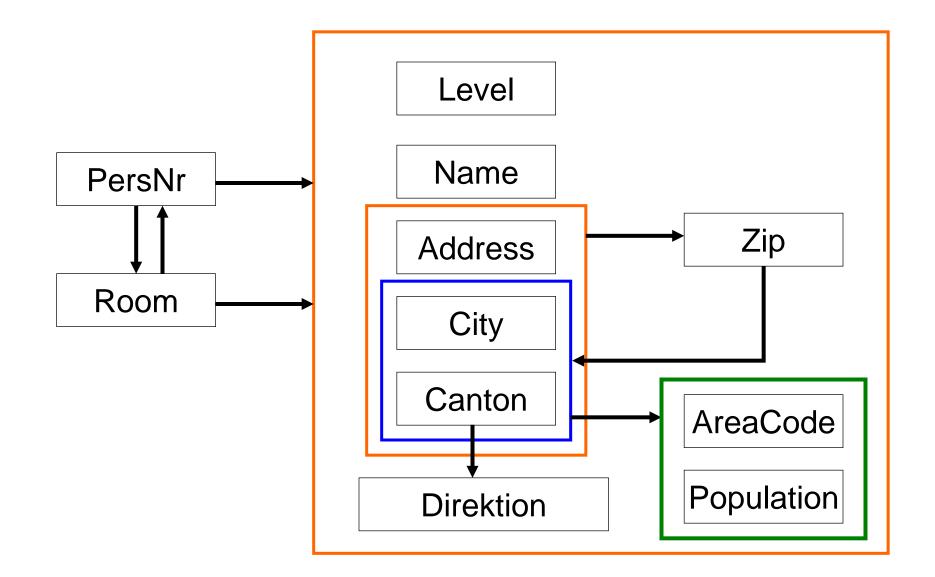


Third Normal Form

• \mathcal{R} is in 3NF iff for all $\alpha \rightarrow B$ in \mathcal{R} at least one condition holds:

- $B \in \alpha$ (i.e., $\alpha \rightarrow B$ is trivial)
- B is an attribute of at least one key
- α is a superkey of ${\cal R}$
- If $\alpha \rightarrow B$ does not fulfill any of these conditions
 - α is a concept in its own right.

Example: 2NF but not 3NF



3NF and ER Modelling

Violation of 3NF

mixing several entities (maybe connected by relationships)

e.g., Professor, City, Canton

Solution

implement each entity in a separate relation

(implement N:M relationships in separate relation)

ER Modelling and Rules of ER -> relational
 Automatically create 3NF

3NF implies 2NF

- Premise: \mathcal{R} is in 3NF
- Claim: \mathcal{R} is in 2NF
- Proof:
 - assume \mathcal{R} is not in 2NF
 - By definition of 2NF: exists $\alpha \rightarrow B$ such that
 - (1) B is not part of any key
 - (2) α ⊆ κ, κ is a key
 - $\alpha \rightarrow B$ is evil
 - it is not trivial (otherwise B would be part of a key)
 - B is not part of any key (1)
 - α is not a superkey (2)
 - \mathcal{R} is not in 3NF. qed

Synthesis Algorithm

- Input: Relation \mathcal{R} , FDs F
- Output: $\mathcal{R}1$, ..., $\mathcal{R}n$ such that
 - $\mathcal{R}1$, ..., $\mathcal{R}n$ is a lossless decomposition of \mathcal{R} .
 - $\mathcal{R}1$, ..., $\mathcal{R}n$ preserves dependencies.
 - All $\mathcal{R}1$, ..., $\mathcal{R}n$ are in 3NF.

Synthesis Algorithm

- 1. Compute the minimal basis Fc of F.
- 2. For all $\alpha \rightarrow \beta \in$ Fc create:
 - $\mathcal{R}\alpha := \alpha \cup \beta$
- 3. If exists $\kappa \subseteq \mathcal{R}$ such that κ is a key of \mathcal{R} create:
 - $\mathcal{R}\kappa := \kappa$
 - (N.B.: \mathcal{R}_{κ} has no non-trivial functional dependencies.)
- 4. Eliminate $\mathcal{R}\alpha$ if exists $\mathcal{R}\alpha$ such that:
 - $\mathcal{R}\alpha \subseteq \mathcal{R}\alpha$ `

Example: Synthesis Algorithm

- Professor: {[PersNr, Name, Level, Room, City, Street, Zip, AreaCode, Canton, Population, Direktion]}
 - 1. {PersNr} \rightarrow {Name, Level, Room, Canton, Street, Canton}
 - 2. {Room} \rightarrow {PersNr}
 - 3. {Street, Canton, City} \rightarrow {Zip}
 - 4. {City, Canton} \rightarrow {Population, AreaCode}
 - 5. {Canton} \rightarrow {Direktion}
 - 6. $\{Zip\} \rightarrow \{Canton, City\}$
- Professor: {[PersNr, Name, Level, Room, City, Street, Canton]}
- ZipCodes: {[Street, Canton, City, Zip]}
- Cities: {[City, Canton, Population, AreaCode]}
- Administration: {[Canton, Direktion]}

Example why Step 3 is needed

StudentAttends(Legi, Nr, Name, Semester)

- Minimum Basis (Step 1)
 {Legi} → {Name, Semester}
- Relation generated from minimum basis (Step 2)
 Student(Legi, Name, Semester)
- Relation generated from Step 3
 attends(Legi, Nr)
- The attends relation is needed!

Corner Case: Step 3

- R(A, B, C, D)
 B -> C, D
 D -> B
 Keys of R
 - A, B
 - A, D

Decomposition into 3NF (Synthesis Algorithm)
R1(B, C, D)
R2(A, B)

- N.B. R3(A,D) is not needed!!!
 Needs to be cleaned up in Step (
 - Needs to be cleaned up in Step 4!

ZipCodes(Street, Canton, City, Zip)

- Is ZipCodes in 3NF?
 - Keys: {Street,Canton,City}, {Zip,Street}
 - All attributes are part of keys. There are no evil FDs!
- Does the decomposition preserve dependencies?
 Yes!
- Is the decomposition lossless?

 - {Street,Canton,City} \rightarrow ZipCodes
 - Oriterion of Lemma is fullfilled!

• Is ZipCode free of redundancy?

Exercises

• Proof for the following lemmas:

- The synthesis algorithm preserves dependencies.
- The synthesis algorithm creates lossless decompositions.
- The synthesis algorithm creates relations in 3NF only.
- The synthesis algorithm creates relations in 2NF only.

Synthesis Algo produces 3NF only

• Let \mathcal{R}_i be a relation created by the Synthesis Algo

- Case 1: \mathcal{R}_i was created in Step 3 of the algo
 - \mathcal{R}_i contains a key of \mathcal{R}
 - there are no non-trivial FDs in \mathcal{R}_i
 - \mathcal{R}_i is in 3NF

• Case 2: \mathcal{R}_i was created in Step 2 by an FD: $\alpha \rightarrow \beta$

- (1) $\mathcal{R}_i := \alpha \cup \beta$
- (2) α is a key of \mathcal{R}_i
 - ${\color{black} \bullet \alpha}$ is minimal because of left reduction of minimal basis
 - ${\color{black} \bullet } \, \alpha \rightarrow \mathcal{R}_i$ by construction of \mathcal{R}_i
- (3) $\alpha \rightarrow \beta$ is not evil because α is a superkey of \mathcal{R}_i

• (4) Let $\gamma \rightarrow \delta$ be any <u>other</u> non-trivial FD ($\gamma \rightarrow \delta \neq \alpha \rightarrow \beta$)

• $\delta \subseteq \alpha$ because of right reduction in minimal basis and because $\alpha \to \gamma$ • δ contains only attributes of a key; $\gamma \to \delta$ is not evil qed ₅₀

Boyce-Codd-Normal Form (BCNF)

- \mathcal{R} is in BCNF iff for all $\alpha \rightarrow B$ in \mathcal{R} at least one condition holds:
 - $B \in \alpha$ (i.e., $\alpha \rightarrow B$ is trivial)
 - α is a superkey of ${\cal R}$
- \mathcal{R} in BCNF implies \mathcal{R} in 3NF
 - Proof trivial from definition

Result

- any schema can be decomposed losslessly into BCNF
- but, preservation of dependencies cannot be guaranteed
- need to trade "correctness" for "efficiency"
- that is why 3NF is so important in practice

ZipCodes(Street, Canton, City, Zip)

// evil

// okay

ZipCodes is not in BCNF

• {Zip} \rightarrow {Canton, City}

● {Street, Canton, City} → {Zip}

Redundancy in ZipCodes

- (Rämistr., Zürich, Zürich, 8006)
- (Universitätsstr., Zürich, Zürich, 8006)
- (Schmid-Str., Zürich, Zürich, 8006)
- stores several times that 8006 belongs to Zürich

Exercise: How would you model ZipCodes in ER?
What would the relational schema look like?

Decomposition Algorithm (BCNF)

- Input: \mathcal{R}
- Output: R1, ..., Rn such that
 - $\mathcal{R}1$, ..., $\mathcal{R}n$ is a lossless decomposition of \mathcal{R} .
 - $\mathcal{R}1$, ..., $\mathcal{R}n$ are in BCNF.
 - (Preservation of dependencies is not guaranteed.)

Decomposition Algorithm

- Input: R
- Output: *R*1, ..., *R*n

```
result = {\mathcal{R}}

while (\exists \ \mathcal{R}i \in Z: \mathcal{R}i \text{ is not in BCNF}))

let \alpha \rightarrow \beta be evil in \mathcal{R}i

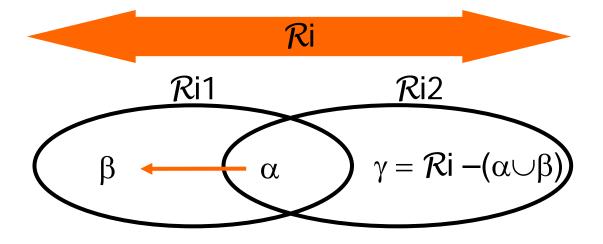
\mathcal{R}i1 = \alpha \cup \beta

\mathcal{R}i2 = \mathcal{R}i - \beta

result = (result - {\mathcal{R}i}) \cup {\mathcal{R}i1} \cup {\mathcal{R}i2}

output(result)
```

Visualization of Decomposition Algo



Decomposition of ZipCodes

ZipCodes: {[Street, City, Canton, Zip]} {Zip} → {City, Canton} // evil

● {Street, City, Canton} → {Zip} // okay

• Applying the decomposition algorithm...

- Street: {[Zip, Street]}
- Cities: {[Zip, City, Canton]}

Assessment

- decomposition is lossless
- decomposition does not preserve dependencies

Cities is not in BCNF

- Cities: {[City, Canton, Direktion, Population]}
- FDs of Cities:
 - {City, Canton} \rightarrow {Population}
 - {Canton} \rightarrow {Direktion}
 - {Direktion} \rightarrow {Canton}

• Keys:

• {City, Canton}

- In which highest NF is Cities?
 - N.B. decomposition algo can also be applied to non 3NF!

Köln	NRW	Rütgers	1mio
Bonn	NRW	Rütgers	200K
Aachen	NRW	Rütgers	200K

Decomposition of Cities

• Cities: {[City, Canton, Direktion, Population]}

- {Canton} → {Direktion} // evil
- {Direktion} → {Canton} // evil
- {City, Canton} → {Population} // okay

• *R*i1:

• Administration: {[Canton, Direktion]}

• *R*i2:

• Cities: {[City, Canton, Population]}

• Is this decomposition lossless? Preserves depend.?

Fourth Normal Form

Skills					
PersNr	Language	Programming			
3002	Greek	С			
3002	Latin	Pascal			
3002	Greek	Pascal			
3002	Latin	С			
3005	German	Ada			

Give FDs, keys. Which highest normal form?
Does "Skills" have redundancy?

• What happens if 3002 learns a new language?

How would you model Skills in ER? How translated?

NFNF

Skills				
PersNr	Language	Programming		
3002	{Greek, Latin}	{C, Pascal}		
3005	{German}	{Ada}		

- This model would work: no redundancy, no anomolies
- But, unfortunately, not implementable in SQL 2
- It is implementable in SQL 3 and XML
 - That is why design theory needs to be adapted to XML

What is wrong with this?

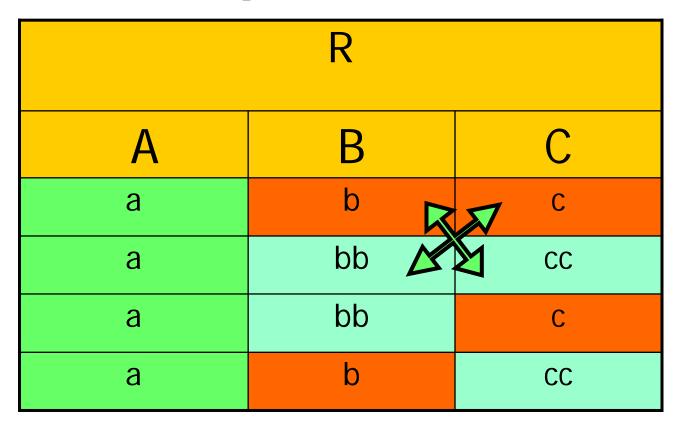
Skills					
PersNr	Language	Programming			
3002	Greek	С			
3002	Latin	Pascal			
3005	German	Ada			

• Who knows Greek and Pascal?

• Anomolies?

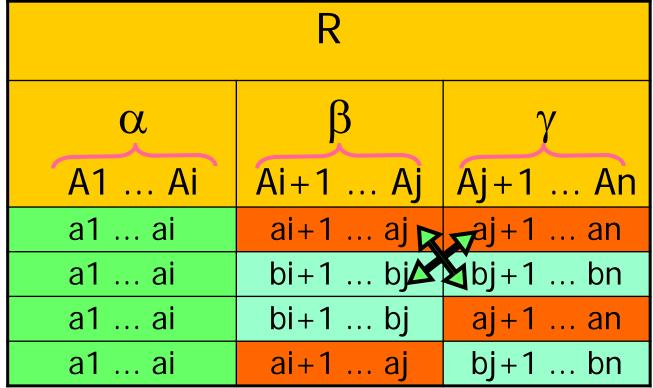
• What happens if 3002 learns a new language?

Multi-value Dependencies



- $\bullet A \rightarrow \rightarrow B$
- A $\rightarrow \rightarrow$ C

Multi-value Dependencies (MVD)



$\begin{array}{lll} \bullet \alpha \xrightarrow{} \beta \text{ iff} \\ \bullet \forall t1, t2 \in \mathbb{R}: t1.\alpha = t2.\alpha \Longrightarrow \exists t3, t4 \in \mathbb{R}: \\ \bullet t3.\alpha = t4.\alpha = t1.\alpha = t2.\alpha \\ \bullet t3.\beta = t1.\beta, & t4.\beta = t2.\beta \\ \bullet t3.\gamma = t2.\gamma, & t4.\gamma = t1.\gamma \end{array}$

MVD: Example

Skills					
PersNr	Language	Programming			
3002	Greek	С			
3002	Latin	Pascal			
3002	Greek	Pascal			
3002	Latin	С			
3005	German	Ada			

MVDs of Skills

- {PersNr} $\rightarrow \rightarrow$ {Language}
- {PersNr} $\rightarrow \rightarrow$ {Programming}
- {Language} {PersNr, Programming} (???)

MVDs can result in anomalies and redundancy

Are MVDs symmetric?

• NO!

• NOT {Language} $\rightarrow \rightarrow$ {PersNr}

Skills					
PersNr	Language	Programming			
3002	Greek	С			
3002	Latin	Pascal			
3002	Greek	Pascal			
3002	Latin	С			
3005	German	Ada			
3007	Greek	XQuery			

• Exercise: Find examples for symmetric MVDs!

MVD: Example

		Skills					
PersNr		Lang	Language		rogramming		
	3002	Gre	ek		С		
	3002	Lat	tin		Pascal		
	3002	Gre	ek		Pascal		
3002		Lat	tin	С			
3005		Gerr	German		Ada		
IPersNr, Language							
Lang	uage		Р	roc	gramming		
PersNr	Language		Pers	٧r	Programmi	ng	
3002	Greek		3002	2	С		
3002	Latin		3002	2	Pascal		
3005	German		3005	5	Ada	66	

MVD: Example

		Skills				
	PersN	PersNr Language		Programming		
	3002	Gre	ek	С	1	
	3002	Lat	tin	Pascal		
	3002	Gre	ek	Pascal		
	3002		tin	С		
3005		Gerr	nan	Ada		
		J¢	in			
Lang	uage		Pr	ogramming		
PersNr	Language		PersN	r Programmi	ng	
3002	Greek]	3002	С		
3002	Latin		3002	Pascal		
3005	German]	3005	Ada	67	

Example: Drinkers

odrinkers: {[name, addr, phones, beersLiked]}

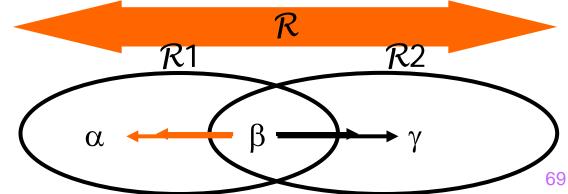
- some people have several phones
- some people like several kind of beers
- FDs and MVDs
 - name \rightarrow addr
 - name $\rightarrow \rightarrow$ phones
 - name $\rightarrow \rightarrow$ beersLiked

Again, MVDs indicate redundancy

- ophones and beersLiked are independent concepts
- (Would work if you could store them as sets: NFNF.)

Lossless Decompositions with MVDs

- Let $\mathcal{R} = \mathcal{R} \mathbf{1} \cup \mathcal{R} \mathbf{2}$
 - R1 := Π_{R1} (R) • R2 := Π_{R2} (R)
- Lemma: The decomposition is lossless iff
 (R1 ∩ R2) → R1 or
 (R1 ∩ R2) → R2
- Exercise: Proof of this Lemma. Which direction is easier?



Laws of MVDs

• Trivial MVDs: $\alpha \rightarrow \rightarrow \mathcal{R}$ • Check criterion of MVDs ($\beta = \mathcal{R}, \gamma = \emptyset$) • \forall t1, t2 \in R: t1. α = t2. α \Rightarrow \exists t3, t4 \in R: • $t_{3,\alpha} = t_{4,\alpha} = t_{1,\alpha} = t_{2,\alpha}$ • $t3.\beta = t1.\beta$, $t4.\beta = t2.\beta$ • $t3.\gamma = t2.\gamma$, $t4.\gamma = t1.\gamma$ • let t1, t2 \in R: t1. α = t2. α • set t3=t1, t4=t2 • $t3.\alpha = t4.\alpha = t1.\alpha = t2.\alpha$ (by def. of t3, t4) (by def. of t3) • $t3.\beta = t1.\beta$ (by def. of t4) • $t4.\beta = t2.\beta$ $(\gamma = \emptyset)$ • $t3.\gamma = t2.\gamma$ $(\gamma = \emptyset)$ qed • $t4.\gamma = t1.\gamma$

• Adapt proof for: $\alpha \rightarrow \rightarrow \mathcal{R} - \alpha$

Laws of MVDs

• Promotion: $\alpha \rightarrow \beta \Rightarrow \alpha \rightarrow \beta$

• let t1, t2
$$\in$$
 R: t1. α = t2. α
• (1) t1. β = t2. β ($\alpha \rightarrow \beta$)

• set
$$t3=t2$$
, $t4=t1$
• $t3.\alpha = t4.\alpha = t1.\alpha = t2.\alpha$ (by def. of $t3$, $t4$)
• $t3.\beta = t1.\beta$ (1)
• $t4.\beta = t2.\beta$ (1)
• $t3.\gamma = t2.\gamma$ (by def. of $t3$)
• $t4.\gamma = t1.\gamma$ (by def. of $t4$) qed

• $\alpha \rightarrow \beta \Rightarrow \alpha \rightarrow \beta$ does not always hold! • e.g., PersNr $\rightarrow \rightarrow$ Language, but PersNr $\rightarrow \rightarrow$ Language

Laws of MVDs

• Reflexivity: $(\beta \subseteq \alpha) \Rightarrow \alpha \rightarrow \beta$

- Augmentation: $\alpha \rightarrow \beta \Rightarrow \alpha \gamma \rightarrow \beta \gamma$
- Transitivity: $\alpha \rightarrow \beta \land \beta \rightarrow \gamma \Rightarrow \alpha \rightarrow \gamma$
- Complement: $\alpha \rightarrow \rightarrow \beta \Rightarrow \alpha \rightarrow \rightarrow \mathcal{R}-\beta \alpha$
- Multi-value Augmentation: $\alpha \rightarrow \beta \land (\delta \subseteq \gamma) \Rightarrow \alpha \gamma \rightarrow \beta \delta$
- Multi-value Transitivity: $\alpha \rightarrow \beta \land \beta \rightarrow \gamma \Rightarrow \alpha \rightarrow \gamma$

• Generalization (Promotion): $\alpha \rightarrow \beta \Rightarrow \alpha \rightarrow \beta$

Laws of MVDs (ctd.)

• Coalesce: $\alpha \rightarrow \beta \land (\gamma \subseteq \beta) \land (\delta \cap \beta = \emptyset) \land \delta \rightarrow \gamma \Rightarrow \alpha \rightarrow \gamma$

• Multi-value Union: $\alpha \rightarrow \beta \land \alpha \rightarrow \gamma \Rightarrow \alpha \rightarrow \beta \gamma$

• Intersection: $\alpha \rightarrow \beta \land \alpha \rightarrow \gamma \Rightarrow \alpha \rightarrow \gamma (\beta \cap \gamma)$

• Minus: $\alpha \rightarrow \beta \land \alpha \rightarrow \gamma \Rightarrow \alpha \rightarrow (\beta - \gamma) \land \alpha \rightarrow (\gamma - \beta)$

• Warning: **NOT** $(\alpha \rightarrow \beta \gamma \Rightarrow \alpha \rightarrow \beta \land \alpha \rightarrow \gamma)$

• Not all rules of FDs apply to MVDs!

Exercise: find an example for which this law does not hold

WARNING

- **NOT** $(\alpha \rightarrow \beta \gamma \Rightarrow \alpha \rightarrow \beta \land \alpha \rightarrow \gamma)$
 - Not all rules of FDs apply to MVDs!
 - E.g., {Language} $\rightarrow \rightarrow$ {PersNr, Programming}
 - But, NOT {Language} $\rightarrow \rightarrow$ {PersNr}
 - And NOT {Language} $\rightarrow \rightarrow$ {Programming}

Be careful with MVDs

Not a totally intuitive concept

Trivial MVDs

- $\alpha \rightarrow \beta \beta$ is trivial iff • $\beta \subseteq \alpha$ or
 - $\bullet \beta = \mathcal{R} \alpha$

• Proof: a trivial MVD holds for any relation.

Fourth Normal Form (4NF)

- \mathcal{R} is in 4NF iff for all $\alpha \rightarrow \rightarrow \beta$ at least one condition holds:
 - $\alpha \rightarrow \rightarrow \beta$ is trivial
 - α is a superkey of $\mathcal R$
- *R* in 4NF implies *R* in BCNF
 Proof is based on α → β ⇒ α → → β.
 (Can you prove that?)

Decomposition Algorithm for 4NF

- Input: R
- Output: *R*1, ..., *R*n

```
result = {\mathcal{R}}

while (\exists \ \mathcal{R}i \in Z: \mathcal{R}i \text{ is not in 4NF}))

let \alpha \rightarrow \beta be evil in \mathcal{R}i

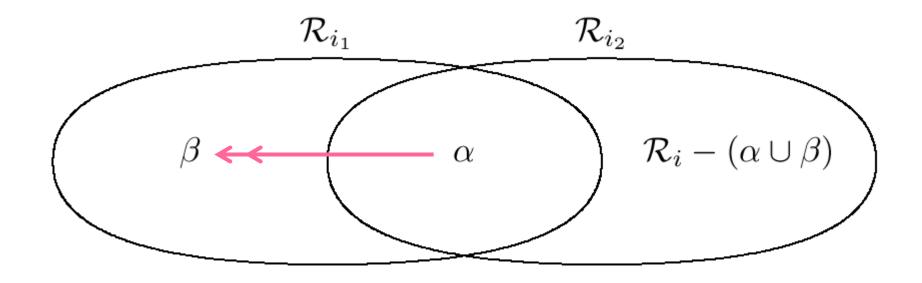
\mathcal{R}i1 = \alpha \cup \beta

\mathcal{R}i2 = \mathcal{R}i - \beta

result = (result - {\mathcal{R}i}) \cup {\mathcal{R}i1} \cup {\mathcal{R}i2}

output(result)
```

Decomposition into 4 NF



Example

Assistant: {[PersNr, Name, Area, Boss, Language, Progr.]}

Synthesis Algorithm (3NF)

• Assistant: {[PersNr, Name, Area, Boss]}

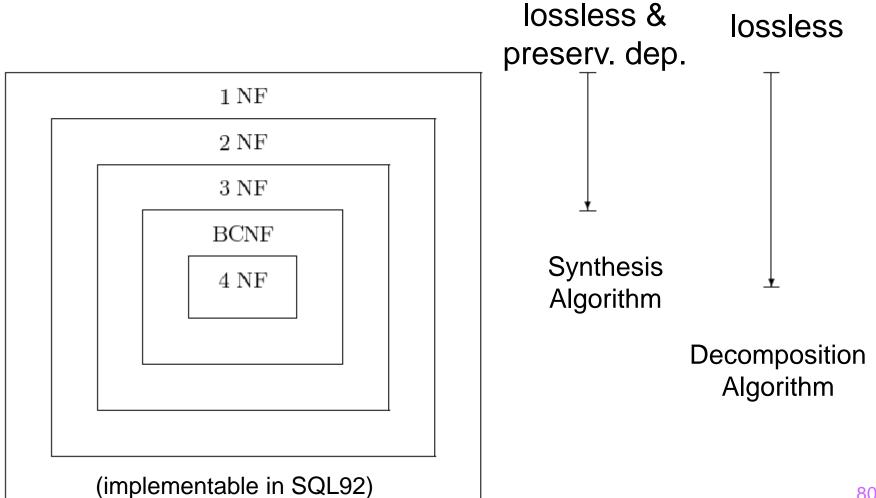
Skills: {[PersNr, Language, Programming]}

Decomposition Algorithm (4NF)

- Assistant: {[PersNr, Name, Area, Boss]}
- Languages: {[PersNr, Language]}
- Programming: {[PersNr, Programming]}

Summary

 Lossless decomposition up to 4NF Preserving dependencies up to 3NF



Exercise

Family Tree						
Child	Father	Mother	Grandpa Grandma			
Sofie	Alfons	Sabine	Lothar	Linde		
Sofie	Alfons	Sabine	Hubert	Lisa		
Niklas	Alfons	Sabine	Lothar	Linde		
Niklas	Alfons	Sabine	Hubert	Lisa		
Tobias	Leo	Bertha	Hubert	Martha		

- Find FDs, MVDs, keys
- Decompose into 3NF, BCNF, 4NF

Exercise: 1:N & N:M Relationships

