
Relational Design Theory 
Assess the quality of a schema 
redundancy 
integrity constraints 
Quality seal: normal forms (1-4, BCNF) 

 
Improve the quality of a schema 
synthesis algorithm 
decomposition algorithm 

 
Construct a (high-quality) schema 
start with universal relation 
apply synthesis or decomposition algorithms 
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What is wrong with redundancy? 
Waste of storage space 
importance is diminishing as storage gets cheaper 
(disk density will even increase in the future) 

 
Additional work to keep multiple copies of data consistent 
multiple updates in order to accomodate one event 

 
Additional code to keep multiple copies of data consistent 
Somebody needs to implement the logic 
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Bad Schemas 

Update-Anomaly 
What happens when Sokrates moves to a different room? 

 Insert-Anomaly 
What happens if Roscoe is elected as a new professor? 

Delete-Anomaly 
What happens if Popper does not teach this semester? 

ProfLecture 
PersNr Name Level Room Nr Title CP 
2125 Sokrates FP 226 5041 Ethik 4 
2125 Sokrates FP 226 5049 Mäeutik 2 
2125 Sokrates  FP 226 4052 Logik 4 

... ... ... ... ... ... ... 
2132 Popper AP 52 5259 Der Wiener Kreis 2 
2137 Kant FP 7 4630 Die 3 Kritiken 4 
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Multi-version Databases 
Storage becomes cheaper -> never throw anything away 
It is more expensive to think about what to keep than 

simply to keep everything. 
 

Consequence 1:  No delete 
Instead, set a status flag to „deleted“ 
No delete anomalies  (only wasted storage) 

Consequence 2: No update in place 
Instead, create a new version of the tuple 
No update anomalies (only wasted storage) 

 Insert anomalies still exist, but not a big problem 
Result in multiple NULL values, but no inconsistencies 

 
NoSQL Movement:  Denormalized data  (XML is great!) 
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Functional Dependencies 
Schema: R = {A:DA, B:DB, C:DC, D:DD} 
 Instance:  R 

 
Let α ⊆ R,  β ⊆ R 
α → β iff ∀r, s ∈ R: r.α = s.α ⇒ r.β = s.β 
 (There is a function f: X Dα → X Dβ ) 

 

R 
A B C D 
a4 b2 c4 d3 
a1 b1 c1 d1 
a1 b1 c1 d2 
a2 b2 c3 d2 
a3 b2 c4 d3 

{A}  {B} 
{C, D }  {B} 
Not: {B}  {C} 
Convention: 

CD  B 5 



Example 

 

Family Tree 
Child Father Mother Grandma Grandpa 
Sofie Alfons Sabine Lothar Linde 
Sofie Alfons Sabine Hubert Lisa 
Niklas Alfons Sabine Lothar Linde 
Niklas Alfons Sabine Hubert Lisa 

... ... ... Lothar Martha 
… … … … … 
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Example 
Family Tree 

Child Father Mother Grandma Grandpa 
Sofie Alfons Sabine Lothar Linde 
Sofie Alfons Sabine Hubert Lisa 
Niklas Alfons Sabine Lothar Linde 
Niklas Alfons Sabine Hubert Lisa 

... ... ... Lothar Martha 
… … … … … 

Child Father,Mother 
Child, Grandpa  Grandma 
Child, Grandma  Grandpa 
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Analogy to functions 
 f1 : Child  Father 
E.g., f1(Niklas) = Alfons 

 
 f2:  Child  Mother 
E.g., f2(Niklas) = Sabine 

 
 f3:  Child x Grandpa  Grandma 

 
FD: Child  Father, Mother 
represents two functions (f1, f2)  
Komma on right side indicates multiple functions 

 
FD: Child, Grandpa  Grandma 
Komma on the left side indicates Cartesian product  8 



Keys 
α ⊆ R is a superkey iff 
α → R 

 
α →β is minimal iff 
∀A ∈ α: ¬((α − {Α}) → β) 

 
Notation for minimal functional dependencies: α →. β  

 
α ⊆ R is a key (or candidate key) iff 
α →. R 
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Determining Keys 

Keys of Town 
{Name, Canton} 
{Name, AreaCode} 
 

N.B. Two small towns may have the same area code. 

Town 
Name Canton AreaCode Population 
Buchs AG 081 6500 
Buchs SG 071 8000 
Zurich ZH 044 300000 

Lausanne VD 021 60000 
... ... ... ... 
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Determining Functional Dependencies 
Professor: {[PersNr, Name, Level, Room, City, Address, Zip, 

AreaCode, Canton, Population, Direktion]} 
{PersNr}  {PersNr, Name, Level, Room, City, Address, Zip, 

AreaCode, Canton, Population, Direktion} 
{City, Canton}  {Population, AreaCode} 
{Zip}  {Canton, City, Population} 
{Canton, City, Address}  {Zip} 
{Canton}  {Direktion} 
{Room}  {PersNr} 

Additional functional dependencies (inferred): 
{Room}  {PersNr, Name, Level, Room, City, Address, Zip, 

AreaCode, Canton, Population, Direktion} 
{Zip}  {Direktion} 
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Visualization of Funct. Dependencies 

Direktion 

Level 

Name 

Address 

City 

Canton 

PersNr 

Room 

AreaCode 

Zip 

Population 
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Armstrong Axioms: Inference of FDs 
Reflexivity 
(β ⊆ α) ⇒ α → β  
Special case: α → α  

 
Augmentation 
α → β ⇒ αγ → βγ.  
(Notation αγ := α ∪ γ)  

 
Transitivity 
α → β ∧ β → γ ⇒ α → γ. 

 
These three axioms are complete. All possible other 

rules can be implied from these axioms. 
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Other rules 
Union of FDs:  
α → β ∧ α → γ ⇒  α → βγ 

 

Decomposition:  
α → βγ  ⇒ α → β ∧ α → γ 

 

Pseudo transitivity:  
α → β ∧ γβ → δ ⇒ αγ → δ 
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Correctness of Union rule  
 Premise: α → β and α → γ  
 Claim: α → βγ 
 Proof: 

1. α → β  (Premise) 
2. αγ → βγ (Augmentation) 
3. α → γ  (Premise) 
4. α → αγ (Augmentation) 
5. α → βγ (Transitivity of (4) and (2)) qed 

 

15 



Closure of Attributes 
 Input:  
F: a set of FDs 
α: a set of attributes 

Output: α+ such that α  α+  
 

Closure(F, α) 
 result := α     // Reflexivity 
 while  (result has changed) do 
  foreach FD: β → γ in F do // Transitivity 
   if  β ⊆ result then result := result ∪  γ 
 output(result) 

 
Exercise: Proof that Closure is deterministic and terminates. 
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Example:  Closure of ZIP (Slide 8)  
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Minimal Basis 
Fc is a minimal basis of F iff: 
 
1. Fc ≡ F 
 The closure of all attribute set is the same in Fc and F 

 
2. All functional dependencies in Fc are minimal: 
 ∀A ∈ α: (Fc - (α → β) ∪ ((α − {Α}) → β)) ≡ Fc 
 ∀B ∈ β: (Fc - (α → β) ∪ (α → (β − {Β}))) ≡ Fc 

 
3. In Fc, there are no two functional dependencies with 

the same left side.   
 Can be achieved by applying the Union rule. 
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Computing the Minimum Basis 
1. Reduction of left sides of FDs. Let α → β ∈ F, A ∈ α: 

if β ⊆  Closure(F, α – A) 
then replace α → β with (α - A) → β in F 
 

2. Reduction of right sides of FDs. Let α → β ∈ F, B ∈ β: 
if B ∈ Closure(F – (α → β) ∪ (α → (β − Β)), α ) 

 then replace α  β with α → (β–B) in F 
 
1. Remove FDs: α →  ∅  (clean-up of Step 2) 

 
2. Apply Union rule to FDs with the same left side.  
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Determining Functional Dependencies 
Professor: {[PersNr, Name, Level, Room, City, Address, Zip, 

AreaCode, Canton, Population, Direktion]} 
{PersNr}  {PersNr, Name, Level, Room, City, Address, Zip, 

AreaCode, Canton, Population, Direktion} 
{City, Canton}  {Population, AreaCode} 
{Zip}  {Canton, City, Population} 
{Canton, City, Address}  {Zip} 
{Canton}  {Direktion} 
{Room}  {PersNr} 

Additional functional dependencies (inferred): 
{Room}  {PersNr, Name, Level, Room, City, Address, Zip, 

AreaCode, Canton, Population, Direktion} 
{Zip}  {Direktion} 
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Correctness of the Algorithm 
(Left Reduction) 

 
Premise: β ⊆  Closure(F, α - A) 

 
Claim:   Closure(F-{α → β}∪{ (α - A) → β } , α - A) ⊆  Closure(F, α - A) 

 
Proof:   

 
let γ ∈ Closure(F-{α → β}∪{ (α - A) → β } , α - A) 
   γ ∈ Closure(F, α - A ∪  β)      (Apply FD (α - A) → β ) 
  γ ∈ Closure(F, α - A)       (Premise)  qed 
 
   

21 



Bad Schemas 

Update-Anomaly 
What happens when Sokrates moves to a different room? 

 Insert-Anomaly 
What happens if Roscoe is elected as a new professor? 

Delete-Anomaly 
What happens if Popper does not teach this semester? 

ProfLecture 
PersNr Name Level Room Nr Title CP 
2125 Sokrates FP 226 5041 Ethik 4 
2125 Sokrates FP 226 5049 Mäeutik 2 
2125 Sokrates  FP 226 4052 Logik 4 

... ... ... ... ... ... ... 
2132 Popper AP 52 5259 Der Wiener Kreis 2 
2137 Kant FP 7 4630 Die 3 Kritiken 4 
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Decomposition of Relations 
 Bad relations combine several concepts 
 decompose them so that each concept in one relation 
 R → R1, .., Rn  
 
1. Lossless Decomposition 

 
R = R1 A R2 A  ... A  Rn  
 

2. Preservation of Dependencies 
 
 FD(R)+ = (FD(R1) ∪ ... ∪ FD(Rn))+ 
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When is a decomposition lossless? 
Let R = R1 ∪ R2 
R1 := ΠR1 (R) 
R2 := ΠR2 (R) 

 
 

Lemma: The decomposition is lossless if 
(R1 ∩ R2)  R1 or 
(R1 ∩ R2)  R2 

 

Exercise: Proof of this Lemma. 
 

R 
R1 

 
α                  β  

  
  

    R2 
 

        γ 
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Example 

Drinker 
Pub Guest Beer 

Kowalski Kemper Pils 

Kowalski Eickler Hefeweizen 

Innsteg Kemper Hefeweizen 
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Lossy Decomposition 
Drinker 

Pub Guest Beer 
Kowalski Kemper Pils 
Kowalski Eickler Hefeweizen 
Innsteg Kemper Hefeweizen 

Visitor 
Pub Guest 

Kowalski Kemper 
Kowalski Eickler 
Innsteg Kemper 

Drinks 
Guest Beer 

Kemper Pils 
Eickler Hefeweizen 
Kemper Hefeweizen 

ΠGuest, Beer ΠPub, Guest 
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Drinker 
Kneipe Gast Bier 

Kowalski Kemper Pils 
Kowalski Eickler Hefeweizen 
Innsteg Kemper Hefeweizen 

Visitor 
Pub Guest 

Kowalski Kemper 
Kowalski Eickler 
Innsteg Kemper 

Drinks 
Guest Beer 

Kemper Pils 
Eickler Hefeweizen 
Kemper Hefeweizen 

Π.... 

VisitorA Drinks 
Pub Guest Beer 

Kowalski Kemper Pils 
Kowalski Kemper Hefeweizen 
Kowalski Eickler Hefeweizen 
Innsteg Kemper Pils 
Innsteg Kemper Hefeweizen 

A 
≠ 
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Comments on the Example 
Drinker has one (non-trivial) functional dependency 
{Pub,Guest}{Beer} 
 

But none of the criteria of the Lemma hold 
{Guest}{Beer} 
{Guest}{Pub} 

 
The problem is that Kemper likes different beer in 

different pubs. 
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Lossless Decomposition 
Parents 

Father Mother Child 
Johann Martha Else 
Johann Maria Theo 
Heinz Martha Cleo 

Father 
Father Child 
Johann Else 
Johann Theo 
Heinz Cleo 

Mother 
Mother Child 
Martha Else 
Maria Theo 

Martha Cleo 

ΠMother, Child ΠFather, Child 
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Comments on Example 
Parents: {[Father, Mother, Child]} 
Father: {[Father, Child]} 
Mother: {[Mother, Child]} 

 
Actually, both criteria of the lemma are met:  
{Child}{Mother} 
{Child}{Father} 

 
{Child} is a key of all three relations 
Wrt loss of info, it never hurts to decompose with a key 
However, it is never beneficial either.  Why? 
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Preservation of Dependencies 
 Let R be decomposed into R1, ..., Rn  
FR = (FR1 ∪ ... ∪ FRn) 

 
ZipCodes: {[Street, City, Canton, Zip]} 

 
Functional dependencies in ZipCodes 
{Zip}  {City, Canton} 
{Street, City, Canton}  {Zip} 

 
What about this decomposition? 
Streets: {[Zip, Street]} 
Cities: {[Zip, City, Canton]} 

 
Is it lossless?  Does it preserve functional depend.? 

31 



Decomposition of ZipCodes 
ZipCodes 

City Canton Street Zip 
Buchs AG Goethestr. 5033 
Buchs AG Schillerstr. 5034 
Buchs SG Goethestr. 8107 

Streets 
Zip Street 
8107 Goethestr. 
5033 Goethestr. 
5034 Schillerstr. 

Cities 
City Canton Zip 

Buchs AG 5033 
Buchs AG 5034 
Buchs SG 8107 

ΠCity,Canton,Zip ΠZip,Street 

{Street, City, Canton}  {Zip} not checkable in decomp. schema 
 It is possible to insert inconsistent tuples 32 



Violation of City,Canton,StreetZip 
ZipCodes 

City Canton Street Zip 
Buchs AG Goethestr. 5033 
Buchs AG Schillerstr. 5034 
Buchs SG Goethestr. 8107 

Streets 
Zip Street 
8107 Goethestr. 
5033 Goethestr. 
5034 Schillerstr. 
8108 Goethestr. 

Cities 
City Canton Zip 

Buchs AG 5033 
Buchs AG 5034 
Buchs SG 8107 
Buchs SG 8108 

ΠCity,Canton,Zip 
ΠZip,Street 
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Violation of City,Canton,StreetZip 
ZipCodes 

City Canton Street Zip 
Buchs AG Goethestr. 5033 
Buchs AG Schillerstr. 5034 
Buchs SG Goethestr. 8107 
Buchs SG Goethestr. 8108 

Streets 
Zip Street 
8107 Goethestr. 
5033 Goethestr. 
5034 Schillerstr. 
8108 Goethestr. 

Cities 
City Cantion Zip 

Buchs AG 5033 
Buchs AG 5034 
Buchs SG 8107 
Buchs SG 8108 

A 
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First Normal Form 
 Only atomic domains (as in SQL 92) 

 
 
 
 
 
 

 vs. 

Parents 
Father Mother Children 
Johann Martha {Else, Lucie} 
Johann Maria {Theo, Josef} 
Heinz Martha {Cleo} 

Parents 
Father Mother Child 
Johann Martha Else 
Johann Martha Lucie 
Johann Maria Theo 
Johann Maria Josef 
Heinz Martha Cleo 
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Second Normal Form 
 R is in 2NF iff every non-key attribute is minimally 

dependent on every key.  
 
 
 
 
 
 
 
 
 
 
 
 
StudentAttends is not in 2NF!!!  
{Legi}  {Name, Semester} 

StundentAttends 
Legi Nr Name Semester 
26120 5001 Fichte 10 
27550 5001 Schopenhauer 6 

27550 4052 Schopenhauer 6 

28106 5041 Carnap 3 
28106 5052 Carnap 3 
28106 5216 Carnap 3 
28106 5259 Carnap 3 

... ... ... ... 
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Second Normal Form 
 

 
 Insert Anomaly: What about students who attend no lecture? 
Update Anomaly: Promotion of Carnab to the 4th semester. 
Delete Anomaly: Fichte drops his last course? 

 
Solution: Decompose into two relations 
attends: {[Legi, Nr]} 
Student: {[Legi, Name, Semester]} 

 
Student, attends are in 2NF. The decompostion is lossless and 

preserves dependencies.  

Legi 

Nr 

Name 

Semester 
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2NF and ER Modelling 
Violation of 2NF 
mixing an entity with an N:M (or 1:N) relationship 
E.g., mixing Student (entity) with attends (N:M) 

 
Solution 
Separate: entity and relationship 
i.e., implement entity and relationship in separate relations   

 
However, okay to mix entity and 1:1/N:1 relationship 

Professor Lecture gives 
1 N 

Not okay Okay 
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Third Normal Form 
R is in 3NF iff for all α → Β in R at least one condition holds: 
B ∈ α  (i.e., α → Β is trivial) 
Β is an attribute of at least one key 

α is a superkey of R 
 

  If α → Β does not fulfill any of these conditions 
α is a concept in its own right. 
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Example: 2NF but not 3NF 

Direktion 

Level 

Name 

Address 

City 

Canton 

PersNr 

Room 

AreaCode 

Zip 

Population 
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3NF and ER Modelling 
Violation of 3NF 
mixing several entities (maybe connected by relationships) 
e.g., Professor, City, Canton 

 
Solution 
implement each entity in a separate relation 
(implement N:M relationships in separate relation) 

 
ER Modelling and Rules of ER -> relational 
Automatically create 3NF 

 
 Professor City lives 1 N 

Canton 
1 

belongs 
N 

Okay Okay Not okay 
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3NF implies 2NF 
Premise:  R is in 3NF 
Claim:  R is in 2NF 
Proof: 
assume R is not in 2NF 
By definition of 2NF: exists α → Β such that 
(1) B is not part of any key 
(2) α ⊆ κ, κ is a key 

α → Β is evil 
it is not trivial (otherwise B would be part of a key) 
B is not part of any key (1) 
α is not a superkey (2) 

R is not in 3NF. qed 

42 



Synthesis Algorithm 
 Input:  Relation R, FDs F 

 
Output: R1, ..., Rn such that 

 
R1, ..., Rn is a lossless decomposition of R. 

 
R1, ..., Rn preserves dependencies.  

 
All R1, ..., Rn are in 3NF.  
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Synthesis Algorithm 

1. Compute the minimal basis Fc of F.  
 

2. For all α → β ∈ Fc create: 
 Rα := α ∪ β 

 
3. If exists κ ⊆ R such that κ is a key of R create: 
 Rκ := κ 
 (N.B.: Rκ has no non-trivial functional dependencies.) 

 
4. Eliminate Rα  if exists Rα` such that: 
 Rα ⊆ Rα` 
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Example: Synthesis Algorithm 
 Professor: {[PersNr, Name, Level, Room, City, Street, Zip, 

AreaCode, Canton, Population, Direktion]} 
1. {PersNr}  {Name, Level, Room, Canton, Street, Canton} 
2. {Room}  {PersNr} 
3. {Street, Canton, City}  {Zip} 
4. {City, Canton}  {Population, AreaCode} 
5. {Canton}  {Direktion}  
6. {Zip}  {Canton, City} 

 
 Professor: {[PersNr, Name, Level, Room, City, Street, Canton]} 
 ZipCodes: {[Street, Canton, City, Zip]} 
 Cities: {[City, Canton, Population, AreaCode]} 
 Administration: {[Canton, Direktion]} 
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Example why Step 3 is needed 
StudentAttends(Legi, Nr, Name, Semester) 

 
Minimum Basis (Step 1) 
{Legi}  {Name, Semester} 

 
Relation generated from minimum basis (Step 2) 
Student(Legi, Name, Semester) 

 
Relation generated from Step 3   
attends(Legi, Nr) 

 
The attends relation is needed! 
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Corner Case: Step 3 
R(A, B, C, D)  
B -> C, D 
D -> B 

Keys of R 
A, B 
A, D 

 
Decomposition into 3NF (Synthesis Algorithm) 
R1(B, C, D) 
R2(A, B) 

 
N.B. R3(A,D) is not needed!!! 
Needs to be cleaned up in Step 4! 
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ZipCodes(Street, Canton, City, Zip) 
Is ZipCodes in 3NF? 
Keys: {Street,Canton,City}, {Zip,Street} 
All attributes are part of keys.  There are no evil FDs! 

 
Does the decomposition preserve dependencies? 
Yes! 

 
Is the decomposition lossless? 
Professor ∩ ZipCodes = {Street,Canton,City} 
{Street,Canton,City} → ZipCodes 
Criterion of Lemma is fullfilled! 

 
Is ZipCode free of redundancy? 
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Exercises 
Proof for the following lemmas:   
The synthesis algorithm preserves dependencies. 
The synthesis algorithm creates lossless decompositions. 
The synthesis algorithm creates relations in 3NF only. 
The synthesis algorithm creates relations in 2NF only. 

49 



Synthesis Algo produces 3NF only 
Let Ri be a relation created by the Synthesis Algo 
Case 1:  Ri was created in Step 3 of the algo 
Ri contains a key of R 
there are no non-trivial FDs in Ri  
Ri is in 3NF    

Case 2: Ri was created in Step 2 by an FD: α → β  
(1) Ri := α ∪ β 
(2) α is a key of Ri 
α is minimal because of left reduction of minimal basis 
α → Ri  by construction of Ri 

(3) α → β is not evil because α is a superkey of Ri 
(4) Let γ → δ be any other non-trivial FD (γ → δ = α → β)  
δ ⊆ α because of right reduction in minimal basis and because α → γ  
δ contains only attributes of a key; γ → δ  is not evil   qed 
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Boyce-Codd-Normal Form (BCNF ) 
R is in BCNF iff for all α → Β in R at least one condition holds: 
B ∈ α  (i.e., α → Β is trivial) 
α is a superkey of R 

 
R in BCNF implies R in 3NF 
Proof trivial from definition 

 
Result 
any schema can be decomposed losslessly into BCNF 
but, preservation of dependencies cannot be guaranteed 
need to trade „correctness“ for „efficiency“ 
that is why 3NF is so important in practice 
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ZipCodes(Street, Canton, City, Zip) 
ZipCodes is not in BCNF 
{Zip}  {Canton, City}                 // evil 
{Street, Canton, City}  {Zip}       // okay 

 
Redundancy in ZipCodes 
(Rämistr., Zürich, Zürich, 8006) 
(Universitätsstr., Zürich, Zürich, 8006) 
(Schmid-Str., Zürich, Zürich, 8006) 
stores several times that 8006 belongs to Zürich 

 
Exercise: How would you model ZipCodes in ER?  
What would the relational schema look like? 
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Decomposition Algorithm (BCNF) 
 Input: R  
Output: R1, ..., Rn such that 
 
R1, ..., Rn is a lossless decomposition of R. 

 
R1, ..., Rn are in BCNF.  

 
(Preservation of dependencies is not guaranteed.) 
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Decomposition Algorithm 
 Input: R  
Output: R1, ..., Rn 

 
result = {R} 
while (∃ Ri ∈ Z: Ri is not in BCNF)) 

let α → β be evil in Ri  
Ri1 = α ∪ β   
Ri2 = Ri - β  
result = (result – {Ri}) ∪ {Ri1} ∪ {Ri2} 

output(result) 
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Visualization of Decomposition Algo 

Ri 
Ri1 

 
β                  α  

  
  

    Ri2 
 

                  γ = Ri –(α∪β) 
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Decomposition of ZipCodes 
ZipCodes: {[Street, City, Canton, Zip]} 
{Zip}  {City, Canton}  // evil 
{Street, City, Canton}  {Zip} // okay 

 
Applying the decomposition algorithm... 
Street: {[Zip, Street]} 
Cities: {[Zip, City, Canton]} 

 
Assessment 
decomposition is lossless 
decomposition does not preserve dependencies 
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Cities is not in BCNF 
Cities: {[City, Canton, Direktion, Population]} 
FDs of Cities:  
{City, Canton}  {Population} 
{Canton}  {Direktion} 
{Direktion}  {Canton} 

Keys: 
{City, Canton} 

 
 In which highest NF is Cities? 
N.B. decomposition algo can also be applied to non 3NF! 

 
 

 
 
 
 

Köln NRW Rütgers 1mio 

Bonn NRW Rütgers 200K 

Aachen NRW Rütgers 200K 
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Decomposition of Cities 
Cities: {[City, Canton, Direktion, Population]} 
{Canton}  {Direktion}        // evil 
{Direktion}  {Canton}   // evil 
{City, Canton}  {Population}   // okay 

 
Ri1:      
Administration: {[Canton, Direktion]} 

 
Ri2:      
Cities: {[City, Canton, Population]} 

 
Is this decomposition lossless? Preserves depend.? 
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Fourth Normal Form 

Give FDs, keys. Which highest normal form? 
Does „Skills“ have redundancy?  
What happens if 3002 learns a new language? 

How would you model Skills in ER? How translated? 
 

Skills 
PersNr Language Programming 

3002 Greek C 

3002 Latin Pascal 

3002 Greek Pascal 

3002 Latin C 

3005 German Ada 
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NFNF 

This model would work: no redundancy, no anomolies 
But, unfortunately, not implementable in SQL 2 
It is implementable in SQL 3 and XML 
That is why design theory needs to be adapted to XML 

Skills 
PersNr Language Programming 

3002 {Greek, Latin} {C, Pascal} 

3005 {German} {Ada} 

60 



What is wrong with this? 

Who knows Greek and Pascal? 
Anomolies?  
What happens if 3002 learns a new language? 

 

Skills 
PersNr Language Programming 

3002 Greek C 

3002 Latin Pascal 

3005 German Ada 
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Multi-value Dependencies 

A  B 
A  C 

R 

A B C 
a b c 

a bb cc 

a bb c 

a b cc 

62 



Multi-value Dependencies (MVD) 
 

α  β iff 
∀ t1, t2 ∈ R: t1.α = t2.α ⇒ ∃ t3, t4 ∈ R: 
t3.α = t4.α = t1.α = t2.α 
t3.β = t1.β,  t4.β = t2.β  
t3.γ = t2.γ ,  t4.γ = t1.γ  

R 

α 
A1 ... Ai 

β 
Ai+1 ... Aj 

γ 
Aj+1 ... An 

a1 ... ai ai+1 ... aj aj+1 ... an 
a1 ... ai bi+1 ... bj bj+1 ... bn 
a1 ... ai bi+1 ... bj aj+1 ... an 
a1 ... ai ai+1 ... aj bj+1 ... bn 
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MVD: Example 
 

MVDs of Skills 
{PersNr}{Language} 
{PersNr}{Programming} 
{Language} {PersNr, Programming}  (???) 

 
MVDs can result in anomalies and redundancy 

 

Skills 
PersNr Language Programming 

3002 Greek C 

3002 Latin Pascal 

3002 Greek Pascal 

3002 Latin C 

3005 German Ada 
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Are MVDs symmetric? 
NO! 
NOT {Language}{PersNr} 

 
 
 
 
 
 
 
 
 
 

Exercise: Find examples for symmetric MVDs! 
 

Skills 
PersNr Language Programming 

3002 Greek C 

3002 Latin Pascal 

3002 Greek Pascal 

3002 Latin C 

3005 German Ada 
3007 Greek XQuery 
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MVD: Example 
 Skills 

PersNr Language Programming 
3002 Greek C 

3002 Latin Pascal 

3002 Greek Pascal 

3002 Latin C 

3005 German Ada 

Language 
PersNr Language 

3002 Greek 

3002 Latin 

3005 German 

Programming 
PersNr Programming 

3002 C 

3002 Pascal 

3005 Ada 

ΠPersNr, Language ΠPersNr, Programming 
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MVD: Example 
 Skills 

PersNr Language Programming 
3002 Greek C 

3002 Latin Pascal 

3002 Greek Pascal 

3002 Latin C 

3005 German Ada 

Language 
PersNr Language 

3002 Greek 

3002 Latin 

3005 German 

Programming 
PersNr Programming 

3002 C 

3002 Pascal 

3005 Ada 

Join A 
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Example: Drinkers 
drinkers: {[name, addr, phones, beersLiked]} 
some people have several phones 
some people like several kind of beers 

 
FDs and MVDs 
name → addr 
name →→ phones 
name →→ beersLiked 

 
Again, MVDs indicate redundancy 
phones and beersLiked are independent concepts 
(Would work if you could store them as sets: NFNF.) 
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Let R = R1 ∪ R2 
R1 := ΠR1 (R) 
R2 := ΠR2 (R) 

 
 

Lemma: The decomposition is lossless iff 
(R1 ∩ R2)  R1 or 
(R1 ∩ R2)  R2 

 

Exercise: Proof of this Lemma. 
Which direction is easier? 

R 
R1 

 
α                  β  

  
  

    R2 
 

        γ 
  
  

Lossless Decompositions with MVDs 
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Laws of MVDs 
Trivial MVDs: α  R 
Check criterion of MVDs  (β = R, γ = ∅) 
∀ t1, t2 ∈ R: t1.α = t2.α ⇒ ∃ t3, t4 ∈ R: 
t3.α = t4.α = t1.α = t2.α 
t3.β = t1.β,  t4.β = t2.β  
t3.γ = t2.γ ,  t4.γ = t1.γ  

let t1, t2 ∈ R: t1.α = t2.α   
set t3=t1, t4=t2  
t3.α = t4.α = t1.α = t2.α      (by def. of t3, t4) 
t3.β = t1.β          (by def. of t3) 
t4.β = t2.β    (by def. of t4) 
t3.γ = t2.γ     (γ = ∅) 
t4.γ = t1.γ     (γ = ∅) qed 

 
Adapt proof for: α  R - α 
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Laws of MVDs 
Promotion: α → β ⇒ α →→ β 

 
let t1, t2 ∈ R: t1.α = t2.α  
(1)  t1.β = t2.β    (α → β) 

 
set t3=t2, t4=t1  
t3.α = t4.α = t1.α = t2.α      (by def. of t3, t4) 
t3.β = t1.β          (1) 
t4.β = t2.β    (1) 
t3.γ = t2.γ     (by def. of t3) 
t4.γ = t1.γ     (by def. of t4)    qed 

 
α →→ β ⇒ α → β does not always hold! 
e.g., PersNr →→ Language, but PersNr → Language 
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Laws of MVDs 
Reflexivity: (β ⊆ α) ⇒ α → β  

 
Augmentation: α → β ⇒ αγ → βγ 

 
Transitivity: α → β ∧ β → γ ⇒ α → γ 

 
Complement: α →→ β ⇒ α →→ R− β − α  

 
Multi-value Augmentation: α →→ β ∧ (δ ⊆ γ) ⇒ αγ →→ βδ  

 
Multi-value Transitivity: α →→ β ∧ β →→ γ ⇒ α →→ γ 

 
Generalization (Promotion): α → β ⇒ α →→ β 
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Laws of MVDs (ctd.) 
Coalesce: α →→ β ∧ (γ ⊆ β) ∧ (δ ∩ β = ∅) ∧ δ → γ ⇒ α → γ  

 
Multi-value Union: α →→ β ∧ α →→ γ ⇒ α →→ βγ  

 
 Intersection: α →→ β ∧ α →→ γ ⇒ α →→ (β ∩ γ)  

 
Minus: α →→ β ∧ α →→ γ ⇒ α →→ (β – γ) ∧ α →→ (γ − β) 

 
Warning: NOT (α →→ βγ ⇒ α →→ β ∧ α →→ γ)  
Not all rules of FDs apply to MVDs! 
Exercise: find an example for which this law does not hold 
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WARNING 
NOT (α →→ βγ ⇒ α →→ β ∧ α →→ γ)  
Not all rules of FDs apply to MVDs! 
E.g., {Language} →→ {PersNr, Programming} 
But, NOT {Language} →→ {PersNr} 
And NOT {Language} →→ {Programming} 

 
Be careful with MVDs  
Not a totally intuitive concept 
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Trivial MVDs 
α  β is trivial iff 
β ⊆ α or 
β = R - α 

 
Proof: a trivial MVD holds for any relation. 
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Fourth Normal Form (4NF ) 
R is in 4NF iff for all α  β at least one condition holds: 
α  β is trivial 
α is a superkey of R 

 
R in 4NF implies R in BCNF 
Proof is based on α  β ⇒ α  β. 
(Can you prove that?)  
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Decomposition Algorithm for 4NF 
 Input: R  
Output: R1, ..., Rn 

 
result = {R} 
while (∃ Ri ∈ Z: Ri is not in 4NF)) 

let α  β be evil in Ri  
Ri1 = α ∪ β   
Ri2 = Ri - β  
result = (result – {Ri}) ∪ {Ri1} ∪ {Ri2} 

output(result) 

77 



Decomposition into 4 NF 
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Example 
Assistant: {[PersNr, Name, Area, Boss, Language, Progr.]} 

 
Synthesis Algorithm (3NF) 
Assistant: {[PersNr, Name, Area, Boss]} 
Skills: {[PersNr, Language, Programming]} 

 
Decomposition Algorithm (4NF) 
Assistant: {[PersNr, Name, Area, Boss]} 
Languages: {[PersNr, Language]} 
Programming: {[PersNr, Programming]} 
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Summary 
 
Lossless decomposition up to 4NF 
Preserving dependencies up to 3NF 

(implementable in SQL92) 

Synthesis 
Algorithm 

Decomposition 
Algorithm 

lossless & 
preserv. dep. 

lossless 
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Exercise 

Find FDs, MVDs, keys 
Decompose into 3NF, BCNF, 4NF 

Family Tree 
Child Father Mother Grandpa Grandma 
Sofie Alfons Sabine Lothar Linde 
Sofie Alfons Sabine Hubert Lisa 
Niklas Alfons Sabine Lothar Linde 
Niklas Alfons Sabine Hubert Lisa 
Tobias Leo Bertha Hubert Martha 

… … … … … 
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Exercise: 1:N & N:M Relationships 

R 

A B 

S 

C D 

T 

E F 

V 

G H 

1 

N 

N M 

N 

M 

UR: {[ A  ,  B  ,  C  ,  D  ,  E  ,  F  ,  G  ,  H ]} 
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