
Relational Design Theory
Assess the quality of a schema
redundancy
integrity constraints
Quality seal: normal forms (1-4, BCNF)

Improve the quality of a schema
synthesis algorithm
decomposition algorithm

Construct a (high-quality) schema
start with universal relation
apply synthesis or decomposition algorithms

1

What is wrong with redundancy?
Waste of storage space
importance is diminishing as storage gets cheaper
(disk density will even increase in the future)

Additional work to keep multiple copies of data consistent
multiple updates in order to accomodate one event

Additional code to keep multiple copies of data consistent
Somebody needs to implement the logic

2

Bad Schemas

Update-Anomaly
What happens when Sokrates moves to a different room?

 Insert-Anomaly
What happens if Roscoe is elected as a new professor?

Delete-Anomaly
What happens if Popper does not teach this semester?

ProfLecture
PersNr Name Level Room Nr Title CP
2125 Sokrates FP 226 5041 Ethik 4
2125 Sokrates FP 226 5049 Mäeutik 2
2125 Sokrates FP 226 4052 Logik 4

...
2132 Popper AP 52 5259 Der Wiener Kreis 2
2137 Kant FP 7 4630 Die 3 Kritiken 4

3

Multi-version Databases
Storage becomes cheaper -> never throw anything away
It is more expensive to think about what to keep than

simply to keep everything.

Consequence 1: No delete
Instead, set a status flag to „deleted“
No delete anomalies (only wasted storage)

Consequence 2: No update in place
Instead, create a new version of the tuple
No update anomalies (only wasted storage)

 Insert anomalies still exist, but not a big problem
Result in multiple NULL values, but no inconsistencies

NoSQL Movement: Denormalized data (XML is great!)

4

Functional Dependencies
Schema: R = {A:DA, B:DB, C:DC, D:DD}
 Instance: R

Let α ⊆ R, β ⊆ R
α → β iff ∀r, s ∈ R: r.α = s.α ⇒ r.β = s.β
 (There is a function f: X Dα → X Dβ)

R
A B C D
a4 b2 c4 d3
a1 b1 c1 d1
a1 b1 c1 d2
a2 b2 c3 d2
a3 b2 c4 d3

{A}  {B}
{C, D }  {B}
Not: {B}  {C}
Convention:

CD  B 5

Example

Family Tree
Child Father Mother Grandma Grandpa
Sofie Alfons Sabine Lothar Linde
Sofie Alfons Sabine Hubert Lisa
Niklas Alfons Sabine Lothar Linde
Niklas Alfons Sabine Hubert Lisa

... Lothar Martha
… … … … …

6

Example
Family Tree

Child Father Mother Grandma Grandpa
Sofie Alfons Sabine Lothar Linde
Sofie Alfons Sabine Hubert Lisa
Niklas Alfons Sabine Lothar Linde
Niklas Alfons Sabine Hubert Lisa

... Lothar Martha
… … … … …

Child Father,Mother
Child, Grandpa  Grandma
Child, Grandma  Grandpa

7

Analogy to functions
 f1 : Child  Father
E.g., f1(Niklas) = Alfons

 f2: Child  Mother
E.g., f2(Niklas) = Sabine

 f3: Child x Grandpa  Grandma

FD: Child  Father, Mother
represents two functions (f1, f2)
Komma on right side indicates multiple functions

FD: Child, Grandpa  Grandma
Komma on the left side indicates Cartesian product 8

Keys
α ⊆ R is a superkey iff
α → R

α →β is minimal iff
∀A ∈ α: ¬((α − {Α}) → β)

Notation for minimal functional dependencies: α →. β

α ⊆ R is a key (or candidate key) iff
α →. R

9

Determining Keys

Keys of Town
{Name, Canton}
{Name, AreaCode}

N.B. Two small towns may have the same area code.

Town
Name Canton AreaCode Population
Buchs AG 081 6500
Buchs SG 071 8000
Zurich ZH 044 300000

Lausanne VD 021 60000
...

10

Determining Functional Dependencies
Professor: {[PersNr, Name, Level, Room, City, Address, Zip,

AreaCode, Canton, Population, Direktion]}
{PersNr}  {PersNr, Name, Level, Room, City, Address, Zip,

AreaCode, Canton, Population, Direktion}
{City, Canton}  {Population, AreaCode}
{Zip}  {Canton, City, Population}
{Canton, City, Address}  {Zip}
{Canton}  {Direktion}
{Room}  {PersNr}

Additional functional dependencies (inferred):
{Room}  {PersNr, Name, Level, Room, City, Address, Zip,

AreaCode, Canton, Population, Direktion}
{Zip}  {Direktion}

11

Visualization of Funct. Dependencies

Direktion

Level

Name

Address

City

Canton

PersNr

Room

AreaCode

Zip

Population

12

Armstrong Axioms: Inference of FDs
Reflexivity
(β ⊆ α) ⇒ α → β
Special case: α → α

Augmentation
α → β ⇒ αγ → βγ.
(Notation αγ := α ∪ γ)

Transitivity
α → β ∧ β → γ ⇒ α → γ.

These three axioms are complete. All possible other

rules can be implied from these axioms.
13

Other rules
Union of FDs:
α → β ∧ α → γ ⇒ α → βγ

Decomposition:
α → βγ ⇒ α → β ∧ α → γ

Pseudo transitivity:
α → β ∧ γβ → δ ⇒ αγ → δ

14

Correctness of Union rule
 Premise: α → β and α → γ
 Claim: α → βγ
 Proof:

1. α → β (Premise)
2. αγ → βγ (Augmentation)
3. α → γ (Premise)
4. α → αγ (Augmentation)
5. α → βγ (Transitivity of (4) and (2)) qed

15

Closure of Attributes
 Input:
F: a set of FDs
α: a set of attributes

Output: α+ such that α  α+

Closure(F, α)
 result := α // Reflexivity
 while (result has changed) do
 foreach FD: β → γ in F do // Transitivity
 if β ⊆ result then result := result ∪ γ
 output(result)

Exercise: Proof that Closure is deterministic and terminates.

16

Example: Closure of ZIP (Slide 8)

17

Minimal Basis
Fc is a minimal basis of F iff:

1. Fc ≡ F
 The closure of all attribute set is the same in Fc and F

2. All functional dependencies in Fc are minimal:
 ∀A ∈ α: (Fc - (α → β) ∪ ((α − {Α}) → β)) ≡ Fc
 ∀B ∈ β: (Fc - (α → β) ∪ (α → (β − {Β}))) ≡ Fc

3. In Fc, there are no two functional dependencies with

the same left side.
 Can be achieved by applying the Union rule.

18

Computing the Minimum Basis
1. Reduction of left sides of FDs. Let α → β ∈ F, A ∈ α:

if β ⊆ Closure(F, α – A)
then replace α → β with (α - A) → β in F

2. Reduction of right sides of FDs. Let α → β ∈ F, B ∈ β:
if B ∈ Closure(F – (α → β) ∪ (α → (β − Β)), α)

 then replace α  β with α → (β–B) in F

1. Remove FDs: α → ∅ (clean-up of Step 2)

2. Apply Union rule to FDs with the same left side.

19

Determining Functional Dependencies
Professor: {[PersNr, Name, Level, Room, City, Address, Zip,

AreaCode, Canton, Population, Direktion]}
{PersNr}  {PersNr, Name, Level, Room, City, Address, Zip,

AreaCode, Canton, Population, Direktion}
{City, Canton}  {Population, AreaCode}
{Zip}  {Canton, City, Population}
{Canton, City, Address}  {Zip}
{Canton}  {Direktion}
{Room}  {PersNr}

Additional functional dependencies (inferred):
{Room}  {PersNr, Name, Level, Room, City, Address, Zip,

AreaCode, Canton, Population, Direktion}
{Zip}  {Direktion}

20

Correctness of the Algorithm
(Left Reduction)

Premise: β ⊆ Closure(F, α - A)

Claim: Closure(F-{α → β}∪{ (α - A) → β } , α - A) ⊆ Closure(F, α - A)

Proof:

let γ ∈ Closure(F-{α → β}∪{ (α - A) → β } , α - A)
 γ ∈ Closure(F, α - A ∪ β) (Apply FD (α - A) → β)
 γ ∈ Closure(F, α - A) (Premise) qed

21

Bad Schemas

Update-Anomaly
What happens when Sokrates moves to a different room?

 Insert-Anomaly
What happens if Roscoe is elected as a new professor?

Delete-Anomaly
What happens if Popper does not teach this semester?

ProfLecture
PersNr Name Level Room Nr Title CP
2125 Sokrates FP 226 5041 Ethik 4
2125 Sokrates FP 226 5049 Mäeutik 2
2125 Sokrates FP 226 4052 Logik 4

...
2132 Popper AP 52 5259 Der Wiener Kreis 2
2137 Kant FP 7 4630 Die 3 Kritiken 4

22

Decomposition of Relations
 Bad relations combine several concepts
 decompose them so that each concept in one relation
 R → R1, .., Rn

1. Lossless Decomposition

R = R1 A R2 A ... A Rn

2. Preservation of Dependencies

 FD(R)+ = (FD(R1) ∪ ... ∪ FD(Rn))+

23

When is a decomposition lossless?
Let R = R1 ∪ R2
R1 := ΠR1 (R)
R2 := ΠR2 (R)

Lemma: The decomposition is lossless if
(R1 ∩ R2)  R1 or
(R1 ∩ R2)  R2

Exercise: Proof of this Lemma.

R
R1

α β

 R2

 γ

24

Example

Drinker
Pub Guest Beer

Kowalski Kemper Pils

Kowalski Eickler Hefeweizen

Innsteg Kemper Hefeweizen

25

Lossy Decomposition
Drinker

Pub Guest Beer
Kowalski Kemper Pils
Kowalski Eickler Hefeweizen
Innsteg Kemper Hefeweizen

Visitor
Pub Guest

Kowalski Kemper
Kowalski Eickler
Innsteg Kemper

Drinks
Guest Beer

Kemper Pils
Eickler Hefeweizen
Kemper Hefeweizen

ΠGuest, Beer ΠPub, Guest

26

Drinker
Kneipe Gast Bier

Kowalski Kemper Pils
Kowalski Eickler Hefeweizen
Innsteg Kemper Hefeweizen

Visitor
Pub Guest

Kowalski Kemper
Kowalski Eickler
Innsteg Kemper

Drinks
Guest Beer

Kemper Pils
Eickler Hefeweizen
Kemper Hefeweizen

Π....

VisitorA Drinks
Pub Guest Beer

Kowalski Kemper Pils
Kowalski Kemper Hefeweizen
Kowalski Eickler Hefeweizen
Innsteg Kemper Pils
Innsteg Kemper Hefeweizen

A
≠

27

Comments on the Example
Drinker has one (non-trivial) functional dependency
{Pub,Guest}{Beer}

But none of the criteria of the Lemma hold
{Guest}{Beer}
{Guest}{Pub}

The problem is that Kemper likes different beer in

different pubs.

28

Lossless Decomposition
Parents

Father Mother Child
Johann Martha Else
Johann Maria Theo
Heinz Martha Cleo

Father
Father Child
Johann Else
Johann Theo
Heinz Cleo

Mother
Mother Child
Martha Else
Maria Theo

Martha Cleo

ΠMother, Child ΠFather, Child

29

Comments on Example
Parents: {[Father, Mother, Child]}
Father: {[Father, Child]}
Mother: {[Mother, Child]}

Actually, both criteria of the lemma are met:
{Child}{Mother}
{Child}{Father}

{Child} is a key of all three relations
Wrt loss of info, it never hurts to decompose with a key
However, it is never beneficial either. Why?

30

Preservation of Dependencies
 Let R be decomposed into R1, ..., Rn
FR = (FR1 ∪ ... ∪ FRn)

ZipCodes: {[Street, City, Canton, Zip]}

Functional dependencies in ZipCodes
{Zip}  {City, Canton}
{Street, City, Canton}  {Zip}

What about this decomposition?
Streets: {[Zip, Street]}
Cities: {[Zip, City, Canton]}

Is it lossless? Does it preserve functional depend.?

31

Decomposition of ZipCodes
ZipCodes

City Canton Street Zip
Buchs AG Goethestr. 5033
Buchs AG Schillerstr. 5034
Buchs SG Goethestr. 8107

Streets
Zip Street
8107 Goethestr.
5033 Goethestr.
5034 Schillerstr.

Cities
City Canton Zip

Buchs AG 5033
Buchs AG 5034
Buchs SG 8107

ΠCity,Canton,Zip ΠZip,Street

{Street, City, Canton}  {Zip} not checkable in decomp. schema
 It is possible to insert inconsistent tuples 32

Violation of City,Canton,StreetZip
ZipCodes

City Canton Street Zip
Buchs AG Goethestr. 5033
Buchs AG Schillerstr. 5034
Buchs SG Goethestr. 8107

Streets
Zip Street
8107 Goethestr.
5033 Goethestr.
5034 Schillerstr.
8108 Goethestr.

Cities
City Canton Zip

Buchs AG 5033
Buchs AG 5034
Buchs SG 8107
Buchs SG 8108

ΠCity,Canton,Zip
ΠZip,Street

33

Violation of City,Canton,StreetZip
ZipCodes

City Canton Street Zip
Buchs AG Goethestr. 5033
Buchs AG Schillerstr. 5034
Buchs SG Goethestr. 8107
Buchs SG Goethestr. 8108

Streets
Zip Street
8107 Goethestr.
5033 Goethestr.
5034 Schillerstr.
8108 Goethestr.

Cities
City Cantion Zip

Buchs AG 5033
Buchs AG 5034
Buchs SG 8107
Buchs SG 8108

A

34

First Normal Form
 Only atomic domains (as in SQL 92)

 vs.

Parents
Father Mother Children
Johann Martha {Else, Lucie}
Johann Maria {Theo, Josef}
Heinz Martha {Cleo}

Parents
Father Mother Child
Johann Martha Else
Johann Martha Lucie
Johann Maria Theo
Johann Maria Josef
Heinz Martha Cleo

35

Second Normal Form
 R is in 2NF iff every non-key attribute is minimally

dependent on every key.

StudentAttends is not in 2NF!!!
{Legi}  {Name, Semester}

StundentAttends
Legi Nr Name Semester
26120 5001 Fichte 10
27550 5001 Schopenhauer 6

27550 4052 Schopenhauer 6

28106 5041 Carnap 3
28106 5052 Carnap 3
28106 5216 Carnap 3
28106 5259 Carnap 3

...

36

Second Normal Form

 Insert Anomaly: What about students who attend no lecture?
Update Anomaly: Promotion of Carnab to the 4th semester.
Delete Anomaly: Fichte drops his last course?

Solution: Decompose into two relations
attends: {[Legi, Nr]}
Student: {[Legi, Name, Semester]}

Student, attends are in 2NF. The decompostion is lossless and

preserves dependencies.

Legi

Nr

Name

Semester

37

2NF and ER Modelling
Violation of 2NF
mixing an entity with an N:M (or 1:N) relationship
E.g., mixing Student (entity) with attends (N:M)

Solution
Separate: entity and relationship
i.e., implement entity and relationship in separate relations

However, okay to mix entity and 1:1/N:1 relationship

Professor Lecture gives
1 N

Not okay Okay

38

Third Normal Form
R is in 3NF iff for all α → Β in R at least one condition holds:
B ∈ α (i.e., α → Β is trivial)
Β is an attribute of at least one key

α is a superkey of R

 If α → Β does not fulfill any of these conditions
α is a concept in its own right.

39

Example: 2NF but not 3NF

Direktion

Level

Name

Address

City

Canton

PersNr

Room

AreaCode

Zip

Population

40

3NF and ER Modelling
Violation of 3NF
mixing several entities (maybe connected by relationships)
e.g., Professor, City, Canton

Solution
implement each entity in a separate relation
(implement N:M relationships in separate relation)

ER Modelling and Rules of ER -> relational
Automatically create 3NF

 Professor City lives 1 N

Canton
1

belongs
N

Okay Okay Not okay

41

3NF implies 2NF
Premise: R is in 3NF
Claim: R is in 2NF
Proof:
assume R is not in 2NF
By definition of 2NF: exists α → Β such that
(1) B is not part of any key
(2) α ⊆ κ, κ is a key

α → Β is evil
it is not trivial (otherwise B would be part of a key)
B is not part of any key (1)
α is not a superkey (2)

R is not in 3NF. qed

42

Synthesis Algorithm
 Input: Relation R, FDs F

Output: R1, ..., Rn such that

R1, ..., Rn is a lossless decomposition of R.

R1, ..., Rn preserves dependencies.

All R1, ..., Rn are in 3NF.

43

Synthesis Algorithm

1. Compute the minimal basis Fc of F.

2. For all α → β ∈ Fc create:
 Rα := α ∪ β

3. If exists κ ⊆ R such that κ is a key of R create:
 Rκ := κ
 (N.B.: Rκ has no non-trivial functional dependencies.)

4. Eliminate Rα if exists Rα` such that:
 Rα ⊆ Rα`

44

Example: Synthesis Algorithm
 Professor: {[PersNr, Name, Level, Room, City, Street, Zip,

AreaCode, Canton, Population, Direktion]}
1. {PersNr}  {Name, Level, Room, Canton, Street, Canton}
2. {Room}  {PersNr}
3. {Street, Canton, City}  {Zip}
4. {City, Canton}  {Population, AreaCode}
5. {Canton}  {Direktion}
6. {Zip}  {Canton, City}

 Professor: {[PersNr, Name, Level, Room, City, Street, Canton]}
 ZipCodes: {[Street, Canton, City, Zip]}
 Cities: {[City, Canton, Population, AreaCode]}
 Administration: {[Canton, Direktion]}

 45

Example why Step 3 is needed
StudentAttends(Legi, Nr, Name, Semester)

Minimum Basis (Step 1)
{Legi}  {Name, Semester}

Relation generated from minimum basis (Step 2)
Student(Legi, Name, Semester)

Relation generated from Step 3
attends(Legi, Nr)

The attends relation is needed!

46

Corner Case: Step 3
R(A, B, C, D)
B -> C, D
D -> B

Keys of R
A, B
A, D

Decomposition into 3NF (Synthesis Algorithm)
R1(B, C, D)
R2(A, B)

N.B. R3(A,D) is not needed!!!
Needs to be cleaned up in Step 4!

47

ZipCodes(Street, Canton, City, Zip)
Is ZipCodes in 3NF?
Keys: {Street,Canton,City}, {Zip,Street}
All attributes are part of keys. There are no evil FDs!

Does the decomposition preserve dependencies?
Yes!

Is the decomposition lossless?
Professor ∩ ZipCodes = {Street,Canton,City}
{Street,Canton,City} → ZipCodes
Criterion of Lemma is fullfilled!

Is ZipCode free of redundancy?

 48

Exercises
Proof for the following lemmas:
The synthesis algorithm preserves dependencies.
The synthesis algorithm creates lossless decompositions.
The synthesis algorithm creates relations in 3NF only.
The synthesis algorithm creates relations in 2NF only.

49

Synthesis Algo produces 3NF only
Let Ri be a relation created by the Synthesis Algo
Case 1: Ri was created in Step 3 of the algo
Ri contains a key of R
there are no non-trivial FDs in Ri
Ri is in 3NF

Case 2: Ri was created in Step 2 by an FD: α → β
(1) Ri := α ∪ β
(2) α is a key of Ri
α is minimal because of left reduction of minimal basis
α → Ri by construction of Ri

(3) α → β is not evil because α is a superkey of Ri
(4) Let γ → δ be any other non-trivial FD (γ → δ = α → β)
δ ⊆ α because of right reduction in minimal basis and because α → γ
δ contains only attributes of a key; γ → δ is not evil qed

50

Boyce-Codd-Normal Form (BCNF)
R is in BCNF iff for all α → Β in R at least one condition holds:
B ∈ α (i.e., α → Β is trivial)
α is a superkey of R

R in BCNF implies R in 3NF
Proof trivial from definition

Result
any schema can be decomposed losslessly into BCNF
but, preservation of dependencies cannot be guaranteed
need to trade „correctness“ for „efficiency“
that is why 3NF is so important in practice

51

ZipCodes(Street, Canton, City, Zip)
ZipCodes is not in BCNF
{Zip}  {Canton, City} // evil
{Street, Canton, City}  {Zip} // okay

Redundancy in ZipCodes
(Rämistr., Zürich, Zürich, 8006)
(Universitätsstr., Zürich, Zürich, 8006)
(Schmid-Str., Zürich, Zürich, 8006)
stores several times that 8006 belongs to Zürich

Exercise: How would you model ZipCodes in ER?
What would the relational schema look like?

52

Decomposition Algorithm (BCNF)
 Input: R
Output: R1, ..., Rn such that

R1, ..., Rn is a lossless decomposition of R.

R1, ..., Rn are in BCNF.

(Preservation of dependencies is not guaranteed.)

53

Decomposition Algorithm
 Input: R
Output: R1, ..., Rn

result = {R}
while (∃ Ri ∈ Z: Ri is not in BCNF))

let α → β be evil in Ri
Ri1 = α ∪ β
Ri2 = Ri - β
result = (result – {Ri}) ∪ {Ri1} ∪ {Ri2}

output(result)

54

Visualization of Decomposition Algo

Ri
Ri1

β α

 Ri2

 γ = Ri –(α∪β)

55

Decomposition of ZipCodes
ZipCodes: {[Street, City, Canton, Zip]}
{Zip}  {City, Canton} // evil
{Street, City, Canton}  {Zip} // okay

Applying the decomposition algorithm...
Street: {[Zip, Street]}
Cities: {[Zip, City, Canton]}

Assessment
decomposition is lossless
decomposition does not preserve dependencies

56

Cities is not in BCNF
Cities: {[City, Canton, Direktion, Population]}
FDs of Cities:
{City, Canton}  {Population}
{Canton}  {Direktion}
{Direktion}  {Canton}

Keys:
{City, Canton}

 In which highest NF is Cities?
N.B. decomposition algo can also be applied to non 3NF!

Köln NRW Rütgers 1mio

Bonn NRW Rütgers 200K

Aachen NRW Rütgers 200K

57

Decomposition of Cities
Cities: {[City, Canton, Direktion, Population]}
{Canton}  {Direktion} // evil
{Direktion}  {Canton} // evil
{City, Canton}  {Population} // okay

Ri1:
Administration: {[Canton, Direktion]}

Ri2:
Cities: {[City, Canton, Population]}

Is this decomposition lossless? Preserves depend.?

58

Fourth Normal Form

Give FDs, keys. Which highest normal form?
Does „Skills“ have redundancy?
What happens if 3002 learns a new language?

How would you model Skills in ER? How translated?

Skills
PersNr Language Programming

3002 Greek C

3002 Latin Pascal

3002 Greek Pascal

3002 Latin C

3005 German Ada

59

NFNF

This model would work: no redundancy, no anomolies
But, unfortunately, not implementable in SQL 2
It is implementable in SQL 3 and XML
That is why design theory needs to be adapted to XML

Skills
PersNr Language Programming

3002 {Greek, Latin} {C, Pascal}

3005 {German} {Ada}

60

What is wrong with this?

Who knows Greek and Pascal?
Anomolies?
What happens if 3002 learns a new language?

Skills
PersNr Language Programming

3002 Greek C

3002 Latin Pascal

3005 German Ada

61

Multi-value Dependencies

A  B
A  C

R

A B C
a b c

a bb cc

a bb c

a b cc

62

Multi-value Dependencies (MVD)

α  β iff
∀ t1, t2 ∈ R: t1.α = t2.α ⇒ ∃ t3, t4 ∈ R:
t3.α = t4.α = t1.α = t2.α
t3.β = t1.β, t4.β = t2.β
t3.γ = t2.γ , t4.γ = t1.γ

R

α
A1 ... Ai

β
Ai+1 ... Aj

γ
Aj+1 ... An

a1 ... ai ai+1 ... aj aj+1 ... an
a1 ... ai bi+1 ... bj bj+1 ... bn
a1 ... ai bi+1 ... bj aj+1 ... an
a1 ... ai ai+1 ... aj bj+1 ... bn

63

MVD: Example

MVDs of Skills
{PersNr}{Language}
{PersNr}{Programming}
{Language} {PersNr, Programming} (???)

MVDs can result in anomalies and redundancy

Skills
PersNr Language Programming

3002 Greek C

3002 Latin Pascal

3002 Greek Pascal

3002 Latin C

3005 German Ada

64

Are MVDs symmetric?
NO!
NOT {Language}{PersNr}

Exercise: Find examples for symmetric MVDs!

Skills
PersNr Language Programming

3002 Greek C

3002 Latin Pascal

3002 Greek Pascal

3002 Latin C

3005 German Ada
3007 Greek XQuery

65

MVD: Example
 Skills

PersNr Language Programming
3002 Greek C

3002 Latin Pascal

3002 Greek Pascal

3002 Latin C

3005 German Ada

Language
PersNr Language

3002 Greek

3002 Latin

3005 German

Programming
PersNr Programming

3002 C

3002 Pascal

3005 Ada

ΠPersNr, Language ΠPersNr, Programming

66

MVD: Example
 Skills

PersNr Language Programming
3002 Greek C

3002 Latin Pascal

3002 Greek Pascal

3002 Latin C

3005 German Ada

Language
PersNr Language

3002 Greek

3002 Latin

3005 German

Programming
PersNr Programming

3002 C

3002 Pascal

3005 Ada

Join A

67

Example: Drinkers
drinkers: {[name, addr, phones, beersLiked]}
some people have several phones
some people like several kind of beers

FDs and MVDs
name → addr
name →→ phones
name →→ beersLiked

Again, MVDs indicate redundancy
phones and beersLiked are independent concepts
(Would work if you could store them as sets: NFNF.)

68

Let R = R1 ∪ R2
R1 := ΠR1 (R)
R2 := ΠR2 (R)

Lemma: The decomposition is lossless iff
(R1 ∩ R2)  R1 or
(R1 ∩ R2)  R2

Exercise: Proof of this Lemma.
Which direction is easier?

R
R1

α β

 R2

 γ

Lossless Decompositions with MVDs

69

Laws of MVDs
Trivial MVDs: α  R
Check criterion of MVDs (β = R, γ = ∅)
∀ t1, t2 ∈ R: t1.α = t2.α ⇒ ∃ t3, t4 ∈ R:
t3.α = t4.α = t1.α = t2.α
t3.β = t1.β, t4.β = t2.β
t3.γ = t2.γ , t4.γ = t1.γ

let t1, t2 ∈ R: t1.α = t2.α
set t3=t1, t4=t2
t3.α = t4.α = t1.α = t2.α (by def. of t3, t4)
t3.β = t1.β (by def. of t3)
t4.β = t2.β (by def. of t4)
t3.γ = t2.γ (γ = ∅)
t4.γ = t1.γ (γ = ∅) qed

Adapt proof for: α  R - α

70

Laws of MVDs
Promotion: α → β ⇒ α →→ β

let t1, t2 ∈ R: t1.α = t2.α
(1) t1.β = t2.β (α → β)

set t3=t2, t4=t1
t3.α = t4.α = t1.α = t2.α (by def. of t3, t4)
t3.β = t1.β (1)
t4.β = t2.β (1)
t3.γ = t2.γ (by def. of t3)
t4.γ = t1.γ (by def. of t4) qed

α →→ β ⇒ α → β does not always hold!
e.g., PersNr →→ Language, but PersNr → Language
 71

Laws of MVDs
Reflexivity: (β ⊆ α) ⇒ α → β

Augmentation: α → β ⇒ αγ → βγ

Transitivity: α → β ∧ β → γ ⇒ α → γ

Complement: α →→ β ⇒ α →→ R− β − α

Multi-value Augmentation: α →→ β ∧ (δ ⊆ γ) ⇒ αγ →→ βδ

Multi-value Transitivity: α →→ β ∧ β →→ γ ⇒ α →→ γ

Generalization (Promotion): α → β ⇒ α →→ β

72

Laws of MVDs (ctd.)
Coalesce: α →→ β ∧ (γ ⊆ β) ∧ (δ ∩ β = ∅) ∧ δ → γ ⇒ α → γ

Multi-value Union: α →→ β ∧ α →→ γ ⇒ α →→ βγ

 Intersection: α →→ β ∧ α →→ γ ⇒ α →→ (β ∩ γ)

Minus: α →→ β ∧ α →→ γ ⇒ α →→ (β – γ) ∧ α →→ (γ − β)

Warning: NOT (α →→ βγ ⇒ α →→ β ∧ α →→ γ)
Not all rules of FDs apply to MVDs!
Exercise: find an example for which this law does not hold

73

WARNING
NOT (α →→ βγ ⇒ α →→ β ∧ α →→ γ)
Not all rules of FDs apply to MVDs!
E.g., {Language} →→ {PersNr, Programming}
But, NOT {Language} →→ {PersNr}
And NOT {Language} →→ {Programming}

Be careful with MVDs
Not a totally intuitive concept

74

Trivial MVDs
α  β is trivial iff
β ⊆ α or
β = R - α

Proof: a trivial MVD holds for any relation.

75

Fourth Normal Form (4NF)
R is in 4NF iff for all α  β at least one condition holds:
α  β is trivial
α is a superkey of R

R in 4NF implies R in BCNF
Proof is based on α  β ⇒ α  β.
(Can you prove that?)

76

Decomposition Algorithm for 4NF
 Input: R
Output: R1, ..., Rn

result = {R}
while (∃ Ri ∈ Z: Ri is not in 4NF))

let α  β be evil in Ri
Ri1 = α ∪ β
Ri2 = Ri - β
result = (result – {Ri}) ∪ {Ri1} ∪ {Ri2}

output(result)

77

Decomposition into 4 NF

78

Example
Assistant: {[PersNr, Name, Area, Boss, Language, Progr.]}

Synthesis Algorithm (3NF)
Assistant: {[PersNr, Name, Area, Boss]}
Skills: {[PersNr, Language, Programming]}

Decomposition Algorithm (4NF)
Assistant: {[PersNr, Name, Area, Boss]}
Languages: {[PersNr, Language]}
Programming: {[PersNr, Programming]}

79

Summary

Lossless decomposition up to 4NF
Preserving dependencies up to 3NF

(implementable in SQL92)

Synthesis
Algorithm

Decomposition
Algorithm

lossless &
preserv. dep.

lossless

80

Exercise

Find FDs, MVDs, keys
Decompose into 3NF, BCNF, 4NF

Family Tree
Child Father Mother Grandpa Grandma
Sofie Alfons Sabine Lothar Linde
Sofie Alfons Sabine Hubert Lisa
Niklas Alfons Sabine Lothar Linde
Niklas Alfons Sabine Hubert Lisa
Tobias Leo Bertha Hubert Martha

… … … … …

81

Exercise: 1:N & N:M Relationships

R

A B

S

C D

T

E F

V

G H

1

N

N M

N

M

UR: {[A , B , C , D , E , F , G , H]}
82

	Relational Design Theory
	What is wrong with redundancy?
	Bad Schemas
	Multi-version Databases
	Functional Dependencies
	Example
	Example
	Analogy to functions
	Keys
	Determining Keys
	Determining Functional Dependencies
	Visualization of Funct. Dependencies
	Armstrong Axioms: Inference of FDs
	Other rules
	Correctness of Union rule
	Closure of Attributes
	Example: Closure of ZIP (Slide 8)
	Minimal Basis
	Computing the Minimum Basis
	Determining Functional Dependencies
	Correctness of the Algorithm�(Left Reduction)
	Bad Schemas
	Decomposition of Relations
	When is a decomposition lossless?
	Example
	Lossy Decomposition
	Slide Number 27
	Comments on the Example
	Lossless Decomposition
	Comments on Example
	Preservation of Dependencies�
	Decomposition of ZipCodes
	Violation of City,Canton,StreetZip
	Violation of City,Canton,StreetZip
	First Normal Form�
	Second Normal Form�
	Second Normal Form�
	2NF and ER Modelling
	Third Normal Form
	Example: 2NF but not 3NF
	3NF and ER Modelling
	3NF implies 2NF
	Synthesis Algorithm
	Synthesis Algorithm
	Example: Synthesis Algorithm
	Example why Step 3 is needed
	Corner Case: Step 3
	ZipCodes(Street, Canton, City, Zip)
	Exercises
	Synthesis Algo produces 3NF only
	Boyce-Codd-Normal Form (BCNF)
	ZipCodes(Street, Canton, City, Zip)
	Decomposition Algorithm (BCNF)
	Decomposition Algorithm
	Visualization of Decomposition Algo
	Decomposition of ZipCodes
	Cities is not in BCNF
	Decomposition of Cities
	Fourth Normal Form
	NFNF
	What is wrong with this?
	Multi-value Dependencies
	Multi-value Dependencies (MVD)�
	MVD: Example�
	Are MVDs symmetric?
	MVD: Example�
	MVD: Example�
	Example: Drinkers
	Lossless Decompositions with MVDs
	Laws of MVDs
	Laws of MVDs
	Laws of MVDs
	Laws of MVDs (ctd.)
	WARNING
	Trivial MVDs
	Fourth Normal Form (4NF)
	Decomposition Algorithm for 4NF
	Decomposition into 4 NF
	Example
	Summary�
	Exercise
	Exercise: 1:N & N:M Relationships

