
Detailed Schedule

Week No. Date (Mi) Topic Lecture Topic Exercises

1 20.2.2013 Introduction ---

2 27.2.2013 ER, UML ---

3 6.3.2013 Relational Model ER

4 13.3.2013 SQL I Start project

5 20.3.2013 Guest Lecture, SQL II Relational Model

6 27.3.2013 Integrity Constraints ---

7 3.4.2013 --- ---

8 10.4.2013 Normal forms I SQL

9 17.4.2013 Normal forms II IC, Project: Part I

10 24.4.2013 Query Processing I Normal forms

11 1.5.2013 (Query Processing II) Normal forms, Proj.

12 8.5.2013 Transactions Query Processing

13 15.5.2013 Synchronization Transactions

14 22.5.2013 Security Synchronization

15 29.5.2013 Object-relational Databases End Project: Part 2

1

Project Part II

Starting Point: Existing DB Application (Java + SQL)
ideally, your system from Part I of the project

otherwise, the student enrollment demo app (+ queries)

Task
Implement a DB library: relational algebra on file system

Replace all JDBC statement with calls to your library

Goal
Understand the internals of a database system

Understand that there is always an alternative

Brief glimpse on the „Information Systems“ lecture
2

Info Systems Courses: Overview

Data Modelling

Information

Systems

Big Data EAI Web Eng.

Advanced

Systems Lab

Info Retrieval Data Wareh. …

…

3

The Data Management Universe

Project Part I Project Part 2

4

Logs Indexes DB Catalogue

Storage Manager

TA Management

Recovery

Runtime Schema

Query Optimizer DBMS

DML-Compiler DDL-Compiler

Application Ad-hoc Query
Management

tools
Compiler

„Naive“

User

Expert

User

App-

Developer

DB-

admin

External Storage (e.g., disks)

Components of a Database System

5

Application

Query Processor

Data Manager

(Indexes, Records)

Storage Manager

(Pages)

SQL {tuples}

get/put block

T
ra

n
s
a

c
ti
o
n
s

(L
o

c
k
in

g
,

L
o
g
g
in

g
)

M
e
ta

d
a
ta

 M
g
m

t

(S
c
h
e

m
a

,
S

ta
ts

)

Server (Network, App Buffers, Security)

Storage System

(disks, SSDs, SAN, …)
6

Why use a DBMS?

Avoid redundancy and inconsistency
Query Processor, Transaction Manager, Catalog

Rich (declarative) access to the data
Query Processor

Synchronize concurrent data access
Transaction Manager

Recovery after system failures
Transaction Manager, Storage Layer

Security and privacy
Server, Catalog

7

Application

Query Processor

Indexes, Records

Manager, Pages

SQL / rel. algebra {tuples}

get/put block

T
ra

n
s
a

c
ti
o
n
s

(L
o

c
k
in

g
,

L
o
g
g
in

g
)

M
e
ta

d
a
ta

 M
g
m

t

(S
c
h
e

m
a

,
S

ta
ts

)

Server (Network, App Buffers, Security)

Storage System (disks, SSDs, SAN, …)

Query Processor

Data Manager

Storage Manager

Project Part II 8

What does a Database System do?

 Input: SQL statement

Output: {tuples}

1. Translate SQL into a set of get/put req. to backend storage

2. Extract, process, transform tuples from blocks

Tons of optimizations

Efficient algorithms for SQL operators (hashing, sorting)

Layout of data on backend storage (clustering, free space)

Ordering of operators (small intermediate results)

Semantic rewritings of queries

Buffer management and caching

Parallel execution and concurrency

Outsmart the OS

Partitioning and Replication in distributed system

 Indexing and Materialization

Load and admission control

+ Security + Durability + Concurrency Control + Tools9

Database Optimizations

Query Processor (based on statistics)
Efficient algorithms for SQL operators (hashing, sorting)

Ordering of operators (small intermediate results)

Semantic rewritings of queries

Parallel execution and concurrency

Storage Manager
 Load and admission control

 Layout of data on backend storage (clustering, free space)

 Buffer management and caching

 Outsmart the OS

Transaction Manager
 Load and admission control

Tools (based on statistics)
Partitioning and Replication in distributed system

 Indexing and Materialization

10

DBMS vs. OS Optimizations

Many DBMS tasks are also carried out by OS
Load control

Buffer management

Access to external storage

Scheduling of processes

…

What is the difference?
DBMS has intimate knowledge of workload

DBMS can predict and shape access pattern of a query

DBMS knows the mix of queries (all pre-compiled)

DBMS knows the contention between queries

OS does generic optimizations

Problem: OS overrides DBMS optimizations!
11

Application

Query Processor

Indexes, Records

Manager, Pages

SQL / rel. algebra {tuples}

get/put block

T
ra

n
s
a

c
ti
o
n
s

(L
o

c
k
in

g
,

L
o
g
g
in

g
)

M
e
ta

d
a
ta

 M
g
m

t

(S
c
h
e

m
a

,
S

ta
ts

)

Server (Network, App Buffers, Security)

Storage System (disks, SSDs, SAN, …)

Query Processor

Data Manager

Storage Manager

12

Query Processor

SQL

Parser

Rewrite

Optimizer

QGM

QGM

C
o

m
p

il
e
r

CodeGen

QGM++

Interpreter
Plan

{tuples}

R
u

n
tim

e
 S

y
s

te
m

13

SQL -> Relational Algebra

SQL

select A1, ..., An

from R1, ..., Rk

where P;

 A1, ..., An(P (R1 x ... x Rk))

 A1, ..., An

P

x

x Rk

x R3

R2R1

Relational Algebra

14

Runtime System

Three approaches
A. Compile query into machine code

B. Compile query into relational algebra and interpret that

C. Hybrid: e.g., compile predicates into machine code

What to do?
A: better performance

B: easier debugging, better portability

Project: use Approach B

Query Interpreter
provide implementation for each algebra operator

define interface between operators
15

Algorithms for Relational Algebra

Table Access
scan (load each page at a time)

index scan (if index available)

Sorting
Two-phase external sorting

Joins
(Block) nested-loops

Index nested-loops

Sort-Merge

Hashing (many variants)

Group-by (~ self-join)
Sorting

Hashing
16

Two-phase External Sorting

Phase I: Create Runs
1. Load allocated buffer space with tuples

2. Sort tuples in buffer pool

3. Write sorted tuples (run) to disk

4. Goto Step 1 (create next run) until all tuples processed

 Phase II: Merge Runs
 Use priority heap to merge tuples from runs

 Special cases
 buffer >= N: no merge needed

 buffer < sqrt(N): multiple merge phases necessary

 (N size of the input in pages)

17

18

External Sort

97

17

3

5

27

16

2

99

13

19

External Sort

97

17

3

5

27

16

2

99

13

97

17

3

load

20

External Sort

97

17

3

5

27

16

2

99

13

3

17

97

sort

21

External Sort

97

17

3

5

27

16

2

99

13

3

3

17

97
17

97

write

run

22

External Sort

97

17

3

5

27

16

2

99

13

5

3

17

97
27

16

load

23

External Sort

97

17

3

5

27

16

2

99

13

5

3

17

97

5

16

27

16

27

sort & write

24

External Sort

97

17

3

5

27

16

2

99

13

2

3

17

97

5

16

27

99

13

load

25

External Sort

97

17

3

5

27

16

2

99

13

2

3

17

97

5

16

27

2

13

99

13

99

End of Phase 1

26

External Sort

3

3

17

97

5

16

27

2

13

99

5

2

merge

27

External Sort

2

3

3

17

97

5

16

27

2

13

99

5

2

merge

28

External Sort

2

3
3

3

17

97

5

16

27

2

13

99

5

13

merge

29

External Sort

2

3

5
17

3

17

97

5

16

27

2

13

99

5

13

merge

30

External Sort

2

3

5
17

3

17

97

5

16

27

2

13

99

16

13

merge

31

External Sort

2

3

5

13

17

3

17

97

5

16

27

2

13

99

16

13

Multi-way Merge (N = 7; M = 2)

32

Analysis

N: size of table in pages

M: size of (available) main memory in pages

IO Cost
O(N): if M >= sqrt(N)
2 * N: if M >= N

4 * N: if N > M >= sqrt(N)

O(N logM N): if M < sqrt(N)
Base of logarithm: in O notation not relevant, but constants matter

CPU Cost (M >= sqrt(N))
Phase 1 (create N/M runs of length M): O(N * log2 M)

Phase 2 (merge N tuples with heap): O(N * log2 N/M)

Exercise: Do CPU cost increase/decrease with M?

33

Sorting Summary

Complexity: N * log(N) theory is right, but
DB people care about CPU and IO complexity

Constants matter!

Buffer allocation matters! Many concurrent queries?

More main memory can hurt performance!

Main memory is large. Do two-way sort because…
Parallelize sorting on different machines

Or many concurrent sorts on same machine

But more than 2-ways very rare in practice

Knuth suggests Replacement Selection
Increases length of runs

But, higher constant for CPU usage

Typically, not used in practice
34

(Grace) Hash Join

35

Grace Hash Join

36

Sorting vs. Hashing

Both techniques can be used for joins, group-by, …
binary and unary matching problems

Same asymptotic complexity: O(N log N)

In both IO and CPU

Hashing has lower constants for CPU complexity

IO behavior is almost identical

Merging (Sort) vs. Partitioning (Hash)
Merging done afterwards; Partitioning done before

Partitioning depends on good statistics to get right

Sorting more robust. Hashing better in average case!
37

Iterator Model

Plan contains many operators
Implement each operator indepently

Define generic interface for each operator

Each operator implemented by an iterator

Three methods implemented by each iterator
open(): initialize the internal state (e.g., allocate buffer)

char* next(): produce the next result tuple

close(): clean-up (e.g., release buffer)

N.B. Modern DBMS use a Vector Model
next() returns a set of tuples

Why is that better?
38

Iterator Model at Work

39

R S T

scan scan scan

NLJoin

NLJoin

Application

Iterator Model at Work

40

R S T

scan scan scan

NLJoin

NLJoin

ApplicationJDBC: execute()

Iterator Model at Work

41

R S T

scan scan scan

NLJoin

NLJoin

ApplicationJDBC: execute()

open()

Iterator Model at Work

42

R S T

scan scan scan

NLJoin

NLJoin

ApplicationJDBC: execute()

open()

open()

open()

Iterator Model at Work

43

R S T

scan scan scan

NLJoin

NLJoin

ApplicationJDBC: execute()

open()

open()

open/close for

each R tuple

Iterator Model at Work

44

R S T

scan scan scan

NLJoin

NLJoin

ApplicationJDBC: execute()

open()

open/close for

each R,S tuple

Iterator Model at Work

45

R S T

scan scan scan

NLJoin

NLJoin

ApplicationJDBC: next()

next()

next()

next()

Iterator Model at Work

46

R S T

scan scan scan

NLJoin

NLJoin

ApplicationJDBC: next()

next()

next()

r1

Iterator Model at Work

47

R S T

scan scan scan

NLJoin

NLJoin

ApplicationJDBC: next()

next()

next()

r1

open()

Iterator Model at Work

48

R S T

scan scan scan

NLJoin

NLJoin

ApplicationJDBC: next()

next()

next()

r1

next()

Iterator Model at Work

49

R S T

scan scan scan

NLJoin

NLJoin

ApplicationJDBC: next()

next()

next()

r1

s1

Iterator Model at Work

50

R S T

scan scan scan

NLJoin

NLJoin

ApplicationJDBC: next()

next()

next()

r1

next()

Iterator Model at Work

51

R S T

scan scan scan

NLJoin

NLJoin

ApplicationJDBC: next()

next()

next()

r1

s2

Iterator Model at Work

52

R S T

scan scan scan

NLJoin

NLJoin

ApplicationJDBC: next()

next()

r1, s2

Iterator Model at Work

53

R S T

scan scan scan

NLJoin

NLJoin

ApplicationJDBC: next()

next()

r1, s2

open()

Iterator Model at Work

54

R S T

scan scan scan

NLJoin

NLJoin

ApplicationJDBC: next()

next()

r1, s2

next()

Iterator Model at Work

55

R S T

scan scan scan

NLJoin

NLJoin

ApplicationJDBC: next()

next()

r1, s2

t1

Iterator Model at Work

56

R S T

scan scan scan

NLJoin

NLJoin

ApplicationJDBC: next()

r1, s2, t1

… r2, r3, … … s3, s4, … … t2, t3, …

Iterators Summary: Easy & Costly

Principle
data flows bottom up in a plan (i.e. operator tree)

control flows top down in a plan

Advantages
generic interface for all operators: great information hiding

easy to implement iterators (clear what to do in any phase)

works well with JDBC and embedded SQL

supports DBmin and other buffer management strategies

no overheads in terms of main memory

supports pipelining: great if only subset of results consumed

supports parallelism and distribution: add special iterators

Disadvantages
high overhead of method calls

poor instruction cache locality
57

Query Processor

SQL

Parser

Rewrite

Optimizer

QGM

QGM

C
o

m
p

il
e
r

CodeGen

QGM++

Interpreter
Plan

{tuples}

R
u

n
tim

e
S

y
s

te
m

58

SQL -> Relational Algebra

SQL

select A1, ..., An

from R1, ..., Rk

where P;

 A1, ..., An(P (R1 x ... x Rk))

 A1, ..., An

P

x

x Rk

x R3

R2R1

Relational Algebra

59

SQL -> QGM

SQL

select a

from R

where a in (select b

from S);

QGM

R

a

b

S

in

60

Parser

Generates rel. alg. tree for each sub-query
constructs graph of trees: Query Graph Model (QGM)

nodes are subqueries

edges represent relationships between subqueries

Extended rel. algebra because SQL more than RA
GROUP BY: G operator

ORDER BY: sort operator

DISTINCT: can be implemented with G operator

Parser needs schema information
Why? Give examples.

Why can`t a query be compiled into one tree?

61

SQL -> Relational Algebra

SQL

select A1, ..., An

from R1, ..., Rk

where P;

 A1, ..., An(P (R1 x ... x Rk))

 A1, ..., An

P

x

x Rk

x R3

R2R1

Relational Algebra

62

63

Example: SQL -> Relational Algebra

select Title

from Professor, Lecture

where Name = ´Popper´ and

PersNr = Reader

Professor Lecture

Name = ´Popper´ and PersNr=Reader

Title

Title (Name = ´Popper´ and PersNr=Reader (Professor Lecture))

64

First Optimization: Push-down

select Title

from Professor, Lecture

where Name = ´Popper´ and

PersNr = Reader

Professor

Lecture

PersNr=Reader

Title

Title (PersNr=Reader ((Name = ´Popper´Professor) Lecture))

Name = ´Popper´

65

Second Optimization: Push-down

select Title

from Professor, Lecture

where Name = ´Popper´ and

PersNr = Reader

Professor

Lecture

PersNr=Reader

Title

Name = ´Popper´

PersNr Title,Reader

Correctness: Push-down

Title (PersNr=Reader ((Name = ´Popper´ Professor) Lecture))

(composition of projections)

Title (Title,PersNr,Reader (… ((…Professor) Lecture)))

(commutativity of and)

Title (… (Title,PersNr,Reader ((…Professor) Lecture)))

(commutativity of and)

Title (… (PersNr (…Professor) Title,Reader (Lecture)))

66

Second Optimization: Push down

Correctness (see previous slide – example generalizes)

Why is it good? (almost same reason as for
reduces size of intermediate results

but: only makes sense if results are materialized; e.g. sort
does not make sense if pointers are passed around in iterators

67

68

Third Optimization: + x = A
select Title

from Professor, Lecture

where Name = ´Popper´ and

PersNr = Reader

Professor

Lecture

A
Title

Name = ´Popper´

PersNr Title,Reader

Third Optimization: + x = A
Correctness by definition of A operator

Why is this good?

x always done using nested-loops algorithm
A can also be carried out using hashing, sorting, index support

choice of better algorithm may result in huge wins

x produces large intermediate results
results in a huge number of „next()“ calls in iterator model

method calls are expensive

Selection, projection push-down are no-brainers
make sense whenever applicable

do not need a cost model to decide how to apply them

(exception: expensive selections, projections with UDF)

done in a phase called query rewrite, based on rules

More complex query rewrite rules…
69

Unnesting of Views

Example: Unnesting of Views
select A.x
from A
where y in

(select y from B)

Example: Unnesting of Views
select A.x
from A
where exists

(select * from B where A.y = B-y)

Is this correct? Why is this better?
 (not trivial at all!!!)

select A.x
from A, B
where A.y = B.y

70

select A.x
from A, B
where A.y = B.y

Query Rewrite

Example: Predicate Augmentation
select *
from A, B, C
where A.x = B.x

and B.x = C.x

select *
from A, B, C
where A.x = B.x

and B.x = C.x
and A.x = C.x

Why is that useful?

71

Pred. Augmentation: Why useful?

… x

… 1

… 3

… 5

… …

72

A (odd numbers)

… x

… 1

… 2

… 3

… …

B (all numbers)

… x

… 2

… 4

… 6

… …

C (even numbers)

• Cost((A A C) A B) < Cost((A A B) A C)

• get second join for free

• Query Rewrite does not know that, …

• but it knows that it might happen and hopes for optimizer…

• Codegen gets rid of unnecessary predicates (e.g., A.x = B.x)

Query Optimization

Two tasks
Determine order of operators

Determine algorithm for each operator (hashing, sorting, …)

Components of a query optimizer
Search space

Cost model

Enumeration algorithm

Working principle
Enumerate alternative plans

Apply cost model to alternative plans

Select plan with lowest expected cost
73

Query Optimization: Does it matter?

A x B x C
size(A) = 10,000

size(B) = 100

size(C) = 1

cost(X x Y) = size(X) + size(Y)

cost((A x B) x C) = 1,010,001
cost(A x B) = 10,100

cost(X x C) = 1,000,001 with X = A x B

cost (A x (B x C)) = 10,201
cost(B x C) = 101

cost(A x X) = 10,100 with X = B x C
74

Query Opt.: Does it matter?

A x B x C
size(A) = 1000

size(B) = 1

size(C) = 1

cost(X x Y) = size(X) * size(Y)

cost((A x B) x C) = 2000
cost(A x B) = 1000

cost(X x C) = 1000 with X = A x B

cost (A x (B x C)) = 1001
cost(B x C) = 1

cost(A x X) = 1000 with X = B x C
75

Search Space: Relational Algebra

Associativity of joins:
(A A B) A C = A A (B A C)

Commutativity of joins:
A A B = B A A

Many more rules
see Kemper/Eickler or Garcia-Molina text books

What is better: A A B or B A A?

it depends

need cost model to make decision

76

Search Space: Group Bys

SELECT … FROM R, S WHERE R.a = S.a GROUP BY R.a, S.b;

GR.a, S.b(R A S)

GS.b(GR.a(R) A S)

Often, many possible ways to split & move group-bys
again, need cost model to make right decisions

77

Cost Model

Cost Metrics
Response Time (consider parallelism)

Resource Consumption: CPU, IO, network

$ (often equivalent to resource consumption)

Principle
Understand algorithm used by each operator (sort, hash, …)
estimate available main memory buffers

estimate the size of inputs, intermediate results

Combine cost of operators:
sum for resource consumption

max for response time (but keep track of bottlenecks)

Uncertainties
estimates of buffers, interference with other operators

estimates of intermediate result size (histograms)
78

Equi-Width Histogram

79

SELECT * FROM person WHERE 25 < age < 40;

Equi-Depth Histogram

0

10

20

30

40

50

60

20 bis 42 42 bis 48 48 bis 53 53 bis 59 59 bis 70

80

SELECT * FROM person WHERE 25 < age < 40;

Multi-Dimensional Histogram

0

10

20

30

40

50

60

20 bis 30 30 bis 40 40 bis 50 50 bis 60 60 bis 70

70-100

100-150

150-250

81

SELECT * FROM person

WHERE 25 < age < 40 AND salary > 200;

;

Enumeration Algorithms

Query Optimization is NP hard
even ordering or Cartesian products is NP hard

in general impossible to predict complexity for given query

Overview of Algorithms
Dynamic Programming (good plans, exp. complexity)

Greedy heuristics (e.g., highest selectivity join first)

Randomized Algorithms (iterative improvement, Sim. An., …)

Other heuristics (e.g., rely on hints by programmer)

Smaller search space (e.g., deep plans, limited group-bys)

Products
Dynamic Programming used by many systems

Some systems also use greedy heuristics in addition

82

Dynamic Programming

access_plans: enumerate all ways to scan a table (indexes, …)

 join_plans: enumerate all ways to join 2 tables (algos, commut.)

prune_plans: discard sub-plans that are inferior (cost & order)

83

Access Plans

SELECT * FROM R, S, T WHERE R.a = S.a AND R.b = T.b
ORDER BY R.c;

Assume Indexes on R.a, R.b, R.c, R.d

scan(R): cost = 100; order = none

idx(R.a): cost = 100; order = R.a

idx(R.b): cost = 1000; order = R.b

idx(R.c): cost = 1000; order = R.c

idx(R.d): cost = 1000; order = none

Keep blue plans only. Why?
And how can all that be? (Whole lecture on all this.)

84

Access Plans for S

SELECT * FROM R, S, T WHERE R.a = S.a AND R.b = T.b
ORDER BY R.c;

Assume Indexes on S.b, S.c, S.d

scan(S): cost = 1000; order = none

idx(S.b): cost = 10000; order = none

idx(S.c): cost = 10000; order = none

idx(S.d): cost = 10000; order = none

85

Access Plans for T

SELECT * FROM R, S, T WHERE R.a = S.a AND R.b = T.b
ORDER BY R.c;

Assume Indexes on T.a, T.b

scan(T): cost = 10; order = none

idx(T.a): cost = 100; order = none

idx(T.b): cost = 100; order = T.b

86

Join Plans for R join S

SELECT * FROM R, S, T WHERE R.a = S.a AND R.b = T.b
ORDER BY R.c;

Consider all combinations of (blue) access plans

Consider all join algorithms (NL, IdxNL, SMJ, GHJ, …)

Consider all orders: R x S, S x R

Prune based on cost estimates, interesting orders

Some examples:
scan(R) NLJ scan(S): cost = 100; order = none

scan(S) IdxNL Idx(R.a): cost = 1000; order = none

idx(R.b) GHJ scan(S): cost = 150; order = R.b

idx(R.b) NLJ scan(S): cost = 250; order = R.b

87

Join Plans for three-way (+) joins

SELECT * FROM R, S, T WHERE R.a = S.a AND R.b = T.b
ORDER BY R.c;

Consider all combinations of joins (assoc., commut.)
e.g., (R A S) A T, S A (T A R), ….

sometimes even enumerate Cartesian products

Use (pruned) plans of prev. steps as building blocks
consider all combinations

Prune based on cost estimates, interesting orders
interesting orders for the special optimality principle here

gets more complicated in distributed systems

Exercise: Space and Time complexity of DP for DBMS.88

Application

Query Processor

Indexes, Records

Manager, Pages

SQL / rel. algebra {tuples}

get/put block

T
ra

n
s
a

c
ti
o
n
s

(L
o

c
k
in

g
,

L
o
g
g
in

g
)

M
e
ta

d
a
ta

 M
g
m

t

(S
c
h
e

m
a

,
S

ta
ts

)

Server (Network, App Buffers, Security)

Storage System (disks, SSDs, SAN, …)

Query Processor

Data Manager

Storage Manager

89

Storage System Basics

Storage is organized in a hierarchy
combine different media to mimic one ideal storage

Storage systems are distributed
disks organized in arrays

cloud computing: DHT over 1000s of servers (e.g., S3)

advantages of distributed storage systems
 cost: use cheap hardware

 performance: parallel access and increased bandwidth

 fault tolerance: replicate data on many machines

Storage access is non uniform
multi-core machines with varying distance to banks

sequential vs. random on disk and SSDs

place hot data in the middle of disk
90

Idea (1min)

Building (10min)

City (1.5h)

Pluto (2 years)

Andromeda

(2000 years)
91

Storage Hierarchy

<1ns

register

<10ns

L1/L2 Cache

100ns

Main Memory

3-10 ms

Disk

secs

Tape

Why a Storage Hierarchy?

Mimics ideal storage: speed of register at cost of tape
unlimited capacity // tape

zero cost // tape

Persistent // tape

zero latency for read + write // register

infinte bandwidth // register

How does it work?
Higher layer „buffers“ data of lower layer

Exploit spatial and temporal locality of applications

92

Disks: Sequential vs. Random IO

Time to read 1000 blocks of size 8 KB?

Random access:
trnd = 1000 * t

= 1000 * (ts + tr + ttr) = 1000 * (10 + 4.17 + 0.16)
= 1000 * 14.33 = 14330 ms

Sequential access:
tseq = ts + tr + 1000 * ttr + N * ttrack-to-track seek time

= ts + tr + 1000 * 0.16 ms + (16 * 1000)/63 * 1 ms
= 10 ms + 4.17 ms + 160 ms + 254 ms ≈ 428 ms

Need consider this gap in algorithms!

[Information Systems Class] 93

Storage Manager

Control all access to external storage (i.e., disks)
implements external storage hierarchy (SSD, tape, disks, …)

optimize heterogeneity of storage

outsmarts file system: operating system caching

write-ahead logging for redo and undo recovery

Oracle, Google, etc. implement their own file system

Management of files and blocks
keep track of files associated to the database (catalog)

group set of blocks into pages (granularity of access)

Buffer management
segmentation of buffer pool

clever replacement policy; e.g., MRU for sequential scans

pin pages (no replacement while in use)
94

Database = { files }

A file = variable-sized sequence of blocks
Block is the unit of transfer to disk. Typically, 512B

A page = fixed-sized sequence of blocks.
A page contains records or index entries

(special case blobs. One record spans multiple pages)

typical page size: 8KB for records; 16 KB for index entries

Page is logical unit of transfer and unit of buffering
Blocks of same page are prefetched, stored on same track on disk 95

Table Spaces, Files, and Tables

Table Space

Table

belongs

belongs

N

1

1 File

N

96

Table Spaces

Explicit management of files allocated by the database
Each file belongs to a table space

Each table stored in a table space

Cluster multiple tables in the same file

DDL Operations
CREATE TABLESPACE wutz

DATAFILE a.dat SIZE 4MB, b.dat SIZE 3MB;
ALTER TABLESPACE wutz ADD DATAFILE …;
CREATE TABLE husten TABLESPACE wutz;

Warning: Full table space crash the DBMS
Classic emergency situation in practice

97

Buffer Management

Keep pages in main memory as long as possible
Minimize disk I/Os in storage hierarchy

Critical questions
Which pages to keep in memory (replace policy)?

When to write updated pages back to disk (trans. mgr.)?

General-purpose replacement policies
LRU, Clock, … (see operating systems class)

LRU-k: replace page with k th least recent usage

2Q: keep two queues: hot queue, cold queue
Access moves page to hot queue

Replacement from cold queue

98

Access Patterns of Databases

Sequential: table scans
P1, P2, P3, P4, P5, …

Hiearchical: index navigation
P1, P4, P11, P1, P4, P12, P1, P3, P8, P1, P2, P7, P1, P3, P9, …

Random: index lookup
P13, P27, P3, P43, P15, …

Cyclic: nested-loops join
P1, P2, P3, P4, P5, P1, P2, P3, P4, P5, P1, P2, P3, P4, P5, …

99

DBMin [Chou, DeWitt, VLDB 1985]

Observations
There are many concurrent queries

Each query is composed of a set of operators

Allocate memory for each operator of each query

Adjust replacement policy according to access pattern

Examples
scan(T): 4 pages, MRU replacement

indexScan(X)
200 pages for Index X, LRU replacement

100 pages for Table T, Random replacement

hashJoin(R, S)
200 pages for Table S

Allows to do load control and further optimizations
Economic model for buffer allocation, priority-based BM, …100

DBMin: Buffer Segmentation

scan(T)

DB

index(S.b)

SELECT *

FROM T, S

WHERE T.a=S.b

SELECT *

FROM T

fetch(S)

scan(T)

DB Buffer Pool

101

DBMS vs. OS: Double Page Fault

DBMS needs Page X
Page X is not in the DB buffer pool

DBMS evicts Page Y from DB buffer pool
make room for X

But, Page Y is not in the OS Cache

OS reads Page Y from disk (swap)

Summary
Latency: need to wait for (at least) two I/Os

Cost: If Y updated, up to three I/Os to write Y to disk

Utilization: Same page held twice in main memory

If you are interested in DB/OS co-design, … 102

Application

Query Processor

Indexes, Records

Manager, Pages

SQL / rel. algebra {tuples}

get/put block

T
ra

n
s
a

c
ti
o
n
s

(L
o

c
k
in

g
,

L
o
g
g
in

g
)

M
e
ta

d
a
ta

 M
g
m

t

(S
c
h
e

m
a

,
S

ta
ts

)

Server (Network, App Buffers, Security)

Storage System (disks, SSDs, SAN, …)

Query Processor

Data Manager

Storage Manager

103

Data Manager

Maps records to pages
implement „record identifier“ (RID)

Implementation of Indexes
B+ trees, R trees, etc.

Index entry ~ Record (same mechanism)

Freespace Management
Index-organized tables (IOTs)

Various schemes

Implementation of BLOBs (large objects)
variants of position trees

104

Structure of a Record

Fixed length fields
e.g., number(10,2), date, char[100]

direct access to these fields

Variable length fields
e.g., varchar[100]

store (length, pointer) as part of a fixed-length field

store payload information in a variable-length field

access in two steps: retrieve pointer + chase pointer

NULL Values

Bitmap: set 1 if value of a field is NULL

Bitmap fixed-length variable length fields

105

Inside a Page

record identifier (rid):
<pageno, slotno>

indexes use rids to ref. records

record position (in page):
slotno x bytes per slot

records can move in page
if records grow or shrink

if records are deleted

no need to update indexes
106

What happens when a page is full?

Problem: A record grows because of an update
E.g., a varchar field is updated so that record grows

Idea: Keep a placeholder (TID)
Move the record to a different page

Keep a „forward“ (TID) at „home“ page

If record moves again, update TID at „home“ page

Assessment
At most two I/Os to access a record; typically, only one

Flexibility to move records within and across pages

No need to update references to record (i.e., indexes)

107

TID (Forwarding) Concept

911, 2

911 4711

4711, 3
Wutz 23

108

Freespace Management

Find a page for a new record
Many different heuristics conceivable

All based on a list of pages with free space

Append Only
Try to insert into the last page of free space list.

If no room in last page, create a new page.

Best Fit
Scan through list and find min page that fits.

First Fit, Next Fit
Scan through list and find first / next fit

Witnesses: Classify buckets

IOT: organize all tuples in a B+ tree
Let the B+ tree take care of splitting and freespace mgmt.

109

Application

Query Processor

Indexes, Records

Manager, Pages

SQL / rel. algebra {tuples}

get/put block

T
ra

n
s
a

c
ti
o
n
s

(L
o

c
k
in

g
,

L
o
g
g
in

g
)

M
e
ta

d
a
ta

 M
g
m

t

(S
c
h
e

m
a

,
S

ta
ts

)

Server (Network, App Buffers, Security)

Storage System (disks, SSDs, SAN, …)

Query Processor

Data Manager

Storage Manager

110

Meta-data Management: Catalog

All meta-data stored in tables
Accessed internally using SQL

Eat your own dogfood

Kinds of meta-data
Schema: used to compile queries

Table spaces: files used to store database

Histograms: estimate result sizes; query optimization

Parameters (cost of I/O, CPU speed, …): query optimization

Compiled Queries: used for (JDBC) PreparedStatements

Configuration: AppHeap Size, Isolation Level, …

Users (login, password): used for security

Workload Statistics: index advisors
111

What does a Database System do?

 Input: SQL statement

Output: {tuples}

1. Translate SQL into a set of get/put req. to backend storage

2. Extract, process, transform tuples from blocks

Tons of optimizations

Efficient algorithms for SQL operators (hashing, sorting)

Layout of data on backend storage (clustering, free space)

Ordering of operators (small intermediate results)

Semantic rewritings of queries

Buffer management and caching

Parallel execution and concurrency

Outsmart the OS

Partitioning and Replication in distributed system

 Indexing and Materialization

Load and admission control

+ Security + Durability + Concurrency Control + Tools112

Database Optimizations

Query Processor (based on statistics)
Efficient algorithms for SQL operators (hashing, sorting)

Ordering of operators (small intermediate results)

Semantic rewritings of queries

Parallel execution and concurrency

Storage Manager
 Load and admission control

 Layout of data on backend storage (clustering, free space)

 Buffer management and caching

 Outsmart the OS

Transaction Manager
 Load and admission control

Tools (based on statistics)
Partitioning and Replication in distributed system

 Indexing and Materialization

113

DBMS vs. OS Optimizations

Many DBMS tasks are also carried out by OS
Load control

Buffer management

Access to external storage

Scheduling of processes

…

What is the difference?
DBMS has intimate knowledge of workload

DBMS can predict and shape access pattern of a query

DBMS knows the mix of queries (all pre-compiled)

DBMS knows the contention between queries

OS does generic optimizations

Problem: OS overrides DBMS optimizations!
114

What to optimize?

Feature Traditional Cloud

Cost [$] fixed optimize

Performance [tps, secs] optimize fixed

Scale-out [#cores] optimize fixed

Predictability [($)] - fixed

Consistency [%] fixed ???

Flexibility [#variants] - optimize

[Florescu & Kossmann, SIGMOD Record 2009]

Put $ on the y-axis of your graphs!!!

115

Experiments [Loesing et al. 2010]

TPC-W Benchmark

throuphput: WIPS

latency: fixed depending on request type

cost: cost / WIPS, total cost, predictability

Players

Amazon RDS, SimpleDB

S3/28msec [Brantner et al. 2008]

Google AppEngine

Microsoft Azure

116

Scale-up Experiments

0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

W
IP

S

EB

MySQL RDS Large SDB S3 AE/C Azure Ideal

SDB

AE/C

S3

Azure

RDS

MySQL

117

Cost / WIPS (m$)

Low Load Peak Load

Amazon RDS 1.212 0.005

S3 / 28msec - 0.007

Google AE/C 0.002 0.028

MS Azure 0.775 0.005

118

What do you need for Project Part 2

Storage Manager
Management of files

Simple buffer management

Free space management and new page allocation

Data Manager
Slotted pages

Query Processor
Implementation of scan, join, group-by

Iterator model

(external for extra credit)

Catalog, Server, Transaction Manager
-

Be pragmatic! Get it running!
119

