
Transaction Management

Example: transfer CHF 50 from A to B

1. Read balance of A from DB into Variable a: read(A,a);

2. Subtract 50.- CHF from the balance: a:= a – 50;

3. Write new balance back into DB: write(A,a);

4. Read balance of B from DB into Variable b: read(B,b);

5. Add 50,- CHF to balance: b := b + 50;

6. Write new balance back into DB: write(B, b);

N.B.: Actually, banks do not do this in one TA! 
1

Properties of Transactions: ACID

Atomicity
All or nothing
Undo changes if there is a problem

Consistency

If DB consistent before a TA, DB consistent after TA

Check integrity constraints at the end of a TA

Isolation

TA is executed as if there were no other TA

Synchronize operations of concurrent TAs

Durability

Updates of a completed TA must never be lost

Redo changes if there is a problem

2

Getting Married(Mr. X, Ms. Y)

N.B.: This is how it really works! 

1. Mr. X, do you want to marry Miss Y?

2. if (no) then abort()

3. write(X.spouse, Y)

4. Miss Y, do you want to marry Mr. X?

5. if (no) then abort()

6. write(Y.spouse, X)

7. Does anybody object?

8. if (yes) then abort()

9. commit()

3

Properties of a Transaction (A & D)

Time

T2

T1

t1 t2
t3

Crash

4

Types of Failures: R1-R4 Recovery

1. Abort of a single TA (application, system)
 R1 Recovery: Undo a single TA

1. System crash: lose main memory, keep disk
 R2 Recovery: Redo committed TAs
 R3 Recovery: Undo active TAs

1. System crash with loss of disks
 R4 Recovery: Read backup of DB from tape

5

Programming with Transactions

 begin of transaction (BOT): Starts a new TA

 commit: End a TA (success).

Application wants to make all changes durable.

 abort: End a TA (failure).

Application wants to undo all changes.

N.B. Many APIs (e.g., JDBC) have an auto-commit option:

Every SQL statement run in its own TA.
6

SQL Example

insert into Lecture

values (5275, `Kernphysik`, 3, 2141);

insert into Professor

values (2141, `Meitner`, `FP`, 205);

commit

7

Advanced TA Features

 define savepoint: Establish a recoverable intermediate state

Attractive for long-running TAs; protect against crashes

Does not imply commit or abort!!!

backup transaction: Reset state of TA/DB to savepoint.

Undo all changes after savepoint.

Redo all changes before savepoint.

Stay within the same TA context.

8

State-transitions of TAs

potential active waiting

failed

Perm. failed

repeatable

prep. commit

committed

execute

demote

commit

activate

abort

terminate

Write perm.

restart

abort

reset

9

Concurrent Transactions

Alternative ways to execute T1, T2 und T3:

(a) Serial execution (single-user mode)

(b) Concurrent execution (multi-user mode)

Time

T1

T2

T3

T1

T2

T3

Trade-off between correctness and low latency!
10

Lost Update

write(A,a2)

a2 := a2 * 1.03

read(A,a2)

T2

write(B,b1)

b1 := b1 + 300

read(B,b1)

write(A,a1)

a1 := a1 – 300

read(A,a1)

T1

9.

8.

7.

6.

5.

4.

3.

2.

1.

Step

11

Uncommitted Read

read(A,a1)

write(A,a2)

a2 := a2 * 1.03

read(A,a2)

T2

abort

commit

read(B,b1)

write(A,a1)

a1 := a1 – 300

T1

9.

8.

7.

6.

5.

4.

3.

2.

1.

Step

12

Phantom

T1 T2

select sum(balance)

from Account

insert into Account

values (C,1000,...)

select sum(balance)

from Account

13

Serializability

Concurrent history is equivalent to a serial history!

(need to define equivalence of histories)

The following history is serializable (i.e., correct):

Step T1 T2

1. BOT

2. read(A)

3. BOT

4. read(C)

5. write(A)

6. write(C)

7. read(B)

8. write(B)

9. commit

10. read(A)

11. write(A)

12. commit
14

Defintion: Transaction

A TA (Ti) is defined as a sequence of operations:

 (BOT implicit – not considered here)

 ri(A): Ti reads Object A

wi(A): Ti writes Object A

ai : Ti aborts

ci : Ti commits

A TA defines a total order (<) on all its operations.

15

Defintion: Transaction (ctd.)

TA has either an abort or a commit; never both!

No operations after an abort, if Ti aborts

for all operations (except ai): pi(A) <i ai.

No operations after a commit, if Ti commits

for all operations (except ci): pi(A) <i ci

16

Definition of History (H)

H =

<H is a partial order that is consistent with <i:

<H orders operations which are in conflict

That is, for all p,q  H: p <H q OR q <H p

17

Def.: Conflicts of Reads and Writes

For i <> j

 ri(A) and rj(B): no conflict.

 ri(A) and wj(B): conflict iff A = B.

wi(A) and rj(B): conflict iff A = B.

wi(A) and wj(B): conflict iff A = B.

(Within the same TA all opertations are in conflict!)

Lemma: Two histories are equivalent if they execute
all pairs of conflicting operations in the same order.

Does this lemma define a „notwendig“ or „hinreichend“ crit.?
18

Def.: Conflicts of Aborts, Commits

Abort
 ri(A) and aj: Conflict if Tj updated Object A.

wi(A) and aj: Conflict if Tj updated Object A.

N.B. Reads of Tj are irrelevant.

Commit

 ri(A) and cj: no conflict

wi(A) und cj: no conflict

19

History of three TAs

r3(B) w3(A) w3(B) c3w3(C)

r1(A) w1(A) c1

r2(A) w2(B) c2w2(C)

H =

20

Definition: Serial History

A Serial History defines a total order on all Transactions:

TA1 < TA2 iff all operations o1 of TA1, o2 of TA2

o1 < o2

(N.B. A Serial History defines a total order on all
operations.)

21

Serial Execution: T
1

| T
2

Step T1 T2

1. BOT

2. read(A)

3. write(A)

4. read(B)

5. write(B)

6. commit

7. BOT

8. read(C)

9. write(C)

10. read(A)

11. write(A)

12. commit
22

Definition: Equivalence of Histories

Two histories are equivalent
All reads (of committed TAs) return the same result.

At the end, the state of the DB is the same

Corner Case:

R1(x) W2(x) R1(x) A1 C2

is equivalent to

R1(x) R1(x) A1 W2(x) C2

23

Criterion for Equivalent Histories

H  H‘ if all conflict operations are executed in same order.
(Exercise: Proof for this Criterion.)

r1(A)  r2(C)  w1(A)  w2(C)  r1(B)  w1(B)  c1  r2(A)  w2(A)  c2

r1(A)  w1(A)  r2(C)  w2(C)  r1(B)  w1(B)  c1  r2(A)  w2(A)  c2

r1(A)  w1(A)  r1(B)  r2(C)  w2(C)  w1(B)  c1  r2(A)  w2(A)  c2

r1(A)  w1(A)  r1(B)  w1(B)  c1  r2(C)  w2(C)  r2(A)  w2(A)  c2

24

Defintion: Serializable History

A History is Serializable iff it is equivalent to a serial
history.

There are many serial histories. Okay to be equivalent to 1.

n! complexity to test for serializability with n concurrent TAs

How can you do that more efficiently?

How do you test whether a DBMS only generates serializable
histories?

25

Non-serializable History

Step T1 T3

1. BOT

2. read(A)

3. write(A)

4. BOT

5. read(A)

6. write(A)

7. read(B)

8. write(B)

9. commit

10. read(B)

11. write(B)

12. commit
26

Is this history serializable?

Step T1 T3

1. BOT

2. read(A,a1)

3. a1 := a1 – 50

4. write(A,a1)

5. BOT

6. read(A,a2)

7. a2 := a2 – 100

8. write(A,a2)

9. read(B,b2)

10. b2 := b2 + 100

11. write(B,b2)

12. commit

13. read(B,b1)

14. b1 := b1 + 50

15. write(B,b1)

16. commit
27

Is this history serializable?

Step T1 T3

1. BOT

2. read(A,a1)

3. a1 := a1 – 50

4. write(A,a1)

5. BOT

6. read(A,a2)

7. a2 := a2 * 1.03

8. write(A,a2)

9. read(B,b2)

10. b2 := b2 * 1.03

11. write(B,b2)

12. commit

13. read(B,b1)

14. b1 := b1 + 50

15. write(B,b1)

16. commit
28

Serializable History

Is the following history serializable? If yes, what is the serial hist.?

r1(A) w1(A) w1(B)

r3(A) w3(A) c3

r2(A) w2(B) c2H =

c1

29

Serializability Graph

SG(H)=

T3

T1

T2

w1(A)  r3(A) in H implies T1  T3 in SG(H)

Compact representation of the dependencies in a history.

30

Serializability Theorem (Proof?)

A history is serializable iff its serializability graph is acyclic.

History

H =
w1(A)  w1(B)  c1  r2(A)  r3(B)  w2(A)  c2  w3(B)  c3

Serializability Graph Topological Sorting

SG(H)=

T2

T3

T1

21

231

2

321

1

||

||

ss

s

s

HHH

TTTH

TTTH

ºº

=

=

31

Time in Databases

Networks vs. Database Systems (DBMS)
Networks bridge space

Database systems bridge time

A DBMS orders operations (and TAs)
Databases do NOT define time intervals (seconds, min., …)

But, order determines visibility and recoverability of updates

Distinguish between transaction time and app time
Bi-temporal: Order for 2010 may be entered in 2009

32

Database-Scheduler

Transaction-Manager TM

Scheduler

Recovery-Manager

Buffer-Manager

Data-Manager

T2 T3T1 Tn......

Storage System

33

Pessimistic Synchronization

Basic Idea: Control Visibility by blocking TAs

Locking

S (shared, read lock): needed for read operations

X (exclusive, write lock): needed for write operations

NL S X

S   -

X  - -
request

Compatibility Matrix
decide when to grant lock vs. block TA

many sophisticated variants: trade concurrency vs. overhead

34

Lock Modes: OS vs. DB

Why use multiple kinds of locks?
increases concurrency: e.g., two concurrent reads

Why can´t OS play the same tricks?
DB knows semantics of operations –> compatability

OS must make „worst case“ assumptions; ops are black box

(similar optimization as buffer management in DBMS)

Practice
Many more lock modes in real systems

Many further optimizations and tricks possible

(see Information Systems Class for more)

35

Two-phase Locking Protocol (2PL)

1. Before accessing an object, a TA must acquire lock.

2. A TA acquires a lock only once. Lock upgrades are possible.

3. A TA is blocked if the lock request cannot be granted
according to the compatibility matrix.

4. A TA goes through two phases:
 Growth: Acquire locks, but never release a lock.
 Shrink: Release locks, but never acquire a lock.

5. At EOT (commit or abort) all locks must be released.

 N.B.: 2PL also relevant if you have only X locks. Why?

36

Two-phase Locking

#Locks

TimeGrowth Shrink

2PL

37

Two-phase Locking

#Locks

TimeGrowth Shrink

2PL

OS

38

Synchronization of TAs using 2PL

T1 modifies Objects A and B (e.g., money transfer)

T2 reads Objects A and B

39

Synchronization of TAs using 2PL

Step T1 T2 Comment

1. BOT

2. lockX(A)

3. read(A)

4. write(A)

5. BOT

6. lockS(A) T2 is blocked

7. lockX(B)

8. read(B)

9. unlockX(A) T2 is reactivated

10. read(A)

11. lockS(B) T2 is blocked

12. write(B)

13. unlockX(B) T2 is reactivated

14. read(B)

15. commit

16. unlockS(A)

17. unlockS(B)

18. commit
40

Violation of 2PL: Non-ser. History

Step T1 T3

1. lockX(A)

2. write(A)

3. unlockX(A)

4. lockX(A)

5. write(A)

6. lockX(B)

7. write(B)

8. unlockX(A,B)

9. commit

10. lockX(B)

11. write(B)

12. commit
41

2PL and Phantoms:

How does that work?

T1 T2

select sum(balance)

from Account

insert into Account

values (C,1000,...)

select sum(balance)

from Account

Need a lock on „Account“. Typically done with index, but tricky!
42

Correctness of 2PL (Proof Sketch)

Let H be a history generated by 2PL

Assume that H is not serializable

Serializability Graph of H must have a cycle (Ser. Theorem)

Wlog, assume that the cycle has length 2 with T1 and T2

(proof generalizes to any number of transactions in cycle)

There must exist operations o1, o1’ in T1 and o2, o2’ in T2:

conflict(o1, o2)

conflict(o1’, o2’)

o1 < o2 in H

o2’ < o1’ in H

Wlog, assume o2 < o2’ in H

o1 < o2 < o2’ < o1’

Contradicts 2PL

T1 releases lock for o1 before getting lock for o1’ (qed)

43

Does 2PL prevent this phenomenon?

read(A,a1)

write(A,a2)

a2 := a2 * 1.03

read(A,a2)

T2

abort

. . .

write(A,a1)

a1 := a1 – 300

T1

9.

8.

7.

6.

5.

4.

3.

2.

1.

Step

. . .

Abort of T1 triggers abort of T2. Possible domino effect.
44

Strict 2PL

All locks are kept until EOT (commit or abort)

#Locks

TimeGrowth EOT
45

Discussion: Strict 2PL

Avoid cascading aborts
Deal with uncommitted read problems (Phenomenon 2)

Avoids implicit violation of 2PL: implicit lockX for abort

Important: Avoids rollback of committed TAs
Basic 2PL does not implement ACID properly

Couples visibility with recoverability
Recoverabilty at commit: Definition of A and D

Visibility at commit: Artifact of strict 2PL

Important: differentiate between these two concepts

46

Deadlocks

Step T1 T2 Comment

1. BOT

2. lockX(A)

3. BOT

4. lockS(B)

5. read(B)

6. read(A)

7. write(A)

8. lockX(B) T1 must wait for T2

9. lockS(A) T2 must wait for T1

10.  Deadlock

47

Deadlock Detection

Wait-for Graph

T1  T2  T3  T4  T1

T2  T3  T5  T2

T1

T4 T3

T5

T2

AbortT3 will resolve both cycles

Alternative: Deadlock detection with timeouts. Pros/cons?
48

2PL: OS vs. DB

Both use locking to protect resources
OS: printers, critical paths (code)

DB: objects (data)

Difference: individual vs. collection of resources
OS: individual resource

DB: collection of resources with integrity constraints

Both assign locks to „sequence of operations“
OS: process

DB: transaction

Difference: duration of keeping locks
OS: keep lock as long as resource is used

DB: keep lock beyond usage – end of transaction

(Distributed System add another dimension:
Maintain and synchronize copies of the same resource)

49

Snapshot Isolation

When a TA starts it receives a timestamp, T.

All reads are carried out as of the DB version of T.

Need to keep historic versions of all objects!!!

All writes are carried out in a separate buffer.

Writes only become visible after a commit.

When TA commits, DBMS checks for conflicts

Abort TA1 with timestamp T1 if exists TA2 such that

TA2 committed after T1 and before TA1

TA1 and TA2 updated the same object

Basic idea the same as for SVN!

Does Snapshot Isolation give you serializability? [Berenson+95]

What are the advantages/disadv. of Snapshot Isolation? 50

SI and Lost Update

write(A)

commit

read(A)

T2

commit

write(A)

T1

8.

7.

6.

5.

4.

3.

2.

1.

Step

read(A)

BOT

BOT

51

SI and Lost Update (ctd.)

write(A)

commit

read(A)

T2

commit

write(A)

T1

8.

7.

6.

5.

4.

3.

2.

1.

Step

read(A)

BOT

BOT

52

SI and Lost Update (ctd.)

write(A)

commit

read(A)

T2

commit

write(A)

T1

8.

7.

6.

5.

4.

3.

2.

1.

Step

read(A)

BOT

BOT

SI reorders R1(A) and W2(A) -> not seriliz. -> abort of T1
53

SI and Uncommitted Read

write(A)

BOT

read(A)

…

T2

abort

read(B)

write(A)

BOT

T1

8.

7.

6.

5.

4.

3.

2.

1.

Step

read(A)

54

SI and Phantoms:

How does that work?

T1 T2

select sum(balance)

from Account

insert into Account

values (C,1000,...)

select sum(balance)

from Account

„Sandbox“ also involves „set of accounts“! Works nicely!
55

Discussion of Snapshot Isolation

Concurrency and Availability
No read or write of a TA is ever blocked

(Blocking only happens when a TA commits.)

Performance, Overhead:
Need to keep write-set of a TA only

Very efficient way to implement aborts

Often keeping all versions of an object useful anyway

No deadlocks, but unnecessary rollbacks

Implicitly deals with phantoms (complicated with 2PL)

Correctness (Serializability): Problem „Write Skew“
Checking integrity constraint also happens in the snapshot

Two concurrent TAs update different objects

Each update okay, but combination not okay

Example: Both doctors sign out…
56

Example: One doctor on duty!

Step T1 T2 Comment

1. BOT (A, duty); (B, duty)

2. write(A, free)

3. BOT

4. write(B, free)

5. check-constraint Okay: (B, duty)

6. check-constraint Okay: (A, duty)

7. commit

8. commit

9. Constraint violated!!!

N.B. Example can be solved if check part of DB commit.
Impossible to solve at the app level.

57

Interesting History

Step T1 T2 T3

1 BOT

2 BOT

3 write(B)

4 write(C)

5 commit

6 read(B)

7 BOT

8 read(A)

9 read(C)

10 commit

11 write(A)

12 commit

58

Interesting History: Discussion

2PL
accepts history

supports serialization: T2 -> T3 -> T1

everything okay

 Snapshot Isolation
accepts this sequence of operations

„logically“ reorders operations: write(B) and read(B)

enforces serialization: T1 -> T2 -> T3

but NOT equivalent to serial execution of T1; T2; T3
reordering creates a cycle in history

59

Time in 2PL vs. Time in SI

(Revisited) Definition of History
Partial order of all operations

Total order of conflict operations

Histories in 2PL
Partial order of all operations

Total order of conflict operations

No re-ordering of operations

Only serializable histories (modulo phantoms, tbd)

Histories in SI
Partial order of all operations

Avoids R-W conflicts by reordering R-W operations
reads always executed *before* conflicting write operations

Abort to deal with W-W conflict operations

Allows non-serializable histories
60

Isolation Levels in SQL92

set transaction

[read only, |read write,]

[isolation level

read uncommitted, |

read committed, |

repeatable read, |

serializable,]

[diagnostic size ...,]

61

Isolation Levels in SQL92

read uncommitted:

Lowest level of isolation

Only allowed for read-only TAs

Allows the „uncommitted read“ phenomenon

Why only for read-only transactions?

T1 T2

read(A)

. . .

write(A)

read(A)

. . .

rollback

62

Isolation Level in SQL92

read committed:

TAs only read committed versions of objects

However, one TA may read different versions

Modifiy 2PL: allow short-lived S locks

T1 T2

read(A)

write(A)

write(B)

commit

read(B)

read(A)

. . . 63

Isolation Level in SQL92

repeatable read:

Prevents reading different versions of the same object

However, phantoms can happen

serializable:

full isolation (no phantoms, etc.)

64

Money Transfer in the Real World

TA1: Withdrawal(A, B, M)
read(A,a)

write(A,a-M)

enqueue(valuta, B, M)

commit()

TA2: Valuta to B – periodic batch process
dequeue(valuta, B, M)

read(B, b)

write(B, b+M)

commit()

Reading and writing to Queue is transacted!!!
atomicity enforced using 2PC (two-phase commit)

65

Money Transfer in the Real World

The world is distributed
different banks participate in a „transaction“

different services within a bank

It is difficult (impossible) to implement distrib. ACID
queues are a way to decouple entities

Eventual Atomicity
at some point, all or nothing (partial visibility in between)

failures in TA2 will result in compensation of TA1

Other ACID properties
Durability: okay

Consistency: okay

Isolation: no

This is good enough for money transfer!!! 66

Withdrawal (ATM) in the Real World

TA1: Reserve money M from Account A
read(A.balance, b)

read(A.reservation, r)

if (b < reservation + M) abort()

write(A.reservation, r+M)

commit()

TA2: Periodic process: reservation - withdrawal
read(A.reservation, r)

if (r = 0) then abort()

read(A.balance, b)

write(A.balance, b-r)

write(A.reservation, 0)

commit()

Why would you do this?
67

Discussion of Withdrawal

Similar to a Two-phase commit
Get agreement from everybody

Implement transaction

Big advantage
decouple participants

semantic locking (ESCROW); higher concurrency
need not block the $ resource while thinking

ACID Properties
all fulfilled

Other example: Shopping Cart

68

DBs in the Cloud (connected)

69

Client Client Client

Pending Update Queues (SQS)

Step 1: Clients commit update records to pending update queues

S3

70

Client Client Client

Pending Update Queues (SQS)

Step 2: Checkpointing propagates updates from SQS to S3

S3

ok ok

Lock Queues (SQS)

71

Transaction Management in the Cloud

Use a distributed key-value store (DHT)
Replicate business objects on cheap HW

Propagate updates from one copy to the next

Implement TA Properties on top of that
Many different variants

Trade consistency for availability

Trade consistency for $

ACID Properties
Atomicity: eventual atomicity possible

Consistency: okay (compromised by isolation)

Isolation: read+write monotonicity

Durability: yes
72

