
Database Security

Authentification: verifying the id of a user

Authorization: checking the access privileges

Auditing: looking for violations (in the past)

Security Tasks

1

Data Security

Dorothy Denning, 1982:

 “Data Security is the science and study of methods of
protecting data (...) from unauthorized disclosure and
modification”

Data Security = Confidentiality + Integrity

2

How to attack an IT System?

Misuse of Authority

 Inference and Aggregation

Masking

Bypass Access Control

Browsing

Trojans

Hidden Channels

3

Security in Databases

Privacy (Confidentiality)
Do not allow access to private information

But support statistic analyses over private information

Avoid inference attacks (e.g., there is only one 42y man)

Q does not leak info for secret S if: P(S | Q) = P(S)

SELECT count(*)

FROM Patient

WHERE age=42

and sex=‘M’

and diagnostic=‘schizophrenia’

OK?

SELECT name

FROM Patient

WHERE age=42

and sex=‘M’

and diagnostic=‘schizophrenia’

4

Search:

SQL Injection

Problem: Naïve implementation of GUIs:

Search Box in Application (SQL Interface in Anwendung):

Dr. Lee

Login: User:

Password:

fred

SELECT…FROM…WHERE doctor=‘Dr. Lee’ and patientID=‘fred’
5

SQL Injection

Another example of poor application implementation:

Search: Dr. Lee’; DROP TABLE Patients; --

6

SQL Injection: Summary

The DBMS does the right thing.
Why does SQL injection work so often?

Quick & Dirty Reply:
Bad Programmers

(easy fix if you are careful in your Java code)

Sad Truth:
Security is implemented in the app and not in the DBMS.

(similar discussion as for integrity constraints)

Question: How many users does your project DB manage?
(Probably, no project has more than one user!)

7

Layers of Security

Legislation

Organisation

Authentification

Authorization (access control)

Cryptography

Database

Human

Machine

Problem: When human meets machine.
• Authentification and sometimes authorization

8

Discretionary Access Control

Access rules (o, s, t, p, f):

o O, set of objects (e.g., table, tuple, attribute)

s S, set of subjects (e.g., user, processes, apps)

t T, set of access rights (e.g., read, write, delete)

p a predicate (e.g., Level = „FP“)

f a Boolean value specifying whether s may grant the
privilege (o, t, p) to another subject s‘.

9

Discretionary Access Control

Unix SQL

S User, groups User

O Files, directories DB, tables, tuples,
attributes, views

T Read, write, execute CRUD

P Not supported Supported via views

F Fixed (owner, root) Grant option

10

Discretionary Access Control

Implementation:

Access matrix

Views

„Query Modification“

Disadvantages:

Creator of data needs to manage authorizations

Managing authorizations is cumbersome and error-prone

Exercise: Find all functional dependencies in the access matrix
of Unix! Normalize the access matrix of unix!

11

Access Control in SQL

Example:

grant select

on Professor

to eickler;

grant update (Legi, Lecture, PersNr)

on tests

to eickler;

12

o=Professor, s=eickler, t=SELECT

implicit: p=true, f=false

o=P(tests), s=eickler, t=UPDATE

implicit: p=true, f=false

Access Control in SQL

Other privileges:

Delete

insert

create references (inference attack)

grant option (f = true)

Revoke privileges

revoke update (Legi, Lecture, PersNr)
on tests
from eickler cascade;

13

Views

Implementation of predicates (p in the (o,s,t,p,f) model)

create view FirstSemesterStudents as
select *
from Student
where Semester = 1;

grant select
on FirstSemesterStudents
to tutor;

Protecting personal records by aggregation

create view StrictProf (Nr, AvgGrade) as
select Nr, avg(Grade)
from tests
group by Nr;

14

Group Access Rights

CREATE VIEW StudentGrades AS
SELECT * FROM tests t
WHERE EXISTS (SELECT * FROM Student
WHERE Legi = t.Legi AND Name = USER)

GRANT SELECT ON StudentGrades
TO <StudentGroup>

• Give students right to access their own test results.
• specific to Oracle
• magic „Name = USER“ predicate not standardized

15

Auditing

audit session by system

whenever not successful;

audit insert, delete, update on Professor;

• Components of Audits
• Logging: keep a record of all (interesting) activities

• Analyze the logs

• (Ideally query logs with DBMS – in practice not poss.)

16

Summary: Security in SQL

Cons:
coarse granularity: objects are tables or views – not tuples
Example: auction system; read your own bids, but not bids of others

 responsibility to manage privileges with creator of table
 Not necessarily the creator of the data

 difficult to deal with DBMS access violations in app layer
 (Analogous to “Integrity Constraints”)

Implications
Access control is implemented at the app tier

App access DB as “super-user”

Security features of DB are not used

Goal: Increase managability of privileges.
17

Kinds of Privileges

explicit / implicit privileges
positive / negative privileges
strong / weak privileges

Authorization Algo:

Input: (o, s, t) (May Subject s access Object o using Operation t ?)
Output: Boolean (grant access / refuse access)
if (exists explicit or implicit strong privilege (o, s, t))

then return true
else if (exists explicit or implicit strong negative privilege (o, s, t))

then return false
else if (exists explicit or implicit weak privilege (o, s, t))

then return true
else if (exists explicit or implicit weak negative privilege (o, s, t))

then return false
return false // default: reject

18

Implicit Authorization: Subject Hierarchy

explicit positive privilege at one level

implicit positive privileges on all higher levels

explicit negative privilege at one level

implicit negative privilege on all lower levels

President

Employees

Group Leader

. Assistant

Dean

Professor

PhD Student

19

Strong and Weak Privileges

President

Employee

Group Leader

Assistant

Dean

Professor

PhD Student

strong pos. privilege strong neg. privilege

weak pos. Privilege weak neg. privilege

Pres. Assistant

Privilege: Read Name of
all Employees

Privilege: Read Name
of all Employees

overwrites

20

Implicit Privileges: Operation Hierarchy

write

read

explicit positive privilege at one level

implicit positive privileges on all lower levels

explicit negative privilege at one level

implicit negative privilege on all higher levels

21

Implicit Privileges: Object Hierarchy

Implications depend on operations!

Database

Schema

Relation

Tuple

Attribute

22

Implicit Privileges: Type Hierarchy

Employee

is-a

PhD Student Professor

PersNr

Name

age

age

Name

PersNr

Level

Room

age

Name

PersNr

area

23

Implicit Privileges: Type Hierarchy

User Groups:

Group leaders may read the name of all employees

PhD students may read the name of all professors

Queries:

Read the name of all PhD students

Read the name of all professors

24

Implicit Privileges: Type Hierarchy

Rules:

Privilege on A.x implies Privilege on B.x if B is subtype of A

Privilege on Class A implies Privilege on A.x if x is inherited

from supertype

Privilege on Class A does NOT imply Right on B.x if B is

subtype of A and x is defined in B.

25

Mandatory Access Control

Classification of „importance“ of subjects and objects

clear(s), for Subject s

class(o), for Object o

Main idea: control data flow from low to high levels

s may read o iff class(o) clear(s)

Class of o depends on importance of creator s
clear(s) class(o)

Used in military: data flows bottom-up

(control flows from top-down)
26

Multi-level Databases

Goal: User should not know what he/she cannot see!

SecretAgent

TC Id IC Name NC Skills SC

ts 007 s Bond, James s meucheln ts

ts 008 ts Clouseau ts spitzeln ts

View of a user who is classified as „s“

SecretAgent

TC Id IC Name NC Skills SC

s 007 s Bond, James s - s

Problems:

„s“ user inserts tuple with Id „008“

„s“ user modifies the Skills of „007“

„s“ < „ts“; Id is key of the SecretAgent relation

27

Multi-level Relations

Multilevel-Relation R with schema

R = {A1, C1, A2, C2, . . ., An, Cn, TC}

Instances R
C

with tuples of the form

[a1, c1, a2, c2, . . . , an, cn, tc]

 Visibility of tuples in R
C

: ci ck for all attr. i; key k

 Visibility of attributes in R
C

: ai is visible if clear(s) ci

 tc ci (classification of tuple; not used here)

28

Integrity Constraints

k is the (logical) key of Multi-level Relation R

Entity-Integrity. R is entity consistent iff, for all instances Rc
of R and all r Rc:

1. Ai k r.ai Null

2. Ai, Aj k r.ci = r.cj

3. Ai k r.ci r.ck (ck is class of the key)

All visible tuples of R can be identified by their key at all levels.

It is possible to hide some (non-key) attributes of a tuple.

29

Integrity Constraints

k is the (logical) key of Multi-level Relation R

Null-Integrity. R is Null consistent iff, for all instancesRc of R :

1. r Rc : r.ai = Null r.ci = r.ck

2. Rc has no subsumptions. That is, there are no two tuples
r, s so that for all attributes Ai:

 r.ai = s.ai and r.ci = s.ci OR

 r.ai Null and s.ai = Null

(See next slides for subsumption violations.)

30

Subsumption-free Relations

a) Rts

SecretAgent

TC Id IC Name NC Skill SC

s 007 s Bond, James s - s

b) Correct update of Rts by user classified as „ts“

SecretAgent

TC Id IC Name NC Skill SC

ts 007 s Bond, James s meucheln ts

c) Incorrect update of Rts by user classified as „ts“
SecretAgent

TC Id IC Name NC Skill SC

s 007 s Bond, James s - s

ts 007 s Bond, James s meucheln ts
31

Integrity Constraints

Inter-instance Integrity:
for c‘ < c , Rc‘ can be computed from Rc

Rc‘ = f(Rc, c‘)
Filter function f can be defined as follows:

1. foreach r Rc , r.Ck c‘ create s Rc‘ such that

otherwise .

'. if .
.

otherwise Null

'. if .
.

k

ii

i

ii

i

cr

ccrcr
cs

ccrar
as

2. Rc‘ does not contain any other tuples.

3. Eliminate subsumed tuples.
32

Integrity Constraints

Poly-instantiation Integrity. For all instances Rc and all

attributes Ai the following functional dependency holds:

{k, Ck, Ci} Ai

 k is the visible key of each instance

 If all integrity constraints are met, then a multi-value relation

can be implemented as a set of (regular) relations on top of a

(regular) relational database system.
33

