ORACLE

Oracle® Database
Concepts

11gRelease 2 (11.2)
E40540-04

May 2015

Oracle Database Concepts, 11g Release 2 (11.2)

E40540-04

Copyright © 1993, 2015, Oracle and/ or its affiliates. All rights reserved.
Primary Authors: Lance Ashdown, Tom Kyte

Contributors: Drew Adams, David Austin, Vladimir Barriere, Hermann Baer, David Brower, Jonathan
Creighton, Bjern Engsig, Steve Fogel, Bill Habeck, Bill Hodak, Yong Hu, Pat Huey, Vikram Kapoor, Feroz
Khan, Jonathan Klein, Sachin Kulkarni, Paul Lane, Adam Lee, Yunrui Li, Bryn Llewellyn, Rich Long, Barb
Lundhild, Neil Macnaughton, Vineet Marwah, Mughees Minhas, Sheila Moore, Valarie Moore, Gopal
Mulagund, Paul Needham, Gregory Pongracz, John Russell, Vivian Schupmann, Shrikanth Shankar, Cathy
Shea, Susan Shepard, Jim Stenoish, Juan Tellez, Lawrence To, Randy Urbano, Badhri Varanasi, Simon Watt,
Steve Wertheimer, Daniel Wong

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, then the following notice is applicable:

U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software,
any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users
are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and
agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the programs, including any operating system, integrated software, any programs installed on
the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to
the programs. No other rights are granted to the U.S. Government.

This software or hardware is developed for general use in a variety of information management
applications. It is not developed or intended for use in any inherently dangerous applications, including
applications that may create a risk of personal injury. If you use this software or hardware in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other
measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software or hardware in dangerous applications.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of
their respective owners.

Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks
are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD,
Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced
Micro Devices. UNIX is a registered trademark of The Open Group.

This software or hardware and documentation may provide access to or information about content,
products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and services
unless otherwise set forth in an applicable agreement between you and Oracle. Oracle Corporation and its
affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services, except as set forth in an applicable agreement between you and
Oracle.

Contents

PUOIACE ... et s et s e e XiX
AN S Lo = VT SPR R RRRT XiX
Documentation AcCesSSIDIlitycccooiiiiiiiiiiiiiii e XiX
Related DOCUIMENTATIONc.veiievieeeieceieeeeeetee ettt ettt eeteeeaaeeaeeeaeesateesseeenseessseesseesseensessneseseeons XX
CONMVEIILIONS ..oeitveeiiee ettt ettt e e eeet e e e e e et e e e e e eate e e e s essaaaeeeeesasaaaeeeesesasseessessaseseesesnassaeeeesssseseesssnssenesesons XX

1 Introduction to Oracle Database

About Relational Databases...........c.ccecveiuieiiiiiiiicieeeeiete ettt et e steeae e eaesreesse s s esesreens 1-1
Database Management System (DBMS)ccccoooiiiniiiieininiceicee e 1-1
Relational MOAELc..oveieeieiieiiiiiieeteetete ettt sttt ess et et e st eseesesseesasbessessessessessesansansensens 1-2
Relational Database Management System (RDBMS)..........ccooooiiiiiiiiiiiiicce, 1-2
Brief History of Oracle Databasecccccccciiiiiiiiiiiiiiiiiiccccese e 1-3

Schema ODjJectS........coooiiiiiiiiiiii e 1-4
TADLES ..ttt ettt et sttt ettt e et e et e e ra e be e ra e b et a e be et a e beeab e beereenreettenteeraenseenes 1-4
TIUAEXES ..ottt ettt ettt ettt ra et ere b e ra e beera e beetb e beereenreeae e teereereeneas 1-4

| D L U N oL T RS 1-5
Structured Query Language (SQL).......c.oiimiiiiii 1-5
PL/SQL QNA JAVA 1eitiitiitieiieieceete ettt ettt ettt e ettt be e saeebeesaesbeeabesseesseeseensebeeraeseeneas 1-5

Transaction Managementccccocoovviiiiiiiiiiii s 1-6
TTANSACTIONS ..euvteeitieieecieect e ettt ete et e st e et estee s bt e saae e teessbassseeaseessseenseessseasseasssassseesssassseenssensseenseeans 1-6
Data CONCUITENCYooviviiiiiiiiiiiieeicec s 1-6
Data CONSISTENCYcucveiiiiiicieieieecie et e 1-7

Oracle Database ArChit@Ctureccooiiiiiiiiiiiee ettt sttt 1-7
Database and INSEANCEcvievieeieiiceece ettt ettt e ve e beeaeebeeas e beesbesseerseseennas 1-7
Database Storage StruCturescoiurieiiiiiieicte 1-8

Physical Storage Structures ... 1-9
Logical Storage StIUCLUTEScccccuiuiiiiiiiiiiiiiieiiccee e 1-9
Database INStANCe STIUCLUTES.........ccveiiriieiececteeetese ettt et ste et saesveesae e essesseessessaessesseessessenses 1-9
Oracle Database PrOCESSES.couerueirieieiieiietieie sttt ettt et sttt st sae et et et eseeneeaeeaeas 1-10
Instance MemoOry SHIUCLUIESooucviviiiiiiiiiieieie s 1-10
Application and Networking Architecture ... 1-10
Application ATChiteCtUIec.c.oviiieiiicc 1-10
Networking Architecture...........cccccciiiiiiiiiiii s 1-11

Oracle Database Documentation Roadmapc..cccoeeererininincnininneneinecnecniccneeneee e 1-12

BasSic GIOUP ...cvoviiicit s 1-12

Intermediate GIOUPccovviviiiiiiiiiiiiicic s 1-12
AdVANCEd GIOUP ...ttt 1-13

Part| Oracle Relational Data Structures

2 Tables and Table Clusters

Introduction to Schema ODbjects.............coooiiiiiiiiiiiiii s 2-1
Schema ODBJECt TYPEScucuiuiumiiiiicicieieicieieeieteie ettt 2-2
Schema Object STOTageccouiiuriiiiiiciec 2-3
Schema Object Dependencies............ccueueiiiiiiiiicie i 2-4
SYS and SYSTEM SCREMASc.cuevruriiiriiiiicrrcr et 2-5
SamMPle SCREIMIAScvoviiiiiiiiicc s 2-6

OVerview Of TabIes..........ccoiiiiiiiiii s 2-6
Columns and ROWS......c.cccciiiiiiiiiiiccccr e 2-7
Example: CREATE TABLE and ALTER TABLE Statementscccccocevveieiiicieiieiieeennns 2-7
Oracle Data TYPESc.cuouiiuciiiiceeet et 2-9

Character Data TYPESc.cccuiuiueiiiiiiieicieiecceeeeeee ettt aeeees 2-10
Numeric Data TYPeS......ccooeieiiiiiiiiiiiiiiii s 2-11
Datetime Data TYPesccociiiiiiiiiiiiiiic s 2-12
ROWIA Data TYPES.....cucveumiimimiieieicieicicieieieieieteteteteeiete ettt eaees 2-13
Format Models and Data Types.........ccooeueiiiiiieiiiiiiiiccic s 2-14
Integrity CONSIAINTSccviviieieiiicicici s 2-14
ODJECE TADIES ...ttt 2-15
Temporary Tables ... 2-15
Temporary Table Creation...........cooiriiieiiicic s 2-16
Segment Allocation in Temporary Tables...........ccccooiiiiiiiiiiecececeeeeeeenenens 2-16
External Tables ... 2-16
External Table Creation..........ccccccciiiiiiiiiiiiiiii s 2-17
External Table Access DIIVETS.......ccccccuiiiiiiiiiiiiiiciiiciccieicicec e 2-17
Table StOrage......c.oviieeieie s 2-18
Table Organizationcccociiiiiiiiiiiiiii s 2-18
ROW StOTAGEvviviiiiciiiiiicc s 2-19
Rowids of ROW PI€CESc.cvviiiiiiiiiiiiiiiiciiiiccc s 2-19
Storage of NUIL ValUes..........cccoeuiiiiiiiiiiiiiiic s 2-19
Table COMPTESSION «.....vviiiiiiciciricieieeee et 2-19
Basic and Advanced ROW COMPIESSION.........cccviuiuiviiiiiieiiiiiiiiieicceeeee s 2-19
Hybrid Columnar COmMPIeSSION.......c.cciuiuiuimiiiiiiiiiiiiiieieiiieeieieeieiee et 2-20

Overview of Table CIUSters..............cccooiviniiiiiiiiii s 2-22
Overview of Indexed CIUSETS...........cccoiviiiiiiiiiiiiiiiiiii s 2-23
Overview Of Hash CIUSEETS.........ccciiniiiiiciinicceeeeeee et 2-25

Hash Cluster Creationcccccuiuiiiiciiieiiccceceieetee et nenees 2-25
Hash ClUSTEr QUETIESecvieiieiieiecieie ettt ettt et eae s e e sae st esseesaesseessessaessenseessensennes 2-26
Hash Cluster Variations ..ottt 2-26
Hash ClUSEr SEOTAZEcucveveuueieiiieicieieicieieiccteeeee ettt eaenees 2-27

vi

3

4

Indexes and Index-Organized Tables

OVerview Of INAEXES..........coiiiiiiiiiiii s 3-1
Index CharacteriStiCscocovuiviiiiiiiiiiiiccic e 3-2
Keys and COIUMDNS ... e 3-3
CompPosite INAEXES........c.ovirieiiiici e 3-3
Unique and Nonunique INdeXes. ... 3-4
Types Of INA@XES........ououoiiiiiiic e 3-4
B-Tree INAEXESocvviiiiiiiiii s 3-5
Branch Blocks and Leaf BIOCKS.........cccoiiiiiiiiiiiiiiiicc s 3-5
INAEX SCANS ...t 3-6
Reverse Key INAeXES.........ccccvviiiiiiiiiiiiiiiiiiiii s 3-11
Ascending and Descending INAeXesccccceueuiieuiiniriiiinininiiccecceeeeeee s 3-11
Key COMPTESSION.....ocuiiiiiiiiciiicii st 3-12
Bitmap INA@XESoouiiiieecii e 3-13
Bitmap Indexes on a Single Table...........cccccoiiiiiiiiiiiiecceee s 3-14
Bitmap Join INA@XESc.oiuiiimimiiiiiiii s 3-15
Bitmap Storage Structure..........ooiiviiiiiii 3-17
Function-Based INAEXESccouiuiviiiimiiiiiiiii e 3-17
Uses of Function-Based INAeXescccoeueiiiiiiiiiiiiiiiiiiiics 3-18
Optimization with Function-Based INndeXescccooriiiiniiiiiiiiicc 3-19
Application Domain INAeXes..........ccccccuiuiiiiiiiiiiiiiiiiiiccecee s 3-19
INAEX STOTAZE «..vvveieieittct s 3-20
Overview of Index-Organized Tables.............ccccooiiiiiiiiiii e 3-20
Index-Organized Table Characteristics.........cccceeeiruririeieieiniriicrreeerrereseeeee s 3-21
Index-Organized Tables with Row Overflow Area..........ccoooviiiieiiiiiiiiiiicce, 3-23
Secondary Indexes on Index-Organized Tablescccooimiiiiiiiiiii, 3-23
Logical Rowids and Physical GUESSESc.cccccocueueuiiiieiiiiiiiiicicicieccecceeeeeeeeeeeeeeeees 3-24
Bitmap Indexes on Index-Organized Tables...........cccccooiiiiiiiiiiiiiii 3-25

Partitions, Views, and Other Schema Objects

OVErvIieWw Of Partitionscccoouieiiiiiiiiiieeecte ettt ettt e st b e s seesae s e e sbeesb e seessansaessenseenes 4-1
Partition CharaCteriSHICSuiiuieiiiiierieiieeeete ettt ettt ettt e re et e teeeteereeae s e e beesseabeessenseeseersenseennas 4-2
Partition Key ..o s 4-2
Partitioning Strategiesccoceoiiriiiiiic s 4-2
Partitioned TabIeScc.ccveiuieiiiiieieeieceeee ettt ettt ettt ere e ae e reeaaeebeebeesseabeessensenteeraaseennas 4-7
PartitioNed INAEXESc..cvevieieiriiiiieiiiiseetetetetee ettt ste ettt et e e esaesaesassessessessessaseesansansensens 4-7
Local Partitioned INAEXEScccveviieieriieieiicieieeteseete ettt se e ae e sae e esse e essessaessesseens 4-8

Global Partitioned INAEXESc.ecvierieiieiieiecrieieceeieete ettt ettt e esae e veeseene e 4-10
Partitioned Index-Organized Tablesc.ccccccciiiiiiiiiinrcreeceeree s 4-12
OVEIVIEW OF VICWS.....uoiiiiiiiiieiieiieieste ettt sttt e e s bt e b e s s esse e st e seesaesseessesseessasssessasssessesseessesseensenses 4-12
CharacteriStiCS Of VIEWSicuiciiiieiieceeeieeeecteett ettt ettt et et et ebe e aeebeeebeebsebeeseeaseeseeseeasensensean 4-13
Data Manipulation in VIEWSc.ccccciiiiiiiiiiiiiiicccccceeceeeeee e 4-13

How Data Is AccesSsed i VIEWSccuieuieriiiiiiicieeeieeetee et see e st aeesaesreesse e ene e 4-14
Updatable JOIn VIEWSc.ccciiiiiiiiiiiiiiiiiiiee s 4-15
ODJECE VIEWS ...ttt 4-16
Overview of MaterialiZed VI@WScccveviiiieiiiieecieeeeeet ettt e s e e s e ssaeaeens 4-16

Vii

Characteristics Of MaterialiZed VIEWS........coouviiiiviiieiee ettt e 4-17

Refresh Methods for Materialized VIEWSccccccoiiiiiiiiininiiiicccccce s 4-18
QUETY REWTIte. ..o s 4-19
OVEIVIEW Of SEQUEIICES........ocuiiiiiiiiii bbb s 4-20
Sequence CharacteristiCsoiirurieiiiicicie e 4-20
Concurrent Access t0 SEQUENCES...........ccvuviiiiiiiiiiiiiiii s 4-20
Overview of DIMeNSIoNS ... s 4-21
Hierarchical Structure of @ DIMension..........ccccccviiiiiiiiiiiicccccee s 4-21
Creation of DIMENSIONS.ccccouiuiiiiiiiiiiiieieiiece e 4-21
OVerview Of SYNONYIMS..........cocoiiiiiiiiiic ettt nae 4-22

5 Data Integrity

Introduction to Data INtegrity............ccccoviiiiiiiii s 5-1
Techniques for Guaranteeing Data Integritycccocooeeioiiiiiiiic e, 5-1
Advantages of Integrity CONSLraiNtSccccceueueiririiirirrrirrrrr e 5-1

Types of Integrity Constraints..............cccocoevviiiiiiiiiii 5-2
NOT NULL Integrity Constraints.........ccccoeeueieieiiieieiiiiiiiice 5-3
Unique COoNStraintsccciiiiiiiiiiiiiii e 5-3
Primary Key COnStraints.........cooccueiiiiiiiiiiicc i 5-5
Foreign Key ConsStraints.........ccccueiiiiiiiiiiiiii 5-6

Self-Referential Integrity CONSIraints.cccceoeuiuiiiiiiiiiciceeceeceeeee e 5-7
Nulls and Foreign Keys..........coriiiiiiiiic e 5-8
Parent Key Modifications and Foreign Keyscccocooriiiiiiiiniiiccece 5-8
Indexes and FOreign Keys........ccccccuiuiiiiiiiiiiiiccccccceeeeeee e 5-9
Check CONSLIAINEScvcviviviiiiiiiiiic s 5-10

States of Integrity COnsStraints ..o 5-10
Checks for Modified and Existing Data........c.cccccociiiiiiiiiiiiicceecceeceeeeeeeneenenens 5-10
Deferrable CONStIaints........ccccovuiviiiiiiiiiiiiiiiiii s 5-11

Nondeferrable CONSIAINScccoiiiiiiiiiiiiiiiii s 5-11
Deferrable CONSLIAINEScoovviiiuiiiiiiiiciciic e 5-11
Examples of Constraint Checkingcccoioeueieiiiiiiniiicect 5-12
Insertion of a Value in a Foreign Key Column When No Parent Key Value Exists....... 5-12
An Update of All Foreign Key and Parent Key Values.........c.cccccccevvvvnnnnnnnnnnccnes 5-13

6 Data Dictionary and Dynamic Performance Views

Overview of the Data Dictionary ... 6-1
Contents of the Data DIictiONary ..o 6-2
Views With the PrefiXx DBA ...ttt ettt eeae e st e s st e e seaeessseessaaessanns 6-3

VIeWs WIth the PIefiX ALL_ ..ottt et et ee et eeereeeeeaeeeseateesanteessseesaeeessseesennes 6-3

Views with the Prefix USER_oooiiiiiiieiie ettt s enae e s s saaessaveesnnes 6-4

The DUAL TabIeocuvieieeieeceeeeeeee ettt ettt ettt et ere et ebe et e sbeeebaebaensesreenseeseenns 6-4
Storage of the Data DICHONATYc.ceeuiiiiiiiiiiiicicicecciceeeeceee e 6-4
How Oracle Database Uses the Data Dictionaryc.cccoceeeiiiieiniiiiiiciieceeeeeeeeas 6-4
Public Synonyms for Data Dictionary VIEWSccccccvvrvviininnininnncnnnneccnnnn, 6-5

Cache the Data Dictionary for Fast ACCESS........cccoceueuiiiiiuiiiieiiicieecicceceeeceeeeeeeereeeennes 6-5

Other Programs and the Data Dictionarycccccocevviininiiiiiii, 6-5
Overview of the Dynamic Performance VIEWSccccoviiiinniiicniniciicceeeeceeeeenes 6-5

viii

Contents of the Dynamic Performance VIeWs...........ccoooeiiiiiiiiiiiiniciccee 6-6
Storage of the Dynamic Performance VIeWs........c.ccoooouiiiiiiiiiiiicieccce e 6-6
Database Object Metadata............c.cccoooiiiiiiiiiiiiiii e 6-6

Part Il Oracle Data Access

7 SAQL

INtroduction t0 SQL ...ttt e e a e e be e s bb e e ae e be e e b e ebae e b e eraeeaaeenrs 7-1
SOL Data ACCESS...uecveeieerieiietieieetesteetete st este st esbesseesessaesseassessesstessesssessesssassasssesseessesenssensesssessensees 7-1
SOQL StANAATAS ...cevevieiieieeeieteeeee ettt ettt et re e s te e b e e reeaesraesbessa e beebaesseessenteeseenseesaeteeraenseeneas 7-2
Overview of SOL StatemeEnts...........c.ooovieiiiiiiiiiice ettt e sre et b e eree s b e ebaeeaneenras 7-3
Data Definition Language (DDL) Statementscccoeuoviiiieiiiiiiicc e, 7-3
Data Manipulation Language (DML) Statementsc.ooooeuiieiiiiiiiiniciicceee 7-4

bo) = I X QO B = <) 0 <) 1 SRS 7-5

JOMNIS .ttt ettt bttt st bbbt b et b e et sae e enees 7-6
Subqueries and Implicit QUETIEScooviiiuriiiiiici e 7-7
Transaction CoNtrol StAtEIMENTS..........ccvevvecieieieieire ettt ettt e e ereereeresbessessessessessessesassensens 7-8
SeSS10N CONELOL SEAtEIMENLS........ecuiiiieieie ettt et e e e e s e b e eseesseesaesesseesseeneas 7-8
System Control Statement.............couoiiiiiiiiiic e e 7-9
Embedded SQL StateImMeNtScc.cccvevuiiiiiieeieciecteeie ettt ettt et eeae e ereeteereerseeveereereeaseeseerseneennes 7-9
Overview of the OPtimuizZer ... 7-10
Use of the OPtimizZer..........oouiiiiiiiii e 7-10
Optimizer COMPONENLES........cccoviiiiiiiiiiiiiiii s 7-11
Query TranSfOIMETc.ooiveieiiicie s 7-11

0 80 0 F= 1 o) (O OTPRRTRRRR 7-12

Plan GENETAtOTc.ecuieiiieieeieeieietetieee ettt ettt e bt sa et e e sesseesessessessessessessessessesseseesensessesens 7-12

ACCESS PANS ..ottt ettt ettt b e e rb e b e b e s be e s b e te et e ereesseereenaesreensennean 7-12
Optimizer STatiStiCSoiviiiiiiiieicicicc 7-13
OptMIZEr HINES.....ooviiiiiiiiiiiic s 7-14
Overview of SQL Processing ...ttt 7-15
Stages of SQL PrOCESSINGc.cciuiuiuiiiiiiiiiiiiiiiiciiteeee e 7-15
SQL PaISING ...cvvviiiiiiiciiiiicici s 7-16

SQL OptimizZationc.coiuiiiiiiiiiiiiiiiiiciic s 7-19

SQL ROW SOUICE GENETAtION ...ccviiiiiieiieiiecieecteeeieesteee e eveesreeteessaeeseesseesnbesseessseessaasssensses 7-19

SQOL EXECULION ..ottt ettt ettt e e ve e aeeveesaaeeab e e basenbeesbessabesnsaesnseenssesssennsas 7-20

How Oracle Database Processes DIML..........ccvoiiiieieiieieniieeeieseese et eeeseesaesse s ssesnnes 7-22
Read CONSISLENCYcoovviiiiiiiciiiciciccii s 7-22

Data Changes.......cccciuiiriiiieceeieeee et 7-22

How Oracle Database Processes DDL........c.occveviiiiiriiiieriinieieseeteeeeeste e seesse e ssesaessessaessens 7-23

8 Server-Side Programming: PL/SQL and Java

Introduction to Server-Side Programming...............ccccooiiiiiiiiiii 8-1
OVErvIeW Of PL/SQL........ooiiiieieieieietetetee ettt ettt et e st eseesesaeste st e ssessesessessensessesseseesessessessens 8-2
PL/SQL SUDPIOZIAINSovviiiiiiiiiieirieeeeieieeeee et 8-3
Advantages of PL/SQL SUDPIOZIamScccoceviviiiiiiiiiiiiiiciiiicecicceeeee e 8-3
Creation of PL/SQL SUDPIOGIrams..........ccceevuviiiririniriiiiiiiriiicinreesesisesisesessssss s 8-4

Execution of PL/SQL SUbPIOGIAmSccccevviiiiiiiiiiiiiiiiniiicccccsc e, 8-5

PL/SQL PACKAGEScvviiiiiiiiiiiii e 8-6
Advantages of PL/SQL Packagescccccccocerririiiiiniieiiriceceecreeeeeeree e 8-6
Creation of PL/SQL PaCKagescccovuiiieiiiiiiiiiiiiiciiccec e 8-7
Execution of PL/SQL Package SUbprograms...........c.ccccoeeueieiirieieiiicieeieeece s 8-8

PL/SQL Anonymous BIOCKSccccoiiiiiiiiiiiiiccccr e 8-9

PL/SQL Language CONSIUCEScoovrueiiiiiicieiicicie et 8-9

PL/SQL Collections and RECOTAScouveeuiieeiirieeeeereeeeeete et ete e e eeveeeeseeveeeaeeereeereeeneennes 8-10
COMLECHIONS ...ttt 8-10
RECOTAS ..ottt s 8-10

HOW PL/SQL RUDNS ..ottt 8-11

Overview of Java in Oracle Database............ccooveieiieieniieieeeeeeee et 8-12

Overview of the Java Virtual Machine (JVIM)ccceoiririiininineneneteresteeetetee e 8-13
OVerview Of Oracle JVM ... oottt sttt ettt saesbesaen 8-13
Main Components of Oracle JVM ... 8-14

Java Programming ENvironment. ... 8-14
Java StOred ProCEAUTEScocieiiuiiieieeiese ettt ettt ebe e 8-15
Java and PL/SQL INteZrationccccccccucucuiiririiiiiciniiicereeeeceereeeeeeesee e 8-15

OVerview Of TTIGZOISccoiiiiiiiiiiiic sttt 8-16

Advantages Of TIigGers ..o 8-17

TYPES Of TIIGGETS......emviiiicieieieiecictcec ettt 8-17

Timing fOr TIIgGETScvoviiieeieieet 8-18

Creation of TIIGZeTScouiieiieiicet e 8-18

EXeCUtioN Of TIIZZETIS.....cucuiuiiiiiciiicieieiicceee et 8-21

Storage of TIIGERTS ...cucueiiieiieiiicic e 8-21

Part lll Oracle Transaction Management

9 Data Concurrency and Consistency

Introduction to Data Concurrency and Consistencycccocoeeenieiiciiiniinicicics 9-1
Multiversion Read CONSISLENCYc.ccciuiuiuiiiiiiiiiiiiiiiiiiicicre e 9-2
Statement-Level Read CONSISTENCYc.c.cueueuiuiuiiiiiiiiiiciciciciciciceeeiceieceeeeeeee e 9-2
Transaction-Level Read CONSIStENCYc.cviuiucieiiiiiiiiicie s 9-2

Read Consistency and Undo Segmentscccveviineieiniieicinicceecee s 9-3
Locking MeChaniSINSc.ccccuiuiiiiiiiiiiiiicieieeeee e 9-5
ANSI/ISO Transaction ISOlation LeVELScc..ooouviiieiiiiiieieeee et 9-5
Overview of Oracle Database Transaction Isolation Levels.................ccccccocciiiiiiiinnnn 9-6
Read Committed Isolation Level ... 9-6
Read Consistency in the Read Committed Isolation Level...........ccccoooiiiiiiiinin 9-7
Conflicting Writes in Read Committed Transactions............ccccoeeveiveiniiiicceieiccninccnens 9-7
Serializable Isolation Level ... 9-8
Read-Only Isolation Level ... 9-11
Overview of the Oracle Database Locking Mechanismccccocoiiiiiiiiiiiine, 9-11
Summary of Locking Behavior.........c.cccociiiiiiiiiiiiccccceee s 9-12
USE Of LOCKS ...ttt s 9-12
LOCK MOAES ..ottt ettt 9-15
Lock Conversion and Escalation...........cccoviiiiniiii, 9-15

J IS Te) S0 B 1V = L Te) s WSS 9-16

LOCKS and DEAAIOCKScocvieviiiieiiieieciiieete sttt ettt e e s s e e tesba e te e s e beessesseessesseensenseennas 9-16
Overview of AUtOmMatic LOCKSccooveiieieieceeiecteeeeteee ettt sttt se s eneeneens 9-17
DML LOCKS .ttt ettt sttt ete st e e et et sta e b e seeessessaessesssesseessesseessansaessasseessenseessesseessensens 9-18
ROW LOCKS (TX) 1ttt sttt st et 9-18

Table LOCKS (TIM) c.viviiiieieeieeieiteitetteite ettt tete st be e sb st et esaesessa st e sbessassassessessessessassesensensens 9-20

Locks and FOreign Keysccocoiiiiiiiiiiiiiicicici s 9-21

DL LOCKS ..ttt ettt ettt ettt ettt teete et et e st e s eseessessessessessessesaeseeteetassessessessessessersessesseseessetnesas 9-24
EXCIUSIVE DL LOCKS. ... iteeieeieiieiieiieiieiitrtet ettt e st e st e sbesbessesaesaesseseeseesassasessens 9-24

Share DL LOCKS.....ccutiiiiieieiicieste ettt ettt te et st este s e essesseessessaessesssessessaessenssessessennes 9-24
Breakable Parse LOCKScc.iiiiiiiiiieciecteeeteet ettt sttt sb e be e aeeaa e eas 9-24

SYSEEIM LOCKS. ...t s 9-25
= el =T TSRS 9-25
IMIUEEXES .oevveeiieeieecite et et e et eriteete e e e s sbeebeesstaesseestessbaasaesssaesssaesseesssaansasnseeanseenseenssesnseenseensses 9-26
INEEINAL LLOCKS ..ivietiiiiiieieieitetet ettt ettt ettt testeebesbe b e ssessessessessessesseseasessensansens 9-26
Overview of Manual Data LoCKS.........c.oceeviiiiiiiiieiecieeeee et te et estesae e ssesva s e se e s e esaenaeens 9-26
Overview of User-Defined LOCKS...........cccoiiiiiiiiiiiieieiieeeeeete ettt e v ve s ens 9-27

10 Transactions

INtroduction t0 TranSACIONScceeiiiiieiiiiiicicceeeeeetee ettt e e te e s e s e ebesbaesbeeseenseesnenseens 10-1
Sample Transaction: Account Debit and Creditcccccoeeciiiiiiiiiiiiicccreeeeees 10-2
Structure Of @ TTaNSACTIONccviviieieiieeete ettt et et se e e e e e e e saebeessessaessessesnsessensees 10-2

Beginning of @ Transaction. ..o 10-3
ENd Of @ TTANSACHIONecviiviiiiiieeieeieieietetee ettt sb et et e ese s e ssessessessessessessesseseesensansessens 10-3
Statement-Level AtOmMICItycoooeviiiiiiiiiic 10-4
System Change NUmMbers (SCNS) ..ot 10-5

Overview of Transaction CONtIOL.............cocovirriiririiiiieieeeeee et ens 10-6
TTanSACLION INAITIES ...cccuviiiiiiieiiierieeeerte ettt et ste s sbeesatesbe e st e e beesbtessbeeseesssaessaesnsesnseenseennses 10-7
ACHVE TTaNSACIONS. ...cctiiiieetieitieeieectte ettt et ette st e s teestreesbeebeesabeesseesssaesseessseesseesseessseenseensaennses 10-7
SAVEPOINLS ..ot s 10-8

Rollback to SAVEPOINL.......couiuimiiiiiiiiitiiciti s 10-8
Enqueued Transactions..........cccccccciiiiiiiiiiiiiiiicee s 10-9
ROIIbACK Of TTANSACIONSeevvevieiieiieiiieieieteeirie st ete et a et seesaeseeseeseebessessesesseseeseessessesensensenes 10-10
Committing Transactions..........ccoeeueiiiiiiieieiicci 10-10

Overview of Autonomous TranSactiONSccoecveivieiiiiieiecieeeeereeteere ettt esae e sae e eveeseens 10-11

Overview of Distributed TranSactionscccccvvvierieriieriieceieeeee e eneens 10-12
TWO-Phase COMIMNIEcceeiieiieieriieieseetese et et e e e te e e s e seesaesseeseesseeseesseesseseessesseessanseessensesnes 10-13
IN-DOUDt TTaNSACIONSccvietiiiieiiereeteeete ettt ettt et e et et e et e eteereeseeraesbeersenseessensesseenns 10-13

Part IV Oracle Database Storage Structures

11 Physical Storage Structures

Introduction to Physical Storage Structures ..o 11-1
Mechanisms for Storing Database Files ... 11-2
Oracle Automatic Storage Management (Oracle ASM)cccouoiiriciiiiinicisiicce, 11-3

Oracle ASM Storage COMPONENLS........c.coiuimiuiiiiiiiiiiiiiiiiiieeeeeee e 11-3

xi

Oracle ASM INStANICES.vovieeieeeiie ettt e etae e ettt e e eaeeeseraeessnteesesaeesssaessreeesnes 11-5

Oracle Managed Files and User-Managed Files............cccooooiiiiiiiiicc 11-6
Overview of Data Files............ccooooiiiiiicc s 11-7
Use of Data Filescooviiiiiiiiiiiiiiiiciiccic s 11-7
Permanent and Temporary Data Filescccooiiiiiii e, 11-8
Online and Offline Data FAles...........ccocoiiiiiiiiiniiiiii e 11-9
Data File STrUCTUIE ..o s 11-9
Overview of Control FIles ... 11-10
Use Of CONITOLFILEScoovviiiiiiicici s 11-10
Multiple CONtrol FIlesccooooiiiiiiiiiiiiiiiiiiiiiiic e 11-11
Control File SErUuCtUIeccoiiviiiiiiiiiiiiic e 11-11
Overview of the Online Redo LOg ..o 11-12
Use of the Online Redo LOg.........cceuiiiiiiiiiic 11-12
How Oracle Database Writes to the Online Redo Logccooveiiiiiiii 11-12
Online Redo Log SWItChES.......c.ccouiuiiiiiiiiriiicccccrre s 11-13
Multiple Copies of Online Redo Log Filesccccoeiiiiiiiiiiiiiiiiiiiicce 11-14
Archived Redo Log Files.........cccccoviiiiiiiiiiiiiiiiiiiicce 11-15
Structure of the Online Redo LOgc.ccccuiiiiiiiiiiiiiiicccrrcre s 11-15

12 Logical Storage Structures

Introduction to Logical Storage Structures ... 12-1
Logical Storage Hierarchy...........oooooiiiiiiii 12-2
Logical Space Managementcouieuiieiiiicieieiicie s 12-2

Locally Managed Tablespaces.........c.cccccucucucucuiuiiiicicieieieieiceieieereieneieie e seeenes 12-3
Dictionary-Managed Tablespaces ..ot 12-6

Overview of Data BIOCKS ... 12-6

Data Blocks and Operating System BIOCKS.........ccccccccuiiiiiiiiiniiicccreececeeeeeeeees 12-6
Database BIOCK SIZeccoiiiiiiiiiiiiiiiiiiiiicicic s 12-7
Tablespace BIOCk Size........ccooiiiiiiiiiiiiiiiiiii s 12-7

Data Block FOTMAt........ccooiiiiiiiiiiiciiii e 12-7
Data Block Overhead...........ccccoviiiiiiiniiiiiiiiiccccc s 12-8
ROW FOTINAL «.c.ciiiiiicicc e 12-8

Data Block COMPIESSIONcouvveiiiiiiiiiirr st 12-11

Space Management in Data BlOCKS...........c.cooouiiiiiiiii 12-12
Percentage of Free Space in Data BlOCkSccccoovoiiiiiiiiiiiicec e 12-12
Optimization of Free Space in Data BIOCKScccccouvivviiininnnccccccccccces 12-13
Chained and Migrated ROWSccooooriiiiiiiiiiiiic s 12-16

OVEIrVIEW Of EXEEILS.......cooviiiiiiiiiiiiccc ettt 12-18
Allocation Of EXEENEScccociviiiiimiiiiiiiiccc s 12-18
Deallocation of EXENtScccceiiiiiiiiiiiiiiiiiiiiiicc s 12-19
Storage Parameters for EXENtScccccovviviiiiiiiiiniiiicc e 12-20

Overview of SEZMENLtScccoiiiiiiiiiiii e 12-21
USET SEZMENLS ..ottt 12-21

User Segment Creation...........ccoviuiiiiiniiiiiiiiicicceec e 12-21
Temporary SEGMENLScccciviviiiiiiiiiiiiii e 12-23
Allocation of Temporary Segments for QUeries.............cooeeueiiiiirieiiiniicieece 12-23
Allocation of Temporary Segments for Temporary Tables and Indexes....................... 12-23

Xii

UNdO SEGMENLS........ooviiiiiiciicte e 12-24

Undo Segments and Transactionsc.coecueieiiiciciiicci s 12-24
Transaction ROIDACKccoovviiiviiiiiiiiiiiiic s 12-27
Segment Space and the High Water Mark ..o 12-27
Overview of TableSPaces...........c.cooiiiiiiiiiii e 12-30
Permanent TableSPacesccocvueuiuirrririiiirrecrerr et 12-31
The SYSTEM TableSpacecccccovvieieiiiiiiiiiiiiiiiic s 12-32
The SYSAUX TabLeSPaCecccviuiuiiiiiiiiiiiiiiiiiiee s 12-32
UNdO TablESPACESuouimieiiiiiicicicccice et aes 12-33
Temporary TableSPaces..........cccoviiiiiiiiiiiiiiiiiii 12-34
Tablespace MOAES ...ttt 12-34
Read /Write and Read-Only Tablespacesccccccocevveriririririiininrrrccerereeeseseeeeaes 12-34
Online and Offline TableSpaces............cccccovuveiiniiiiiiiiiiii s 12-35
Tablespace File SIZe ..o 12-35

Part V Oracle Instance Architecture

13 Oracle Database Instance

Introduction to the Oracle Database Instance.................cccccooiiiiiiiiiiiia 13-1
Database INstance Structure ... 13-1
Database Instance Configurations.........c.c.covrueieiiciiiiiicicccc 13-2

Duration of an INStAnCe ..o e 13-3
Oracle System Identifier (SID)ccccocociiiiiiiiiiccccceeeeee e 13-4

Overview of Instance Startup and Shutdown ..., 13-4

Overview of Instance and Database Startup ..o, 13-5
Connection with Administrator Privileges ... 13-6
How an Instance Is Started...........ccooiiiiiiiiiiiiicc s 13-6
How a Database Is MouNnted...........ccoviiiiiiiiiiiiiiicciicecee e 13-6
How a Database Is Openedc.cccccccuiiiiiiiiiiiiiiiiciceececeeeeeeeeeeee e 13-7

Overview of Database and Instance ShUtdOwn ..., 13-8
SRULAOWIN MOAES ...ttt s 13-9
How a Database Is ClOSedc.ccceuiuiiiiiiiiiiiiiiiirciccrrce s 13-10
How a Database Is Unmounted............cccooiiiiiiiiiiiiiiiccccccneees 13-10
How an Instance Is Shut DOWINc.cciviiiiiiniiiiccccceee e 13-10

Overview of CheckPOintscccoccoiiiriiiniiiniiccc et 13-11
Purpose of ChecKpOintsccociiiiiiiiiiiiiiiii e 13-11
When Oracle Database Initiates Checkpoints...........cccoceeieiiiiiiniicieiicccc e 13-11

Overview of Instance RecOVery ... 13-12
Purpose of InStance RECOVETY ..ot 13-12
When Oracle Database Performs Instance RecoVery ..o, 13-12
Importance of Checkpoints for Instance RECOVETYcccovvueuiirvriiinirnnrrrrereereeeeaes 13-13
Instance Recovery Phases ... 13-13

Overview of Parameter FIlescccccooiniiiiiiiccceecte et 13-14
Initialization Parametersc.cccccueueiriririiiriririeeeeeeer e 13-15

Functional Groups of Initialization Parameterscccccocooeviiiiiiiiiiiiiiiiines 13-15
Basic and Advanced Initialization Parameters.............cccccoceueriiiiniiininninnnniinnes 13-15

xiii

SErVEr Parameter FAlES.......uoiiuiiiieeeieceeeeeee et eae e et e e e e an e e eeta e e s eae e saaees 13-15

Text Initialization Parameter Files........ccooiiiiiieiiiiiiecieceeeeeeeee et 13-16
Modification of Initialization Parameter VAlUescccccveieieininiinenieneneieieieeeeeeeveeee e 13-17
Overview of Diagnostic Files............ccoooiiiiiiiiii e 13-18
Automatic Diagnostic RepOSItOry.......ccoiiiiiiiiiiii 13-18
Problems and INCIAENTS.........ceciriirieieieieieieieie ettt e e e e sessesbessessessessessesnans 13-19

F N) T o § Tad 5 'y <RSP TRPRI 13-19

ALETE LOG ..o 13-21
TTACE FALES c.evitiieeeeee ettt ettt ettt st e s b eseeseese et e b e b et esbessenteneeseesenes 13-21
Types of Trace FAles ... 13-22
Locations Of Trace FIlESccuciieiiiiicieieceeeeeeeee ettt naas 13-22

14 Memory Architecture

Introduction to Oracle Database Memory Structures ..o, 14-1
Basic MemOTry SrUCLUTES ..o 14-1
Oracle Database Memory Managementooueueueiiiinieiiiiciciecce e 14-3

Overview of the User GIobal Area............cocooviiiiiiiiiiieieeeeeeee ettt e ens 14-3

Overview of the Program Global Area ..o 14-4
Contents Of TNE PGA ..ottt ettt et e e et e sre e ae st e seessesbessaessesssessasseessenseas 14-5

Private SQOL AT@a.....ccccuieiieiiieiieiieeieestteste et este et e st e e aeesteessbeesseessbaesbeesssessseesseassseesssenseessses 14-5
SQL WOTK ATEAS ..veevvereeereeteeeeete e et eete et eete et eeveeteeveeseeeseerseseesseesserseessensesssessesssensenseenseeseenes 14-6
PGA Usage in Dedicated and Shared Server Modes.............ccooomurieiiiiiiiiiiiieiecce, 14-7

Overview of the System Global Area.............cccoooiiiiiiiiiii e 14-8

Database BUffer Cache.........coveieieieieiiieiiese ettt sttt sb e esaesassessessenses 14-9
BULLEE STALES ..cuveeiieiieiecteeec ettt ettt ettt et e ere e b e sseesaesseesseessesseessensaessenseeseensennes 14-9
BUSLET IMOAES ...ttt ettt ettt st st e b s bs e b e sb e beesaenseessesseenneseeneas 14-10
BUILET I/ Ottt ettt e e et e s e et e e s e teeeeaaeeseaaeeseateeseaseesanaeessaneesssanesssaeeeas 14-10
BULLET POOISuiiiiiiieiecieeeeete ettt ettt e e te e e et e aesseesbeesbessessaensaessensesnsassenseas 14-13

Redo LOg BUFET ... 14-14

SRATEA POOL ...ttt ettt ettt sb e b see st eseesesse et esbesbe st esbesseseasensensenes 14-15
Library Cache ... s 14-16
Data Dictionary Cacheccccccviiiiiiiiiiniiiiiiiiiiiccs s 14-19
Server RESUIE CAChEcocvieieieieieeteteeete ettt te st st sb e b b esseseessesaesenns 14-20
TSy T =Te N o o) TSRS 14-21

Large POOL......c.coiiiiiiiciicc e 14-21

JAVA POOL...eieieieteteeee ettt ettt ettt st ettt e bt et e s e b e b b e s b enbenbesaesaeseeseesetas 14-22

b 18 =T 10 T30 o Yo FU RSP SPR 14-23

FIXEA SGAttt ettt ettt ettt et et et et et et ene e e easeasereeteereete et eseneereere e 14-23

Overview 0f SOftWware COde ATEAS.........ccoecvevereierieeiiereeiereetestete st ete st seesreese e essesseessesseessesseens 14-23

15 Process Architecture

INtrodUCtiON t0 PrOCESSESoouiieiieiieiieieeeieie ettt ettt et ettt e st e e sse e s e sseesessaensaeseensesseensennes 15-1
Multiple-Process Oracle Database Systemsccccouiirieieiiiiciciiicc 15-1
TYPES Of PIOCESSES.......vviiiiiiiiicic s 15-2

OVErvieWw Of ClIENt PrOCESSEScccciviireieiieieieeieieetete ettt et et te st e e sseese st esessaensesseensesnsensennes 15-3
Client and SEIVEr PrOCESSEScccvieieriirrierieieesiestesieetesteestesseeeessesssessesssessesssessesssessesssessesssessessees 15-4
CoNNECiONS ANA SESSIONSveevieuierieieereete e eteeteete et eeteeteesteeteesseeteesteessesseesseseessesseessenseensessesseas 15-4

Xiv

OVEIVIEW Of SIVET PIrOCESSESoooieveieiiiieeeeee ettt ettt e et e e e s eateessateessaeesenaeeeseneeesnnnees 15-6

Dedicated SEIver PTOCESSEScccetrirriririirieiiesiesietesterte et e et steeteebestesteste st e tente st et eneeseeseeaesaenean 15-6
ShATEd SEIVET PTOCESSESeuvvinieiiieiiieiieteiste ettt ettt ettt bttt b et b et be st se e beneene 15-6
Overview of Background Processes................cooeiiiiiiiiiiiiiiiiiiiiiiiie e 15-7
Mandatory Background Processesoocrueieiiiiiciniiiiicicicc e 15-7
Process Monitor Process (PIMOIN)oocvecierirrieneeieiieieseeteseeeeeseeeessesssessessessasssessesssenns 15-8
System Monitor Process (SMON) ... 15-8
Database Writer Process (DBWR)c.cccoeireiriiniiinieinceneenieeseesieeeiesesee e 15-8
Log Writer Process (LGWR)ccccooiiiiiiiiiiiiiicc e 15-9
Checkpoint Process (CKPT) ..o 15-10
Manageability Monitor Processes (MMON and MMNL)........cccccooviniiiiiiiicnnes 15-11
Recoverer Process (RECO)oovviieieiieieneeeeeeeee ettt e sse s seseessesnsense s 15-11
Optional Background Processesc.ccciieieiiiiiieiiiicicci s 15-11
Archiver Processes (ARCH) ...c.coccveriinininieinenteieei ettt ettt 15-12

Job Queue Processes (CJQO and JNNI)ccvevveieieieieieieieireseeeesesie et esesee e sseeeseeseenas 15-12
Flashback Data Archiver Process (FBDA)ccccooiiiiirinininieeetneseseseseeieeee e 15-13
Space Management Coordinator Process (SMCO)coceueiimieieiiiiiiceicccecce 15-13
S1AVE PTOCESSES ...uveuviuieiieiieiiiieeietestetetete ettt sttt ettt sa st et sb e et ene b sbe b nee 15-13
T/ O SlaVE PIOCESSES ..ottt e et e e et seae e e saaeeseaaeesenaessenaeesenneeean 15-13
Parallel QUETY SIaVes........ccoocuiiiiiieiiiccie s 15-14

16 Application and Networking Architecture

Overview of Oracle Application Architecture...............cccocooiiiiiii, 16-1
Overview Of Client/Server ATCRItECTUTEuvveeeeeeeeeeeeeeee ettt eeeeeeeeeeesereeeeeereesenees 16-1
Distributed ProCeSSINgcceviiuiieiiiiicieieci s 16-1
Advantages of a Client/Server Architecture..........cccoovvviiiiiiniiii 16-2
Overview of Multitier ArChitecture.........cccccccuiiiiiiiiiiiirc s 16-3
CLIENES ..o 16-4
APPLiCAtiON SEIVETSoouiiiiiiiic 16-4
Database SEIVETSc.cccuiuiuiuiuiiiiiiecieicieieeeee ettt aes 16-4

Service Oriented Architecture (SOA) ..ottt 16-5
Overview of Grid ArChiteCtUreccciviviriiiciriniicicctrc s 16-5
Overview of Oracle Networking Architectureccococoiiiiiin, 16-5
How Oracle Net Services WOTKS.........cccccciiiiiiiiiiiiiic s 16-6
The Oracle Net LISTENET.c.ccoiiiiiiiiieiiiieeieeereeteee ettt 16-6
SerVICE INAINES ...t s 16-8

Service Registrationcoocuevoiiiiiiiii s 16-8
Dedicated Server ArChiteCtUreoccociviviriiiicirinieiciireccerrec et 16-9
Shared Server ArChItECUTEcuvuririiirieirrr e 16-11
Dispatcher Request and Response QUeUes............ccccovviviiiiiiiiiiininiiiies 16-12
Restricted Operations of the Shared Server ... 16-14
Database Resident Connection POOINGc.ccccueuriiiriininnnirrrr s 16-14
Overview of the Program Interface..............ccooooiiiiiiiiiiiiin 16-15
Program Interface SLIUCLUTEcccceuiiiiiiiiiiiiiiiiic e 16-16
Program Interface DIIVETSccccccciiiiiiiiiiiiiiiccrrcc e 16-16
Communications Software for the Operating Systemccooooiiiiiciie, 16-16

XV

Part VI Oracle Database Administration and Development

17 Topics for Database Administrators and Developers

Overview of Database Security ..o 17-1
USEI ACCOUNES.....oviviiiiriirtc sttt 17-1
Privilege and Role AUthorization ..o 17-1
PIOFILES ..o 17-3
AUthentiCatioN ..o 17-3
ENCIYPHON ottt 17-4
Network ENCryption 17-4
Transparent Data ENCryption........ccccoviiiiiiiiiiiicce 17-4
Oracle Data Redaction.........ccceuiuiiiiiiiiiiiiiiiiiiicc s 17-4
ACCESS CONLIOL ...t 17-5
Oracle Database Vault..........cccccoviiiiiiiiiiiic s 17-5
Virtual Private Database (VPD)cc.cooiiiiiiiieinieeeeteeeeeteee ettt 17-6
Oracle Label Security (OLS) ... 17-6
IMOMEEOTINE ottt 17-6
Database AUAItINGc.oooririiiiii 17-6
Oracle Audit Vault and Database Firewallccccccccovviiiinnniiiiiiiiin, 17-7
Enterprise Manager Auditing SUPPOTt......ccccccuiiiuiiiiiiiiccccccceeeee s 17-7
Overview of High Availability...........ccccocoooiii 17-7
High Availability and Unplanned DOWNtime............ccoovieieiiicicieiiccecc 17-7
Site Failures.......coovviiiiiiiiiiic 17-8
Computer Failurescoviiiiiiiiiiicc s 17-8
Storage Failures ... 17-9
Data COrruption ..o s 17-9
HUman BITOTS ..ot 17-10
High Availability and Planned DOwntimeccccoooiiiiiiiiiiiiicccc 17-11
System and Database Changesc.cccceevuerrriririirnnrrrcreecree s 17-11
Data ChanGes........ccoiuiiiiiiii s 17-11
Application Changescccovuviviviiiiiiiiiii e 17-12
Overview of Grid ComPUting............ccccocovviiiiiiiiiiiii e 17-12
Database Server Grid ... 17-13
SCALADILIY ... 17-14
Fault TOLETANCEoeuiviiiiiiiciie e 17-14
SEIVICES ..ttt 17-15
Database Storage Grid.........ccoiiiiiiiiiiiii e 17-15
Overview of Data Warehousing and Business Intelligence.................cccccocooonnniinnnnnnn, 17-15
Data Warehousing and OLTPccoooiiiiiiiii 17-16
Data Warehouse ArChiteCtUrecooeueuiiririicininieieicreeccree ettt 17-17
Data Warehouse Architecture (BaSicC)ccocueeieiririirerierieieieieeeeeeeeee e s s saessesnens 17-17
Data Warehouse Architecture (with a Staging Area).........ccccooeveeiiiiiicicniicic 17-17
Data Warehouse Architecture (with a Staging Area and Data Marts)..........c.ccccoeueneee. 17-18
Overview of Extraction, Transformation, and Loading (ETL)cccccocevvvnnnnnnnrnccnnes 17-19
Business INtelligence...........ccueuviiiiiiiii e 17-20
ANAalytic SQL....c.coiiiiiiiiiiii e 17-20
OLARP s 17-20

XVi

Data MININEovoveviiiitccetc et 17-21

Overview of Oracle Information Integration ..o, 17-21
Federated ACCESS ..ot 17-21
Distributed SQLoovieieieieieeeeeee ettt st et sttt e sa e be e e nbeeraenaeeneas 17-22
Database LINKS ... 17-22
INformation SRATING.......ccccceueiriririiiiicirce e 17-22
Oracle Streams Replication.........cccoiiiiiiiiiiiiiiiiici s 17-23

Oracle Streams Advanced Queuing (AQ)cccccovviiiiiiiininiiniiiias 17-24

Oracle Streams Use Case........cccuvururueuririririiicirirreeeeiee st 17-25

18 Concepts for Database Administrators

Duties of Database Administratorscocooiiiiiiiiiiicc e 18-1
Tools for Database Administrators.............cccocoviiiiiiiiiiiii 18-2
Oracle Enterprise Managercoirueiiicicieiecccie et 18-2
SOLFPIUS ..ttt ettt ettt ettt et et ete e te et e eaeete et e eaeeeseerseeteerbeebeereeebeebeebe e b e ere e teeteenseeaeeteeasenreeneen 18-4
Tools for Database Installation and Configuration..........c.ccceieieieiiciciicicc 18-4
Tools for Oracle Net Configuration and Administration..........ccceeeeeieioiiieiiiccece, 18-4
Tools for Data Movement and ANalysiscccccccevvriiirrnrnrirrreereeeeess s 18-5

b0) Il o Y- T <) o USRI 18-5

Oracle Data Pump Export and Import..........ccoooicce 18-7

Oracle LOGMINETc.cciuiuiiiiiiicieeeeeieee ettt aaes 18-8

ADR Command Interpreter (ADRCI)........ccoiiiiniiiiiiiiciiccc e 18-8

Topics for Database Administrators.............ccocovviiiiiiiiiii 18-9
Backup and RECOVETYc.ccccuiiiiiiiiiiiiiiiciciicceeeee et 18-9
Backup and Recovery Techniques...........cccocceveiiiiiiiiiiiiiiiiiiiiics 18-9
Database Backupscoooiiiiiii s 18-11

Data REPaiT ..o 18-12
Memory Managementccooveiiiiiiiiii s 18-15
Automatic Memory Managementccccoeeieiiieiiiiiiiii 18-15

Shared Memory Management of the SGAccoiiiiiniiccceccceeeeenes 18-16
Memory Management of the Instance PGA............c.cccooooiiiii 18-17
Summary of Memory Management Methodsccooioiicniiiic 18-17
Resource Management and Task Schedulingccovviiiiiniiiiiiiiccccccccccennes 18-18
Database Resource Managercoccueieiiiieiniicicic et 18-19

Oracle SCHEAULETc.ccoviiiiiiiiec ettt 18-19
Performance Diagnostics and TUNING.......c.cccceeueueriririiiriiircrrreee s 18-20
Database Self-MONitOringccoceviiiiiciiiiiiciece s 18-21
Automatic Workload Repository (AWR) ..o 18-21
Automatic Database Diagnostic Monitor (ADDM)cccccciviiiiiiniiiiciceceeenenes 18-22

Active Session History (ASH) ..o 18-23
Application and SQL TUNINGcccovuriririiiiiiiiiiiiiierrss s 18-23

19 Concepts for Database Developers

Duties of Database DevVelOPerscccccovuiiiiiiiiiiiiniiiiiiiir s 19-1
Tools for Database Developers............cccocoviiiiieiiiiiieiceeere et 19-1
SOQL DEVEIOPETcviiiiiiiiiiiiiiiiiiiiicctics s 19-2

Xvii

Oracle Application EXPIESSccciuiuiiiiiiiiiiiiiiiicieicicicitees s 19-2

Oracle JDEVEIOPETccueviiiiieiiicece ettt 19-2
OTACLE JPUDIISNET ..ottt ettt ettt sb e s b e b e b e sessessesaessesaesesensensan 19-3
Oracle Developer Tools for Visual Studio .INETccccccovviiiiiiiiiiiiiii 19-3
Topics for Database Developers..............ccccoviiiiiiiiiiiiiiniiiii s 19-3
Principles of Application Design and TUNINGccccovuviviriirniiiirrcceeeceeeeeeeeees 19-4
Client-Side Database Programmingcccoocueioiiiinieiniicieicicte e 19-5
Embedded SQLcccoiiiiiiiiiiiiicrce e 19-5
Client-Side APISccouriiiiiiiicc e 19-7
Globalization SUPPOTTcoiiiiiiiiiiii s 19-8
Globalization Support Environment.............cooouiiiiiiicccecc 19-9

Oracle Globalization Development Kit..........c.ccccocciiiiiiiinircreeeeereee 19-11
Unstructured Data ..o 19-11
Overview of XML in Oracle Databasecccccovivivivinininiiiniiniies 19-11
OVErvieW Of LOBS......c.cvviiiiiiiiicc s 19-12
Overview of Oracle TeXt ..o 19-13
Overview of Oracle Multimedia..........cccooiiiiiiiiiiies 19-14
Overview of Oracle Spatial.........cccocovviiiiiiniii s 19-14

Glossary

Index

xviii

Audience

Preface

This manual provides an architectural and conceptual overview of the Oracle database
server, which is an object-relational database management system. It describes how the
Oracle database server functions, and it lays a conceptual foundation for much of the
practical information contained in other manuals. Information in this manual applies
to the Oracle database server running on all operating systems.

This preface contains these topics:
= Audience

= Documentation Accessibility
= Related Documentation

s Conventions

Oracle Database Concepts is intended for technical users, primarily database
administrators and database application developers, who are new to Oracle Database.
Typically, the reader of this manual has had experience managing or developing
applications for other relational databases.

To use this manual, you must know the following:
= Relational database concepts in general
= Concepts and terminology in Chapter 1, "Introduction to Oracle Database"

s The operating system environment under which you are running Oracle

Documentation Accessibility

For information about Oracle's commitment to accessibility, visit the Oracle
Accessibility Program website at
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc.

Access to Oracle Support

Oracle customers that have purchased support have access to electronic support
through My Oracle Support. For information, visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info or visit
http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs if you are hearing
impaired.

Xix

Related Documentation

This manual is intended to be read with the following manuals:
» Oracle Database 2 Day DBA
» Oracle Database 2 Day Developer’s Guide

For more related documentation, see "Oracle Database Documentation Roadmap" on
page 1-12.

Many manuals in the Oracle Database documentation set use the sample schemas of
the seed database, which is installed by default when you install Oracle Database.
Refer to Oracle Database Sample Schemas for information on how these schemas were
created and how you can use them.

Conventions
The following text conventions are used in this manual:
Convention Meaning
boldface Boldface type indicates graphical user interface elements associated

with an action, or terms defined in text or the glossary.

italic Italic type indicates manual titles, emphasis, or placeholder variables
for which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

XX

1

Introduction to Oracle Database

This chapter provides an overview of Oracle Database and contains the following
sections:

s About Relational Databases

= Schema Objects

s Data Access

= Transaction Management

» Oracle Database Architecture

s Oracle Database Documentation Roadmap

About Relational Databases

Every organization has information that it must store and manage to meet its
requirements. For example, a corporation must collect and maintain human resources
records for its employees. This information must be available to those who need it. An
information system is a formal system for storing and processing information.

An information system could be a set of cardboard boxes containing manila folders
along with rules for how to store and retrieve the folders. However, most companies
today use a database to automate their information systems. A database is an
organized collection of information treated as a unit. The purpose of a database is to
collect, store, and retrieve related information for use by database applications.

Database Management System (DBMS)

A database management system (DBMS) is software that controls the storage,
organization, and retrieval of data. Typically, a DBMS has the following elements:

= Kernel code

This code manages memory and storage for the DBMS.
= Repository of metadata

This repository is usually called a data dictionary.
s Query language

This language enables applications to access the data.

A database application is a software program that interacts with a database to access
and manipulate data.

The first generation of database management systems included the following types:

Introduction to Oracle Database 1-1

About Relational Databases

s Hierarchical

A hierarchical database organizes data in a tree structure. Each parent record has
one or more child records, similar to the structure of a file system.

s Network

A network database is similar to a hierarchical database, except records have a
many-to-many rather than a one-to-many relationship.

The preceding database management systems stored data in rigid, predetermined
relationships. Because no data definition language existed, changing the structure of
the data was difficult. Also, these systems lacked a simple query language, which
hindered application development.

Relational Model

In his seminal 1970 paper "A Relational Model of Data for Large Shared Data Banks,"
E. F. Codd defined a relational model based on mathematical set theory. Today, the
most widely accepted database model is the relational model.

A relational database is a database that conforms to the relational model. The
relational model has the following major aspects:

= Structures
Well-defined objects store or access the data of a database.
= Operations

Clearly defined actions enable applications to manipulate the data and structures
of a database.

= Integrity rules
Integrity rules govern operations on the data and structures of a database.

A relational database stores data in a set of simple relations. A relation is a set of
tuples. A tuple is an unordered set of attribute values.

A table is a two-dimensional representation of a relation in the form of rows (tuples)
and columns (attributes). Each row in a table has the same set of columns. A relational
database is a database that stores data in relations (tables). For example, a relational
database could store information about company employees in an employee table, a
department table, and a salary table.

See Also: http://dl.acm.org/citation.cfm?id=362685 for an
abstract and link to Codd's paper

Relational Database Management System (RDBMS)

The relational model is the basis for a relational database management system
(RDBMS). Essentially, an RDBMS moves data into a database, stores the data, and
retrieves it so that it can be manipulated by applications. An RDBMS distinguishes
between the following types of operations:

= Logical operations

In this case, an application specifies what content is required. For example, an
application requests an employee name or adds an employee record to a table.

= Physical operations

1-2 Oracle Database Concepts

About Relational Databases

In this case, the RDBMS determines how things should be done and carries out the
operation. For example, after an application queries a table, the database may use
an index to find the requested rows, read the data into memory, and perform
many other steps before returning a result to the user. The RDBMS stores and
retrieves data so that physical operations are transparent to database applications.

Oracle Database is an RDBMS. An RDBMS that implements object-oriented features
such as user-defined types, inheritance, and polymorphism is called an
object-relational database management system (ORDBMS). Oracle Database has
extended the relational model to an object-relational model, making it possible to store
complex business models in a relational database.

Brief History of Oracle Database

The current version of Oracle Database is the result of over 30 years of innovative
development. Highlights in the evolution of Oracle Database include the following:

Founding of Oracle

In 1977, Larry Ellison, Bob Miner, and Ed Oates started the consultancy Software
Development Laboratories, which became Relational Software, Inc. (RSI). In 1983,
RSI became Oracle Systems Corporation and then later Oracle Corporation.

First commercially available RDBMS

In 1979, RSI introduced Oracle V2 (Version 2) as the first commercially available
SQL-based RDBMS, a landmark event in the history of relational databases.

Portable version of Oracle Database

Oracle Version 3, released in 1983, was the first relational database to run on
mainframes, minicomputers, and PCs. The database was written in C, enabling the
database to be ported to multiple platforms.

Enhancements to concurrency control, data distribution, and scalability

Version 4 introduced multiversion read consistency. Version 5, released in 1985,
supported client/server computing and distributed database systems. Version 6
brought enhancements to disk I/O, row locking, scalability, and backup and
recovery. Also, Version 6 introduced the first version of the PL/SQL language, a
proprietary procedural extension to SQL.

PL/SQL stored program units
Oracle?, released in 1992, introduced PL/SQL stored procedures and triggers.
Objects and partitioning

Oracle8 was released in 1997 as the object-relational database, supporting many
new data types. Additionally, Oracle8 supported partitioning of large tables.

Internet computing

Oracle8i Database, released in 1999, provided native support for internet protocols
and server-side support for Java. Oracle8i was designed for internet computing,
enabling the database to be deployed in a multitier environment.

Oracle Real Application Clusters (Oracle RAC)

Oracle9i Database introduced Oracle RAC in 2001, enabling multiple instances to
access a single database simultaneously. Additionally, Oracle XML Database
(Oracle XML DB) introduced the ability to store and query XML.

Grid computing

Introduction to Oracle Database 1-3

Schema Objects

Oracle Database 10g introduced grid computing in 2003. This release enabled
organizations to virtualize computing resources by building a grid infrastructure
based on low-cost commodity servers. A key goal was to make the database
self-managing and self-tuning. Oracle Automatic Storage Management (Oracle
ASM) helped achieve this goal by virtualizing and simplifying database storage
management.

= Manageability, diagnosability, and availability

Oracle Database 11g, released in 2007, introduced a host of new features that
enable administrators and developers to adapt quickly to changing business
requirements. The key to adaptability is simplifying the information infrastructure
by consolidating information and using automation wherever possible.

See Also:

http://www.oracle.com/technetwork/issue-archive/2007/07-jul/
04730-090772.html for an article summarizing the evolution of Oracle
Database

Schema Objects

Tables

Indexes

One characteristic of an RDBMS is the independence of physical data storage from
logical data structures. In Oracle Database, a database schema is a collection of logical
data structures, or schema objects. A database schema is owned by a database user
and has the same name as the user name.

Schema objects are user-created structures that directly refer to the data in the
database. The database supports many types of schema objects, the most important of
which are tables and indexes.

A schema object is one type of database object. Some database objects, such as profiles
and roles, do not reside in schemas.

See Also: '"Introduction to Schema Objects" on page 2-1

A table describes an entity such as employees. You define a table with a table name,
such as employees, and set of columns. In general, you give each column a name, a
data type, and a width when you create the table.

A table is a set of rows. A column identifies an attribute of the entity described by the
table, whereas a row identifies an instance of the entity. For example, attributes of the
employees entity correspond to columns for employee ID and last name. A row
identifies a specific employee.

You can optionally specify rules for each column of a table. These rules are called
integrity constraints. One example is a NOT NULL integrity constraint. This constraint
forces the column to contain a value in every row.

See Also:
= "Overview of Tables" on page 2-6

» Chapter 5, "Data Integrity"

An index is an optional data structure that you can create on one or more columns of a
table. Indexes can increase the performance of data retrieval. When processing a

1-4 Oracle Database Concepts

Data Access

request, the database can use available indexes to locate the requested rows efficiently.
Indexes are useful when applications often query a specific row or range of rows.

Indexes are logically and physically independent of the data. Thus, you can drop and
create indexes with no effect on the tables or other indexes. All applications continue
to function after you drop an index.

See Also: "Overview of Indexes" on page 3-1

Data Access

A general requirement for a DBMS is to adhere to accepted industry standards for a
data access language.

Structured Query Language (SQL)

SQL is a set-based declarative language that provides an interface to an RDBMS such
as Oracle Database. In contrast to procedural languages such as C, which describe how
things should be done, SQL is nonprocedural and describes what should be done.
Users specify the result that they want (for example, the names of current employees),
not how to derive it. SQL is the ANSI standard language for relational databases.

All operations on the data in an Oracle database are performed using SQL statements.
For example, you use SQL to create tables and query and modify data in tables. A SQL
statement can be thought of as a very simple, but powerful, computer program or
instruction. A SQL statement is a string of SQL text such as the following:

SELECT first_name, last_name FROM employees;

SQL statements enable you to perform the following tasks:
s Query data

= Insert, update, and delete rows in a table

» Create, replace, alter, and drop objects

= Control access to the database and its objects

» Guarantee database consistency and integrity

SQL unifies the preceding tasks in one consistent language. Oracle SQL is an
implementation of the ANSI standard. Oracle SQL supports numerous features that
extend beyond standard SQL.

See Also: Chapter 7, "SQL"

PL/SQL and Java

PL/SQL is a procedural extension to Oracle SQL. PL/SQL is integrated with Oracle
Database, enabling you to use all of the Oracle Database SQL statements, functions,
and data types. You can use PL/SQL to control the flow of a SQL program, use
variables, and write error-handling procedures.

A primary benefit of PL/SQL is the ability to store application logic in the database
itself. A PL/SQL procedure or function is a schema object that consists of a set of SQL
statements and other PL/SQL constructs, grouped together, stored in the database,
and run as a unit to solve a specific problem or to perform a set of related tasks. The
principal benefit of server-side programming is that built-in functionality can be
deployed anywhere.

Introduction to Oracle Database 1-5

Transaction Management

Oracle Database can also store program units written in Java. A Java stored procedure
is a Java method published to SQL and stored in the database for general use. You can
call existing PL/SQL programs from Java and Java programs from PL/SQL.

See Also: Chapter 8, "Server-Side Programming: PL/SQL and Java"
and "Client-Side Database Programming" on page 19-5

Transaction Management

Transactions

Oracle Database is designed as a multiuser database. The database must ensure that
multiple users can work concurrently without corrupting one another's data.

An RDBMS must be able to group SQL statements so that they are either all
committed, which means they are applied to the database, or all rolled back, which
means they are undone. A transaction is a logical, atomic unit of work that contains
one or more SQL statements.

An illustration of the need for transactions is a funds transfer from a savings account
to a checking account. The transfer consists of the following separate operations:

1. Decrease the savings account.
2. Increase the checking account.
3. Record the transaction in the transaction journal.

Oracle Database guarantees that all three operations succeed or fail as a unit. For
example, if a hardware failure prevents a statement in the transaction from executing,
then the other statements must be rolled back.

Transactions are one of the features that sets Oracle Database apart from a file system.
If you perform an atomic operation that updates several files, and if the system fails
halfway through, then the files will not be consistent. In contrast, a transaction moves
an Oracle database from one consistent state to another. The basic principle of a
transaction is "all or nothing": an atomic operation succeeds or fails as a whole.

See Also: Chapter 10, "Transactions"

Data Concurrency

A requirement of a multiuser RDBMS is the control of concurrency, which is the
simultaneous access of the same data by multiple users. Without concurrency controls,
users could change data improperly, compromising data integrity. For example, one
user could update a row while a different user simultaneously updates it.

If multiple users access the same data, then one way of managing concurrency is to
make users wait. However, the goal of a DBMS is to reduce wait time so it is either
nonexistent or negligible. All SQL statements that modify data must proceed with as
little interference as possible. Destructive interactions, which are interactions that
incorrectly update data or alter underlying data structures, must be avoided.

Oracle Database uses locks to control concurrent access to data. A lock is a mechanism
that prevents destructive interaction between transactions accessing a shared resource.
Locks help ensure data integrity while allowing maximum concurrent access to data.

See Also: "Overview of the Oracle Database Locking Mechanism"
on page 9-11

1-6 Oracle Database Concepts

Oracle Database Architecture

Data Consistency

In Oracle Database, each user must see a consistent view of the data, including visible
changes made by a user's own transactions and committed transactions of other users.
For example, the database must not permit a dirty read, which occurs when one
transaction sees uncommitted changes made by another concurrent transaction.

Oracle Database always enforces statement-level read consistency, which guarantees
that the data returned by a single query is committed and consistent with respect to a
single point in time. Depending on the transaction isolation level, this point is the time
at which the statement was opened or the time the transaction began. The Flashback
Query feature enables you to specify this point in time explicitly.

The database can also provide read consistency to all queries in a transaction, known
as transaction-level read consistency. In this case, each statement in a transaction sees
data from the same point in time, which is the time at which the transaction began.

See Also:

s Chapter 9, "Data Concurrency and Consistency”

» Oracle Database Advanced Application Developer’s Guide to learn
about Flashback Query

Oracle Database Architecture

A database server is the key to information management. In general, a server reliably
manages a large amount of data in a multiuser environment so that users can
concurrently access the same data. A database server also prevents unauthorized
access and provides efficient solutions for failure recovery.

Database and Instance

An Oracle database server consists of a database and at least one database instance
(commonly referred to as simply an instance). Because an instance and a database are
so closely connected, the term Oracle database is sometimes used to refer to both
instance and database. In the strictest sense the terms have the following meanings:

s Database

A database is a set of files, located on disk, that store data. These files can exist
independently of a database instance.

s Database instance

An instance is a set of memory structures that manage database files. The instance
consists of a shared memory area, called the system global area (SGA), and a set
of background processes. An instance can exist independently of database files.

Figure 1-1 shows a database and its instance. For each user connection to the instance,
the application is run by a client process. Each client process is associated with its own
server process. The server process has its own private session memory, known as the
program global area (PGA).

Introduction to Oracle Database 1-7

Oracle Database Architecture

Figure 1-1 Oracle Instance and Database

Instance
System Global Area (SGA) e ey
Shared Pool Large Pool I/O Buffer Area
Library Cache UGA
Shared SQL Area | |Private O - | y
[et rmom % wRem SQL Area 0
SELECT * FROM | [} =]
I (Shared o O 4P| PMON
1 _ _er_npiLo_ye_es_ _' Server Only) - | 0 — O m (o]
+—>{swon]
Data Server | |Other | |Reserved Response Request
Dictionary | |Result Pool Queue Queue
Cache Cache <4—)| RECO
<4—) | MMON
Database Fixed Java Streams
Buffer Cache SGA Pool Pool <+— | MmN
. <> [otners]
A Background
| Processes
PGA v v
T T
SQL Work Areas Server DBWn| | CKPT | |LGWR| | ARCn| |RVWR
- ! < by Process
Session Memory Fanate iQL Area
N "
T A
:Ba_tasage- T 7T l
1 E?ta V¥ V¥V Control 'V
1 Files Files A“
client ||! 10101} 10101} C D
Process |l 1 1 Archived |)|Flashback
| Redo Log Log
1

A database can be considered from both a physical and logical perspective. Physical
data is data viewable at the operating system level. For example, operating system
utilities such as the Linux 1s and ps can list database files and processes. Logical data
such as a table is meaningful only for the database. A SQL statement can list the tables
in an Oracle database, but an operating system utility cannot.

The database has physical structures and logical structures. Because the physical and
logical structures are separate, the physical storage of data can be managed without
affecting access to logical storage structures. For example, renaming a physical
database file does not rename the tables whose data is stored in this file.

See Also: Chapter 13, "Oracle Database Instance"

Database Storage Structures

An essential task of a relational database is data storage. This section briefly describes
the physical and logical storage structures used by Oracle Database.

1-8 Oracle Database Concepts

Oracle Database Architecture

Physical Storage Structures

The physical database structures are the files that store the data. When you execute the
SQL command CREATE DATABASE, the following files are created:

s Data files

Every Oracle database has one or more physical data files, which contain all the
database data. The data of logical database structures, such as tables and indexes,
is physically stored in the data files.

s Control files

Every Oracle database has a control file. A control file contains metadata
specifying the physical structure of the database, including the database name and
the names and locations of the database files.

= Online redo log files

Every Oracle Database has an online redo log, which is a set of two or more
online redo log files. An online redo log is made up of redo entries (also called
redo records), which record all changes made to data.

Many other files are important for the functioning of an Oracle database server. These
files include parameter files and diagnostic files. Backup files and archived redo log
files are offline files important for backup and recovery.

See Also: Chapter 11, "Physical Storage Structures”

Logical Storage Structures

This section discusses logical storage structures. The following logical storage
structures enable Oracle Database to have fine-grained control of disk space use:

s Data blocks

At the finest level of granularity, Oracle Database data is stored in data blocks.
One data block corresponds to a specific number of bytes on disk.

s Extents

An extent is a specific number of logically contiguous data blocks, obtained in a
single allocation, used to store a specific type of information.

= Segments

A segment is a set of extents allocated for a user object (for example, a table or
index), undo data, or temporary data.

= Tablespaces
A database is divided into logical storage units called tablespaces. A tablespace is

the logical container for a segment. Each tablespace contains at least one data file.

See Also: Chapter 12, "Logical Storage Structures”

Database Instance Structures

An Oracle database uses memory structures and processes to manage and access the
database. All memory structures exist in the main memory of the computers that
constitute the RDBMS.

When applications connect to an Oracle database, they are connected to a database
instance. The instance services applications by allocating other memory areas in
addition to the SGA, and starting other processes in addition to background processes.

Introduction to Oracle Database 1-9

Oracle Database Architecture

Oracle Database Processes

A process is a mechanism in an operating system that can run a series of steps. Some
operating systems use the terms job, task, or thread. For the purpose of this discussion, a
thread is equivalent to a process. An Oracle database instance has the following types
of processes:

= Client processes

These processes are created and maintained to run the software code of an
application program or an Oracle tool. Most environments have separate
computers for client processes.

= Background processes

These processes consolidate functions that would otherwise be handled by
multiple Oracle Database programs running for each client process. Background
processes asynchronously perform I/O and monitor other Oracle Database
processes to provide increased parallelism for better performance and reliability.

] Server processes

These processes communicate with client processes and interact with Oracle
Database to fulfill requests.

Oracle processes include server processes and background processes. In most
environments, Oracle processes and client processes run on separate computers.

See Also: Chapter 15, "Process Architecture”

Instance Memory Structures

Oracle Database creates and uses memory structures for purposes such as memory for
program code, data shared among users, and private data areas for each connected
user. The following memory structures are associated with an instance:

= System Global Area (SGA)

The SGA is a group of shared memory structures that contain data and control
information for one database instance. Examples of SGA components include
cached data blocks and shared SQL areas.

= Program Global Areas (PGA)

A PGA is a memory region that contain data and control information for a server
or background process. Access to the PGA is exclusive to the process. Each server
process and background process has its own PGA.

See Also: Chapter 14, "Memory Architecture"”

Application and Networking Architecture

To take full advantage of a given computer system or network, Oracle Database
enables processing to be split between the database server and the client programs.
The computer running the RDBMS handles the database server responsibilities while
the computers running the applications handle the interpretation and display of data.

Application Architecture

The application architecture refers to the computing environment in which a database
application connects to an Oracle database. The two most common database
architectures are client/server and multitier.

1-10 Oracle Database Concepts

Oracle Database Architecture

In a client/server architecture, the client application initiates a request for an operation
to be performed on the database server. The server runs Oracle Database software and
handles the functions required for concurrent, shared data access. The server receives
and processes requests that originate from clients.

In a traditional multitier architecture, one or more application servers perform parts
of the operation. An application server contains a large part of the application logic,
provides access to the data for the client, and performs some query processing, thus
lessening the load on the database. The application server can serve as an interface
between clients and multiple databases and provide an additional level of security.

Service-oriented architecture (SOA) is a multitier architecture in which application
functionality is encapsulated in services. SOA services are usually implemented as
Web services. Web services are accessible through HTTP and are based on XML-based
standards such as Web Services Description Language (WSDL) and SOAP.

Oracle Database can act as a Web service provider in a traditional multitier or SOA
environment.

See Also:
= "Overview of Multitier Architecture” on page 16-3

» Oracle XML DB Developer’s Guide for more information about
using Web services with the database

Networking Architecture

Oracle Net Services is the interface between the database and the network
communication protocols that facilitate distributed processing and distributed
databases. Communication protocols define the way that data is transmitted and
received on a network. Oracle Net Services supports communications on all major
network protocols, including TCP/IP, HTTP, FTP, and WebDAV.

Oracle Net, a component of Oracle Net Services, establishes and maintains a network
session from a client application to a database server. After a network session is
established, Oracle Net acts as the data courier for both the client application and the
database server, exchanging messages between them. Oracle Net can perform these
jobs because it is located on each computer in the network.

An important component of Net Services is the Oracle Net Listener (called the
listener), which is a separate process that runs on the database server or elsewhere in
the network. Client applications can send connection requests to the listener, which
manages the traffic of these requests to the database server. When a connection is
established, the client and database communicate directly.

The most common ways to configure an Oracle database to service client requests are:
s Dedicated server architecture

Each client process connects to a dedicated server process. The server process is
not shared by any other client for the duration of the client's session. Each new
session is assigned a dedicated server process.

m Shared server architecture

The database uses a pool of shared processes for multiple sessions. A client
process communicates with a dispatcher, which is a process that enables many
clients to connect to the same database instance without the need for a dedicated
server process for each client.

Introduction to Oracle Database 1-11

Oracle Database Documentation Roadmap

See Also:
= "Overview of Oracle Networking Architecture" on page 16-5

m Oracle Database Net Services Administrator’s Guide to learn more
about Oracle Net architecture

s Oracle XML DB Developer’s Guide for information about using
WebDAYV with the database

Oracle Database Documentation Roadmap

Basic Group

This section explains how this manual should be read and where it fits into the Oracle
Database documentation set as a whole.

To a new user, the Oracle Database documentation library can seem daunting. Not
only are there are over 175 manuals, but many of these manuals are several hundred
pages long. However, the documentation is designed with specific access paths to
ensure that users are able to find the information they need as efficiently as possible.

The documentation set is divided into three layers or groups: basic, intermediate, and
advanced. Users begin with the manuals in the basic group (Oracle Database 2 Day
DBA, Oracle Database 2 Day Developer’s Guide, or this manual), proceed to the manuals
in the intermediate group (the 2 Day + series), and finally to the advanced manuals,
which include the remainder of the documentation set.

Technical users who are new to Oracle Database begin by reading one or more
manuals in the basic group from cover to cover. Each manual in this group is designed
to be read in two days. In addition to this manual, the basic group includes:

» Oracle Database 2 Day DBA

This manual is a task-based DBA quick start that teaches you how to perform
day-to-day database administrative tasks. It teaches you how to perform all
common administrative tasks needed to keep the database operational, including
how to perform basic troubleshooting and performance monitoring activities.

» Oracle Database 2 Day Developer’s Guide

This manual is a task-based database developer quick start guide that explains
how to use the basic features of Oracle Database through SQL and PL/SQL.

The manuals in the basic group are closely related, which is reflected in the number of
cross-references. For example, Oracle Database Concepts frequently sends users to a 2
Day manual to learn how to perform a task based on a concept. The 2 Day manuals
frequently references Oracle Database Concepts for conceptual background about a task.

Intermediate Group

The next step up from the basic group is the intermediate group. The manuals in this
group are prefixed with the word 2 Day + because they expand on and assume
information contained in the 2 Day manuals. These manuals cover topics in more
depth than was possible in the basic manuals, or cover topics of special interest. As
shown in Table 1-1, the 2 Day + manuals are divided into manuals for DBAs and
developers.

1-12 Oracle Database Concepts

Oracle Database Documentation Roadmap

Table 1-1 Intermediate Group: 2 Day + Guides

Database Administrators Database Developers

Oracle Database 2 Day + Performance Tuning Oracle Database 2 Day + Application Express
Guide Developer’s Guide

Oracle Database 2 Day + Real Application Oracle Database 2 Day + Java Developer’s Guide

Clusters Guide

Oracle Database 2 Day + Data Warehousing Oracle Database 2 Day + .NET Developer’s Guide
Guide for Microsoft Windows

Oracle Database 2 Day + Data Replication and | Oracle Database 2 Day + PHP Developer’s Guide
Integration Guide

Oracle Database 2 Day + Security Guide

Advanced Group

The next step up from the intermediate group is the advanced group. These manuals
are intended for expert users who require more detailed information about a particular
topic than can be provided by the 2 Day + manuals. Essential reference manuals in the
advanced group include:

» Oracle Database SQL Language Reference
This manual is the definitive source of information about Oracle SQL.
» Oracle Database Reference

The manual is the definitive source of information about initialization parameters,
data dictionary views, and dynamic performance views.

The advanced guides are too numerous to list in this section. Table 1-2 lists guides that
are used by the majority of expert DBAs and developers at one time or another.

Table 1-2 Advanced Group

Database Administrators Database Developers

Oracle Database Administrator’s Guide Oracle Database Advanced Application Developer’s
Guide

Oracle Database Performance Tuning Guide Oracle Database PL/SQL Language Reference

Oracle Database Backup and Recovery User's Oracle Database PL/SQL Packages and Types
Guide Reference

Oracle Real Application Clusters Administration
and Deployment Guide

Other advanced guides required by a particular user depend on the area of
responsibility of this user. For example, a security officer will naturally refer to the
Oracle Database Security Guide.

Introduction to Oracle Database 1-13

Oracle Database Documentation Roadmap

1-14 Oracle Database Concepts

Part |

Oracle Relational Data Structures

This part describes the basic data structures of an Oracle database, including data
integrity rules, and the structures that store metadata.

This part contains the following chapters:

» Chapter 2, "Tables and Table Clusters"

s Chapter 3, "Indexes and Index-Organized Tables"

» Chapter 4, "Partitions, Views, and Other Schema Objects"
» Chapter 5, "Data Integrity"

s Chapter 6, "Data Dictionary and Dynamic Performance Views"

2

Tables and Table Clusters

This chapter provides an introduction to schema objects and discusses tables, which
are the most common types of schema objects.

This chapter contains the following sections:
s Introduction to Schema Objects
» Overview of Tables

s Overview of Table Clusters

Introduction to Schema Objects

A database schema is a logical container for data structures, called schema objects.
Examples of schema objects are tables and indexes. Schema objects are created and
manipulated with SQL.

A database user has a password and various database privileges. Each user owns a
single schema, which has the same name as the user. The schema contains the data for
the user owning the schema. For example, the hr user owns the hr schema, which
contains schema objects such as the employees table. In a production database, the
schema owner usually represents a database application rather than a person.

Within a schema, each schema object of a particular type has a unique name. For
example, hr.employees refers to the table employees in the hr schema. Figure 2-1
depicts a schema owner named hr and schema objects within the hr schema.

Figure 2-1 HR Schema

HR Schema

Tables Indexes

I 1 —1 1= |

HR User I;l
4 ! owns
w7 o

LI

vooyUuv

Schema
Objects

Tables and Table Clusters 2-1

Introduction to Schema Objects

See Also: "Overview of Database Security" on page 17-1 to learn
more about users and privileges

Schema Object Types

The most important schema objects in a relational database are tables. A table stores
data in rows.

Oracle SQL enables you to create and manipulate many other types of schema objects,
including the following:

Indexes

Indexes are schema objects that contains an entry for each indexed row of the table
or table cluster and provide direct, fast access to rows. Oracle Database supports
several types of index. An index-organized table is a table in which the data is
stored in an index structure. See Chapter 3, "Indexes and Index-Organized Tables".

Partitions

Partitions are pieces of large tables and indexes. Each partition has its own name
and may optionally have its own storage characteristics. See "Overview of
Partitions" on page 4-1.

Views

Views are customized presentations of data in one or more tables or other views.
You can think of them as stored queries. Views do not actually contain data. See
"Overview of Views" on page 4-12.

Sequences

A sequence is a user-created object that can be shared by multiple users to
generate integers. Typically, sequences are used to generate primary key values.
See "Overview of Sequences" on page 4-20.

Dimensions

A dimension defines a parent-child relationship between pairs of column sets,
where all the columns of a column set must come from the same table. Dimensions
are commonly used to categorize data such as customers, products, and time. See
"Overview of Dimensions" on page 2-22.

Synonyms

A synonym is an alias for another schema object. Because a synonym is simply an
alias, it requires no storage other than its definition in the data dictionary. See
"Overview of Synonyms" on page 4-22.

PL/SQL subprograms and packages

PL/SQL is the Oracle procedural extension of SQL. A PL/SQL subprogram is a
named PL/SQL block that can be invoked with a set of parameters. A PL/SQL
package groups logically related PL/SQL types, variables, and subprograms. See
"PL/SQL Subprograms" on page 8-3 and "PL/SQL Packages" on page 8-6.

Other types of objects are also stored in the database and can be created and
manipulated with SQL statements but are not contained in a schema. These objects
include database users, roles, contexts, and directory objects.

2-2 Oracle Database Concepts

Introduction to Schema Objects

See Also:

» Oracle Database 2 Day DBA and Oracle Database Administrator’s
Guide to learn how to manage schema objects

» Oracle Database SQL Language Reference for more about schema
objects and database objects

Schema Object Storage

Some schema objects store data in logical storage structures called segments. For
example, a nonpartitioned heap-organized table or an index creates a segment. Other
schema objects, such as views and sequences, consist of metadata only. This section

describes only schema objects that have segments.

Oracle Database stores a schema object logically within a tablespace. There is no
relationship between schemas and tablespaces: a tablespace can contain objects from
different schemas, and the objects for a schema can be contained in different
tablespaces. The data of each object is physically contained in one or more data files.

Figure 2-2 shows a possible configuration of table and index segments, tablespaces,
and data files. The data segment for one table spans two data files, which are both part
of the same tablespace. A segment cannot span multiple tablespaces.

Figure 2-2 Segments, Tablespaces, and Data Files

S | S

000

L0

vououv

[]

HIL

HiE{EN

voouUuU

index F'?'T
LI

L0

50

Index

I:II:I%I:I

C
C
@

B

Data Files

(physical structures associated

with only one tablespace)

Table Table
Index Index Index

vouuv

00

LI

L]

&%

UUU

200

Table

Segments
(stored in tablespaces-

may span several data files)

Tables and Table Clusters 2-3

Introduction to Schema Objects

See Also:

s Chapter 12, "Logical Storage Structures" to learn about tablespaces
and segments

» Oracle Database 2 Day DBA and Oracle Database Administrator’s
Guide to learn how to manage storage for schema objects

Schema Object Dependencies

Some schema objects reference other objects, creating schema object dependencies.
For example, a view contains a query that references tables or other views, while a
PL/SQL subprogram invokes other subprograms. If the definition of object A
references object B, then A is a dependent object with respect to Band Bis a
referenced object with respect to A.

Oracle Database provides an automatic mechanism to ensure that a dependent object
is always up to date with respect to its referenced objects. When a dependent object is
created, the database tracks dependencies between the dependent object and its
referenced objects. When a referenced object changes in a way that might affect a
dependent object, the dependent object is marked invalid. For example, if a user drops
a table, no view based on the dropped table is usable.

An invalid dependent object must be recompiled against the new definition of a
referenced object before the dependent object is usable. Recompilation occurs
automatically when the invalid dependent object is referenced.

As an illustration of how schema objects can create dependencies, the following
sample script creates a table test_table and then a procedure that queries this table:

CREATE TABLE test_table (coll INTEGER, col2 INTEGER);

CREATE OR REPLACE PROCEDURE test_proc
AS
BEGIN
FOR x IN (SELECT coll, col2 FROM test_table)
LOOP
-- process data
NULL;
END LOOP;
END;
/

The following query of the status of procedure test_proc shows that it is valid:

SQL> SELECT OBJECT_NAME, STATUS FROM USER_OBJECTS WHERE OBJECT_NAME = 'TEST_PROC';
OBJECT_NAME STATUS

TEST_PROC VALID

After adding the col3 column to test_table, the procedure is still valid because the
procedure has no dependencies on this column:

SQL> ALTER TABLE test_table ADD col3 NUMBER;
Table altered.
SQL> SELECT OBJECT_NAME, STATUS FROM USER_OBJECTS WHERE OBJECT NAME = 'TEST_PROC';

OBJECT_NAME STATUS

2-4 Oracle Database Concepts

Introduction to Schema Objects

TEST_PROC VALID

However, changing the data type of the coll column, which the test_proc procedure
depends on in, invalidates the procedure:

SQL> ALTER TABLE test_table MODIFY coll VARCHAR2 (20);
Table altered.
SQL> SELECT OBJECT_NAME, STATUS FROM USER_OBJECTS WHERE OBJECT_NAME = 'TEST_PROC';

OBJECT_NAME STATUS

TEST_PROC INVALID

Running or recompiling the procedure makes it valid again, as shown in the following
example:

SQL> EXECUTE test_proc
PL/SQL procedure successfully completed.
SQL> SELECT OBJECT_NAME, STATUS FROM USER_OBJECTS WHERE OBJECT NAME = 'TEST_PROC';

OBJECT_NAME STATUS

TEST_PROC VALID

See Also: Oracle Database Administrator’s Guide and Oracle Database
Advanced Application Developer’s Guide to learn how to manage schema
object dependencies

SYS and SYSTEM Schemas

All Oracle databases include default administrative accounts. Administrative accounts
are highly privileged and are intended only for DBAs authorized to perform tasks
such as starting and stopping the database, managing memory and storage, creating
and managing database users, and so on.

The administrative account SYS is automatically created when a database is created.
This account can perform all database administrative functions. The SYS schema stores
the base tables and views for the data dictionary. These base tables and views are
critical for the operation of Oracle Database. Tables in the SYS schema are manipulated
only by the database and must never be modified by any user.

The SYSTEM account is also automatically created when a database is created. The
SYSTEM schema stores additional tables and views that display administrative
information, and internal tables and views used by various Oracle Database options
and tools. Never use the SYSTEM schema to store tables of interest to nonadministrative
users.

See Also:

s "User Accounts” on page 17-1 and "Connection with
Administrator Privileges" on page 13-6

» Oracle Database 2 Day DBA and Oracle Database Administrator’s
Guide to learn about SYS, SYSTEM, and other administrative
accounts

Tables and Table Clusters 2-5

Overview of Tables

Sample Schemas

An Oracle database may include sample schemas, which are a set of interlinked
schemas that enable Oracle documentation and Oracle instructional materials to
illustrate common database tasks. The hr schema is a sample schema that contains
information about employees, departments and locations, work histories, and so on.

Figure 2-3 is an entity-relationship diagram of the tables in the hr schema. Most
examples in this manual use objects from this schema.

Figure 2-3 HR Schema

DEPARTMENTS LOCATIONS
HR] department_id location_id
department_name street_address
manager_id postal_code
PN location_id city
state_province
JOB_HISTORY country_id
employee_id g
s;;‘;‘-;';? > | EMPLOYEES :
job_id employee id B | cOUNTRIES
— . first_name .
department_id | i . last name |- country_id
— country_name
email region_id
< phone_number gron_
h|_re_d_ate N
JOBS job_id i
. R salary
-Jo%bglt?e _____ commission_pct REGIONS
m]in galary manager_id re_gionjd
max_salary department_id region_name

See Also: Oracle Database Sample Schemas

Overview of Tables

A table is the basic unit of data organization in an Oracle database. A table describes
an entity, which is something of significance about which information must be
recorded. For example, an employee could be an entity.

Oracle Database tables fall into the following basic categories:
= Relational tables

Relational tables have simple columns and are the most common table type.
Example 2-1 on page 2-8 shows a CREATE TABLE statement for a relational table.

» Object tables

The columns correspond to the top-level attributes of an object type. See "Object
Tables" on page 2-15.

You can create a relational table with the following organizational characteristics:

= A heap-organized table does not store rows in any particular order. The CREATE
TABLE statement creates a heap-organized table by default.

= Anindex-organized table orders rows according to the primary key values. For
some applications, index-organized tables enhance performance and use disk
space more efficiently. See "Overview of Index-Organized Tables" on page 3-20.

2-6 Oracle Database Concepts

Overview of Tables

= An external table is a read-only table whose metadata is stored in the database but
whose data in stored outside the database. See "External Tables" on page 2-16.

A table is either permanent or temporary. A permanent table definition and data
persist across sessions. A temporary table definition persists in the same way as a
permanent table definition, but the data exists only for the duration of a transaction or
session. Temporary tables are useful in applications where a result set must be held
temporarily, perhaps because the result is constructed by running multiple operations.

This section contains the following topics:

s Columns and Rows

s Example: CREATE TABLE and ALTER TABLE Statements
» Oracle Data Types

s Integrity Constraints

s Object Tables

s Temporary Tables

= External Tables

= Table Storage

» Table Compression

See Also: Oracle Database 2 Day DBA and Oracle Database
Administrator’s Guide to learn how to manage tables

Columns and Rows

A table definition includes a table name and set of columns. A column identifies an
attribute of the entity described by the table. For example, the column employee_idin
the employees table refers to the employee ID attribute of an employee entity.

In general, you give each column a column name, a data type, and a width when you
create a table. For example, the data type for employee_id is NUMBER (6), indicating that
this column can only contain numeric data up to 6 digits in width. The width can be
predetermined by the data type, as with DATE.

A table can contain a virtual column, which unlike a nonvirtual column does not
consume disk space. The database derives the values in a virtual column on demand
by computing a set of user-specified expressions or functions. For example, the virtual
column income could be a function of the salary and commission_pct columns.

After you create a table, you can insert, query, delete, and update rows using SQL. A
row is a collection of column information corresponding to a record in a table. For
example, a row in the employees table describes the attributes of a specific employee.

See Also: Oracle Database Administrator’s Guide to learn how to
manage virtual columns

Example: CREATE TABLE and ALTER TABLE Statements

The Oracle SQL command to create a table is CREATE TABLE. Example 2-1 shows the
CREATE TABLE statement for the employees table in the hr sample schema. The
statement specifies columns such as employee_id, first_name, and so on, specifying a
data type such as NUMBER or DATE for each column.

Tables and Table Clusters 2-7

Overview of Tables

Example 2-1 CREATE TABLE employees

CREATE TABLE employees
(employee_id NUMBER (6)

, first_name VARCHAR2 (20)
, last_name VARCHAR2 (25)
CONSTRAINT emp_last_name_nn NOT NULL

, email VARCHAR2 (25)

CONSTRAINT emp_email_nn NOT NULL
, phone_number VARCHAR2 (20)
, hire_date DATE

CONSTRAINT emp_hire_date_nn NOT NULL
, job_id VARCHAR2 (10)

CONSTRAINT emp_job_nn NOT NULL
, salary NUMBER (8, 2)
, commission_pct NUMBER(2,2)
, manager_id NUMBER (6)
, department_id NUMBER(4)
, CONSTRAINT emp_salary_min

CHECK (salary > 0)

, CONSTRAINT emp_email_uk

UNIQUE (email)
)

Example 2-2 shows an ALTER TABLE statement that adds integrity constraints to the
employees table. Integrity constraints enforce business rules and prevent the entry of
invalid information into tables.

Example 2-2 ALTER TABLE employees
ALTER TABLE employees

ADD (CONSTRAINT emp_emp_id_pk
PRIMARY KEY (employee_id)
, CONSTRAINT emp_dept_fk

FOREIGN KEY (department_id)
REFERENCES departments
, CONSTRAINT emp_job_fk
FOREIGN KEY (job_id)
REFERENCES jobs (job_id)
, CONSTRAINT emp_manager_fk
FOREIGN KEY (manager_id)
REFERENCES employees
)

Example 2-3 shows 8 rows and 6 columns of the hr.employees table.

Example 2-3 Rows in the employees Table

EMPLOYEE_ID FIRST_NAME LAST_NAME SALARY COMMISSION_PCT DEPARTMENT_ID
100 Steven King 24000 90
101 Neena Kochhar 17000 90
102 Lex De Haan 17000 90
103 Alexander Hunold 9000 60
107 Diana Lorentz 4200 60
149 Eleni Zlotkey 10500 .2 80
174 Ellen Abel 11000 .3 80
178 Kimberely Grant 7000 .15

The output in Example 2-3 illustrates some of the following important characteristics
of tables, columns, and rows:

2-8 Oracle Database Concepts

Overview of Tables

= Arow of the table describes the attributes of one employee: name, salary,
department, and so on. For example, the first row in the output shows the record
for the employee named Steven King.

= A column describes an attribute of the employee. In the example, the employee_id
column is the primary key, which means that every employee is uniquely
identified by employee ID. Any two employees are guaranteed not to have the
same employee ID.

= A non-key column can contain rows with identical values. In the example, the
salary value for employees 101 and 102 is the same: 17000.

= A foreign key column refers to a primary or unique key in the same table or a
different table. In this example, the value of 90 in department_id corresponds to
the department_id column of the departments table.

= A field is the intersection of a row and column. It can contain only one value. For
example, the field for the department ID of employee 104 contains the value 60.

s A field can lack a value. In this case, the field is said to contain a null value. The
value of the commission_pct column for employee 100 is null, whereas the value
in the field for employee 149 is .2. A column allows nulls unless a NOT NULL or
primary key integrity constraint has been defined on this column, in which case no
row can be inserted without a value for this column.

See Also: Oracle Database SQL Language Reference for CREATE TABLE
syntax and semantics

Oracle Data Types

Each column has a data type, which is associated with a specific storage format,
constraints, and valid range of values. The data type of a value associates a fixed set of
properties with the value. These properties cause Oracle Database to treat values of
one data type differently from values of another. For example, you can multiply values
of the NUMBER data type, but not values of the RAW data type.

When you create a table, you must specify a data type for each of its columns. Each
value subsequently inserted in a column assumes the column data type.

Oracle Database provides several built-in data types. The most commonly used data
types fall into the following categories:

» Character Data Types

= Numeric Data Types

= Datetime Data Types

= Rowid Data Types

s Format Models and Data Types

Other important categories of built-in types include raw, large objects (LOBs), and
collections. PL/SQL has data types for constants and variables, which include
BOOLEAN, reference types, composite types (records), and user-defined types.

Tables and Table Clusters 2-9

Overview of Tables

See Also:
s "Overview of LOBs" on page 19-12

» Oracle Database SQL Language Reference to learn about built-in SQL
data types

» Oracle Database PL/SQL Language Reference to learn about PL/SQL
data types

» Oracle Database Advanced Application Developer’s Guide for
information about how to use the built-in data types

Character Data Types

Character data types store character (alphanumeric) data in strings. The most
commonly used character data type is VARCHAR2, which is the most efficient option for
storing character data.

The byte values correspond to the character encoding scheme, generally called a
character set or code page. The database character set is established at database
creation. Examples of character sets are 7-bit ASCII, EBCDIC, and Unicode UTE-8.

The length semantics of character data types can be measured in bytes or characters.
Byte semantics treat strings as a sequence of bytes. This is the default for character
data types. Character semantics treat strings as a sequence of characters. A character is
technically a code point of the database character set.

See Also:
s "Character Sets" on page 19-9

» Oracle Database 2 Day Developer’s Guide and Oracle Database
Advanced Application Developer’s Guide and to learn how to
select a character data type

VARCHAR2 and CHAR Data Types The VARCHAR2 data type stores variable-length character
literals. The terms literal and constant value are synonymous and refer to a fixed data
value. For example, 'LILA', 'St. George Island',and '101"' are all character literals;
5001 is a numeric literal. Character literals are enclosed in single quotation marks so
that the database can distinguish them from schema object names.

Note: This manual uses the terms text literal, character literal, and
string interchangeably.

When you create a table with a VARCHAR2 column, you specify a maximum string
length. In Example 2-1, the last_name column has a data type of VARCHAR2 (25), which
means that any name stored in the column can have a maximum of 25 bytes.

For each row, Oracle Database stores each value in the column as a variable-length
field unless a value exceeds the maximum length, in which case the database returns
an error. For example, in a single-byte character set, if you enter 10 characters for the
last_name column value in a row, then the column in the row piece stores only 10
characters (10 bytes), not 25. Using VARCHAR2 reduces space consumption.

In contrast to VARCHAR2, CHAR stores fixed-length character strings. When you create a
table with a CHAR column, the column requires a string length. The default is 1 byte.
The database uses blanks to pad the value to the specified length.

2-10 Oracle Database Concepts

Overview of Tables

Oracle Database compares VARCHAR2 values using nonpadded comparison semantics
and compares CHAR values using blank-padded comparison semantics.

See Also: Oracle Database SQL Language Reference for details about
blank-padded and nonpadded comparison semantics

NCHAR and NVARCHAR2 Data Types The NCHAR and NVARCHAR2 data types store Unicode
character data. Unicode is a universal encoded character set that can store information
in any language using a single character set. NCHAR stores fixed-length character strings
that correspond to the national character set, whereas NVARCHAR2 stores variable length
character strings.

You specify a national character set when creating a database. The character set of
NCHAR and NVARCHAR2 data types must be either AL16UTF16 or UTF8. Both character sets
use Unicode encoding.

When you create a table with an NCHAR or NVARCHAR2 column, the maximum size is
always in character length semantics. Character length semantics is the default and
only length semantics for NCHAR or NVARCHAR2.

See Also: Oracle Database Globalization Support Guide for information
about Oracle's globalization support feature

Numeric Data Types

The Oracle Database numeric data types store fixed and floating-point numbers, zero,
and infinity. Some numeric types also store values that are the undefined result of an
operation, which is known as "not a number" or NAN.

Oracle Database stores numeric data in variable-length format. Each value is stored in
scientific notation, with 1 byte used to store the exponent. The database uses up to 20

bytes to store the mantissa, which is the part of a floating-point number that contains

its significant digits. Oracle Database does not store leading and trailing zeros.

NUMBER Data Type The NUMBER data type stores fixed and floating-point numbers. The
database can store numbers of virtually any magnitude. This data is guaranteed to be
portable among different operating systems running Oracle Database. The NUMBER data
type is recommended for most cases in which you must store numeric data.

You specify a fixed-point number in the form NUMBER (p, s), where p and s refer to the
following characteristics:

s Precision

The precision specifies the total number of digits. If a precision is not specified,
then the column stores the values exactly as provided by the application without
any rounding.

m Scale

The scale specifies the number of digits from the decimal point to the least
significant digit. Positive scale counts digits to the right of the decimal point up to
and including the least significant digit. Negative scale counts digits to the left of
the decimal point up to but not including the least significant digit. If you specify a
precision without a scale, as in NUMBER (6), then the scale is 0.

In Example 2-1, the salary column is type NUMBER (8, 2), so the precision is 8 and the
scale is 2. Thus, the database stores a salary of 100,000 as 100000. 00.

Tables and Table Clusters 2-11

Overview of Tables

Floating-Point Numbers Oracle Database provides two numeric data types exclusively
for floating-point numbers: BINARY_FLOAT and BINARY_DOUBLE. These types support all
of the basic functionality provided by the NUMBER data type. However, while NUMBER
uses decimal precision, BINARY_FLOAT and BINARY_DOUBLE use binary precision, which
enables faster arithmetic calculations and usually reduces storage requirements.

BINARY_ FLOAT and BINARY DOUBLE are approximate numeric data types. They store
approximate representations of decimal values, rather than exact representations. For
example, the value 0.1 cannot be exactly represented by either BINARY_DOUBLE or
BINARY_FLOAT. They are frequently used for scientific computations. Their behavior is
similar to the data types FLOAT and DOUBLE in Java and XMLSchema.

See Also: Oracle Database SQL Language Reference to learn about
precision, scale, and other characteristics of numeric types

Datetime Data Types

The datetime data types are DATE and TIMESTAMP. Oracle Database provides
comprehensive time zone support for time stamps.

DATE Data Type The DATE data type stores date and time. Although datetimes can be
represented in character or number data types, DATE has special associated properties.
The hire_date column in Example 2-1 has a DATE data type.

The database stores dates internally as numbers. Dates are stored in fixed-length fields
of 7 bytes each, corresponding to century, year, month, day, hour, minute, and second.

Note: Dates fully support arithmetic operations, so you add to and
subtract from dates just as you can with numbers. See Oracle Database
Advanced Application Developer’s Guide.

The database displays dates according to the specified format model. A format model
is a character literal that describes the format of a datetime in a character string. The
standard date format is DD-MON-RR, which displays dates in the form 01-JAN-11.

RR is similar to YY (the last two digits of the year), but the century of the return value
varies according to the specified two-digit year and the last two digits of the current
year. Assume that in 1999 the database displays 01-JAN-11. If the date format uses RR,
then 11 specifies 2011, whereas if the format uses YY, then 11 specifies 1911. You can
change the default date format at both the instance and the session level.

Oracle Database stores time in 24-hour format—HH:MI: SS. If no time portion is
entered, then by default the time in a date field is 00:00:00 A.M. In a time-only entry,
the date portion defaults to the first day of the current month.

See Also:

» Oracle Database Advanced Application Developer’s Guide for more
information about centuries and date format masks

» Oracle Database SQL Language Reference for information about
datetime format codes

TIMESTAMP Data Type The TIMESTAMP data type is an extension of the DATE data type. It
stores fractional seconds in addition to the information stored in the DATE data type.
The TIMESTAMP data type is useful for storing precise time values, such as in
applications that must track event order.

2-12 Oracle Database Concepts

Overview of Tables

The DATETIVME data types TIMESTAMP WITH TIME ZONE and TIMESTAMP WITH LOCAL
TIME ZONE are time-zone aware. When a user selects the data, the value is adjusted to
the time zone of the user session. This data type is useful for collecting and evaluating
date information across geographic regions.

See Also: Oracle Database SQL Language Reference for details about
the syntax of creating and entering data in time stamp columns

Rowid Data Types

Every row stored in the database has an address. Oracle Database uses a ROWID data
type to store the address (rowid) of every row in the database. Rowids fall into the
following categories:

= Physical rowids store the addresses of rows in heap-organized tables, table
clusters, and table and index partitions.

= Logical rowids store the addresses of rows in index-organized tables.

» Foreign rowids are identifiers in foreign tables, such as DB2 tables accessed
through a gateway. They are not standard Oracle Database rowids.

A data type called the universal rowid, or UROWID, supports all kinds of rowids.

Use of Rowids Oracle Database uses rowids internally for the construction of indexes. A
B-tree index, which is the most common type, contains an ordered list of keys divided
into ranges. Each key is associated with a rowid that points to the associated row's
address for fast access. End users and application developers can also use rowids for
several important functions:

= Rowids are the fastest means of accessing particular rows.
= Rowids provide the ability to see how a table is organized.
= Rowids are unique identifiers for rows in a given table.

You can also create tables with columns defined using the ROWID data type. For
example, you can define an exception table with a column of data type ROWID to store
the rowids of rows that violate integrity constraints. Columns defined using the ROWID
data type behave like other table columns: values can be updated, and so on.

ROWID Pseudocolumn Every table in an Oracle database has a pseudocolumn named
ROWID. A pseudocolumn behaves like a table column, but is not actually stored in the
table. You can select from pseudocolumns, but you cannot insert, update, or delete
their values. A pseudocolumn is also similar to a SQL function without arguments.
Functions without arguments typically return the same value for every row in the
result set, whereas pseudocolumns typically return a different value for each row.

Values of the ROWID pseudocolumn are strings representing the address of each row.
These strings have the data type ROWID. This pseudocolumn is not evident when listing
the structure of a table by executing SELECT or DESCRIBE, nor does the pseudocolumn
consume space. However, the rowid of each row can be retrieved with a SQL query
using the reserved word ROWID as a column name.

Example 2—4 queries the ROWID pseudocolumn to show the rowid of the row in the
employees table for employee 100.

Example 2-4 ROWID Pseudocolumn
SQL> SELECT ROWID FROM employees WHERE employee_id = 100;

ROWID

Tables and Table Clusters 2-13

Overview of Tables

AAAPecAAFAAAABSAAA

See Also:
= "Rowid Format" on page 12-10

» Oracle Database Advanced Application Developer’s Guide to learn
how to identify rows by address

» Oracle Database SQL Language Reference to learn about rowid types

Format Models and Data Types

A format model is a character literal that describes the format of datetime or numeric
data stored in a character string. A format model does not change the internal
representation of the value in the database.

When you convert a character string into a date or number, a format model determines
how the database interprets the string. In SQL, you can use a format model as an
argument of the TO_CHAR and TO_DATE functions to format a value to be returned from
the database or to format a value to be stored in the database.

The following statement selects the salaries of the employees in Department 80 and
uses the TO_CHAR function to convert these salaries into character values with the
format specified by the number format model '$99,990.99':

SQL> SELECT last_name employee, TO_CHAR(salary, '$99,990.99')
2 FROM employees
3 WHERE department_id = 80 AND last_name = 'Russell’';

EMPLOYEE TO_CHAR (SAL

Russell $14,000.00

The following example updates a hire date using the TO_DATE function with the format
mask 'YYYY MM DD' to convert the string '1998 05 20' to a DATE value:

SQL> UPDATE employees
2 SET hire_date = TO_DATE('1998 05 20','YYYY MM DD')
3 WHERE last_name = 'Hunold';

See Also: Oracle Database SQL Language Reference to learn more
about format models

Integrity Constraints

Integrity constraints are named rules that restrict the values for one or more columns
in a table. These rules prevent invalid data entry into tables. Also, constraints can
prevent the deletion of a table when certain dependencies exist.

If a constraint is enabled, then the database checks data as it is entered or updated.
Data that does not conform to the constraint is prevented from being entered. If a
constraint is disabled, then data that does not conform to the constraint can be allowed
to enter the database.

In Example 2-1 on page 2-8, the CREATE TABLE statement specifies NOT NULL
constraints for the last_name, email, hire_date, and job_id columns. The constraint
clauses identify the columns and the conditions of the constraint. These constraints
ensure that the specified columns contain no null values. For example, an attempt to
insert a new employee without a job ID generates an error.

2-14 Oracle Database Concepts

Overview of Tables

You can create a constraint when or after you create a table. Constraints can be
temporarily disabled if needed. The database stores constraints in the data dictionary.

See Also:
» Chapter 5, "Data Integrity" to learn about integrity constraints

» Oracle Database SQL Language Reference to learn about SQL
constraint clauses

Object Tables

An Oracle object type is a user-defined type with a name, attributes, and methods.
Object types make it possible to model real-world entities such as customers and
purchase orders as objects in the database.

An object type defines a logical structure, but does not create storage. Example 2-5
creates an object type named department_typ.

Example 2-5 Object Type
CREATE TYPE department_typ AS OBJECT
(d_name VARCHAR2 (100),
d_address VARCHAR2 (200));
/

An object table is a special kind of table in which each row represents an object. The
CREATE TABLE statement in Example 2-6 creates an object table named
departments_obj_t of the object type department_typ. The attributes (columns) of this
table are derived from the definition of the object type. The INSERT statement inserts a
row into this table.

Example 2-6 Object Table

CREATE TABLE departments_obj_t OF department_typ;
INSERT INTO departments_obj_t
VALUES ('hr', '10 Main St, Sometown, CA');

Like a relational column, an object table can contain rows of just one kind of thing,
namely, object instances of the same declared type as the table. By default, every row
object in an object table has an associated logical object identifier (OID) that uniquely
identifies it in an object table. The OID column of an object table is a hidden column.

See Also:

» Oracle Database Object-Relational Developer’s Guide to learn about
object-relational features in Oracle Database

» Oracle Database SQL Language Reference for CREATE TYPE syntax
and semantics

Temporary Tables

Oracle Database temporary tables hold data that exists only for the duration of a
transaction or session. Data in a temporary table is private to the session, which means
that each session can only see and modify its own data.

Temporary tables are useful in applications where a result set must be buffered. For
example, a scheduling application enables college students to create optional semester

Tables and Table Clusters 2-15

Overview of Tables

course schedules. Each schedule is represented by a row in a temporary table. During
the session, the schedule data is private. When the student decides on a schedule, the
application moves the row for the chosen schedule to a permanent table. At the end of
the session, the schedule data in the temporary data is automatically dropped.

Temporary Table Creation

The CREATE GLOBAL TEMPORARY TABLE statement creates a temporary table. The ON
COMMIT clause specifies whether the table data is transaction-specific (default) or
session-specific.

Unlike temporary tables in some other relational databases, when you create a
temporary table in an Oracle database, you create a static table definition. The
temporary table is a persistent object described in the data dictionary, but appears
empty until your session inserts data into the table. You create a temporary table for
the database itself, not for every PL/SQL stored procedure.

Because temporary tables are statically defined, you can create indexes for them with
the CREATE INDEX statement. Indexes created on temporary tables are also temporary.
The data in the index has the same session or transaction scope as the data in the
temporary table. You can also create a view or trigger on a temporary table.

See Also:

» Oracle Database Administrator’s Guide to learn how create and
manage temporary tables

» Oracle Database SQL Language Reference for CREATE GLOBAL
TEMPORARY TABLE syntax and semantics

= "Overview of Views" on page 4-12 and "Overview of Triggers" on
page 8-16

Segment Allocation in Temporary Tables

Like permanent tables, temporary tables are defined in the data dictionary. Temporary
segments are allocated when data is first inserted. Until data is loaded in a session the
table appears empty. Temporary segments are deallocated at the end of the transaction
for transaction-specific temporary tables and at the end of the session for
session-specific temporary tables.

See Also: "Temporary Segments" on page 12-23

External Tables

An external table accesses data in external sources as if this data were in a table in the
database. You can use SQL, PL/SQL, and Java to query the external data.

External tables are useful for querying flat files. For example, a SQL-based application
may need to access records in a text file. The records are in the following form:

100, Steven, King, SKING, 515.123.4567,17-JUN-03,AD_PRES, 31944,150, 90
101, Neena, Kochhar, NKOCHHAR, 515.123.4568,21-SEP-05,AD_VP,17000,100,90
102, Lex,De Haan, LDEHAAN,515.123.4569,13-JAN-01,AD_VP,17000,100,90

You could create an external table, copy the file to the location specified in the external
table definition, and use SQL to query the records in the text file.

External tables are also valuable for performing ETL tasks common in data warehouse
environments. For example, external tables enable the pipelining of the data loading
phase with the transformation phase, eliminating the need to stage data inside the

2-16 Oracle Database Concepts

Overview of Tables

database in preparation for further processing inside the database. See "Overview of
Data Warehousing and Business Intelligence" on page 17-15.

External Table Creation

Internally, creating an external table means creating metadata in the data dictionary.
Unlike an ordinary table, an external table does not describe data stored in the
database, nor does it describe how data is stored externally. Rather, external table
metadata describes how the external table layer must present data to the database.

A CREATE TABLE ... ORGANIZATION EXTERNAL statement has two parts. The external
table definition describes the column types. This definition is like a view that enables
SQL to query external data without loading it into the database. The second part of the
statement maps the external data to the columns.

External tables are read-only unless created with CREATE TABLE AS SELECT with the
ORACLE_DATAPUMP access driver. Restrictions for external tables include no support for
indexed columns, virtual columns, and column objects.

External Table Access Drivers

An access driver is an API that interprets the external data for the database. The access
driver runs inside the database, which uses the driver to read the data in the external
table. The access driver and the external table layer are responsible for performing the
transformations required on the data in the data file so that it matches the external
table definition. Figure 2—4 represents how external data is accessed.

Figure 2—4 External Tables

TN

Database

N

External Table
Metadata
External
Files b (Queries of
’ ueri
— = \\ // External 4 !
1—=F| «—» Data < - —
- = Access D/ictionary

Driver P

~—_

Oracle provides the ORACLE_LOADER (default) and ORACLE_DATAPUMP access drivers for
external tables. For both drivers, the external files are not Oracle data files.

ORACLE_LOADER enables read-only access to external files using SQL*Loader. You
cannot create, update, or append to an external file using the ORACLE_LOADER driver.

The ORACLE_DATAPUMP driver enables you to unload external data. This operation
involves reading data from the database and inserting the data into an external table,
represented by one or more external files. After external files are created, the database
cannot update or append data to them. The driver also enables you to load external
data, which involves reading an external table and loading its data into a database.

Tables and Table Clusters 2-17

Overview of Tables

Table Storage

See Also:

s Oracle Database Administrator’s Guide to learn about managing
external tables, external connections, and directory objects

n Oracle Database Utilities to learn about external tables

» Oracle Database SQL Language Reference for information about
creating and querying external tables

Oracle Database uses a data segment in a tablespace to hold table data. As explained
in "User Segments" on page 12-21, a segment contains extents made up of data blocks.

The data segment for a table (or cluster data segment, when dealing with a table
cluster) is located in either the default tablespace of the table owner or in a tablespace
named in the CREATE TABLE statement.

Table Organization

By default, a table is organized as a heap, which means that the database places rows
where they fit best rather than in a user-specified order. Thus, a heap-organized table
is an unordered collection of rows. As users add rows, the database places the rows in
the first available free space in the data segment. Rows are not guaranteed to be
retrieved in the order in which they were inserted.

Note: Index-organized tables use a different principle of
organization. See "Overview of Index-Organized Tables" on page 3-20.

The hr.departments table is a heap-organized table. It has columns for department ID,
name, manager ID, and location ID. As rows are inserted, the database stores them
wherever they fit. A data block in the table segment might contain the unordered rows
shown in Example 2-7.

Example 2-7 Rows in Departments Table

50,Shipping,121,1500

120, Treasury, , 1700

70,Public Relations,204,2700
30, Purchasing, 114,1700

130, Corporate Tax,, 1700
10,Administration,200,1700
110, Accounting, 205,1700

The column order is the same for all rows in a table. The database usually stores
columns in the order in which they were listed in the CREATE TABLE statement, but this
order is not guaranteed. For example, if a table has a column of type LONG, then Oracle
Database always stores this column last in the row. Also, if you add a new column to a
table, then the new column becomes the last column stored.

A table can contain a virtual column, which unlike normal columns does not consume
space on disk. The database derives the values in a virtual column on demand by
computing a set of user-specified expressions or functions. You can index virtual
columns, collect statistics on them, and create integrity constraints. Thus, virtual
columns are much like nonvirtual columns.

2-18 Oracle Database Concepts

Overview of Tables

See Also: Oracle Database SQL Language Reference to learn about
virtual columns

Row Storage

The database stores rows in data blocks. Each row of a table containing data for less
than 256 columns is contained in one or more row pieces.

If possible, Oracle Database stores each row as one row piece. However, if all of the
row data cannot be inserted into a single data block, or if an update to an existing row
causes the row to outgrow its data block, then the database stores the row using
multiple row pieces (see "Data Block Format" on page 12-7).

Rows in a table cluster contain the same information as rows in nonclustered tables.
Additionally, rows in a table cluster contain information that references the cluster key
to which they belong.

Rowids of Row Pieces

A rowid is effectively a 10-byte physical address of a row. As explained in "Rowid
Data Types" on page 2-13, every row in a heap-organized table has a rowid unique to
this table that corresponds to the physical address of a row piece. For table clusters,
rows in different tables that are in the same data block can have the same rowid.

Oracle Database uses rowids internally for the construction of indexes. For example,
each key in a B-tree index is associated with a rowid that points to the address of the
associated row for fast access (see "B-Tree Indexes" on page 3-5). Physical rowids
provide the fastest possible access to a table row, enabling the database to retrieve a
row in as little as a single I/O.

See Also: "Rowid Format" on page 12-10

Storage of Null Values

A null is the absence of a value in a column. Nulls indicate missing, unknown, or
inapplicable data.

Nulls are stored in the database if they fall between columns with data values. In these
cases, they require 1 byte to store the length of the column (zero). Trailing nulls in a
row require no storage because a new row header signals that the remaining columns
in the previous row are null. For example, if the last three columns of a table are null,
then no data is stored for these columns.

See Also: Oracle Database SQL Language Reference to learn more
about null values

Table Compression

The database can use table compression to reduce the amount of storage required for
the table. Compression saves disk space, reduces memory use in the database buffer
cache, and in some cases speeds query execution. Table compression is transparent to
database applications.

Basic and Advanced Row Compression

Dictionary-based table compression provides good compression ratios for
heap-organized tables. Oracle Database supports the following types of
dictionary-based table compression:

= Basic table compression

Tables and Table Clusters 2-19

Overview of Tables

This type of compression is intended for bulk load operations. The database does
not compress data modified using conventional DML. You must use direct path
loads, ALTER TABLE . . . MOVE operations, or online table redefinition to achieve
basic compression.

s Advanced row compression

This type of compression is intended for OLTP applications and compresses data
manipulated by any SQL operation.

For basic and advanced row compression, the database stores compressed rows in
row-major format. All columns of one row are stored together, followed by all
columns of the next row, and so on (see Figure 12-7 on page 12-9). Duplicate values
are replaced with a short reference to a symbol table stored at the beginning of the
block. Thus, information needed to re-create the uncompressed data is stored in the
data block itself.

Compressed data blocks look much like normal data blocks. Most database features
and functions that work on regular data blocks also work on compressed blocks.

You can declare compression at the tablespace, table, partition, or subpartition level. If
specified at the tablespace level, then all tables created in the tablespace are
compressed by default.

The following statement applies OLTP compression to the orders table:

ALTER TABLE oe.orders COMPRESS FOR OLTP;

The following example of a partial CREATE TABLE statement specifies OLTP
compression for one partition and basic compression for the other partition:

CREATE TABLE sales (
prod_id NUMBER NOT NULL,
cust_id NUMBER NOT NULL, ...)
PCTFREE 5 NOLOGGING NOCOMPRESS
PARTITION BY RANGE (time_id)
(partition sales_2010 VALUES LESS THAN(TO_DATE(...)) COMPRESS BASIC,
partition sales_2011 VALUES LESS THAN (MAXVALUE) COMPRESS FOR OLTP);

See Also:

= "Data Block Compression" on page 12-11 to learn about the format
of compressed data blocks

» Oracle Database Administrator's Guide and Oracle Database
Performance Tuning Guide to learn about table compression

s "SQL*Loader" on page 18-5 to learn about using SQL*Loader for
direct path loads

Hybrid Columnar Compression

With Hybrid Columnar Compression, the database stores the same column for a group
of rows together. The data block does not store data in row-major format, but uses a
combination of both row and columnar methods.

Storing column data together, with the same data type and similar characteristics,
dramatically increases the storage savings achieved from compression. The database
compresses data manipulated by any SQL operation, although compression levels are
higher for direct path loads. Database operations work transparently against
compressed objects, so no application changes are required.

2-20 Oracle Database Concepts

Overview of Tables

Types of Hybrid Columnar Compression If your underlying storage supports Hybrid
Columnar Compression, then you can specify the following compression types,
depending on your requirements:

= Warehouse compression

This type of compression is optimized to save storage space, and is intended for
data warehouse applications.

= Online archival compression

This type of compression is optimized for maximum compression levels, and is
intended for historical data and data that does not change.

To achieve warehouse or online archival compression, you must use direct path loads,
ALTER TABLE . . . MOVE operations, or online table redefinition.

Hybrid Columnar Compression is optimized for Data Warehousing and decision
support applications on Exadata storage. Exadata maximizes the performance of
queries on tables that are compressed using Hybrid Columnar Compression, taking
advantage of the processing power, memory, and Infiniband network bandwidth that
are integral to the Exadata storage server.

Other Oracle storage systems support Hybrid Columnar Compression, and deliver the
same space savings as on Exadata storage, but do not deliver the same level of query
performance. For these storage systems, Hybrid Columnar Compression is ideal for
in-database archiving of older data that is infrequently accessed.

Compression Units Hybrid Columnar Compression uses a logical construct called a
compression unit to store a set of rows. When you load data into a table, the database
stores groups of rows in columnar format, with the values for each column stored and
compressed together. After the database has compressed the column data for a set of
rows, the database fits the data into the compression unit.

For example, you apply Hybrid Columnar Compression to a daily_sales table. At the
end of every day, you populate the table with items and the number sold, with the
item ID and date forming a composite primary key. Table 2-1 shows a subset of the
rows indaily_sales.

Table 2-1 Sample Table daily_sales

Item_ID Date Num_Sold Shipped_From Restock
1000 01-JUN-11 2 WAREHOUSE1 Y
1001 01-JUN-11 0 WAREHOUSE3 N
1002 01-JUN-11 1 WAREHOUSE3 N
1003 01-JUN-11 0 WAREHOUSE2 N
1004 01-JUN-11 2 WAREHOUSE1 N
1005 01-JUN-11 1 WAREHOUSE2 N

Assume that the rows in Table 2-1 are stored in one compression unit. Hybrid
Columnar Compression stores the values for each column together, and then uses
multiple algorithms to compress each column. The database chooses the algorithms
based on a variety of factors, including the data type of the column, the cardinality of
the actual values in the column, and the compression level chosen by the user.

As shown in Figure 2-5, each compression unit can span multiple data blocks. The
values for a particular column may or may not span multiple blocks.

Tables and Table Clusters 2-21

Overview of Table Clusters

Figure 2-5 Compression Unit

Column 1

Column 2 Column 3 Column 4 Column 5

T T =
-
N

Data Block 1 Data Block 2 Data Block 3 Data Block 4

Hybrid Columnar Compression has implications for row locking (see "Row Locks
(TX)" on page 9-18). When an update occurs for a row in an uncompressed data block,
only the updated row is locked. In contrast, the database must lock all rows in the
compression unit if an update is made to any row in the unit. Updates to rows using
Hybrid Columnar Compression cause rowids to change.

Note: When tables use Hybrid Columnar Compression, Oracle DML
locks larger blocks of data (compression units), which may reduce
concurrency.

See Also:

» Oracle Database Licensing Information to learn about licensing
requirements for Hybrid Columnar Compression

» Oracle Database Administrator’s Guide to learn how to use Hybrid
Columnar Compression

Overview of Table Clusters

A table cluster is a group of tables that share common columns and store related data
in the same blocks. When tables are clustered, a single data block can contain rows
from multiple tables. For example, a block can store rows from both the employees and
departments tables rather than from only a single table.

The cluster key is the column or columns that the clustered tables have in common.
For example, the employees and departments tables share the department_id column.
You specify the cluster key when creating the table cluster and when creating every
table added to the table cluster.

The cluster key value is the value of the cluster key columns for a particular set of
rows. All data that contains the same cluster key value, such as department_1d=20, is
physically stored together. Each cluster key value is stored only once in the cluster and
the cluster index, no matter how many rows of different tables contain the value.

For an analogy, suppose an HR manager has two book cases: one with boxes of
employees folders and the other with boxes of departments folders. Users often ask for
the folders for all employees in a particular department. To make retrieval easier, the
manager rearranges all the boxes in a single book case. She divides the boxes by

2-22 Oracle Database Concepts

Overview of Table Clusters

department ID. Thus, all folders for employees in department 20 and the folder for
department 20 itself are in one box; the folders for employees in department 100 and
the folder for department 100 are in a different box, and so on.

You can consider clustering tables when they are primarily queried (but not modified)
and records from the tables are frequently queried together or joined. Because table
clusters store related rows of different tables in the same data blocks, properly used
table clusters offer the following benefits over nonclustered tables:

s DiskI/Ois reduced for joins of clustered tables.
» Access time improves for joins of clustered tables.

= Less storage is required to store related table and index data because the cluster
key value is not stored repeatedly for each row.

Typically, clustering tables is not appropriate in the following situations:
= The tables are frequently updated.
s The tables frequently require a full table scan.

s The tables require truncating.

See Also: Oracle Database Performance Tuning Guide for guidelines on
when to use table clusters

Overview of Indexed Clusters

An indexed cluster is a table cluster that uses an index to locate data. The cluster
index is a B-tree index on the cluster key. A cluster index must be created before any
rows can be inserted into clustered tables.

Assume that you create the cluster employees_departments_cluster with the cluster
key department_id, as shown in Example 2-8. Because the HASHKEYS clause is not
specified, this cluster is an indexed cluster. Afterward, you create an index named
idx_emp_dept_cluster on this cluster key.

Example 2-8 Indexed Cluster

CREATE CLUSTER employees_departments_cluster
(department_id NUMBER(4))
SIZE 512;

CREATE INDEX idx_emp_dept_cluster ON CLUSTER employees_departments_cluster;

You then create the employees and departments tables in the cluster, specifying the
department_id column as the cluster key, as follows (the ellipses mark the place where
the column specification goes):

CREATE TABLE employees (...)
CLUSTER employees_departments_cluster (department_id);

CREATE TABLE departments (...)
CLUSTER employees_departments_cluster (department_id);

Finally, you add rows to the employees and departments tables. The database
physically stores all rows for each department from the employees and departments
tables in the same data blocks. The database stores the rows in a heap and locates them
with the index.

Tables and Table Clusters 2-23

Overview of Table Clusters

Figure 2—-6 shows the employees_departments_cluster table cluster, which contains

employees and departments. The database stores rows for employees in department 20

together, department 110 together, and so on. If the tables are not clustered, then the
database does not ensure that the related rows are stored together.

Figure 2-6 Clustered Table Data

employees_departments_cluster employees
employee_id last_name | department_id
20 department_name | location_id 201 Hartstein 20
. 202 Fay 20
marketing 1800 203 Mavris 40
204 Baer 70
. 205 Higgins 110 .
Cluster Key is employee_id last_name | C 206 Gietz 110 o
department_id 201 Hartstein o
\ departments
110 | department_name | location_id .
accounting 1700 . department_id department_namel location_id
\ 20 Marketing 1800
| 110 Accounting 1700
employee_id last_name C !
205 Higgins C R g .
206 Gietz . . S ’

¢ Clustered Tables Y

by ,
N ’
N 7

Tables

_'7

The B-tree cluster index associates the cluster key value with the database block
address (DBA) of the block containing the data. For example, the index entry for key
20 shows the address of the block that contains data for employees in department 20:
20, AADAAAA9G

The cluster index is separately managed, just like an index on a nonclustered table,
and can exist in a separate tablespace from the table cluster.

See Also:

"Overview of Indexes" on page 3-1
]

Oracle Database Administrator’s Guide to learn how to create and
manage indexed clusters

Oracle Database SQL Language Reference for CREATE CLUSTER
syntax and semantics

2-24 Oracle Database Concepts

Overview of Table Clusters

Overview of Hash Clusters

A hash cluster is like an indexed cluster, except the index key is replaced with a hash
function. No separate cluster index exists. In a hash cluster, the data is the index.

With an indexed table or indexed cluster, Oracle Database locates table rows using key
values stored in a separate index. To find or store a row in an indexed table or table
cluster, the database must perform at least two I/Os:

= One or more I/Os to find or store the key value in the index
s Another I/O to read or write the row in the table or table cluster

To find or store a row in a hash cluster, Oracle Database applies the hash function to
the cluster key value of the row. The resulting hash value corresponds to a data block
in the cluster, which the database reads or writes on behalf of the issued statement.

Hashing is an optional way of storing table data to improve the performance of data
retrieval. Hash clusters may be beneficial when the following conditions are met:

= A table is queried much more often than modified.

s The hash key column is queried frequently with equality conditions, for example,
WHERE department_id=20. For such queries, the cluster key value is hashed. The
hash key value points directly to the disk area that stores the rows.

= You can reasonably guess the number of hash keys and the size of the data stored
with each key value.

Hash Cluster Creation

The cluster key, like the key of an indexed cluster, is a single column or composite key
shared by the tables in the cluster. The hash key values are actual or possible values
inserted into the cluster key column. For example, if the cluster key is department_id,
then hash key values could be 10, 20, 30, and so on.

Oracle Database uses a hash function that accepts an infinite number of hash key
values as input and sorts them into a finite number of buckets. Each bucket has a
unique numeric ID known as a hash value. Each hash value maps to the database
block address for the block that stores the rows corresponding to the hash key value
(department 10, 20, 30, and so on).

To create a hash cluster, you use the same CREATE CLUSTER statement as for an indexed
cluster, with the addition of a hash key. The number of hash values for the cluster
depends on the hash key. In Example 2-9, the number of departments that are likely to
exist is 100, so HASHKEYS is set to 100.

Example 2-9 Hash Cluster

CREATE CLUSTER employees_departments_cluster
(department_id NUMBER(4))
SIZE 8192 HASHKEYS 100;

After you create employees_departments_cluster, you can create the employees and
departments tables in the cluster. You can then load data into the hash cluster just as in

the indexed cluster described in Example 2-8.

See Also: Oracle Database Administrator’s Guide to learn how to create
and manage hash clusters

Tables and Table Clusters 2-25

Overview of Table Clusters

Hash Cluster Queries

The database, not the user, determines how to hash the key values input by the user.
For example, assume that users frequently execute queries such as the following,
entering different department ID numbers for p_id:

SELECT *
FROM employees
WHERE department_id = :p_id;

SELECT *
FROM departments
WHERE department_id = :p_id;

SELECT *

FROM employees e, departments d

WHERE e.department_id = d.department_id
AND d.department_id = :p_id;

If a user queries employees in department_id=20, then the database might hash this
value to bucket 77. If a user queries employees in department_1id=10, then the
database might hash this value to bucket 15. The database uses the internally
generated hash value to locate the block that contains the employee rows for the
requested department.

Figure 2-7 depicts a hash cluster segment as a horizontal row of blocks. As shown in
the graphic, a query can retrieve data in a single I/O.

Figure 2-7 Retrieving Data from a Hash Cluster

SELECT * FROM employees
WHERE department_id = 20

Hash(20) —> Hash Value 77

!

. Block
Data Blocks in Cluster Segment 100

A limitation of hash clusters is the unavailability of range scans on nonindexed cluster
keys (see "Index Range Scan" on page 3-7). Assume that no separate index exists for
the hash cluster created in Example 2-9. A query for departments with IDs between 20
and 100 cannot use the hashing algorithm because it cannot hash every possible value
between 20 and 100. Because no index exists, the database must perform a full scan.

Hash Cluster Variations

A single-table hash cluster is an optimized version of a hash cluster that supports
only one table at a time. A one-to-one mapping exists between hash keys and rows. A
single-table hash cluster can be beneficial when users require rapid access to a table by
primary key. For example, users often look up an employee record in the employees
table by employee_id.

2-26 Oracle Database Concepts

Overview of Table Clusters

A sorted hash cluster stores the rows corresponding to each value of the hash function
in such a way that the database can efficiently return them in sorted order. The
database performs the optimized sort internally. For applications that always consume
data in sorted order, this technique can mean faster retrieval of data. For example, an
application might always sort on the order_date column of the orders table.

See Also: Oracle Database Administrator’s Guide to learn how to create
single-table and sorted hash clusters

Hash Cluster Storage

Oracle Database allocates space for a hash cluster differently from an indexed cluster.
In Example 2-9, HASHKEYS specifies the number of departments likely to exist, whereas
SIZE specifies the size of the data associated with each department. The database
computes a storage space value based on the following formula:

HASHKEYS * SIZE / database_block_size

Thus, if the block size is 4096 bytes in Example 2-9, then the database allocates at least
200 blocks to the hash cluster.

Oracle Database does not limit the number of hash key values that you can insert into
the cluster. For example, even though HASHKEYS is 100, nothing prevents you from
inserting 200 unique departments in the departments table. However, the efficiency of
the hash cluster retrieval diminishes when the number of hash values exceeds the
number of hash keys.

To illustrate the retrieval issues, assume that block 100 in Figure 2-7 is completely full
with rows for department 20. A user inserts a new department with department_id 43
into the departments table. The number of departments exceeds the HASHKEYS value,
so the database hashes department_id 43 to hash value 77, which is the same hash
value used for department_id 20. Hashing multiple input values to the same output
value is called a hash collision.

When users insert rows into the cluster for department 43, the database cannot store
these rows in block 100, which is full. The database links block 100 to a new overflow
block, say block 200, and stores the inserted rows in the new block. Both block 100 and
200 are now eligible to store data for either department. As shown in Figure 2-8, a
query of either department 20 or 43 now requires two 1/Os to retrieve the data: block
100 and its associated block 200. You can solve this problem by re-creating the cluster
with a different HASHKEYS value.

Tables and Table Clusters 2-27

Overview of Table Clusters

Figure 2-8 Retrieving Data from a Hash Cluster When a Hash Collision Occurs

SELECT * FROM employees SELECT * FROM employees
WHERE department_id = 20 WHERE department_id = 43

v v

Hash(20) —> Hash Value 77 <—— Hash(43)

\

. Block
Data Blocks in Cluster Segment 100

Block
200

See Also: Oracle Database Administrator’s Guide to learn how to
manage space in hash clusters

2-28 Oracle Database Concepts

3

Indexes and Index-Organized Tables

This chapter discusses indexes, which are schema objects that can speed access to table
rows, and index-organized tables, which are tables stored in an index structure.

This chapter contains the following sections:
s Overview of Indexes

= Overview of Index-Organized Tables

Overview of Indexes

An index is an optional structure, associated with a table or table cluster, that can
sometimes speed data access. By creating an index on one or more columns of a table,
you gain the ability in some cases to retrieve a small set of randomly distributed rows
from the table. Indexes are one of many means of reducing disk I/O.

If a heap-organized table has no indexes, then the database must perform a full table
scan to find a value. For example, without an index, a query of location 2700 in the
hr.departments table requires the database to search every row in every table block
for this value. This approach does not scale well as data volumes increase.

For an analogy, suppose an HR manager has a shelf of cardboard boxes. Folders
containing employee information are inserted randomly in the boxes. The folder for
employee Whalen (ID 200) is 10 folders up from the bottom of box 1, whereas the
folder for King (ID 100) is at the bottom of box 3. To locate a folder, the manager looks
at every folder in box 1 from bottom to top, and then moves from box to box until the
folder is found. To speed access, the manager could create an index that sequentially
lists every employee ID with its folder location:

ID 100: Box 3, position 1 (bottom)
ID 101: Box 7, position 8
ID 200: Box 1, position 10

Similarly, the manager could create separate indexes for employee last names,
department IDs, and so on.

In general, consider creating an index on a column in any of the following situations:

s The indexed columns are queried frequently and return a small percentage of the
total number of rows in the table.

= A referential integrity constraint exists on the indexed column or columns. The
index is a means to avoid a full table lock that would otherwise be required if you

Indexes and Index-Organized Tables 3-1

Overview of Indexes

update the parent table primary key, merge into the parent table, or delete from
the parent table.

= A unique key constraint will be placed on the table and you want to manually
specify the index and all index options.

See Also: Chapter 5, "Data Integrity"

Index Characteristics

Indexes are schema objects that are logically and physically independent of the data in
the objects with which they are associated. Thus, an index can be dropped or created
without physically affecting the table for the index.

Note: If you drop an index, then applications still work. However,
access of previously indexed data can be slower.

The absence or presence of an index does not require a change in the wording of any
SQL statement. An index is a fast access path to a single row of data. It affects only the
speed of execution. Given a data value that has been indexed, the index points directly
to the location of the rows containing that value.

The database automatically maintains and uses indexes after they are created. The
database also automatically reflects changes to data, such as adding, updating, and
deleting rows, in all relevant indexes with no additional actions required by users.
Retrieval performance of indexed data remains almost constant, even as rows are
inserted. However, the presence of many indexes on a table degrades DML
performance because the database must also update the indexes.

Indexes have the following properties:
= Usability

Indexes are usable (default) or unusable. An unusable index is not maintained by
DML operations and is ignored by the optimizer. An unusable index can improve
the performance of bulk loads. Instead of dropping an index and later re-creating
it, you can make the index unusable and then rebuild it. Unusable indexes and
index partitions do not consume space. When you make a usable index unusable,
the database drops its index segment.

= Visibility

Indexes are visible (default) or invisible. An invisible index is maintained by DML
operations and is not used by default by the optimizer. Making an index invisible
is an alternative to making it unusable or dropping it. Invisible indexes are
especially useful for testing the removal of an index before dropping it or using
indexes temporarily without affecting the overall application.

See Also:

s "Overview of the Optimizer" on page 7-10

» Oracle Database 2 Day DBA and Oracle Database Administrator’s
Guide to learn how to manage indexes

» Oracle Database Performance Tuning Guide to learn how to tune
indexes

3-2 Oracle Database Concepts

Overview of Indexes

Keys and Columns

A key is a set of columns or expressions on which you can build an index. Although
the terms are often used interchangeably, indexes and keys are different. Indexes are
structures stored in the database that users manage using SQL statements. Keys are
strictly a logical concept.

The following statement creates an index on the customer_id column of the sample
table oe.orders:

CREATE INDEX ord_customer_ix ON orders (customer_id);

In the preceding statement, the customer_id column is the index key. The index itself
is named ord_customer_ix.

Note: Primary and unique keys automatically have indexes, but you
might want to create an index on a foreign key.

See Also: Oracle Database SQL Language Reference CREATE INDEX
syntax and semantics

Composite Indexes

A composite index, also called a concatenated index, is an index on multiple columns
in a table. Columns in a composite index should appear in the order that makes the
most sense for the queries that will retrieve data and need not be adjacent in the table.

Composite indexes can speed retrieval of data for SELECT statements in which the
WHERE clause references all or the leading portion of the columns in the composite
index. Therefore, the order of the columns used in the definition is important. In
general, the most commonly accessed columns go first.

For example, suppose an application frequently queries the last_name, job_1id, and
salary columns in the employees table. Also assume that last_name has high
cardinality, which means that the number of distinct values is large compared to the
number of table rows. You create an index with the following column order:

CREATE INDEX employees_ix
ON employees (last_name, job_id, salary);

Queries that access all three columns, only the last_name column, or only the
last_name and job_id columns use this index. In this example, queries that do not
access the last_name column do not use the index.

Note: In some cases, such as when the leading column has very low
cardinality, the database may use a skip scan of this index (see "Index
Skip Scan" on page 3-8).

Multiple indexes can exist for the same table if the permutation of columns differs for
each index. You can create multiple indexes using the same columns if you specify
distinctly different permutations of the columns. For example, the following SQL
statements specify valid permutations:

CREATE INDEX employee_idxl ON employees (last_name, job_id);
CREATE INDEX employee_idx2 ON employees (job_id, last_name);

Indexes and Index-Organized Tables 3-3

Overview of Indexes

See Also: Oracle Database Performance Tuning Guide for more
information about using composite indexes

Unique and Nonunique Indexes

Indexes can be unique or nonunique. Unique indexes guarantee that no two rows of a
table have duplicate values in the key column or columns. For example, no two
employees can have the same employee ID. Thus, in a unique index, one rowid exists
for each data value. The data in the leaf blocks is sorted only by key.

Nonunique indexes permit duplicates values in the indexed column or columns. For
example, the first_name column of the employees table may contain multiple Mike
values. For a nonunique index, the rowid is included in the key in sorted order, so
nonunique indexes are sorted by the index key and rowid (ascending).

Oracle Database does not index table rows in which all key columns are null, except
for bitmap indexes or when the cluster key column value is null.

Types of Indexes

Oracle Database provides several indexing schemes, which provide complementary
performance functionality. The indexes can be categorized as follows:

m B-tree indexes

These indexes are the standard index type. They are excellent for primary key and
highly-selective indexes. Used as concatenated indexes, B-tree indexes can retrieve
data sorted by the indexed columns. B-tree indexes have the following subtypes:

- Index-organized tables

An index-organized table differs from a heap-organized because the data is
itself the index. See "Overview of Index-Organized Tables" on page 3-20.

- Reverse key indexes

In this type of indeXx, the bytes of the index key are reversed, for example, 103
is stored as 301. The reversal of bytes spreads out inserts into the index over
many blocks. See "Reverse Key Indexes" on page 3-11.

— Descending indexes

This type of index stores data on a particular column or columns in
descending order. See "Ascending and Descending Indexes" on page 3-11.

— B-tree cluster indexes

This type of index is used to index a table cluster key. Instead of pointing to a
row, the key points to the block that contains rows related to the cluster key.
See "Overview of Indexed Clusters" on page 2-23.

» Bitmap and bitmap join indexes

In a bitmap index, an index entry uses a bitmap to point to multiple rows. In
contrast, a B-tree index entry points to a single row. A bitmap join index is a
bitmap index for the join of two or more tables. See "Bitmap Indexes" on page 3-13.

s Function-based indexes

This type of index includes columns that are either transformed by a function,
such as the UPPER function, or included in an expression. B-tree or bitmap indexes
can be function-based. See "Function-Based Indexes" on page 3-17.

= Application domain indexes

3-4 Oracle Database Concepts

Overview of Indexes

This type of index is created by a user for data in an application-specific domain.
The physical index need not use a traditional index structure and can be stored
either in the Oracle database as tables or externally as a file. See "Application
Domain Indexes" on page 3-19.

See Also: Oracle Database Performance Tuning Guide to learn about
different index types

B-Tree Indexes

B-trees, short for balanced trees, are the most common type of database index. A
B-tree index is an ordered list of values divided into ranges. By associating a key with
a row or range of rows, B-trees provide excellent retrieval performance for a wide
range of queries, including exact match and range searches.

Figure 3-1 illustrates the structure of a B-tree index. The example shows an index on
the department_id column, which is a foreign key column in the employees table.

Figure 3—1 Internal Structure of a B-tree Index

Branch Blocks

0..40
41..80
81..120
200..250
v
=t 0..10 41..48 200..209
11..19 = 49..53 210..220
20..25 54..65 221..228
32..40 78..80 246..250
Leaf Blocks
A4 v v
0,rowid 11,rowid 221,rowid 246,rowid
0,rowid 11,rowid 222 rowid 248, rowid
12,rowid 223,rowid 248, rowid
10,rowid
19,rowid . 228,rowid . 250,rowid

S U U U

Branch Blocks and Leaf Blocks

A B-tree index has two types of blocks: branch blocks for searching and leaf blocks
that store values. The upper-level branch blocks of a B-tree index contain index data
that points to lower-level index blocks. In Figure 3-1, the root branch block has an
entry 0-40, which points to the leftmost block in the next branch level. This branch
block contains entries such as 0-10 and 11-19. Each of these entries points to a leaf
block that contains key values that fall in the range.

Indexes and Index-Organized Tables 3-5

Overview of Indexes

A B-tree index is balanced because all leaf blocks automatically stay at the same depth.
Thus, retrieval of any record from anywhere in the index takes approximately the
same amount of time. The height of the index is the number of blocks required to go
from the root block to a leaf block. The branch level is the height minus 1. In

Figure 3-1, the index has a height of 3 and a branch level of 2.

Branch blocks store the minimum key prefix needed to make a branching decision
between two keys. This technique enables the database to fit as much data as possible
on each branch block. The branch blocks contain a pointer to the child block
containing the key. The number of keys and pointers is limited by the block size.

The leaf blocks contain every indexed data value and a corresponding rowid used to
locate the actual row. Each entry is sorted by (key, rowid). Within a leaf block, a key
and rowid is linked to its left and right sibling entries. The leaf blocks themselves are
also doubly linked. In Figure 3-1 the leftmost leaf block (0-10) is linked to the second
leaf block (11-19).

Note: Indexes in columns with character data are based on the
binary values of the characters in the database character set.

Index Scans

In an index scan, the database retrieves a row by traversing the index, using the
indexed column values specified by the statement. If the database scans the index for a
value, then it will find this value in # I/Os where # is the height of the B-tree index.
This is the basic principle behind Oracle Database indexes.

If a SQL statement accesses only indexed columns, then the database reads values
directly from the index rather than from the table. If the statement accesses columns in
addition to the indexed columns, then the database uses rowids to find the rows in the
table. Typically, the database retrieves table data by alternately reading an index block
and then a table block.

See Also: Oracle Database Performance Tuning Guide for detailed
information about index scans

Full Index Scan In a full index scan, the database reads the entire index in order. A full
index scan is available if a predicate (WHERE clause) in the SQL statement references a
column in the index, and in some circumstances when no predicate is specified. A full
scan can eliminate sorting because the data is ordered by index key.

Suppose that an application runs the following query:

SELECT department_id, last_name, salary
FROM employees

WHERE salary > 5000

ORDER BY department_id, last_name;

Also assume that department_id, last_name, and salary are a composite key in an
index. Oracle Database performs a full scan of the index, reading it in sorted order
(ordered by department ID and last name) and filtering on the salary attribute. In this
way, the database scans a set of data smaller than the employees table, which contains
more columns than are included in the query, and avoids sorting the data.

For example, the full scan could read the index entries as follows:

50,Atkinson, 2800, rowid
60,Austin, 4800, rowid
70,Baer, 10000, rowid

3-6 Oracle Database Concepts

Overview of Indexes

80,2bel, 11000, rowid
80,Ande, 6400, rowid
110,Austin, 7200, rowid

Fast Full Index Scan A fast full index scan is a full index scan in which the database
accesses the data in the index itself without accessing the table, and the database reads
the index blocks in no particular order.

Fast full index scans are an alternative to a full table scan when both of the following
conditions are met:

s The index must contain all columns needed for the query.

= A row containing all nulls must not appear in the query result set. For this result to
be guaranteed, at least one column in the index must have either:

— A NOT NULL constraint

- A predicate applied to it that prevents nulls from being considered in the
query result set

For example, an application issues the following query, which does not include an
ORDER BY clause:

SELECT last_name, salary
FROM employees;

The last_name column has a not null constraint. If the last name and salary are a
composite key in an index, then a fast full index scan can read the index entries to
obtain the requested information:

Baida, 2900, rowid
Zlotkey, 10500, rowid
Austin, 7200, rowid
Baer, 10000, rowid
Atkinson, 2800, rowid
Austin, 4800, rowid

Index Range Scan An index range scan is an ordered scan of an index that has the
following characteristics:

= One or more leading columns of an index are specified in conditions. A condition
specifies a combination of one or more expressions and logical (Boolean) operators
and returns a value of TRUE, FALSE, or UNKNOWN.

= 0, 1, or more values are possible for an index key.

The database commonly uses an index range scan to access selective data. The
selectivity is the percentage of rows in the table that the query selects, with 0 meaning
no rows and 1 meaning all rows. Selectivity is tied to a query predicate, such as WHERE
last_name LIKE 'A%', or a combination of predicates. A predicate becomes more
selective as the value approaches 0 and less selective (or more unselective) as the value
approaches 1.

For example, a user queries employees whose last names begin with A. Assume that
the last_name column is indexed, with entries as follows:

Indexes and Index-Organized Tables 3-7

Overview of Indexes

Abel, rowid
Ande, rowid
Atkinson, rowid
Austin, rowid
Austin, rowid
Baer, rowid

The database could use a range scan because the last_name column is specified in the
predicate and multiples rowids are possible for each index key. For example, two
employees are named Austin, so two rowids are associated with the key Austin.

An index range scan can be bounded on both sides, as in a query for departments with
IDs between 10 and 40, or bounded on only one side, as in a query for IDs over 40. To
scan the index, the database moves backward or forward through the leaf blocks. For
example, a scan for IDs between 10 and 40 locates the first index leaf block that
contains the lowest key value that is 10 or greater. The scan then proceeds horizontally
through the linked list of leaf nodes until it locates a value greater than 40.

Index Unique Scan In contrast to an index range scan, an index unique scan must have
either 0 or 1 rowid associated with an index key. The database performs a unique scan
when a predicate references all of the columns in a UNIQUE index key using an equality
operator. An index unique scan stops processing as soon as it finds the first record
because no second record is possible.

As an illustration, suppose that a user runs the following query:

SELECT *
FROM employees
WHERE employee_id = 5;

Assume that the employee_id column is the primary key and is indexed with entries
as follows:

1, rowid
2,rowid
4,rowid
5, rowid
6, rowid

In this case, the database can use an index unique scan to locate the rowid for the
employee whose 1D is 5.

Index Skip Scan An index skip scan uses logical subindexes of a composite index. The
database "skips" through a single index as if it were searching separate indexes. Skip
scanning is beneficial if there are few distinct values in the leading column of a
composite index and many distinct values in the nonleading key of the index.

The database may choose an index skip scan when the leading column of the
composite index is not specified in a query predicate. For example, assume that you
run the following query for a customer in the sh.customers table:

SELECT * FROM sh.customers WHERE cust_email = 'Abbey@company.com';

3-8 Oracle Database Concepts

Overview of Indexes

The customers table has a column cust_gender whose values are either M or F.
Assume that a composite index exists on the columns (cust_gender, cust_email).
Example 3-1 shows a portion of the index entries.

Example 3—-1 Composite Index Entries
F,Wolf@company.com, rowid
F,Wolsey@company.com, rowid
F,Wood@company .com, rowid
F,Woodman@company . com, rowid

F, Yang@company .com, rowid

F, Zimmerman@company.com, rowid

M, Abbassi@company.com, rowid

M, Abbey@company . com, rowid

The database can use a skip scan of this index even though cust_gender is not
specified in the WHERE clause.

In a skip scan, the number of logical subindexes is determined by the number of
distinct values in the leading column. In Example 3-1, the leading column has two
possible values. The database logically splits the index into one subindex with the key
F and a second subindex with the key M.

When searching for the record for the customer whose email is Abbey@company . com,
the database searches the subindex with the value F first and then searches the
subindex with the value M. Conceptually, the database processes the query as follows:

SELECT * FROM sh.customers WHERE cust_gender = 'F'
AND cust_email = 'Abbey@company.com'

UNION ALL

SELECT * FROM sh.customers WHERE cust_gender = 'M'
AND cust_email = 'Abbey@company.com';

See Also: Oracle Database Performance Tuning Guide to learn more
about skip scans

Index Clustering Factor The index clustering factor measures row order in relation to an
indexed value such as employee last name. The more order that exists in row storage
for this value, the lower the clustering factor.

The clustering factor is useful as a rough measure of the number of I/Os required to
read an entire table by means of an index:

s If the clustering factor is high, then Oracle Database performs a relatively high
number of I/Os during a large index range scan. The index entries point to
random table blocks, so the database may have to read and reread the same blocks
over and over again to retrieve the data pointed to by the index.

s If the clustering factor is low, then Oracle Database performs a relatively low
number of I/Os during a large index range scan. The index keys in a range tend to
point to the same data block, so the database does not have to read and reread the
same blocks over and over.

The clustering factor is relevant for index scans because it can show:
s Whether the database will use an index for large range scans
s The degree of table organization in relation to the index key

= Whether you should consider using an index-organized table, partitioning, or
table cluster if rows must be ordered by the index key

Indexes and Index-Organized Tables 3-9

Overview of Indexes

For example, assume that the employees table fits into two data blocks. Table 3-1
depicts the rows in the two data blocks (the ellipses indicate data that is not shown).

Table 3-1 Contents of Two Data Blocks in the Employees Table
Data Block 1 Data Block 2
100 Steven King SKING
156 Janette King JKING
115 Alexander Khoo AKHOO

149 Eleni Zlotkey EZLOTKEY
. 200 Jennifer Whalen JWHALEN
116 Shelli Baida SBAIDA
204 Hermann Baer HBAER
105 David Austin DAUSTIN .
130 Mozhe Atkinson MATKINSO ... | 137 Renske Ladwig RLADWIG
166 Sundar Ande SANDE 173 Sundita Kumar SKUMAR
174 Ellen Abel EABEL 101 Neena Kochar NKOCHHAR ..

Rows are stored in the blocks in order of last name (shown in bold). For example, the
bottom row in data block 1 describes Abel, the next row up describes Ande, and so on
alphabetically until the top row in block 1 for Steven King. The bottom row in block 2
describes Kochar, the next row up describes Kumar, and so on alphabetically until the
last row in the block for Zlotkey.

Assume that an index exists on the last name column. Each name entry corresponds to
a rowid. Conceptually, the index entries would look as follows:

Abel,blocklrowl
Ande, blocklrow2
Atkinson,blocklrow3
Austin,blocklrowd
Baer,blocklrow5

Assume that a separate index exists on the employee ID column. Conceptually, the
index entries might look as follows, with employee IDs distributed in almost random
locations throughout the two blocks:

100, blocklrow50
101,block2rowl
102, blocklrow9
103,block2rowl9
104,block2row39
105, blocklrowd

Example 3-2 queries the ALL_INDEXES view for the clustering factor for these two
indexes. The clustering factor for EMP_NAME_IX is low, which means that adjacent index
entries in a single leaf block tend to point to rows in the same data blocks. The
clustering factor for EMP_EMP_ID_PXK is high, which means that adjacent index entries in
the same leaf block are much less likely to point to rows in the same data blocks.

Example 3-2 Clustering Factor

SQL> SELECT INDEX_NAME, CLUSTERING_FACTOR
2 FROM ALL_INDEXES

3-10 Oracle Database Concepts

Overview of Indexes

3 WHERE INDEX_NAME IN ('EMP_NAME IX','EMP_EMP ID PK');

INDEX_NAME CLUSTERING_FACTOR
EMP_EMP_ID PK 19
EMP_NAME_IX 2

See Also: Oracle Database Reference to learn about ALL_INDEXES

Reverse Key Indexes

A reverse key index is a type of B-tree index that physically reverses the bytes of each
index key while keeping the column order. For example, if the index key is 20, and if
the two bytes stored for this key in hexadecimal are C1, 15 in a standard B-tree index,
then a reverse key index stores the bytes as 15, C1.

Reversing the key solves the problem of contention for leaf blocks in the right side of a
B-tree index. This problem can be especially acute in an Oracle Real Application
Clusters (Oracle RAC) database in which multiple instances repeatedly modify the
same block. For example, in an orders table the primary keys for orders are sequential.
One instance in the cluster adds order 20, while another adds 21, with each instance
writing its key to the same leaf block on the right-hand side of the index.

In a reverse key index, the reversal of the byte order distributes inserts across all leaf
keys in the index. For example, keys such as 20 and 21 that would have been adjacent
in a standard key index are now stored far apart in separate blocks. Thus, I/O for
insertions of sequential keys is more evenly distributed.

Because the data in the index is not sorted by column key when it is stored, the reverse
key arrangement eliminates the ability to run an index range scanning query in some
cases. For example, if a user issues a query for order IDs greater than 20, then the
database cannot start with the block containing this ID and proceed horizontally
through the leaf blocks.

See Also: Oracle Database Performance Tuning Guide to learn about
design considerations for reverse key indexes

Ascending and Descending Indexes

In an ascending index, Oracle Database stores data in ascending order. By default,
character data is ordered by the binary values contained in each byte of the value,
numeric data from smallest to largest number, and date from earliest to latest value.

For an example of an ascending index, consider the following SQL statement:

CREATE INDEX emp_deptid_ix ON hr.employees (department_id);

Oracle Database sorts the hr.employees table on the department_id column. It loads
the ascending index with the department_id and corresponding rowid values in
ascending order, starting with 0. When it uses the index, Oracle Database searches the
sorted department_id values and uses the associated rowids to locate rows having the
requested department_id value.

By specifying the DESC keyword in the CREATE INDEX statement, you can create a
descending index. In this case, the index stores data on a specified column or columns
in descending order. If the index in Figure 3-1 on the employees.department_id
column were descending, then the leaf blocking containing 250 would be on the left
side of the tree and block with 0 on the right. The default search through a descending
index is from highest to lowest value.

Indexes and Index-Organized Tables 3-11

Overview of Indexes

Descending indexes are useful when a query sorts some columns ascending and others
descending. For an example, assume that you create a composite index on the
last_name and department_id columns as follows:

CREATE INDEX emp_name_dpt_ix ON hr.employees (last_name ASC, department_id DESC) ;

If a user queries hr . employees for last names in ascending order (A to Z) and
department IDs in descending order (high to low), then the database can use this index
to retrieve the data and avoid the extra step of sorting it.

See Also:

» Oracle Database Performance Tuning Guide to learn more about
ascending and descending index searches

» Oracle Database SQL Language Reference for descriptions of the ASC
and DESC options of CREATE INDEX

Key Compression

Oracle Database can use key compression to compress portions of the primary key
column values in a B-tree index or an index-organized table. Key compression can
greatly reduce the space consumed by the index.

In general, index keys have two pieces, a grouping piece and a unique piece. Key
compression breaks the index key into a prefix entry, which is the grouping piece, and
a suffix entry, which is the unique or nearly unique piece. The database achieves
compression by sharing the prefix entries among the suffix entries in an index block.

Note: If a key is not defined to have a unique piece, then the
database provides one by appending a rowid to the grouping piece.

By default, the prefix of a unique index consists of all key columns excluding the last
one, whereas the prefix of a nonunique index consists of all key columns. For example,
suppose that you create a composite index on the oe.orders table as follows:

CREATE INDEX orders_mod_stat_ix ON orders (order_mode, order_status);

Many repeated values occur in the order_mode and order_status columns. An index
block may have entries as shown in Example 3-3.

Example 3-3 Index Entries in Orders Table

online, 0, AAAPVCAAFAAAAFaAAa
online, 0, AAAPVCAAFAAAAFaAAg
online, 0, AAAPVCAAFAAAAFaAAAL
online, 2, AAAPVCAAFAAAAFaAAM
online, 3,AAAPVCAAFAAAAFaAAQ
online, 3, AAAPVCAAFAAAAFaAAL

In Example 3-3, the key prefix would consist of a concatenation of the order_mode and
order_status values. If this index were created with default key compression, then
duplicate key prefixes such as online,0 and online,2 would be compressed.
Conceptually, the database achieves compression as shown in the following example:

online, 0

AAAPVCAAFAAAAFaAAa
AAAPVCAAFAAAAFaAAg
AAAPVCAAFAAAAFaAAl

3-12 Oracle Database Concepts

Overview of Indexes

online, 2
AAAPVCAAFAAAAFaAAmM
online, 3
AAAPVCAAFAAAAFaAAQ
AAAPVCAAFAAAAFaAAt

Suffix entries form the compressed version of index rows. Each suffix entry references
a prefix entry, which is stored in the same index block as the suffix entry.

Alternatively, you could specify a prefix length when creating a compressed index. For
example, if you specified prefix length 1, then the prefix would be order_mode and the
suffix would be order_status, rowid. For the values in Example 3-3, the index would
factor out duplicate occurrences of online as follows:

online

0,AAAPVCAAFAAAAFaAAa
0,AAAPVCAAFAAAAFaAAg
0,AAAPVCAAFAAAAFaAAL
2,AAAPVCAAFAAAAFaAAM
3,AAAPVCAAFAAAAFaAAQ
3,AAAPVCAAFAAAAFaAAL

The index stores a specific prefix once per leaf block at most. Only keys in the leaf
blocks of a B-tree index are compressed. In the branch blocks the key suffix can be
truncated, but the key is not compressed.

See Also:

m Oracle Database Administrator’s Guide to learn how to use
compressed indexes

» Oracle Database VLDB and Partitioning Guide to learn how to use
key compression for partitioned indexes

» Oracle Database SQL Language Reference for descriptions of the
key_compression clause of CREATE INDEX

Bitmap Indexes

In a bitmap index, the database stores a bitmap for each index key. In a conventional
B-tree index, one index entry points to a single row. In a bitmap index, each index key
stores pointers to multiple rows.

Bitmap indexes are primarily designed for data warehousing or environments in
which queries reference many columns in an ad hoc fashion. Situations that may call
for a bitmap index include:

» The indexed columns have low cardinality, that is, the number of distinct values is
small compared to the number of table rows.

s The indexed table is either read-only or not subject to significant modification by
DML statements.

For a data warehouse example, the sh.customers table has a cust_gender column
with only two possible values: M and F. Suppose that queries for the number of
customers of a particular gender are common. In this case, the
customers.cust_gender column would be a candidate for a bitmap index.

Each bit in the bitmap corresponds to a possible rowid. If the bit is set, then the row
with the corresponding rowid contains the key value. A mapping function converts
the bit position to an actual rowid, so the bitmap index provides the same functionality
as a B-tree index although it uses a different internal representation.

Indexes and Index-Organized Tables 3-13

Overview of Indexes

If the indexed column in a single row is updated, then the database locks the index
key entry (for example, M or F) and not the individual bit mapped to the updated row.
Because a key points to many rows, DML on indexed data typically locks all of these
rows. For this reason, bitmap indexes are not appropriate for many OLTP applications.

See Also:

» Oracle Database Performance Tuning Guide to learn how to use
bitmap indexes for performance

» Oracle Database Data Warehousing Guide to learn how to use bitmap
indexes in a data warehouse

Bitmap Indexes on a Single Table
Example 3—4 shows a query of the sh.customers table. Some columns in this table are
candidates for a bitmap index.

Example 3-4 Query of customers Table

SQL> SELECT cust_id, cust_last_name, cust_marital_status, cust_gender
2 FROM sh.customers
3 WHERE ROWNUM < 8 ORDER BY cust_id;

CUST_ID CUST_LAST_ CUST_MAR C

1 Kessel

2 Koch

3 Emmerson

4 Hardy

5 Gowen

6 Charles single
7 Ingram single

HEERRR R

7 rows selected.

The cust_marital_status and cust_gender columns have low cardinality, whereas
cust_id and cust_last_name do not. Thus, bitmap indexes may be appropriate on
cust_marital_status and cust_gender. A bitmap index is probably not useful for the
other columns. Instead, a unique B-tree index on these columns would likely provide
the most efficient representation and retrieval.

Table 3-2 illustrates the bitmap index for the cust_gender column output shown in
Example 3-4. It consists of two separate bitmaps, one for each gender.

Table 3-2 Sample Bitmap

Value Row1 Row2 Row3 Row4 Row5 Row6 | Row7
M 1 0 1 1 1 0 0
F 0 1 0 0 0 1 1

A mapping function converts each bit in the bitmap to a rowid of the customers table.
Each bit value depends on the values of the corresponding row in the table. For
example, the bitmap for the M value contains a 1 as its first bit because the gender is M
in the first row of the customers table. The bitmap cust_gender='M' has a 0 for its the
bits in rows 2, 6, and 7 because these rows do not contain M as their value.

3-14 Oracle Database Concepts

Overview of Indexes

Note: Bitmap indexes can include keys that consist entirely of null
values, unlike B-tree indexes. Indexing nulls can be useful for some
SQL statements, such as queries with the aggregate function COUNT.

An analyst investigating demographic trends of the customers may ask, "How many
of our female customers are single or divorced?" This question corresponds to the
following SQL query:

SELECT COUNT (*)

FROM customers

WHERE cust_gender = 'F'

AND cust_marital_status IN ('single', ‘'divorced');

Bitmap indexes can process this query efficiently by counting the number of 1 values
in the resulting bitmap, as illustrated in Table 3-3. To identify the customers who
satisfy the criteria, Oracle Database can use the resulting bitmap to access the table.

Table 3-3 Sample Bitmap

Value Row1 | Row2 | Row3 | Row4 | Row5 | Row6 | Row7
M 1 0 1 1 1 0 0

F 0 1 0 0 0 1 1
single 0 0 0 0 0 1 1
divorced 0 0 0 0 0 0 0
single or 0 0 0 0 0 1 1
divorced, and F

Bitmap indexing efficiently merges indexes that correspond to several conditions in a
WHERE clause. Rows that satisfy some, but not all, conditions are filtered out before the
table itself is accessed. This technique improves response time, often dramatically.

Bitmap Join Indexes

A bitmap join index is a bitmap index for the join of two or more tables. For each
value in a table column, the index stores the rowid of the corresponding row in the
indexed table. In contrast, a standard bitmap index is created on a single table.

A bitmap join index is an efficient means of reducing the volume of data that must be
joined by performing restrictions in advance. For an example of when a bitmap join
index would be useful, assume that users often query the number of employees with a
particular job type. A typical query might look as follows:

SELECT COUNT (*)

FROM employees, jobs

WHERE employees.job_id = jobs.job_id
AND jobs.job_title = 'Accountant';

The preceding query would typically use an index on jobs.job_title to retrieve the
rows for Accountant and then the job ID, and an index on employees. job_id to find
the matching rows. To retrieve the data from the index itself rather than from a scan of
the tables, you could create a bitmap join index as follows:

CREATE BITMAP INDEX employees_bm_idx
ON employees (jobs.job_title)

FROM employees, jobs

WHERE employees.job_id = jobs.job_id;

Indexes and Index-Organized Tables 3-15

Overview of Indexes

As illustrated in Figure 3-2, the index key is jobs.job_title and the indexed table is
employees.

Figure 3-2 Bitmap Join Index

employees
employee_id last_name | job_id manager_id | hire_date salary department_id
203 marvis hr_rep 101 07—Jun—94 6500 40
204 baer pr_rep 101 07-Jun—-94 10000 70
205 higgins ac_rep 101 07-Jun—-94 12000 110
206 gietz ac_account | 205 07-Jun—94 8300 110

jobs

job_id | job_title | min_salary | max_salary

MK_REP | Marketing Representative 4000 9000

HR_REP | Human Resources Representative | 4000 9000

PR_REP | Public Relations Representative 4500 10500

SA_REP | Sales Representative 6000 12008

Index key is jobs.job_title

CREATE BITMAP INDEX employees_bm_ idx
ON »>employees (jobs.job_title)e—
FROM employees, jobs

WHERE | employees.job_id = jobs.job_id

Indexed table is employees

Conceptually, employees_bm_idx is an index of the jobs. title column in the SQL
query shown in Example 3-5 (sample output included). The job_title key in the
index points to rows in the employees table. A query of the number of accountants can
use the index to avoid accessing the employees and jobs tables because the index itself
contains the requested information.

Example 3-5 Join of employees and jobs Tables

SELECT jobs.job_title AS "jobs.job_title", employees.rowid AS "employees.rowid"
FROM employees, jobs

WHERE employees.job_id = jobs.job_id

ORDER BY job_title;

jobs.job_title employees.rowid

Accountant AAAQNKAAFAAAABSAAL
Accountant AAAQNKAAFAAAABSAAN
Accountant AAAQNKAAFAAAABSAAM
Accountant AAAQNKAAFAAAABSAAJ
Accountant AAAQNKAAFAAAABSAAK
Accounting Manager AAAQNKAAFAAAABTAAH
Administration Assistant AAAQNKAAFAAAABTAAC
Administration Vice President AAAQNKAAFAAAABSAAC
Administration Vice President AAAQNKAAFAAAABSAAB

3-16 Oracle Database Concepts

Overview of Indexes

In a data warehouse, the join condition is an equijoin (it uses the equality operator)
between the primary key columns of the dimension tables and the foreign key
columns in the fact table. Bitmap join indexes are sometimes much more efficient in
storage than materialized join views, an alternative for materializing joins in advance.

See Also: Oracle Database Data Warehousing Guide for more
information on bitmap join indexes

Bitmap Storage Structure

Oracle Database uses a B-tree index structure to store bitmaps for each indexed key.
For example, if jobs.job_title is the key column of a bitmap index, then the index
data is stored in one B-tree. The individual bitmaps are stored in the leaf blocks.

Assume that the jobs.job_title column has unique values Shipping Clerk, Stock
Clerk, and several others. A bitmap index entry for this index has the following
components:

= The job title as the index key

= Alow rowid and high rowid for a range of rowids

= A bitmap for specific rowids in the range

Conceptually, an index leaf block in this index could contain entries as follows:

Shipping Clerk,AAAPzZRAAFAAAABSABQ,AAAPZRAAFAAAABSABZ, 0010000100
Shipping Clerk, AAAPzZRAAFAAAABSABa, AAAPZRAAFAAAABSABh, 010010
Stock Clerk, AAAPzZRAAFAAAABSAAa,AAAPZRAAFAAAABSAAC, 1001001100
Stock Clerk, AAAPzZRAAFAAAABSAAJ, AAAPZRAAFAAAABSAAt, 0101001001
Stock Clerk, AAAPzZRAAFAAAABSAAU, AAAPZRAAFAAAABSABzZ,100001

The same job title appears in multiple entries because the rowid range differs.

Assume that a session updates the job ID of one employee from Shipping Clerk to
Stock Clerk. In this case, the session requires exclusive access to the index key entry
for the old value (Shipping Clerk) and the new value (Stock Clerk). Oracle Database
locks the rows pointed to by these two entries—but not the rows pointed to by
Accountant or any other key—until the UPDATE commits.

The data for a bitmap index is stored in one segment. Oracle Database stores each

bitmap in one or more pieces. Each piece occupies part of a single data block.

See Also: "User Segments" on page 12-21

Function-Based Indexes

You can create indexes on functions and expressions that involve one or more columns
in the table being indexed. A function-based index computes the value of a function
or expression involving one or more columns and stores it in the index. A
function-based index can be either a B-tree or a bitmap index.

The function used for building the index can be an arithmetic expression or an
expression that contains a SQL function, user-defined PL/SQL function, package
function, or C callout. For example, a function could add the values in two columns.

Indexes and Index-Organized Tables 3-17

Overview of Indexes

See Also:

m Oracle Database Administrator’s Guide to learn how to create
function-based indexes

» Oracle Database Performance Tuning Guide for more information
about using function-based indexes

» Oracle Database SQL Language Reference for restrictions and
usage notes for function-based indexes

Uses of Function-Based Indexes

Function-based indexes are efficient for evaluating statements that contain functions in
their WHERE clauses. The database only uses the function-based index when the
function is included in a query. When the database processes INSERT and UPDATE
statements, however, it must still evaluate the function to process the statement.

For example, suppose you create the following function-based index:

CREATE INDEX emp_total_sal_ idx
ON employees (12 * salary * commission_pct, salary, commission_pct);

The database can use the preceding index when processing queries such as
Example 3-6 (partial sample output included).

Example 3-6 Query Containing an Arithmetic Expression

SELECT employee_id, last_name, first_name,
12*salary*commission_pct AS "ANNUAL SAL"

FROM employees

WHERE (12 * salary * commission_pct) < 30000

ORDER BY "ANNUAL SAL" DESC;

EMPLOYEE_ID LAST NAME FIRST_NAME ANNUAL SAL
159 Smith Lindsey 28800
151 Bernstein David 28500
152 Hall Peter 27000
160 Doran Louise 27000
175 Hutton Alyssa 26400
149 Zlotkey Eleni 25200
169 Bloom Harrison 24000

Function-based indexes defined on the SQL functions UPPER (column_name) or

LOWER (column_name) facilitate case-insensitive searches. For example, suppose that the
first_name column in employees contains mixed-case characters. You create the
following function-based index on the hr. employees table:

CREATE INDEX emp_fname_uppercase_idx
ON employees (UPPER(first_name));

The emp_fname_uppercase_1idx index can facilitate queries such as the following;:

SELECT *
FROM employees
WHERE UPPER(first_name) = 'AUDREY';

A function-based index is also useful for indexing only specific rows in a table. For
example, the cust_valid column in the sh.customers table has either I or A as a value.
To index only the A rows, you could write a function that returns a null value for any
rows other than the A rows. You could create the index as follows:

3-18 Oracle Database Concepts

Overview of Indexes

CREATE INDEX cust_valid_idx
ON customers (CASE cust_valid WHEN 'A' THEN 'A' END);

See Also:

» Oracle Database Globalization Support Guide for information about
linguistic indexes

» Oracle Database SQL Language Reference to learn more about SQL
functions

Optimization with Function-Based Indexes

The optimizer can use an index range scan on a function-based index for queries with
expressions in WHERE clause. The range scan access path is especially beneficial when
the predicate (WHERE clause) has low selectivity. In Example 3-6 the optimizer can use
an index range scan if an index is built on the expression 12*salary*commission_pct.

A virtual column is useful for speeding access to data derived from expressions. For
example, you could define virtual column annual_sal as 12*salary*commission_pct
and create a function-based index on annual_sal.

The optimizer performs expression matching by parsing the expression in a SQL
statement and then comparing the expression trees of the statement and the
function-based index. This comparison is case-insensitive and ignores blank spaces.

See Also:

= "Overview of the Optimizer" on page 7-10

» Oracle Database Performance Tuning Guide for more information
about gathering statistics

n Oracle Database Administrator’s Guide to learn how to add virtual
columns to a table

Application Domain Indexes

An application domain index is a customized index specific to an application. Oracle
Database provides extensible indexing to do the following:

= Accommodate indexes on customized, complex data types such as documents,
spatial data, images, and video clips (see "Unstructured Data" on page 19-11)

= Make use of specialized indexing techniques

You can encapsulate application-specific index management routines as an indextype
schema object and define a domain index on table columns or attributes of an object
type. Extensible indexing can efficiently process application-specific operators.

The application software, called the cartridge, controls the structure and content of a
domain index. The database interacts with the application to build, maintain, and
search the domain index. The index structure itself can be stored in the database as an
index-organized table or externally as a file.

See Also: Oracle Database Data Cartridge Developer's Guide for
information about using data cartridges within the Oracle Database
extensibility architecture

Indexes and Index-Organized Tables 3-19

Overview of Index-Organized Tables

Index Storage

Oracle Database stores index data in an index segment. Space available for index data
in a data block is the data block size minus block overhead, entry overhead, rowid,
and one length byte for each value indexed.

The tablespace of an index segment is either the default tablespace of the owner or a
tablespace specifically named in the CREATE INDEX statement. For ease of
administration you can store an index in a separate tablespace from its table. For
example, you may choose not to back up tablespaces containing only indexes, which
can be rebuilt, and so decrease the time and storage required for backups.

See Also: Chapter 12, "Logical Storage Structures”

Overview of Index-Organized Tables

An index-organized table is a table stored in a variation of a B-tree index structure. In
a heap-organized table, rows are inserted where they fit. In an index-organized table,
rows are stored in an index defined on the primary key for the table. Each index entry
in the B-tree also stores the non-key column values. Thus, the index is the data, and the
data is the index. Applications manipulate index-organized tables just like
heap-organized tables, using SQL statements.

For an analogy of an index-organized table, suppose a human resources manager has a
book case of cardboard boxes. Each box is labeled with a number—1, 2, 3, 4, and so
on—but the boxes do not sit on the shelves in sequential order. Instead, each box
contains a pointer to the shelf location of the next box in the sequence.

Folders containing employee records are stored in each box. The folders are sorted by
employee ID. Employee King has ID 100, which is the lowest ID, so his folder is at the
bottom of box 1. The folder for employee 101 is on top of 100, 102 is on top of 101, and
so on until box 1 is full. The next folder in the sequence is at the bottom of box 2.

In this analogy, ordering folders by employee ID makes it possible to search efficiently
for folders without having to maintain a separate index. Suppose a user requests the
records for employees 107, 120, and 122. Instead of searching an index in one step and
retrieving the folders in a separate step, the manager can search the folders in
sequential order and retrieve each folder as found.

Index-organized tables provide faster access to table rows by primary key or a valid
prefix of the key. The presence of non-key columns of a row in the leaf block avoids an
additional data block I/O. For example, the salary of employee 100 is stored in the
index row itself. Also, because rows are stored in primary key order, range access by
the primary key or prefix involves minimal block I/Os. Another benefit is the
avoidance of the space overhead of a separate primary key index.

Index-organized tables are useful when related pieces of data must be stored together
or data must be physically stored in a specific order. This type of table is often used for
information retrieval, spatial (see "Overview of Oracle Spatial" on page 19-14), and
OLAP applications (see "OLAP" on page 17-20).

3-20 Oracle Database Concepts

Overview of Index-Organized Tables

See Also:

s Oracle Database Administrator’s Guide to learn how to manage

index-organized tables

» Oracle Database Performance Tuning Guide to learn how to use
index-organized tables to improve performance

» Oracle Database SQL Language Reference for CREATE TABLE . ..
ORGANIZATION INDEX syntax and semantics

Index-Organized Table Characteristics

The database system performs all operations on index-organized tables by
manipulating the B-tree index structure. Table 3-4 summarizes the differences between
index-organized tables and heap-organized tables.

Table 3-4 Comparison of Heap-Organized Tables with Index-Organized Tables

Heap-Organized Table

Index-Organized Table

The rowid uniquely identifies a row. Primary
key constraint may optionally be defined.

Physical rowid in ROWID pseudocolumn
allows building secondary indexes.

Individual rows may be accessed directly by
rowid.

Sequential full table scan returns all rows in
some order.

Can be stored in a table cluster with other
tables.

Can contain a column of the LONG data type
and columns of LOB data types.

Can contain virtual columns (only relational
heap tables are supported).

Primary key uniquely identifies a row.
Primary key constraint must be defined.

Logical rowid in ROWID pseudocolumn allows
building secondary indexes.

Access to individual rows may be achieved
indirectly by primary key.

A full index scan or fast full index scan
returns all rows in some order.

Cannot be stored in a table cluster.

Can contain LOB columns but not LONG
columns.

Cannot contain virtual columns.

Figure 3-3 illustrates the structure of an index-organized departments table. The leaf
blocks contain the rows of the table, ordered sequentially by primary key. For example,
the first value in the first leaf block shows a department ID of 20, department name of
Marketing, manager ID of 201, and location ID of 1800.

Indexes and Index-Organized Tables 3-21

Overview of Index-Organized Tables

Figure 3-3 Index-Organized Table

Branch Blocks

0..60
61..100
101..160
200..270
v v
== 0..30 61..68 200..220
31..60 = 69..73 221..230
74..85 reee
- - 260..270
98..100
Leaf Blocks
v v v
20,Marketing,201,1800 50,Shipping,121,1500 200,0perations,, 1700 260,Recruiting,,1700
30,Purchasing,114,1700 60,IT,103,1400 210,IT Support,,1700 270,Payroll,, 1700

220,NOC,,1700

U U U

An index-organized table stores all data in the same structure and does not need to
store the rowid. As shown in Figure 3-3, leaf block 1 in an index-organized table might
contain entries as follows, ordered by primary key:

20,Marketing,201,1800

30, Purchasing, 114,1700

Leaf block 2 in an index-organized table might contain entries as follows:

50, Shipping,121,1500

60,IT,103,1400

A scan of the index-organized table rows in primary key order reads the blocks in the
following sequence:

1. Block 1

2. Block2

To contrast data access in a heap-organized table to an index-organized table, suppose
block 1 of a heap-organized departments table segment contains rows as follows:

50, Shipping, 121,1500
20,Marketing,201,1800
Block 2 contains rows for the same table as follows:

30, Purchasing, 114,1700
60,IT,103,1400

3-22 Oracle Database Concepts

Overview of Index-Organized Tables

A B-tree index leaf block for this heap-organized table contains the following entries,
where the first value is the primary key and the second is the rowid:

20, AAAPeXAAFAAAAAYAAD
30, ARAPeXAAFAAAAAYAAA
50, AAAPeXAAFAAAAAYAAC
60, AAAPeXAAFAAAARAYAAB

A scan of the table rows in primary key order reads the table segment blocks in the
following sequence:

1. Block1
2. Block?2
3. Block1
4. Block?2

Thus, the number of block I/Os in this example is double the number in the
index-organized example.

See Also:
» 'Table Organization" on page 2-18

= "Introduction to Logical Storage Structures" on page 12-1

Index-Organized Tables with Row Overflow Area

When creating an index-organized table, you can specify a separate segment as a row
overflow area. In index-organized tables, B-tree index entries can be large because
they contain an entire row, so a separate segment to contain the entries is useful. In
contrast, B-tree entries are usually small because they consist of the key and rowid.

If a row overflow area is specified, then the database can divide a row in an
index-organized table into the following parts:

s Theindex entry

This part contains column values for all the primary key columns, a physical
rowid that points to the overflow part of the row, and optionally a few of the
non-key columns. This part is stored in the index segment.

s The overflow part

This part contains column values for the remaining non-key columns. This part is
stored in the overflow storage area segment.

See Also:

n Oracle Database Administrator’s Guide to learn how to use the
OVERFLOW clause of CREATE TABLE to set a row overflow area

» Oracle Database SQL Language Reference for CREATE TABLE . ..
OVERFLOW syntax and semantics

Secondary Indexes on Index-Organized Tables

A secondary index is an index on an index-organized table. In a sense, it is an index on
an index. The secondary index is an independent schema object and is stored
separately from the index-organized table.

Indexes and Index-Organized Tables 3-23

Overview of Index-Organized Tables

As explained in "Rowid Data Types" on page 2-13, Oracle Database uses row
identifiers called logical rowids for index-organized tables. A logical rowid is a
base64-encoded representation of the table primary key. The logical rowid length
depends on the primary key length.

Rows in index leaf blocks can move within or between blocks because of insertions.
Rows in index-organized tables do not migrate as heap-organized rows do (see
"Chained and Migrated Rows" on page 12-16). Because rows in index-organized tables
do not have permanent physical addresses, the database uses logical rowids based on
primary key.

For example, assume that the departments table is index-organized. The location_id
column stores the ID of each department. The table stores rows as follows, with the
last value as the location ID:

10,Administration,200,1700
20,Marketing,201,1800
30, Purchasing, 114,1700
40,Human Resources,203,2400

A secondary index on the location_id column might have index entries as follows,
where the value following the comma is the logical rowid:

1700, *BAFAJQOCWR/ +
1700, *BAFAJgoCwQV+
1800, *BAFAJgOCWRX+
2400, *BAFAJgoCwSn+

Secondary indexes provide fast and efficient access to index-organized tables using
columns that are neither the primary key nor a prefix of the primary key. For example,
a query of the names of departments whose ID is greater than 1700 could use the
secondary index to speed data access.

See Also:

s Oracle Database Administrator’s Guide to learn how to create
secondary indexes on an index-organized table

» Oracle Database VLDB and Partitioning Guide to learn about
creating secondary indexes on indexed-organized table partitions

Logical Rowids and Physical Guesses

Secondary indexes use the logical rowids to locate table rows. A logical rowid includes
a physical guess, which is the physical rowid of the index entry when it was first
made. Oracle Database can use physical guesses to probe directly into the leaf block of
the index-organized table, bypassing the primary key search. When the physical
location of a row changes, the logical rowid remains valid even if it contains a physical
guess that is stale.

For a heap-organized table, access by a secondary index involves a scan of the
secondary index and an additional I/O to fetch the data block containing the row. For
index-organized tables, access by a secondary index varies, depending on the use and
accuracy of physical guesses:

= Without physical guesses, access involves two index scans: a scan of the secondary
index followed by a scan of the primary key index.

= With physical guesses, access depends on their accuracy:

- With accurate physical guesses, access involves a secondary index scan and an
additional I/O to fetch the data block containing the row.

3-24 Oracle Database Concepts

Overview of Index-Organized Tables

- With inaccurate physical guesses, access involves a secondary index scan and
an I/0O to fetch the wrong data block (as indicated by the guess), followed by
an index unique scan of the index organized table by primary key value.

Bitmap Indexes on Index-Organized Tables

A secondary index on an index-organized table can be a bitmap index. As explained
in "Bitmap Indexes" on page 3-13, a bitmap index stores a bitmap for each index key.

When bitmap indexes exist on an index-organized table, all the bitmap indexes use a
heap-organized mapping table. The mapping table stores the logical rowids of the
index-organized table. Each mapping table row stores one logical rowid for the
corresponding index-organized table row.

The database accesses a bitmap index using a search key. If the database finds the key,
then the bitmap entry is converted to a physical rowid. With heap-organized tables,
the database uses the physical rowid to access the base table. With index-organized
tables, the database uses the physical rowid to access the mapping table, which in turn
yields a logical rowid that the database uses to access the index-organized table.
Figure 3—4 illustrates index access for a query of the departments_iot table.

Figure 3—-4 Bitmap Index on Index-Organized Table

Select * from departments_iot
where location_id = 1800

Index of Mapping Table Mapping Table
location id, physical rowid in mapping table logical rowid in IOT
1800, AAAPeXAAFAAAAAYAAD *BAFAJqoCwRX+
1900, AABPeXAAFAAAAAYAAE *BAGAJqoCwRX+

Index-Organized Table

i

I:l |:| |:| I:;O, Marketing, 201, 1800 /
|

vooUuU

Note: Movement of rows in an index-organized table does not leave
the bitmap indexes built on that index-organized table unusable.

See Also: "Rowids of Row Pieces" on page 2-19

Indexes and Index-Organized Tables 3-25

Overview of Index-Organized Tables

3-26 Oracle Database Concepts

4

Partitions, Views, and Other Schema Objects

Although tables and indexes are the most important and commonly used schema
objects, the database supports many other types of schema objects, the most common
of which are discussed in this chapter.

This chapter contains the following sections:
s Overview of Partitions

s Overview of Views

s Overview of Materialized Views

s Overview of Sequences

s Overview of Dimensions

s Overview of Synonyms

Overview of Partitions

Partitioning enables you to decompose very large tables and indexes into smaller and
more manageable pieces called partitions. Each partition is an independent object with
its own name and optionally its own storage characteristics.

For an analogy that illustrates partitioning, suppose an HR manager has one big box
that contains employee folders. Each folder lists the employee hire date. Queries are
often made for employees hired in a particular month. One approach to satisfying
such requests is to create an index on employee hire date that specifies the locations of
the folders scattered throughout the box. In contrast, a partitioning strategy uses many
smaller boxes, with each box containing folders for employees hired in a given month.

Using smaller boxes has several advantages. When asked to retrieve the folders for
employees hired in June, the HR manager can retrieve the June box. Furthermore, if
any small box is temporarily damaged, the other small boxes remain available.
Moving offices also becomes easier because instead of moving a single heavy box, the
manager can move several small boxes.

From the perspective of an application, only one schema object exists. DML statements
require no modification to access partitioned tables. Partitioning is useful for many
different types of database applications, particularly those that manage large volumes
of data. Benefits include:

s Increased availability

The unavailability of a partition does not entail the unavailability of the object. The
query optimizer automatically removes unreferenced partitions from the query
plan so queries are not affected when the partitions are unavailable.

Partitions, Views, and Other Schema Objects 4-1

Overview of Partitions

» Easier administration of schema objects

A partitioned object has pieces that can be managed either collectively or
individually. DDL statements can manipulate partitions rather than entire tables
or indexes. Thus, you can break up resource-intensive tasks such as rebuilding an
index or table. For example, you can move one table partition at a time. If a
problem occurs, then only the partition move must be redone, not the table move.
Also, dropping a partition avoids executing numerous DELETE statements.

s Reduced contention for shared resources in OLTP systems

In some OLTP systems, partitions can decrease contention for a shared resource.
For example, DML is distributed over many segments rather than one segment.

= Enhanced query performance in data warehouses

In a data warehouse, partitioning can speed processing of ad hoc queries. For
example, a sales table containing a million rows can be partitioned by quarter.

See Also: Oracle Database VLDB and Partitioning Guide for an
introduction to partitioning

Partition Characteristics

Each partition of a table or index must have the same logical attributes, such as
column names, data types, and constraints. For example, all partitions in a table share
the same column and constraint definitions, and all partitions in an index share the
same indexed columns. However, each partition can have separate physical attributes,
such as the tablespace to which it belongs.

Partition Key

The partition key is a set of one or more columns that determines the partition in
which each row in a partitioned table should go. Each row is unambiguously assigned
to a single partition.

In the sales table, you could specify the time_id column as the key of a range
partition. The database assigns rows to partitions based on whether the date in this
column falls in a specified range. Oracle Database automatically directs insert, update,
and delete operations to the appropriate partition by using the partition key.

Partitioning Strategies

Oracle Partitioning offers several partitioning strategies that control how the database
places data into partitions. The basic strategies are range, list, and hash partitioning.

A single-level partitioning strategy uses only one method of data distribution, for
example, only list partitioning or only range partitioning. In composite partitioning, a
table is partitioned by one data distribution method and then each partition is further
divided into subpartitions using a second data distribution method. For example, you
could use a list partition for channel_id and a range subpartition for time_id.

Range Partitioning In range partitioning, the database maps rows to partitions based on
ranges of values of the partitioning key. Range partitioning is the most common type
of partitioning and is often used with dates.

Suppose that you want to populate a partitioned table with the sales rows shown in
Example 4-1.

4-2 Oracle Database Concepts

Overview of Partitions

Example 4-1 Sample Row Set for Partitioned Table

PROD_ID CUST_ID TIME_ID

CHANNEL_ID PROMO_ID QUANTITY_SOLD AMOUNT_SOLD

116 11393
40 100530
118 133
133 9450
36 4523
125 9417
30 170
24 11899
35 2606
45 9491

05-JUN-99
30-NOV-98
06-JUN-01
01-DEC-00
27-JAN-99
04-FEB-98
23-FEB-01
26-JUN-99
17-FEB-00
28-AUG-98

2 999 1 12.18
9 33 1 44.99
2 999 1 17.12
2 999 1 31.28
3 999 1 53.89
3 999 1 16.86
2 999 1 8.8
4 999 1 43.04
3 999 1 54.94
4 350 1 47.45

You create time_range_sales as a partitioned table using the statement in
Example 4-2. The time_id column is the partition key.

Example 4-2 Range-Partitioned Table
CREATE TABLE time_range_sales

(prod_id

, cust_id

, time_id

, channel_id

, promo_id

, quantity_sold
, amount_sold

PARTITION BY RANGE (
(PARTITION SALES_19
PARTITION SALES_19
PARTITION SALES_20
PARTITION SALES_20
)

NUMBER (6)
NUMBER
DATE
CHAR(1)
NUMBER (6)

NUMBER (3)

NUMBER (10, 2)
time_id)

98 VALUES LESS THAN
99 VALUES LESS THAN
00 VALUES LESS THAN
01 VALUES LESS THAN

(TO_DATE('01-JAN-1999', 'DD-MON-YYYY')),
(TO_DATE('01-JAN-2000', 'DD-MON-YYYY')),
(TO_DATE('01-JAN-2001', 'DD-MON-YYYY')),
(MAXVALUE)

Afterward, you load time_range_sales with the rows from Example 4-1. Figure 4-1
shows the row distributions in the four partitions. The database chooses the partition
for each row based on the time_id value according to the rules specified in the
PARTITION BY RANGE clause.

Partitions, Views, and Other Schema Objects 4-3

Overview of Partitions

Figure 4-1 Range Partitions

Table Partition SALES_1998

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
40 100530 30-NOV-98 9 33 1 44.99
125 9417 04-FEB-98 3 999 1 16.86
45 9491 28-AUG-98 4 350 1 47.45

Table Partition SALES_1999

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
116 11393 05-JUN-99 2 999 1 12.18
36 4523 27-JAN-99 3 999 1 53.89
24 11899 26-JUN-99 4 999 1 43.04

Table Partition SALES_2000

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
133 9450 01-DEC-00 2 999 1 31.28
35 2606 17-FEB-00 3 999 1 54.94

Table Partition SALES_2001

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
118 133 06-JUN-01 2 999 1 17.12
30 170 23-FEB-01 2 999 1 8.8

The range partition key value determines the high value of the range partitions, which
is called the transition point. In Figure 4-1, the SALES_1998 partition contains rows
with partitioning key time_id values less than the transition point 01-JAN-1999.

The database creates interval partitions for data beyond that transition point. Interval
partitions extend range partitioning by instructing the database to create partitions of
the specified range or interval automatically when data inserted into the table exceeds
all of the range partitions. In Figure 4-1, the SALES_2001 partition contains rows with

partitioning key time_id values greater than or equal to 01-JAN-2001.

List Partitioning In list partitioning, the database uses a list of discrete values as the
partition key for each partition. You can use list partitioning to control how individual
rows map to specific partitions. By using lists, you can group and organize related sets
of data when the key used to identify them is not conveniently ordered.

Assume that you create 1ist_sales as a list-partitioned table using the statement in
Example 4-3. The channel_id column is the partition key.

4-4 Oracle Database Concepts

Overview of Partitions

Example 4-3 List-Partitioned Table
CREATE TABLE list_sales

(prod_id NUMBER (6)

, cust_id NUMBER

, time_id DATE

, channel_ id CHAR(1)

, promo_id NUMBER (6)

, quantity_ sold NUMBER(3)

, amount_sold NUMBER (10, 2)

PARTITION BY LIST (channel id)
(PARTITION even_channels VALUES (2,4),
PARTITION odd_channels VALUES (3,9)
)

Afterward, you load the table with the rows from Example 4-1. Figure 4-2 shows the
row distribution in the two partitions. The database chooses the partition for each row
based on the channel_id value according to the rules specified in the PARTITION BY
LIST clause. Rows with a channel_id value of 2 or 4 are stored in the EVEN_CHANNELS
partitions, while rows with a channel_id value of 3 or 9 are stored in the
ODD_CHANNELS partition.

Figure 4-2 List Partitions

Table Partition EVEN_CHANNELS

PROD_ID CUST_ID TIME_ID CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
116 11393 05-JUN-99 2 999 1 12.18

118 133 06-JUN-01 2 999 1 17.12

133 9450 01-DEC-00 2 999 1 31.28

30 170 23-FEB-01 2 999 1 8.8

24 11899 26-JUN-99 4 999 1 43.04

45 9491 28-AUG-98 4 350 1 47.45

Table Partition ODD_CHANNELS

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
40 100530 30-NOV-98 9 33 1 44.99
36 4523 27-JAN-99 3 999 1 53.89
125 9417 04-FEB-98 3 999 1 16.86
35 2606 17-FEB-00 3 999 1 54.94

Hash Partitioning In hash partitioning, the database maps rows to partitions based on a
hashing algorithm that the database applies to the user-specified partitioning key. The
destination of a row is determined by the internal hash function applied to the row by
the database. The hashing algorithm is designed to evenly distributes rows across
devices so that each partition contains about the same number of rows.

Hash partitioning is useful for dividing large tables to increase manageability. Instead
of one large table to manage, you have several smaller pieces. The loss of a single hash
partition does not affect the remaining partitions and can be recovered independently.
Hash partitioning is also useful in OLTP systems with high update contention. For

Partitions, Views, and Other Schema Objects 4-5

Overview of Partitions

example, a segment is divided into several pieces, each of which is updated, instead of
a single segment that experiences contention.

Assume that you create the partitioned hash_sales table using the statement in
Example 4—4. The prod_id column is the partition key.

Example 4-4 Hash-Partitioned Table
CREATE TABLE hash_sales

(prod_id NUMBER (6)
, cust_id NUMBER

, time_id DATE

, channel_id CHAR(1)

, promo_id NUMBER

(6)

, quantity sold NUMBER(3)

, amount_sold NUMBER (10, 2)
PARTITION BY HASH (prod_id)
PARTITIONS 2;

Afterward, you load the table with the rows from Example 4-1. Figure 4-3 shows a
possible row distribution in the two partitions. Note that the names of these partitions
are system-generated.

As you insert rows, the database attempts to randomly and evenly distribute them
across partitions. You cannot specify the partition into which a row is placed. The
database applies the hash function, whose outcome determines which partition
contains the row. If you change the number of partitions, then the database
redistributes the data over all of the partitions.

Figure 4-3 Hash Partitions

Table Partition SYS_P33

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
40 100530 30-NOV-98 9 33 1 44.99
118 133 06-JUN-01 2 999 1 17.12
36 4523 27-JAN-99 3 999 1 53.89
30 170 23-FEB-01 2 999 1 8.8
35 2606 17-FEB-00 3 999 1 54.94

o

Table Partition SYS_P34

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
116 11393 05-JUN-99 2 999 1 12.18
133 9450 01-DEC-00 2 999 1 31.28
125 9417 04-FEB-98 3 999 1 16.86
24 11899 26-JUN-99 4 999 1 43.04
45 9491 28-AUG-98 4 350 1 47.45

T

4-6 Oracle Database Concepts

Overview of Partitions

See Also:

» Oracle Database VLDB and Partitioning Guide to learn how to create
partitions

» Oracle Database SQL Language Reference for CREATE TABLE . ..
PARTITION BY examples

Partitioned Tables

A partitioned table consists of one or more partitions, which are managed
individually and can operate independently of the other partitions. A table is either
partitioned or nonpartitioned. Even if a partitioned table consists of only one partition,
this table is different from a nonpartitioned table, which cannot have partitions added
to it. "Partition Characteristics" on page 4-2 gives examples of partitioned tables.

A partitioned table is made up of one or more table partition segments. If you create a
partitioned table named hash_products, then no table segment is allocated for this
table. Instead, the database stores data for each table partition in its own partition
segment. Each table partition segment contains a portion of the table data.

Some or all partitions of a heap-organized table can be stored in a compressed format.
Compression saves space and can speed query execution. Thus, compression can be
useful in environments such as data warehouses, where the amount of insert and
update operations is small, and in OLTP environments.

The attributes for table compression can be declared for a tablespace, table, or table
partition. If declared at the tablespace level, then tables created in the tablespace are
compressed by default. You can alter the compression attribute for a table, in which
case the change only applies to new data going into that table. Consequently, a single
table or partition may contain compressed and uncompressed blocks, which
guarantees that data size will not increase because of compression. If compression
could increase the size of a block, then the database does not apply it to the block.

See Also:

» '"Table Compression” on page 2-19 and "Overview of Segments"
on page 12-21

» Oracle Database Data Warehousing Guide to learn about table
compression in a data warehouse

Partitioned Indexes

A partitioned index is an index that, like a partitioned table, has been decomposed
into smaller and more manageable pieces. Global indexes are partitioned
independently of the table on which they are created, whereas local indexes are
automatically linked to the partitioning method for a table. Like partitioned tables,
partitioned indexes improve manageability, availability, performance, and scalability.

The following graphic shows index partitioning options.

Partitions, Views, and Other Schema Objects 4-7

Overview of Partitions

Local Prefixed Index

Local Partitioned Index

Partitioned Index Local Nonprefixed Index

Global Partitioned Index

Nonpartitioned Index

See Also:
= "Overview of Indexes" on page 3-1

» Oracle Database VLDB and Partitioning Guide and Oracle Database
Performance Tuning Guide for more information about partitioned
indexes and how to decide which type to use

Local Partitioned Indexes

In a local partitioned index, the index is partitioned on the same columns, with the
same number of partitions and the same partition bounds as its table. Each index
partition is associated with exactly one partition of the underlying table, so that all
keys in an index partition refer only to rows stored in a single table partition. In this
way, the database automatically synchronizes index partitions with their associated

table partitions, making each table-index pair independent.

Local partitioned indexes are common in data warehousing environments. Local
indexes offer the following advantages:

Availability is increased because actions that make data invalid or unavailable in a
partition affect this partition only.

Partition maintenance is simplified. When moving a table partition, or when data
ages out of a partition, only the associated local index partition must be rebuilt or
maintained. In a global index, all index partitions must be rebuilt or maintained.

If point-in-time recovery of a partition occurs, then the indexes can be recovered
to the recovery time (see "Data File Recovery" on page 18-14). The entire index
does not need to be rebuilt.

Example 4—4 shows the creation statement for the partitioned hash_sales table, using
the prod_id column as partition key. Example 4-5 creates a local partitioned index on
the time_id column of the hash_sales table.

Example 4-5 Local Partitioned Index

CREATE INDEX hash_sales_idx ON hash_sales(time_id) LOCAL;

In Figure 44, the hash_products table has two partitions, so hash_sales_idx has two
partitions. Each index partition is associated with a different table partition. Index
partition SYS_P38 indexes rows in table partition SYS_P33, whereas index partition
SYS_P39 indexes rows in table partition SYS_p34.

4-8 Oracle Database Concepts

Overview of Partitions

Figure 4-4 Local Index Partitions
Index hash_sales_idx &r%%
Local Index Partition SYS_P38 Local Index Partition SYS_P39
Index I;l Index I;l
mn[n{n mm{m{n
Table Partition SYS_P33
v

PROD_ID CUST_ID TIME_ID CHANNEL_ID | PROMO_ID | JQUANTITY_SOLD | AMOUNT_SOLD
40 100530 30-NOV-98 9 33 1 44.99
118 133 06-JUN-01 2 999 1 17.12
36 4523 27-JAN-99 3 999 1 53.89
30 170 23-FEB-01 2 999 1 8.8
35 2606 17-FEB-00 3 999 1 54.94

Table Partition SYS_P34
PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD
116 11393 05-JUN-99 2 999 1 12.18
133 9450 01-DEC-00 2 999 1 31.28
125 9417 04-FEB-98 3 999 1 16.86
24 11899 26-JUN-99 4 999 1 43.04
45 9491 28-AUG-98 4 350 1 47.45

You cannot explicitly add a partition to a local index. Instead, new partitions are added
to local indexes only when you add a partition to the underlying table. Likewise, you
cannot explicitly drop a partition from a local index. Instead, local index partitions are
dropped only when you drop a partition from the underlying table.

Like other indexes, you can create a bitmap index on partitioned tables. The only
restriction is that bitmap indexes must be local to the partitioned table—they cannot be
global indexes. Global bitmap indexes are supported only on nonpartitioned tables.

Local Prefixed and Nonprefixed Indexes Local partitioned indexes are divided into the
following subcategories:
s Local prefixed indexes

In this case, the partition keys are on the leading edge of the index definition. In
Example 4-2 on page 4-3, the table is partitioned by range on time_id. A local
prefixed index on this table would have time_id as the first column in its list.

= Local nonprefixed indexes

In this case, the partition keys are not on the leading edge of the indexed column
list and need not be in the list at all. In Example 4-5 on page 4-8, the index is local
nonprefixed because the partition key product_id is not on the leading edge.

Partitions, Views, and Other Schema Objects 4-9

Overview of Partitions

Both types of indexes can take advantage of partition elimination (also called
partition pruning), which occurs when the optimizer speeds data access by excluding
partitions from consideration. Whether a query can eliminate partitions depends on
the query predicate. A query that uses a local prefixed index always allows for index
partition elimination, whereas a query that uses a local nonprefixed index might not.

See Also: Oracle Database VLDB and Partitioning Guide to learn how
to use prefixed and nonprefixed indexes

Local Partitioned Index Storage Like a table partition, a local index partition is stored in
its own segment. Each segment contains a portion of the total index data. Thus, a local
index made up of four partitions is not stored in a single index segment, but in four
separate segments.

See Also: Oracle Database SQL Language Reference for CREATE INDEX
. LOCAL examples

Global Partitioned Indexes

A global partitioned index is a B-tree index that is partitioned independently of the
underlying table on which it is created. A single index partition can point to any or all
table partitions, whereas in a locally partitioned index, a one-to-one parity exists
between index partitions and table partitions.

In general, global indexes are useful for OLTP applications, where rapid access, data
integrity, and availability are important. In an OLTP system, a table may be partitioned
by one key, for example, the employees.department_id column, but an application
may need to access the data with many different keys, for example, by employee_id or
job_id. Global indexes can be useful in this scenario.

You can partition a global index by range or by hash. If partitioned by range, then the
database partitions the global index on the ranges of values from the table columns
you specify in the column list. If partitioned by hash, then the database assigns rows to
the partitions using a hash function on values in the partitioning key columns.

As an illustration, suppose that you create a global partitioned index on the
time_range_sales table from Example 4-2. In this table, rows for sales from 1998 are
stored in one partition, rows for sales from 1999 are in another, and so on. Example 4-6
creates a global index partitioned by range on the channel_id column.

Example 4-6 Global Partitioned Index

CREATE INDEX time_channel_sales_idx ON time_range_sales (channel_id)
GLOBAL PARTITION BY RANGE (channel_id)
(PARTITION pl VALUES LESS THAN (3),
PARTITION p2 VALUES LESS THAN (4),
PARTITION p3 VALUES LESS THAN (MAXVALUE));

As shown in Figure 4-5, a global index partition can contain entries that point to
multiple table partitions. Index partition pl points to the rows with a channel_id of 2,
index partition p2 points to the rows with a channel_id of 3, and index partition p3
points to the rows with a channel_id of 4 or 9.

4-10 Oracle Database Concepts

Overview of Partitions

Figure 4-5 Global Partitioned Index

Index Global Index Global Index [t
@ Partition p3 Partition p2 @%

Table Partition SALES_1998

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

> 40 100530 | 30-NOV-98 9 33 1 44.99
125 9417 | 04-FEB-98 3 999 1 16.86 <
> 45 9491 | 28-AUG-98 4 350 1 47.45

//\/\

Table Partition SALES_1999

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

»116 11393 | 05-JUN-99 2 999 1 12.18
36 4523 | 27-JAN-99 3 999 1 53.89 =
> 24 11899 | 26-JUN-99 4 999 1 43.04

/\/\

Table Partition SALES_2000

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

»133 9450 | 01-DEC-00 2 999 1 31.28
35 2606 | 17-FEB-00 3 999 1 54.94 <

//\/\

Table Partition SALES_2001

PROD_ID | CUST_ID | TIME_ID | CHANNEL_ID | PROMO_ID | QUANTITY_SOLD | AMOUNT_SOLD

»118 133 | 06-JUN-01 2 999 1 17.12
30 170 | 23-FEB-01 2 999 1 8.8

//\/\

Index %

Global Index
Partition p1

See Also:

» Oracle Database VLDB and Partitioning Guide to learn how to use
global partitioned indexes

» Oracle Database SQL Language Reference for CREATE INDEX ...
GLOBAL examples

Partitions, Views, and Other Schema Objects 4-11

Overview of Views

Partitioned Index-Organized Tables

You can partition an index-organized table (IOT) by range, list, or hash. Partitioning is
useful for providing improved manageability, availability, and performance for IOTs.
In addition, data cartridges that use IOTs can take advantage of the ability to partition
their stored data.

Note the following characteristics of partitioned I0Ts:

= Partition columns must be a subset of primary key columns.

= Secondary indexes can be partitioned locally and globally.

= OVERFLOW data segments are always equipartitioned with the table partitions.

Oracle Database supports bitmap indexes on partitioned and nonpartitioned
index-organized tables. A mapping table is required for creating bitmap indexes on an
index-organized table.

See Also: "Overview of Index-Organized Tables" on page 3-20

Overview of Views

A view is a logical representation of one or more tables. In essence, a view is a stored
query. A view derives its data from the tables on which it is based, called base tables.
Base tables can be tables or other views. All operations performed on a view actually
affect the base tables. You can use views in most places where tables are used.

Note: Materialized views use a different data structure from
standard views. See "Overview of Materialized Views" on page 4-16.

Views enable you to tailor the presentation of data to different types of users. Views
are often used to:

= Provide an additional level of table security by restricting access to a
predetermined set of rows or columns of a table

For example, Figure 4-6 shows how the staff view does not show the salary or
commission_pct columns of the base table employees.

» Hide data complexity

For example, a single view can be defined with a join, which is a collection of
related columns or rows in multiple tables. However, the view hides the fact that
this information actually originates from several tables. A query might also
perform extensive calculations with table information. Thus, users can query a
view without knowing how to perform a join or calculations.

= Present the data in a different perspective from that of the base table

For example, the columns of a view can be renamed without affecting the tables on
which the view is based.

= Isolate applications from changes in definitions of base tables

For example, if the defining query of a view references three columns of a four
column table, and a fifth column is added to the table, then the definition of the
view is not affected, and all applications using the view are not affected.

4-12 Oracle Database Concepts

Overview of Views

For an example of the use of views, consider the hr.employees table, which has
several columns and numerous rows. To allow users to see only five of these columns
or only specific rows, you could create a view as follows:

CREATE VIEW staff AS
SELECT employee_id, last_name, job_id, manager_id, department_id
FROM employees;

As with all subqueries, the query that defines a view cannot contain the FOR UPDATE

clause. Figure 4-6 graphically illustrates the view named staff. Notice that the view
shows only five of the columns in the base table.

Figure 4-6 View

Base

Table employees
employee_id | last_name | job_id | manager_id | hire_date | salary | department_id
203 marvis hr_rep 101 07-Jun—-94 6500 40
204 baer pr_rep 101 07—Jun—94 10000 70
205 higgins ac_rep 101 07-Jun—94 12000 110
206 gietz ac_account | 205 07-Jun—-94 8300 110

View | | .4 ‘

employee_id | last_name | job_id | manager_id | department_id
203 marvis hr_rep 101 40
204 baer pr_rep 101 70
205 higgins ac_rep 101 110
206 gietz ac_account | 205 110

See Also:

» Oracle Database Administrator's Guide to learn how to manage
views

» Oracle Database SQL Language Reference for CREATE VIEW syntax
and semantics

Characteristics of Views

Unlike a table, a view is not allocated storage space, nor does a view contain data.
Rather, a view is defined by a query that extracts or derives data from the base tables
referenced by the view. Because a view is based on other objects, it requires no storage
other than storage for the query that defines the view in the data dictionary.

A view has dependencies on its referenced objects, which are automatically handled
by the database. For example, if you drop and re-create a base table of a view, then the
database determines whether the new base table is acceptable to the view definition.

Data Manipulation in Views

Because views are derived from tables, they have many similarities. For example, a
view can contain up to 1000 columns, just like a table. Users can query views, and with
some restrictions they can perform DML on views. Operations performed on a view

Partitions, Views, and Other Schema Objects 4-13

Overview of Views

affect data in some base table of the view and are subject to the integrity constraints
and triggers of the base tables.

The following example creates a view of the hr.employees table:

CREATE VIEW staff_dept_10 AS

SELECT employee_id, last_name, job_id,
manager_id, department_id

FROM employees

WHERE department_id = 10

WITH CHECK OPTION CONSTRAINT staff_dept_10_cnst;

The defining query references only rows for department 10. The CHECK OPTION creates
the view with a constraint so that INSERT and UPDATE statements issued against the
view cannot result in rows that the view cannot select. Thus, rows for employees in
department 10 can be inserted, but not rows for department 30.

See Also: Oracle Database SQL Language Reference to learn about
subquery restrictions in CREATE VIEW statements

How Data Is Accessed in Views

Oracle Database stores a view definition in the data dictionary as the text of the query
that defines the view. When you reference a view in a SQL statement, Oracle Database
performs the following tasks:

1. Merges a query (whenever possible) against a view with the queries that define
the view and any underlying views

Oracle Database optimizes the merged query as if you issued the query without
referencing the views. Therefore, Oracle Database can use indexes on any
referenced base table columns, whether the columns are referenced in the view
definition or in the user query against the view.

Sometimes Oracle Database cannot merge the view definition with the user query.
In such cases, Oracle Database may not use all indexes on referenced columns.

2. Parses the merged statement in a shared SQL area

Oracle Database parses a statement that references a view in a new shared SQL
area only if no existing shared SQL area contains a similar statement. Thus, views
provide the benefit of reduced memory use associated with shared SQL.

3. Executes the SQL statement

The following example illustrates data access when a view is queried. Assume that
you create employees_view based on the employees and departments tables:

CREATE VIEW employees_view AS
SELECT employee_id, last_name, salary, location_id
FROM employees JOIN departments USING (department_id)
WHERE department_id = 10;

A user executes the following query of employees_view:

SELECT last_name
FROM employees_view
WHERE employee_id = 200;

Oracle Database merges the view and the user query to construct the following query,
which it then executes to retrieve the data:

SELECT last_name

4-14 Oracle Database Concepts

Overview of Views

FROM employees, departments

WHERE employees.department_id =
AND departments.department_id
AND employees.employee_id = 2

departments.department_id
=10
00;

See Also:

= "Overview of the Optimizer" on page 7-10 and Oracle Database
Performance Tuning Guide to learn about query optimization

s "Shared SQL Areas" on page 14-16

Updatable Join Views

A join view is defined as a view that has multiple tables or views in its FROM clause. In
Example 4-7, the staff_dept_10_30 view joins the employees and departments tables,
including only employees in departments 10 or 30.

Example 4-7 Join View

CREATE VIEW staff_dept_10_30 AS

SELECT employee_id, last_name, job_id, e.department_id
FROM employees e, departments d

WHERE e.department_id IN (10, 30)

AND e.department_id = d.department_id;

An updatable join view, also called a modifiable join view, involves two or more
base tables or views and permits DML operations. An updatable view contains
multiple tables in the top-level FROM clause of the SELECT statement and is not
restricted by the WITH READ ONLY clause.

To be inherently updatable, a view must meet several criteria. For example, a general
rule is that an INSERT, UPDATE, or DELETE operation on a join view can modify only one
base table at a time. The following query of the USER_UPDATABLE_COLUMNS data
dictionary view shows that the view created in Example 4-7 is updatable:

SQL> SELECT TABLE_NAME, COLUMN_NAME, UPDATABLE
2 FROM USER_UPDATABLE_COLUMNS
3 WHERE TABLE_NAME = 'STAFF_DEPT_10_30';

TABLE_NAME COLUMN_NAME UPD
STAFF_DEPT_10_30 EMPLOYEE_ID YES
STAFF_DEPT_10_30 LAST_NAME YES
STAFF_DEPT_10_30 JOB_ID YES
STAFF_DEPT_10_30 DEPARTMENT_ID YES

All updatable columns of a join view must map to columns of a key-preserved table. A
key-preserved table in a join query is a table in which each row of the underlying
table appears at most one time in the output of the query. In Example 4-7,
department_id is the primary key of the departments table, so each row from the
employees table appears at most once in the result set, making the employees table
key-preserved. The departments table is not key-preserved because each of its rows
may appear many times in the result set.

See Also: Oracle Database Administrator’s Guide to learn how to
update join views

Partitions, Views, and Other Schema Objects 4-15

Overview of Materialized Views

Object Views

Just as a view is a virtual table, an object view is a virtual object table. Each row in the
view is an object, which is an instance of an object type. An object type is a
user-defined data type.

You can retrieve, update, insert, and delete relational data as if it was stored as an
object type. You can also define views with columns that are object data types, such as
objects, REFs, and collections (nested tables and VARRAYs).

Like relational views, object views can present only the data that you want users to
see. For example, an object view could present data about IT programmers but omit
sensitive data about salaries. The following example creates an employee_type object
and then the view it_prog_view based on this object:

CREATE TYPE employee_type AS OBJECT
(

employee_id NUMBER (6),
last_name VARCHAR2 (25),
job_id VARCHAR2 (10)

)i
/

CREATE VIEW it_prog_view OF employee_type
WITH OBJECT IDENTIFIER (employee_id) AS
SELECT e.employee_id, e.last_name, e.job_id

FROM employees e
WHERE job_id = 'IT _PROG';

Object views are useful in prototyping or transitioning to object-oriented applications
because the data in the view can be taken from relational tables and accessed as if the
table were defined as an object table. You can run object-oriented applications without
converting existing tables to a different physical structure.

See Also:

» Oracle Database Object-Relational Developer’s Guide to learn about
object types and object views

» Oracle Database SQL Language Reference to learn about the
CREATE TYPE command

Overview of Materialized Views

Materialized views are query results that have been stored or "materialized” in
advance as schema objects. The FROM clause of the query can name tables, views, and
materialized views. Collectively these objects are called master tables (a replication
term) or detail tables (a data warehousing term).

Materialized views are used to summarize, compute, replicate, and distribute data.
They are suitable in various computing environments, such as the following:

» In data warehouses, you can use materialized views to compute and store data
generated from aggregate functions such as sums and averages.

A summary is an aggregate view that reduces query time by precalculating joins
and aggregation operations and storing the results in a table. Materialized views
are equivalent to summaries (see "Data Warehouse Architecture (Basic)" on

page 17-17). You can also use materialized views to compute joins with or without
aggregations. If compatibility is set to Oracle9i or higher, then materialized views
are usable for queries that include filter selections.

4-16 Oracle Database Concepts

Overview of Materialized Views

s Inmaterialized view replication, the view contains a complete or partial copy of a
table from a single point in time. Materialized views replicate data at distributed
sites and synchronize updates performed at several sites. This form of replication
is suitable for environments such as field sales when databases are not always
connected to the network.

= In mobile computing environments, you can use materialized views to download
a data subset from central servers to mobile clients, with periodic refreshes from
the central servers and propagation of updates by clients to the central servers.

In a replication environment, a materialized view shares data with a table in a different
database, called a master database. The table associated with the materialized view at
the master site is the master table. Figure 4-7 illustrates a materialized view in one
database based on a master table in another database. Updates to the master table
replicate to the materialized view database.

Figure 4-7 Materialized View

Client Applications

|:. Remote Update

Local
Query

Materialized View Master Table

Materialized
View
Database

Replicate Table Data
Refresh

Master
Database

See Also:

s "Information Sharing" on page 17-22 to learn about replication
with Oracle Streams

» Oracle Database 2 Day + Data Replication and Integration Guide and
Oracle Database Advanced Replication to learn how to use
materialized views

» Oracle Database SQL Language Reference to learn about the CREATE
MATERIALIZED VIEW statement

Characteristics of Materialized Views

Materialized views share some characteristics of nonmaterialized views and indexes.
Materialized views are similar to indexes in the following ways:

s They contain actual data and consume storage space.

s They can be refreshed when the data in their master tables changes.

Partitions, Views, and Other Schema Objects 4-17

Overview of Materialized Views

s They can improve performance of SQL execution when used for query rewrite
operations.

s Their existence is transparent to SQL applications and users.

A materialized view is similar to a nonmaterialized view because it represents data in
other tables and views. Unlike indexes, users can query materialized views directly
using SELECT statements. Depending on the types of refresh that are required, the
views can also be updated with DML statements.

The following example creates and populates a materialized aggregate view based on
three master tables in the sh sample schema:

CREATE MATERIALIZED VIEW sales_mv AS
SELECT t.calendar_year, p.prod_id, SUM(s.amount_sold) AS sum_sales
FROM times t, products p, sales s
WHERE t.time_id = s.time_id
AND p.prod_id = s.prod_id
GROUP BY t.calendar_year, p.prod_id;

The following example drops table sales, which is a master table for sales_mv, and
then queries sales_mv. The query selects data because the rows are stored
(materialized) separately from the data in the master tables.

SQL> DROP TABLE sales;
Table dropped.
SQL> SELECT * FROM sales_mv WHERE ROWNUM < 4;

CALENDAR_YEAR PROD_ID SUM_SALES

1998 13 936197.53
1998 26 567533.83
1998 27 107968.24

A materialized view can be partitioned. You can define a materialized view on a
partitioned table and one or more indexes on the materialized view.

See Also: Oracle Database Data Warehousing Guide to learn how to use
materialized views in a data warehouse

Refresh Methods for Materialized Views

The database maintains data in materialized views by refreshing them after changes to
their master tables. The refresh method can be incremental, known as fast refresh, or a
complete refresh.

A complete refresh occurs when the materialized view is initially defined as BUILD
IMMEDIATE, unless the materialized view references a prebuilt table. The refresh
involves executing the query that defines the materialized view. This process can be
slow, especially if the database must read and process huge amounts of data.

A fast refresh eliminates the need to rebuild materialized views from scratch. Thus,
processing only the changes can result in a very fast refresh time. Materialized views
can be refreshed either on demand or at regular time intervals. Alternatively,
materialized views in the same database as their master tables can be refreshed
whenever a transaction commits its changes to the master tables.

For materialized views that use the fast refresh method, a materialized view log or
direct loader log keeps a record of changes to the master tables. A materialized view

4-18 Oracle Database Concepts

Overview of Materialized Views

log is a schema object that records changes to master table data so that a materialized
view defined on the master table can be refreshed incrementally. Each materialized
view log is associated with a single master table. The materialized view log resides in
the same database and schema as its master table.

See Also:

» Oracle Database Data Warehousing Guide to learn how to refresh
materialized views

» Oracle Database Advanced Replication to learn about materialized
view logs

Query Rewrite

Query rewrite is an optimization technique that transforms a user request written in
terms of master tables into a semantically equivalent request that includes
materialized views. When base tables contain large amounts of data, computing an
aggregate or join is expensive and time-consuming. Because materialized views
contain precomputed aggregates and joins, query rewrite can quickly answer queries
using materialized views.

The optimizer query transformer transparently rewrites the request to use the
materialized view, requiring no user intervention and no reference to the materialized
view in the SQL statement. Because query rewrite is transparent, materialized views
can be added or dropped without invalidating the SQL in the application code.

In general, rewriting queries to use materialized views rather than detail tables
improves response time. Figure 4-8 shows the database generating an execution plan
for the original and rewritten query and choosing the lowest-cost plan.

Figure 4-8 Query Rewrite

Oracle Database

Query is
rewritten

_l
e B N
Sﬁeu_— T_, Query Results

User enters Compare plan cost
query v and pick the best

Generate Plan T

Generate Plan

See Also:
= "Overview of the Optimizer" on page 7-10

» Oracle Database Data Warehousing Guide to learn how to use query
rewrite

Partitions, Views, and Other Schema Objects 4-19

Overview of Sequences

Overview of Sequences

A sequence is a schema object from which multiple users can generate unique
integers. A sequence generator provides a highly scalable and well-performing
method to generate surrogate keys for a number data type.

Sequence Characteristics

A sequence definition indicates general information, such as the following:
= The name of the sequence

» Whether the sequence ascends or descends

= The interval between numbers

= Whether the database should cache sets of generated sequence numbers in
memory

= Whether the sequence should cycle when a limit is reached

The following example creates the sequence customers_seq in the sample schema oe.
An application could use this sequence to provide customer ID numbers when rows
are added to the customers table.

CREATE SEQUENCE customers_seq

START WITH 1000
INCREMENT BY 1
NOCACHE

NOCYCLE;

The first reference to customers_seq.nextval returns 1000. The second returns 1001.
Each subsequent reference returns a value 1 greater than the previous reference.

See Also:

» Oracle Database 2 Day Developer’s Guide and Oracle Database
Administrator’s Guide to learn how to manage sequences

» Oracle Database SQL Language Reference for CREATE SEQUENCE
syntax and semantics

Concurrent Access to Sequences

The same sequence generator can generate numbers for multiple tables. In this way,
the database can generate primary keys automatically and coordinate keys across
multiple rows or tables. For example, a sequence can generate primary keys for an
orders table and a customers table.

The sequence generator is useful in multiuser environments for generating unique
numbers without the overhead of disk I/O or transaction locking. For example, two
users simultaneously insert new rows into the orders table. By using a sequence to
generate unique numbers for the order_id column, neither user has to wait for the
other to enter the next available order number. The sequence automatically generates
the correct values for each user.

Each user that references a sequence has access to his or her current sequence number,
which is the last sequence generated in the session. A user can issue a statement to
generate a new sequence number or use the current number last generated by the
session. After a statement in a session generates a sequence number, it is available only
to this session. Individual sequence numbers can be skipped if they were generated
and used in a transaction that was ultimately rolled back.

4-20 Oracle Database Concepts

Overview of Dimensions

Caution: If your application requires a gap-free set of numbers,
then you cannot use Oracle sequences. You must serialize activities
in the database using your own developed code.

See Also: Chapter 9, "Data Concurrency and Consistency"

Overview of Dimensions

A typical data warehouse has two important components: dimensions and facts. A
dimension is any category used in specifying business questions, for example, time,
geography, product, department, and distribution channel. A fact is an event or entity
associated with a particular set of dimension values, for example, units sold or profits.

Examples of multidimensional requests include the following:

= Show total sales across all products at increasing aggregation levels for a
geography dimension, from state to country to region, for 2010 and 2011.

= Create a cross-tabular analysis of our operations showing expenses by territory in
South America for 2010 and 2011. Include all possible subtotals.

= List the top 10 sales representatives in Asia according to 2011 sales revenue for
automotive products, and rank their commissions.

Many multidimensional questions require aggregated data and comparisons of data
sets, often across time, geography or budgets.

Creating a dimension permits the broader use of the query rewrite feature. By
transparently rewriting queries to use materialized views, the database can improve
query performance.

See Also: "Overview of Data Warehousing and Business
Intelligence" on page 17-15

Hierarchical Structure of a Dimension

A dimension table is a logical structure that defines hierarchical relationships between
pairs of columns or column sets. A dimension has no data storage assigned to it.
Dimensional information is stored in dimension tables, whereas fact information is
stored in a fact table.

Within a customer dimension, customers could roll up to city, state, country,
subregion, and region. Data analysis typically starts at higher levels in the dimensional
hierarchy and gradually drills down if the situation warrants such analysis.

Each value at the child level is associated with one and only one value at the parent
level. A hierarchical relationship is a functional dependency from one level of a
hierarchy to the next level in the hierarchy.

See Also:
» Oracle Database Data Warehousing Guide to learn about dimensions

m Oracle OLAP User’s Guide to learn how to create dimensions

Creation of Dimensions

Dimensions are created with SQL statements. The CREATE DIMENSION statement
specifies:

Partitions, Views, and Other Schema Objects 4-21

Overview of Synonyms

= Multiple LEVEL clauses, each of which identifies a column or column set in the
dimension

= One or more HIERARCHY clauses that specify the parent/child relationships
between adjacent levels

= Optional ATTRIBUTE clauses, each of which identifies an additional column or
column set associated with an individual level

The following statement was used to create the customers_dim dimension in the
sample schema sh:

CREATE DIMENSION customers_dim
LEVEL customer IS (customers.cust_id)
LEVEL city IS (customers.cust_city)
LEVEL state IS (customers.cust_state_province)
LEVEL country IS (countries.country_id)
LEVEL subregion IS (countries.country_ subregion)

LEVEL region IS (countries.country_region)
HIERARCHY geog_rollup (

customer CHILD OF

city CHILD OF

state CHILD OF

country CHILD OF

subregion CHILD OF

region

JOIN KEY (customers.country_id) REFERENCES country)

ATTRIBUTE customer DETERMINES

(cust_first_name, cust_last_name, cust_gender,
cust_marital_status, cust_year of_birth,
cust_income_level, cust_credit_limit)

ATTRIBUTE country DETERMINES (countries.country_name) ;

The columns in a dimension can come either from the same table (denormalized) or
from multiple tables (fully or partially normalized). For example, a normalized time
dimension can include a date table, a month table, and a year table, with join
conditions that connect each date row to a month row, and each month row to a year
row. In a fully denormalized time dimension, the date, month, and year columns are in
the same table. Whether normalized or denormalized, the hierarchical relationships
among the columns must be specified in the CREATE DIMENSION statement.

See Also:

» Oracle Warehouse Builder Data Modeling, ETL, and Data Quality
Guide for information about how dimensions are used in a
warehousing environment

» Oracle Database SQL Language Reference for CREATE DIMENSION
syntax and semantics

Overview of Synonyms

A synonym is an alias for a schema object. For example, you can create a synonym for
a table or view, sequence, PL/SQL program unit, user-defined object type, or another
synonym. Because a synonym is simply an alias, it requires no storage other than its
definition in the data dictionary.

Synonyms can simplify SQL statements for database users. Synonyms are also useful
for hiding the identity and location of an underlying schema object. If the underlying

4-22 Oracle Database Concepts

Overview of Synonyms

object must be renamed or moved, then only the synonym must be redefined.
Applications based on the synonym continue to work without modification.

You can create both private and public synonyms. A private synonym is in the schema
of a specific user who has control over its availability to others. A public synonym is
owned by the user group named PUBLIC and is accessible by every database user.

In Example 4-9, a database administrator creates a public synonym named people for
the hr.employees table. The user then connects to the oe schema and counts the
number of rows in the table referenced by the synonym.

Example 4-8 Public Synonym
SQL> CREATE PUBLIC SYNONYM people FOR hr.employees;

Synonym created.

SQL> CONNECT oe
Enter password: password
Connected.

SQL> SELECT COUNT (*) FROM people;

Use public synonyms sparingly because they make database consolidation more
difficult. As shown in Example 4-9, if another administrator attempts to create the
public synonym people, then the creation fails because only one public synonym
people can exist in the database. Overuse of public synonyms causes namespace
conflicts between applications.

Example 4-9 Public Synonym

SQL> CREATE PUBLIC SYNONYM people FOR oe.customers;

CREATE PUBLIC SYNONYM people FOR oe.customers
*

ERROR at line 1:
ORA-00955: name is already used by an existing object

SQL> SELECT OWNER, SYNONYM_NAME, TABLE_OWNER, TABLE_NAME
2 FROM DBA_SYNONYMS
3 WHERE SYNONYM_NAME = 'PEOPLE';

PUBLIC PEOPLE HR EMPLOYEES

Synonyms themselves are not securable. When you grant object privileges on a
synonym, you are really granting privileges on the underlying object. The synonym is
acting only as an alias for the object in the GRANT statement.

See Also:

» Oracle Database Administrator’s Guide to learn how to manage
synonyms

» Oracle Database SQL Language Reference for CREATE SYNONYM syntax
and semantics

Partitions, Views, and Other Schema Objects 4-23

Overview of Synonyms

4-24 Oracle Database Concepts

O

Data Integrity

This chapter explains how integrity constraints enforce the business rules associated
with a database and prevent the entry of invalid information into tables.

This chapter contains the following sections:
s Introduction to Data Integrity
» Types of Integrity Constraints

» States of Integrity Constraints

See Also: "Overview of Tables" on page 2-6

Introduction to Data Integrity

Business rules specify conditions and relationships that must always be true or must
always be false. For example, each company defines its own policies about salaries,
employee numbers, inventory tracking, and so on. It is important that data maintain
data integrity, which is adherence to these rules, as determined by the database
administrator or application developer.

Techniques for Guaranteeing Data Integrity

When designing a database application, developers have various options for
guaranteeing the integrity of data stored in the database. These options include:

» Enforcing business rules with triggered stored database procedures, as described
in "Overview of Triggers" on page 8-16

= Using stored procedures to completely control access to data, as described in
"Introduction to Server-Side Programming" on page 8-1

= Enforcing business rules in the code of a database application

= Using Oracle Database integrity constraints, which are rules defined at the
column or object level that restrict values in the database

This chapter explains the basic concepts of integrity constraints.

Advantages of Integrity Constraints

An integrity constraint is a schema object that is created and dropped using SQL. To
enforce data integrity, use integrity constraints unless it is not possible. Advantages of
integrity constraints over alternatives for enforcing data integrity include:

s Declarative ease

Data Integrity 5-1

Types of Integrity Constraints

Because you define integrity constraints using SQL statements, no additional
programming is required when you define or alter a table. The SQL statements are
easy to write and eliminate programming errors.

s Centralized rules

Integrity constraints are defined for tables and are stored in the data dictionary
(see "Overview of the Data Dictionary" on page 6-1). Thus, data entered by all
applications must adhere to the same integrity constraints. If the rules change at
the table level, then applications need not change. Also, applications can use
metadata in the data dictionary to immediately inform users of violations, even
before the database checks the SQL statement.

s Flexibility when loading data

You can disable integrity constraints temporarily to avoid performance overhead
when loading large amounts of data. When the data load is complete, you can
re-enable the integrity constraints.

See Also:

» Oracle Database 2 Day Developer’s Guide and Oracle Database 2 Day
Developer’s Guide to learn how to maintain data integrity

» Oracle Database 2 Day DBAand Oracle Database Administrator’s
Guide to learn how to manage integrity constraints

Types of Integrity Constraints

Oracle Database enables you to apply constraints both at the table and column level. A
constraint specified as part of the definition of a column or attribute is called an inline
specification. A constraint specified as part of the table definition is called an
out-of-line specification.

The term key is used in the definitions of several types of integrity constraints. A key
is the column or set of columns included in the definition of certain types of integrity
constraints. Keys describe the relationships between the tables and columns of a
relational database. Individual values in a key are called key values.

Table 5-1 describes the types of constraints. Each can be specified either inline or
out-of-line, except for NOT NULL, which must be inline.

Table 5-1 Types of Constraints

Constraint Type | Description See Also

NOT NULL Allows or disallows inserts or updates of rows "NOT NULL Integrity Constraints"
containing a null in a specified column. on page 5-3

Unique key Prohibits multiple rows from having the same value in | "Unique Constraints" on page 5-3
the same column or combination of columns but allows
some values to be null.

Primary key Combines a NOT NULL constraint and a unique "Primary Key Constraints" on

constraint. It prohibits multiple rows from having the page 5-5
same value in the same column or combination of
columns and prohibits values from being null.

5-2 Oracle Database Concepts

Types of Integrity Constraints

Table 5-1 (Cont.) Types of Constraints

Constraint Type | Description See Also

Foreign key Designates a column as the foreign key and establishes | "Foreign Key Constraints" on
a relationship between the foreign key and a primary or | page 5-6
unique key, called the referenced key.

Check Requires a database value to obey a specified condition. | "Check Constraints" on page 5-10
REF Dictates types of data manipulation allowed on values | Oracle Database Object-Relational
in a REF column and how these actions affect Developer’s Guide to learn about REF
dependent values. In an object-relational database, a constraints

built-in data type called a REF encapsulates a reference
to a row object of a specified object type. Referential
integrity constraints on REF columns ensure that there
is a row object for the REF.

See Also:
= "Overview of Tables" on page 2-6

» Oracle Database SQL Language Reference to learn more about the
types of constraints

NOT NULL Integrity Constraints

A NOT NULL constraint requires that a column of a table contain no null values. A null is
the absence of a value. By default, all columns in a table allow nulls.

NOT NULL constraints are intended for columns that must not lack values. For example,
the hr.employees table requires a value in the last_name column. An attempt to insert
an employee row without a last name generates an error:

SQL> INSERT INTO hr.employees (employee_id, last_name) values (999, 'Smith');

ERROR at line 1:
ORA-01400: cannot insert NULL into ("HR"."EMPLOYEES"."LAST NAME")

You can only add a column with a NOT NULL constraint if the table does not contain
any rows or if you specify a default value.
See Also:

» Oracle Database 2 Day Developer’s Guide for examples of adding NOT
NULL constraints to a table

» Oracle Database SQL Language Reference for restrictions on using
NOT NULL constraints

» Oracle Database Advanced Application Developer’s Guide to learn
when to use the NOT NULL constraint

Unique Constraints

A unique key constraint requires that every value in a column or set of columns be
unique. No rows of a table may have duplicate values in a column (the unique key) or
set of columns (the composite unique key) with a unique key constraint.

Data Integrity 5-3

Types of Integrity Constraints

Note: The term key refers only to the columns defined in the
integrity constraint. Because the database enforces a unique constraint
by implicitly creating or reusing an index on the key columns, the
term unique key is sometimes incorrectly used as a synonym for
unique key constraint or unique index.

Unique key constraints are appropriate for any column where duplicate values are not
allowed. Unique constraints differ from primary key constraints, whose purpose is to
identify each table row uniquely, and typically contain values that have no significance
other than being unique. Examples of unique keys include:

= A customer phone number, where the primary key is the customer number
= A department name, where the primary key is the department number

As shown in Example 2-1 on page 2-8, a unique key constraint exists on the email
column of the hr.employees table. The relevant part of the statement is as follows:

CREATE TABLE employees
(...

, email VARCHAR2 (25)
CONSTRAINT emp_email _nn NOT NULL ...
, CONSTRAINT emp_email_uk UNIQUE (email) ...);

The emp_email_uk constraint ensures that no two employees have the same email
address, as shown in Example 5-1.

Example 5-1 Unique Constraint
SQL> SELECT employee_id, last_name, email FROM employees WHERE email = 'PFAY';

EMPLOYEE_ID LAST_NAME EMAIL

SQL> INSERT INTO employees (employee_id, last_name, email, hire_date, job_id)
1 VALUES (999, 'Fay', 'PFAY', SYSDATE, 'ST_CLERK');

ERROR at line 1:
ORA-00001: unique constraint (HR.EMP_EMAIL_UK) violated

Unless a NOT NULL constraint is also defined, a null always satisfies a unique key
constraint. Thus, columns with both unique key constraints and NOT NULL constraints
are typical. This combination forces the user to enter values in the unique key and
eliminates the possibility that new row data conflicts with existing row data.

Note: Because of the search mechanism for unique key constraints
on multiple columns, you cannot have identical values in the non-null
columns of a partially null composite unique key constraint.

5-4 Oracle Database Concepts

Types of Integrity Constraints

See Also:
= "Unique and Nonunique Indexes" on page 3-4

» Oracle Database 2 Day Developer’s Guide for examples of adding
UNIQUE constraints to a table

Primary Key Constraints

In a primary key constraint, the values in the group of one or more columns subject to
the constraint uniquely identify the row. Each table can have one primary key, which
in effect names the row and ensures that no duplicate rows exist.

A primary key can be natural or a surrogate. A natural key is a meaningful identifier
made of existing attributes in a table. For example, a natural key could be a postal code
in a lookup table. In contrast, a surrogate key is a system-generated incrementing
identifier that ensures uniqueness within a table. Typically, surrogate keys are
generated by a sequence.

The Oracle Database implementation of the primary key constraint guarantees that the
following statements are true:

= No two rows have duplicate values in the specified column or set of columns.
s The primary key columns do not allow nulls.

A typical situation calling for a primary key is the numeric identifier for an employee.
Each employee must have a unique ID. A employee must be described by one and
only one row in the employees table.

Example 5-1 indicates that an existing employee has the employee ID of 202, where
the employee ID is the primary key. The following example shows an attempt to add
an employee with the same employee ID and an employee with no ID:

SQL> INSERT INTO employees (employee_id, last_name, email, hire_date, job_id)
1 VALUES (202, 'Chan', 'ICHAN',SYSDATE, 'ST_CLERK') ;

ERROR at line 1:
ORA-00001: unique constraint (HR.EMP_EMP_ID_PK) violated

SQL> INSERT INTO employees (last_name) VALUES ('Chan');

ERROR at line 1:
ORA-01400: cannot insert NULL into ("HR"."EMPLOYEES"."EMPLOYEE_ID")

The database enforces primary key constraints with an index. Usually, a primary key
constraint created for a column implicitly creates a unique index and a NOT NULL
constraint. Note the following exceptions to this rule:

= In some cases, as when you create a primary key with a deferrable constraint, the
generated index is not unique.

Note: You can explicitly create a unique index with the CREATE
UNIQUE INDEX statement.

Data Integrity 5-5

Types of Integrity Constraints

= If a usable index exists when a primary key constraint is created, then the
constraint reuses this index and does not implicitly create a new one.

By default the name of the implicitly created index is the name of the primary key
constraint. You can also specify a user-defined name for an index. You can specify
storage options for the index by including the ENABLE clause in the CREATE TABLE or
ALTER TABLE statement used to create the constraint.

See Also: Oracle Database 2 Day Developer's Guide and Oracle Database
Advanced Application Developer’s Guide to learn how to add primary
key constraints to a table

Foreign Key Constraints

Whenever two tables contain one or more common columns, Oracle Database can
enforce the relationship between the two tables through a foreign key constraint, also
called a referential integrity constraint. The constraint requires that for each value in
the column on which the constraint is defined, the value in the other specified other
table and column must match. An example of a referential integrity rule is an
employee can work for only an existing department.

Table 5-2 lists terms associated with referential integrity constraints.

Table 5-2 Referential Integrity Constraint Terms

Term Definition

Foreign key The column or set of columns included in the definition of the constraint
that reference a referenced key. For example, the department_id column in
employees is a foreign key that references the department_id column in
departments.

Foreign keys may be defined as multiple columns. However, a composite
foreign key must reference a composite primary or unique key with the
same number of columns and the same data types.

The value of foreign keys can match either the referenced primary or
unique key value, or be null. If any column of a composite foreign key is
null, then the non-null portions of the key do not have to match any
corresponding portion of a parent key.

Referenced key ~ The unique key or primary key of the table referenced by a foreign key. For
example, the department_id column in departments is the referenced key
for the department_id column in employees.

Dependent or The table that includes the foreign key. This table is dependent on the
child table values present in the referenced unique or primary key. For example, the
employees table is a child of departments.

Referenced or The table that is referenced by the foreign key of the child table. It is this

parent table table's referenced key that determines whether specific inserts or updates
are allowed in the child table. For example, the departments table is a
parent of employees.

Figure 5-1 shows a foreign key on the employees.department_id column. It
guarantees that every value in this column must match a value in the
departments.department_id column. Thus, no erroneous department numbers can
exist in the employees.department_id column.

5-6 Oracle Database Concepts

Types of Integrity Constraints

Figure 5-1 Referential Integrity Constraints

Parent Key
Primary key of
referenced table

Referenced or Parent Table

Table DEPARTMENTS
DEPARTMENT_ID | DEPARTMENT_NAME | MANAGER_ID | LOCATION_ID
60 | IT | 103| 1400

90 | Executive 100 1700

Foreign Key
(values in dependent
table must match a
value in unique key
or primary key of

| referenced table)
1
Dependent or Child Table 1
1
Table EMPLOYEES : ‘
EMPLOYEE_ID | LAST_NAME | EMAIL | HIRE_DATE | JOB_ID | MANAGER_ID | DEPARTMENT_ID
100 King SKING 17-JUN-87 AD_PRES 90
101 Kochhar NKOCHHAR | 21-SEP-89 AD_VP 100 90
102 De Hann LDEHANN 13-JAN-93 AD_VP 100 90
103 Hunold AHUNOLD 03-JAN-90 IT_PROG | 102 60
\

This row violates the referential
constraint because "99" is not
present in the referenced table's

primary key; therefore, the row

:N-SFSRT is not allowed in the table.

207 Ashdown AASHDOWN 17-DEC-07 MK_MAN 100 99 ——,
208 Green BGREEN 17-DEC-07 AC_MGR 101 _—\

This row is allowed in the table
because a null value is entered

in the DEPARTMENT_ID column;
however, if a not null constraint

is also defined for this column,
this row is not allowed.

See Also: Oracle Database 2 Day Developer's Guide and Oracle Database
Advanced Application Developer’s Guide to learn how to add foreign key
constraints to a table

Self-Referential Integrity Constraints

Figure 5-2 shows a self-referential integrity constraint. In this case, a foreign key
references a parent key in the same table.

In Figure 5-2, the referential integrity constraint ensures that every value in the
employees.manager_id column corresponds to an existing value in the
employees.employee_id column. For example, the manager for employee 102 must
exist in the employees table. This constraint eliminates the possibility of erroneous
employee numbers in the manager_id column.

Data Integrity 5-7

Types of Integrity Constraints

Figure 5-2 Single Table Referential Constraints

Primary Key
of referenced table

Referenced or Parent Table -~

Foreign Key

(values in dependent table must match
a value in unique key or primary key of
referenced table)

Dependent or Child Table

Table EMPLOYEES ‘
—EMPLOYEE_ID LAST_NAME | EMAIL | HIRE_DATE | JOB_ID | VANAGER_ID | DEPARTMENT_ID
100 King SKING 17-JUN-87 AD_PRES 90
101 Kochhar NKOCHHAR | 21-SEP-89 AD_VP 100 90
102 De Hann LDEHANN 13-JAN-93 AD_VP 100 90
103 Hunold AHUNOLD 03-JAN-90 IT_PROG 102 60
—— This row violates the referential
constraint, because "400" is
not present in the referenced
INSERT table's primary key; therefore,
INTO it is not allowed in the table.
207 Ashdown AASHDOWN 01-DEC-07 IT_PROG 400 60

Nulls and Foreign Keys

The relational model permits the value of foreign keys to match either the referenced
primary or unique key value, or be null. For example, a user could insert a row into
hr . employees without specifying a department ID.

If any column of a composite foreign key is null, then the non-null portions of the key
do not have to match any corresponding portion of a parent key.

Parent Key Modifications and Foreign Keys

The relationship between foreign key and parent key has implications for deletion of
parent keys. For example, if a user attempts to delete the record for this department,
then what happens to the records for employees in this department?

When a parent key is modified, referential integrity constraints can specify the
following actions to be performed on dependent rows in a child table:

= No action on deletion or update

In the normal case, users cannot modify referenced key values if the results would
violate referential integrity. For example, if employees.department_id is a foreign
key to departments, and if employees belong to a particular department, then an
attempt to delete the row for this department violates the constraint.

= Cascading deletions

A deletion cascades (DELETE CASCADE) when rows containing referenced key
values are deleted, causing all rows in child tables with dependent foreign key
values to also be deleted. For example, the deletion of a row in departments causes
rows for all employees in this department to be deleted.

m Deletions that set null

A deletion sets null (DELETE SET NULL) when rows containing referenced key
values are deleted, causing all rows in child tables with dependent foreign key

5-8 Oracle Database Concepts

Types of Integrity Constraints

values to set those values to null. For example, the deletion of a department row
sets the department_id column value to null for employees in this department.

Table 5-3 outlines the DML statements allowed by the different referential actions on
the key values in the parent table, and the foreign key values in the child table.

Table 5-3 DML Statements Allowed by Update and Delete No Action

DML Statement Issued Against Parent Table Issued Against Child Table
INSERT Always OK if the parent key valueis ~ OK only if the foreign key value
unique exists in the parent key or is
partially or all null
UPDATE NO ACTION Allowed if the statement does not Allowed if the new foreign key
leave any rows in the child table value still references a

without a referenced parent key value referenced key value

DELETE NO ACTION Allowed if no rows in the child table ~ Always OK
reference the parent key value

DELETE CASCADE Always OK Always OK

DELETE SET NULL Always OK Always OK

Note: Other referential actions not supported by FOREIGN KEY
integrity constraints of Oracle Database can be enforced using
database triggers. See "Overview of Triggers" on page 8-16.

See Also: Oracle Database SQL Language Reference to learn about the
ON DELETE clause

Indexes and Foreign Keys

As a general rule, Oracle recommends indexing foreign keys in heap-organized tables.
An exception for nonpartitioned tables is when the matching unique or primary key is
never updated or deleted.

Note: Additional considerations apply to non-heap data structures
such as index-organized tables and table clusters.

Indexing the foreign keys in child tables provides the following benefits:

» Prevents a full table lock on the child table. Instead, the database acquires a row
lock on the index.

= Removes the need for a full table scan of the child table. As an illustration,
assume that a user removes the record for department 10 from the departments
table. If employees.department_id is not indexed, then the database must scan
employees to determine whether any employees exist in department 10.

See Also: "Locks and Foreign Keys" on page 9-21 and "Overview of
Indexes" on page 3-1

Data Integrity 5-9

States of Integrity Constraints

Check Constraints

A check constraint on a column or set of columns requires that a specified condition
be true or unknown for every row. If DML results in the condition of the constraint
evaluating to false, then the SQL statement is rolled back.

The chief benefit of check constraints is the ability to enforce very specific integrity
rules. For example, you could use check constraints to enforce the following rules in
the hr.employees table:

s The salary column must not have a value greater than 10000.
s The commission column must have a value that is not greater than the salary.

The following example creates a maximum salary constraint on employees and
demonstrates what happens when a statement attempts to insert a row containing a
salary that exceeds the maximum:

SQL> ALTER TABLE employees ADD CONSTRAINT max_emp_sal CHECK (salary < 10001);
SQL> INSERT INTO employees (employee_id,last_name,email,hire_date,job_id, salary)
1 VALUES (999, 'Green', 'BGREEN', SYSDATE, 'ST_CLERK',20000) ;

ERROR at line 1:
ORA-02290: check constraint (HR.MAX_EMP_SAL) violated

A single column can have multiple check constraints that reference the column in its
definition. For example, the salary column could have one constraint that prevents
values over 10000 and a separate constraint that prevents values less than 500.

If multiple check constraints exist for a column, then you must design them so that
their aims do not conflict. No order of evaluation of the conditions can be assumed.
The database does not verify that check conditions are not mutually exclusive.

See Also: Oracle Database SQL Language Reference to learn about
restrictions for check constraints

States of Integrity Constraints

As part of constraint definition, you can specify how and when Oracle Database
should enforce the constraint, thereby determining the constraint state.

Checks for Modified and Existing Data

The database enables you to specify whether a constraint applies to existing data or
future data. If a constraint is enabled, then the database checks new data as it is
entered or updated. Data that does not conform to the constraint cannot enter the
database. For example, enabling a NOT NULL constraint on employees.department_id
guaran