
SQL Tutorial
Basics of the SELECT Statement
In a relational database, data is stored in tables. An example table would relate Social Security
Number, Name, and Address:

EmployeeAddressTable
SSN FirstName LastName Address City State
512687458 Joe Smith 83 First Street Howard Ohio
758420012 Mary Scott 842 Vine Ave. Losantiville Ohio
102254896 Sam Jones 33 Elm St. Paris New York
876512563 Sarah Ackerman 440 U.S. 110 Upton Michigan

Now, let's say you want to see the address of each employee. Use the SELECT statement, like
so:

SELECT FirstName, LastName, Address, City, State
FROM EmployeeAddressTable;

The following is the results of your query of the database:
First Name Last Name Address City State
Joe Smith 83 First Street Howard Ohio
Mary Scott 842 Vine Ave. Losantiville Ohio
Sam Jones 33 Elm St. Paris New York
Sarah Ackerman 440 U.S. 110 Upton Michigan

To explain what you just did, you asked for the all of data in the EmployeeAddressTable, and
specifically, you asked for the columns called FirstName, LastName, Address, City, and State.
Note that column names and table names do not have spaces...they must be typed as one
word; and that the statement ends with a semicolon (;). The general form for a SELECT
statement, retrieving all of the rows in the table is:

SELECT ColumnName, ColumnName, ...
FROM TableName;

To get all columns of a table without typing all column names, use:

SELECT * FROM TableName;

Each database management system (DBMS) and database software has different methods for
logging in to the database and entering SQL commands; see the local computer "guru" to help
you get onto the system, so that you can use SQL.

Conditional Selection
To further discuss the SELECT statement, let's look at a new example table (for hypothetical
purposes only):

EmployeeStatisticsTable
EmployeeIDNo Salary Benefits Position
010 75000 15000 Manager
105 65000 15000 Manager
152 60000 15000 Manager
215 60000 12500 Manager
244 50000 12000 Staff
300 45000 10000 Staff
335 40000 10000 Staff
400 32000 7500 Entry-Level
441 28000 7500 Entry-Level

Relational Operators

There are six Relational Operators in SQL, and after introducing them, we'll see how they're
used:
= Equal
<> or != (see
manual)

Not Equal

< Less Than
> Greater Than
<= Less Than or Equal To
>= Greater Than or Equal To

The WHERE clause is used to specify that only certain rows of the table are displayed, based
on the criteria described in that WHERE clause. It is most easily understood by looking at a
couple of examples.

If you wanted to see the EMPLOYEEIDNO's of those making at or over $50,000, use the
following:

SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE SALARY >= 50000;

Notice that the >= (greater than or equal to) sign is used, as we wanted to see those who
made greater than $50,000, or equal to $50,000, listed together. This displays:

EMPLOYEEIDNO

010
105
152
215
244

The WHERE description, SALARY >= 50000, is known as a condition. The same can be done
for text columns:

SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION = 'Manager';

This displays the ID Numbers of all Managers. Generally, with text columns, stick to equal to
or not equal to, and make sure that any text that appears in the statement is surrounded by
single quotes (').

More Complex Conditions: Compound Conditions

The AND operator joins two or more conditions, and displays a row only if that row's data
satisfies ALL conditions listed (i.e. all conditions hold true). For example, to display all staff
making over $40,000, use:

SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE SALARY > 40000 AND POSITION = 'Staff';

The OR operator joins two or more conditions, but returns a row if ANY of the conditions listed
hold true. To see all those who make less than $40,000 or have less than $10,000 in benefits,
listed together, use the following query:

SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE SALARY < 40000 OR BENEFITS < 10000;

AND & OR can be combined, for example:

SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION = 'Manager' AND SALARY > 60000 OR BENEFITS > 12000;

First, SQL finds the rows where the salary is greater than $60,000 and the position column is
equal to Manager, then taking this new list of rows, SQL then sees if any of these rows
satisfies the previous AND condition or the condition that the Benefits column is greater then
$12,000. Subsequently, SQL only displays this second new list of rows, keeping in mind that
anyone with Benefits over $12,000 will be included as the OR operator includes a row if either
resulting condition is True. Also note that the AND operation is done first.

To generalize this process, SQL performs the AND operation(s) to determine the rows where
the AND operation(s) hold true (remember: all of the conditions are true), then these results
are used to compare with the OR conditions, and only display those remaining rows where the
conditions joined by the OR operator hold true.

To perform OR's before AND's, like if you wanted to see a list of employees making a large
salary (>$50,000) or have a large benefit package (>$10,000), and that happen to be a
manager, use parentheses:

SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION = 'Manager' AND (SALARY > 50000 OR BENEFIT > 10000);

IN & BETWEEN

An easier method of using compound conditions uses IN or BETWEEN. For example, if you
wanted to list all managers and staff:

SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION IN ('Manager', 'Staff');

or to list those making greater than or equal to $30,000, but less than or equal to $50,000,
use:

SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE SALARY BETWEEN 30000 AND 50000;

To list everyone not in this range, try:

SELECT EMPLOYEEIDNO
FROM EMPLOYEESTATISTICSTABLE
WHERE SALARY NOT BETWEEN 30000 AND 50000;

Similarly, NOT IN lists all rows excluded from the IN list.

Using LIKE

Look at the EmployeeStatisticsTable, and say you wanted to see all people whose last names
started with "L"; try:

SELECT EMPLOYEEIDNO
FROM EMPLOYEEADDRESSTABLE
WHERE LASTNAME LIKE 'L%';

The percent sign (%) is used to represent any possible character (number, letter, or
punctuation) or set of characters that might appear after the "L". To find those people with
LastName's ending in "L", use '%L', or if you wanted the "L" in the middle of the word, try
'%L%'. The '%' can be used for any characters, in that relative position to the given
characters. NOT LIKE displays rows not fitting the given description. Other possiblities of using
LIKE, or any of these discussed conditionals, are available, though it depends on what DBMS
you are using; as usual, consult a manual or your system manager or administrator for the
available features on your system, or just to make sure that what you are trying to do is
available and allowed. This disclaimer holds for the features of SQL that will be discussed
below. This section is just to give you an idea of the possibilities of queries that can be written
in SQL.

Joins

In this section, we will only discuss inner joins, and equijoins, as in general, they are the most
useful. For more information, try the SQL links at the bottom of the page.

Good database design suggests that each table lists data only about a single entity, and
detailed information can be obtained in a relational database, by using additional tables, and
by using a join.

First, take a look at these example tables:

AntiqueOwners
OwnerID OwnerLastName OwnerFirstName
01 Jones Bill
02 Smith Bob
15 Lawson Patricia
21 Akins Jane
50 Fowler Sam

Orders
OwnerID ItemDesired
02 Table
02 Desk
21 Chair
15 Mirror

Antiques
SellerID BuyerID Item
01 50 Bed
02 15 Table
15 02 Chair
21 50 Mirror
50 01 Desk
01 21 Cabinet
02 21 Coffee Table
15 50 Chair
01 15 Jewelry Box
02 21 Pottery
21 02 Bookcase
50 01 Plant Stand

Keys

First, let's discuss the concept of keys. A primary key is a column or set of columns that
uniquely identifies the rest of the data in any given row. For example, in the AntiqueOwners
table, the OwnerID column uniquely identifies that row. This means two things: no two rows
can have the same OwnerID, and, even if two owners have the same first and last names, the
OwnerID column ensures that the two owners will not be confused with each other, because
the unique OwnerID column will be used throughout the database to track the owners, rather
than the names.

A foreign key is a column in a table where that column is a primary key of another table,
which means that any data in a foreign key column must have corresponding data in the other
table where that column is the primary key. In DBMS-speak, this correspondence is known as
referential integrity. For example, in the Antiques table, both the BuyerID and SellerID are
foreign keys to the primary key of the AntiqueOwners table (OwnerID; for purposes of
argument, one has to be an Antique Owner before one can buy or sell any items), as, in both
tables, the ID rows are used to identify the owners or buyers and sellers, and that the
OwnerID is the primary key of the AntiqueOwners table. In other words, all of this "ID" data is
used to refer to the owners, buyers, or sellers of antiques, themselves, without having to use
the actual names.

Performing a Join

The purpose of these keys is so that data can be related across tables, without having to
repeat data in every table--this is the power of relational databases. For example, you can find
the names of those who bought a chair without having to list the full name of the buyer in the
Antiques table...you can get the name by relating those who bought a chair with the names in
the AntiqueOwners table through the use of the OwnerID, which relates the data in the two
tables. To find the names of those who bought a chair, use the following query:

SELECT OWNERLASTNAME, OWNERFIRSTNAME
FROM ANTIQUEOWNERS, ANTIQUES
WHERE BUYERID = OWNERID AND ITEM = 'Chair';

Note the following about this query...notice that both tables involved in the relation are listed
in the FROM clause of the statement. In the WHERE clause, first notice that the ITEM = 'Chair'
part restricts the listing to those who have bought (and in this example, thereby owns) a
chair. Secondly, notice how the ID columns are related from one table to the next by use of
the BUYERID = OWNERID clause. Only where ID's match across tables and the item
purchased is a chair (because of the AND), will the names from the AntiqueOwners table be
listed. Because the joining condition used an equal sign, this join is called an equijoin. The
result of this query is two names: Smith, Bob & Fowler, Sam.

Dot notation refers to prefixing the table names to column names, to avoid ambiguity, as
such:

SELECT ANTIQUEOWNERS.OWNERLASTNAME, ANTIQUEOWNERS.OWNERFIRSTNAME
FROM ANTIQUEOWNERS, ANTIQUES
WHERE ANTIQUES.BUYERID = ANTIQUEOWNERS.OWNERID AND ANTIQUES.ITEM =
'Chair';

As the column names are different in each table, however, this wasn't necessary.

DISTINCT and Eliminating Duplicates

Let's say that you want to list the ID and names of only those people who have sold an
antique. Obviously, you want a list where each seller is only listed once--you don't want to
know how many antiques a person sold, just the fact that this person sold one (for counts, see
the Aggregate Function section below). This means that you will need to tell SQL to eliminate
duplicate sales rows, and just list each person only once. To do this, use the DISTINCT
keyword.

First, we will need an equijoin to the AntiqueOwners table to get the detail data of the person's
LastName and FirstName. However, keep in mind that since the SellerID column in the
Antiques table is a foreign key to the AntiqueOwners table, a seller will only be listed if there is
a row in the AntiqueOwners table listing the ID and names. We also want to eliminate multiple
occurences of the SellerID in our listing, so we use DISTINCT on the column where the
repeats may occur.

To throw in one more twist, we will also want the list alphabetized by LastName, then by
FirstName (on a LastName tie), then by OwnerID (on a LastName and FirstName tie). Thus,
we will use the ORDER BY clause:

SELECT DISTINCT SELLERID, OWNERLASTNAME, OWNERFIRSTNAME
FROM ANTIQUES, ANTIQUEOWNERS

WHERE SELLERID = OWNERID
ORDER BY OWNERLASTNAME, OWNERFIRSTNAME, OWNERID;

In this example, since everyone has sold an item, we will get a listing of all of the owners, in
alphabetical order by last name. For future reference (and in case anyone asks), this type of
join is considered to be in the category of inner joins.

Aliases & In/Subqueries

In this section, we will talk about Aliases, In and the use of subqueries, and how these can be
used in a 3-table example. First, look at this query which prints the last name of those owners
who have placed an order and what the order is, only listing those orders which can be filled
(that is, there is a buyer who owns that ordered item):

SELECT OWN.OWNERLASTNAME Last Name, ORD.ITEMDESIRED Item Ordered
FROM ORDERS ORD, ANTIQUEOWNERS OWN
WHERE ORD.OWNERID = OWN.OWNERID
AND ORD.ITEMDESIRED IN

(SELECT ITEM
FROM ANTIQUES);

This gives:

Last Name Item Ordered
--------- ------------
Smith Table
Smith Desk
Akins Chair
Lawson Mirror

There are several things to note about this query:

1. First, the "Last Name" and "Item Ordered" in the Select lines gives the headers on the
report.

2. The OWN & ORD are aliases; these are new names for the two tables listed in the
FROM clause that are used as prefixes for all dot notations of column names in the query
(see above). This eliminates ambiguity, especially in the equijoin WHERE clause where
both tables have the column named OwnerID, and the dot notation tells SQL that we are
talking about two different OwnerID's from the two different tables.

3. Note that the Orders table is listed first in the FROM clause; this makes sure listing is
done off of that table, and the AntiqueOwners table is only used for the detail information
(Last Name).

4. Most importantly, the AND in the WHERE clause forces the In Subquery to be invoked
("= ANY" or "= SOME" are two equivalent uses of IN). What this does is, the subquery is
performed, returning all of the Items owned from the Antiques table, as there is no
WHERE clause. Then, for a row from the Orders table to be listed, the ItemDesired must
be in that returned list of Items owned from the Antiques table, thus listing an item only
if the order can be filled from another owner. You can think of it this way: the subquery
returns a set of Items from which each ItemDesired in the Orders table is compared; the
In condition is true only if the ItemDesired is in that returned set from the Antiques
table.

5. Also notice, that in this case, that there happened to be an antique available for each
one desired...obviously, that won't always be the case. In addition, notice that when the
IN, "= ANY", or "= SOME" is used, that these keywords refer to any possible row
matches, not column matches...that is, you cannot put multiple columns in the subquery
Select clause, in an attempt to match the column in the outer Where clause to one of
multiple possible column values in the subquery; only one column can be listed in the
subquery, and the possible match comes from multiple row values in that one column,
not vice-versa.

Whew! That's enough on the topic of complex SELECT queries for now. Now on to other SQL
statements.

Miscellaneous SQL Statements

Aggregate Functions

I will discuss five important aggregate functions: SUM, AVG, MAX, MIN, and COUNT. They are
called aggregate functions because they summarize the results of a query, rather than listing
all of the rows.

 SUM () gives the total of all the rows, satisfying any conditions, of the given column,
where the given column is numeric.

 AVG () gives the average of the given column.

 MAX () gives the largest figure in the given column.

 MIN () gives the smallest figure in the given column.

 COUNT(*) gives the number of rows satisfying the conditions.

Looking at the tables at the top of the document, let's look at three examples:

SELECT SUM(SALARY), AVG(SALARY)
FROM EMPLOYEESTATISTICSTABLE;

This query shows the total of all salaries in the table, and the average salary of all of the
entries in the table.

SELECT MIN(BENEFITS)
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION = 'Manager';

This query gives the smallest figure of the Benefits column, of the employees who are
Managers, which is 12500.

SELECT COUNT(*)
FROM EMPLOYEESTATISTICSTABLE
WHERE POSITION = 'Staff';

This query tells you how many employees have Staff status (3).

Views

In SQL, you might (check your DBA) have access to create views for yourself. What a view
does is to allow you to assign the results of a query to a new, personal table, that you can use
in other queries, where this new table is given the view name in your FROM clause. When you
access a view, the query that is defined in your view creation statement is performed
(generally), and the results of that query look just like another table in the query that you
wrote invoking the view. For example, to create a view:

CREATE VIEW ANTVIEW AS SELECT ITEMDESIRED FROM ORDERS;

Now, write a query using this view as a table, where the table is just a listing of all Items
Desired from the Orders table:

SELECT SELLERID
FROM ANTIQUES, ANTVIEW
WHERE ITEMDESIRED = ITEM;

This query shows all SellerID's from the Antiques table where the Item in that table happens
to appear in the Antview view, which is just all of the Items Desired in the Orders table. The
listing is generated by going through the Antique Items one-by-one until there's a match with
the Antview view. Views can be used to restrict database access, as well as, in this case,
simplify a complex query.

Creating New Tables

All tables within a database must be created at some point in time...let's see how we would
create the Orders table:

CREATE TABLE ORDERS
(OWNERID INTEGER NOT NULL,
ITEMDESIRED CHAR(40) NOT NULL);

This statement gives the table name and tells the DBMS about each column in the table.
Please note that this statement uses generic data types, and that the data types might be
different, depending on what DBMS you are using. As usual, check local listings. Some
common generic data types are:

 Char(x) - A column of characters, where x is a number designating the maximum
number of characters allowed (maximum length) in the column.

 Integer - A column of whole numbers, positive or negative.

 Decimal(x, y) - A column of decimal numbers, where x is the maximum length in digits
of the decimal numbers in this column, and y is the maximum number of digits allowed
after the decimal point. The maximum (4,2) number would be 99.99.

 Date - A date column in a DBMS-specific format.

 Logical - A column that can hold only two values: TRUE or FALSE.

One other note, the NOT NULL means that the column must have a value in each row. If NULL
was used, that column may be left empty in a given row.

Altering Tables

Let's add a column to the Antiques table to allow the entry of the price of a given Item:

ALTER TABLE ANTIQUES ADD (PRICE DECIMAL(8,2) NULL);

The data for this new column can be updated or inserted as shown later.

Adding Data

To insert rows into a table, do the following:

INSERT INTO ANTIQUES VALUES (21, 01, 'Ottoman', 200.00);

This inserts the data into the table, as a new row, column-by-column, in the pre-defined
order. Instead, let's change the order and leave Price blank:

INSERT INTO ANTIQUES (BUYERID, SELLERID, ITEM)
VALUES (01, 21, 'Ottoman');

Deleting Data

Let's delete this new row back out of the database:

DELETE FROM ANTIQUES
WHERE ITEM = 'Ottoman';

But if there is another row that contains 'Ottoman', that row will be deleted also. Let's delete
all rows (one, in this case) that contain the specific data we added before:

DELETE FROM ANTIQUES
WHERE ITEM = 'Ottoman' AND BUYERID = 01 AND SELLERID = 21;

Updating Data

Let's update a Price into a row that doesn't have a price listed yet:

UPDATE ANTIQUES SET PRICE = 500.00 WHERE ITEM = 'Chair';

This sets all Chair's Prices to 500.00. As shown above, more WHERE conditionals, using AND,
must be used to limit the updating to more specific rows. Also, additional columns may be set
by separating equal statements with commas.

GROUP BY & HAVING

One special use of GROUP BY is to associate an aggregate function (especially COUNT;
counting the number of rows in each group) with groups of rows. First, assume that the
Antiques table has the Price column, and each row has a value for that column. We want to
see the price of the most expensive item bought by each owner. We have to tell SQL to group
each owner's purchases, and tell us the maximum purchase price:

SELECT BUYERID, MAX(PRICE)
FROM ANTIQUES
GROUP BY BUYERID;

Now, say we only want to see the maximum purchase price if the purchase is over $1000, so
we use the HAVING clause:

SELECT BUYERID, MAX(PRICE)
FROM ANTIQUES
GROUP BY BUYERID
HAVING PRICE > 1000;

More Subqueries

Another common usage of subqueries involves the use of operators to allow a Where condition
to include the Select output of a subquery. First, list the buyers who purchased an expensive
item (the Price of the item is $100 greater than the average price of all items purchased):

SELECT OWNERID
FROM ANTIQUES
WHERE PRICE >

(SELECT AVG(PRICE) + 100
FROM ANTIQUES);

The subquery calculates the average Price, plus $100, and using that figure, an OwnerID is
printed for every item costing over that figure. One could use DISTINCT OWNERID, to
eliminate duplicates.

List the Last Names of those in the AntiqueOwners table, ONLY if they have bought an item:

SELECT OWNERLASTNAME
FROM ANTIQUEOWNERS
WHERE OWNERID =

(SELECT DISTINCT BUYERID
FROM ANTIQUES);

The subquery returns a list of buyers, and the Last Name is printed for an Antique Owner if
and only if the Owner's ID appears in the subquery list (sometimes called a candidate list).

For an Update example, we know that the gentleman who bought the bookcase has the wrong
First Name in the database...it should be John:

UPDATE ANTIQUEOWNERS
SET OWNERFIRSTNAME = 'John'
WHERE OWNERID =

(SELECT BUYERID
FROM ANTIQUES
WHERE ITEM = 'Bookcase');

First, the subquery finds the BuyerID for the person(s) who bought the Bookcase, then the
outer query updates his First Name.

Remember this rule about subqueries: when you have a subquery as part of a WHERE
condition, the Select clause in the subquery must have columns that match in number and
type to those in the Where clause of the outer query. In other words, if you have "WHERE
ColumnName = (SELECT...);", the Select must have only one column in it, to match the

ColumnName in the outer Where clause, and they must match in type (both being integers,
both being character strings, etc.).

EXISTS & ALL

EXISTS uses a subquery as a condition, where the condition is True if the subquery returns
any rows, and False if the subquery does not return any rows; this is a nonintuitive feature
with few unique uses. However, if a prospective customer wanted to see the list of Owners
only if the shop dealt in Chairs, try:

SELECT OWNERFIRSTNAME, OWNERLASTNAME
FROM ANTIQUEOWNERS
WHERE EXISTS

(SELECT *
FROM ANTIQUES
WHERE ITEM = 'Chair');

If there are any Chairs in the Antiques column, the subquery would return a row or rows,
making the EXISTS clause true, causing SQL to list the Antique Owners. If there had been no
Chairs, no rows would have been returned by the outside query.

ALL is another unusual feature, as ALL queries can usually be done with different, and possibly
simpler methods; let's take a look at an example query:

SELECT BUYERID, ITEM
FROM ANTIQUES
WHERE PRICE >= ALL

(SELECT PRICE
FROM ANTIQUES);

This will return the largest priced item (or more than one item if there is a tie), and its buyer.
The subquery returns a list of all Prices in the Antiques table, and the outer query goes
through each row of the Antiques table, and if its Price is greater than or equal to every (or
ALL) Prices in the list, it is listed, giving the highest priced Item. The reason ">=" must be
used is that the highest priced item will be equal to the highest price on the list, because this
Item is in the Price list.

UNION & Outer Joins

There are occasions where you might want to see the results of multiple queries together,
combining their output; use UNION. To merge the output of the following two queries,
displaying the ID's of all Buyers, plus all those who have an Order placed:

SELECT BUYERID
FROM ANTIQUEOWNERS
UNION
SELECT OWNERID
FROM ORDERS;

Notice that SQL requires that the Select list (of columns) must match, column-by-column, in
data type. In this case BuyerID and OwnerID are of the same data type (integer). Also notice
that SQL does automatic duplicate elimination when using UNION (as if they were two "sets");
in single queries, you have to use DISTINCT.

The outer join is used when a join query is "united" with the rows not included in the join, and
are especially useful if constant text "flags" are included. First, look at the query:

SELECT OWNERID, 'is in both Orders & Antiques'
FROM ORDERS, ANTIQUES
WHERE OWNERID = BUYERID
UNION
SELECT BUYERID, 'is in Antiques only'
FROM ANTIQUES
WHERE BUYERID NOT IN

(SELECT OWNERID
FROM ORDERS);

The first query does a join to list any owners who are in both tables, and putting a tag line
after the ID repeating the quote. The UNION merges this list with the next list. The second list
is generated by first listing those ID's not in the Orders table, thus generating a list of ID's
excluded from the join query. Then, each row in the Antiques table is scanned, and if the
BuyerID is not in this exclusion list, it is listed with its quoted tag. There might be an easier
way to make this list, but it's difficult to generate the informational quoted strings of text.

This concept is useful in situations where a primary key is related to a foreign key, but the
foreign key value for some primary keys is NULL. For example, in one table, the primary key is
a salesperson, and in another table is customers, with their salesperson listed in the same
row. However, if a salesperson has no customers, that person's name won't appear in the
customer table. The outer join is used if the listing of all salespersons is to be printed, listed
with their customers, whether the salesperson has a customer or not--that is, no customer is
printed (a logical NULL value) if the salesperson has no customers, but is in the salespersons
table. Otherwise, the salesperson will be listed with each customer.

ENOUGH QUERIES!!! you say?...now on to something completely different...

Syntax Summary--For Advanced Users Only

Here are the general forms of the statements discussed in this tutorial, plus some extra
important ones (explanations given). REMEMBER that all of these statements may or may not
be available on your system, so check documentation regarding availability:

ALTER TABLE <TABLE NAME> ADD|DROP|MODIFY (COLUMN SPECIFICATION[S]...see
Create Table); --allows you to add or delete a column or columns from a table, or change

the specification (data type, etc.) on an existing column; this statement is also used to change
the physical specifications of a table (how a table is stored, etc.), but these definitions are
DBMS-specific, so read the documentation. Also, these physical specifications are used with
the Create Table statement, when a table is first created. In addition, only one option can be
performed per Alter Table statement--either add, drop, OR modify in a single statement.

COMMIT; --makes changes made to some database systems permanent (since the last

COMMIT; known as a transaction)

CREATE [UNIQUE] INDEX <INDEX NAME>
ON <TABLE NAME> (<COLUMN LIST>); --UNIQUE is optional; within brackets.

CREATE TABLE <TABLE NAME>
(<COLUMN NAME> <DATA TYPE> [(<SIZE>)] <COLUMN CONSTRAINT>,
...other columns); (also valid with ALTER TABLE)

--where SIZE is only used on certain data types (see above), and constraints include the
following possibilities (automatically enforced by the DBMS; failure causes an error to be
generated):

1. NULL or NOT NULL (see above)

2. UNIQUE enforces that no two rows will have the same value for this column

3. PRIMARY KEY tells the database that this column is the primary key column (only used
if the key is a one column key, otherwise a PRIMARY KEY (column, column, ...)
statement appears after the last column definition.

4. CHECK allows a condition to be checked for when data in that column is updated or
inserted; for example, CHECK (PRICE > 0) causes the system to check that the Price

column is greater than zero before accepting the value...sometimes implemented as the
CONSTRAINT statement.

5. DEFAULT inserts the default value into the database if a row is inserted without that
column's data being inserted; for example, BENEFITS INTEGER DEFAULT = 10000

6. FOREIGN KEY works the same as Primary Key, but is followed by: REFERENCES
<TABLE NAME> (<COLUMN NAME>), which refers to the referential primary key.

CREATE VIEW <TABLE NAME> AS <QUERY>;

DELETE FROM <TABLE NAME> WHERE <CONDITION>;

INSERT INTO <TABLE NAME> [(<COLUMN LIST>)]
VALUES (<VALUE LIST>);

ROLLBACK; --Takes back any changes to the database that you have made, back to the last

time you gave a Commit command...beware! Some software uses automatic committing on
systems that use the transaction features, so the Rollback command may not work.

SELECT [DISTINCT|ALL] <LIST OF COLUMNS, FUNCTIONS, CONSTANTS, ETC.>
FROM <LIST OF TABLES OR VIEWS>
[WHERE <CONDITION(S)>]
[GROUP BY <GROUPING COLUMN(S)>]
[HAVING <CONDITION>]
[ORDER BY <ORDERING COLUMN(S)> [ASC|DESC]]; --where ASC|DESC allows the

ordering to be done in ASCending or DESCending order

UPDATE <TABLE NAME>
SET <COLUMN NAME> = <VALUE>
[WHERE <CONDITION>]; --if the Where clause is left out, all rows will be updated according

to the Set statement

