
Query Optimization in the Presence of Limited Access
Patterns

Daniela Florescu
INRIA Rocquencourt, France

Daniela.Florescu@inria.fr

Alon Levy
University of Washington, Seattle

alon@cs.washington.edu

Dan Suciu
AT&T Labs - Research

suciu@research.att.com

Ioana Manolescu
INRIA Rocquencourt, France

Ioana.Manolescu@inria.fr

Abstract

We consider the problem of query optimization in the
presence of limitations on access patterns to the data (i.e.,
when one must provide values for one of the attributes of
a relation in order to obtain triples). We show that in the
presence of limited access patterns we must search a space
of annotated query plans, where the annotations describe
the inputs that must be given to the plan. We describe a
theoretical and experimental analysis of the resulting search
space and a novel query optimization algorithm that is
designed to perform well under the different conditions that
may arise. The algorithm searches the set of annotated
query plans, pruning invalid and non-viable plans as early
as possible in the search space, and it also uses a best-first
search strategy in order to produce a first complete plan
early in the search. We describe experiments to illustrate
the performance of our algorithm.

1 Introduction

The goal of a query optimizer of a database system is to
translate a declarative query expressed on a logical schema
into an imperative query execution plan that accesses the
physical storage of the data, and applies a sequence of
relational operators. In building query execution plans,
traditional relational query optimizers try to find the most
efficient method for accessing the necessary data. When
possible, a query optimizer will use auxiliary data structures
such as an index on a file in order to efficiently retrieve
a certain set of tuples in a relation. However, when such
structures do not exist or are not useful for the given
query, the alternative of scanning the entire relation always
exists. The existence of the fall back option to perform
a complete scan is an important assumption in traditional
query optimization.

Several recent query processing applications have the
common characteristic that it is not always possible to
perform complete scans on the data. Instead, the query
optimization problem is complicated by the fact that there
are only limited access patterns to the data. One such

pcnr,ission to In&c digital or hard wpics of all Or part Ot‘thiS WNk tiN
pclsonal or classroom USC is granted without fee prwidcd that topics
are ,lOt lna& or (iistributed for profit or commercial advant:ige :md that

copies bear this n&x and the l’ull citation w the lirst page. 7‘0 CWy
~,t],e~,~jsc, to rq)ublis;h, to post on scf’vcrs 01’ to redistribute 10 lists.

rcquircs prior specific permission and/or a fk.

SIGMOD ‘99 Philadelphia PA
Copyright ACM 1999 l-581 l3-084-8199/05...$5.00

application is optimization in the presence of foreign and
table functions [l, 3, 151. In most cases, such functions
require a set of given inputs in order to return a set of tuples.

Our work is mainly motivated by query processing for
data integration and for semi-structured data. A data
integration system needs to access autonomous remote
sources in order to answer a query. Even if the data
integration system is able to model the contents of the
remote sources as relations, the sources may provide only
limited access patterns to the data that they serve. This
may happen for two main reasons (1) the underlying data
may actually be stored in a structured file or legacy system
hence the interface to the data is naturally limited, and (2)
even if the data is stored in a traditional database system,
the source may provide only limited access capabilities for
reasons of security or performance.

The semi-structured data model of labeled directed
graphs provides a flexible mechanism for integrating a larger
class of data sources [4]. In this case, the graph provides
a logical abstraction of the particular storage of the data.
However, the actual storage of the graph poses natural
limitations on the access patterns to the data. For example,
it is often possible to allow following edges only in the
forward direction, and the system may not allow to scan
the entire set of objects in the graph or following edges
backwards.

In both cases, the access pattern limitations to the data
can be modeled using binding patterns. A binding pattern
specifies which attributes of a relation must be given values
when accessing a set of tuples. For example, the binding
pattern R(Ab, Bf) specifies that the only way of retrieving
tuples of R(A, B) is by providing values for the attribute
A. In fact, binding patterns can be viewed as a method for
abstracting the storage of the data for the query optimizer.

This paper considers the problem of query optimization
in the presence of limitations on access patterns, described
by binding patterns. Specifically, given a set of binding
patterns describing the only ways of accessing tuples in a set
of relations, and given a select-project-join query over these
relations, our task is to efficiently find an optimal query
execution plan for the query, if a plan exists.

1.1 Motivating Example

We begin by illustrating the problem with an example,
drawn from an actual application of integration of scientific
data. The goal of the application, conducted by the Marine
Institute of Crete, is to study the levels of water pollution
in the Mediterranean Sea. The application includes two

311

sources of data each containing the results of sets of
experiments. The first source stores the results of some
experiments concerning water circulation, and the second
source reports the results of experiments concerning the level
of pollution in the water. Integrating the data from the
two sources enables the scientists to predict water pollution
levels for a wide range of times and locations. The data
resulting from the experiments is stored in the three sources
with the following schemas:

Source 1: Source 2:

Experiml (key, date, depth) Experimz(key, date, depth)
Location1 (key, location) Location2 (key, location)
Result] (key, circulation) Result2(key,emission)

Source 3:

Coincides(location, location, similarity)

In both of the sources the data is stored in a proprietary
data store rather than a relational database. Accordingly,
the possible operations on the data are limited. In
source 1, it is possible to ask for the keys of all the
experiments that have been done at a certain date (i.e., to
select on a given date) or at a certain depth. Given an
experiment key, it is :possible to retrieve its location from
relation Locationl, which is a complex value encoding the
geographical coordinates of a rectangle, or to retrieve the
result of the experiment (from relation Resultl) which is a
complex picture describing the speed and direction of the
water circulation. In this source it is not possible to perform
a selection on a location or on the circulation. The situation
is similar for Source 2.

In both sources, the location represents the geographical
coordinates of a rectangle. However, the sharing of the
sea surface in rectangles is not done in the same fashion
across the two sources, i.e., the sources refer to different
sets of rectangles. In order to facilitate the integration,
the scientists use a third data source that answers queries
about such rectangles. Given two input locations the source
returns a number between 0 and 1 describing the similarity
between the rectangles.

The typical operation that scientists need to perform on
this data is to answer queries of the form: “retrieve the water
circulation and the pollution emission on the l/10/98 for
locations matching with high degree of similarity (=0.9)“.
The query can be written as the following conjunctive query:

Query(wl,wz) : -Experiml(xl,yl,zl), Locationi(zi, tl),

Resultl(xl,~l),Exper~mz(x2,yl,~l),
Locationz(x2, tz), Resultz(x2, w2),
Coinct.des(tl, t2, s), y1 = “l/10/98”, s = 0.9.

Figure 1 describes two possible ways to evaluate this
query, which are valid according to the limitations and one
relational query execution plan which is not valid given the
access limitations.

The evaluation strategy followed by the plan l(a) uses
the selection condition on date on both sources in order
to retrieve the keys of the experiments performed on this
date. Then, in each source, the keys are used to obtain
the corresponding experiment locations. This operation
is performed by a dependent join. The join (on the
depth attribute) of those two temporary relations is sent
to Source 3 which calculates the similarity degree for each
pair of locations and selects those that satisfy the similarity
predicate. Finally, the keys of the selected experiments are

used again to retrieve the desired images (water circulation
and pollution emission).

A different plan to evaluate this query, depicted in
figure l(b), is to start by retrieving from Source 1 the keys
of the experiments performed on the “l/10/98”, toget.her
with their corresponding depth. For each tuple in the result,
the values of the depth and date could be used for the
following complex computation (which is executed by the
engine of the data integration system): using the depth,
we can retrieve from the relation Experim2 the keys of
the experiments performed in source 2 on this depth, then
the result is filtered using the desired date; the key of the
resulting experiments are sent to source 2 in order to retrieve
their respective location, and then they are sent once more
in order to retrieve the corresponding image. Finally, the
location of the experiments of source 1 is retrieved, source
3 is tested for the similarity and, in the last step, the image
from source 1 is retrieved.

Finally, we remark that the plan depicted in figure I(c)
cannot be executed given the limitations to the data sources
that are given. The reason is that it is impossible to retrieve
all the tuples of the relation Location in either of the two
sources. The problem we consider in this paper is finding
the optimal plan among all feasible plans for a query, given
the access pattern limitations to the data.

1.2 Our Solution
The solution we propose in this paper is based on extending
System-R cost-based optimization to incorporate limitations
on binding patterns. The key idea underlying our solution
is that the optimizer searches through the space of partial
annotated query plans, where the annotation of a subplan
describes which variables of the query must be given as input
to the subplan. We study the effect of adding annotations
on the size of the resulting search space, and describe an
efficient algorithm for searching the space.

The idea of adding binding patterns as annotations to
subqueries is not new. Such annotations were used in magic-
set transformations [16, 141 and for exploring sideways
information passing strategies. The focus of this paper is on
incorporating such annotations into a cost-based optimizer.

We make the following contributions.

We show how the presence of binding pattern limitations
affects several fundamental properties of the search space,
such as the need to consider different binding-pattern
annotations on query execution plans, the need to explore
the space of bushy trees, and the specialized handling of
placing selections.

We provide an analytical and empirical study of the effect
of adding annotations on the size of the search space. The
study considers different shapes of queries, bushy vs. left-
linear trees, plans with or without Cartesian products, and
different numbers of binding patterns associated with each
database relation. While the study shows that in some
important cases the number of valid query execution plans
is actually considerably smaller than the corresponding
case without annotations, there are still important cases
in which search spaces grows significantly compared to
traditional System-R optimization.

We describe a query optimization algorithm that is de-
signed to perform efficiently under the properties exposed
by our analysis. First, the algorithm considers only valid

312

,A
Rcsultl@,f)

selcct(similarity) ResultZ@.f)

I

Coincidcs@,b,f)

Expcriml(f.b.0 Locationl(b.t) ExperimZ(f,b,b.f) LocntionZ@.t)

(a)

select(simihity) Rcsultl@.f)

A

Coincides@,b,f)

n
Experiml(f.b.f) ~

selcct(drtc) Re.?ultZ@.f)

I

ExperimZ(f,f,b) Locrtion2(b.O

(b)

Locationl(f,f) Loc;ltionZ(f.t)

(Cl

Figure 1: Three different execution plans for the example. (a) and (b) are valid plans, while (c) is not,.
execution plans, i.e., which adhere to the given binding
pattern. The algorithm also prunes early on plans that
are not viable, i.e., cannot be part of any valid execution
plan. Second, the algorithm uses a best-first search strat-
egy in order produce the first complete query execution
plan relatively fast. In contrast, System-R bottom-up op-
timization only produces a complete query towards the
end of the optimization process. Such behavior would not
be acceptable in cases in which the search space is sig-
nificantly larger than in the traditional case. Finally, the
algorithm uses a novel method to combine the join enu-
meration and selection placement.

We describe an experimental study of our algorithm. The
experiments consider the performance of our algorithm
under different conditions (varying query size, shape and
number of available binding patterns). The experiments
show how our algorithm obtains the first query execution
plans much faster than a pure dynamic programming
approach. Furthermore, when we consider the time to
perform exhaustive search of the space of plans, we show
that the extra cost associated with employing a best-first
search algorithm compared to dynamic programming only
causes linear slowdown w.r.t. the size of the search space.
Hence, we argue that a best-first search strategy is more
appropriate for the optimization problem we consider.

The paper is organized as follows. Section 2 formally
defines our problem. Section 3 describes the effects of
binding patterns on various properties of the search space,
and Section 4 describes an analysis of the size of the resulting
search space. Section 5 describes our query optimization
algorithm. Section 6 describes our implementation and
Section 7 describes the results of our experiments. We end
with a discussion and comparison to related work.

2 Problem Definition
In this section we formally define the problem setting we
consider in this paper.

Queries: We consider the class of select-project-join
queries, also known as conjunctive queries. We use the
following notation of conjunctive queries. A query q is
denoted by:

4(X) : -1(X1), . ,en(-G),C.

The predicates el, . , e,
x,x1,...

denote database relations, and
,x, are tuples of variables. The atoms el(Xl), . . ,

en(Xn) are the conjuncts (or subgoals) of the query, which
together with C form the query’s body. The atom q(x) is
the head of the query, and the variables in x are those that
are selected in the result. We require the query to be safe,
i.e., any variable that appears in the head must also appear
in at least one of the x;‘s. C is a set of atoms of the form
Xi = ci, where Xi appears in xl U U xn, and ci is a
constant. The set of variables appearing in C are called the
bound variables in the query, denoted by bound(q).

Data access descriptions: With each database rela-
tion we associate a set of binding patterns, describing the
possible access patterns to the tuples in the relation. For-
mally, a binding pattern for a relation R is a mapping from
the arguments of R to the alphabet {b, f}. The meaning of
a binding pattern bp for a relation R is that the attributes of
R that bp maps to b must, be given values when accessing the
tuples of R. The traditional scan of a relation corresponds
to the case where all attributes are mapped to f. A relation
may have multiple binding patterns describing the different
possible ways to obtain tuples from the relation. For exam-
ple, the binding patterns for the Example in Section 1.1 are
the following.

Source 1: Source 2:
Experiml(teyf , dateb, depthf)
Experiml (keyf , datef , depthb)
Experiml (keyf , dateb, depthb)
L~cationl(key~,locationf

I Resultl(keyb,circulation)

Source 3:

Experimz(keyf ,dateb,depthf)
Ezperimz(keyf , date f , depthb)
Experimz(key f , dateb, depthb)
Location2(keyb, location f)
Result2(keyb,emissionf)

Coincides(locationD,locationD, similarityf)

In addition, each binding pattern is also labeled with (1)
the cost of accessing it once, and (2) the cardinality of the
expected output per given input.

Query execution plans: a query execution plan for a
query q is a tree whose leaves are labeled with relations in the
query and whose internal nodes are algebraic operators. We
refer to the leaves of a query execution plan as atomic plans.
In our discussion we consider plans with join and selection
operators. In this paper we consider only selections of the
form Xi = c;. To simplify our discussion we do not consider

313

plans with projection:;, and assume they are introduced at
a later stage.

We distinguish two kinds of join operators: regular
joins and dependent joins. Both types of joins are binary
operators and apply recursively on subtrees corresponding
to query execution su‘b-plans. In the case of a regular join,
the two input query execution sub-plans can be executed
independently of each other, resulting in two tables that
can be joined using any of the traditional join algorithms
(e.g., hash-join, sort-merge join). In the second type of join,
the right input subtree cannot be executed independently,
because it requires bindings that are obtained from the
result of the left subtree.

Among the algorithms developed for the join operator,
only the nest-loop join is applicable to dependent joins. The
efficient implementation of dependent joins are considered
in [2] in the context of optimization for foreign functions,
as well as in the context of evaluation of path expressions
in object-oriented databases. Furthermore, several caching
techniques to optimize the implementation of dependent
joins are discussed in the context of the Montage system [3].
An ellaborated implementation of dependent joins, that
combines hashing and caching, has been proposed in [6].
Finally, we note that that dependent joins have received
several other names in the literature (e.g., functional join,
implicit join, filter join, theta semi-join, bind join).

Annotated plans: As mentioned earlier, our algorithm
is going to search the space of annotated query execution
plans. The annotation describes which variables in the
query must be given as input to the plan. Formally, each
node n in a query execution plan tree is labeled by a pair
(conj(n),adorn(n)), where conj(n) is the set of conjuncts
of q that is covered by n, and the adornment adorn(n)
describes which variables of q must be given, in order for
the subtree n to be executable.

An adornment is a mapping from the variables in q to the
set { b,f,- }. The mean:ing of the adornment is the following:
(a) if a variable is mapped to b, then its value is necessary
for the execution of the subplan, (b) if a variable is mapped
to --) then it does not appear in the sub-plan, and (c) if a
variable X is mapped to f, then by executing that sub-plan,
we obtain values for X. in our examples adorn(n) is shown as
a subscript of conj(n), .and shows exactly the set of variables
mapped to b. For example, [RI(xo, xl), Rz(a, m)]{I,}
denotes the adornment that maps 20 to b, zi,~z to f, and
the rest of the variables in the query to -.

Clearly, annotations on the nodes in a query execution
plan are not arbitrary. Given a set of data access
descriptions to the databbase relations and a query execution
plan, the annotations in the plan must satisfy the following
conditions. If n is a leaf accessing a relation R, then n should
specify which of the available access patterns to R should
be used. The adornment of n is correct if it is obtained
by extending one of the binding patterns associated with
R by mapping each variable not appearing in n to -. If
n is a selection node whose child is ni, and its selection
variables are p, then the adornment of n is obtained from
the adornment of ni by changing the mapping for the
variables in y from f to b. If n is a join node whose
children are ni (left) and nz (right), then the adornment of n
satisfies the following constraints: (a) a variable in adorn(n)
is mapped to _ only if it is mapped to _ in both adorn(ni)
and adorn(w), (b) a variable is mapped to b in adorn(n)

if it is mapped to b in adorn(nl) or if it is mapped to b
in adorn(nz) and mapped to _ in adorn(ni), (c) the rest of
the variables are bound to f. The set of variables wh.ose
values are passed from the left subtree to the right one are
those that are mapped to b in adorn(nz) and mapped. to
f in adorn(n). If this set is non-empty, then the join i.s a
dependent join, otherwise it is just a regular join.

Cost Model Each of the query execution plans p has an
associated cost, denoted by cost(p). Our optimizer includes
a component which takes a query execution plan, and
chooses a physical implementation for each of the relational
operators. Therefore, the cost of a query execution plan
is the cost of the best physical query execution plan
implementing it. The cost of atomic query execution pl:ans
are directly deduced from the cost associated with the data
access descriptions, and the cost of the non-atomic query
execution plans is an estimate based on the cost of the
operator and the cost of the subplans. The particular cost
function we use is orthogonal to the search strategy that our
algorithm employs, though it can, in some cases, influence
the effectiveness of our pruning methods. We make -the
monotonicity assumption about our cost model: if the plan
P’ is obtained from the plan P by replacing a subplan Pi
of P by a cheaper and equivalent subplan Pz, then P’ is
cheaper than P. This property is required in order to ensure
that the algorithms will not miss the optimal plan in lthe
presence of pruning.

Problem Definition A query execution plan that
covers all the conjuncts in the query and whose adornment
maps precisely the bound variables in the query to b is called
a complete query execution plan. The problem we address
in this paper is: given a set of data access descriptions and a
query q, our goal is to find a complete query execution pl.an
for q whose cost is minimal.

Before ending this section we introduce several terms that
will be convenient in our discussion. Two query execution
plans are considered equivalent if they are labeled with the
same set of conjuncts from the query and have identi~~al
adornments. A query execution plan is viable if it can be
part of a complete query execution plan. An adornment bpi
is said to be weaker than an adornment bpz, denoted by
bpl < bpz if every variable that is mapped to b in bpl is also
mapped to b in bpz, and the two adornments map the same
set of variables to -. A query execution plan pl covers a
query execution pz if they are labeled with the same set of
conjuncts from the query, and the adornment of pl is weaker
than the adornment of pz.

Intuitively, two equivalent query execution plans solve
the same subquery. Obviously, the equivalence relation
partitions the set of query execution plans into classes. All
the plans in the same equivalence class are labeled with the
same set of conjuncts and the same adornments. In our
discussion we refer to coverage and viability of classes of
plans, with the following meanings. If a plan is viable, then
all the plans in the same equivalence class are viable. If a
plan pi covers a plan pz then any plan pi equivalent to pl
will cover any plan pi equivalent to ~2.

Example 2.1 Consider the following chain query whose
bound variables are x0 and x4:

Rl(~o,~cl),Rz(xl,xcz),R~(~2,~3),R4(~3,~4),~0 = a>~4 = ~2

where each relation symbol R, has two adornments: bf and
fb. Consider the following equivalence classes:

314

. The equivalence classes [RX (20, xi), Rz(zi, z~)]{~~l and
[Rl(so,21),R2(21,~z)]~~~~ are valid and viable.

l The equivalence class [Ri (20, zi), R3(22, x3),

~4(~37~4)ltz,,zz) is valid but not viable, because a plan
that includes only R2 cannot produce bindings for both
required inputs xi and x2.

l The equivalence class [RI (xc, xi)]f> is not valid.

l The equivalence class [RI(xo, XI), Rz(z~, xz)]rzO~ covers
the equivalence class [RI(xo,xI), R~(x~,x~)]~~~,~~~.

3 Optimization with Binding
Patterns

In this section we show that some of the basic properties
underlying System-R style optimization need to be reconsid-
ered in the presence of binding-pattern limitations. In fact,
we will compare not with System-R, but with the Garlic
data integration system [5] which partially handles binding
pattern limitations within the framework of System-R. We
begin by arguing that it is essential to consider query exe-
cution plans annotated by their input variables. This will
be the key feature distinguishing our algorithm from that in
Garlic.

“Open” partial query execution plans: in order
to compare our approach with that of Garlic, we distinguish
two classes of partial query execution plans. An open partial
query execution plan is a non-atomic plan which cannot be
executed only with the constants available in the query. Of
course, in order for an open subplan to be part of a complete
plan, it must receive bindings from some other parts of the
plan. A closed subplan is one that can be executed given
the constants from the query.

Garlic’s search strategy only considers closed partial
query execution plans.’ We now argue that optimal plans
may include open subplans, and therefore, it is important
to consider them in the search. Subsequently we show that
looking at this larger search space has several important
ramifications to the properties of our search space.

Example 3.1 Consider the following query
[R(x,y),S(y,z),T(r,w)]rl andsuppose that theonly access
patterns allowed to the relations R, S and T are: R(d, yf),
S(yb, zf), and T(zb, wf). Garlic will find a single execution
plan: (R(xf, yf)tidyS(yb, zr))d,T(zb wf) and will miss
the second plan: R(xf, yf)dy (Siyb, ,h)dzT(zb, d)) be-
cuase the subplan S(yb, zf)EdzT(z , wf) is open.

The search strategy employed by Garlic, which is im-
plemented using dynamic programming, has two important
properties. First, it can be shown that if there exists a
plan for answering the query, then Garlic will find one,
even if it is not the optimal one. Second, if all dependent
join operators are implemented in a limited fashion (with
nested loops), then any complete plan with open subplans
results in the same execution as some plan without open
subplans: in the example above, the two query plans have
equivalent executions under the nested loop implementa-
tion of dependent joins. However, more efficient implemen-
tations have been proposed [3, 61, for which this property
no longer holds. For example consider an implementation

‘For atomic plans plans on a single relation) Garlic considers
one plan for every b ” via le binding pattern.

usin
5

caching techniques where every time the expression
(S(y , z’)&T(zb, wf)) is executed for a given value of y,
the output tuples are cached (with the input y): then the
two plans in the example above result in distinct executions.
Thus, Garlic will miss a potentially more efficient plan, and
this can be especially detrimental in the context of data in-
tegration, where the cost of accessing each source is usually
high.

In what follows we describe several other important
properties of the search space in the presence of binding
pattern limitations.

Refined equivalence classes: as an immediate conse-
quence of the above discussion is that we need to refine our
notion of equivalence classes during our join-order enumer-
ation. System-R style optimizers keep the cheapest query
execution plan for every equivalence class, where two plans
belong to the same equivalence class if they cover the same
set of base relations in the query. In our new context, it is
necessary to annotate every plan also with the set of vari-
ables that are required as inputs in addition to the set of
base relations that are covered. From now on, the equiva-
lence class of a plan is determined by the combination of the
subquery solved by a plan and its required input variables.

Valid and viable plans: an immediate consequence of
the fact that we must consider refined equivalence classes is
that the number of plans kept during the generation phase
(i.e., one per equivalence class) grows significantly, hence
leading to a more expensive search problem. Fortunately,
two classes of plans can be pruned early in the search: plans
belonging to invalid, or non-viable equivalence classes. In
Section 4 we show that pruning these two classes of plans
has a dramatic effect on the size of the search space, and
in Section 5 we show that validity can be checked as part
of the enumeration algorithm, and viability can be checked
efficiently.

Two additional properties of our search space are impor-
tant to understand before we can design an appropriate al-
gorithm: the need to explore bushy trees and the special
treatment of selections.

The need for bushy trees: as the following example
shows, in the presence of limited access patterns, there are
cases where the set of left-linear trees includes only plans
with Cartesian products, while the set of bushy trees does
contain a query execution.plan without Cartesian products.
Hence, if we want to avoid plans with Cartesian products,
we must search the space of bushy trees.

Example 3.2 Consider the following query
P(x, Y), R(Y, z), Sk ~1, T(w, z)l{}, and wwose that the
only access patterns allowed to the relations P, R, S and T
are: P(xf, yf), R(yb, zf) S(tf, WJ~) and T(wb, zf). It is easy
to note that all the linear query execution plans will include
a Cartesian product. However, the following bushy-tree does
not include a Cartesian product: (P(xf, yf)dVR(yb, d)) W,
(S(tf, wf)E&T(wb, d))

Recall that in the traditional setting, if the query graph
is connected, then the space of left-linear trees necessarily
includes a plan without Cartesian products. Hence, in that
context, the query optimizer can limit its search to left-linear
trees without having to use Cartesian products.

315

Placement of selections: in the context of System-
R it is possible to decouple the decision on join ordering
from the decision on placement of selections. The placement
could either be made heuristically by pushing selections
as far down as possible in the query tree, in a cost-based
fashion in a separate phase [7], or mixing the decision on the
join order with the decision on the placement of expensive
predicates in a dyna.mic programming style optimization
like in [3]. In our context, since we are considering query
execution plans that are annotated by variables that must
be given as inputs to the plan, the interaction between the
placement of the selection and the join ordering is much
more subtle.

Example 3.3 Consider the query [R(z, y), S(y, z), T(z, UJ)]~)
and suppose that the only access patterns allowed to the re-
lations R, S and T are: R(zf, y’), S(yb, rf) S
T(zf,wf). By comb:ining the pattern R(d, y I

yf, zb) and
) with the

pattern S(yb,rf) via a dependent join operator, we obtain
a plan pi for the equivalence class [R(z,y),S(y, z)]tl. By
combining the pattern R(d) yf) with the pattern S(yf , .zb)
via a join operator, we obtain a plan p2 for the equivalence
class [R(z, y), S(y, z)].(,l. It is easy to see that the plan PI
covers the plan pz, i.e., by applying a selection on the vari-
able .z in the plan pl, we obtain a plan p3 which is equivalent
to pz. Hence, a plan without any selections turns out to be
equivalent to a plan with selection, and in our case, it may
turn out that p3 is cheaper than pz.

In standard System-R optimization the equivalence class
[R(z, y), S(y, .z)]{~) would have not be considered at all since
.z is not bound in the original query. In our setting, as shown
previously, we have to keep one plan per set of conjuncts and
set of bound variables (even if they are not bound in the
original query). As a consequence, if we ignore selections,
we will be in the situation where we do consider a plan
for the class [R(z,y),S(y, .z)]{~), but the plan we think is
optimal for this class (i.e., the one obtained from the join)
may not be the real optimal one.

In summary, in order to perform optimization in the
presence of access pattern limitations, the optimizer must
search the space of annotated query plans. The algorithm
should avoid invalid plans and prune non-viable plans as
early as possible. In order to avoid Cartesian products,
the algorithm needs to consider bushy trees and not only
left-deep trees. Furthermore, special care must be given to
placing selections and to detect multiple query plans that
result in identical executions. In the next section we analyze
the size of the search space sanctioned by the conclusions of
this section.

4 The Size of the Search Space

The size of the space that needs to be searched by a query
optimizer employing dynamic programming is relatively well
understood [8, 11, 191. In this section we study the effect
on the size of the search space in the presence of access
pattern limitations, and the associated need to search the
space of annotated query execution plans. We present both
an analytical and empirical study. The results of this study
also justifies the choices we made in designing our query
optimization algorithm described in Section 5.

316

4.1 Theoretical Study
Our study examines the size of two measures: the number
of valid complete query execution plans and the number
of viable partial query execution plans considered by a
dynamic-programming style optimizer. Of course, while the
number of query execution plans is usually very large (and
that of partial plans even larger), dynamic programming
only considers a small fraction of the partial plans. For
example, for the case of chain queries with n relations,
the number of plans without Cartesian products is known
to be (“‘n”-;“)$, while the number of bushy partial pl.ans
without Cartesian products considered by the dynamic
programming algorithm is known to be only * [g].
We note that even though we consider the number of
plans explored by a dynamic programming optimizer, the
results are of interest even if we were to employ a different
paradigm, since dynamic programming is sometimes used
as a yardstick for the others. For example, [12] show that a
classical rule-based optimizer considers, in general, a strictly
higher sized search space than dynamic programming, and
present an improved rule-based optimization algorithm
whose complexity matches that of dynamic programming.

The results of our analysis are shown in Table 2. The table
shows the maximal number of complete query execution
plans and viable partial query execution plans generated by
the dynamic programming algorithm for the cases in which
all bushy trees are considered (columns 1 and 3) and for the
case in which only left-linear trees are considered (columns
2 and 4). The formulas include query execution plans that
have Cartesian products.

We focus our theoretical study on chain queries with
binary relations:

q : -R~(zo,a), Rz(m,n), , Rn(zn--l,zn),C

and consider different combinations of access patterns and
different sets of bound variables. Thus, in the first Iline
of the table, all relations have access pattern, Ri(uf,vf),
for i = 1, n, and bound(q) = 8. This line represents the
classical case, with no access patterns and no selections,
and is for comparison purposes (all entries are taken from
the references). Note that since we are counting plans with
Cartesian products, the numbers in the first row apply to
any query shape, not just chain queries. In the second line
all relations have the access pattern, Ri(ub,vf), i = l,n,
and bound(q) = (~0). The third line analyses the transition
from line 1 to line 2, by letting the number m of relations
with binding pattern ff vary from 1 to n (the other n -. m
relations have binding pattern bf). We assume here that RI
is always among these m, i.e., we have the access pattern
RI (zlf, vf): this guarantees that there always exists a query
execution plan, although bound(q) = 8. In line four each
of the relations has two binding patterns, Ri(ub,vf) and
Ri (u f ,vb), and there are two bound variables: bound(q) =
{zo,~,} (i.e., we can start either from the left or from .the
right). Finally, in the last line each relation has both binding
patterns bf and ff.

Lines two and three illustrate an example where the
complexity of join ordering decreases because of the limited
access patterns. Line two represents an extreme case, with
a single left-linear solution, (. . ((R1EdRz)EdR3). Ed’R,).
There are several solutions with bushy trees, basically all
ways to parenthesize this expression, but still less than in
the classical case (line 1) where, in addition, one could

Graph
Ri(uf,vf),i = l,n,bound(q) = 0

Ri(ub,vf),i = l,n,bound(q) = (~0)

Ri(u’,vf),i E {ii ,..., im},
Ri(ub,vf),i @ {iI,. ,im}

=0 bound(q)
Ri(ub,v’)> Ri(uf ,ub),
i = l,n,bound(q) = {ZCJ,Z~)
Ri(ub,uf),Ri(uf,uf),
i = 1, n, bound(q) = 0

Qep s LL Qep s Pqep’s in d.p. LL Pqep’s in d.p. 1

(“‘n”-;“) (n - l)! n! 3n - 27Lfl + 1 42 n-1 - 1)

(2;;\); ‘:‘I ‘“:‘“’
[8, 191

n-l
18, 191

I(
“‘,“-;“) -k& ((&- 5 ((%)3+wp%)+6)m 5 m(+ + l)m

(2’n”_;“) 5 2” O(n6) O(n4)

(“21;)) nn nn+l 0(5.36n) O(n3.73n)
6.

Figure 2: Bounds on the size of the search space for a dynamic-programming optimizer in the presence of binding patterns.

take all permutations. The number of plans considered
by the dynamic programming algorithm also decreases
dramatically from line one to line two. We remark that
the number of bushy trees considered here is the same
as that considered in the classical case for plans without
Cartesian products[8, 191. The next line refines the analysis
by allowing a number m of relations R; to be ff, the rest
being bf. Of course, the exact formulas in each entry depend
on which m relation one chooses: the table only shows their
maximum values, obtained precisely when the m are chosen

. .
eqmdistantly (i.e., RI, Ra+l, Jb-t.1 I . . .). It is interesting
to observe that the form&s in &s line coincide with those
in line 1 for m = n, and with those in line 2 for m = 1.

Line four considers an interesting particular case when we
can “start at both ends”. All left linear plans are obtained
by shuffling a join from the left R1dRgtiR3.. tiRk with
one from the right, R,~R,-I~R,-~. . . @lRk+l) (e.g. like
in R1~Rzi;dR,~R,-l~&~Rn-2~. . .): there are 2”
ways to do that. The complexity here is higher than in line
two, but still far less than the case without limited access
patterns.

Finally, line five illustrates a case when the complexity
increases because of the additional access patterns (both
ff and bf). The increase however is still within the same
general complexity: it increases from one exponential to a
higher exponential, and not to, say, a double exponential.
For example (comparing lines 1 and 5) the partial query
execution plans considered by the dynamic programming
algorithm increased from O(3”) to O(5.36”).

The key conclusion we draw from the table is that for
some query shapes the presence of limited access patterns
significantly reduces the number of valid plans; since the
dynamic programming algorithm will discard invalid plans,
it will be able to explore a significantly smaller space in
these cases. At the same time, in other cases, the complexity
actually increases, but the increase stays within the general
complexity of join ordering (i.e., exponential).

4.2 Experimental study
The analytical study provides only upper bounds on the size
of the search space, in cases where mathematical analysis is
possible. We now describe a series of experiments designed
to measure the impact of the presence of binding patterns
on the size of the search space for more general cases.

We study the effects of several factors on the size of the
space: size of the query, number of variables, shape of the
query graph and the type and structure of binding patterns.
In our study we consider three measures: (1) the number
of complete query execution plans, (2) the number of viable

partial query execution plans, and (3) the number of valid
but possibly non-viable query execution plans. The real
size of the search space is (l), but the complexity of our
algorithm is not proportional to this number, but to (2).
The complexity of our algorithm without the viability test
would be proportional to (3). We measure those numbers
for both left-linear trees, as well as for bushy trees. Finally,
we measure the effect of considering plans with Cartesian
products.

To facilitate the experiments we implemented a random
query generator which takes as input: (a) the number
of relations, (b) the number of variables and (c) the
desired shape of the query graph, and produces as output
a conjunctive query with the required properties. We
support 4 kinds of query shapes: chain queries, star queries,
complete queries and randomly constructed. The first three
types of queries are well known in the literature [ll]. The
fourth type of query is randomly generated such that a
few (about one-sixth) of the attributes participate in three-
ways joins and one third participate in two-ways joins.
Cardinalities of the relations are generated randomly from
1000 to 10000 tuples. The selectivities were randomly chosen
between 0.00001 to 1.0.

Perturbations on the binding patterns: a simple
analysis shows that the size of the search space can be
affected by two contradictory factors: (1) when binding
pattern limitations become more restrictive, the size of
the space decreases, and (2) when new binding patterns
are added, the size of the space increases. In order to
analyze those two contradictory factors and their respective
effect, we apply the following strategy. In both cases,
we start from the simple case when all the relations have
f f f. . . f access. We iteratively apply one of the following
two transformations on this set of original input binding
patterns:

bind: take a binding pattern from the current set,
transform one of the f’s into a b, and put it back to the
current set.

addBind: do as in bind but do not remove the original
binding pattern.

In the figures each point has been obtained from the
results of 30 queries generated randomly with the same
parameters. We show the average ratios between the number
of plans after the transformations and the number of plans
for the f f f f binding patterns.

The effect of the bind transformation: in figure 3
we show how the number of complete query execution plans

317

Figure 3: The evolution of the valid partial query execution plans and the complete query execution plans depending on. the
number of bind transformations.

and the number of partial viable query execution plans vary
with the number of a:pplications of the bind transformation.
The queries have 6 relations, 35 variables, and 12 variables
are bound in the query. We show the results for bushy trees,
with Cartesian products, and for the four types of queries
shapes. We can observe that the size of the search space
is decreasing very quickly for all types of queries, as soon
as binding patterns are introduced. For example, after 15
applications of the transformation, none of the queries have
plans. The number of viable partial query execution plans
is globally decreasing, even if sometimes, for star queries, it
first slowly increases.

We ran the same tests when varying the other parameters
of interest. We observed that the number of complete
query execution plans depends on the shape of the query
(it decreases faster folr complete queries and much slower for
star queries). On the other hand, the size of the query, the
shape of the query execution plans (i.e., bushy vs. left-linear)
and the consideration of plans with Cartesian products does
not seem to have a st,rong effect on the relative average.

The effect of the addBind transformation: in
Figure 4 we show :how the number of complete query
execution plan and the number of partial viable query
execution plans vary with the number of applications of the
addBind transformation (with the same parameters as in
the previous case). The four types of queries manifested an
exponential growth of the search space depending on the
number of the addBind transformations. The number of
viable partial query execution plans grows accordingly.

The number of non-viable plans: one of the
important claims of our paper is that applying a viability
test is essential. Figure 5 shows how the total (including
non-viable) number of partial plans that can be obtained
by a generative algor:ithm grows when non-viable plans are
also considered. As s!hown by the two bottom curves in the
figure, the number of viable partial plans and the number
of complete plans are rapidly decreasing. However, the top
curve shows that the total number of partial plans increases
before it decreases. Hence, this underscores the importance
of checking viable plans.

4.3 Discussion
The main problem rabised by our analysis is that it is hard
to predict how the size of the space will be affected: in some

Figure 5: The number of partial plans increases with the
number of bind transformations, but fewer plans are viable
when we perform more bind transformations.

cases, it may be smaller than the traditional case, while in
others it can be significantly larger. Hence, in order for an
optimization algorithm to be effective in all cases, it must
be able to handle large search spaces. The main problem
with System-R style optimization when the search space is
large is that the first plan is produced only towards the end
of the optimization. Hence, the approach that we pursue
in the next section is to employ a best-first search strategy
whose main advantage is to produce a first plan relatively
quickly, and improve it as the optimization proceeds.

5 Query optimization algorithm
In this section we describe our query optimization algorithm
in detail. We begin by describing the key principles
underlying the algorithm, and then focus on some of its
important aspects.

5.1 Basic Principles
Our algorithm chooses the optimal plan in the search slpace
characterized by the following properties: (a) bushy trees,
(b) plans that include Cartesian products, and (c) all the
possible placement of selections.

The algorithm is an extension of System-R style optimiza-
tion, with the following principles:

l At every point in the optimization, the algorithm main-
tains a set of partial query execution plans, S. Each plan
p E S is labeled with the equivalence class to which it, be-
longs and its cost. The equivalence class is specified by

318

Figure 4: The evolution of the viable partial query execution plans and the complete query execution plans depending on
the number of addBind transformations.

the set of conjuncts covered by p and its adornment.

Initially, the set S contains atomic plans, i.e., plans for
accessing a single relation. For a relation l?, S contains
an atomic query execution plan for every binding pattern
describing an access pattern to the tuples of R.

In the iterative step of the algorithm, we add new plans
to S by combining existing plans in S using selection and
join operations. We create one resulting plan for every
adornment that satisfies the conditions on adornments
described in Section 2, hence; creating only valid plans.

At every point, S contains at most one plan for every
equivalence class of query execution plans, which is the
cheapest one found thus far.

The choice of the partial query execution plans to
be combined is based on a utility measure. This is
significantly different from System-R, where equivalence
classes are considered strictly in order of the number of
conjuncts they cover.

In the combination step we prune non-viable plans.

In the following subsections we discuss the main points in
which our algorithm differs from System-R: (1) our search
strategy, (2) our treatment of the placement of selections,
and (3) the detection of useless equivalence classes. The
algorithm is shown in Figure 6.

5.2 Best First Search
System-R builds query execution plans by considering one
equivalence class at a time. The equivalence classes are
considered in increasing order of the number of conjuncts
they cover. Therefore, the best query execution plan of a
class and its cost are determined at one point and are not
changed later. The disadvantage of this strategy is that the
first complete query execution plan is obtained only at the
last phase of the optimization. As the analysis in Section 4
showed, such behavior will not be acceptable in our context.

To address the problem of large search spaces, we
employ a best-first search algorithm which interleaves the
exploration of different equivalence classes. Specifically, we
associate a utility measure with each partial execution plan.
At each step of the search we choose the partial plan with the
greatest utility measure, and try to combine it with plans
that cover a disjoint set of conjuncts in the query.

The advantage of the best-first search algorithm is that
we can tune the utility function to produce a complete plan

let S be the set of input binding patterns,
extended to all variables in the query.

if the query has no execution plan (validity test)
then stop.
while new plans can be created do

choose pl E S maximizing the utility measure
let S’ be the set of plans that can be combined with pl

for each pz E S’ (in the order of their utility measure) do
let p3 be a (dependent) join product of pl and pz

if p3 is not viable, then ignore p3

if 3~4 E S s,t. p4 covers ps and cost(&)) < cost(p3)
then do p3 = a(p4)
if 3~s E S s.t. p5 equiv. to p3
then if cost(p3) > cost(p5)

then ignore p3
else in each p6 E S using p5

replace p5 by p3 and recalc. cost of p5
let S = SU (~3)

if 3~7 E S s.t. p3 covers p7 and cost(&)) < cost(p7)
then replace everywhere p7 by 0(p3), recalc. cost

if S contains the equivalence class of the query
then return the optimal plan from S
else

let S” be the set of plans in S covering the query
for each pa E S” do

generate all the possible placements for the selections
not already included in ps

choose the optimal among those plans

Figure 6: Query optimization algorithm

relatively fast. Its main disadvantage is the cost of the extra
bookkeeping needed to track changes to the costs of plans.
Specifically, since we do not consider each equivalence class
in isolation, the cost of the best plan for an equivalence class
(and the cost of plans using it) may decrease over time, and
hence the extra bookkeeping. We show in Section 7 that the
tradeoff between the two factors is in our favor.

5.3 Placement of selections
As shown in the Example 3.3, it is possible that a plan with
selections may be in the same equivalence class as a plan
that does not contain any selection. Hence, if we completely
ignore selections during the generation phase, we could miss
the optimal plan. The goal of our algorithm is to consider
selections in the combination phase only to the extent that
it is required in order not to miss optimal plans.

The algorithm considers selections in the following fash-
ion. Suppose we have created a new plan p which is the

319

cheapest one found so far for its equivalence class. Before
proceeding, the algorithm checks if it is possible to obtain
an equivalent plan to p by applying a selection to a plan
that already exists in S. Specifically, we check if there ex-
ists a plan p’ E S, such that p’ covers p (i.e., p is equivalent
to a selection applied to p’), and the cost of applying the
selection to p’ is less than the cost of p. In this case, the
plan with a selection on p’ is added to S instead of p.

Furthermore, the algorithm whether applying a selection
on p enables to improve the best plan of another existing
equivalent class. Specifically, the algorithm checks whether
there exists p’ E S such that a selection on p is equivalent
to p’, and the cost of the selection on p is less than the cost
of p’. In this case, the algorithm replaces the plan p’ in S
by the plan with a selection on p.

The effect of the two steps described above is that the set
of equivalence classes maintained by S can be characterized
as follows: if a class P is in S, then it is there exists at
least one query execution plan in P that uses only joins
and no selections. 11x a sense, this property entails that
the algorithm maintains a minimal number of equivalence
classes, while still obtaining the optimal plan for the query.

As a result of the above property, the equivalence class
corresponding to the original query may not be in S at the
end of the generation phase. In this case, it is easy to check
that the optimal plan for the entire query can be obtained by
introducing selections in the optimal plans of the equivalence
classes covering the query. Hence, the algorithm applies a
second phase, which exhaustively enumerates all the possible
placement of selections, but only in the optimal plans of the
equivalence classes covering the query.

5.4 Detection of valid and viable
equivalence classes

As stated earlier, our algorithm considers only valid plans
and viable query execution plans. The validity of the
query execution plans resulting in the combination step
is guaranteed by the way we combine plans and generate
adornment,s for the resulting plan.

An algorithm for testing the viability of a partial plan p
while optimizing a query Q for can be obtained as follows.
Let R be a fresh relation symbol. Construct a query Q’ by
removing from Q all subgoals that appear in p, and replacing
them with R(a), where x are Q’s variables in p. Associate
a single binding pattern with R, namely the adornment of
p. It is easy to verify that the plan p is viable if and only
if Q’ has a query exec:ution plan. Checking whether a given
query has a query extecution plan can be done by a simple
greedy algorithm [lo].

6 Implementation
We implemented our algorithm as well as a variant of the
dynamic programming algorithm. In order to obtain a
fair comparison, we extended the dynamic programming
algorithm with a viability test. We use the same data
structures (as described shortly) for the two algorithms, and
we were careful to ensure that the optimizations made in the
data structures to efficiently support best-first search do not
bias the running times against dynamic programming. The
implementation has been done in Java, using JDK 1.0.

A crucial issue that was considered in the implementation
is developing a data structure for storing the set of partial
plans that have been constructed (denoted by S). An
optimal such structure would need to efficiently support the

following accesses to the set of plans: (a) for a plan p, jind
all plans q in S, such that p and q have disjoint sets of
conjuncts (i.e., the join candidates for p); (b) for a plan p,
find an equivalent plan p’ in S; (c) for a plan p, find all the
plans q that cover p qnd (d) for a plan p, find all the plans
q that are covered by p.

Given these requirements and the observed frequencies
of the different accesses, we decided to adapt the following
indexing structure for S. Plans are clustered by the set of
conjuncts that compose them; note that the join candidates
are the same for all the elements of a cluster. In order to
avoid repetitive computation of the joinable clusters, the
link between joinable clusters is established and materialized
when the cluster is given its first member. In addition, the
plans in each cluster are indexed by their adornments. It
should be emphasized that since equivalent and covering
plans belong to the same cluster, and the size of the clusters
is relatively small, optimal performance was achieved by not
adding structures for indexing equivalent and covering plans.
Finally, in order to support cost recalculation due to best-
first search, every plan contains a link to the plans using
it.

In our experiments we considered a relatively simple cost
model. The cost is derived from the cost of the leaf data
accesses and standard formulas for computing the cost of
joins. Costs of selections are assumed to be negligible, even
though they affect the cardinality of the results. As long
as the cost model respects the monotonicity property, the
choice of the model is irrelevant to the results we show in
the experiments.

A best-first search algorithm is based on a utility function
for choosing the next plan to expand. In our experiments
we considered several measures, including (1) the number of
conjuncts covered by a plan (2) cost of the plans, (3) number
of free variables, and several combinations of the ‘l-3.
Considering only measure (1) resulted in better performance
(e.g., up to a factor of 4) in terms of total time and time to
first solution, even though the quality of the plans produced
early on were not as good as in several of the more complex
measures. Considering complex utility measures produces
better plans early on in the search but the overhead of the
search is significant. Careful tuning of the utility measure
is a subject of ongoing research. Results presented further
use a simple depth-first search.

7 Experiments
Experiments were run on a SUN 4 SPARC, under Solaris,
using JDK with 1OOMb of memory. Clearly, the use of
JAVA affects absolute running times of both algorithms.
Every point in the graphs is obtained by averaging over 20
queries generated randomly with the same parameters. All
the experiments are done with queries including 10 relations
and 50 variables. The following two sections quantify the
gain in terms of finding the first solution and the price for
total optimization time.

7.1 Time to First Solutions

Figure 7 (left) shows the time taken to obtain the first
solution for our algorithm and the dynamic programming
one, while increasing the size of the search space. We observe
that the time to first solution for our algorithm is almost
constant as the size of the search space increases, while
dynamic programming degrades considerably.

320

Figure 7: The left graph shows the influence of the addBind transformation on the absolute time taken to find the first
solution The graph on the right shows the ratio between the time to first solution and the time for exhaustive search, in the
presence of the bind transformation,

Figure 8: The graphs show the time for exhaustive search in the case of varying the number of bind transformations (left)
and varying the-number of addBind transformations (right).

Figure 7 (right) shows the ratio between the time to first
solution and the total optimization time for both algorithms,
when the size of the search space decreases. We observe that
the ratio for our algorithm is relatively constant, while it
grows for dynamic programming. Finally, it is important
to emphasize that our algorithm produces solutions in a
relatively steady pace. Hence, we are more likely to obtain
a good solution even before dynamic programming produces
its first.

7.2 Time for Exhaustive Search

Figure 8 compares the running times for exhaustive search
for the two algorithms, as we vary the number of bind
transformations (left) and as we vary the number of addBind
transformations (right). We observe that in both cases
dynamic programming has a better running time. In the
case of bind transformations (when the size of the search
space decreases) our algorithm takes more than double time
than dynamic programming in the worst case. As the
number of bind transformation increases, and hence the size
of the space decreases, the differences between the running
times are negligible. In the case of addBind transformations,
the running time of both algorithms grows exponentially
(note that the Y axis is on a logarithmic scale). Even though
our algorithm performs worse, the general growth tendency
is the same as for dynamic programming.

In conclusion, we have shown that our algorithm pro-
duces first answers considerably faster than dynamic pro-
gramming. In cases when the search space is relatively
small, the additional price paid by our algorithm is not sig-
nificant. Finally, we argue that in the cases where we do
much worse than dynamic programming are anyway cases
in which dynamic programming is not a viable strategy and
a non-exhaustive search algorithm is needed.

8 Discussion and Related Work
We described a query optimization algorithm which extends
System-R style optimization to accommodate limited access
patterns to the data. Our algorithm has several important
features that are necessitated by the results of our analysis of
the properties of the search space arising in the presence of
limited access patterns, and a theoretical and experimental
study of the size of the space. In particular, our algorithm
searches the space of annotated query plans, and prunes
as early as possible in the search plans that are invalid
or are not viable. Furthermore, to perform well when
the search space is large, the algorithm employs a best-
first search strategy to produce a complete plan early in
the optimization process. The algorithm also handles the
placement of selections in a way that is tailored to this new
context.

A natural question to ask is whether one of the other
query optimization paradigms such as the transformational
or randomized approach would be more appropriate. For
example, in a transformation-based approach [16] the
optimizer would start with some initial complete plan, and
apply transformations to it in order to find an optimal plan.
However, this approach requires a set of transformation
rules that take one valid plan into another. In our context,
the classical transformation rules such as associativity and
commutativity of joins do not have this property, and
therefore applying this approach is quite a bit more subtle.
The situation is even worse for a randomized approach,
because we cannot be guaranteed to cover only valid plans.
Finally, the analysis of the search problem that we provided
in this paper can facilitate future attempts to apply different
search paradigms.

In most cases, the key reason for the existence of limited
access patterns is the mismatch between the logical and
physical views of the data. In our work, binding patterns

321

were used to describe such mismatches. Tsatalos et al. [17]
describe GMAPs whi’ch are also a mechanism for describing
different storage patterns of the data. Using GMAPs,
one can describe storage structures in which the stored
data is a result of projections, selections and joins on
the logical schema of the data, e.g. secondary indexes,
path indexes and field replication. GMAPs and binding
patterns characterize disjoint sets of mismatches between
the logical and physical views of the data. To combine the
two families of mismatches, we need to extend the algorithm
of in [17] in several ways. First, as we did here, we need
to consider annotated query execution plans. Note that
in [17] the execution plans manipulate GMAPs (which can
be thought of as materialized views) rather than database
relations. Second, tlhe join enumeration algorithm needs
to consider plans of larger size. It follows from [13] that
in the combined context of binding patterns and GMAPs,
the query execution plan may require more joins than the
number of relations in the query, and hence a relation
mentioned once in the query may appear in more than one
leaf in the query execution plan.

As we noted the problem of limited access to stored
data also arises in the context of data integration. Hence,
the problem of building query execution plans when only
limited access patter.ns are available has been considered
in work on data integration [lo, 13, 91. However, in that
work they addressed the question of whether there exists
some ordering of accesses to the data sources such that
an answer to the query can be obtained. The question of
finding an optimal order was not considered. A related
issue is query optimization when the capabilities of the
data sources are varying. Haas et al. [5] consider query
optimization in the context of the Garlic system, where each
data source may have different capabilities for performing
joins internally. Vssalos and Papakonstantinou describe a
powerful language for describing source capabilities [18].

The cost-based query optimization problem in the pres-
ence of binding patterns has been considered in [21]. The
authors propose two heuristic-based algorithms, a greedy
(inflationary) one, and a cluster-based algorithm. More-
over, they show that for the specific cost model they con-
sider, the optimal plan is in the space of left-deep plans,
and they show that t:he proposed algorithms have interest-
ing properties (optimal or n-competitive for few conjuncts).
In contrast, our algorithm is guaranteed to find the optimal
plan, and is independent of the cost model.

Rather than dynamically find a query execution plan for
an arbitrary given query, the work in [20] tries to statically
compute the family of answerable queries, given a set of
binding patterns. The authors consider a more ellaborate
set of adornments, but do not address the problem of finding
an optimal plan for the answerable queries.

This work is part of a bigger effort to build a query
optimizer for contexts in which there is a mismatch between
the logical and physical views of the data. As we already
mentioned, one future direction is building an optimizer
that can support both GMAPs and binding patterns. A
second direction is to extend our optimizer to explore query
execution plans that are directed acyclic graphs rather than
trees. It has already been noted that such plans are useful
even in the traditional optimization context, but this is even
more so in the presence of limitations on access patterns.

References
[II

PI

131

141

151

PI

171

PI

PI

[lOI

VI

WI

Ll31

P41

1151

WI

Ll71

D31

WI

PO1

PI

S. Chaudhuri, U. Dayal, and T. Yan. Join queries
with external text sources: Execution and optimization
techniques. In Proc. of ACM SIGMOD, 1995.

S. Chaudhuri and K. Shim. Query optimization in the
presence of foreign functions. In Proc. of VLDB, 1993.

S. Chaudhuri and K. Shim. optimization in the presence of
user-defined predicates. In Proc. of VLDB, 1996.

H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Ra-
jaraman, Y. Sagiv, J. Ullman, and J. Widom. The TSIMMIS
project: Integration of heterogeneous information sources.
Journal of Intelligent Information Systems, 8(2):117-132,
March 1997.

L. Haas, D. Kossmann, E. Wimmers, and J. Yang. Optimiz-
ing queries across diverse data sources. In Proc. of VLDB,
Athens, Greece, 1997.

J. M. Hellerstein and J. F. Naughton. Query execution
techniques for caching expensive methods. In Proc. of ACM
SIGMOD, 1996.

J. M. Hellerstein and M. Stonebraker. Predicate migration:
Optimizing queries with expensive predicates. In Proc. of
ACM SIGMOD, pages 267-276, 1993.

K.Ono and G.Lohman. Measuring the complexity of join
enumeration in query optimization. In Proc. of VLDB, 1990.

A. Y. Levy, A. Rajaraman, and J. J. Ordille. Querying
heterogeneous information sources using source descriptions.
In Proc. of VLDB, Bombay, India, 1996.

K. A. Morris. An algorithm for ordering subgoals in NAIL!
In Proc. of ACM PODS, Chicago, Illinois, 1988.

M.Steinbrunn, G.Moerkotte, and A.Kemper. Heuristic and
randomized optimization for the join. VLDB Journal, 6(3),
1997.

.

A; Pellenkoft, C. Galindo-Legaria, and M. Kersten. The
complexity of tranformation-based join enumeration. In
Proc. of VLDB, 1998.

A. Rajaraman, Y. Sagiv, and J. D. Ullman. Answering
queries using templates with binding patterns. In Proc. of
ACM PODS, San Jose, CA, 1995.

R. Ramakrishnan and J. D. Ullman. A survey of deduc:tive
database systems. JLP, 23(2), 1995.

B. Reinwald and H. Pirahesh. Sql open heterogeneous data
access. In Proc. of ACM SIGMOD, 1998.

P. Seshadri, J. M. Hellerstein, H. Pirahesh, T. Y. C.
Leung, R. Ramakrishnan, D. Srivastava, P. J. Stuckey, and
S. Sudarshan. Cost-based optimization for magic: Algebra
and implementation. In Proc. of ACM SIGMOD, 1996.

0. G. Tsatalos, M. H. Solomon, and Y. E. Ioannidis. The
GMAP: A versatile tool for physical data independence.
VLDB Journal, 5(2), 1996.

V. Vassalos and Y. Papakonstantinou. Describing and using
the query capabilities of heterogeneous sources. In Proc. of
VLDB, Athens, Greece, 1997.

W.Scheufele and G.Moerkotte. Efficient dynamic program-
ming algorithms for ordering expensive joins and selections.
In Proc. of EDBT, 1998.

R. Yerneni, C. Li, H.Garcia-Molina, and J.Ullman. Comput-
ing capabilities of mediators. In Proc. of ACM SIGMOD,
Philadelphia, 1999.

R. Yerneni, C. Li, H.Garcia-Molina, and J.Ullman. Optimiz-
ing large join queries in mediation systems. In Proc. of the
Int. Conf. on Database Theory (ICDT), Jerusalem, Israel,
1999.

322

