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ABSTRACT
To facilitate queries over semi-structured data, various struc-
tural summaries have been proposed. Structural summaries
are derived directly from the data and serve as indices for
evaluating path expressions on semi-structured or XML data.
We introduce the D(k) index, an adaptive structural sum-
mary for general graph structured documents. Building on
previous work, 1-index and A(k) index, the D(k)-index is
also based on the concept of bisimilarity. However, as a
generalization of the 1-index and A(k)-index, the D(k) index
possesses the adaptive ability to adjust its structure accord-
ing to the current query load. This dynamism also facilitates
efficient update algorithms, which are crucial to practical
applications of structural indices, but have not been ade-
quately addressed in previous index proposals. Our experi-
ments show that the D(k) index is a more effective structural
summary than previous static ones, as a result of its query
load sensitivity. In addition, update operations on the D(k)
index can be performed more efficiently than on its prede-
cessors.

1. INTRODUCTION
In recent years, the eXtensible Markup Language(XML)[7]

has become the dominant standard for exchanging and query-
ing documents over the World Wide Web. XML is an exam-
ple of semi-structured data [4, 5]. Semi-structured data do
not conform to traditional data models, such as relational or
object-oriented models. Instead, the underlying data model
of semi-structured data is a labeled graph. XML documents
consist of hierarchically nested elements, which can be ei-
ther atomic, for instance raw character data, or composite,
for instance a sequence of nested subelements. Tags stored
with the elements describe the semantics of the data. Refer-
ences between elements can be established by using id/idref
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attribute or Xlink constructs [7, 8]. Thus, XML data, like
semi-structured data, are hierarchically structured and self-
describing.

A variety of query languages [1, 2, 3, 4] have been pro-
posed to query semi-structured data or XML. All of these
query languages are built around path expressions [6], which
are used to traverse graph-structured data. Typically, a data
node is selected by a path expression if some path to the
node has a sequence of labels matched by the expression.
The navigation of the graph structure underlying the semi-
structured data and XML is therefore an essential compo-
nent for querying these data. A naive evaluation of path
expressions that scans all data is obviously very computa-
tionally expensive. We would like to build an index structure
to speed up the evaluation process. A structural summary
[9, 10, 11, 12] can be used to prune the search space signif-
icantly, thus improving the evaluation performance. Alter-
natively, an index graph, consisting of a structural summary
along with stored mapping from index nodes to data nodes,
may be directly used to evaluate such path expressions.

Existing structural summaries for graph-structured data
are based on the notion of bisimilarity [15, 16]. Two nodes
are bisimilar if all label paths into them are the same. Struc-
tural summaries consist of the collection of equivalence classes.
Nodes in each equivalence class are bisimilar. The 1-index
[11] is an accurate structural summary that considers incom-
ing paths up to the root of the whole graph. The 1-index
summary is safe and sound. Path expressions can be directly
evaluated in the index graph and can retrieve label-matching
nodes without referring to the original data graph. Unfortu-
nately, 1-index structural summaries are usually quite large
and are considered not efficient enough to speed up the eval-
uation. Exploiting the observation that long and complex
paths tend to contribute disproportionately to the complex-
ity of an accurate summary structure, the A(k)-Index [12]
relaxes the equivalence condition and considers only incom-
ing paths whose lengths are no longer than k. By taking
advantage of the similarity of short paths, the A(k)-Index
has been experimentally shown to have a substantially re-
duced index size. However, the A(k)-Index becomes only
approximate for paths longer than k. Therefore, a valida-
tion process was introduced to extract exact answers from
approximate index graphs.

The performance of the A(k)-Index largely depends on



how to choose the parameter k. If k is large, the result-
ing index graph tends to remain large. The big size is a
severe disadvantage for structural summaries. If we choose
to use a small k, the index graph’s size can be substan-
tially reduced; but more queries should involve validation
process, which is very inefficient because it requires travers-
ing the source data. The key observation exploited by our
new index proposal is that not all structures are of equiv-
alent significance. Some nodes in the source data may be
only traversing nodes, which aid in label path matching, but
are never returned by queries. There is obviously no gain
in refining index equivalence classes consisting of travers-
ing nodes. Even for those nodes, which should be returned
by query processing, the complexity of their structures that
matters in query processing may differ. Depending on the
actual query load, some type of nodes may be accessed us-
ing short paths most of the time; the other type of nodes
may be frequently queried by long paths. Both 1-Index and
A(k)-Index fail to adjust their index graphs according to the
different structure complexity of the equivalence classes re-
quired by the query load, because of their static nature. In
this paper, we introduce D(k)-Index, an adaptive structural
summary for graph-structured data, which can be tuned effi-
ciently for specific query loads to achieve reduced index size
and improved performance. Instead of specifying the same
local similarity, k, for every equivalence class in the index
graph, the D(k)-Index uses possibly different, but the most
effective local similarities for equivalence classes according to
the current query load. As the query load changes incremen-
tally, the D(k)-Index can be efficiently adjusted accordingly
to maintain its high performance. And, not surprisingly, the
inherent dynamism of the D(k)-Index also results in efficient
update operations, which are crucial to any practical appli-
cation of structural summaries, but were not adequately ad-
dressed in the previous literature. Our major contributions
can be summarized as follows:

1. We propose the D(k)-index, an adaptive summary struc-
ture for the general graph-structured data and present
an efficient construction algorithm. Unlike previous
index structures that are regardless of the query load,
our proposal takes advantage of query load informa-
tion to optimize the D(k)-index structure accordingly.

2. We present efficient algorithms to update the D(k)-
Index with changes in the source data and the query
load. Believing that the update operation in the in-
dex resulting from a small change to the source data
should be done very efficiently, we avoid the propagate
partitioning strategy proposed for updating 1-index,
which refers to the source data and thus can be po-
tentially expensive. Instead, the D(k) index accom-
modates changes by adjusting the local bisimilarities
of the affected index nodes, thus achieving high effi-
ciency. Efficient algorithms to tune the D(k)-index as
the query load changes are also presented.

3. We show by extensive experiments that the D(k)-index
is a more effective summary structure than other static
summary structures. It has a reduced index size and
an improved performance. Updates on the D(k)-index
can be executed more efficiently.

The remainder of this paper is organized as follows. In
Section 2, we review related work about summary struc-

tures and path expression evaluation techniques for semi-
structured data and XML. In the third section, we present
the data model and related concepts, i.e., path expression
and local similarity. We proceed to describe the D(k)-index
and its construction algorithm in Section 4. Updating the
D(k)-Index is discussed in Section 5. And finally, in Section
6, experimental results are presented to show the improved
performance of the D(k)-index over previous index struc-
tures.

2. RELATED WORK
Three previous summary structures have been proposed

for graph-structured data to help evaluate path expressions,
the strong DataGuide [9], the 1-index [11], and the A(k)-
index [12]. We have already briefly examined the 1-index
and the A(k)-index in the introduction section. The strong
DataGuide of a graph data is computed by interpreting it as
a non-deterministic automation and obtaining an equivalent
deterministic automation. Thus, the path expression with k
nodes is evaluated by matching a sequence of exactly k nodes
in the strong DataGuide. Because of this, a data node may
appear in extents of more than one index node. In the worst
case, the number of index nodes in the strong DataGuide can
be exponential related to the size of the data graph. This
exponential behavior makes the strong DataGuide inappro-
priate for complex graph-structured data.

Update algorithms were proposed to maintain the strong
DataGuide [9]. However, because the 1-index, A(k)-index
and our new D(k) index, based on graph bisimulation, are
non-deterministic when thought of antomata, those algo-
rithms can not be generalized to apply in this context. Most
recently, update algorithms for 1-index were presented in
[17]. The authors considered the 1-index update algorithms
for the insertion of a new document and edge addition. The
propagate refinement strategy was adopted to update the
1-index incrementally. Although the 1-index update algo-
rithm for document insertion can be easily generalized to
apply in the A(k)-index context, the generalization of the
update algorithm for edge addition was shown not to be
clean.

Graph schema[18, 19] are also summary structures. How-
ever, construction and update algorithms were not discussed
by the authors. Instead, they focused on structures of dif-
ferent schemas and explored possible applications of graph
schemas to query optimization.

The bisimulation technique comes from the verification
research community [20]. It is used to compress the state
space graph in a manner that preserves some properties and
behaviors of the state space. The compressed graph could
then be analyzed with higher efficiency than the original
state-space graph. A similar concept of local bisimilarity,
localized stability, is also exploited to build the XSketch sta-
tistical synopses [13, 14] for graph structured data. The XS-
ketch synopses takes advantage of different localized degrees
of stability , demonstrated by the presence of backward-
stable or forward-stable sub-paths with possibly different
lengths, to achieve concise and effective summaries. Adopt-
ing the similar strategy that different portions of the data
require different degrees of refinement, the D(k)-Index as-
signs higher bisimilarities to those nodes that are frequently
accessed through long query paths.

Other indexing strategies have also been proposed to eval-
uate XML documents. The inverted index in [21] and the



numbering scheme in [22] enabled ancestor queries to be an-
swered in constant time. In [23], every path in the data
graph is viewed as a string and stored in a multi-level Pa-
tricia trie. Unfortunately, these indexing techniques were
supposed to handle tree data. Extension of these structures
to the context of graph data could be very difficult because
of the possibly exponential number of paths in a graph. In
[25], a workload-aware path index, termed APEX, was in-
troduced for XML data. APEX enhances a summary struc-
ture with a hash tree such that frequently used paths can
be queried more efficiently. An incremental update algo-
rithm was presented to adjust APEX due to the change of
query workloads. However, we note that no algorithm was
provided to update APEX due to the change of the source
data. In constrast, the D(k)-index, serving as a robust sum-
mary structure, can be incrementally adjusted according to
changes of both the query load and the source data.

3. PRELIMINARIES
In this section, we describe our presentation of XML or

other semi-structured data, path expression evaluation, and
the concept of bisimilarity.

We model XML or other semi-structured data as a di-
rected, labeled graph. Each edge in G indicates an object-
subobject, or object-value relationship. Each node in G has
a label and a unique identifier, with simple objects given a
distinguished label, VALUE. There is also a single root ele-
ment with the distinguished label, ROOT. The structure of
XML documents is basically a tree, with edges representing
element-subelement, element-attribute, or element-value re-
lationships between nodes. The reference edges, which can
be established between XML nodes using the ID/IDREF
construct or Xlink syntax, make the model for XML doc-
uments a graph. In Figure 1, a portion of an XML docu-
ment about movies is represented as a data graph. The solid
edges, which are tree edges, represent containment relation-
ships between nodes. Non-tree edges(shown as dashed lines)
represent reference relationships. In our data model, we do
not differentiate between these two kinds of edges, but treat
both as normal edges.

We now introduce terminologies for paths and path ex-
pressions. A node path in the data graph G is a sequence of
nodes, n1n2 · · ·np, such that an edge exists between nodes
ni and ni+1 , for 1 ≤ i ≤ p − 1. A label path is a sequence
of labels l1l2 · · · lp. A node path matches a label path if
label(ni) = li, for 1 ≤ i ≤ p. A label path, l1l2 · · · lp matches
a node n if there is some node path ending in node n that
matches l1l2 · · · lp. A regular path expression, R, is defined
in the usual way in terms of sequence(.), alternation(|), rep-
etition(*) and optional expression(?), as follows:

R =
∑

G | |R.R|R|R|(R)|R?|R∗
in which the symbol matches any li in G. And we denote
the regular language specified by R as L(R). We say that
R matches a data graph node, n, if the label path for some
word in L(R) matches a node path ending in n. The result
of evaluating R on G is the set of nodes in G that match R.
For example, the path expression, director.movie.title, eval-
uated on the graph in Figure 1, will return {15, 16, 18}; the
more complicated path expression, movieDB.( )?.movie.actor.name,
finds names of actors in movies. Here, the optional allows
the query to ignore the irregularities in the data graph. The
movie node can appear directly after movieDB, or it can

be a child of any labeled node, whose parent is movieDB.
This expression matches nodes {12, 22}.

Structural summaries have been proposed to prune the
searching space while evaluating path expressions. The idea
is to preserve paths of the data graph in the summary graph,
but with far fewer nodes and edges. If we associate an
extent, which is a set of data nodes in the data graph, with
a single node in the summary graph, it is possible for us to
evaluate the path expression on the summary graph instead
of the much larger data graph. We denote the index graph
for data graph, G, as IG. The result of executing a path
expression, R, on IG is the union of the extents of the index
nodes in IG that match R. We require the mapping from
the data nodes to index nodes to be safe: if l1l2 · · · lm is a
label path that matches node v in G, then this label path
also matches some node A in IG for which v ∈ extent(A).
This guarantees that the evaluation result of any path ex-
pression, R, on G is contained in the result of evaluating R
on the index graph, IG. An index graph, IG, is said to be
sound if the converse holds; that is, if the label path, P ,
l1l2 · · · lm matches node A in IG, then it also matches every
data node in extent(A) in G.

Existing index structures for semi-structured data or XML
are based on the notion of bisimulation.

Definition 1. (Bisimulation) Let G be a data graph in
which the symmetric, binary relation ≈, the bisimulation,
is defined as : we say that two data nodes u and v are
bisimilar(u ≈ v), if

1. u and v have the same label;

2. if u′ is a parent of u, then there is a parent v′ of v such
that u′ ≈ v′, and vice versa;

Two nodes u and v in the data graph G are bisimilar, de-
noted as u ≈b v, if there is some bisimulation such that
u ≈ v. For example, in Figure 1, nodes 7 and 10 (movie)
are bisimilar, while nodes 7 and 9 are not bisimilar, because
node 7 has a parent labeled actor; but node 9 does not have
any parent labeled actor. We can easily come to the conclu-
sion by induction that if two nodes are bisimilar, the set of
paths coming into them is the same.

4. D(K)-INDEX

4.1 Introduction to the D(k)-Index
We can obtain an index graph, IG, by creating an index

node for each equivalence class in the data graph, G. Data
nodes in each equivalence class are mutually bisimilar. An
edge is added from index nodes A to B in IG if an edge
exists in G between some data nodes, v ∈ extent(A) and
u ∈ extent(B). Such an index graph is referred to as the
1-index structure. In the worst case, the 1-index graph can
never be larger than the data graph. It can be constructed
in O(mlgn) time using Paige and Tarjan’s algorithm [16],
in which n is the number of nodes and m is the number of
edges in the data graph.

Because of the big size of the 1-index and the rarity of long
queries in practice, the A(k)-index proposal [12] takes ad-
vantage of local similarity to reduce the size of index graph.

Definition 2. k-bisimilarity(≈k) is defined inductively:

1. For any two nodes, u and v, u ≈0 v iff u and v have
the same label;
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2. Node u ≈k v iff u ≈k−1 v and for every parent u′ of u,
there is a parent v′ of v such that u′ ≈k−1 v′, and vice
versa.

The A(k)-index has the following properties [12]:

1. If nodes u and v are k-bisimilar, then the set of label
paths of length ≤ k into them is the same.

2. The set of label-paths of length m(m ≤ k) into an
A(k)-index node is the set of label paths of length m
into any data node in its extent.

3. The A(k)-index is safe, i.e , its results on a path ex-
pression always contain the data graph results for that
query.

4. The A(k)-index is sound for any path expression of
length less than or equal to k.

The A(k)-index can be constructed in O(km) time, where
m is the number of edges in the data graph G. The evalu-
ation result of the A(k)-index is accurate if the length of a
path expression is less than or equal to k. Otherwise, the
index results should be validated by referring to the data
graph to return the final query results.

Our adaptive D(k)-index is also based on local similarity.
Furthermore, it takes irregularity of query patterns into con-
sideration. Different types of nodes in the data graph may be
queried using different query patterns. In particular, since
we expect the majority of path queries will be partial match-
ing queries with the self-or-descendant axis(’//’), the com-
plexity of the relevant label paths entering different types
of data nodes may differ. For example, in the data graph
in Figure 1, if queries are only concerned with the names of
actors or directors, regardless of movies they direct or act
in, the index node for name nodes satisfying 1-bisimilarity
would be sufficient to answer these queries accurately. But
the index nodes for title nodes are required to comply with

2-bisimilarity to answer such queries that ask for the titles
of movies directed by a specific director. Therefore, the lo-
cal similarities of different types of data nodes required by
the query load may vary. The A(k)-index fails to adapt to
the query load, because it assumes the uniformity of query
patterns. In contrast, by assigning different bisimilarity re-
quirements to different types of data nodes according to the
query load, the D(k)-index can adjust its structure optimally
to achieve reduced index size and improved evaluation per-
formance, a some specific query load.

For a given index node, A, in some index graph, IG, we
assume that the local similarity of A required by queries is
kA. The value of kA can be obtained by mining the cur-
rent query load. The choice of kA should guarantee that
the majority of queries accessing A are less than or equal to
kA in length. Thus, most queries on A can be directly per-
formed on the index graph without the validation process,
which is potentially inefficient because of reference to the
data graph. Now we are ready to prove the theorem that
lays the foundation for the correctness of the D(k)-index as a
summary structure for graph-structured data. This theorem
demonstrates that given a path P of length k in an index
graph, IG, n1n2 · · ·nk+1, if the index node ni is of at least
(i−1)−bisimilarity, for each 1 ≤ i ≤ (k+1), then the label
path along P matches all data nodes in the extent(nk+1).

Theorem 1. Given an index graph, IG, and a path, P,
n1n2 · · ·ns, in IG. Assume that Label(ni)=li, for each 1 ≤
i ≤ s. If data nodes in the extent(ni) are at least (i − 1) −
bisimilar, for each 1 ≤ i ≤ s, then the label path, l1l2 · · · ls,
matches each data node in the extent(ns).

Proof: We prove by induction on the length of path P ,
s. The basic case when s=0 is obviously true. Assume that
the result is true for s = m − 1. When s = m, and P =
n1n2 · · ·nmnm+1, the label path l1l2 · · · lm matches all data
nodes in extent(nm) according to the assumption of case



s=m. Because there is an edge between nm and nm+1 in the
index graph IG, there exists some node u in extent(nm+1),
whose parents include some node v in extent(nm). Since
the label path l1l2 · · · lm matches v, one of the nodes in
extent(nm), the label path l1l2 · · · lmlm+1 matches node u.
Finally, nodes in extent(nm+1) are at least m − bisimilar,
so the label path l1l2 · · · lmlm+1, whose length is equal to m,
matches all data nodes in extent(nm+1).

According to theorem 1, given an index graph, IG, if for
any two directly connected index nodes ni → nj in IG,
k(ni) ≥ k(nj) − 1, in which k(ni) and k(nj) are local simi-
larities of ni and nj , respectively, then the query result of a
path expression of length s on IG, n1n2 · · ·ns+1, is accurate
so long as k(ns+1) ≥ s. We call this index graph IG the
D(k)-index.

Definition 3. The D(k)-index is the index graph based on
local bisimilarity that satisfies the condition that for any two
nodes ni and nj , k(ni) ≥ k(nj) − 1 if there is an edge from
ni to nj , in which k(ni) and k(nj) are ni and nj ’s local
similarities, respectively.

According to this definition, the 1-index and A(k)-index
are both special cases of the D(k)-index. In the D(k)-index,
the local similarity of the parent plus one can not be less
than the local similarity of its child. Note that given graph
data, G, the simplest index graph constructed by label split-
ting is a D(k)-index with the local similarity of each index
node equal to 0.

Some important properties of the D(k)-index are given as
follows. Their proofs should be obvious from the D(k)-index
definition and theorem 1.

1. The set of label paths of length s(≤ k(ni)) into a node
ni in the D(k)-index is the set of label paths of length
s into any data node in its extent;

2. The D(k)-index is safe, i.e , its result on a path ex-
pression always contains the data graph result for that
query;

3. The D(k)-index is sound for a path expression P of
length m, l1l2 · · · lm+1, if, for each matching index
node ni of P , k(ni) ≥ m.

4.2 Construction Algorithm
We now present the D(k)-index construction algorithm.

We begin with the simplest index graph, the label-split graph.
The local similarity requirement for each label can be ob-
tained from the query load. The default local similarity
requirements of those labels that never appear in the query
load are set to zero. The resulting D(k)-index should satisfy
the requirement that for each label, all nodes in the D(k)-
index with such a label have a local similarity larger than
or equal to the required one.

Besides requirements by query load, local similarities of
index nodes may also be constrained by the structure re-
quirement of the D(k)-index. For example, for two directly
connected nodes, ni and nj (ni → nj), in the label-split in-
dex graph, if the local similarities of ni and nj specified by
the query load are 0 and 2, respectively, the local similar-
ity of ni should be reset to 1 because the local similarity of
the parent, ni, can not be > 1 less than its child nj ’s local
similarity. Therefore, we use a broadcast algorithm to com-
pute the actual local similarities of labels in the D(k)-index.

First, we specify a local similarity for each label in the index
graph according to the current query load. Assume there are
t different local similarities, and k1 > k2 > · · · > kt. For
each local similarity ki, for 1 < i < m, a list of labels with
local similarity requirement ki is attached to it. Second, be-
ginning with the largest local similarity k1, the algorithm
“broadcasts” the local similarity requirements to all parents
of labels in its list. Then it continues with the second largest
local similarity and goes on until all local similarities are
processed. The detailed algorithm is described below. It
takes O(m) time, in which m is the number of edges in the
label-split index graph.

Algorithm 1: The Local Similarity Broadcast
Algorithm

Input The label-split index graph, G, with initial local sim-
ilarities for label nodes in G.

Output The index graph, G, with updated local similari-
ties for label nodes in G, as required by the D(k)-index

1. Sort all local similarities in G, k1 > k2 > · · · > kt, and
for each local similarity ki, a list of label nodes with
local similarity ki is attached to it;

2. Beginning with the largest local similarity, k1, for each
ki, repeat the following process:

• For each label node, nj , in the list for ki, up-
date the local similarities of all parents of nj in G
such that their new local similarities are no less
than (ki − 1). That is, if the original local sim-
ilarity is no less than (ki − 1), the node remains
unchanged; otherwise, its local similarity should
be set to (ki − 1);

• Update the local similarity list and their attached
label nodes list;

• Select the next largest local similarity and repeat
Step 2;

With local similarities for label nodes in the label-split in-
dex graph, our D(k)-index can be constructed using a simi-
lar algorithm as the A(k)-index construction algorithm [12].
For a set of data nodes, A, let Succ(A) denote the set of
successors of the nodes in A, i.e., the set {v|there is a node
u ∈ A with an edge from u to v}. And given two set of data
nodes, A and B, we say that B is stable with respect to A
if B is a subset of Succ(A) or B and Succ(A) are disjoint.
If we have two node sets, A and B, and we want to make B
stable with respect to A, we split B into B ∩ Succ(A) and
B − Succ(A). As in the A(k)-index construction, we com-
pute the (k + 1)-bisimulation equivalence classes from the
k-bisimulation equivalence classes. We make a copy of the
k-bisimulation equivalence classes and then split them un-
til they are stable with respect to the equivalence classes of
k-bisimulation. The D(k)-index construction algorithm also
begins with the label-split index graph, in which all index
nodes are 0-bisimulation equivalence classes. Then it pro-
ceeds to construct the 1-bisimulation equivalence classes. It
repeats this process until the local similarity requirements
of all index nodes are satisfied. The D(k)-index construc-
tion algorithm is presented in Algorithm 2. A construction
example is shown in Figure 2. It takes O(km) time in the
worst case, in which m is the number of edges in the data
graph G and k is the maximal local similarity requirement.
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Algorithm 2: The D(k)-index Construction
Algorithm

Input The data graph G, and local similarity requirements
of label nodes specified by the query load.

Output The D(k)-index graph IG.

1. Build the label-split index graph IG from G;

2. Use the The Local Similarity Broadcast Algo-
rithm to update the local similarities of index nodes
in IG;

3. X is a copy of IG;

4. For k = 1 to kmax (kmax is the maximal local similarity
requirement in IG)

• For each index node ni in X

– If (its local similarity requirement ≥ k)

∗ For each parent nj of ni in X

· Replace the node ni in IG with ni ∩
Succ(nj) and ni − Succ(nj);

· Update the edges in IG;

• Set the local similarity requirements to newly cre-
ated index nodes by inheritance;

• Set X to be a copy of the updated IG;

5. Return the resulting IG.

5. D(K)-INDEX UPDATING
As in [17], we study two kinds of updates: the addition

of a subgraph and the addition of a new edge. The ad-
dition of a subgraph represents the insertion of a new file
into the database; the addition of a new edge represents a
small incremental change. All other update operations on
the D(k)-index can be built on these two basic cases. In this
section, we present efficient update algorithms for the D(k)-
index. First, we give algorithms to update the D(k)-index
when a new file is inserted or a new edge is added into the
data graph. Then, we proceed to propose two procedures,
promoting and demoting, to adjust the D(k)-index for a
changing query load.

5.1 Subgraph Addition
The update algorithm on the D(k)-index for a subgraph

addition is a variant of the update algorithm for the 1-index
[17]. Suppose that a new subgraph, H, is inserted under
the root of the original data graph, G. We can compute
the D(k)-index, IH , on the new subgraph and add IH as a
subgraph under the root of IG. Then, simply treating the
new IG as a data graph, we compute the D(k)-index for the
new data graph. Note that the index nodes with the same
label in the original IG and IH should have the same local
similarity. The correctness of this procedure is established
through the following theorem. It is essentially a variant of
theorem 1 in [17].

Theorem 2. Let G be a data graph. Let IG be the D(k)-
index for G and I ′

G be an index graph constructed from any
refinement of IG. Then, the D(k)-index graph for I ′

G is the
same as the D(k)-index for G, IG.

Algorithm 3:
Subgraph Addition Update Algorithm

Input A D(K)-Index graph IG for G and a new subgraph
H.

Output A D(K)-index IG′ for the new data graph G′ con-
sisting of G and H.

1. Construct the D(k)-index, IH , for the new subgraph
H;

2. Add IH as a subgraph under the root of the original
D(k)-index, IG;

3. Treat the new IG as a data graph and compute its
D(k)-index, IG′ ;

4. Set the extents of nodes of IG′ by merging the nodes’
extents in IG;

5. Return the resulting IG′ .



5.2 Edge Addition
It has been shown that a small change in a graph can

trigger large changes in the 1-index and A(k)-index [17]. An
edge insertion in the original data graph may affect all its de-
scendants in the 1-index or all descendants within distance
k in the A(k)-index. This is demonstrated in the example
in Figure 3. The propagate algorithm for the edge addi-
tion proposed in [17] essentially refines all descendant index
nodes. In the worst case, it needs to touch O(n + m) nodes
and edges in the data graph. In contrast, the D(k)-index up-
date algorithm for edge addition is more efficient. Instead of
referring to the data graph to partition the index nodes, the
update operation on the D(k)-index simply lowers the local
similarities of the affected index nodes. When a new edge,
from A to B, is added to the index graph IG, we can simply
bring B’s local similarity down to 0 and update the local
similarities of its neighbor index nodes accordingly. That
is, all B’s children’s local similarities should be reset to 1 if
their original local similarities are larger than 1. Generally,
an index node , k distant from B in IG, should be updated
such that its local similarity is no larger than k.

When a new edge is added to the D(k)-index graph, the
local similarity of the end index node would be lowered to
0 only in the worst case. There is some possibility that its
local similarity can be updated to a higher value. In the
example in Figure 3, the end index node, D, has a parent
index node, C, in the original D(k)-index. This means that
all data nodes in D have some parent labeled c in the old
data graph. Thus, the new edge from c3 to d2 doesn’t change
label parents of d2. Since D’s original local similarity before
the edge addition is larger than 1, the local similarity of
B after the edge addition can at least remain at 1. We
therefore reset D’s local similarity to 1 and its child E’s
local similarity to 2.

Generally, the update operation for the edge addition on
the D(k)-index can be conducted in two steps. Suppose that
a new edge is added to the D(k)-index, IG, from U to V and
V ’s original local similarity is kV . We make the observation
that if all label paths of length kN ( ≤ kV ) going into V ,
through U , match V in the original IG, V ’s updated local
similarity can be reset to kN . Therefore, at the first step,
the update operation decides the maximal kN , such that all
label paths of length kN into V , through U , match V in the
original IG. This algorithm is presented below as the al-
gorithm The Update Local Similarity. Beginning with
kN = 0, which is obviously true, it repeatedly checks if all
label paths of length kN = kN + 1 into V through U match
V in the original IG. Suppose that all label paths of length
kN into V through U match V in the original IG. Then, for
each such label path P , lkN · · · l2l1(l2 = U and l1 = V ), we
denote the set of those index nodes in IG as S′

kN
(P ), which

has a path into V through U matching P . Similarly, for the
label path P, the set of index nodes is denoted as SkN (P ),
which have a path into V in the original IG matching P . If
for each label path of length kN P matching V through U ,
labels of parents of all nodes in S′

kN
(P ) are included in la-

bels of parents of all nodes in SkN (P ), we can conclude that
all label paths of length kN + 1 into V , through U , match
V in the original IG. At the second step, the algorithm up-
dates V ’s local similarity to kN . Simply using the breadth-
first search, it broadcasts this update to V ’s neighboring
nodes in IG. An index node, which is r distant from V in
the breadth-first search, should lower its local similarity to

(kN +r) if its original local similarity is larger than (kN +r)
; otherwise, its local similarity remains unchanged and the
algorithm stops propagating the update request from this
node. The whole algorithm is sketched in the update algo-
rithm Edge Addition Update Algorithm. Note that in
the worst case, the update algorithm for edge addition with
the D(k)-index can touch nodes and edges within distance
kV in the index graph IG, which has much fewer nodes and
edges than the data graph G. Thus, it can be expected to
be much more efficient than the update operation on the
1-index and A(k)-index. We validate our claims by experi-
ments in the experimental evaluation section.

Algorithm 4: Update Local Similarity

Input A D(K) index IG and a new edge from node U to
node V in IG;

Output The new local similarity for node V .

1. Upbound=min{KU + 1,kV }; // V ’s new local similar-
ity can not be larger than KU + 1 or kV .

2. NewLocalSimilarity=0,Stop=false;

3. NewLabelPathSet={label(U)}, OldLabelPathSet={l|l
is the label of some parent of V in IG}; And for each
label path P in NewLabelPathSet, we keep a set of
index nodes in IG, S′(P ), which are starting nodes of
matching node paths into V through U ; Similarly, for
each label path P in OldLabelPathSet, we keep a set of
index nodes, S(P ), that are starting nodes of matching
node paths in the original IG;

4. While (NewLocalSimilarity≤Upbound and Stop=false)

• if (NewLabelPathSet ⊆ OldLabelPathSet)

– NewLocalSimilarity = NewLocalSimilarity +
1;

– OldLabelPathSet=NewLabelPathSet;

– Set UpdatedNewLabelPathSet to an empty
set;

– Set UpdatedOldLabelPathSet to an empty set;

– For (each label path P in OldLabelPathSet)

∗ for each index node w in S(P)

· for each parent x of w in IG, insert
the label path P’=(label(x)+P) to Up-
datedOldLabelPathSet and set S(P’)={x};

∗ delete the redundant label paths and merg-
ing their index nodes sets in UpdatedOld-
LabelPathSet such that label paths are
unique;

– OldLabelPathSet = UpdatedOldLabelPath-
Set;

– for (each label path P in NewLabelPathSet)

∗ for each index node w in S’(P)

· for each parent x of w in IG, insert the
label path P’=(label(x)+P) to Updat-
edNewLabelPathSet;and set S’(P’)={x};

∗ delete the redundant label paths and merg-
ing their index nodes sets in Updated-
NewLabelPathSet such that label paths
are unique;
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– NewLabelPathSet = UpdatedNewLabelPath-
Set;

• else Stop=true;

5. Return NewLocalSimilarity.

Algorithm 5: Edge Addition Update Algorithm

Input A D(K)-Index graph IG for G and an new edge from
U to V

Output An updated D(K)-index IG′

1. kN=Update Local Similarity(IG,(U ,V ));

2. Set V ’s local similarity to kN ;

3. Beginning with the index node V , it traverses the
nodes in IG in breadth-first order. Suppose the edge
from W to X is being considered, the updated local
similarity of W is k1, the old local similarity of X is
k2. If (k1 + 1 < k2), it updates X’s local similar-
ity to (k1 + 1); otherwise, X’s local similarity remains
unchanged and the algorithm stops propogating the
update request from X.

5.3 The Promoting Process
As more new edges are added to the D(k)-index graph,

we can expect that local similarities of index nodes will de-
crease gradually. As the query load changes, higher local
similarities may be required for some index nodes. If we
do not upgrade related index nodes’ local similarities, more
queries will trigger validations. Since the validation process
involves referring to the data graph to check the correctness
of the answers on the D(k)-index, it can bring down the per-
formance of the query processing significantly. Therefore, in
this subsection, we propose a promoting procedure to up-
grade local similarities of the index nodes in the D(k)-index.
The promoting procedure should be executed periodically to
tune the D(k)-index and keep its high performance.

To upgrade the local similarity of an index node V in the
D(k)-index IG, from k1 to k2, we adopt the same strategy
as the D(k)-index construction algorithm. We first upgrade
V ’s parents’ local similarities to (k2 − 1) and then split the

extent of V according to their parents. Specifically, for each
parent U of V in IG, the algorithm splits extent(V ) into
A∩Succ(U) and A−Succ(U). The local similarity upgrad-
ing on V ’s parents can be accomplished recursively. When
the algorithm reaches the index nodes with local similarities
no less than the required value, it begins the partitioning
operation. The recursive promoting procedure is given in
the Promoting Procedure Algorithm. In practical ap-
plications, there is usually a batch of index nodes that need
to be promoted. Then, we choose first to promote index
nodes with higher new local similarities, because upgrading
them involves upgrading their close ancestors. The result is
that some index node promotions may be saved.

Algorithm 6:
Promoting Procedure Algorithm(V, kn, IG)

Input A D(K)-Index IG, an index node V in IG and the
new local similarity for V , kn

Output An updated D(K)-index I ′
G

1. If (kv ≥ kn) return IG;//kv is V ’s original local simi-
larity in IG

2. For each parent W of V in IG

• IG=Promoting Procedure Algorithm(W, kn−
1, IG);

3. For each parent W of V in IG

• split extent(V ) into V ∩Succ(W ) and V −Succ(W );

4. Return the final IG.

5.4 The Demoting Process
As updates on the D(k)-index proceeds, we can expect it

to become larger gradually because of the refinements con-
ducted on its index nodes. The query pattern may also
changes. So it is important that the D(k) index be shrunk
to a smaller size when its size becomes a disadvantage. A
smaller size means less accuracy in the structural summary.
For the D(k)-index, smaller size can be achieved by lowering



the local similarities of the index nodes, thus making it pos-
sible to merge some index nodes with the same label. This
is why the shrinking procedure is called the demoting pro-
cess. It actually downgrades the local similarities of index
nodes in the D(k)-index. Like the promoting process, the
demoting process is executed only periodically. Theorem 2
in the subsection Subgraph Addition states that from any
refinement of a D(k)-index IG, we can construct the original
D(k)-index IG. Therefore, given lower local similarities for
labels in G, we do not need to reconstruct the D(k)-index
IG from scratch, which is obviously very time consuming.
Instead, since the current D(k)-index IG’ is actually a re-
finement of IG, we can just treat IG’ as a data graph and
construct the new D(k)-index IG from IG’.

6. EXPERIMENTAL STUDY
In this section, we will validate the effectiveness and ef-

ficiency of our new D(k)-index through extensive experi-
ments. We will compare our D(k)-index with the previous
structural index A(k)-index, since the A(k)-index has been
shown to outperform the 1-index. Our experiments show
that:

1. The D(k)-index achieves the higher evaluation perfor-
mance than the best A(k)-index, given specific query
loads;

2. The update operations on the D(k)-index can be done
more efficiently than on the A(k)-index;

3. The D(K)-index, after a considerable number of up-
date operations, can still keep its better evaluation
performance than the best A(k) index.

We use two datasets in our experiments: one benchmark
data and one synthetic data.

1. Xmark Data. This is a synthetic XML data set from
an XML benchmark [26], which simulates information
about activities of an auction site. It features a regular
structure. We use the benchmark data generator to
generate an Xmark file of about 10M in size.

2. Nasa Data. This data set is generated by the IBM data
generator using a real DTD file, nasa.dtd [27], which
is a markup language for the data and metadata at
the astronomical data center at NASA/GSFC. It has
a broader, deeper and less regular structure than the
Xmark data. It also has more references. To make the
index size smaller and more manageable, we delete 12
of its original 20 references. The resulting Nasa data
is an XML file of about 15M in size.

6.1 Evaluation Performance Before Updating
Because no standard storage scheme and query cost model

exists for graph-structured data, we adopt the simple in-
memory cost model used in evaluating the A(k)-index [12].
The cost of a query is defined to be the number of nodes
visited in the index or data graph during path expression
evaluation. Note that data nodes in the extent of a matched
index node are not counted as visited; but the data nodes
visited during the validating process are counted.

We randomly generate 100 test paths with lengths be-
tween 2 and 5 for the Xmark and Nasa data. First, the pro-
gram randomly chooses some long query paths; then, from

these long paths, many shorter branching paths are gener-
ated. These basically simulate query patterns in real XML
databases. We can expect that most real XML queries will
be posed with these structures. In the D(k)-index, we set a
label’s local similarity requirement to be the longest length
of test path queries less one such that no validation will be
needed for evaluation on it. And we compare D(k)-index’s
performance with A(0), A(1), up to A(4). Note that eval-
uating test paths on the A(4)-index is already sound; that
is, no validation process is triggered because all test paths
are of length less than or equal to 5. Therefore, we do not
experiment on A(k) with k > 4 because its performance is
definitely worse than A(4). The results on the Xmark and
Nasa data are presented in Figures 4 and 5, respectively.
The X-axis denotes the number of nodes in the index graph;
the Y-axis denotes the evaluation cost measured by the av-
erage number of nodes visited over all test paths. In both
figures, the D(k)-index result is well below the curve of the
D(k)-index. Therefore, these results demonstrate the supe-
rior performance of the D(k)-index over the A(k)-index.
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Figure 4: Evaluation Performance Comparison be-
tween the D(K)-index and the A(k)-index on Xmark
Data Before Updating

6.2 Updating Performance
To evaluate the updating performance, we randomly choose

a pair of ID/IDREF labels in the DTD file and one data
node from each label group; then, a new edge is added be-
tween these two data nodes. Since 1-index is a special case
of the A(k)-index, we compare our D(k)-index’s updating
performance with the A(k)-index’s performance. Unfortu-
nately, so far as we know, no update algorithm has been
proposed for the A(k)-index, so we adopt a variant of the
1-index update algorithm [17]. When a new edge is added
to the A(k)-index graph, it creates a new index node. Next,
it recursively checks if the newly created index nodes’ child
index node satisfies k local similarity. If yes, it stops; oth-
erwise it partitions the extent of the target index node such
that the data nodes in the extents are actually k-bisimilar.
The update is propagated to index nodes up to (k − 1) dis-
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Figure 5: Evaluation Performance Comparison be-
tween the D(K)-index and the A(k)-index on Nasa
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Running Time(msec)
Xmark Nasa

A(1) 1,022 3,863
A(2) 3,322 11,126
A(3) 5,196 31,992
A(4) 23,262 53,090
D(k) 2 1377

Table 1: Update Efficiecy Comparison Between
D(k) and A(k)

tant from the first new index node. We randomly add 100
new edges to data graphs, and measure the running time of
the update algorithms for A(1), up to A(4), and D(k). In
case of the A(0) index, the index graph remains unchanged.
Our machine features Linux OS, a Pentium 41.8 Ghz proces-
sor and a 512 RAM. Our machines memory is large enough
that the data resides in the primary memory during the up-
date execution. The detailed results are given in Table 1,
in which the running time is the total accumulative time to
perform all updates. As the value of k increases, the update
cost on the A(k) index shoots up dramatically. Not surpris-
ingly, the updating on the D(k) is significantly faster than
on the A(k)-index.

6.3 The Effect of Updating on Evaluation Per-
formance

After updating on the D(k)-index, its evaluation perfor-
mance suffers, because its index nodes’ local similarities have
been decreased and the evaluation triggers more validation.
As for the A(k)-index, the evaluation cost increases more
moderately. However, while the D(k)-index size remains un-
changed after updating, the size of the A(k) index increases
dramatically. Factoring both the size and evaluation cost,
our experiments show that the D(k) index still has better
than or roughly the same performance as the best A(k) in-
dex. The evaluation performance comparisons after updat-

ing are presented in Figures 6 and 7. The promoting process
proposed in the last section can improve the D(k)-index’s
performance after updating. This part of experiments will
be included only in the full version of this paper.
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Figure 6: Evaluation Performance Comparison be-
tween the D(K)-index and the A(k)-index on Xmark
Data after Updating

7. CONCLUSION AND FUTURE RESEARCH
The D(k)-index is a clean generalization of the previous

1-index and A(k)-index structures. It has clear advantages
over them because of its dynamism. Subject to the changing
query load, it can adjust its structure accordingly. We have
shown by experiments that it achieves a higher evaluation
performance than previous static index structures. Equally
significantly, the D(k)-index also has more flexible and effi-
cient update algorithms, which are crucial to such summary
structure’s applications. Our experiments demonstrate the
superiority of the update operations on the D(k)-index over
the update operations proposed for previous summary struc-
tures.

As for the future work, the research on summary struc-
tures for graph-structured data can be pushed on two fronts.
One direction is to mine query patterns on query loads. An
effective query pattern mining technique is not only im-
portant to the D(k)-index structure’s performance, but is
closely related to other index structures proposed for semi-
structured data, for instance, the F&B index [24]. Another
direction we will pursue is to tune and improve the update
and evaluation efficiency of the D(k)-index on a real system.
Currently, the update and evaluation processes are executed
independently. Potentially, they can be combined to speed
up the D(k)-index’s processing of path queries.
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