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Abstract 

We study the problem of type checking and type in- 
ference for queries over semistructured data. Intro- 
ducing a novel traces technique, we show that the 
problem is difficult in general (NP-complete), but 
can be solved in PTIME for many practical cases, 
including, in particular, queries over XML data. 
Besides being interesting by itself, we show that 
type inference and the related traces technique have 
several important applications, facilitating query for- 
mulation, optimization, and verification. 

1 Introduction 

Semistructured data allows data to be given with- 
out a schema. Objects may have arbitrary com- 
binations of attributes, different objects may have 
the same attribute with different types, collections 
may be heterogeneous, etc. The schematic infor- 
mation is embedded in the data, i.e. objects have 
the names of their attributes stored with the ob- 
ject. The model has proven successful in a num- 
ber of applications like data integration [PGMW95], 
querying biological data [BDHS96], querying the 
WWW [MMM96], managing Web sites [FFK+98], 
or as a general purpose data management system 
[QRS+95]. In all th ese applications however, data 
often has some regularity and ignoring the available 
(possibly partial) schema results in several draw- 
backs, like efficiency penalties in querying and stor- 
ing the data, or the loss of semantics for the user, 
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making it hard to formulate queries. Researchers 
have proposed several new notions of schemas to 
describe the structure for parts of the data: graph 
schemas [BDFS97], data guides [GW97], unary dat- 
alog schemas [NAM97], Schema Definition Language 
(ScmDL) [BM99], d escription logics [DGM98]. The 
various formalisms differ in the kind of restrictions 
they can impose on the data: these range from a 
simple upper bound on the objects attributes (in 
graph schemas [BDFS97]) to arbitrary regular ex- 
pressions (in ScmDL [BM99] and DTD’s of SGML 
and XML documents [Go190]) where the amount 
of structure described can be tuned from fully un- 
known (equivalent to no schema at all) to a pretty 
rigid structure. 

In this paper we study the interaction between 
schemas and queries in semistructured data. We 
consider the most powerful schemas proposed in 
previous work (ScmDL [BM99]) in conjunction with 
the most powerful query language features consid- 
ered for semistructured data, allowing regular path 
expressions and joins (both reviewed in Section 2). 
A specific aspect of the interaction that we study 
here is type checking and type inference. Besides 
being interesting by itself, we show that it has sev- 
eral important applications, facilitating query for- 
mulation, optimization, and verification: 

Type checking and inference Functional program- 
ming languages distinguish between type checking 
and type inference [MitSO, Mit96]. In the former 
we are given a program (or query) and a type as- 
signment for its variables and are asked whether the 
type assignment is correct. In the latter we are not 
given the type assignment but are asked to discover 
one. Both are well studied problems in functional 
programming language. In general type checking is 
easy, most of the hard work lies in type inference. 
We consider both problems in Section 3. We found 
that for queries on semistructured data, type check- 
ing can be hard too. 
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We first consider selection queries. They re- 
turn sets (or relations) of objects from the input 
database: they do not construct new data. (Queries 
constructing new data are considered next). We 
show that, in general, type inference and check- 
ing for selection queries is NP-complete. The high 
complexity stems from the interaction of regular 
expressions and joins in the query with untagged 
union types and unordered data. We consider a 
number of possible restrictions that a*re of practical 
interest, in particular in the context of XML data 
(http://www.w3.org/TR/REC-xml), and identify some 
which admit PTIME type checking / inference algo- 
rithms (e.g. for join-free queries, or tagged schemas, 
both over ordered data), and others which are still 
NP-complete. Our analysis offers a nearly com- 
plete picture of which combinations of features lead 
to PTIME algorithms and which to NP-complete 
problems (see Table 2). We then show in Section 
4 that the above results, and the techniques we de- 
veloped in this context, have several important ap- 
plications, as detailed below. 

Query formulat.ion Here we take the view that 
schemas are meant to assist users in writing queries. 
Schemas are exposed to the users, and the type in- 
ference mechanisms are used to signal to the users 
queries, or query parts, which are inconsistent with 
the given schema, and furthermore, provide the user 
with a feedback assisting in query formulation. 

Query optimizat.ion Alternatively, we take the view 
that schemas are transparent to the user and used 
by the optimizer. We assume that the data is stored 
in a naive manner (as a graph, with no indexes) 
where the access pattern is traversal from one node 
to its successors. In a simple setting, the query 
parts that are inconsistent with the schema may be 
dropped, resulting in simpler queries. In a more so- 
phisticated setting, we use the type inference tech- 
niques to design an adaptive optimal evaluation al- 
gorithm, which minimizes the number of traversed 
edges. The algorithm is adaptive, in that it adapts 
its behavior based on the data seen so far, in addi- 
tion to the schema. It is optimal in the sense that 
no other determ.inistic algorithm of its class can out- 
perform it. 

Data transformation and integration Here we assume 
that the query specifies a data transformation, and 
that the schema for the input data is given. The 
problem is to ensure that the query’s output con- 
forms to some other given schema. At a finer level, 
we may want to derive the schema for the out- 
put first, then check that it is subsumed by the 
required output schema. The importance of this 

increases with the advent of XML. The new web 
standard makes it possible for user communities to 
agree upon a common schema(DTD), then publish 
and exchange on the Web XML data conforming to 
that DTD. Several proposals for declarative speci- 
fication of transformations in semistructured data 
have been considered in the literature [PAGM96, 
BDHS96, FFK+98, CDSS971. We will consider here 
transformations by means of Skolem functions (.an 
abstraction of the above languages). Given an input 
schema and a query, we show that, in general, there 
may not exist an output schema best describing t.he 
transformation result, but we identify a particular 
class of transformations for which such a schema 
exists. 

While our presentation considers most general 
definitions for semistructured data, schemas, and 
query languages, we pay special attention to XM:L, 
DTD’s and query languages for XML. For the latter 
a few proposals exists: XSL (http://www.w3c.org) and 
XML-QL [DFF+9u]. We will discuss throughout 
the paper how our results apply to XML, DTD’s, 
and these query languages. 

2 Background 

Data Model Our semistructured data model is an 
ordered version of the object exchange model OEM 
[PGMW95]. Data consists of a collection of oh- 
jects, denoted by oids. Each object has a value 
which can be either (a) an atomic value, like an 
int, float, multimedia object, etc., or (b) an unordert:d 
collection of (label, oid) pairs, or (c) an ordewd 
sequence of (label, oid) pairs. labels are drawn 
from a (possibly infinite) universe A of label names 
(strings). In addition there exists a distinguisheld 
root object, and all objects are reachable from the 
root. It is customary to visualize such data as .a 
graph, where nodes represent objects and edges are 
labeled with elements from A. We will use here 
a textual representation of the data, as defined in 
Table 1. A data graph is then given by a set of 
definitions of the form oid=value (atomic value), or 
oid={E} (unordered collection) or oid=[E] (ordered 
collection), where E is list of pairs label-+Oid. For 
example ol={a-+o2,b-+o3} denotes that or is an un- 
ordered object (with two outgoing edges labeled a,b 
pointing to 02,03 resp.), while o2=[a+o4,c+ 05,c-+o6] 

means that 02 is an ordered object. By convention, 
the first oid defined is the root object, and each oicl 
is defined at most once. We distinguish between 
referenceable and non-referenceable objects. The 
former have their name prefixed with &, e.g. &OS, 
&045. A non-referenceable object is allowed to occur 
at most once in the right hand side of a definition. 
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(The root, if it is non-referenceable, is not allowed 
to occur in any right hand side.) 

Given our special interest in XML data, we il- 
lustrate how it can be expressed in our data mode. 
For example the XML fragment: 

(paper)(title) A real nice paper (/title) 
(author)(name)(firstname) John (/firstname) 

(la&name) Smith (/lastname)(/name) 
(email) . . . (/email) 

(/author) 

(/paw4 

becomes: 
01 = [paper -+ 021; 
02 = [title + 03, author + 041; 
03 = “A real nice paper”; 
04 = [name -+ 05, email -+ 061; 
05 = [firstname --t 07, lastname --f 081; 
06 = “...“; 07 = “John”; 08 = “Smith” 

All objects here are non-referenceable. If we want 
to share author 04 among several papers, we have 
to change its name to &04. 

Types We will follow here the formalism of ScmDL 
[BM99]. Types have a definition which closely re- 
sembles that of data. A schema consists of a se- 
quence of type definitions each of the form Tid = 
atomicType, or Tid = {R}, or Tid = [R], where Tid is 
a type identifier and R is a regular expression over 
Label+Tid pairs see Table 1. Every schema has a 
root type id, which, by convention, is the first type 
id listed. Each type id is defined at most once. 
Type ids are of two kinds: referenceable, and non- 
referenceable. The former have a name starting 
with &, like &T5, &T99. 

As demonstrated in [BM99], ScmDL allows large 
flexibility in the structure being described, ranging 
from very loose (as in Web pages) to rigid structure 
(as in database sources). Again, we relate types 
and schemas to XML. The structure of an XML 
document can be validated by a Document Type 
Descriptor (DTD). For example, the following could 
be a DTD for the XML example above: 

(!ELEMENT Document (paper*) ) 
(!ELEMENT title #PCDATA ) 
(!ELEMENT paper (title,(author)*)) 
(!ELEMENT firstname #PCDATA ) 
(IELEMENT author (name, email)) 
(!ELEMENT lastname #PCDATA ) 
(!ELEMENT name 
(!ELEMENT email 

(firstname,lsstname)) 
#PCDATA ) 

It is equivalent to the following schema definition 
S: 

DOCUMENT = [(paper-+PAPER)*]; 
PAPER = Ititle+TITLE.lauthor+AUTHOR1* 1: 
AUTHOR 1 [name-+NAh;IE.email+EMAIL];’ 
NAME = [firstnamen-+FIRSTNAME. 

lsstname+LASTNAME]; 
TITLE = string; 
FIRSTNAME = string; 
LASTNAME = string; 

EMAIL = string 

All types in this example are non-referenceable. If 
we wanted to share author objects, we would have 
renamed the type name to &AUTHOR. 

DTD’s can be viewed as schemas where (1) all 
types are ordered, (2) all types are tagged, i.e. there 
exists a one-to-one correspondence between labels 
and type ids and an expression label-+Tid is allowed 
only if label and tid are in this correspondence, and 
(3) all types are non-referenceable (since XML data 
is tree data). We will denote with DTD- the class of 
such schemas. In reality DTD’s do allow references 
between objects, but do not enforce the type of the 
target of that reference: a reference is always the 
union of all types. We denote with DTD+ the more 
general class of schemes satisfying conditions (1) 
and (2) above. Hence DTDs are generalizations of 
DTD- and particular cases of DTD+. 

Intuitively, a data graph G conforms to a schema 
S (or, is an instance of S) if we can map nodes to 
type ids s.t. the requirements on the nodes struc- 
ture in the schema are satisfied. We define this 
below. Before, we need some notations. Given a 
regular expression R over some alphabet C, we use 
Zang(R) to denote the regular language defined by 
R. The unordered language of R, ulang(R), is a set 
of finite bags b of elements in C s.t. b E uZang(R) 
iff there exists some ordering w of the elements in b 
s.t. w E lung(R). 

Definition 2.1 Let G be a data graph and S be a 
schema. We say that G conforms to S if there exists 
a mapping I- from the nodes in G to types in S s.t.: 

1. 

2. 

3. 

4. 

r maps the root node to the root type id. 

if&o is a referenceable node, then 7(&o) is a 
referenceable type. 

if o = v is a node definition in G (with v 
an atomic value) then there exists a defini- 
tion r(o) = atomicType in S s. t. v belongs 
to atomicType. 

if o = {E} is in G, then there exists a type 
definition r(o) = {R} in S such that r(E) E 
ulang(R); if o = [E] is in G, then there exists 
a type definition T(O) = [E] in S s.t. 7(E) E 
Zang(R). The notation T(E) means al + ~(01)~ 

* . ., a, + I, when E is al -+ 01, . . ., 
a, + 0,. 

We call such a mapping T a type assignment of G 
(w.r.t S). Observe that in general several type as- 
signments may be possible for a given data graph: 
conditions guaranteeing the uniqueness of the as- 
signment are discussed in [BM99]. Checking whether 
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1 GraphDef ::= Oid=Node; . . . ; Oid=Node 
DATA GRAPHS 

--l-- 

-Node ::= value 1 {Ej 1 [Ii] 
E ::= label+Oid, . . . , label-+Oid 

Example ol={a+o2, b-+03}; o2=[a-+o4,c+o5,c-+o6]; 
03=3.14; o4=“abc”; 05=2.71; 06=6.12 

Tid=Type;. . ;Tid=Type 
atomicType 1 {R} 1 [R] 
(R.R) 1 (R/R) 1 (R*) ) E 1 label+Tid 

Example Tl={(a-+T2,b-+T3)~(d-tT4)}; T2=[a-+T5,(c+T6)*]; 
T3=float; T4=int; T5=string; TG=float 

PATTERNS 

PatDef ::= nodeVar=Pat; . . . ; nodeVar=Pat 
Pat ::= value 1 valuevar 1 {P} 1 [P] 

P ..- ..- L+nodeVar, . . . , L-+nodeVar 

i 
::= R 1 1abelVar 
::= (R.R) 1 (RIR) I (R*) 1 E 1 label I _ 

Example X={a* +Y,(bl(c.d))+U}; Y=[a-+Z,(cjd)-+V]; 
U=3.14; V=2.71 

Table 1: Grammars defining data graphs, types, and patterns 

a data graph G conforms to a schema 5’ is in gen- 
eral NP-complete, but becomes PTIME for a large 
class of schemas [BM99], including in particular the 
tagged schemas: hence conformity for DTD- and 
DTD+ schemas can be determined in time polyno- 
mial in the size of the data graph and the schema. 

Finally, we remark that ScmDL allows to use 
predicates, instead of constant labels, in the type 
definitions. For example one could write AUTHOR 

= [isName-+NAME:,. . . 1, where isName is a unary pred- 
icate on labels. In this extended abstract we chose 
not to have label predicates in the schemas: all our 
results (positive and negative) extend to schemas 
with predicates, e.g. by applying directly the tech- 
niques in [AV97]. We defer the treatment of predi- 
cates t,o the full version of the paper. 

Patterns and Qu’eries We focus first on selection 
queries that return sets (or relations) of objects 
from the input data graph: they do not construct 
new data. (Queries constructing new data will be 
discussed later). We consider queries of the form: 

SELECT Var, . . . . Var 
WHERE PatDef 

The WHERE clause consists of a series of pattern 
definitions, basically describing a (sub)graph to be 
searched in the data. The SELECT clause then projects 
out on some of the pattern variables. The pattern 
structure is formally defined in Table 1. Variables 
are of three kind.s: node variables, label variables, 
and value variables, denoted nodeVar, labelvar, val- 

ueVar. Each pattern definition is one of nodeVar = 

value, nodeVar = valuevar, nodeVar = {P}, or nodeVar = 

[PI, where P is a list of pairs L-tnodeVar. L is a regular 
path expression on labels, or just a label variable. 
Notice, again, the resemblance to the definition of 
data graphs and schemas. 

We require that each node variable is defined at 
most once (as in the case of data and type defini- 
tions), and that the languages defined by regular 
path expressions do not contain the empty string 
(since they are supposed to describe actual, non 
empty, paths). As before, the first node variable 
in the pattern definition is called the root variable. 
Among node variables we distinguish between refer- 
enceable and non-referenceable. The former have a 
name prefixed by &, like &XI, &~4. A non-referenceable 
variable is allowed to occur at most once in the right 
hand side of a pattern definition. (The root, if it is 
non-referenceable, is not allowed to occur in any 
right hand side.) 

For example, the following query Q.searches for 
papers where both Abiteboul and Vianu are authors, 
with Vianu coming first: 

SELECT Xl 
WHERE Root = [paper+Xl]; 

Xl = [author.name.(-*)+X2, 
author.name.(-*)+X3]; 

X2 = ‘Vianu” . X3 = “Abiteboul” 

Here _ denotes any label, h;nce (-*) denotes any ar- 
bitrary path in the data. To relate our syntax to 
actual XML query languages, the above query is 
expressed in, e.g. XML-QL, as 
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WHERE (paper) $X1 (/paper) IN Root, 
(author[$i].name.*) Vianu (/) IN $X1, 
(author[$j].name.*) Abiteboul (/) IN $X1, 
$i < $j 

CONSTRUCT (result) $X1 (/result) 

Observe that, besides the slightly different syntax, 
the pattern used in the WHERE clause is very much 
like ours, except that the values “Vianu” and “Abite- 
boul” are used directly rather than being associated 
with distinct variables. (The additional $i < $j 
statement is addressed below). We chose to use pat- 
terns with variables everywhere because we found 
it the most codvenient notation for type inference 
and the related problems studied in this paper. It is 
straightforward to translate any XML-QL pattern 
into our pattern notation (and the same for other 
XML query languages). 

Given a query Q with a set of pattern definitions 
PD and a data graph G, the result of applying Q 
to G consists of a set of bindings of pattern vari- 
ables with nodes, labels, and atomic values from G. 
Regular expressions in the patterns must then cor- 
respond to paths in the data. Before we formally 
define the semantics of selection queries, we need to 
define a notion of order among paths in the data 
graph. 

Definition 2.2 (Order of paths) Given a data graph 
G and two paths pl,pz in G, we say that pl precedes 
p2 if pl and p2 start at the same ordered node v and 
p1 ‘s first edge is different than that of p2 and pre- 
cedes it. 

Given nodes 01,. . . ,ok in a graph, and words 
WI,..., WkEd*,letPdenotethelistwl+ol,..., 
wk --t ok. For an, unordered node o we say that {P} 
is satisfied at o if there exists paths PI,. . . , Pk s.t. 
Pi goes from o to oi and it’s edges are labeled with 
wi. For an ordered node o we say that [P] is satisfied 
at o if, in addition to the above condition, the paths 
are ordered. Similarly, if P’ = RI + 01,. . . , Rk + 
Ok, with RI,.. . , Rk regular expressions, we say that 
{P’} ([P’]) is satisfied at some node o if there ex- 
ists words w1 E lang(Rl), . . . ,wk E lang(&) such 
that (R) ([RI) is satisfied at o, where R = WI -+ 
Ol,..., 't"k + ok. 

We are now ready to define the semantics of se- 
lection queries. 

Definition 2.3 Let PD(%) be a set of pattern defy- 
nition with variables 3 = (x1, . . . , xn), and let G be 
some data graph. A binding 8 from 3 to G is said to 
satisfy PD if it maps node variables to nodes, label 
variables to labels, value variables to values, and, in 
addition: 

1. 8 maps the root node variable to the root node 
in G. 

if xi is a referenceable node variable, then e(xi) 
is a referenceable node. 

if xi = v is in PD, with v a value, then 6’(xi) = 
v is in G. 

if xi = xi is in PD, with xj a value variable, 
then O(xi) = e(xj) is in G. 

if xi = {P} (or xi = [P]) is in PD, then 
{B(P)} (or [e(P)]) is satisfied at @xi), where 
8(P) is defined as follows. For P = L1 -+ 

Xi, 9 . . . > Lk + xjkl e(p) is o&) + @jl), 

. . .) e(Lk) + e(xi,), where e(L) denotes elx) 
when L is a label variable x and denotes R 
when L is a regular expression R. 

A design choice in the semantics of patterns is 
whether to allow multiple path expressions appear- 
ing in one pattern definition to be bound to paths 
sharing the same first edge. For example, consider- 
ing the pattern {author-+Y, author+Z}, do we allow 
the two author paths to be bound to the same edge 
(hence Y and z bound to the same oid) ? Our choice . 
is that in ordered nodes, the bounded paths must 
be ordered hence their first edges are disjoint. For 
the unordered nodes we chose a set-like semantics, 
allowing paths to overlap in their first edge. (This is 
also the choice taken by most XML and semistruc- 
tured data query languages). The other alternative 
has only minor effects of the complexity results pre- 
sented in the paper. 

Remark: XML query languages like XSL, and XML- 
QL sometimes allow more flexibility in the specifi- 
cation of order constraints on the paths. For ex- 
ample, in XML-QL one can specify partial order 
among paths, e.g. [a[i] + X, b[j] + Y, c[k] -+ 2, 
d[l] + U], i < k AND j < 1. 
In this paper we focus on total orders, i.e. corre- 
sponding to i < j < k < 1. As far as the complexity 
results below are concerned, the effect of allowing 
partial orders is the same as the higher of the com- 
plexities of ordered or unordered pattertis. 

In the rest of the paper we assume that the pat- 
tern definitions in the query are “connected”, i.e. 
that the root variable transitively refers to all the 
variables appearing in the pattern. 

3 Type Inference for Selection Queries 

In the sequel we fix a schema S, and a query Q We 
define the following problems: 
(1) Type Correctness (or Satisfiability): Does there 
exist a database G conforming to S on which Q re- 
turns a non-empty result? 
(2) Total Type Checking: Given a type assignment 
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to all the node abnd value variables in the query, and 
a label assignment to the label variables, does there 
exist a database G conforming to S and a bind- 
ing of the node/value/label variables with nodes/ 
values/labels from G (respecting the given label as- 
signment), which yields that type assignment? 
(3) (Partial)Type Checking: Given a t,ype and la- 
bel assignment of only the variables in the SELECT 

clause, does there exist a database G conforming to 
S and a binding of variables w:ith nodes/values/labels 
from G (respecting the given label assignment) yield- 
ing th.at type assignment? 
(4) Type Inference: Enumerate all type and label 
assignments for the variables in the SELECT clause 
for which (Partial) Type Checking has a positive 
answer. 

For example, consider the schema 5’ and query Q in 
Section 2. Q is satisfiable for S, but is not satisfiable 
if evaluated, for instance, w.r.t the schema 

DOCUMENT T= [(paper-+PAPER)*]; 
TITLE = string; 
PAPER = [titlt++TITLE.author+AUTHOR 1; 
AUTHOR = [name+NAME]; 

NAME = string 

(because it allows a single author). For the origi- 

nal schema, tota, type checking is positive, e.g., for 
the type assignrnent (Root/DOCUMENT, Xl/PAPER, 

X2/LASTNAME,X3/FIRsTNAME) but is negative for 
the type assignrnent (Root/DOCUMENT, Xl/PAPER, 

XP/LASTNAME, XJ/EMAIL) . (Partial) type checking 
is positive, e.g., for the type assignment XI/PAPER 

and is negative for XI/NAME . Finally, type infer- 
ence here infers a single type, PAPER, for the se- 
lected variable ~1. 

Adapting the taxonomy of [Var82] for query and 
data complexity, we will study the complexity of 
these problems in two settings. (1) Query Com- 
plexity: For a fixed schema S, what is the complex- 
ity as a function of the query size? (2) Combined 
Complexity: What is the complexity as a function 
of both the query size and the schema size ? 1 

Note that, in the type inference problem, the 
size of the answer may be large, compared to the 
query and the schema: if the schema is very loose, 
it may be the case that each of the variables can be 
associated with most of the types in the schema, so 
the size of the a.nswer can be up to O(lQI~s~), i.e. 
exponential in the size of the schema. In this case 
the complexity is defined in terms of the size of the 
input and the output. 

Our general result for these problems is given by 

‘A third kind of complexity is Schema Complezity, where 
only the schema varies. Since in practice this scenario is less 
common we considered it of less importance and defer a discus- 
sion to the full version of the paper. 

the following: 

Theorem 3.1 Both the satisfiability and the type 
checking (total and partial) problems are in gen- 
eral NP-complete, in query and combined complex- 
ity. Type inference can be done in time exponential 
in the size of the query (and the schema, for com- 
bined complexity), and cannot in general be solved 
in polynomial time (even w.r.t the size of the result 
in addition to that of the query and schema) unless 
P=NP. 

Proof: (Sketch) To prove the NP-hardness of the 
problems we use reduction from the 3SAT problem 
(testing the satisfiability of 3NF formulas), known 
to be NP-complete. The completeness is proved us- 
ing the traces technique introduced below in Section 
3.4. q 

Next we consider restrictions on the query and/or 
the schema: some combinations result in polyno- 
mial time solutions to the above problem. We have 
two goals here. On the one hand we are interested 
in finding the largest classes of schemas and queries 
for which the above problems can be solved in poly- 
nomial time (hopefully covering most of the prac- 
tical common cases). On the other hand we are 
interested in finding the tightest conditions under 
which the problems still remain NP-complete. For 
the schema, we consider the following restrictions: 

Ordered schemas: These are schemas where all 
types are ordered. As a relaxation we con- 
sider schemas having ordered types and homo- 
geneous unordered collections: the latter are 
types of the form T = {(a-+T’)*). (Other relax- 
ations are briefly considered in the sequel). 

Tagged schemas: Consider the relation between 
labels and type identifiers consisting of pairs 
(a,T) s.t. the expression a+T occurs at least 
once in the schema. In a tagged schema this 
relation is one-to-one. 

Tree schemas: These are schemas with no refer- 
enceable types. 

As observed earlier, DTD- schemas are ordered, tagged, 
tree schemas, while DTD+ are ordered, tagged schemas 
On the query side, we will consider the following re- 
strictions. 

Projection free: these are queries where all vari- 
ables occur in the SELECT clause. 

Constant labels: In a constant labels query all the 
path expressions in the pattern are constant la- 
bels and no label variables are used. On a finer 
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level we relax the restriction on the path ex- 
pressions and allow also paths with Constant 
sufix: path expressions of the form R.1 where 
R is some regular expression and 1 a label con- 
stant . 

Join free: Given a query Q with a pattern P, we 
say that a variable xi in P refers to a variable 
xj if xj appears on the right hand side of xi’s 
definition. A query is join free if no variable in 
it is being referred to multiple times (by one 
or several variables) or transitively refers to it- 
self. On a finer note we relax this and consider 
Bounded joins: Queries where the number of 
variables that violate the join-free conditions 
is bounded by some constant B. 

The rational behind these restrictions is the fol- 
lowing. Projection-free queries allow reducing the 
problem of partial type checking to the total one, 
which, as shown below, is simpler. The study of 
constant-labels queries highlights the effect of us- 
ing regular path expressions relative to the simple 
traditional constant paths. The study of join-free 
queries is interesting for several reasons. First, some 
XML query languages are join-free (XSL). Second, 
PTIME algorithms for join free queries can be used 
as an approximation algorithms for languages with 
joins (like XML-QL) 

3.1 Type Correctness (Satisfiability) 

We start by considering type correctness. Our re- 
sults are summarized in Table 2, where we present 
the effect of the various restrictions on the com- 
plexity (both query and combined) of the prob- 
lem. Each entry in the table is of the form query 
complexity/combined complexity. NP here means NP- 
complete. The NP-completeness proofs follow simi- 
lar lines as in Theorem 3.1. The PTIME results are 
based on the Races technique described below in 
Section 3.4. 

The upper leftmost result states the NP com- 
pleteness of the problem in the general case. Nat- 
urally, a major factor in the complexity is the use 
of unordered types: to determine if a pattern vari- 
able can be assigned a certain type, all the possible 
orders of its outgoing paths may need to be consid- 
ered. It turns out however that order alone does not 
suffice to reduce the complexity (see leftmost item 
of line 2). We thus proceed in two directions: (i) We 
consider possible syntactic restrictions on the query, 
as illustrated in the rest of lines 2 and 3. In par- 
ticular observe that the problem becomes polyno- 
mial for join-free (and bounded-joins) queries. (ii) 
We restrict the allowed schemas, requiring types to 

be tagged. Tagging alone does not suffice, at least 
for reducing the combined complexity, (see line 4). 
But together with order it reduces the complex- 
ity not only for join-free (bounded joins) queries, 
but also for all queries with constant-suffix paths. 
(Hence also for queries using constant labels rather 
than regular expressions/label variables.) Finally, 
the rightmost column shows that all the above re- 
strictions are not effective without order. 

Relating this to queries over XML data, one can 
see that the satisfiability of join free XML queries, 
e.g. queries in XSL, can be tested in PTIME for 
DTD- and DTD+ schemas. For queries with joins, 
e.g. XML-QL, constant-suffix is required. Observe 
that although join over node variables is meaning- 
less for DTD- data (since the instances are trees), 
joins of label variables are possible and suffice for 
NP-completeness. If this is disallowed satisfiability 
is solvable in PTIME (joins on value variables are 
still allowed). 
Remark: We conclude with a comment regarding 
unordered types. We saw above that allowing cer- 
tain unordered types, e.g. homogeneous collections, 
does no harm the complexity. Other unordered 
types and patterns, e.g. tuple-like, can also be sup- 
ported. In general, to guaranty low complexity, the 
number of orders one needs to consider when match- 
ing the pattern to the schema should be bounded. 
For lack of space this is not discussed further here. 

3.2 Type checking 

We next consider type checking. It turns out that 
total type checking is simpler than partial. First ob- 
serve that partial type checking is as difficult as sat- 
isfiability since the two problems coincide for boolean 
queries (i.e. with empty SELECT clause). Further- 
more, one can show that all the results in Table 2 
hold for partial type checking as well. In contrast 
we have that 

Proposition 3.2 Total type checking in is PTIME, 
(both query and combined complexity), for ordered 
schemas (plus homogeneous collections) and arbi- 
trary queries. 

3.3 Type inference 

The results for type inference follow similar classi- 
fication as that of satisfiability: 

l In all cases where satisfiability in Table 2 is 
NP-complete, type inference can be performed 
in time exponential in the size of the query 
(and the schema, for combined complexity), 
and cannot be done in time polynomial in the 
query (the schema) and the result, unless P=NP. 

221 



Query complexity7 Arbitrary 
Combined complexity II 

Join Bounded Constant Constant J.free 
queries free joins labels suffix c.labels 

(e.g. queries queries queries queries queries 
XML-QL) (e.g XSL) 

Ordered schema 

Table 2: Summary of Complexity Results for the Type Correctness (Satisfiability) Problem 

l Similarly, in all the cases where satisfiability 
is solvable i.n PTIME, we prove that type in- 
ference can be done in time polynomial in the 
size of the query (the schema) and the result. 

3.4 Traces 

In the reminder of this section we briefly describe 
the technique underlying most of the above results, 
and in particular the (N)PTIME and EXPTIME 
algorithms for the problems. As we show in the 
next section, this technique has also several other 
important applications. 

Simple P-traces ‘We first consider satisfiability. As- 
sume we are give:n a single, ordered pattern defini- 
tion P, containing no label variables: X = [Ri + 
Xl,... , Rk + Xk]. Define a trace to be a word 
XWlXj . . .wkxk in (A U {X,X1,. . . ,Xk})* (here 
Wl,..., wk E A*): the set of traces in F, Tr(P), 
is the language defined by the regular expression 
XRlX,. . . . RkXk. Given a data graph G with root 
o, we say that the trace XwiXi . . . WkXk occurs in 
G if there exists nodes 01, . . . , o, such that [WI + 
Ol,..., Wk + ok] is satisfied at 0: the set of all traces 
occurring in G is denoted 59(G). Finally, given a 

schema S, let Tr(S) dgf U{Tr(G) ] G conforms to S}. 
It is relatively easy to see that P is satisfiable for 
S iff Tr(P) n Z?(S) # 0. We show in the full ver- 
sion of the paper that 5?(S) is a regular language, 
for which a regul,ar expression can be constructed 
in polynomial time from S. Hence, this particular 
satisfiability problem is in P, since computing the 
intersection of two regular expressions can be done 
in polynomial time. 

Type checking and1 inference For type checking or 
inference we replace the variable symbols with spe- 
cial signs represe:nting the possible types for the 
variables: For each variable Xi and each type Tj in 

the schema, we introduce a new symbol Xi?. The 
refined definitions of Tr(P) and Tr(S) will now ac- 
count for all the possible types of nodes at the end of 
the the k paths. Tr(P) = x:RlXl . . . Rkx:k, where 
each Xi is the regular expression (X,3 ] X,? ] . . .). 
As before, we construct the intersection language 
Tr (P) n Z?(S). Each word in this language repre- 
sents a possible type assignment s.t. Xi is assigned 
type Tj iff the symbol X,? appears in the word. To 
retrieve all possible assignments, it suffices to erase 
the other symbols (i.e. symbols in A) from the in- 
tersection language. 

The general case In general we may have several 
pattern definitions, unordered nodes, joins, and tagged 
types. We explain below how multiple patterns and 
unordered types are handled. Joins and tagging 
are deferred to the full paper. Assume a query 
with a set of pattern definitions PD, with vari- 
ables X,X1,..., Xk. A trace is xwixi . . , WkXk, 
as before, and the same for Tr(PD) (Tr(PD) = 
XRIX1 . . . &Xk, where Ri is the unique regular 
expression preceding the variable Xi). We only 
change the definition of Tr(G) to account for the 
shape of the pattern, and Tr(S) = U{Tr(G)} (as 
before). Finding a regular expression for Tr(S) is 
more difficult however (a straightforward construc- 
tion results in an expression of exponential size). 
Instead, we construct a definition of Tr(S) bottom 
up, following the tree structure of the set of pat- 
tern definitions. This results in a acyclic, extended2 
context free grammar describing Tr(S), whose size 
is polynomial in S (and whose expansion is a reg- 
ular expression of exponential size). Satisfiability 
reduces to Tr(P) n Tr(S) # 0, as before, and this 
can be checked in polynomial time. To support un- 
ordered nodes, all possible orders and overlapping 
among the path expressions in the pattern need to 

‘That is, the productions may have regular expressions on 
the right hand side. 
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be considered. Rather than defining Tr(P) using a 
single regular expression, it is now the union of the 
expressions representing these possible orders, (an 
exponential number). This exponential blowup can 
nevertheless be avoided in the case of homogeneous 
collections: due to the uniformity of the types any 
arbitrary order can be picked. 

4 Applications 

We now discuss three applications of type inference 
in semistructured data. “Applications” should be 
taken here in a broad sense: applications of inter- 
actions between types and queries and of the traces 
technique developed in this context, rather than 
direct consequences of the previous complexity re- 
sults. 

4.1 Query formulation and user feedback 

Schemas can be used to design user-friendly inter- 
faces for query formulation. Such an undertaking 
is however beyond the scope of this paper. Here 
we only show that types can be used to provide 
user feedback during query formulation. For exam- 
ple consider the Document schema in Section 2 and 
assume that the user query is 

Q = SELECT X3 
WHERE Root=[paper.author+Xl]; 

Xl=[-* .name.-* +X2 . -* .email+X3]; 
X24’Gray”; 

The first and last -* (in -*.name and -* .email) are 
redundant: they would have made sense if author 
had a more complex nested structure with name and 
email located deep in the hierarchy. The second -* 
(in name.-*) is not redundant, but -* can only be first- 
name or lastname. Both informations can be helpful 
to the user. They can be provided to him as a feed- 
back query: 

Q = SELECT X3 
WHERE Root=[paper.author+Xl] 

Xl=[name.(firstnamellastname))+X2. 
email+X3]; 

X2=“Gray”; 

To simplify, we restrict below our discussion to queries 
with a single ordered join-free pattern definition: 
the extension to queries with multiple pattern def- 
initions is straightforward (with joins and unorder 
having the expected effect on the complexity). Given 
a query Q with a pattern X = [Rbxl,. . , Rk-txk], 
and a schema S, the feedback query Q’ has a pat- 
tern X = [Rl’-+Xl, .,., Rk’-+Xk] s.t. (a) Q and Q’ 
are equivalent on all databases conforming to S, (b) 
lang(Ri’) 2 lang(Ri), for all i = 1.. . k, and (c) the 
query is the “minimal” such, i.e. for any other query 
equivalent to Q on S, with pattern x = [Rl”-+Xl, 

. . . , Rk”+Xk], we have lang(Ri’) s lang(Ri”) for all 
i= i...k. 

It is easy to show, using the traces technique 
described above: 

Proposition 4.1 The feedback query can be com- 
puted in PTIME from Q and S. 

Proof: (Sketch) We sketch below the main idea. 
Consider the P-traces Tr(P) and Tr(S) as in Sec- 

tion 3.4, and let Tr dgf Tr(P) fl Tr(S). Recall that 
Tr is a set of words of the form XwrXrwzXz . . . WkXk. 
Then we define Ri’ to be the regular language ob- 
tained as “the i’s projection of Tr”, i.e.: 
lang(Ri’) = {wi ( SWI,..., wi-l,wi+l,..., wk, s.t. 
XWlXl . . . WkXk E Tr} It is easy to check that this 
is indeed a feedback query. 0 

4.2 Optimization 

Alternatively, schemas and traces can be used by 
the query processor, to improve the evaluation al- 
gorithm. This is a form of semantic optimization. 
Here we illustrate for a particular computation model 
Extensions to other models are beyond the scope of 
this paper. In our model the data graph is viewed 
as an ADT with the following edge-traversal oper- 
ations: 

l firstEdge( the first (left-most) edge e of the 
node oid x. 

l nextEdge( the next edge (right brother) of e, 
or null when e is last. 

Our reference point will be the naive evaluation 
strategy. This searches the graph in a depth-first 
fashion using the two operations, going downward, 
rightwards, or backtracking to the previous parent 
node when the processing of the relevant descen- 
dents of a node has been completed. We assume 
that once backtracked from a node, the algorithm 
does not return to the node. We focus here on al- 
gorithms that, given a schema S, improve over the 
naive algorithm by pruning some of the search. Our 
cost function is the number of edges explored by the 
two traversal operations and the goal is to find an 
algorithm of the above sort that minimizes the cost 
function. 

Example. Before presenting the optimization pro- 
cess we illustrate two techniques for improving over 
the naive strategy. In the examples below the schema 
allows only finitely many databases, hence we enu- 
merate the instances rather than give the schema. 
Also, for brevity, instead of defining separately each 
instance node, we sometimes merge the definitions 
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and use a nested notation. 
(1) Downwards pruning: Consider the query SE- 

LECT x WHERE Root+.c+x], and a schema S with 
the following po,ssible instances: 

DBl=[a-+[c+[]]; 
DB2=[a-+[d-+[l]]; 

DB3=[b+[d-+[/]]. 

When evaluating the query, if we see a b edge we can 
stop the search early (and return the ernpty set). 
(2) Sidewards pruning: Consider a query SELECT 

X,Y WHERE Root=[a.b-+X, c.d+Y] , and schema with 
instances: 

DB:l=[a-+[e+[,b-+[]], c-th, c--+d]; 
DB2=[a-+[e+[],b+[]], cth, c+h]; 
DBJ=[a+[f-+[,b+U], c+d, c-+h]; 

DB4=[a+[f+[],b-+[], c+h, c+h]. 

As we search for the first path a.b we will encounter 
either a e or a f. 3 This “teaches” us how to prune 
later: in the first, case we can prune the search un- 
der the first c, in the second case we can prune the 
access to the second c and backtrack earlier. 

Of particular interest are queries over XML data. 
Since XML data is typically of tree structures, we 
focus below on join-free queries over DTD- schemas. 
To simplify, we illustrate the optimization for sin- 
gle pattern queries of the form SELECT Xl,. . . ,Xk 

WHERE Root = [Rl-tXl, . . . , Rk+Xk]. The extension 
to multiple patterns is straightforward. Other ex- 
tensions (e.g. to non-tagged, unordered databases, 
joins, partial variable selection) are beyond the scope 
of this paper. 

We now briefly describe the optimization algo- 
rithm. Given a schema S and a query Q, we use 
traces (similar to those of Section 3.4) to construct 
a non determinist,ic automata 0 accepting a regular 
language lung(O) c (AU(X))*: here we need a sin- 
gle symbol X standing for any of the variables in the 
pattern. (The actual construction of the automata 
is omitted). Using this automata we now modify 
the naive evaluation algorithm as follows. Let r be 
the root of the data graph. Rather than search- 
ing for outgoing paths corresponding to words in 
Rl,..., Rk, we now look for paths corresponding to 
words of 0: we do the search is a depth first fashion 
as before, running O’s automata against the graph, 
with one difference - each time that 0 tells us to 
look for a X edge, rather than continuing with the 
children of the current node, we prune the search 
and move to the next (right) child of the root. Note 
however that we istill insist on a depth first search, 
meaning that all the moves of the above form are in 

- 
3Recall that, viewing the graph as an ADT with the above 

two traversal operations, the edges are traversed from left to 
right. Hence, to reach the b edge, these left brothers need to be 
traversed first. 

fact deferred to be executed only after the process- 
ing of edges below the previous root child is finished. 

We will refer to the algorithm above as Ao. The 
following property guarantees its optimality. Ob- 
serve that at each point in time the portion of the 
graph explored by the algorithm is an ordered sub- 
graph Go of G, i.e. a subgraph s.t. whenever Ge 
contains some edge e, then it also contains all its 
left brothers. A data graph containing Ge as an 
ordered subgraph is called an extension of Go. 

The extension property: An edge u+u is in Ge 
iff Ge has an extension G’ with some node v’ s.t. 
v’ E Q(G’) and v’ is either v, one of its right bothers, 
or a descendent of v or its right brothers. 

Based on that we prove the following: 

Theorem 4.2 Let A be some other evaluation al- 
gorithm for the query Q, 4 Then for any data graph 
G, cost(A, G) 2 cost(Ao, G). 

Proof: Assume there exists a data graph G for 
which A outperforms AC,. Due to the extension 
property, whenever A skips an edge in G that Ao 
read, we can extend the subgraph Gc seen so far 
to an instance G’ where some answer of Q resides 
in a part that is not accessed by A (either below 
the unread edge, or below one of its right brothers). 
Since after skipping the edge, A cannot go back to 
read it or its right brothers (this is the computation 
model assumed), A, when running on G’, does not 
compute a correct full answer. A contradiction. 0 

4.3 Transformations 

Besides querying in a strict sense, query languages 
can be used to restructure and transform semistruc- 
tured data or to integrate semistructured data from 
several sources. If we have validating schemas for 
both input and output data, a central issue then 
becomes whether the resulting data is valid w.r.t 
the given output schema. Of course, we can always 
check validity after query execution, but this may 
result in run time errors, which are hard to recover 
from. The type checking problem for transforma- 
tion queries is: given schemas S1 and S2 and a 
query Q, check whether for any instance G of Sl, 
Q(G) conforms to S2. A related problem is type 
inference: given an input schema Sl and query Q, 
find the “most specific” schema S2 describing the 
possible query results. 

We consider here transformations by means of 
Skolem functions. (An abstraction of the query 
languages for semistructured data described in the 
literature [PAGM96, BDHS96, FFK+98, CDSS97, 

4Recall that we focus here on a specific computation model 
and A is assumed to belong to the given class. 
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MZ98]). We show in the full paper that, in general, 
the type inference may not have a solution: there 
may not exist a schema best describing the transfor- 
mation result. It exists however for transformations 
having one singled-variable Skolem function, and in 
the full paper we present an algorithm deriving it. 
The algorithm is based on traces, and its complexity 
is exponential time. In general one cannot do much 
better: we prove that the problem is PSPACE hard. 
But, as before, restricting the allowed schemas and 
queries leads to polynomial solution. The algorithm 
can be extended to handle transformations with ar- 
bitrary Skolem functions, but then its result is an 
approximation. 

5 Conclusion 

We studied in the paper the interaction between 
schemas and queries in semistructured data. We 
focused on type checking and inference, offering a 
nearly complete picture of the complexity of the 
problems, and introducing a novel Traces technique, 
proved to be useful for several other significant tasks 
such as query formulation, optimization, and vali- 
dation. Type checking and type inference are well 
studied problems in functional programming lan- 
guages [MitSO, Mit96]. The complexity there is de- 
rived from the interaction of function types, poly- 
morphism, and let-bindings; in our setting the com- 
plexity is derived from the interaction of regular ex- 
pressions in types with regular path expressions in 
queries. Optimization of simple queries with a sin- 
gle path expression, using types, has been consid- 
ered in [FS98] and [BM99]. The setting we provide 
here is far more general. 
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