Approximate XML Query Answers

Neoklis Polyzotis
Universit){ of California Santa Cruz
alkis@cs.ucsc.edu

ABSTRACT

The rapid adoption of XML as the standard for data representand ex-
change foreshadows a massive increase in the amounts of XMLcdht
lected, maintained, and queried over the Internet or in lacgporate data-
stores. Inevitably, this will result in the development oflore decision
support systems, where users and analysts interactivelgreXxprge XML
data sets through a declarative query interface (e.g., XQoe XSLT).
Given the importance of remaining interactive, such on-liggteams can
employ approximate query answers as an effective mechanisnredac-
ing response time and providing users with early feedbacks dpproach
has been successfully used in relational systems and it becewea more
compelling in the XML world, where the evaluation of complexeges
over massive tree-structured data is inherently more expensi

In this paper, we initiate a study of approximate query answgetech-
niques for large XML databases. Our approach is based ona, moncep-

tually simple, yet very effective XML-summarization mechanism:
TREESKETCH synopses. We demonstrate that, unlike earlier techniques

focusing solely on selectivity estimation, OUREESKETCH synopses are
much more effective in capturing the complete tree structutieeotinderly-
ing XML database. We propose novel construction algorithondéilding

TREESKETCH summaries of limited size, and describe schemes for pro-

cessing general XML twig queries over a CONCISEEESKETCH in order to
produce very fast, approximatee-structured query answer$o quantify
the quality of such approximate answers, we propose a naoweitive error
metric that captures the quality of the approximation in terfisath the
overall structure of the XML tree and the distribution of dowent edges.
Experimental results on real-life and synthetic data seifibe effective-

ness of our REESKETCH synopses in producing fast, accurate approximate

answers and demonstrate their benefits over previously peajtechniques
that focus solely on selectivity estimation. In particUlBREESKETCHesS
yield faster, more accurate approximate answers and sélg@stimates,
and are more efficient to construct. To the best of our knovdedgrs is
the first work to address the timely problem of producing fapproximate
tree-structured answers for complex XML queries.

1. INTRODUCTION

Minos Garofalakis
Bell Labs, Lucent Technologies

minos@research.bell-labs.com

Yannis loannidis
University of Athens, Hellas
yannis@di.uoa.gr

With the rapid growth of available XML data, one can expect
a proliferation of on-line decision support systems that enable the
interactive exploration of large-scale XML repositories. In a typi-
cal exploratory session, a domain expert poses successivegjuerie
in a declarative language, such as XQuery [4] or XSLT [7], and
uses an appropriate visualization of the results in order to detect
interesting patterns in the stored data. Obviously, the successful
deployment of decision-support systems depends crucially on their
ability to provide timely feedback to users’ queries. This require-
ment, however, conflicts with the inherently expensive evaluation
of XML queries, which involve complex traversals of the data hier-
archy, coupled with non-trivial predicates on the path structure and
the value content.

Generatingapproximate answers a cost-effective solution for
offsetting the high evaluation cost of XML queries. In short, the
system processes the query over a concise synopsis of the XML
data and returns an approximation of the true result. Ideally, this
approximate answer is computed very fast and is accurate in the
sense that it preserves with low error the statistical traits of the true
result. The user can then examine this “preview”, assess the infor-
mation content of the true answer, and decide whether it needs to
be retrieved by executing the query over the base data. Overall, by
providing the user with fast and accurate feedback on the form of
the results, the system can reduce the number of queries that need
to be evaluated in order to support effectively the data exploration
task.

In a typical scenario, the result of an XML query is an XML
fragment that is constructed by appropriate projections on the orig-
inal data; an approximate answer, therefore, is an XML document
that resembles the true answer in terms of hierarchical structure
and value content. Clearly, the effectiveness of an approximate
answering system hinges upon the existence of accurate synopsis

Since its introduction five years ago, XML has evolved from Structures that capture the key statistical characteristics of the base
a mark-up language for web documents to an emerging standardXML data and can thus produce low-error approximate answers
for data exchange and integration over the Internet. Being self- {0 queries that project parts of it. Note that the problem of effi-
describing and hierarchical in nature, the XML data model is suit- cient XML summarization also arises in the context of selectivity
able for representing a diverse range of data sources and promise§Stimation, where the synopsis is only used to estimatsite®f
to enable the next-generation of search applications that will allow the result. Approximating thetructureof the result, however, is

users to query effectively the information available on the Web.

Permission to make digital or hard copies of all or part of thaknfor
personal or classroom use is granted without fee providatddbpies are
not made or distributed for profit or commercial advantage aatdbpies
bear this notice and the full citation on the first page. Toyomherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 2004 ACM 1 -58113-859-8/04/06...$5.00.

a strictly more complex problem since there are documents where
the same query produces results of equal size butweith differ-

ent structure Summarizing, therefore, an XML document in order
to compute approximate answers is more involved than building
synopses for selectivity estimation, which in itself is known to be a
hard problem [18].

Related Work®. Previous studies on approximate query answer-
ing [3, 10] have focused on the relational model, where the result

!Due to space constraints, a more detailed overview of related work
can be found in the full version of this paper [17]

of a query is typically a multi-set of values. The key idea is to and incrementally merges element clusters that are “close” in terms
process a query over an appropriate relational synopsis (such aspf element sub-structure. To make our algorithm applicable on
histograms, wavelets, or sample-based summaries) and compute afarge data sets, we devise an effective heuristic that limits the num-
approximation of the true value set. The proposed techniques andber of possible merges in every step, without compromising the
summarization methods, however, are suitable for flat relational quality of the resulting synopsis.
data and are not easily extended to the case of general XML hi-
erarchies.

As noted earlier, approximate XML query answering is closely
tied to the problem of building effective XML synopses. Recent

Ztutd'?S ha\;.e Iot(_)kedthat th? r(i]qtted frqblelmxo; stLrJ]mmarlzmg XMl‘ a novel distance metric that quantifies the differences between two
ata for estimating thé selectivity of single Xath expressions (1, trees in terms of both the overall path structure and the distribution
12,15, 16, 21, 22], or the number of binding tuples for twig queries [6Of document edges

9, 18]. Even though a selectivity estimate is essentially an approx-
imate answer to an aggregate query (COUNT), the proposed sum-® Experimental Study Verifying the Effectiveness of
marization techniques do not store detailed enough information in TREESKETCHes. We validate our approach experimentally with
order to approximate thatructureof the query result. an extensive study on real-life and synthetic data sets. Our re-
Buneman et al. [2] have recently introduced a query-able com- sults demonstrate thaREESKETCHes perform consistently better
pression scheme for tree-structured XML data. The proposed tech-than previously proposed summarization techniques: they enable
nique compresses the XML tree by using an appropriate bisimula- more accurate approximate answers and selectivity estimates, and
tion relation and evaluates an XPath query directly over the com- at the same time are more efficient to construct. Moreover, our
pressed instance. The goal, therefore, is to computxaotan- scaling experiments with large data sets show that even small-size
swer to a path query, whereas our focus is on computingpan TREESKETCHes are extremely effective in enabling low error se-

proximateanswer to awig query which typically involves the joint ~ lectivity estimates to complex twig queries (e.g., less than 5% es-
evaluation of multiple path expressions. timation error for a 10KB summary of a 100MB input document).

Combined with the affordable construction times GFEESKETCH
summaries, these results indicate th&®EESKETCHes constitute
an effective and viable in practice solution for the structural sum-
marization of large XML data sets.

e New Distance Metric for XML Documents. We argue that tra-
ditional graph-theoretic distance metrics, such as tree-edit distance,
are not suitable for evaluating the quality of an approximate answer
relative to the true result. To overcome this difficulty, we introduce

Our Contributions. In this paper, we initiate the study of approx-
imate query answering for XML queries. In order to gain intu-
ition on the complexity of the problem, this initial study focuses
on approximate answers for twig queries with branching path ex-
pressions, i.e., we consider the structural part of the problem and
ignore for now the value content of the document. As we show in 2. BACKGROUND

this paper, even this constrained version is quite complex and re- ")]

quires non-trivial solutions. Our approach is based on a novel type XML Data Model. Following common practice, we model an
of structural XML synopses, termedRkEESKETCHes, that capture, ~ XML document as a largejode-labeled tre@'(V, E). Each node

in limited space, the key properties of the underlying path distri- » € V' corresponds to an XML element and is characterized by
bution and enable low-error approximate answers for a large class@ Unique object identifier (oidand alabel (or, tag) assigned from

of interesting XML queries. We develop a systematic query evalu- SOMe alphabet of string literals, that captures the eleme_nt’s seman-
ation framework for generating approximate answers over concise tics. Edges(e;, e;) € E are used to capture the containment of
TREESKETCH synopses and describe an efficient construction al- (Sub)element; undere; in the database. (We usebel (e;),
gorithm for building an accurate REESKETCH summary within chil dren(e;) to denote the label and set of child nodes for el-
the constraints of a limited space budget. Finally, we present exper-€ment nodez; € V) As an example, Figure 1 depicts a sample
imental results on real-life and synthetic data sets that demonstrateXML data tree containing bibliographical data. The document con-
the effectiveness of our approach and its benefits over previously SiSts ofaut hor elements, each comprisingnane, and several
proposed techniques, not only for generating approximate answersPaper andbook sub-elements. Eagaper contains &itl e,

but also for enabling accurate selectivity estimation. To the best of @ year of publication and one or moreeywor ds, whereas a
our knowledge, ours is the first study to look into the problem of POOK justgivesitsi t1 e. Note that element nodes in the tree are
computing approximate answers for complex XML queries. More r_la_lmed with the first !etter c_)f the elem(_ent’s tag plus a unique iden-
concretely, the key contributions of our work can be summarized fifier. Leaf elements iff” typically containvalues but our primary

as follows: focus in this work is on approximately capturing and querying the
L . label structureof an XML data tree, rather than the relevant value
e TREESKETCH Summarization Model and Query Evaluation distributions.

Framework. Our TREESKETCH summarization model is based
on the novel concept afount-stabilitywhich captures very effec-

tively the intrinsic similarity of sub-structures in an XML doc- do

ument. Briefly, a REESKETCH summary represents a cluster- / \\)

ing of document elements, where each cluster represents elements a1 a2 as

with similarly structured sub-trees. We develop an efficient evalua- / \ / N / N\
tion algorithm that processes a query over a CONCISEEBKETCH Pa s n7 by Do b1z
and produces anotheREESKETCH synopsis that summarizes the / ¢ \ ¢ ¢
structure of the result. Futhermore, we discuss how the same al- V13 tia kis Ps Ps to3 P9 tog
gorithm can be used to estimate the result size of a complex twig PAANN Z 1\ Z 1\
query. Y16 ti7 kig kig Y20 tor koo V24 tos kog

o Efficient TREESKETCH Construction Algorithm. We describe

an efficient heuristic algorithm that starts from a detailed summary Figure 1: Example XML Document.

XML Query Model. We focus onXML twig queries which rep- Abstractly, our general graph-synopsis model for an XML data

: P~ : treeT(V, E) is defined by gartitioning of the element nodes in
resent the basic building block of declarative query languages for - . X
XML (including the XQuery [4] and XSLT [7] standards). Briefly, V' (or, equivalently, by amquivalence relatio® C V' x V) that

a twig query describes a complex traversal of the XML data tree Irests)elcts ele_qufm Iab'ilS; that 'S.(dg’ ef?) if};tgenl arl])el (e:) -
and returns dree-structuredXML result constructed through the abel (e;). The graph synopsis define Yy such an equiva-

intertwined evaluation (i.e., structural join) of multiple path expres- lence relatioriz, denoted by5(T’), can be represented agmph,

: ; : ; . where: (1) each node in Sg(T") corresponds to an equivalence
sions (expressed in XPath [8]). Figure 2(a) depicts an example twig w . h : .
query over the document of Figure 1, where gtis denote variable class ofR, i.e., a subset of (identically-labeled) data elements in
names that are bound to specific data elements during query evalu-T (termed theext.ent(.)f v and Qenoted bye.xt ent (v); and, (2)
ation. We model a twig quer§) as a node-labeleguery treeTy,, an edge(u, v) exists 'nS.R(T) if and _onIy if some element node
where (1) each node df, is labeled with a variable namg in Q in ext ent (u) has a child element in the extent of (We use _
(with ¢ being a distinguished root node always bound to the XML ! a?el t(v) to denote the common label of all data elements in
document root); and, (2) each edge, ¢;) of T is annotated with exten _(”)') .)
an XPath expressiopath(q;, ¢;) that describes the specific struc- . Ata h'.gh level, several recently-proposgd t.echnlques for build-
tural constraints specified i@ between the data elements bound ing p_ath-lndex structures for XM.L (mcludmg-mdexes [14] and
to ¢; andg; during evaluation. For instance, the query tree corre- A(k)-indexes [11]), as well as statistical summaries for XML databases

. . . g including XXETCHes [15, 16] and twig-X&ETCHes [18]) are all
sponding to our example twig query above is shown in Figure 2(b). (. S B
Following the generalized tree pattern notation [5], we use dashed based on tlhetr;l]bs;rac_t gAcl)_de-partltlonlng idea deschrlbe_d above. As
edges to separate paths that are specified in the treigien clause an example, the basic twig-X%&TCH summary mechanism (pro-

and can thus have empty results without nullifying the result of the posed by Polyzotis et al. [18] for estimating the selectivity of com-
query. plex twig queries), augments our general graph-synopsis model

We consider twig queries using XPath expressions involving only with (1). per-noge count informati(_)n that records the _;ize_ of each
the child and descendant-or-self axes (i.e., “/" and “//” operators) Synopsis nc_)des extent, (2) Iocallz_ed per-_edge stability informa-
and may include existential branching predicates of the fdfit,* tion, indicating whether the synopsis edgé#skward- and/or for-

wherel is, in general, a label path whose existence is required un- ward-stable and (3)edge distribution informatianthat captures

der a given parent node in the XPath expression. As an example, thethe distribution of child counts for the elements in the node’s ex-

“//a[//b] " predicate in Figure 2 specifiesut hor tree nodes tent, across different stable ancestor or descendant edges. These

that are located at any depth under the current binding of vargable localized _ed_ge distributions are maintained selectiyely on a per-
(the document root) and hawt least onébook descendant. Intu- node basis n the form céd_g_e h|st(_)gramsand es_sent|all_y enable
itively, the evaluation of a twig querg proceeds by jointly evalu- the computation of se_lectlvny estlmates for twig queries. 'For a
ating all XPath expressions @ over the XML tree, and generating simple .example, consider a synopsis nmjend t.WO emanatlr)g

the full set ofbinding element tuple®r Q’s variables. Each such ~ SYNOPSIS edges — v andu — w. A two-dimensional edge his-
binding tuple essentially specifies an assignment of element nodesmgramH“(Cl’ c2) would capture the frac.tlon of data elements in
to all theg; query variables such that all structural constraints spec- ex_t ent (.u) that have exactly, children inext ent (v) andc;

ified in the query’s(q;, ;) edges are met. We will represent the children inext ent (w).

binding tuples of a quer§) with anesting treeN+ (@), which con- Limitations of Selectivity-Estimation SynopsesGiven the amount
tains all the elements @F that appear in the bindings of different of earlier work on XML summarization and the number of already-
variables and in addition preserves their ancestor/descendant relaexisting synopsis data structures for XML, a natural question that
tionships as specified by the query paths. Figure 2(c) shows thearises is whether there is a real need for a new summarization mech-
nesting tree for the example query of Figure 2(b). Obviously, the anism for approximate XML query answering. Our key observation
nesting tree can be used to reproduce the binding tuples of a queryhere is that the focus of all earlier work in the area has been on the
and ultimately its result. problem ofselectivity estimatiorffor XPath expressions [15, 16]

or twig queries [6, 18]) and, unfortunately, even the state-of-the-art
solutions for XML selectivity estimates prove to be inadequate in

g0 do accurately capturing the complete tree structure of the underlying
for $qyin//a[//b] //a[//b]\L / \ document.
for $qz in 8q1// p o as as We illustrate our observation with a simple example on twig-
ret;rn/ . . //n i\ i\ XSKETCH synopses (we focus on the twig-X8TCcH model since
f0q|’1$q3 in Sa/ k //pi q it also uses a graph-synopsis and it is applicable in the general
return $g3 2 Ps m7 Po 710 case of schema-less documents.) Consider the two XML docu-
//k\il i J{ ment treesT; and 7> shown in Figure 3(a,b). Both documents
a3 k k have the same set of distinct label-paths and differ only in the num-
22 26 . . .
@) () © ber of ¢ children for the different elements (the corresponding

counts/multiplicities are shown along the edge). It is straightfor-

Figure 2: Example Twig Query (a), Query Tree (b), and Nesting ward to verify that any twig query will have the same selectivity
Tree (c). in either of the two documents and, in effect, both documents map
to the samezero-error twigXSKETCH synopsis shown in Fig-
ure 3(c), with the (exact) edge histograms for nodeand B de-
picted in Figure 3(d). Consider, for instance, the twig quéry
3. TREESKETCH SYNOPSIS MODEL shown in Figure 3(e). Using the twig-%&TcH and the method-

. ology in [18], we can estimate its selectivity/6Q) with the ex-
3.1 General Graph-Synopsis Model pression &l(Q) = |extent (A)| - 3=, Ha(b) - Hp(c|b)-b-c,

which yields the same (accurate) estimaté®for both documents

T, andT». Note, however, that the tree structure for the binding
tuples of(Q is in factvery differentacross our two example docu-
ments. For example, looking at the edge distribution in the query
result, for document’, eachA element appears i binding tu-
ples, while for documenrty, one elementd;) appears ir2 tuples

and the otherdz) appears ir8 tuples. This type of information

is not captured by the twig-X&TCH synopsis, since it does not
affect the overall selectivity estimate.

R(1)
AN AN B/F
a1 a2 ai a2 A(2)
A\ v\ A\ v\ B/Fi
b b b b b b b b
\Ll \1/4 ¢1 ¢/4 ¢/1 \1/1 \L4 \L4 B(4)
Cc Cc C Cc C Cc C Cc B/F\L
T1 T2
C(10)
() (b) ()
qo
//A 1 1 1
ENE0N v AN
2 1 1 a a a
——— N e
(6] c Hsb | b b b b
211 12
2[4 172 o ! /1 ﬁ/;
¢ Sr(T1) Sr(T2)
as
(d) (e) U]

Figure 3: (a) DocumentTt, (b) DocumentT%, (c) Twig-X SKETCH, (d)
Edge-histograms, (e) Twig queryQ, (f) Count-Stable Synopses.

Again, the key observation here is that, while twig-%S cHes
and edge histograms provide an accurate summarization mecha
nism for twig selectivity estimation, they cannot model the details
of the tree structure for the twig query’s binding tuples; thus, we

if and only if, for every possible pair of element partitiofis v)
there exists some > 0 such that(u, v) is k-stable.

Note that the element partitions v in the above definition es-
sentially correspond to thext ent s of synopsis nodes i§z(7);
furthermore, fork-stability, we treat the special cage = 0 as
the absence of child elements (i.e., no synopsis edge between
andv). As an example, the count stable summaries for the XML
trees of Figure 3(a,b) are shown in Figure 3(f), where the summary
edges are annotated with the correspondintj is easy to see that
our notion of count stability is aefinementof the traditional F-
stability relation for trees employed by both XSrcHes [15, 16]
and twig-XXETCHes [18]; in other words, the equivalence classes
for the count-stability relation are generated by further partitioning
the equivalence classes for F-stability.

Intuitively, our concept of count stability tries to define a class
of equivalence relations where element nodes are grouped together
only if the data sub-tree structures underneath them are identical.
As the following lemma shows, the count-stable graph-synopsis for
a data tre€l" is uniquely defined and, furthermore, it accurately
captures the structure @f.

LEmmA 3.1. Given a data tred’(V, E), there exists a unique
minimal (in terms of the number of equivalence classes) count-
stable equivalence relatioR C V' x V. Furthermore, there exists
a functionExpand from stable relations to XML trees, such that
Expand(R) is isomorphic to the original document trge |

Thus, the tree structure of the original documéhtan be re-
trievedwith zero-errorfrom a synopsisSg(7)) if R is stable. The
problem, of course, is that the size of a count-stable synopsis can
become very large — it can easily be in the order of the original
document size. Given the stringent time and storage limitations
typically associated with interactive approximate query answering,
itis clear that perfect count-stable summaries cannot be very useful
as a data-approximation tool for real-time XML data exploration.
Instead, our proposedREESKETCH synopses try tapproximately
capture the underlying document-tree structure within a predefined
space budget. Intuitively, the key idea behinHEESKETCHes is
to locally approximatecount-stable relations in the graph-synopsis
wherever structural correlations exist in the underlying data, while

expect them to be inadequate as a general-purpose approximatéelaxmg the count-stability requirement where such correlations are

query answering tool. (The results of our empirical study in Sec-
tion 6 clearly verify our expectations.) Furthermore, as this paper
demonstrates, our new synopses are also conceptually simpler, sig
nificantly easier to build, and provide more accurate results than
twig-X SKETCHeseven for the simpler selectivity estimation prob-
lem

3.2 Count-Stability and the TREESKETCH Syn-
opsis
Our proposed REESKETCH synopsis data structure is a specific
instantiation of the generic graph-synopsis model outlined earlier
in this section. REESKETCHes rely on a novel, intuitive concept
of localized stability, termedount stability defined formally as
follows.

DEfFINITION 3.1. LetR C V x V denote a (label-respecting)
equivalence relation over the nodes®fV, E), and let(u, v) de-
note a pair of equivalence classes (i.e., element-node partitions)
induced byR. We say that the paifu, v) is k-stable(wherek > 0)
if and only if each element € u has exactlyk child elements in
v. The relationR and the graph synopsiSg(T") resulting from
the corresponding element partitioning are said todoeint stable

not dominant and independence/uniformity assumptions are suffi-
cient. Our TREESKETCH synopsis model is simply defined as fol-
lows.

DEFINITION 3.2. A TREESKETCH synopsisZ S for an XML
data treeT is a node- and edge-labeled graph-synopsis Tor
where: (1) each node in 7S stores an element couobunt (u) =
lext ent (u)|; and, (2) each edgéu, v) in 7 S stores an (average)
child countcount (u,v) equal to theaverage number of children
in ext ent (v) for each element iext ent (u). |

Thus, instead of storing complex histograms for edge combina-
tions in a B/F-stable neighborhood of a node (like twigrES cHes
[18]), our TREESKETCHes simply maintain a localized average
child count for each edge in the synopsis (without requiring any
stability properties for that edge). The interpretation of the stored
average is simpleall elements in the extent afhavecount (u, v)
child elements in the extent af Obviously, this is trivially satis-
fied in a stable synopsis where each efigev) is count stable for
k = count (u,v).

There is an interesting and intuitive connection betweese
SKETCHes and the clustering of points in multi-dimensional spaces.
More specifically, letu be a synopsis node with outgoing edges

u — v, ..., U — v,. The set of outgoing edges definesa Procedure BuiLD STABLE(T')
dimensional space, where an elemer¢ « is mapped to a point Input: XML DocumentT".

(c1(e),...,cn(e)) if it has ¢;(e) children to nodey;, 1 < i < n. t?“tipnm: Count-Stable synopsis of 7.

The recorded average edge counts essentially map all points in thislfeg H=¢:8=6

space to poin{count (u,v1),...,count (u,v,)), which actu- 2. for eachelement € T in post-orderdo

ally represents theentroidof the cluster. We can thus characterize 3. C :={(ui,¢;) : u; isanodeinS and

the quality of a REESKETCH synopsis by using a metric that quan- [chi I dren(e) Nextent (u;)] = ¢; > 0}

tifies the quality of the induced clustering. The metric that we adopt 4. if (H[l abel (¢), C] = ¢) then

in our work is thesquared errorof the clustering, which essentially > Add nodeu to S with | abel (u) = | abel (e)
- . . . 6. H][l abel (¢),C]:=u

measures the euclidean distance between points and their corre- .

sponding centroid. The squared error for a single clustisrde- g eng;fr (ui,ci) € C doadd edgar — u; 105

fined assq(u) = Y- ¢, 21<i<, (ci(e) — count (u, v:))?, while 9. w:=H][l abel (e),C]; ext ent (u) := ext ent (u) U {e}

the squared errofq(7 S) for a synopsisZ S is simply the sum of 10. endfor

squared errors for all the induced clusters. Note, of course, thatend

the squared error for a count-stable synopsis is zero since all edge- Figure 4: Algorithm BUILD STABLE.

count centroids arexact i.e., the child counts for any element in a

given synopsis-nodext ent are identical (and equal to the corre-

sponding edgeount s). We have chosen the squared error metric -

sirilce it gaptgres a no)tion of weighted varianccza, but it is possible 4.2 BU|Id|ng TREESKETCH SynOpseS

to use other metrics such as the Manhattan distance or the pair- As already mentioned in Section 3.2, the size of an exact count-

wise intra-cluster distance. Irrespective of the actual choice, the stable synopsis typically renders it useless in the context of a real-

existence of a workload-independenkAESKETCH-quality met- life approximate query processing system. Such systems usually

ric is a major difference from earlier summarization techniques place tight limits on the space budget for building synopses of

which are also based on graph synopses, but quantify the qualitythe underlying data collection. Thus, there is a clear need for ef-

of summaries on a per-workload basis (examples include both XS- fectively constructingcompressed REESKETCH synopses under

KETCHes and twig-X®ETCHes.) As we will see later, this feature a given space budget, while maintaining a high-quality XML-data

will enable fast construction times, since the quality of a summary approximation in order to enable meaningful approximate answers.

in the space of possibleREESKETCHes can be determined very Given the aforementioned natural analogy between
efficiently, without requiring the costly evaluation of a query work- TREESKETCHes and data clustering (Section 3.2), our goal of con-
load (as in the case of X&TCH and twig-XETCH construc- structing an effective synopsis can be translated to computing an
tion). effective clustering of the XML elements. Here, of course, an ele-

ment cluster is “tight” if it encompasses data elements with similar
sub-trees, and “tightness” can be quantified usingth&red error
4. SYNOPSIS CONSTRUCTION AND QUERY for the clustering (as discussed in Section 3.2). Thus, our goal is to
PROCESSING build a TREESKETCH synopsisZ S that fits within a given space
In this section, we start by describing novel, efficient bottom-up Pudget, such that the overall square ew(7 S) for the synopsis
construction procedures for count-stable summaries and our!S minimized The analogy with clustering also highlights the dif-
TREESKETCH synopses (for a given space budget). We then in- ficulty of TREESKETCH construction,_since s_uch clustering pr_ob-
troduce algorithms for approximating the results as well as the se- |ems are known to b&/’P-hard even in the simple case of points

lectivities of XML twig queries over REESKETCH Synopses. in a low-dimensional space [19, 23]. Furthermor&EESKETCH
construction typically deals with a high-dimensional space which is
4.1 Building the Count-Stable Summary defined by the clustering itself (i.e., the space itself changes as ele-

ments are assigned to clusters)! Thus, the problem is significantly
more complex and existing clustering algorithms are not directly
applicable.

Our approach is based on a genéattom-upclustering paradigm:

Our algorithm for constructing the complete count-stable sum-
mary of an input XML tre€l” (termed BJILD STABLE) is depicted
in Figure 4. In a nutshell, BILD STABLE processes element nodes

in a post-order traversal @f and constructs the count-stable synop- tarting f th t-stabl) lqorithm (t 4TS
sis graphS in a bottom-up fashion. A hash tabl€[l, C] is used to starting from the count-stable synopsis, our algorithm (terme)

maintain the collection of equivalence classes (i.e., synopsis nodes)B_U'LD_) |_ncrementally reduces Fhe Synopsis size by_me_rglng nod_es
built thus far, hashed on the (common) class ldbaid the iden- with similar sub-structqres, .untll thg budget cqnstramt is met. Thls
tifying tuple of child elements and count& The key observation resemples agglomerative _hlerarchlcal c_Iusterlng algorlt_hms, which
here is that, by virtue of the post-order traversal, when visiting an start with one cluster per input (_jata p(_)lnt an'd successively red_uce
element node:, its children inT have already been assigned to the number of clgsters_by merging _nelghbormg groups (acco_rdln_g
equivalence classes if; thus, the equivalence clas fercan be to some appropriate distance metric). Another possible option is
determined (with the help dff[]) based on its label and the classes a top-down approach that starts from a coarse summary and grad-

and counts of its children (Step 3). If a class fodoes not al- ually expands it by splitting nodes (this is actually the approach

ready exist, a new class/synopsis node is created and the appropriEaken in the XRETCH work [15, 16, 18]). In the clustering lit-

ate edges andount s are added t& (Steps 4-8). Finallye is erature, however, bpttom-up algorithms havg_ been_s_hown to per-

added to the extent of the corresponding synopsis node (Step 9). form l?etter than th_e_lr top-down counterparts; in addition, we have
Algorithm BuILD STABLE constructs the count-stable summary e_xperlmentally verified that bOt.tom'uP?EE%ETCH construction

of an XML tree in linearO(|T) time; note that, for building the yields much better results, without significantly increasing con-

“child-count signature” in Step 3, only the element’s child classes struction time.
are necessary, and these can be easily accessed using a stack durifitne TSBuILD Algorithm. We now describe our REESKETCH-
the post-order traversal. construction algorithm in more detail. In a nutshell, T8BD

Procedure TSBUILD (D,S,Uy, Lp,)
Input: XML documentD; space budge$; upper/lower bounds for
heap siz€Uy,, Ly,)
Output: TREESKETCH synopsisZ S of T" of size< S
begin
TS := BUILD STABLE(T)
h«— ¢
while (si ze(7S) > S) do
h := CREATEPOOL(7S, Up)
while (si ze(7S) > S andsi ze(h) > Ly) do

m «—h.popMin()

TS =m(TS) Il Applym on7TS

Letu,, be the new synopsis node

for eachm’ € hdo

if (m’.nodes N m.nodes # ¢) then
Removen’ from h
Add a merge between’.nodes — m.nodes andu,, to h
endif

14. Recomputen’.errq, m’.sizeq for allm’ € affectedh, m)
15. endwhile
16. endwhile
17.return 7S
end

/I Start with the count-stable summary

O©CoNorLONE

Figure 5: Algorithm TSBUILD.

maintains a pool ofandidate operation® be applied to the work-

ing TREESKETCH synopsisZ S (initialized to the count-stable graph),
where each operatiom in the pool merges two nodes @tS (de-
noted bym.nodes).? If m(7S) denotes the resulting synopsis af-
ter applying the merge: on7 S, we definen.errq = sq(m(7S))—
sq(TS) to be the increase in squared error fran to m(7S),

and m.sizeq = si ze(7S)— si ze(m(7S)) to be the corre-
sponding decrease in synopsis size. The pool of candidate oper
ations is organized in min-heapaccording to themarginal-gain
ratio m.errq/m.sizeq, i.e., the operation at the top of the heap

offers the least increase in squared error per unit of space that is
saved. At each step of the construction algorithm, the operation at

the top of the heap is applied, the pool is updated with new merge
operations for the new node, and the-,, sizeq metrics are re-
computed for the new pool of candidate merge operations. This
process is repeated until the heap is exhausted (i.e., no merge ope
ations are possible) or the size of theS synopsis drops below the
allotted space budget.

The pseudo-code for our TSBLD algorithm is shown in Fig-
ure 5. TSBUILD initializes the min-heag of candidate merge
operations through functionEATEPOOL (discussed below), and

d

Procedure CREATEPOOL(7 S, Up,)

Input: SynopsisT S; heap-size upper bourid, .

Output: Double-ended heap containing< Uj; merge operations.
begin

1. h«— ¢, level :=0

2. while (level < hei ght (7S) and si ze(h) < Uj) do

3. level = level 4+ 1

4. forall uw,v € 7S : | abel (u) =1 abel (v) do
5. if (max{depth(u),depth(v)} = level) then
6. Letm be the operation that merges

7. h.push(m)

8. if (si ze(h) > Uy) then h.popMazx()

9. endif

10. endfor

11. endwhile

12. return h

end

Figure 6: Algorithm CREATEPOOL.

than absolute quantities) and, thus, most of them can be preserved
across merges. More specificallyyif is the merge that was per-
formed last and.,, is the newly created node, then TGBD only
needs to compute the metrics for operations that merge parent or
child nodes ot.,,, (we denote this set of operationsafectedm));
for the remaining operations, ther,, sizeq metrics remain un-
changed.

Our second technique makes the computatiosref more effi-
cient by storind'sufficient” statisticsin each synopsis node. Briefly,
each node stores the sum and the sum of squares for the child
counts of its elements along each outgoing edge in the synopsis.
It is straightforward to show that these statistics are sufficient in or-
er to compute the squared-error metric for the synopgig'S)
without accessing the base data. In addition, in certain cases, these
statistics can be combined in order to derive the statistics of new
nodes (created through merge operations). The complete details
are beyond the scope of this presentation and can be found in the
full paper. Note that this idea is similar to the one proposed in the
BIRCH clustering algorithm [23], where clusters are represented
only by a collection of similar sufficient statistics throughout the
r(':omputation. In our case, however, the stored statistics do not ob-
viate the need to access a small subset of the base data (although
this can be done very efficiently, by accessing only the relevant
parts of the count-stable summary). Again, we defer the details to
the full version of this paper.

then applies successive merges according to our marginal-gain cri-Generation of Candidate Operations. We now discuss the de-

terion (Steps 5-15). In order to limit the memory requirements
of the algorithm and increase efficiency, the size of the operations
heap is bounded by the supplied paramétgr As operations are

tails of our GREATEPOOL algorithm for initializing a heap of at
mostU;, merge operations. An obvious approach would be to gen-
erate all possible pair-wise merges and keep thdippperations

performed, the size of the heap is gradually reduced and when itaccording to our ratio metrierrq/sizeq. Unfortunately, such a

drops below a supplied threshald,, the heap is re-generated and
the process repeated.

A potential performance bottleneck for the construction process
is the re-computation of therr; andsize, metrics for the merge
operations in the heap. To make this more efficient, our T&B
algorithm employs two key techniques. First, re-computation is
performed only for dimited subsetf the candidate merge opera-
tions. The key observation here is that the; andsize, metrics
measuredifferencesin the characteristics of the synopsis (rather

2Increasing the number of collapsed nodes per merge wouldaserthe
size of the pool and the processing time without really expapnthe search
space of the construction algorithm.

solution requires evaluatin@(N?) merge operations, wher¥ is
the number of nodes in the count-stable summary and, thus, be-
comes prohibitively expensive as the size and complexity of the
data grows. Given thatREATEPOOL is invoked repeatedly during
the TREESKETCH-construction process, this increased complexity
has a significant negative impact on construction times. On the
other hand, reducing the number of operations considered increases
the efficiency of the candidate-generation stage, but it also runs the
risk of “polluting” the heap with less effective merge operations
that can affect the quality of the generateREESKETCHes.

To overcome this difficult problem, we adopt a heuristic that lim-
its the number of merge operations considered while ensuring that
the heap only contains operations that are likely to be beneficial.

The key observation here is that a merge of two nodesd v procedure EVAL QUERY(7'S,Q)

leads to a “good” clustering of the elements involved only #nd Input: TREESKETCH 7'S of documentl’; twig query@
v have similarly structured sub-trees. Thus, OWEESKETCH- bOUtPUt: TREESKETCH TS that approximates the nesting trd- (Q)
egin

construction al_gorlthm is muc_h more likely to gpply merge opera- ;- Initialize 7S ¢, with rootr (xoot(TS), qo)
tions on the children of; andw first, before merging: andv them- 2. for eachq € Q in a pre-order traversalo
selves. This observation suggests a bottom-up approach for pop3. for each ug(u, q) € bind[q], gc € chi | dren(q) do

ulating the heap with merge operations, starting with nodes close 4. Letp,, be the main path gfath(q, qc)-
to the leaves of the current synopsis and proceeding upward to theS. E={ei|e; =u/.../v is an embedding gf., }
root. 6. forall e; =u/... /v € Edo

Figure 6 shows the pseudo-code for olREATEPOOL algorithm ; doﬁé:: EVAL EMBED (p, €:); B(ge, uQ) — (v, ki)
that implements the aforementioned heuristi@EBTEPOOL uses 0. for (v, k) in B(ge,uq) do
the concept of a nodedepthin order to examine merge opera- 1. Add nodevg (v, gc) to TS, if it does not exist
tions in a bottom-up fashion. More specifically, lebe a docu- 11. Add edgeig — vg t0 TS if it does not exist
ment element. The depth efis defined a9 if e is a leaf, and + 12. count (ug,vg)+ =k
max{depth(e.)} otherwise, where the maximum is taken over all 13- done

. o . 14. done
ec € children(e). Intuitively, the depth of an element is the 15 if (3qe € children[q] : bind[g.] = 0) then

Iongest path that.leads to a leaf descendant. The depth;yxhﬁ 16 return @ // The answer is empty

opsis node: is defined asnax{depth(e)}, where the maximum is 17. done

taken over alk € ext ent (u). CREATEPOOL evaluates merge op- 18. return 7S

erations at increasing depths in the current syngpsisand only end

records the best/;, of the operations seen thus far (this can be

implemented efficiently through a double-ended heap). Candidate Figure 7: Algorithm EVAL QUERY.
generation terminates when the current depth has been exhausted
and the heap holds the maximum allowed number of operations.

. . of bindings B(q.,uq) =< (v,k) > for variableg. (lines 4-9),

4.3 Approximate Query Processing wherev ¢ T(S angi: > O(is a)descendant count. Essentially,

We now turn our attention to the problem of generating approx- each(v, k) € B(q., uq) specifies that every element iy (the
imate answers from a conciS&REESKETCH synopsis. At an ab- current binding forg) has exactlyk descendants im along path
stract level, our query evaluation algorithm, termech EQUERY, path(q, g.). The new bindings are recorded with the insertion of
processes the input que€y over an input REESKETCH 7S and a nodevg (v, q.) and an edge.g — vg. Since an element ing
produces an outputREESKETCH 7 S¢ that summarizes the nest- can have descendants in the same noderough multiple paths
ing treeN7(Q) (the full nesting tree can be retrieved by expanding in the synopsis, all counts that correspond to the sameare ag-
TS80). As noted in Section 2, the full nesting tree can be used to gregated ircount (ug,vg) (line 12). Note that the algorithm in-
reconstruct the binding tuples ¢f and ultimately its result. The serts exactly one nodeg (v, ¢) for each paif(u, ¢), thus forming
evaluation algorithm uses the structure informatiodf in order a graph-structured summa®yS . This optimization, which guar-
to identify matches of the query’s path expressions, while the stored antees a worst case size®@f|7 S| - |Q|) for the intermediate result
edge counts are used to approximate the cardinalities of the corre-synopsis, stems from the interpretation of tHREESKETCH sum-
sponding result sets. Similar to any summarization method, the marization model: all elements i contain identically structured
use of the stored information is coupled with a set of appropriate sub-trees and thus need to be represented only once in the synopsis
statistical assumptions that compensate the lack of detailed distri- (regardless of their ancestor nodes.) The query gaslencluded in
bution information at certain parts of the synopsis. As we will see, the association in order to correctly handle the case where elements
the validity of these assumptions depends on the quality of elementof the same node appear in the bindings of different query nodes.
clustering within each synopsis node and is thus directly linked to In order to compute the set of binding¥q., u¢) for variableq.,
the heuristics of the TS®BLD algorithm. Intuitively, this direct the algorithm first identifies the synopsis paths that possibly con-
relationship between the build algorithm and the query process- tain descendants afg alongpath(q, ¢.), and the number of de-
ing framework leads to the construction of summaries that compute scendants along each path is computed with algorittvaLEM-

highly accurate approximate answers. BED. The separate invocations of/E. EMBED essentially apply
Figure 7 shows the pseudo-code for algorithmAEQUERY. an independence assumption between the different variables of the

The algorithm processes quefyover the input synopsig S and query, which translates to an independence assumption on the un-

incrementally builds the resultREESKETCH 7S¢. Each node derlying path distribution. We defer this point to the end of the sec-

ug € T8¢ corresponds to a set of elements withitadbel (ug), tion, where we discuss the relationship of the processing assump-

which come from the extent of a node € 7S and will appear tions to the general FEESKETCH framework.

in the bindings of query variable € Q. We will use the nota- The pseudo-code for algorithmvEL EMBED is shown in Fig-

tion ug (v, ¢) to denote this association and the shorthandq) ure 8. The final descendant count is computed as the number of

when no confusion arises. In additidrnd[g] will denote the set descendants, along the main path of the embedding, scaled by

of nodes in7 S that contain bindings fog. the selectivity factors of the branch embeddings. The cauns

Initially, the approximate REESKETCH contains a root node estimated simply as the product of the corresponding edge counts,
rq(root(7S), qo) which specifies the binding of the topmost vari- using the assumption that every element in source ngdeas
able g to the root of the document. The algorithm processes the count (u;,u;+1) children to target nodes;: (this is the basic

query nodes in a pre-order traversal and, for each modalu- interpretation of the REESKETCH model.) To estimate the selec-
ates the path expressions to the childreg,afelative to the com- tivity s; of branching predicatk;, the algorithm calls itself recur-
puted bindings inbind[g]. More specifically, for each child. sively to compute the number of descendants for each element of

and bindingug (u,q) € bind[qg], the algorithm computes a list nodeu; (the source of the branch) along the different embeddings

Procedure EVAL EMBED(p,e)

Input: XPathp =1 1[['1]/ .../l o[l »]; synopsis path
e=up/u1/.../un, whereui /... /un is an embedding of
l1/l12/.../In

Output: Estimated number of descendants for each elementatdngp.

begin

1. ng:=]lgci<ncount (u;—1,u;) // Descendants along main path
2. foreachl; € pdo // Compute the selectivity of branches
3 E; :={ej | ej =wu;/v1/... /v, is an embedding df;}
4 fOI'a””L}li{e]'|6j:ui/..‘/l)lEEi}ide
5 ki =3, cm, EVALEMBED(I';, ;)
7 done
8 if ElijNiikalthen
9. S = 1
10. else
11. S; = < E kj — E (k] . kl)
kjEN; kj ki EN;,j#£L
(kj - ki - km) — -+ | Ilinclusion-exclusion
kj kp ko, Al#m
12. endif
13. done
14. return ng - [<<y Si
end o

Figure 8: Algorithm EvAL EMBED.

of [;. If there exists at least one embedding such that the descen-

dant count is> 1, then all elements in; satisfy the branching

predicate and the selectivity is equal to 1. In the opposite case (al

to verify that each element inp, has 10 descendants along path
/] a to nodeA. As a result, nodég (4, ¢1) is inserted in7Sg
along with edgerg — Ag, andcount (r4,Aq) = 10.

Let us consider now the processinggef and more specifically,
the computation of bindings fromy to ¢3. Starting from node
A, which appears in the bindings @f, we can identify exactly
one simple embedding ekth(qi,¢3) = d[/g]//£f, namelye =
A/D/F. The bindings ofj3, therefore, will be the descendantsaof
along the given embedding. To compute the number of descendants
for each element in (algorithm EvaL EMBED), we first observe
thatn; = count (A,D) - count (D,F) = 2- 0.5 = 1. This count
needs to be scaled by the selectivity of the branching predjg¢gte
for which there exist two embedding8;, with descendant count
0.6, andG,, with descendant count 0.7. Essentially, 60% of ele-
ments inD have a branching embedding alogg and 70% have
a branching embedding alor@. The overall branch selectivity is
computed as = 0.6 + 0.7 — 0.6 - 0.7 = 0.88. Thus, the number
of descendants alordf / g] / / f for each binding inz; is1-0.88
and 7 S is updated accordingly. The final result synopsi§ ¢
is shown in Figure 4.3(c) (synopsis nodes are annotated with the
corresponding query nodell.

As noted previously, the evaluation algorithm applies a set of in-
dependence assumptions during the processing of an input query
over a concise REESKETCH summary. At a closer inspection, all
the processing assumptions can be reduced to a basic independence
assumption that de-correlates the distribution of document edges
along different paths of the document. This assumption is essen-

(tially derived from the interpretation of theREESKETCH synop-

descendant counts are strictly less than 1), each count is treatec!S M0del: given a synopsis edge— v, all elements iru have

as the fraction of elements i that have descendants along the

corresponding embedding of the branching predicate. Since an ele

ment satisfies the branching predicate if it is the roaitdéast one

matching embedding, the overall selectivity is computed using the
inclusion-exclusion principle on the recorded fractions (line 11).
We note that the application of the exclusion/inclusion principle
essentially makes use of an independence assumption on the distr
bution of document edges, which, as we discuss below, is derive

from the interpretation of the REESKETCH summarization model
and is closely related to the squared error of the synopsis.

” ; rq(qo)
10\L
//a¢ 10¢ rolar)

N,

5/ \L(l .88

Bo(q2) Eq(q2) Folgs)

NS

d[/g]//f/qu‘e 5/i\2
s e B "% D

NN

q4 F

Fg(qa)
c 1.5
qt i 1.5¢
Cq(gs)
(@) (b) (c)

Figure 9: (a) Query @, (b) TREESKETCH 7S (c) Result
TREESKETCH 7 S¢q.

EXAMPLE 4.1. Consider the invocation VAL QUERY on the
query@ and synopsig S shown in Figure 4.3. Initially, the result
synopsis contains a rooty (r, go) only andbind[go] = rg. On
the first iteration ofEVAL QUERY, variableqo is processed and the
bindings of child variable;; are computed. In this case, it is easy

|_
gforward to observe that the validity of the assumption is directly

count (u,v) children inv, independent of incoming or outgoing

_paths (Section 3). Obviously, this interpretation is trivially satisfied

on a stable synopsis where, by virtue of count-stability, all elements
in the extent of a node have the same edge counts to child nodes.
As a result, AL QUERY will compute the exact nesting tree of

a query when the accessed edges of the synopsis are count-stable.
In the general case of a compresseREESKETCH, it is straight-

related to the error of the induced element clustering: if the error is
low, i.e., the clusters are tight, then the elements are closer to the
centroid (which is defined by the recorded average edge counts),
and the assumption becomes more valid. In essence, there is a close
relationship between the squared error of the synopsis, which quan-
tifies the tightness of the clusters, and the quality of the generated
approximate answers. This observation provides the “missing link”
between the construction algorithm and the evaluation framework:
although the build process does not use a workload-based approach
to ensure high-quality approximate answers, it achieves the same
goal by keeping the squared error low and thus making the basic
independence assumption more valid.

4.4 Selectivity Estimation

In this section we briefly discuss the use afHESKETCHes for
estimating the selectivity of twig queries. As shown in earlier stud-
ies [5, 13], accurate estimation for the number of bindings tuples
for twig queries is a key requirement in producing effective query
plans for complex declarative queries over XML data.

Our proposed estimation framework uses the result of the E
QUERY algorithm to efficiently compute an estimate of the query’s
selectivity. More specifically, the estimation algorithm performs
a single post-order traversal of the structural summas and
computes, for each node, the average number of binding tuples per
element in its extent. Given the bounded siz& & r, it becomes
clear that the estimation process has low memory requirements and

can be performed very efficiently. In the interest of space, we do
not discuss the estimation algorithm further. The full details can be
found in the full version of this paper.

5. ANERRORMETRIC FOR APPROXIMATE
XML QUERY ANSWERS

values. In short, these studies have argued convincingly that set-
theoretic metrics, which correspond to syntax-oriented metrics in
the XML world, do not yield intuitive results when comparing two
value sets (the approximate and the true answer). This has led to
the introduction of new distance metrics, such as the MAC [10] and
the EMD [3], in order to measure effectively the quality of approx-
imate answers to relational queries.

In order to evaluate the effectiveness of the proposed approximatea New Distance Metric for XML Trees. We introduce a novel
query answering framework, it is necessary to measure the degreejistance metric, termeBlement Simulation Distance (ESDhat

of similarity between the approximate nesting t¥e s (Q) that

is computed over a concise synopgi§, and the true nesting tree
N7 (Q) of the query. More formally, this translates to comput-
ing a distancelist4(N7s(Q), Nr(Q)o) between the two XML
trees which essentially quantifies the error of approximation. There

avoids the shortcomings of syntax-oriented metrics by capturing re-
gions ofapproximate similaritypetween the compared XML trees.
To the best of our knowledge, ours is the first metric that consid-
ers both the overall path structuaadthe distribution of document
edges, when computing the distance between two XML trees.

are numerous proposals for distance metrics over trees, the most e now describe the ESD metric in more detail. ket T

widely used being théree-edit distance metrif20]. As we will

andv € T, be elements of the compared trees wittbel (u) =

see next, however, the proposed metrics essentially measure the abel (v). We wish to define a functiof'S D (u, v) that measures

syntacticdifferences between the two XML trees and thus fail to

the degree of “simulation”, or sub-tree similarity, between the two

capture the semantics of approximate answers. We note that ourelements. Let/; and V; denote the children of, and v respec-

discussion will focus on the tree-edit distance metric, but our ob-
servations hold for other graph-theoretic metrics as well.
The tree-edit distancdistg(T1,T2) between two XML trees

tively that have tag. If we treatU;, V; as two sets of “values”,
where the distance between any two elemenits U;,v' € V;
can be measured d&8SD(u’,v’) (i.e., a recursive application of

Ty andT> measures the minimum cost sequence of edit operations the metric to the children of., v), then we can measure the dis-

that transformi; to T (or vise versa). The basic edit operations
include adding, deleting, or relabeling a tree node, while more com-

tancedists(Uy, Vi) betweenU,, Vi by using any existing value-
set distance metric, like MAC [10] or EMD [3]. The result is an

plex operations (such as copying whole sub-trees) are usually mod-indication of how wellu’s children of tagt simulatev’s children

elled as a composition of simple operations. Consider, for instance,

the example of Figure 10, wherg. and S, denote sub-trees of
sizes|S.| and|Sq| respectively and numbers along edges denote
child cardinalities. We will assume thdt is the true nesting tree
of the query, andl}, T> are two possible approximations. If we

limit the edit operations to node insertion and deletion, and assum-

ing that each operation has unit cost, it is straightforward to show
thatdiste(T,T1) = 3 |Sc| + 3 - |S4| (essentially, we have to add
3 5. sub-trees to the left element ofl; and delete &, sub-trees
from the righta element in order to transforffi, to 7). Similarly,
distg(T,T>) = 3-|Sc| 4+ 3-|S4|. According to tree-edit distance,
therefore, 71 andT> are equally good approximations of the true
result. Intuitively, however, we expe@t to be a better approxi-
mation since it maintains the correlation between the numbgg. of
and S, subtrees under the same parent (f&ware combined with
severalS; and vise versa); answék, on the other hand, conveys
exactly the opposite trait, that there is an equal numbef.aind
Sq sub-trees under every

a/r\a
Y\
Sc Sa Sc Sa
T

a/r\a
Yz 2\’

Sc Sa Sc Sa
T

a/r\a
Wi
Sc Sa Sc Sa
T

Figure 10: Query answerT and two approximations 71, T

The previous example illustrates that the syntactic difference be-

tween two documents, as measured by tree-edit distance or othe

similar graph-theoretic metrics, is not a suitable similarity metric
for approximate answers. Intuitively, an approximate answer is
useful if it preserves the statistical traits of the true answer, with-
out necessarily being identical to it, and the distance metric should
capture this type of “approximate” similarity. Similar observations

have been made in the context of approximate answers for rela-

tional queries [3, 10], where the result of a query is a multi-set of

of the same tag. The ESD distance betweemndv can now be
measured as the sum of distances for children of matching tags:
ESD(u,v) =3, dists(Us, V). In effect, two elements are more
(or less) similar if their children with matching tags are more (or
less) similar themselves, which recursively extends to the whole
sub-structure underneath the two elements. In the case where one
of U, Vi is empty, we apply a straightforward transformation so
that the computation ofists (U, V;) is well defined. More con-
cretely, assume without loss of generality that= (. For each
elemente € Uy, we insert a unique (artificial) elemeat in V;

with distanceESD(e, e,) = |e|, where|e| is the sub-tree size of

e, and ESD(¢€’,e,) = oo,Ve' € U, e’ # e. This transforma-
tion essentially models the insertion of the missing sub-trees under
v and allows the set-distance metric to be computed on the new
non-empty sev;.

ExampPLE 5.1. Consider the example of Figure 10 and tet
and v be the lefta elements ofl" and T; respectively. Elements
u, v have children of tags andd (the roots of sub-treeS. andSy)
and thusESD(u,v) = dists(Ue, V) + dists(Uaq, V). In order
to computedists (U, Ve), we observe that the pairwise distances
ESD(ci,cj),¢i € Ue,c; € Ve are equal to 0, since the elements
have identical sub-trees. Essentially, the two value sets contain
equal values but at different multiplicities. If we use the MAC met-
ric [10], then the computed distane&sts (U, V.) is equal to 8
due to the difference in value frequencies. On the other hand, sets
U, andV; have the same elements at the same frequencies and thus
dists(Ug,Vg) = 0. Overall, ESD(u,v) = 8 + 0 = 8. Now, as-
sume that’ is the lefta element off». Itis straightforward to show
that, under the same MAC metrig,SD(u,v’) = 6 and thus, as
expected intuitively, the elementBf simulates better the element
of the true resultll

Having defined the ESD metric between any two elements, we
define the ESD metric between two tréas T, asESD (11, 12) =
ESD(root(T1),root(12)). We note that?SD(T4,T>) does not
lend itself to a meaningful interpretation, except that a lower value
represents increased similarity betw&&nandT. This, however,

is a common characteristic of metrics that measure the approxi- | pata Set Elements | File Size (MB) | Stable Synopsis
mate distance between complex objects (e.g., a similar observation Size (KB)
holds for the MAC and EMD metrics). We note that it is possible IMDB-TX 102,754 3 "
to compute the ESD metric efficiently by first building the stable XMark-TX || 103,135 5 276
. - . SProt-TX 182,300 4 265
summaries ofl; and7; on the fly and then evaluating the metric VDB 536.807 7 149
on the stable synopses. The key observation is that a stable sum- | ymark 2,048,180 100 2,652
mary preserves the path structure and the edge distributions of the | sprot 473,031 10 645
original document, while containing fewer nodes. A detailed de- DBLP 1,594,443 48 204

scription of the computation of ESD on stable summaries can be

; ! Table 1: Data set characteristics
found in the full version of the paper.

IMDB-TX | XMark-TX | SProt-TX

6. EXPERIMENTAL STUDY Avg Number of 3,477 2,436 104,592
In this section, we present an extensive experimental study of Binding Tuples

TREESKETCHes on real-life and synthetic data sets. Our results IMDB | XMark | SProt | DBLP

verify the effectiveness, in terms of accuracy and construction time, Avg Number of || 13039 145577 | 365,493| 78,784

of the TREESKETCH synopses as structural summaries for large Binding Tuples

XML data sets. These benefits become even more apparent in a Table 2: Workload characteristics

comparison to previously proposed techniques, wh&@EEBKETCHes

perform consistently better in all aspects. Overall, this empirical

study indicates that REESKETCHes are a viable and effective so- fore omit these workloads from our presentation in the interest of
lution for the structural summarization of large XML data sets in space. The workload is generated by sampling sub-trees from the

real-world applications. stable synopsis and converting them to twig queries. Table 2 con-
tains the average number of binding tuples per query in the work-

6.1 Testbed and Methodology loads that we have generated.

Technigques.We have experimented with two techniques. Evaluation Metrics. We quantify the accuracy of approximate an-

TREESKETCHes. We have implemented a fully functional proto- swers with the ESD metric which was defined in Section 5. More
type of the TREESKETCH framework that we describe in this pa- gpecifically, we compute the ESD between the approximate and the
per. Throughout our experiments, the construction algorithm usesrye nesting tree of each query in the workload and report the av-
an upper limit ofU;, = 10, 000 operations and rebuilds the heap erage over all queries. Our implementation uses a slightly revised
when its size is reduced belal, = 100 operations. version of MAC (kindly provided by Y. loannidis and V. Poosala) as
Twig-X SKETCHes. Twig-X SKETCHes [18] have been proposed as the set-distance metric, and we have implemented a straightforward
a summarization technique for estimating the selectivity of com- extension of ESD that limits comparisons to the binding elements
plex twig queries. Since the original proposal focused solely on of the same query variable. As always, the complete details can be
selectivity estimation, we have developed an algorithm for produc- fond in the full paper.

ing approximate answers from a twig-X8TcH®. The algorithm For experiments on selectivity estimation, we measure the accu-
traverses the query tree and uses the distribution information of theraCy of the synopses with the average absolute relative error over
recorded edge histograms in order to sample the number of desceny queries in the workload. More formally, if is the true and
dants for each element in the approximate result tree. For the con-the estimated selectivity for a query in the workload, the absolute
struction of twig-XETCH summaries, we have used the same ye|ative error is defined 8 — e| /maz(e, s). The sanity bound is
parameters that were reported in the original study [18]. used to avoid the artificially high percentages of low-count queries.

Data Sets.We have used four data sets in our experiments: IMDB, Following common practice [16, 18], we seto the 10-percentile
areal-life data set from the Internet Movie Database Project; XMark,of true query counts.

a synthetic data set that models transactions on a on-line auction

site; Swiss Prot, a real-life data set with annotations on proteins; 6.2 Results

and DBLP, a real-life data set with bibliographical data. The main Approximate Query Answers. In this experiment, we evaluate
characteristics of the corresponding XML documents are summa- the effectiveness of our novelREESKETCH synopses as a practi-
rized in Table 1. The TX documents have been used in the twig- cal solution for generating approximate answers to complex twig
XSKETCH study [18], and we include them here for the comparison queries. We present a comparison against the previously proposed
of TREESKETCHes against twig-X8ETCHes. Looking at the sizes twig-XSKETCH synopses, focusing on two measures: the quality
of the stable summaries, we observe that count-stability is very ef- of the generated approximate answers, and the efficiency of the
fective in compressing, without loss, the structural information of construction process.

the original documents. Still, processing a query over so large a Figure 11 shows the average ESD metric for approximate an-
summary becomes prohibitively expensive relative to the stringent swers computed with FEESKETCHes and twig-X®ETCHes on

time requirements of an approximate answering system. a workload of 1000 twig queries, and for the XMark-TX, IMDB-

Query Workloads. For each data set, we evaluate the performance 1%+ @nd SwissProt-TX data sets. We note that the increased dis-
tance numbers are partly due to the underlying MAC metric, which

of the generated summaries against a workload of 1000 positive “*' ™ ;)
queries, i.e., queries that have non-empty results sets. Our exper2SSIgns @ heavy penalty if the compared element sets contain the

iments with negative workloads have shown th&EESKETCHes same sub-tree in different multiplicities. The interpretation of the

consistently produce empty answers as approximations and we therEeSults is therefore based on the relative performance of the two
techniques, rather than on the absolute distances. Clearly, our novel

SWe have used the exact same code-base and data sets that haveREESKETCH synopses consistently produce approximate answers
been used in the work that introduced twig-i&S cHes. of lower error. In all three data sets, the average distance for twig-

16000

18000

‘ r eesSket ches —— ‘ Tr ceSket ches —— 120000 ' " TTreéskefches ——
14000 - x Twi gXSket ches ---x--- | 16000 |, Twi gXSket ches --->-- | J7s oo % Twi gXSket ches -—x—
J A p - . k
wooo b S NN e 14000 | R p 100000
' * x L ‘\‘x\ 4
o 10000 + a 12000 xux‘x o 80000
@ @ 10000 |) @
& 8000 - b ° 8000 . 60000 -
> r o
2 6000 - b < 2 A
6000 - 40000 - e S
4000 1 2000 L
2000 g 2000 N 20000 []
10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50 10 15 20 25 30 35 40 45 50
Synopsis Size (KB) Synopsi s Size (KB) Synopsi s Size (KB)
(€Y (b) (©
Figure 11: Average ESD metric for approximate answers: (a) XMak-TX, (b) IMDB-TX, (c) SwissProt-TX
XSKETCHes is at least two times higher than the one f&eE Section 4.2, the TSBILD algorithm uses effective heuristics to ex-

SKETCHes and in some cases becomes four times as large. Inplore limited, yet promising regions of the search space, while the
particular, the error for a 10KB REESKETCH synopsis (lowest squared error metric, which is workload-independent, avoids the
budget) is less than the error for a 50KB twig-XSrcH (highest most expensive step of the twig-X8&TcH algorithm, namely eval-
budget). The effectiveness oOREESKETCHes can be attributed to uating the accuracy of candidate summaries against sample work-
our novel clustering-based summarization model, which captures loads.
very accurately the intrinsic sub-structure similarity found in XML We have also evaluated the accuracy REESKETCH-generated
data. The edge-histogram model used by twigkk 8cHes, on the approximate answers for the large datasets of Table 1. The results
other hand, can capture correlations within limited neighborhoods remain qualitatively the same as for the smaller data sets and we
of synopsis nodes, while the typically high dimensionality of edge omit them in the interest of space. A detailed presentation can be
distributions affects negatively the quality of histogram approxima- found in the full version of this paper. Note that we were not able
tion. to evaluate the performance of the twig-X&rcH approach on the

In terms of construction efficiency, we present a qualitative com- large data sets due to the high construction times.
parison between the two techniques since the twig«XScH code
base is not optimized for speed. The twig-%&SCH construc-
tion algorithm starts from a coarse label-split graph, which con-
tains exactly one node for all elements of the same tag, and grad-

ually expands it through incremental refinement operations (basi- of 1000 queries for REESKETCHes and twig-X&ETCHes, and

cally, node splits, and histogram refinements). To evaluate the ben'for the XMark-TX and SwissProt-TX data sets. The results for the
efit of a candidate refinement, the algorithm measures the accu-\\oe Tx data set are similar to XMark-TX and are omitted in the
racy .Of the rekslultlggbtmgC;XSEchr; on a(s)ample work(ljo;?s[%f t\:wg interest of space. As in the previous experiment, the results show
queries (workload-based evaluation). Our proposed TIEB al- that TREESKETCHes are effective in summarizing the key proper-

gorithm, on the other hand, COMPresses the stable summary dowrhes of the underlying path distribution. We observe that the estima-
to the available space budget, using the squared error as aworkloadﬁon error remains well below 10% for all three data sets, even for

independent quality metric. small space budgets of 10KB-20KB that represent a small fraction

Selectivity Estimation. In this experiment, we evaluate the ef-
fectiveness of our proposed synopses in estimating the selectivity
of complex twig queries with branching path expressions. Fig-
ure 12 shows the average relative estimation error on a workload

| [IMDB-TX | XMark-TX | SwissProt-TX| of the original document sizes. Compared to twigrRESCHes,
TREESKETCHES 07 8 0 our new TREESKETCH synopses produce significantly more accu-
TWig-XSKETCHES 13 a7 55 rate estimates and exhibit more stable behavior.
Figure 13 shows theREESKETCH estimation error over a work-
Table 3: Construction times (in minutes) for TREESKETCHes load of 1000 queries and for the XMark, IMDB, SwissProt, and
and twig-X SKETCHes DBLP data sets (the large data sets of Table 1). The results ver-
ify the effectiveness of REESKETCHes in computing accurate se-
Table 3 compares the construction time f®*EESKETCHes and lectivity estimates for complex twig queries and demonstrate their

twig-XSKETCHes for the IMDB-TX, XMark-TX, and SwissProt- nice scaling properties in terms of data size. In all four data sets,
TX data sets. All times are reported in minutes and were mea- the estimation error drops below 5% for a space budget of 50KB,
sured on an unloaded Pentium4 3GHz machine, running Linux. which in turn represents an extremely small fraction of the original
For TREESKETCH synopses, we measure the time to compress the document size. At the same time, the construction times remain
stable summary down to the smallest summary possible, the la-affordable given the complexity and size of the involved data sets:
bel split graph; for twig-X8ETCHes, we measure the time needed 38 minutes for Swiss Prot, 11 minutes for DBLP, 2.5 minutes for
to expand the original coarse summary to 10KB of storage. This IMDB, while the largest XMark data set required 4 hours.
represents a worst case scenario fREESKETCHes since the dis-

tance from the stable summary to the label-split graph is certainl

“longer” than the distance romthe Iabel-split-gra[?h 10 10KB. Still,y 7. CONCLUSIONS

a qualitative comparison of the measured times indicates ®RaE-T Approximate answers constitute an effective solution for offset-
SKETCH construction is much more efficient. As we described in ting the high execution cost of complex XML queries in an inter-

50 T T T T T T T

100 T

; — T 100 T
TreeSket ches —— <
90 | Twi gXSket ches -——»— 90 |
80 | 4 80 %
g 1t 1 g 10}
S 60 f 1 S 60 r
o 5ot 1 o s |
€ a0 x 1 & af
g 30 D R, 2 30f
20 4 20 t
10 + 4 10 £
0 H H H I I I I 0 L L

TreeSket ches ——
Twi gXSket ches -—»--- |

‘ VB ——
XMark ---x---
SWi SSPr ot -k
| w0l DBLP o
i s
] 5 30]
= q
| w
o & 201 i
1 e
z
1 10 Y 1
.

10 15 20 25 30 35 40 45 50
Synopsis Size (KB)

@)

Figure 12: Average selectivity estimation error: (a) XMark-TX,

(b) SwissProt-TX.

. . .
10 15 20 25 30 35 40 45 50
Synopsi s Size (KB)

. 0
10 15 20 25 30 35 40 45 50

Synopsi s Size (KB)

Figure 13: TREESKETCH estimation er-
ror on large data sets.

active data exploration environment. In this paper, we have initi-

ated the study of approximate query answering for XML data. We [11]

have proposed theREESKETCH synopses, a novel class of struc-
tural summaries that capture very effectively the sub-structure sim-
ilarity that is commonly found in XML data sets. We have devel-
oped a systematic evaluation algorithm for computing approximate
answers over a conciseREESKETCH summary, and we have de-
scribed an efficient heuristic construction algorithm for building an
effective TREESKETCH for a limited space budget. To quantify the

[12]

[13]

quality of the generated approximate answers, we have proposed

a novel distance metric between XML trees that avoids the short-
comings of existing graph-theoretic metrics. Experimental results
on real-life and synthetic data sets have verified the effectiveness

[14]

of our approach and have demonstrated its benefits over previously[15]

proposed techniques.

8. REFERENCES
[1] Ashraf Aboulnaga, Alaa R. Alameldeen, and Jeffrey F. Ndag.
“Estimating the Selectivity of XML Path Expressions for Imtet

Scale Applications”. IProceedings of the 27th Intl. Conf. on Very

Large Data Base2001.

[2] P. Buneman, M. Grohe, and C. Koch. “Path Queries on Comedess

XML". In Proceedings of the 29th Intl. Conf. on Very Large Data
Bases2003.
[3] Kaushik Chakrabarti, Minos Garofalakis, Rajeev Rastagd

Kyuseok Shim. “Approximate Query Processing Using Waveléts”

Proceedings of the 26th Intl. Conf. on Very Large Data Bag680.

[4] Don Chamberlin, James Clark, Daniela Florescu, JonatiudnieR
Jerdme Singon, and Mugur Stefanescu. “XQuery 1.0: An XML
Query Language”. W3C Working Draft, 2001.

[5] Zhimin Chen, H.V. Jagadish, Laks V.S. Laksmanan, and &eli
Paparizos. "From Tree Patterns to Generalized Tree Patt&m
Efficient Eavluation of XQuery”. IrProceedings of the 29th Intl.
Conf. on Very Large Data Base2003.

[6] Zhiyuan Chen, H. V. Jagadish, Flip Korn, Nick Koudas,

S. Muthukrishnan, Raymond Ng, and Divesh Srivastava. “dognt
Twig Matches in a Tree”. IfProceedings of the Seventeenth Intl.
Conf. on Data Engineering2001.

[7] James Clark. “XSL Transformations (XSLT), Version 1.0". @3
Recommendation, November 1999.

[8] James Clark and Steve DeRose. “XML Path Language (XPath),
Version 1.0”. W3C Recommendation, November 1999.

[9] Juliana Freire, Jayant R. Haritsa, Maya Ramanath, Piaegnand
Jérbme Singon. "StatiX: Making XML Count”. InProceedings of
the 2002 ACM SIGMOD Intl. Conf. on Management of D&1@02.

[10] Yannis E. loannidis and Viswanath Poosala. “HistogiBased

Approximation of Set-Valued Query Answers”. Rroceedings of the

25th Intl. Conf. on Very Large Data Basdsdinburgh, Scotland,

[16]

[17]

(28]

[19]

[20]

[21]

[22]

[23]

September 1999.

Raghav Kaushik, Pradeep Shenoy, Phillip Bohannon Emai
Gudes. “Exploiting Local Similarity for Efficient Indexing ®aths

in Graph Structured Data”. IRroceedings of the Eighteenth Intl.
Conf. on Data Engineerin@002.

L. Lim, M. Wang, S. Padmanabhan, J.S. Vitter, and R. Parr.
XPathLearner: An On-Line Self-Tuning Markov Histogram ¥iviL
Path Selectivity Estimation. IRroceedings of the 28th Intl. Conf. on
Very Large Data Base2002.

Jason McHugh and Jennifer Widom. “Query Optimization for
XML". In Proceedings of the 25th Intl. Conf. on Very Large Data
Bases1999.

Tova Milo and Dan Suciu. “Index structures for Path Eegsions”.

In Proceedings of the Seventh Intl. Conf. on Database Theory
(ICDT’99), Jerusalem, Israel, January 1999.

N. Polyzotis and M. Garofalakis. "Statistical Synop$er Graph
Structured XML Databases”. IRroceedings of the 2002 ACM
SIGMOD Intl. Conf. on Management of Da2002.

N. Polyzotis and M. Garofalakis. "Structure and Valus8pses for
XML Data Graphs”. InProceedings of the 28th Intl. Conf. on Very
Large Data Bases2002.

Neoklis Polyzotis, Minos Garofalakis, and Yannis |adatlis.
Approximate XML Query Answers. 2004.

Neoklis Polyzotis, Minos Garofalakis, and Yannis |aalis.
“Selectivity Estimation for XML Twigs”. InProceedings of the
Twentieth Intl. Conf. on Data Engineering004.

C. M. ProcopiucGeometric Techniques for Clustering: Theory and
Practice PhD thesis, Duke Univ., 2001.

D. Sasha and K. Zhang. Fast algorithms for the unit cosingd
distance between treell. of Algorithms 11, 1990.

Wei Wang, Haifeng Jiang, Hongjun Lu, and Jeffrey Xu Yu.
Containment join size estimation: Models and methods. In
Proceedings of the 2003 ACM SIGMOD Intl. Conf. on Management
of Data, 2003.

Yuging Wu, Jignesh M. Patel, and H.V. Jagadish. "Estintat
Answer Sizes for XML Queries”. liProceedings of the 8th Intl.
Conf. on Extending Database Technolpg§02.

T. Zhang, R. Ramakrishnan, and M. Livny. BIRCH: An Efficte
Data Clustering Method for Very Large Databasestaceedings of
the 1996 ACM SIGMOD Intl. Conf. on Management of DA1896.

