
Index Structures for Structured Documents *

Ycmg Kyu Lee, Seong-Joon Yoo, Kyoungro Yoon

School of Computer and Information Science

Syracuse University

P. Bruce Berra

Dept. of Electrical and Computer Engineering

Syracuse University

Abstract

Much research has been carried out in order to man-

age structured documents such aa SGML documents

and to provide powerful query facilities which exploit

document structures as well as document contents. In

order to perform structure queries efficiently in a struc-

tured document management system, an index struc-

ture which supports fast document element access must

be provided. However, there has been little research

on the index structures for structured documents. In

this paper, we propose various kinds of new inverted

indexing schemes and signature file schemes for eficient

structure query processing. We evaluate the storage re-

quirements and disk access times of our schemes and

present the analytical and experiment al results.

1 Introduction

Since the Standard Generalized Markup Language

(SGML) [13] [15] was standardized, many structured

document management systems have been built to man-

age structured documents including [1] [2] ~+] [4] [5]

[6] [17] [18] [20] [21] [23]. In those systems, structure

queries ss well as content queries are supported. The

content query is based on the content of documents. For

example, the query that finds documents which contain

a specific keyword is a content query. The structure

query is based on the hierarchical logical structure of

documents. Thus, we can ask questions basecl on the

●This work was supported in part by the Electronics and Telecom-

munications Research Institute of Korea and the New York State Cen-

ter for Advanced Technology in Computer Applications & Software

Engineering.

Permission to make digitallhard copies of all or part of thk material for
pereanel or claasrvam usc ia granted without fee provided that the copies
are not made or dktributed for @it or commercial advantage, the. copy-
right notice, the $tte of the publwaticm and ita date appear, and ootwe as.

gwen that copyright is by perrniasion of the ACM, Inc. To copy otherww,
to republish, to poet on aervera or to redistribute to lists, requin?a specific
permiaaion andlor fee.
DL’96, Bethesda MD USA

@1996 ACM @8g791_83~/96/03 ..$3.50

logical structure of documents such as chapters, sec-

tions, or subsections. The structure query can be com-

bined with the content query to build a more powerful

query.

Much research has been performed to design efficient

index structures for database and information retrieval

systems [7] [10] [11] [12] [14] [24] [25]. In order to

perform structure queries efficiently in the structured

document management system, an index structure that

supports fast element access must be provided because

users want to access any kind of document element in

the database. However, in the previous systems, lit-

tle attention has been focussed on structured document

indexing.

Recently, Sacks-Davis et al. [23] have proposed some

possible inverted index structures for structure query

processing based on the conventional inverted index.

The first approach is to maintain the inverted index

supporting only document access. That is, the inverted

list contains only document identifiers, and no element

identifiers. If users want to access document elements,

document identifiers are first obtained from the docu-

ment index, and then the elements satisfying the query

are identified from the retrieved documents. The dis-

advantage of this approach is that post-processing is

required to locate document elements after identifying

documents. The cost of the post-processing is consid-

erable if the number of documents to be retrieved is

large. To reduce the post-processing cost, an internal

tree representation [20] can be used. However, the stor-

age overhead is great.

The second approach is to maintain a separate index

for each element type. However, the index term should

appear in every index causing considerable space over-

head. In order to reduce the duplication of index terms,

a single combined vocabulary with a separate inverted
list for each element type per index term can be used.

For example, an index term “multimedia” now appears

in only one combined vocabulary. However, the stor-

age overhead of the inverted list caused by the element

identifiers is still great. For example, if a paragraph

91

contains a keyword “multimedia,” the inverted lists for

the keyword “multimedia” will contain all the element

identifiers in the path from the root to the paragraph.

Finally, they have proposed a new scheme, called el-

ement locator scheme, for document structure indexing.

In this approach, each index term in the inverted list is

associated with a path encoding from the root to the

leaf and any necessary sibling numbers. This approach

also requires considerable storage overhead in the in-

verted list.

In this paper, we propose new inverted index and

signature file schemes for structured documents which

reduce the storage overhead considerably. Our schemes

use specially designed unique element identifiers (UID’S)

in order to reduce the number of index entries. By let-

ting the UID carry information about the document

structure, we can obtain the UID’S of the ancestors

and deacendents directly from the UID of an element.

Thus, we do not need to store all the element identifiers

containing a keyword in the index unlike the previous

schemes.

2 Document Structure Query

It is important to have some queries based on the

logical structure of the structured documents such as

SGML documents. The structure query can be a sim-
ple structure query that can be resolved by using DTD’s

(Document Type Definition) only and complex struc-

ture query which is combined with the content query.

For example, the query that finds documents which

have specific elements such as chapter and section is a

simple structure query. In the complex structure query,

users can find sections whose first paragraph contains a

specific keyword. Structure queries are very useful since

users can retrieve any parts (elements) of documents

based on the combination of the content and structure

of documents. The following shows some examples of

the structure query.

Find sections that have a subsection containing

the keyword “hypermedia.”

Find the first author of the documents whose con-
clusion includes the keyword “index,”

Find the images referenced by the last section of

an article containing the keyword “multimedia.”

Select all nodes that have children.

Find the children and grandchildren elements of

this.element.

In order to facilitate structure query processing, an

index structure supporting fast element access must be

provided,

m

,...-.,

.......

Figure 1: Example Document Tree

Table 1: Unique Element Identifiers

element UID

T

2

3

5

6

element] UID

I

f 8

9

: 14

i 15

j 16

3 Document Element Identifier

Our indexing schemes use specially designed UID’S

in order to reduce the index entries. We ;nterpret a

document structure as a k-ary tree [9] and assign each

element (node) a UID according to the order of the

level-order tree traversal. For example, for the docu-

ment tree of Figure 1, we assign UID’s as shown in

Table 1 assuming a 3-ary tree. Here, we can consider

the node a is a book, b a chapter, d a section, and h

a subsection. Because we assume the tree is complete,

there are some virtual nodes which do not exist.

The UID’S of the parent and j-th child of a node

whose UID is i can be obtained by the following func-

tions.

parent(i) =
IW+lJ

(1)

chiid(i, j) = k(i – 1)+ j + 1 (2)

It is possible to use the tree location address of the

HyQ [16] as the UID. In this case, the UID is a con-

catenation of the children identifiers in the path from

the root to the node. For example, the tree location ad-

dress of the node which is the fourth child of the third

child of the second child of the root is ‘1 234’. We can

use ‘2 3 4’ as the UID of the node. Here, we need not

include the root identifier since it is always ‘ 1‘. From

the UID, the UID’S of the ancestors and descendants

can be obtained using the shift operations.

92

4 Indexing Structured Documents

Since users can access any kind of document element

in the document tree, it is necessary to build an index

structure that facilitates access to an element in the

database. We propose various kinds of new inverted in-

dex structures and signature file structures which sup-

port fast access to document elements.

4.1 Inverted Index

In order to support direct element access, it is re-

quired to include all the index terms of elements in the

inverted list. In the document tree, leaf nodes are as-

sociated with data while internal nodes represent only

structure relationships between document elements.

Suppose that a document has three leaf nodes and
each leaf element has index terms as shown in Figure 2.

Here, we can consider the node A is a chapter, B and

C are sections, and D and E are subsections.

A

I I
B c

person

man

D E

person person

female fermde

girl woman

Figure 2: Document Tree with Index Terms

Even though the internal nodes have no associated

document data, the data at the subtrees must be con-

sidered as their data. Thus, the index terms for each

node are as follows:

index (A) = {person ,f emale ,man,girl, woman}
index (B) = {person, female ,girl, woman:}
index(C) = {person, mm}

index (D) = {person, f emale, girl}

index(E) = {person, f emale, woman}

Now the problem is how to maintain an inverted

index structure for fast access to document elements.

4.1.1 Inverted Index for All Nodes with Repli-
cation (ANWR)

The first naive approach is to replicate all index terms of

the children to their ancestor nodes as shown in Figure

3.

A

r

person

female

girl

woman

*

B c

person person

female

girl

I woman I

5’11D E

person person

female female

girl woman

Figure 3: Indices for All Nodes with Replication

In this scheme, the inverted list for an index term

must include all the UID’S of the elements which contain

it. The inverted list for the example is as follows:

invert-list (person) = {A, B,C, D ,E}

invert-list (female) = {A, B ,D ,E}

invert-list (man) = {A, C}

invert-list (girl) = {A, B,D}

invert-list (woman) = {A, B,E}

Using the inverted list we can access any element at

any level in the document tree. However, this scheme

causes many duplications in the inverted list.

4.1.2 Inverted Index for All Levels with Repli-

cation (ALWR)

This scheme is the same as the ANWR except that each

element type has a separate inverted list per index term.

A similar scheme has also been described in [23] without

analysis. The inverted list for the example is as follows:

invert-list (person) = {{A} ,{B ,C}, {D, E}}

invert-list (female) = {{A}, {B}, {D, E}}

invert-list (man) = {{A} ,{ C}, { }}

invert -list (girl) = {{A}, {B}, {D}}

invert-list (woman) = {{A}, {B}, {El}

The inverted list for “person” has three sub-lists for
three element types. This scheme has also considerable

storage overhead in the inverted list.

93

4.1.3 Inverted Index for Leaf Nodes Only
(LNON)

In this scheme, we include element identifiers in the

inverted list for leaf nodes only as shown in Figure 4.

A

[

B c

[
person

man

D E

person person

female female

girl wornan

Figure 4: Indices for Leaf Nodes Only

The inverted list for the example is as follows:

invert-list (person) = {C, D, E}

invert-list (female) = {D ,E}

invert-list (man) = {C}

invert-list (girl) = {D}

invert-list (woman) = {E}

The storage requirement of this scheme is much less

than that of the ANWR. Even though we do not main-

tain the UID’S of the internal nodes in the document

tree, the UID’S of the ancestor nodes of a node can be

calculated by the parent function. Thus, we can access

any document element using the inverted list.

4.1.4 Inverted Index for All Nodes without Repli-

cation (ANOR)

We propose a novel method to build the inverted list

which saves more space. Figure 5 shows how to build

an index for structured documents. In this scheme, we

use the fact that the child nodes of a node can have

some index terms in common.

By using this fact, we can construct the inverted list
for the example as follows:

inverted-list (person) = {A}

inverted-list (female) = {B}

inverted-list (man) = {C}

inverted-list (girl) = {D}

inverted-list (Woman) = {E}

In this scheme, the index of a node is

INDEX[node] U INDEX[ancestors]

INDEX[descenclents].

u

Figure 5: Indices without Replication

Using the ANOR inverted list, we can access any el-

ement in the database using the parent and child func-

tion.

4.1.5 Inverted Index for Root Node Only

(RNON)

We can consider an extreme case which has been used

in traditional information retrieval systems. In this

scheme, we include only the element identifier of the

root in the inverted list, that is, the document identi-

fier only, as shown in Figure 6.

A

r

person

fernsle

girl

woman

man

L , L 1

Figure 6: Indices for Root Node Only

The inverted list for the example is given below.

inverted-list (person) = {A}

inverted-list (female) = {A}

invert cd-list (man) = {A}

inverted-list (girl) = {A}

invert cd-list (woman) = {A}

However, this approach is inappropriate for structure

query processing. That is, to process structure queries,

we have to either access all related documents as a whole

or maintain other data structures to identify satisfying

element identifiers.

94

4.2 Signature File

The signature file is a useful indexing technique in

information retrieval systems because its storage uti-

lization is better than that of the inverted index [11]

[19]. In order to support structure queries efficiently,

we propose modified signature file structures.

4.2.1 Signature File for All Nodes (SFAN)

In this scheme, we maintain signatures of all elements

in the document tree. However, it requires considerable

space to maintain element signatures. Moreover, it is

inefficient as the entire signature file must be accessed

to process a query.

4.3 Signature File for All Levels (SFAL)

In this scheme, all element signatures of the docu-

ment tree are maintained. However, unlike the SFAN,

each element type is assigned a separate signature file

in order to reduce the time needed to scan the signa-

ture file. Even though this scheme can access document

elements very fast, it requires considerable space.

4.3.1 Signature File for Leaf Nodes Only

(SFLN)

To reduce the space for the signature file, we maintain

signatures of the leaf nodes only and do not maintain

signatures of the internal nodes. This scheme is similar

to the LNON inverted indexing scheme. The signature

of the internal node can be calculated by ORing the

signatures of its leaf nodes.

4.4 Signature File for Root Node Only

(SFRN)

This scheme is the one used in traditional informa-

tion retrieval systems. In this scheme, only the root

node of the document tree has a signature and the other

nodes do not have signatures. However, it is diflicult to

support structure queries in this scheme.

4.5 Signature File for Selected Levels

(SFSL)

In order to reduce the time required to perform the

bitwise OR operation in the SFLN, we can maintain

signatures at some selected levels of the document tree.

The SFLN and SFRN are the extreme cases of this

scheme. As an example of this scheme, we can combine
the SFLN and SFRN schemes, that is, we can maintain

signatures for the root node and leaf nodes. We can also

maintain three levels of signatures, for example, for the

root node, leaf nodes, and middle level nodes.

5 Cost Comparison

We analyze the storage requirements and disk ac-
cess times of the ANWR, ALWR, LNON, and ANOR

inverted indexing schemes. The inverted index model

which will be used for the analysis is shown in Figure

7.

postings list
keywordSddlwses doc id element id’s

(1 ~ ‘“7;

.00 I
● 00

. ●
.00 1

: :
.0. I

&f-

nodes . . .

‘4
.:. : 1 . . . 1

●..<{ I ● . . I

Figure 7: Inverted Index Structure for Structured Doc-

uments

The symbols of Table 2 are used in the space and

time expressions representing the storage requirements

and disk access tire-es respec~ively. -

Table 2: Symbols and Definitions

svmbol I definition-–

d degree of IV-tree

h height of document tree

k degree of document tree

1 height of B+-tree

m average number of keywords in a node

ndOC total number of documents in database

ninv~f.t_fi~t number of inverted lists per index term

nkey total number of keywords in database

P rate of promoted keywords from

children to parent node

sblock block size in bytes

Sdoc-id document identifier size in bytes

Selem_id element identifier size in bytea

sentry table entry size in bytes

sk=~ average keyword size in bytes

.$ptr pointer size in bytea

s#et set size of document variable

t~~~d~~ random disk block access time

tseq sequential disk block access time

u rate of unique index terms

in children nodes

95

5.1 Storage Requirement

The storage requirement of an index structure is the

sum of those required for the J3+-tree and postings list.

Sindez = Sbtree + Sposting. (3)

The B+-tree has the leaf and internal nodes.

Sbtree = Sleaf + Sinternal. (4)

Since the total number of keywords in the database is

nkcy, the number of disk blocks required for the leaf
nodes is

Sleaf =
1

(Sky + ~in.ertJi8t * Sptr) * nk.v , (~)

Sbloek 1

If we assume that the height of the B+-tree is 1 and the

degree (fan-out) is d, then the number of disk blocks for

the internal nodes is

1-1

xSinternat = ~’

i=O

all-l

= =“

The degree d can be calculated as follows:

(6)

‘=[sk;%t.] (7)

The storage requirement for the postings list for the

database is

(8)

where

Sid = Ndoc.per-kcy * Sdoc.id + Npwt-per-key * Selem.id.

The number of postings per keyword is

[

Np.st.per-do. * ndoc
Npont-pev-kev =

nkey 1
(9)

NOW we calculate NdO~_Per-keV, the average number
of documents per keyword. Here u is the rate of unique

index terms among the child nodes which will be in-

dexed in the parent node. The range of u is

1 the document is very dense, thatIf u is close to ~,

is, the elements of the document are closely related to

each other and have very similar index terms. When u

is large, the document is sparse, that is, the elements of

the document are not closely related.

Assume that the average number of index terms of

a leaf node is m. Then the number of index terms of a

node at level (h - 1) is

k*m*u.

The number of index terms of a node at level i is

kh-i * m * Uh-i.

Since the number of nodes at level i is

number of index terms at level i is

ki-1 * kh-i * m * uh-j

= kh-l * Yn* Uh-i.

ki-l, the total

Since the number of index terms of a root node is

kh-l*m*uh-l,

the number of documents per keyword is

Ndo.-per-key =
1

kh-l *m* Uh-l * rid..

1
(lo)

nk.y

Now we calculate NPOSt-pe~-dOe,the number of index

terms per document, for each inverted indexing scheme.

ANWR

The total number of index terms per document

h

NPost_Per-do. =
E

kh-1 * ~ * ~h-i

i=l

h-1

=
x

kh-l*m+kh-l *m* J

j=l

=kh-l*m+kh-l*m*
U*(l– J+l)

l–u “

is

(11)

ALWR:

For the ALWR, we have to maintain as many inverted

lists ss the height of the document tree. The total num-

ber of index terms per document for the inverted list of

level i is the same as the number of index terms at level

i. Thus,

Npost.per.doc = kh-l * m * Uh-i. (12)

96

LNON:

The total number of index terms per document is

N“ost_pev_doe = ~h-l * ~ (13)

since the number of leaf nodes in the tree is k“- 1.

ANOR:

For the analysis of the ANOR, we introduce a parameter

p which represents the probability that an index term

is promoted from the child nodes to their parent node.

The range of p is

O<p<l.

Then, the number of index terms of a leaf is

m-m *p.

The number of index terms of a node at level i is

m *ph-i — m * ph-i+l.

The total number of index terms at level i is

ki-l * m *ph-i _ ki-1 * m *ph-i+l

because the number of nodes at level i is ki-l. And the

number of index terms of the root node is

m*ph-l.

Thus, the total number of index terms of a document is

IV,O,t ,.. ~oC= ~(ki-l.m.p’-i-ki-l .m*pk-i+l).-
i=2

+rn * ph-1

= kh-1 * m
- mx~pi * (kh-i -kh-i-l) . (14)

i=l

5.2 Disk Access Time

The disk access time required to retrieve the postings

list of a keyword is the sum of the I?+-tree access time

and postings list access time,

search = Tbt.ee + Tpo.ting.T (15)

The disk access time of the I?*-tree is

Tbtree =l*t random. (16)

The disk access time of the postings list of a keyword is

Tposting = Gandom + (Nb/.ck_pe?_ke# - 1) * tseq, (17)

where the number of disk blocks of the postings list per

keyword is

[1

Sponting
Nblock.per_key = (18)

nk.y

5.3 Analytical Results

We compare the storage requirements of the inverted

indexing schemes by using the parameters as shown in

Table 3. The disk access times are based on the Conner

CP30200 model [8]. We assume that the database has

100,000documents with 50,000 keywords.

Table 3: Parameter Settings

I symbol I value

d 64

h

k

1

m

ndoc

?Jinv..~Ji8t

~key

P

sb~~~k

Sdoe_id

Sel.m.id

Sentry

Skey

$Jptr

s*.t

tra~&~

t seq

u

5

5

3

10

100,000

5 (ALWR), 1 (others)

50,000
varied

1024

4

2

4

12

4

50
19 msec

0.7 msec

0.6

Figure 8 illustrates the storage requirements of the

ANWR, ALWR, LNON, and ANOR, when u is 0.6. It

shows that the ANOR has the best performance while

the ALWR has the worst. It shows that the index size of

the ANOR decreases linearly as the value of p increases.

Figure 9 illustrates the average disk access times of

the four schemes, when u is 0.6 and any arbitrary key-

word index is accessed. It shows that the ANOR has

the best performance when p is larger than 0.1. We also

have obtained similar results with other values of u.

5.4 Experimental Results

Experiments have been performed on a SUN SPARC

station with a local Conner CP30200 disk. We have ex-

97

45246 ! I .—+

t

,*W ~----... -..--Ii--..........--.......---..*~

k

19+06 Y !

Sooml I
0.1 0.16 0.4 0.3s 0.3 0.33 OA 043 0s

~,- w

Figure8: Index Space Requirement

‘m~

116 -

110

I
1! la

i
!7/ ‘w .
i ~,0""""""""-"""""---"-0""""""'"""""""""--"""""""*--""""""---"""""-""""""-"":.- —————- +-———————-..--+--.---—-.._----+— __________

n-----

30 -

Ml 1
0.1 0.1s 0.2 0.26 0s 04

A3r* (P)
0.4s 0.2

Figure 9: Average Disk Access Time

perimented in a single user environment after building

a partial inverted index in a 100 Mbyte disk space. We

have assumed the databsse contains 100,000 documents

with 50,000 keywords and u is 0.6. Figure 10 shows the

results of the experiment obtained by accessing the in-

dex for a given keyword 100 times each and averaging

the access times. The results are similar to the analyt-

ical results. The reason that the experimental results

are somewhat faster is that we have experimented in

a single user environment with a relatively small disk
space and we have not considered other aspects such as
buffer management in the analysis.

6 Conclusions and Future Work

It is important to provide powerful structure query

facilities in a structured document management sys-

tem. To support structure query processing and provide

fast element access, we have proposed new inverted in-

dex and signature file schemes which reduce the index

110

10s1

k."--"-.--.-u-----....---.---......-----9..---.--..-.--.---..-...*..-.-----..-.------.k
——.-——

—
73 -

lol , J
0.1 0.16 0.2 0.26 0s 0,4 OAK

p&3rm (p)
0.s

Figure 10: Experimental Disk Access Time

space considerably compared to the previous schemes.

Our scheme exploits the hierarchical document struc-

ture and and uses the fact that index terms are inherited

between hierarchically related elements. We have eval-

uated the storage requirements and disk access times of

the inverted index schemes. Among the inverted index-

ing schemes, the ANOR (inverted index without repli-

cation) has shown the best performance in the storage

requirement. It also has the least disk access time when

the elements of a document have some common key-

words. It means that the ANOR can be the best choice

since the difference of the storage requirements between

the ANOR and other schemes is great. By using this

index structure, we can access document elements very

fast with much less index space.

Recently, much attention has been focused on video

databases [22] [26]. Video documents also have hierar-

chical structures as with text documents. By exploit-

ing this structure using structure queries, users can ob-

tain greater benefits than by using only content queries.

Our indexing schemes can also be applied to structured

video document management.

In this paper, we have presented signature file schemes

which can be used for structured documents. We are

currently evaluating the storage requirements and disk

access times of them.

References

[1] T. Arnold-Moore, M. Fuller, B. Lowe, J. Thorn,

and R. Wilkinson, “The ELF Data Model and

SGQL Query Language for Structured Document

Databases,” CITRI TR 94-13, Collaborative Infor-

mation Technology Research Institute, Melbourne,

Australia, 1994.

98

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

P. B. Berra, Y. K. Lee, and K. Yoon, “Multime-

dia Databaee Design for Heterogeneous Distributed

Database Systems: 2nd Interim Report ,“ The New

York State Center for Advanced Technology in

Computer Applications and Software Engineering,

Syracuse University, June 1995.

G. E. Blake, M. P. Consens, P. Kilpelainen,

P. -A. Larson, T. Snider, and F. W. Tompa,

“Text/Relational Database Management ISystems:

Harmonizing SQL and SGML,” Proceedings of

the International Conference on Applications of

Databases, pp. 267-280, Vadstena, Sweden, June

1994.

D. M. Choy, F. Barbie, R. H. Gueting, D. Ruland,

and R. Zicari, “Document Management and Han-

dling; Proceedings of the IEEE ‘/?7 Ofjice Automa-
tion Symposium, pp. 241-246, 1987.

V. Christophides, S. Abiteboul, S. Cluet, and

M. Scholl, ‘From Structured Documents to Novel

Query Facilities,” Proceedings of the 1994 ACM

SIGikfOD Conference, pp. 313-324, Minneapolis,

Minnesota, May 1994.

V. Christophides and A. Rizk, “Querying Struc-

tured Documents with Hypertext Links using

00DBMS,” Proceedings of the European Confer-

ence on Hypermedia Technology (ECHT ‘9./), PP.

186-197,Edinburgh, UK, September 1994.

C. Clifton and H. Garcia-Molina, “Indexing a Hy-

pertext Database,” Proceedings of the 16th Inter-

national Conference on Very Large Data Bases, pp.

36-49, Brisbane, Australia, 1990.

Conner Periperials, Inc., “CP-30200 Specification

Summary,” 1995.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest,

Introduction to Algorithms, The MIT Press, 1990.

C. Faloutsos, “Access Methods for Text ,“ ACM

Computing Surveys, vol. 17, no. 1, pp. 49-74,

March 1985.

C. Faloutsos, “Signature Files,” In W. B. IFrankes
and R. Baeza-Yates, Ed., Information Retm’eval:

Data Structures and Algorithms, pp. 44-65, Pren-

tice Hall, 1992.

W. B. Frankes and R. Baeza-Yates, Ed., Ir$forma-

tion Retrieval: Data Structures and Algorithms,

Prentice Hall, 1992.

C. F. Goldfarb, The SGML Handbook, Oxford Uni-

versity Press, Oxford, UK, 1990.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

D. Harman, E. Fox, R. Baeza-Yates, and W. Lee,

“Inverted Files,” In W. B. Frankes and R. Baeza-

Yates, Ed., Information Retrieval: Data Structures

and Algorithms, pp. 28-43, Prentice Hall, 1992.

1S0 8879. Information Processing - Text and Ofice

Systems - Standard Generalized Markup Language

(SGML), International Organization for Standard-

ization, 1986.

W. E. Kimber, “HyTime and SGML: Under-

standing the HyTime HYQ Query Language,”

Available via anonymous ftp at ftp.ifi.uio.no

/pub/SGML/HyTime, August 1993.

Y, K, Lee, S. -J. Yoo, K. Yoon, and P. B.
Berra, “Structured Document Management and

Handling,” Technical Report 9506, CASE Center,

Syracuse University, June 1995.

Y. K. Lee, S. -J, Yoo, K. Yoon, and P. B. Berra,

“Querying Structured Hyperdocuments,” Proceed-

ings of the $9th Hawaii International Conference

on System Sciences, Maui, Hawaii, January 1996.

Z. Lin and C. Faloutsos, pp. 28-43, “Frame-Sliced

Signature Files,” IEEE ‘lkansactions on Knowledge

and Data Engineering, vol. 4, no. 3, pp. 281-289,

June 1992.

I. A. Macleod, “Storage and Retrieval of Structured

Documents,” Information Processing and Manage-
ment, vol. 26, no. 2, pp. 197-208, 1990.

I. A. Macleod, “A Query Language for Retriev-

ing Information from Hierarchic Text Structures,”

The Computer Journal, vol. 34, no. 3, pp. 254-264,

1991.

E. Oomoto and K. Tanaka, “OVID: Design and Im-

plementation of a Video-Object Database System,”

IEEE Transactions on Knowledge and Data Engi-

neering, vol. 5, no. 4, pp. 629-643, August 1993.

R. Sacks-Davis, T. Arnold-Moore, and J. Zobel,

“Database Systems for Structured Documents:

Proceedings of the International Symposium on Ad-

vanced Database Technologies and Their Integra-

tion (ADTI ‘94), Nara, Japan, October 1994.

G. Salton and M. J. McGill, Introduction to Mod-

ern Information Retrieval, McGraw-Hill, 1983.

G. Salton, Automatic Text Processing, Addison-

Wesley, 1989.

R. Weiss, A. Duba, and D. K. Gifford, “Comp&

sition and Search with a Video Algebra,” IEEE

Multimedia, pp. 12-25, Spring 1995.

99

